Science.gov

Sample records for agricultural chemical safety

  1. DEVELOPMENT OF ADME DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS

    EPA Science Inventory

    DEVELOPMENT OF ADME DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS
    Pastoor, Timothy1, Barton, Hugh2
    1 Syngenta Crop Protection, Greensboro, NC, USA.
    2 EPA, Office of Research and Development-NHEERL, RTP, NC, USA.

    A multi-stakeholder series of discussions d...

  2. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFETY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  3. Agricultural Chemical and Pesticide Hazards. Module SH-50. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on agricultural chemical and pesticide hazards is one of 50 modules concerned with job safety and health. This module contains information concerning the safe handling, use, and storage of many chemicals that are frequently used in the control of pests. Following the introduction, 10 objectives (each keyed to a page in the…

  4. Preventing Agricultural Chemical Exposure: A Safety Program Manual. Participatory Education with Farmworkers in Pesticide Safety.

    ERIC Educational Resources Information Center

    Wake Forest Univ., Winston-Salem, NC. Dept. of Family and Community Medicine.

    Preventing Agricultural Chemical Exposure among North Carolina Farmworkers (PACE) is a project designed to describe farmworker pesticide exposure and to develop an educational intervention to reduce farmworker pesticide exposure. The PACE project used a community participation framework to ensure that the community played a significant role in…

  5. The Acquisition and Application of Absorption, Distribution, Metabolism, and Excretion (ADME) Data in Agricultural Chemical Safety Assessments

    SciTech Connect

    Barton, H. A.; Pastoor, Timothy P.; Baetcke, Karl; Chambers, Janice E.; Diliberto, Janet; Doerrer, Nancy G.; Driver, Jeffrey H.; Hastings, Charles E.; Iyengar, Seshadri; Krieger, Robert; Stahl, Bernhard; Timchalk, Chuck

    2006-01-01

    The ILSI Health and Environmental Sciences Institute (HESI) formed the Agricultural Chemical Safety Assessment (ACSA) Technical Committee in the year 2000 to design a toxicity testing scheme that would incorporate current understanding of pesticide toxicology and exposure and recognize the specificity of agricultural products. The purpose of and background for the ACSA project are described in detail in the companion paper by Carmichael et al. (2006). As the proposed tiered testing approach for agricultural chemical safety assessment evolved, the ACSA Technical Committee and its task forces (Carmichael et al., 2006; Cooper et al., 2006; Doe et al., 2006) worked toward the following objectives: (1) Provide information that can be applied to a range of relevant human exposure situations. (2) Characterize effects that have the potential to damage human health at exposure levels approximating those that might be encountered in the use of these compounds. (3) Avoid high doses that cause unnecessary public concern (e.g., safety assessments should focus on doses that are relevant to realistic human exposures while maintaining adequate power for the experimental studies to detect toxicity). (4) Use the minimum number of animals necessary to produce a thorough safety assessment of the chemicals of interest. (5) Inflict the minimum amount of distress on animals. (6) Minimize excessive and unnecessary use of resources by regulatory authorities and industry, which could be used to address other issues of concern. (7) Increase both the efficiency and relevance of the current safety assessment process.

  6. THE ACQUISITION AND APPLICATION OF ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION (ADME) DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS

    EPA Science Inventory

    A multi-sector international group of government, academic, and industry scientists has developed a proposal for an improved testing scheme for assessing the safety of crop protection chemicals. Incorporation of pharmacokinetic studies describing the absorption, distribution, me...

  7. [Agricultural biotechnology safety assessment].

    PubMed

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be

  8. [Agricultural biotechnology safety assessment].

    PubMed

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be

  9. Toxicology and Chemical Safety.

    ERIC Educational Resources Information Center

    Hall, Stephen K.

    1983-01-01

    Topics addressed in this discussion of toxicology and chemical safety include routes of exposure, dose/response relationships, action of toxic substances, and effects of exposure to chemicals. Specific examples are used to illustrate the principles discussed. Suggests prudence in handling any chemicals, whether or not toxicity is known. (JN)

  10. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  11. Agricultural Chemicals and Radiation. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    The document is designed to be used as a resource in teaching vocational agriculture high school students about the environment. Agricultural chemicals are the major focus, with some attention to radiation. The importance of safety in agricultural chemical use is stressed, with descriptions of the pesticide label; protective clothing; respiratory…

  12. Agricultural chemical utilization and human health.

    PubMed Central

    Mushak, E W; Piver, W T

    1992-01-01

    The public is justifiably concerned about the human health effects of agricultural chemicals. The many gaps in information about the mechanisms of toxic action, human exposures, and the nature and extent of human health effects are large. Very few older pesticides, in particular, have been tested for human health effects. Workers who produce, harvest, store, transport, process, and prepare food and fibers are exposed to many chemicals that are potentially hazardous and that are used in agriculture. The occupational health of these workers has not been adequately studied, and protective efforts have sometimes been minimal. Valid and accurate risk assessment is best based on sound information about how chemicals, in this case agricultural chemicals, are involved in toxic events--their mechanisms of action. These health effects include tumor promotion, chronic and acute neurotoxicity, immunotoxicity, and reproductive and developmental toxicity. Another key part of risk assessment is exposure assessment. Fundamental studies of the toxicology of target organisms and nontarget organisms exposed to agricultural chemicals are needed to discover and develop better solutions to the problems of agricultural pest control, including better formulations, optimal application rates and public education in safety and alternative agricultural practices. The large number of pesticides that have never been adequately tested for effects on human health is particularly worrisome in light of emerging information about delayed nervous system effects. PMID:1396466

  13. Virginia agricultural health and safety survey.

    PubMed

    Mariger, S C; Grisso, R D; Perumpral, J V; Sorenson, A W; Christensen, N K; Miller, R L

    2009-01-01

    This comprehensive study was conducted primarily to identify the common causes of agricultural injuries on active Virginia farms and to identify hazardous agricultural operations, exposure duration, and injuries associated with each hazardous operation. In addition, the influences of factors such as general health status of farmers, age, weight, and alcohol and tobacco use on injury were examined. This information will be used for the development of educational programs that will improve the safety of agricultural operations. The sample selected for the study included farms of 28 ha or more, operating on a full- or part-time basis. This stipulation was to ensure that all farms in the sample are active and that participants generated a major portion of their income from the farm. Of the 26,000 farms meeting this requirement, 1,650 were selected to participate in the study. A survey instrument was mailed to the farmers selected to collect the information needed for meeting the established objectives of the study. Approximately 19% of the surveys were returned. In terms of percentage injuries, livestock handling was the primary cause. This was followed by working in elevated locations, operating and repairing agricultural machinery, and heavy lifting. The activities carried out most frequently by the participants were: operating farm tractors, operating trucks/automobiles, using hand and power tools, and working with agricultural chemicals. The overall injury rate was 5.6 injuries per 100,000 h. The exposure to agricultural hazards appeared to have minimal or no effect on the health status of Virginia farmers. Farm workers in the 45 to 64 age group sustained the most injuries. Older, more experienced farmers reported fewer injuries because of limited exposure to hazards and work experience. The average age of Virginia farmers surveyed was 60. This is expected to rise because most respondents reported no plans to retire during the next five years. Based on the results

  14. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1969-01-01

    Presents the Safety Guide used in the Research Center at Monsanto Chemical Company (St. Louis). Topics include: general safety practices, safety glasses and shoes, respiratory protection, electrical wiring, solvent handling and waste disposal. Procedures are given for evacuating, "tagging out, and "locking out. Special mention is given to…

  15. Agricultural work safety efforts by Wisconsin extension agricultural agents.

    PubMed

    Chapman, L J; Schuler, R T; Skjolaas, C A; Wilkinson, T L

    1995-01-01

    This study investigated the agricultural work-related safety and health programming of county-level cooperative extension agents who work through land grant universities to provide a range of educational programs to agricultural producers. A questionnaire was designed and administered to all 89 Wisconsin agriculture and agribusiness extension county faculty. The questionnaire obtained valid responses from 98.9 percent of the agents. Ninety percent of all agents conducted some occupational safety and health promotion programming in the last year. These activities occupied an average of 4.8 days per agent per year. Most of the reported activities were group programs for the agricultural labor force that involved other extension agents and included the use of videotapes. The greatest barrier to more programming was lack of time on the part of both the agricultural work force and the agents. Most extension agents placed greater emphasis on training in how to work safely around hazards than on how to recognize and permanently correct hazards. For future programs agents requested more short format materials to use in programming, such as fact sheets, videotapes, and farm hazard inspection checklists. Agents are important training delivery resources for controlling farm-related injury and disease. Agents could be more effective with more time, better materials, and with more emphasis on hazard correction in workplace safety programs.

  16. Evaluation of protein safety in the context of agricultural biotechnology.

    PubMed

    Delaney, Bryan; Astwood, James D; Cunny, Helen; Conn, Robin Eichen; Herouet-Guicheney, Corinne; Macintosh, Susan; Meyer, Linda S; Privalle, Laura; Gao, Yong; Mattsson, Joel; Levine, Marci

    2008-05-01

    One component of the safety assessment of agricultural products produced through biotechnology is evaluation of the safety of newly expressed proteins. The ILSI International Food Biotechnology Committee has developed a scientifically based two-tiered, weight-of-evidence strategy to assess the safety of novel proteins used in the context of agricultural biotechnology. Recommendations draw upon knowledge of the biological and chemical characteristics of proteins and testing methods for evaluating potential intrinsic hazards of chemicals. Tier I (potential hazard identification) includes an assessment of the biological function or mode of action and intended application of the protein, history of safe use, comparison of the amino acid sequence of the protein to other proteins, as well as the biochemical and physico-chemical properties of the proteins. Studies outlined in Tier II (hazard characterization) are conducted when the results from Tier I are not sufficient to allow a determination of safety (reasonable certainty of no harm) on a case-by-case basis. These studies may include acute and repeated dose toxicology studies and hypothesis-based testing. The application of these guidelines is presented using examples of transgenic proteins applied for agricultural input and output traits in genetically modified crops along with recommendations for future research considerations related to protein safety assessment.

  17. SAFETY IN THE CHEMICAL LABORATORY.

    ERIC Educational Resources Information Center

    STEERE, NORMAN V.

    MONTHLY ARTICLES ON LABORATORY SAFETY THAT APPEARED IN THE "JOURNAL OF CHEMICAL EDUCATION" BETWEEN JANUARY 1964, AND JANUARY 1967, ARE COMBINED IN THIS MANUAL FOR HIGH SCHOOL AND COLLEGE CHEMISTRY TEACHERS. A GENERAL SECTION DEALS WITH (1) RESPONSIBILITY FOR ACCIDENT PREVENTION, (2) SAFETY CONSIDERATION IN RESEARCH PROPOSALS, (3) A SAFETY…

  18. Safety in Handling Hazardous Chemicals.

    ERIC Educational Resources Information Center

    1971

    This manual describes safety procedures which should be observed in the chemistry laboratory. Accidents which may occur when working with chemicals such as peroxides, phosphorus, heavy metals, acids, etc., need special treatment. Quite suitable descriptions of such treatment are listed for each kind of possible accident in the laboratory.…

  19. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Steere, Norman V., Ed.

    1974-01-01

    Discusses the offering of a course in chemical and industrial hazards for junior and senior chemistry majors at City College of New York in 1972. Suggests inclusion of laboratory and industrial safety education as a formal part of chemistry or science curricula. (CC)

  20. Chemical Hygiene and Safety Plan

    SciTech Connect

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  1. Environment and chemicals in agriculture

    SciTech Connect

    Winteringham, F.W.P.

    1985-01-01

    The Commission of the European Communities and the Irish Government jointly organized a symposium in Dublin in October 1984, from which the papers in this book are presented. Environmental concerns related to intensive agriculture provided the impetus for the symposium. More than half of the papers deal with economic or extension aspects of environmental protection. It is stressed that uniform standards and regulations are not reasonable, since soils, climate, and farming systems vary. With respect to pesticide use, emphasis is placed on integrated pest management through improved pest forecasting, more specific targeting of pesticide applications, and farmer education. The development of pesticide resistance is a serious concern that will require research into new techniques for pest control. The primary environmental problem with fertilizers is the leaching of NO/sub 3/ into ground water, with many ears exceeding the acceptable level of 50 mg/L. The Netherlands, in particular, has the highest average rate of N fertilizer use in the world, 240 kg/ha, with about 400 kg/ha of N applied in areas with intensive dairy (Bos sp.) farming. Nevertheless, areas in the Netherlands where the NO/sub 3/ concentration in ground water exceeds 50 mg/L are associated with large amounts of manure produced in intensive pig and poultry farming, rather than with fertilizer applications. There is a need to balance nutrients added with those removed in intensive agricultural systems.

  2. Agricultural chemical export dynamics in a watershed

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-06-01

    chemicals filter through a catchment is important for managing water quality. Using a concept of the catchment as a physicochemical filter, Guan et al. examined nitrate, phosphate, and atrazine loads in the Little Vermillion River watershed, a tile-drained watershed in Illinois. They analyzed a 10-year data set using mathematical signal processing to investigate spatial and temporal patterns in chemical concentrations and discharge rate. They found that export of these chemicals had a linear relationship with streamflow at annual scales—the higher the streamflow, the more these chemicals were exported from the watershed. The researchers' approach helps identify the roles of different hydrological flow paths in controlling chemical export at different spatial and temporal scales and reveals that chemical inputs overwhelm normal biogeochemical processing in these agricultural systems, leading to high long-term average rates of export. (Water Resources Research, doi:10.1029/ 2010WR009997, 2011)

  3. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFERY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  4. Chemical Safety Vulnerability Working Group Report

    SciTech Connect

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  5. Experiments To Demonstrate Chemical Process Safety Principles.

    ERIC Educational Resources Information Center

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  6. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  7. Project on chemical safety in Poland.

    PubMed

    Indulski, J A; Krajewski, J A; Majka, J; Dutkiewicz, T

    1990-01-01

    This work focuses on main aspects of a proposed system of chemical safety in Poland. General principles have been formulated, including theoretical guidelines, definitions and functions. Additionally, organizational and legislative structures have been proposed. A basic principal of the system says that each activity related to the application of chemical compounds creates a risk of adverse health and environmental effects. According to the definition adopted, chemical safety means such levels of chemical compounds in the environment, coming from various sources, which ensure that the risk of adverse health effects and other negative effects will not surpass socially acceptable levels. The chemical safety system is aimed at preventing and limiting the risk of undesirable health and environmental effects from chemical compounds. It is proposed that the system be coordinated by the National Coordinating Committee on Chemical Safety. The most urgent task of the Committee would be to draft a law on human health protection against the harmful effects of chemical compounds.

  8. Health and safety strategy in Swedish agriculture.

    PubMed

    Lundqvist, Peter; Svennefelt, Catharina Alwall

    2012-01-01

    In Sweden there is a joint focus on injury prevention in agriculture and this is coordinated through the Swedish Committee on Working Environment (LAMK). LAMK is a network working for a good, healthy and safe working environment in Swedish agriculture from the view of the enterprise with the humans in focus. It is a committee consisting of representatives of authorities, institutions, companies, research & education institutions and organisations referring to the green sector. Examples of on-going initiatives & partners are presented which are included in this mission against injuries in agriculture. It involves the Swedish Work Environment Authority,, the Federation of Swedish Farmers (LRF), the Swedish Institute of Agricultural and Environmental Engineering, Swedish University of Agricultural Sciences (SLU, the Federation of Swedish Forestry and Agricultural Employers (SLA) and the Swedish Municipal Worker's Union. PMID:22317540

  9. The impact of biotechnology on agricultural worker safety and health.

    PubMed

    Shutske, J M; Jenkins, S M

    2002-08-01

    Biotechnology applications such as the use and production of genetically modified organisms (GMOs) have been widely promoted, adopted, and employed by agricultural producers throughout the world. Yet, little research exists that examines the implications of agricultural biotechnology on the health and safety of workers involved in agricultural production and processing. Regulatory frameworks do exist to examine key issues related to food safety and environmental protection in GMO applications. However, based on the lack of research and regulatory oversight, it would appear that the potential impact on the safety and health of workers is of limited interest. This article examines some of the known worker health and safety implications related to the use and production of GMOs using the host, agent, and environment framework. The characteristics of employers, workers, inputs, production practices, and socio-economic environments in which future agricultural workers perform various tasks is likely to change based on the research summarized here. PMID:12363179

  10. The impact of biotechnology on agricultural worker safety and health.

    PubMed

    Shutske, J M; Jenkins, S M

    2002-08-01

    Biotechnology applications such as the use and production of genetically modified organisms (GMOs) have been widely promoted, adopted, and employed by agricultural producers throughout the world. Yet, little research exists that examines the implications of agricultural biotechnology on the health and safety of workers involved in agricultural production and processing. Regulatory frameworks do exist to examine key issues related to food safety and environmental protection in GMO applications. However, based on the lack of research and regulatory oversight, it would appear that the potential impact on the safety and health of workers is of limited interest. This article examines some of the known worker health and safety implications related to the use and production of GMOs using the host, agent, and environment framework. The characteristics of employers, workers, inputs, production practices, and socio-economic environments in which future agricultural workers perform various tasks is likely to change based on the research summarized here.

  11. An Evaluation Tool for Agricultural Health and Safety Mobile Applications.

    PubMed

    Reyes, Iris; Ellis, Tammy; Yoder, Aaron; Keifer, Matthew C

    2016-01-01

    As the use of mobile devices and their software applications, or apps, becomes ubiquitous, use amongst agricultural working populations is expanding as well. The smart device paired with a well-designed app has potential for improving workplace health and safety in the hands of those who can act upon the information provided. Many apps designed to assess workplace hazards and implementation of worker protections already exist. However, the abundance and diversity of such applications also presents challenges regarding evaluation practices and assignation of value. This is particularly true in the agricultural workspace, as there is currently little information on the value of these apps for agricultural safety and health. This project proposes a framework for developing and evaluating apps that have potential usefulness in agricultural health and safety. The evaluation framework is easily transferable, with little modification for evaluation of apps in several agriculture-specific areas.

  12. An Evaluation Tool for Agricultural Health and Safety Mobile Applications.

    PubMed

    Reyes, Iris; Ellis, Tammy; Yoder, Aaron; Keifer, Matthew C

    2016-01-01

    As the use of mobile devices and their software applications, or apps, becomes ubiquitous, use amongst agricultural working populations is expanding as well. The smart device paired with a well-designed app has potential for improving workplace health and safety in the hands of those who can act upon the information provided. Many apps designed to assess workplace hazards and implementation of worker protections already exist. However, the abundance and diversity of such applications also presents challenges regarding evaluation practices and assignation of value. This is particularly true in the agricultural workspace, as there is currently little information on the value of these apps for agricultural safety and health. This project proposes a framework for developing and evaluating apps that have potential usefulness in agricultural health and safety. The evaluation framework is easily transferable, with little modification for evaluation of apps in several agriculture-specific areas. PMID:27494309

  13. Partnering Strategies for Childhood Agricultural Safety and Health

    PubMed Central

    Hard, David L.

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) has been the lead federal agency of the national Childhood Agricultural Injury Prevention Initiative (CAIPI) since the program's inception in 1996 and in this role, collaborated with numerous partners in childhood agricultural injury prevention activities. This collaboration has likely helped achieve the current reduction in childhood agricultural injury. The paper looks at existing groups with past and current childhood agricultural injury prevention activities for partnering strategies that could contribute to reducing the morbidity and mortality of childhood agricultural injuries. Based upon the review, suggestions are made for future partnering strategies to continue progress in this area. PMID:22490034

  14. Safety in the Chemical Laboratory: Safety Showers and Eyewash Fountains.

    ERIC Educational Resources Information Center

    Bronaugh, John C.

    1989-01-01

    Reviews safety and emergency equipment in their application to chemical laboratories. Discusses American National Standards (ANSI) for equipment. Presents practical considerations for the placement and purchase of equipment. (MVL)

  15. Agricultural Media Coverage of Farm Safety: Review of the Literature.

    PubMed

    Evans, Jim; Heiberger, Scott

    2016-01-01

    Agricultural media merit increased attention in addressing dynamic changes in safety aspects of one of the nation's most hazardous industries. Changes in farming, such as larger-scale, new "niche" enterprises and new technologies, bring new forms of risk to the safety of those who live and work on farms and ranches. At the same time, traditional agricultural media--commercial firms that publish farm periodicals and commercial radio/television stations and networks that provide farm programming--are changing dramatically. In the face of media convergence, these enterprises provide an increasing menu of agricultural information services delivered by print, radio, and television, plus a host of new electronic media. This review of literature addressed the role and importance of commercial agricultural media in the United States, the scope and pattern of their safety coverage, and the opportunities they represent. The review involved searches of 14 bibliographic databases, as well as reference lists of relevant studies and contacts with farm safety experts. Analysis of 122 documents suggested that limited focus has been directed to the role of commercial agricultural media in safety decisions on US farms. Findings revealed that they continue to serve an efficient, early-stage role in creating awareness and interest, providing information, forming attitudes, and stirring consideration of farm safety. Potentials are seen as expanding through the interactive features of social media and other new services offered by these media firms. Findings also identified research needs, 100 farm safety topics for reporting, and opportunities for strengthening safety coverage by commercial agricultural media.

  16. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Coffee, Robert D.

    1972-01-01

    The author discusses a system for establishing the relative potential of a chemical to release energy suddenly and to indicate release. This system is applicable to chemical storage and transportation. The system is based upon three simple tests requiring a minimum sample (1 go or 1 ml): (1) computation, (2) impact sensitivity, and (3) thermal…

  17. Microphysical and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Brooks, S. D.; Moon, S.; Littleton, R.; Auvermann, B.

    2005-12-01

    Due to significant atmospheric loadings of agricultural dust aerosols, the aerosol's ability to contribute significantly to climate forcing on a regional to global level has been a topic of recent interest. Efforts have been made to quantify both the aerosol extinction of the total aerosol population and the hygroscopic and chemical properties of individual particles at a cattle feedyard near Canyon, Texas. Measurements of aerosol extinction are made using open-path transmissometry. Our results show that extinction varies significantly with relative humidity. To further explore the hygroscopic nature of the particles, size-resolved aerosol samples are collected using a cascade impactor system (7 stages ranging from 0.6 micron to 16 micron diameter) and hygroscopicity measurements are conducted on these using an Environmental Scanning Electron Microscope (ESEM). Complimentary determination of the elemental composition of individual particles is performed using Energy Dispersive X-ray Spectroscopy. Results of the optical properties, hygroscopicity and chemical composition of aerosols will be presented and atmospheric implications discussed.

  18. An Analysis of Agricultural Mechanics Safety Practices in Agricultural Science Laboratories.

    ERIC Educational Resources Information Center

    Swan, Michael K.

    North Dakota secondary agricultural mechanics instructors were surveyed regarding instructional methods and materials, safety practices, and equipment used in the agricultural mechanics laboratory. Usable responses were received from 69 of 89 instructors via self-administered mailed questionnaires. Findings were consistent with results of similar…

  19. Agricultural health and safety: incorporating the worker perspective.

    PubMed

    Liebman, Amy K; Augustave, Wilson

    2010-07-01

    This commentary offers a worker's perspective on agricultural health and safety and describes (1) the historical exemption of agriculture from regulatory oversight and barriers encountered due to lack of regulations and poor enforcement of the existing standards; (2) the effect of immigration status on worker protections; and (3) the basic desire for economic survival and how this impacts worker health and safety. The commentary describes two models to reduce hazards at work that illustrate how workers' perspectives can be incorporated successfully at the policy level and during the intervention development process and puts forth recommendations for employers, researchers, and funding agencies to facilitate the integration of workers' perspectives into occupational health and safety in agriculture. Ultimately, improved worker protection requires systemic policy and regulatory changes as well as strong enforcement of existing regulations. This commentary summarizes the presentation, "Ground View: Perspectives of Hired Workers," at the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. PMID:20665305

  20. Agricultural employers' hiring and safety practices for adolescent workers.

    PubMed

    Lee, B C; Westaby, J D; Chyou, P H; Purschwitz, M A

    2007-01-01

    The goal of the "Safety Training for Employers and Supervisors of Adolescent Farmworkers" initiative is to improve the occupational health and safety knowledge and practices of agricultural employers and supervisors responsible for employees, ages 14 to 17 years. Surveys were sent to members of the National Council of Agricultural Employers and the Washington Growers League to measure attitudes regarding adolescent employees, current hiring and training practices, and future intentions. More than half of the respondents hire adolescents. Two-thirds were male, nearly three-quarters of the respondents had college or post-graduate degrees, and more than half were 50 years or older. The majority of respondents had positive perceptions of adolescents in terms of dependability, helpfulness, and work ethic. Among those who currently hire young workers, the most common reasons were to provide a job for children of friends and family and because they can work part-time to fill a labor demand. Among those not hiring adolescents, the most common reason was concern about child labor regulations and associated tasks (e.g., paperwork, monitoring hours). Respondents use a variety of safety training resources, especially posters and safety meetings. For the future, they expect to need more handout materials and training videos. Study results provide insights into barriers to the employment of young workers and suggest methods by which agricultural safety specialists can best assist those employers and producers who are willing to hire adolescents into agricultural work settings. PMID:17370911

  1. Where Do Agricultural Producers Get Safety and Health Information?

    PubMed

    Chiu, Sophia; Cheyney, Marsha; Ramirez, Marizen; Gerr, Fred

    2015-01-01

    There is little empirical guidance regarding communication sources and channels used and trusted by agricultural producers. The goal of this study was to characterize frequency of use and levels of trust in agricultural safety and health information sources and channels accessed by agricultural producers. A sample of 195 agricultural producers was surveyed at county fairs in Iowa. Information was collected about the frequency of use and level of trust in 14 information sources and channels. Associations between age, gender, and education level and use and trust of each information source or channel were estimated using logistic regression. The sample consisted of 72% men with a mean age of 50.1 (SD = 15.6) years. Newspaper and magazine articles were the most commonly used agricultural safety and health information source or channel; 77% (n = 140) of respondents reporting using them at least monthly. Among those reporting monthly or more frequent use, 75% reported trusting mostly or completely, compared with 58% using and 49% trusting the Internet. High levels of use and trust of newspaper and magazine articles did not vary significantly by age, gender, or education level. Age in the highest tertile (57-83 years) was marginally associated with lower odds of using, as well as using and trusting, all the information sources and channels studied except for medical clinics (use only: odds ratio [OR], 3.51, 95% confidence interval [CI], 0.79-15.64; use and trust: OR, 5.90, 95% CI, 0.91-38.42). These findings suggest that traditional media may be more effective than digital media for delivering agricultural safety and health information to agricultural producers. Medical clinics may be an untapped venue for communicating with older agricultural producers. PMID:26237716

  2. Where Do Agricultural Producers Get Safety and Health Information?

    PubMed

    Chiu, Sophia; Cheyney, Marsha; Ramirez, Marizen; Gerr, Fred

    2015-01-01

    There is little empirical guidance regarding communication sources and channels used and trusted by agricultural producers. The goal of this study was to characterize frequency of use and levels of trust in agricultural safety and health information sources and channels accessed by agricultural producers. A sample of 195 agricultural producers was surveyed at county fairs in Iowa. Information was collected about the frequency of use and level of trust in 14 information sources and channels. Associations between age, gender, and education level and use and trust of each information source or channel were estimated using logistic regression. The sample consisted of 72% men with a mean age of 50.1 (SD = 15.6) years. Newspaper and magazine articles were the most commonly used agricultural safety and health information source or channel; 77% (n = 140) of respondents reporting using them at least monthly. Among those reporting monthly or more frequent use, 75% reported trusting mostly or completely, compared with 58% using and 49% trusting the Internet. High levels of use and trust of newspaper and magazine articles did not vary significantly by age, gender, or education level. Age in the highest tertile (57-83 years) was marginally associated with lower odds of using, as well as using and trusting, all the information sources and channels studied except for medical clinics (use only: odds ratio [OR], 3.51, 95% confidence interval [CI], 0.79-15.64; use and trust: OR, 5.90, 95% CI, 0.91-38.42). These findings suggest that traditional media may be more effective than digital media for delivering agricultural safety and health information to agricultural producers. Medical clinics may be an untapped venue for communicating with older agricultural producers.

  3. Process safety management for highly hazardous chemicals

    SciTech Connect

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  4. [Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination].

    PubMed

    Liu, Yan-de; Jin, Tan-tan

    2015-09-01

    The quality and safety of agricultural products and people health are inseparable. Using the conventional chemical methods which have so many defects, such as sample pretreatment, complicated operation process and destroying the samples. Raman spectroscopy as a powerful tool of analysing and testing molecular structure, can implement samples quickly without damage, qualitative and quantitative detection analysis. With the continuous improvement and the scope of the application of Raman spectroscopy technology gradually widen, Raman spectroscopy technique plays an important role in agricultural products quality and safety determination, and has wide application prospects. There have been a lot of related research reports based on Raman spectroscopy detection on agricultural product quality safety at present. For the understanding of the principle of detection and the current development situation of Raman spectroscopy, as well as tracking the latest research progress both at home and abroad, the basic principles and the development of Raman spectroscopy as well as the detection device were introduced briefly. The latest research progress of quality and safety determination in fruits and vegetables, livestock and grain by Raman spectroscopy technique were reviewed deeply. Its technical problems for agricultural products quality and safety determination were pointed out. In addition, the text also briefly introduces some information of Raman spectrometer and the application for patent of the portable Raman spectrometer, prospects the future research and application.

  5. Raising the profile of worker safety: highlights of the 2013 North American Agricultural Safety Summit.

    PubMed

    Nelson, William J; Heiberger, Scott; Lee, Barbara C

    2014-01-01

    The 2013 North American Agricultural Safety Summit, an unprecedented gathering of industry leaders and safety experts, was held September 25-27 in Minneapolis, MN. Hosted by the industry-led Agricultural Safety and Health Council of America (ASHCA), there were 250 attendees, 82 speakers, 76 abstracts with poster presentations, along with "best practices" videos, genius bars sessions, learning stations, exhibits, breakfast roundtable topics, and receptions. The event was a mix of knowledge, inspiration and networking to enable participants to influence the adoption of safety practices in their home/work settings. Given the agriculture industry's commitment to feed nine billion people, the projected world population by 2050, it is imperative that producers and agribusiness strive to do it safely, humanely and sustainably. Evaluation feedback was very positive, indicating ASHCA's original objectives for the Summit were achieved.

  6. Coalitions: partnerships to promote agricultural health and safety.

    PubMed

    Palermo, T; Ehlers, J

    2002-05-01

    Throughout the 1990s, a variety of partnerships and community-based organizations have been formed with the primary mission to promote agricultural safety and health. These groups are altruistic, creative, energetic, and provide critical perspectives for improving the safety and health of the agricultural workforce at the local, regional, and national levels. These coalitions have been created as a result of philanthropic support, public funding, grassroots interest, and personal experiences with agricultural injuries andfatalities. They are playing important roles in collaborating with researchers and in reaching the individual agricultural communities. They have been instrumental in conducting needs assessments and are critical to the development and implementation of successful surveillance programs and interventions. Outreach and dissemination of research findings and other safety and health information to target audiences are strengths of these diverse coalitions. This article will focus on primarily community-based coalitions, providing an overview of the development, foci, membership activities, and contributions or impact of these groups during the 1990s and the challenges in maintaining and sustaining the coalitions. This information should be useful to those seeking to understand the activities of existing coalitions and identify potential partnerships for future activities.

  7. Statistical modeling of agricultural chemical occurrence in midwestern rivers

    NASA Astrophysics Data System (ADS)

    Battaglin, William A.; Goolsby, Donald A.

    1997-09-01

    Agricultural chemicals in surface water may constitute a human health risk or have adverse effects on aquatic life. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in late spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during fall, winter, and spring months. Natural and anthropogenic variables of river drainage basins, such as soil permeability, amount of agricultural chemicals applied, or percentage of land planted in corn, affect agricultural chemical concentration and mass transport in rivers. Presented is an analysis of selected data on agricultural chemicals collected for three regional studies conducted by the US Geological Survey. Statistical techniques such as multiple linear and logistic regression were used to identify natural and anthropogenic variables of drainage basins that have strong relations to agricultural chemical concentrations and mass transport measured in rivers. A geographic information system (GIS) was used to manage and analyze spatial data. Statistical models were developed that estimated the concentration, annual transport, and annual mean concentration of selected agricultural chemicals in midwestern rivers. Multiple linear regression models were not very successful ( R2 from 0.162 to 0.517) in explaining the variance in observed agricultural chemical concentrations during post-planting runoff. Logistic regression models were somewhat more successful, correctly matching the observed concentration category in 61-80% of observations. Linear and multiple linear regression models were moderately successful ( R2 from 0.522 to 0.995) in explaining the variance in observed annual transport and annual mean concentration of agricultural chemicals. Explanatory variables that were commonly significant in the regression models include estimates of agricultural chemical use, crop acreage, soil

  8. Statistical modeling of agricultural chemical occurrence in midwestern rivers

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1997-01-01

    Agricultural chemicals in surface water may constitute a human health risk or have adverse effects on aquatic life. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in late spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during fall, winter, and spring months. Natural and anthropogenic variables of fiver drainage basins, such as soil permeability, amount of agricultural chemicals applied, or percentage of land planted in corn, affect agricultural chemical concentration and mass transport in rivers. Presented is an analysis of selected data on agricultural chemicals collected for three regional studies conducted by the US Geological Survey. Statistical techniques such as multiple linear and logistic regression were used to identify natural and anthropogenic variables of drainage basins that have strong relations to agricultural chemical concentrations and mass transport measured in rivers. A geographic information system (GIS) was used to manage and analyze spatial data. Statistical models were developed that estimated the concentration, annual transport, and annual mean concentration of selected agricultural chemicals in midwestern rivers. Multiple linear regression models were not very successful (R2 from 0.162 to 0.517) in explaining the variance in observed agricultural chemical concentrations during post-planting runoff. Logistic regression models were somewhat more successful, correctly matching the observed concentration category in 61-80% of observations. Linear and multiple linear regression models were moderately successful (R2 from 0.522 to 0.995) in explaining the variance in observed annual transport and annual mean concentration of agricultural chemicals. Explanatory variables that were commonly significant in the regression models include estimates of agricultural chemical use, crop acreage, soil

  9. The changing face of agricultural health and safety--alternative agriculture.

    PubMed

    Donham, Kelley J; Larabee, Beth

    2009-01-01

    Alternative agriculture (defined as any production that is not commodity production) is an important growing area of agriculture. The produce ranges widely, from organic products, locally grown products, and exotic crops and animals. This conference included an overview of the evolving field of alternative agriculture plus descriptions of three different alternative agricultural operations, by the actual producers. These producers described the health and safety concerns encountered in their operations. Affordable and accessible health care was a common and very important concern of all these producers. Further, the extensive manual work load is extremely challenging, risking mental and physical stress and burnout. The major occupational health issues were musculoskeletal pain and dysfunction related to the extensive manual labor. Producers presented several suggestions for managing their occupational health issues. It was clear that research is warranted in investigating ergonomic solutions. Further, research and solutions to affordable and accessible health care is a priority issue.

  10. Animal-Free Chemical Safety Assessment.

    PubMed

    Loizou, George D

    2016-01-01

    The exponential growth of the Internet of Things and the global popularity and remarkable decline in cost of the mobile phone is driving the digital transformation of medical practice. The rapidly maturing digital, non-medical world of mobile (wireless) devices, cloud computing and social networking is coalescing with the emerging digital medical world of omics data, biosensors and advanced imaging which offers the increasingly realistic prospect of personalized medicine. Described as a potential "seismic" shift from the current "healthcare" model to a "wellness" paradigm that is predictive, preventative, personalized and participatory, this change is based on the development of increasingly sophisticated biosensors which can track and measure key biochemical variables in people. Additional key drivers in this shift are metabolomic and proteomic signatures, which are increasingly being reported as pre-symptomatic, diagnostic and prognostic of toxicity and disease. These advancements also have profound implications for toxicological evaluation and safety assessment of pharmaceuticals and environmental chemicals. An approach based primarily on human in vivo and high-throughput in vitro human cell-line data is a distinct possibility. This would transform current chemical safety assessment practice which operates in a human "data poor" to a human "data rich" environment. This could also lead to a seismic shift from the current animal-based to an animal-free chemical safety assessment paradigm. PMID:27493630

  11. Animal-Free Chemical Safety Assessment

    PubMed Central

    Loizou, George D.

    2016-01-01

    The exponential growth of the Internet of Things and the global popularity and remarkable decline in cost of the mobile phone is driving the digital transformation of medical practice. The rapidly maturing digital, non-medical world of mobile (wireless) devices, cloud computing and social networking is coalescing with the emerging digital medical world of omics data, biosensors and advanced imaging which offers the increasingly realistic prospect of personalized medicine. Described as a potential “seismic” shift from the current “healthcare” model to a “wellness” paradigm that is predictive, preventative, personalized and participatory, this change is based on the development of increasingly sophisticated biosensors which can track and measure key biochemical variables in people. Additional key drivers in this shift are metabolomic and proteomic signatures, which are increasingly being reported as pre-symptomatic, diagnostic and prognostic of toxicity and disease. These advancements also have profound implications for toxicological evaluation and safety assessment of pharmaceuticals and environmental chemicals. An approach based primarily on human in vivo and high-throughput in vitro human cell-line data is a distinct possibility. This would transform current chemical safety assessment practice which operates in a human “data poor” to a human “data rich” environment. This could also lead to a seismic shift from the current animal-based to an animal-free chemical safety assessment paradigm. PMID:27493630

  12. Children's Agricultural Safety Network: Evaluating Organizational Effectiveness and Impacts.

    PubMed

    Cramer, Mary E; Wendl, Mary J

    2015-01-01

    Coalitions that are effectively organized and led are more likely to achieve their intended program outcomes and impacts, as well as achieve sustainability. External evaluation of the coalition's governance and leadership can help identify strengths and areas for improvement. This article describes the evaluation of the Children's Agricultural Safety Network (CASN)-a national coalition, or network of 45 organizational members. The conceptual framework, Internal Coalition Outcomes Hierarchy, guided the evaluation. We used a mixed-methods approach to answer study's primary objectives from the perspective of CASN members and leaders for (a) organizational effectiveness, (b) network impact, and (c) member benefits. We collected quantitative data using a survey and the Internal Coalition Effectiveness (ICE) instrument. Focused interviews were conducted by phone to gather rich data on examples. Combined findings showed that both members and leaders rated the CASN effective in all construct areas that define successful coalitions. Members feel as invested in CASN success as do leaders. The major impact of CASN has been as a national leader and clearinghouse for childhood safety issues, and the most frequently cited example of impact was the national tractor safety campaign. Members identified the benefits of CASN membership as networking, resource sharing, and opportunities to enhance their knowledge, skills, and practices in the area. Members also valued the national attention that CASN was able to bring to the important issues in childhood agricultural safety. Suggestions for improvement were to focus on more research to improve best practices and strengthen dissemination and implementation science. PMID:25906269

  13. Children's Agricultural Safety Network: Evaluating Organizational Effectiveness and Impacts.

    PubMed

    Cramer, Mary E; Wendl, Mary J

    2015-01-01

    Coalitions that are effectively organized and led are more likely to achieve their intended program outcomes and impacts, as well as achieve sustainability. External evaluation of the coalition's governance and leadership can help identify strengths and areas for improvement. This article describes the evaluation of the Children's Agricultural Safety Network (CASN)-a national coalition, or network of 45 organizational members. The conceptual framework, Internal Coalition Outcomes Hierarchy, guided the evaluation. We used a mixed-methods approach to answer study's primary objectives from the perspective of CASN members and leaders for (a) organizational effectiveness, (b) network impact, and (c) member benefits. We collected quantitative data using a survey and the Internal Coalition Effectiveness (ICE) instrument. Focused interviews were conducted by phone to gather rich data on examples. Combined findings showed that both members and leaders rated the CASN effective in all construct areas that define successful coalitions. Members feel as invested in CASN success as do leaders. The major impact of CASN has been as a national leader and clearinghouse for childhood safety issues, and the most frequently cited example of impact was the national tractor safety campaign. Members identified the benefits of CASN membership as networking, resource sharing, and opportunities to enhance their knowledge, skills, and practices in the area. Members also valued the national attention that CASN was able to bring to the important issues in childhood agricultural safety. Suggestions for improvement were to focus on more research to improve best practices and strengthen dissemination and implementation science.

  14. Chemical Safety. Part I: Safety in the Handling of Hazardous Chemicals.

    ERIC Educational Resources Information Center

    Young, Jay A.

    1997-01-01

    Highlights the importance of considering the hazards, precautions, and emergency procedures pertinent to the safe handling of chemicals before introducing students to the laboratory. Discusses safety hazards depending on the chemical's properties including flammability, corrosivity, toxicity, and reactivity; eye protection; and physical hazards.…

  15. Agricultural health in The Gambia II: A systematic survey of safety and injuries in production agriculture.

    PubMed

    Kuye, Rex; Donham, Kelley; Marquez, Shannon; Sanderson, Wayne; Fuortes, Laurence; Rautiainen, Risto; Jones, Martin; Culp, Kennith

    2006-01-01

    This study was undertaken to provide baseline information on the injuries and health and safety conditions in Gambian agriculture. The objective was to produce information to guide the formulation of an agricultural health and safety policy for the country, future investigations, prevention and surveillance of the adverse health effects in agriculture. A cross-sectional survey of 20 farmers, 20 nurses, and 20 agricultural extension workers was conducted in the Central and Upper River Divisions of The Gambia. The survey was implemented by the means of questionnaires, walk-through survey and hazard checklist. Seventy percent of farms reported an injury during the past year. Major sources and contributing factors for the injuries were characterized. Predisposing factors to the injuries were climatic conditions, working in static positions, bending and twisting and carrying heavy objects. Cuts and lacerations were identified as the commonest injury types and the most common sources were hand tools (hand hoe, cutlass, axe and knife) and animal-powered carts. A workshop for the major stake holders in the country's agriculture was also held to identify problems and possible solutions for health promotion of Gambian farmers.

  16. Toxic fables: the advertising and marketing of agricultural chemicals in the great plains, 1945-1985.

    PubMed

    Vail, David D

    2012-12-01

    This paper examines how pesticides and their technologies were sold to farmers and pilots throughout the midtwentieth century. It principally considers how marketing rhetoric and advertisement strategies used by chemical companies and aerial spraying firms influenced the practices and perspectives of farm producers in the Great Plains. In order to convince landowners and agricultural leaders to buy their pesticides, chemical companies generated advertisements that championed local crop health, mixture accuracy, livestock safety and a chemical-farming 'way of life' that kept fields healthy and productive. Combining notions of safety, accuracy and professionalism with pest eradication messages reinforced the standards that landowners, pilots and agriculturalists would hold regarding toxicity and risk when spraying their fields. As the politics of health changed in the aftermath of Rachel Carson's Silent Spring, these companies and aerial spraying outfits responded by keeping to a vision of agricultural health that required poisons for protection through technological accuracy.

  17. Atmospheric Transport and Deposition of Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Majewski, M. S.; Vogel, J. R.; Capel, P. D.

    2006-05-01

    Concentrations of more than 80 pesticides and select transformation products were measured in atmospheric deposition during two growing seasons in five agricultural areas across the United States. Rainfall samples were collected at study areas in California, Indiana, Maryland, and Nebraska. In the arid Yakima Valley of Washington, dry deposition for the same compounds was estimated using air concentration measurements and depositional models. In the predominantly corn, soybean, and alfalfa growing region of Nebraska, Indiana, and Maryland, the herbicides acetochlor, alachlor, atrazine, and metolachlor where the predominant pesticides detected, and the highest concentrations ranged from 0.64 microgram per liter (ug/L) for metolachlor in a small, predominantly dairy use dominated watershed in Maryland to 6.6 ug/L and 19 ug/L for atrazine in Indiana and Nebraska, respectively. California showed a different seasonal occurrence pattern and suite of detected pesticides because the rainy season occurs during the winter months and a wide variety of crops are grown throughout the year. With the exception of metolachlor (0.23 ug/L, max.), the corn and soybean herbicides were not used to any great extent in the California study area and were not detected. The insecticides diazinon (1.21 ug/L, max.) and chlorpyrifos (0.12 ug/L, max.) were detected in nearly every sample taken in California. The Washington study area was similar to California in terms of the variety of crops grown and the pesticides use, but it receives very little rainfall. Dry deposition was estimated at this site from air concentrations and particle settling velocities. The results of these studies show the importance of the atmosphere as an additional source of pesticide loading to agricultural watersheds.

  18. Occupational health and safety for agricultural workers in Thailand: gaps and recommendations, with a focus on pesticide use.

    PubMed

    Kaewboonchoo, Orawan; Kongtip, Pornpimol; Woskie, Susan

    2015-05-01

    Over 16.7 million workers in Thailand (42 percent of the working population) are engaged in agriculture, disproportionately from the lower socioeconomic strata of Thai society. Most agricultural workers (over 93 percent) work in the informal sector without the protections of regulations or enforcement of labor or health and safety laws or enrollment in a social security system. Although Thailand's use of herbicides, fungicides, and insecticides is growing, there is little regulation of the sale, use, or application of these potentially toxic chemicals. This paper summarizes the research to date on occupational health and safety for Thai agricultural workers, identifies gaps in pesticide regulations and the current systems for occupational health and safety and social support for Thai agricultural workers, and makes recommendations for future policy and research initiatives to fill the identified gaps.

  19. [Chemical safety (1): The origin of the problem].

    PubMed

    Indulski, J A; Krajewski, J A; Majka, J

    1988-01-01

    The genesis of the vast problem--of cognitive and applicatory nature--referred to as chemical safety, has been presented. Chemical safety studies involve all possible sources of man's exposure to chemical compounds, which is aimed at an effective control of adverse health effects. The authors have set up a definition according to which chemical safety occurs where exposure to chemical compounds coming from various sources causes a specific health risk not higher than the socially accepted level. The contribution of Poland to the International Program of Chemical Safety (IPCS) should promote the exchange of experiences and access to scientific and technological information. PMID:3070269

  20. Chemical safety of meat and meat products.

    PubMed

    Andrée, Sabine; Jira, W; Schwind, K-H; Wagner, H; Schwägele, F

    2010-09-01

    Since the Second World War the consumer behaviour in developed countries changed drastically. Primarily there existed the demand for sufficient food after a period of starvation, afterwards the desire for higher quality was arising, whereas today most people ask for safe and healthy food with high quality. Therefore a united approach comprising consistent standards, sound science and robust controls is required to ensure consumers' health and to maintain consumers' confidence and satisfaction. Chemical analysis along the whole food chain downstream (tracking) from primary production to the consumer and upstream (tracing) from the consumer to primary production is an important prerequisite to ensure food safety and quality. In this frame the focus of the following paper is the "chemical safety of meat and meat products" taking into account inorganic as well as organic residues and contaminants, the use of nitrite in meat products, the incidence of veterinary drugs, as well as a Failure Mode and Effect Analysis (FMEA) system assessing (prioritizing) vulnerable food chain steps to decrease or eliminate vulnerability.

  1. Using reverse osmosis to remove agricultural chemicals from groundwater

    SciTech Connect

    Baier, J.H.; Lykins, B.W.; Fronk, C.A.; Kramer, S.J.

    1987-01-01

    Suffolk County, N.Y., has examined its groundwater for agricultural and organic contaminants since 1978. Recent discoveries of specific chemicals in private wells increased the concern over contamination and spurred a study to determine a cost-effective system for removing agricultural chemicals from groundwater. Tests of cellulose acetate; spiral-wound, thin-film composite; and hollow-fiber membranes showed that reverse osmosis should be considered for pesticide and organics removal. Pilot tests should be conducted on in-situ water to assure proper process design.

  2. THE USE OF CHEMICALS AS PLANT REGULATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 8.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS, THIS MODULE IS SPECIFICALLY CONCERNED WITH CHEMICALS AS PLANT REGULATORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS INCLUDE -- (1) CHEMICALS AS MODIFIERS OF PLANT GROWTH, (2)…

  3. ILO activities in the area of chemical safety.

    PubMed

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  4. ILO activities in the area of chemical safety.

    PubMed

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety. PMID:12909402

  5. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  6. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry. PMID:18232389

  7. Safety in the Chemical Laboratory: Developing Departmental Safety Procedures.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.; Palladino, George F.

    1980-01-01

    Presents rationale and guidelines for development of Safety Standard Operating Procedures (Safety SOP) specific for local conditions. Includes an outline of a Safety SOP developed for a department primarily focused on undergraduate education with a wide variety of expertise from common laborer to PhD with 20 years experience. (Author/JN)

  8. Adjusting the Passing Scores for Gearing up for Safety: Production Agriculture Safety Training for Youth Curriculum Test Instruments

    ERIC Educational Resources Information Center

    Hoover, William Brian; French, Brian F.; Field, William E.; Tormoehlen, Roger L.

    2012-01-01

    Minimum passing scores for the Gearing Up for Safety: Production Agriculture Safety Training for Youth curriculum (Gearing Up for Safety) were set in 2006 with widely used and established procedures by efforts of subject matter experts (French, Breidenbach et al., 2007; French, Field, and Tormoehlen, 2006, 2007). While providing a research-based…

  9. Agricultural chemical application practices to reduce environmental contamination.

    PubMed

    Bode, L E

    1990-01-01

    Current practices of applying agricultural chemicals play a major role in the environmental health concerns of agriculture. Those who mix, load, and handle the concentrated formulations run the greatest risk of exposure but field hands and others can encounter significant levels of pesticides. Drift can be a major source of contamination to residents, wildlife, and water sources. Improved methods of application and ways of reducing the total amount of pesticide applied can help reduce environmental contamination. Chemigation, direct injection, closed system handling, and fertilizer impregnation are examples of technology that affect the efficiency of applying agricultural chemicals. An area of beneficial research is related to leak and spill technology. Current surveys indicate that point sources such as spills, mixing and loading areas, back-siphoning, and direct routes for surface water movement into the ground are often a major cause of pesticides reaching groundwater. The commercial dealer/applicator provides storage, handling, mixing, and loading for large amounts of chemicals and has received limited guidance regarding the products. Education remains an important element of any rural environmental health strategy. With appropriate information about pesticide risks and groundwater, people will be better equipped to address environmental concerns. By design, agricultural chemicals are biologically active and, in most cases, toxic. Thus, they pose potential risks to humans, wildlife, water, and the environment in general. The magnitude of the risks depends to some degree on the methods and techniques used to apply the chemicals. Pesticides are applied by persons possessing a variety of skills, using equipment ranging from hand-operated systems to aircraft.

  10. Toward a national core course in agricultural medicine and curriculum in agricultural safety and health: the "building capacity" consensus process.

    PubMed

    Rudolphi, Josie M; Donham, Kelley J

    2015-01-01

    ABSTRACT The agricultural industry poses specific hazards and risks to its workers. Since the 1970s, the University of Iowa has been establishing programs to educate rural health care and safety professionals who in turn provide education and occupational health and safety services to farm families and farm workers. This program has been well established in the state of Iowa as a program of Iowa's Center for Agricultural Safety and Health (I-CASH). However, the National 1989 Agriculture at Risk Report indicated there was a great need for agricultural medicine training beyond Iowa's borders. In order to help meet this need, Building Capacity: A National Resource of Agricultural Medicine Professionals was initiated as a project of the National Institute for Occupational Safety and Health (NIOSH)-funded Great Plains Center for Agricultural Health in 2006. Before the first phase of this project, a consensus process was conducted with a group of safety and health professionals to determine topics and learning objectives for the course. Over 300 students attended and matriculated the agricultural medicine course during first phase of the project (2007-2010). Beginning the second phase of the project (2012-2016), an expanded advisory committee (38 internationally recognized health and safety professionals) was convened to review the progress of the first phase, make recommendations for revisions to the required topics and competencies, and discuss updates to the second edition of the course textbook (Agricultural Medicine: Occupational and Environmental Health for the Health Professions). A formal consensus process was held and included an online survey and also a face-to-face meeting. The group was charged with the responsibility of developing the next version of this course by establishing best practices and setting an agenda with the long-term goal of developing a national course in agricultural medicine.

  11. THE USE OF CHEMICALS AS HERBICIDES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR ENTRY AND ADVANCEMENT IN AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVES OF THIS MODULE ARE TO DEVELOP ABILITIES NECESSARY FOR OCCUPATIONS CONCERNED WITH CHEMICAL WEED…

  12. THE USE OF CHEMICALS AS FERTILIZERS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. ONE OF A SERIES OF EIGHT MODULES, IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SUBJECT MATTER AREAS ARE (1) CHEMICAL NUTRITION OF PLANTS, (2) PLANT GROWTH, (3) TERMINOLOGY,…

  13. Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  14. Safety in the Chemical Laboratory. Safety in the Analytical Laboratory.

    ERIC Educational Resources Information Center

    Ewing, Galen W.

    1990-01-01

    Safety issues specifically related to the analytical laboratory are discussed including hazardous reagents, transferring samples, cleaning apparatus, eye protection, and equipment damage. Special attention is given to techniques which not only endanger the technician but also endanger expensive equipment. (CW)

  15. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  16. Chemical Safety and Scientific Ethics in a Sophomore Chemistry Seminar

    NASA Astrophysics Data System (ADS)

    Moody, Anne E.; Griffith Freeman, R.

    1999-09-01

    A description of a course on chemical safety and scientific ethics is presented. The goals of this course are to impress upon the students the importance of safety in their professional lives; to empower the students to take charge of their own personal safety when working with chemicals; to illustrate and emphasize the vital importance of honesty and integrity within the scientific enterprise; and to explore issues of honesty and integrity through case studies that allow ethical decisions to be critically examined. The recent approaches and activities used to accomplish these goals are detailed. These include readings from chemical safety textbooks, chemical safety reports from news sources, and group discussions springing from problems in scientific ethics.

  17. Development of a written comprehensive chemical safety program

    SciTech Connect

    Sassone, D.M.; Holman, S.H.; Whyte, H.M.; Shinkel, J.E.

    1996-12-31

    It has become increasingly important for occupational safety and health (OSH) professionals to provide clear, definitive guidance to workers and supervisors on chemical safety. Internal OSH professionals find themselves in the role of consultants to their companies, providing {open_quotes}how-to`s{close_quotes} to line personnel. This has resulted in a need to provide information for chemical safety that extends beyond an MSDS, especially where requirements/guidance may be duplicative or conflicting. Requirements are contained in OSHA, DOT and internal documents; guidance includes ANSI, ASTM, and NFPA. OSH personnel, workers and supervisors at Los Alamos National Laboratory (LANL), who must comply with DOE requirements, recognized the difficulty of complying with numerous regulations and guidelines. A document that resulted in {open_quotes}one-stop{close_quotes} shopping for chemical safety was proposed. This presentation describes our approach to simplifying chemical safety requirements and guidelines for LANL.

  18. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    SciTech Connect

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  19. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  20. Overcoming Language and Literacy Barriers in Safety and Health Training of Agricultural Workers

    PubMed Central

    Arcury, Thomas A.; Estrada, Jorge M.; Quandt, Sara A.

    2010-01-01

    The workforce in all areas of United States agriculture and forestry is becoming increasingly diverse in language, culture, and education. Many agricultural workers are immigrants who have limited English language skills and limited educational attainment. Providing safety and health training to this large, diverse, dispersed, and often transient population of workers is challenging. This review, prepared for the 2010 Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, “Be Safe, Be Profitable: Protecting Workers in Agriculture,” is divided into five sections. First, we describe the occupational and demographic characteristics of agricultural workers in the US to highlight their safety and health training needs. Second, we summarize current research on the social and cultural attributes of agricultural workers and agricultural employers that affect the provision of safety and health training. Worker and employer attributes include language, literacy, financial limitations, work beliefs, and health beliefs. Third, we review current initiatives addressing safety and health training for agricultural workers that consider worker language and literacy. These initiatives are limited to a few specific topics (e.g., pesticides, heat stress); they do not provide general programs of safety training that would help establish a culture of workplace safety. However, several innovative approaches to health and safety training are being implemented, including the use of community-based participatory approaches and lay health promoter programs. Fourth, the limited industry response for safety training with this linguistically diverse and educationally limited workforce is summarized. Finally, gaps in knowledge and practice are summarized and recommendations to develop educationally, culturally, and linguistically appropriate safety and health training are presented. PMID:20665309

  1. Overcoming language and literacy barriers in safety and health training of agricultural workers.

    PubMed

    Arcury, Thomas A; Estrada, Jorge M; Quandt, Sara A

    2010-07-01

    The workforce in all areas of United States agriculture and forestry is becoming increasingly diverse in language, culture, and education. Many agricultural workers are immigrants who have limited English language skills and limited educational attainment. Providing safety and health training to this large, diverse, dispersed, and often transient population of workers is challenging. This review, prepared for the 2010 Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," is divided into five sections. First, we describe the occupational and demographic characteristics of agricultural workers in the United States to highlight their safety and health training needs. Second, we summarize current research on the social and cultural attributes of agricultural workers and agricultural employers that affect the provision of safety and health training. Worker and employer attributes include language, literacy, financial limitations, work beliefs, and health beliefs. Third, we review current initiatives addressing safety and health training for agricultural workers that consider worker language and literacy. These initiatives are limited to a few specific topics (e.g., pesticides, heat stress); they do not provide general programs of safety training that would help establish a culture of workplace safety. However, several innovative approaches to health and safety training are being implemented, including the use of community-based participatory approaches and lay health promoter programs. Fourth, the limited industry response for safety training with this linguistically diverse and educationally limited workforce is summarized. Finally, gaps in knowledge and practice are summarized and recommendations to develop educationally, culturally, and linguistically appropriate safety and health training are presented. PMID:20665309

  2. CHEMISTRY FOR THE SAFETY MAN. SAFETY IN INDUSTRY--ENVIRONMENTAL AND CHEMICAL HAZARDS SERVICES.

    ERIC Educational Resources Information Center

    CESTRONE, PATRICK F.

    THIS BULLETIN, ONE OF A SERIES ON SAFETY IN INDUSTRY, IS INTENDED TO PROVIDE THE BACKGROUND WHICH WILL ENABLE THE SAFETY MAN TO UNDERSTAND SOME OF THE PRINCIPLES APPLIED IN CONTROLLING CHEMICAL HAZARDS. IT WAS PREPARED IN THE OFFICE OF OCCUPATIONAL SAFETY, DIVISION OF PROGRAMING AND RESEARCH, BUREAU OF LABOR STANDARDS. TOPICS INCLUDE (1) WHAT IS…

  3. Pesticide Health and Safety Challenges Facing Informal Sector Workers: A Case of Small-scale Agricultural Workers in Tanzania.

    PubMed

    Ngowi, Aiwerasia; Mrema, Ezra; Kishinhi, Stephen

    2016-08-01

    The Tanzania informal sector is growing fast, with precarious working conditions and particular hazards for women and children in agriculture. Hazardous agricultural chemicals including pesticides are mostly imported and have been used for many years. Despite the role played by pesticides in food security and vector control, these chemicals are responsible for acute and chronic illnesses among communities. The availability of obsolete persistent organic pesticides on the open market indicates existence of an inadequate regulatory system. People who get injured or ill in the agriculture sector in Tanzania receive health services in primary health care facilities where professionals have little or no knowledge of pesticides. We are presenting the pesticide health and safety challenges faced by small-scale farmers who fall in the informal sector. Achievements that have been made by the government and other players to reduce and prevent pesticide exposures and poisoning are also outlined. PMID:27406110

  4. Pesticide Health and Safety Challenges Facing Informal Sector Workers: A Case of Small-scale Agricultural Workers in Tanzania.

    PubMed

    Ngowi, Aiwerasia; Mrema, Ezra; Kishinhi, Stephen

    2016-08-01

    The Tanzania informal sector is growing fast, with precarious working conditions and particular hazards for women and children in agriculture. Hazardous agricultural chemicals including pesticides are mostly imported and have been used for many years. Despite the role played by pesticides in food security and vector control, these chemicals are responsible for acute and chronic illnesses among communities. The availability of obsolete persistent organic pesticides on the open market indicates existence of an inadequate regulatory system. People who get injured or ill in the agriculture sector in Tanzania receive health services in primary health care facilities where professionals have little or no knowledge of pesticides. We are presenting the pesticide health and safety challenges faced by small-scale farmers who fall in the informal sector. Achievements that have been made by the government and other players to reduce and prevent pesticide exposures and poisoning are also outlined.

  5. THE USE OF CHEMICALS AS FUNGICIDES, BACTERICIDES AND NEMATOCIDES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY EDUCATION STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. ONE OF A SERIES FOR THESE OCCUPATIONS, THIS MODULE WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS ARE (1) PLANT DISEASE AND NEMATODE PREVENTION, CONTROL, OR ERADICATION WITH…

  6. THE USE OF CHEMICALS AS INSECTICIDES--PLANTS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THIS GUIDE IS ONE OF A SERIES DESIGNED TO PROVIDE GROUP INSTRUCTION AND INDIVIDUAL OCCUPATIONAL EXPERIENCE FOR POST-SECONDARY STUDENTS PREPARING FOR EMPLOYMENT AS AGRICULTURAL CHEMICAL TECHNICIANS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. THE OBJECTIVES ARE TO DEVELOP (1) INTEREST, APPRECIATION, AND UNDERSTANDING…

  7. Safety assessment of foods produced through agricultural biotechnology.

    PubMed

    Taylor, Steve L

    2003-06-01

    Often the main criticism of foods derived from biotechnology is concerns about food safety. Whereas most present-day biotechnology-derived foods are approximately 99% similar to their non-biotechnology counterparts, the scientific community must ensure the safety of the novel aspects of these foods. The three phases of safety assessment are discussed and the concept of substantial equivalence is explained.

  8. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety. PMID:26685623

  9. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety.

  10. Chemical transport from paired agricultural and restored prairie watersheds

    USGS Publications Warehouse

    Schilling, K.E.

    2002-01-01

    A five-year record of streamflow and chemical sampling data was evaluated to assess the effects of large-scale prairie restoration on transport of NO3-N, Cl, and SO4 loads from paired 5000-ha watersheds located in Jasper County, Iowa. Water quality conditions monitored during land use conversion from row crop agriculture to native prairie in the Walnut Creek watershed were compared with a highly agricultural control watershed (Squaw Creek). Combining hydrograph separation with a load estimation program, baseflow and stormflow loads of NO3-N, Cl, and SO4 were estimated at upstream and downstream sites on Walnut Creek and a downstream site on Squaw Creek. Chemical export in both watersheds was found to occur primarily with baseflow, with baseflow transport greatest during the late summer and fall. Lower Walnut Creek watershed, which contained the restored prairie areas, exported less NO3-N and Cl compared with upper Walnut Creek and Squaw Creek watersheds. Average flow-weighted concentrations of NO3-N exceeded 10 mg/L in upper Walnut Creek and Squaw Creek, but were estimated to be 6.6 mg/L in lower Walnut Creek. Study results demonstrate the utility of partitioning loads into baseflow and stormflow components to identify sources of pollutant loading to streams.

  11. Environmental and safety obligations of the Chemical Weapons Convention

    SciTech Connect

    Tanzman, E.A.

    1994-04-07

    Among its many unique and precedent-setting provisions, the Chemical Weapons Convention (CWC) includes important requirements for States Parties to protect the public safety and the environment in the course of carrying out the treaty. These obligations will apply to the destruction of chemical weapons, of former chemical weapons production facilities, and to other activities under the Convention such as the verification scheme. This morning, I will briefly discuss the Convention`s safety and environmental obligations, concentrating on their effects in this country as the United States chemical weapons stockpile is destroyed.

  12. Support from Afar: Using Chemical Safety Information on the Internet.

    ERIC Educational Resources Information Center

    Stuart, Ralph

    One of the major challenges facing people committed to Teaching Safety in High Schools, Colleges, and Universities is keeping up with both the wide range of relevant technical information about potential hazards (ranging from fire protection to chemical hazards to biological issues) and the ever-changing world of safety regulations and standards.…

  13. Holistic Watershed-Scale Approach for Studying Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Capel, P. D.; Domagalski, J. L.

    2006-05-01

    The USGS National Water-Quality Assessment (NAWQA) Program studied the water quality of 51 areas across the United States during its first decade (1991-2001). Analyses of results from that phase of the NAWQA Program indicated that detailed studies of the processes affecting water quality could aid in the interpretation of these data, help to determine the direction and scope of future monitoring studies, and add to the understanding of the sources, transport and fate of non-point source chemicals, such as from agriculture. Now in the second decade of investigations, the NAWQA Program has initiated new process-based detailed studies to increase our understanding at the scale of a small watershed (about 3-15 square kilometers), nested within the larger basins studied during the first decade. The holistic, mass-budget approach for small agricultural watersheds that was adopted includes processes, and measures water and chemicals in the atmosphere, surface water, tile drains, overland flow, and within various sub-surface environments including the vadose, saturated, and hyporheic zones. The primary chemicals of interest were nutrients (nitrogen and phosphorous), the triazine and acetanilide herbicides, and the organophosphorus insecticides. Extensive field observations were made, and numerical models were developed to simulate important environmental compartments and interfaces associated with the transport and fate of agricultural chemicals. It is well recognized that these field measurements and simulations cannot fully achieve a full mass budget at this scale, but the approach provides a useful means for comparisons of various processes in different environmental settings. The results gained using this approach will add to the general knowledge of environmental transport and fate processes, and have transfer value to unstudied areas and different scales of investigation. The five initial study areas started in 2002, included watersheds in California, Indiana

  14. Database for Safety-Oriented Tracking of Chemicals

    NASA Technical Reports Server (NTRS)

    Stump, Jacob; Carr, Sandra; Plumlee, Debrah; Slater, Andy; Samson, Thomas M.; Holowaty, Toby L.; Skeete, Darren; Haenz, Mary Alice; Hershman, Scot; Raviprakash, Pushpa

    2010-01-01

    SafetyChem is a computer program that maintains a relational database for tracking chemicals and associated hazards at Johnson Space Center (JSC) by use of a Web-based graphical user interface. The SafetyChem database is accessible to authorized users via a JSC intranet. All new chemicals pass through a safety office, where information on hazards, required personal protective equipment (PPE), fire-protection warnings, and target organ effects (TOEs) is extracted from material safety data sheets (MSDSs) and recorded in the database. The database facilitates real-time management of inventory with attention to such issues as stability, shelf life, reduction of waste through transfer of unused chemicals to laboratories that need them, quantification of chemical wastes, and identification of chemicals for which disposal is required. Upon searching the database for a chemical, the user receives information on physical properties of the chemical, hazard warnings, required PPE, a link to the MSDS, and references to the applicable International Standards Organization (ISO) 9000 standard work instructions and the applicable job hazard analysis. Also, to reduce the labor hours needed to comply with reporting requirements of the Occupational Safety and Health Administration, the data can be directly exported into the JSC hazardous- materials database.

  15. Toxicity testing in chemical safety evaluation.

    PubMed

    Bus, James S

    2007-02-01

    The modern era of chemistry has resulted in dramatic improvements in the overall human condition. In addition to new pharmaceuticals, modern chemistry has brought with it enormous health and social benefits Introduction of chemistry-based technologies, however, has also been clearly associated with potential human health risks. The dramatic increase in pharmaceutical and chemical technologies in the post World War II era, coupled with associated examples of demonstrated human toxicity, led to development and application of an expanded and standardized battery of animal and other toxicity tests designed to characterize the potential hazards and risks associated with chemical exposures. This unit discusses the current approach to industrial chemical and pesticide toxicity testing.

  16. CHEMICAL SAFETY: ASKING THE RIGHT QUESTIONS

    SciTech Connect

    Simmons, F

    2008-08-05

    Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

  17. Chemical safety: asking the right questions

    SciTech Connect

    Whyte, Helena M; Quigley, David; Freshwater, David

    2008-01-01

    Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

  18. Studies by the U.S. Geological Survey on sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, Paul D.; Hamilton, Pixie A.; Erwin, Martha L.

    2004-01-01

    Information from these studies will help with decision-making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields. This information also will benefit the U.S. Environmental Protection Agency, the Department of Agriculture, local and regional water managers, and agricultural chemical manufacturers who are involved in managing chemical use and pesticide registration.

  19. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  20. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  1. Agricultural Safety. FMO: Fundamentals of Machine Operation. Second Edition.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual is intended to provide students with basic information on the safe operation of farm machinery. The following topics are covered in the individual chapters: safe farm machinery operation (the importance of safety, the role of communication in safety, and types of farm accidents); human factors (human limitations and capabilities;…

  2. National Children's Center for Rural and Agricultural Health and Safety

    MedlinePlus

    ... Childhood Resources Ag Injury News Clippings Mini-Grants Nurture Newsletter Year in Review Research Areas Filling the ... 2016 Childhood Agricultural Injuries Fact Sheet released Summer Nurture Newsletter published Upcoming Events 18 Oct National FFA ...

  3. Chemical safety, health care costs and the Affordable Care Act.

    PubMed

    Landrigan, Philip J; Goldman, Lynn R

    2014-01-01

    On May 22, 2013, the late Senator Frank Lautenberg (D-NJ), Senator David Vitter (R-LA) and 19 of their colleagues introduced bipartisan chemical safety legislation in the US Senate, "The Chemical Safety Improvement Act of 2013." The bill's purpose is to protect human health and the environment against the hazards of toxic chemicals, by requiring the US Environmental Protection Agency (EPA) to examine the safety of all chemicals in consumer products. The bill is currently before the Senate Committee on Environment and Public Works, chaired by Senator Barbara Boxer (D-CA). This legislation is critically important for physicians and healthcare organizations because it creates significant new opportunities to prevent disease and cut healthcare costs. PMID:24136096

  4. Safety in the Chemical Laboratory: Flood Control.

    ERIC Educational Resources Information Center

    Pollard, Bruce D.

    1983-01-01

    Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…

  5. Occupational Health and Safety. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    ERIC Educational Resources Information Center

    Batman, Kangan; Tully, Chris

    This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in the area of occupational health and safety: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with occupational safety and…

  6. Safety in the Chemical Laboratory: Chemical Safety and Emergency Response in Small Schools.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.

    1985-01-01

    Discusses the need for safety programs in small colleges/universities and secondary schools, addressing objectives of such programs and major program components. Sample forms are included (hazardous materials log sheet, laboratory class safety checklist, laboratory room safety checklist, injury accident report, noninjury accident report, and room…

  7. Agricultural Tractor Safety on Public Roads and Farms.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This study investigated the extent, causes, and means of preventing agricultural tractor accidents. The report includes an estimate of annual tractor-related deaths, an identification of the primary causes of such accidents with consideration of the major hazards causing death or injury, and recommendations or means for preventing the occurrence…

  8. Pilot Evaluation of an Internet Educational Module for Agricultural Safety

    ERIC Educational Resources Information Center

    Schwab, Charles V.; Freeman, Steven A.

    2011-01-01

    An important component of the safe operation of agricultural equipment is the ability to read and understand universal symbols. The Internet educational module is designed to help participants recognize these symbols. The impact of using it was evaluated using a field trial study. Assessment consisted of pre- and post-tests. Youth who had access…

  9. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  10. Hyperspectral imaging for safety inspection of food and agricultural products

    NASA Astrophysics Data System (ADS)

    Lu, Renfu; Chen, Yud-Ren

    1999-01-01

    Development of effective food inspection systems is critical in successful implementation of the hazard analysis and critical control points (HACCP) program. Hyperspectral imaging or imaging spectroscopy, which combines techniques of imaging and spectroscopy to acquire spatial and spectral information simultaneously, has great potential in food quality and safety inspection. This paper reviewed the basic principle and features of hyperspectral imaging and its hardware and software implementation. The potential areas of application for hyperspectral imaging in food quality and safety inspection were identified and its limitations were discussed. A hyperspectral imaging system developed for research in food quality and safety inspection was described. Experiments were performed to acquire hyperspectral images from four classes of poultry carcasses: normal, cadaver, septicemia, and tumor. Noticeable differences in the spectra of the relative reflectance and its second difference in the wavelengths between 430 nm and 900 nm were observed between wholesome and unwholesome carcasses. Differences among the three classes of unwholesome carcasses were also observed from their respective spectra. These results showed that hyperspectral imaging can be an effective tool for safety inspection of poultry carcasses.

  11. Occupational health and safety in agriculture: situation and priorities at the beginning of the third millennium.

    PubMed

    Bulat, P; Somaruga, Chiara; Colosio, C

    2006-01-01

    Agriculture is a human activity, which includes a number of different tasks and occupies a huge number of people worldwide. Estimates of World Bank for 2003 suggest that 51% of globalpopulation lives in rural areas. ILO estimates that 1.3 billion of workers are engaged in agriculture, and they represent almost a half of the total number of economically active subjects (2,838,897,404). In developed countries, agriculture workers are only a small fraction of the whole work force (up to 9% according to ILO data), while in developing countries, especially in Asia, agriculture workers represent up to the 60% of the total work force. Most agriculture workers reside in Asia, in the Pacific (74%) and in Africa (16%). ILO estimates suggest that half of fatal occupational injuries in the world are attributable to agriculture. This means that around 170,000 agriculture workers die every year as a consequence of occupational injuries. Using the same estimate, half of the fatal accidents could be linked to agricultural activities (more than 130 million). Comparing this estimate with the 6.328.217 people injured in war in 2002 or with the 20-50 million injured victims of road accidents, one has a much clearer picture about the importance of preventing agricultural injuries. In a complicated situation such as occupational health and safety problems in agriculture, it is not so easy to select priorities clearly. But "legalization" of agriculture workers could be a key to solving all the other problems. Actual data on fatal and non-fatal occupational injuries in agriculture show that occupational health and safety issues are among the top priorities for that discipline.

  12. Striving for safety excellence in chemical and glovebox environments

    SciTech Connect

    Montalvo, M. L.; Vigil, C. A.

    2004-01-01

    Within Los Alamos National Laboratory, the Nuclear Materials Technology (NMT) Division provides the foundation for maintaining the nuclear materials mission in support of the nation's nuclear weapons stockpile. Plutonium research and production competencies reside in a suitably skilled and well-trained work force. Due to the unique chemical and physical properties of the actinide elements, specialized training, expert knowledge, and unique safety procedures are essential to the execution of NMT's mission. To ensure the highest degree of safety, NMT Division employs a behavior-based solution (ATOMICS) for assuring operations safety excellence. The subsequent mitigation efforts of the ATOMICS Process to enhance the safety culture of the NMT workforce in chemical and glovebox environments are the primary focus of this paper. The NMT ATOMICS Process demonstrates the application of LANLs first guiding principal of the Integrated Safety Management Program 'management commitment and worker involvement' as an integral element of the process. The vision of ATOMICS is to be the Department of Energy's (DOE) model of excellence in the application of safety performance.

  13. Food safety. [chemical contaminants and human toxic diseases

    NASA Technical Reports Server (NTRS)

    Pier, S. M.; Valentine, J. L.

    1975-01-01

    Illness induced by unsafe food is a problem of great public health significance. This study relates exclusively to the occurrence of chemical agents which will result in food unsafe for human consumption since the matter of food safety is of paramount importance in the mission and operation of the manned spacecraft program of the National Aeronautics and Space Administration.

  14. Potential of mass spectrometry metabolomics for chemical food safety.

    PubMed

    Gallart-Ayala, Hector; Chéreau, Sylvain; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2015-01-01

    This review aims to describe the most significant applications of mass spectrometry-based metabolomics in the field of chemical food safety. A particular discussion of all the different analytical steps involved in the metabolomics workflow (sample preparation, mass spectrometry analytical platform and data processing) will be addressed.

  15. Safety in High School Supervised Agricultural Experiences: Teachers' Training and Students' Injury Awareness.

    PubMed

    Pate, M L; Lawver, R G; Sorensen, T J

    2016-01-01

    This research study sought to gather evidence of school-based agriculture teachers' hazard perceptions, safety practices, training experiences, and awareness of student injuries related to supervised agricultural experience (SAE) programs. Teachers agreed that students should follow safety guidelines developed by the National Children's Center for Rural and Agricultural Safety and Health during SAE work. Approximately 66% (f = 153) of teachers reported having general training in first aid, CPR, and AED. Twenty participants (8.6%) indicated having no safety certifications or training. Abrasions, lacerations, bites/stings, and burns accounted for a majority of the student SAE-related injuries that were reported. There were 82 participants (35.5%) who stated that no injuries had been reported or they were not aware of any injuries that occurred. The majority of teachers (66%) had received some form offirst aid or first response training, but fewer teachers had received safety training for ATVs (f = 25, 10.8%), tractors (f = 48, 20.7%), and livestock (f = 39, 16.8%). Results indicated a disparity between required safe work habits and the types of hazardous tasks students should be allowed to complete alone while participating in SAE activities. It appears most responding teachers in this study agreed to allow students to operate equipment and machinery alone. Recommendations for teachers include attending professional development training specific to SAE safety and keeping records of any risk assessments conducted during SAE supervision. Further development of best practices for SAE supervision and safety are needed to assist agricultural education professionals in protecting and shaping our future leaders in agriculture.

  16. Using GIS and logistic regression to estimate agricultural chemical concentrations in rivers of the midwestern USA

    USGS Publications Warehouse

    Battaglin, W.A.

    1996-01-01

    Agricultural chemicals (herbicides, insecticides, other pesticides and fertilizers) in surface water may constitute a human health risk. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during the fall, winter and spring. Natural and anthropogenic variables of river drainage basins, such as soil permeability, the amount of agricultural chemicals applied or percentage of land planted in corn, affect agricultural chemical concentrations in rivers. Logistic regression (LGR) models are used to investigate relations between various drainage basin variables and the concentration of selected agricultural chemicals in rivers. The method is successful in contributing to the understanding of agricultural chemical concentration in rivers. Overall accuracies of the best LGR models, defined as the number of correct classifications divided by the number of attempted classifications, averaged about 66%.

  17. Safety in the Chemical Laboratory: An Undergraduate Chemical Laboratory Safety Course.

    ERIC Educational Resources Information Center

    Nicholls, L. Jewel

    1982-01-01

    Describes a two-quarter hour college chemistry course focusing on laboratory safety. Includes lists of topics/assignments, problem sets (toxicology, storage, and energy) and videotapes, films, and slide sets used in the course. (JN)

  18. Performance Objectives, Task Analysis, Learning Content, Content Limits, and Domain Referenced Tests for the Agricultural Chemicals Catalog. Final Report.

    ERIC Educational Resources Information Center

    Hamilton, William; And Others

    This document contains Indiana agricultural chemicals curriculum materials based on the Vocational-Technical Education Consortium of States (VTECS) Agricultural Chemicals Catalog. It is intended to improve preparation of high school and adult students for handling and using agricultural chemicals and for jobs as chemical salespersons or chemical…

  19. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter; Haygarth, Philip; Hutchinson, Thomas; Kovats, Sari; Leonardi, Giovanni; Levy, Leonard; Nichols, Gordon; Parsons, Simon; Potts, Laura; Stone, David; Topp, Edward; Turley, David; Walsh, Kerry; Wellington, Elizabeth; Williams, Richard

    2010-05-01

    Climate change is likely to affect the nature of pathogens/ chemicals in the environment and their fate and transport. We assess the implications of climate change for changes in human exposures to pathogens/chemicals in agricultural systems in the UK and discuss the effects on health impacts, using expert input and literature on climate change; health effects from exposure to pathogens/chemicals arising from agriculture; inputs of chemicals/pathogens to agricultural systems; and human exposure pathways for pathogens/chemicals in agricultural systems. We established the evidence base for health effects of chemicals/pathogens in the agricultural environment; determined the potential implications of climate change on chemical/pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of various contaminants. We merged data to assess the implications of climate change in terms of indirect human exposure to pathogens/chemicals in agricultural systems, and defined recommendations on future research and policy changes to manage adverse increases in risks.

  20. Using a Training Video to Improve Agricultural Workers' Knowledge of On-Farm Food Safety

    ERIC Educational Resources Information Center

    Mathiasen, Lisa; Morley, Katija; Chapman, Benjamin; Powell, Douglas

    2012-01-01

    A training video was produced and evaluated to assess its impact on the food safety knowledge of agricultural workers. Increasing food safety knowledge on the farm may help to improve the safety of fresh produce. Surveys were used to measure workers' food safety knowledge before and after viewing the video. Focus groups were used to determine…

  1. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  2. Occupational Safety and Health: A View of Current Practices in Agricultural Education

    ERIC Educational Resources Information Center

    Threeton, Mark D.; Ewing, John C.; Evanoski, Danielle C.

    2015-01-01

    Providing safe and secure teaching and learning environments within schools is an ongoing process which requires a significant amount of attention. Therefore, this study sought to: 1) explore safety and health practices within secondary Agricultural Mechanics Education; and 2) identify the perceived obstacles which appear to hinder implementation…

  3. Occupational Health and Safety. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    ERIC Educational Resources Information Center

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three communication skills units of the three levels of Support Materials for Agricultural Training (SMAT) in the area of occupational health and safety: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her written and spoken communication skills needed…

  4. The National Program for Occupational Safety and Health in Agriculture. 1992 Project Facts.

    ERIC Educational Resources Information Center

    National Inst. for Occupational Safety and Health (DHHS/PHS), Cincinnati, OH.

    This book contains information about a project instituted in 1990 by the National Institute for Occupational Safety and Health (NIOSH) to prevent work-related diseases and injuries among agricultural workers. Included are facts about 25 projects within NIOSH and 42 cooperative agreements between NIOSH and institutions in 25 states. These…

  5. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  6. Safety in the Chemical Laboratory: Learning How to Run Safer Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Mohrig, Jerry R.

    1983-01-01

    Discusses responsibilities for providing safe experiments and for teaching about safety. Provides lists of references on chemical safety and regulated/potential carcinogens. Also discusses general laboratory safety procedures including waste disposal and recycling of solvents. (JM)

  7. THE USE OF CHEMICALS IN THE FIELD OF FARM ANIMAL HEALTH (NUTRITION, ENTOMOLOGY, PATHOLOGY). AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVE OF THIS MODULE IS TO PREPARE TECHNICIANS IN THE FIELD OF THE USE OF CHEMICALS FOR ANIMAL HEALTH. SECTIONS INCLUDE -- (1)…

  8. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  9. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  10. Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.

    PubMed

    Pekin, Burak K

    2013-12-01

    Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas.

  11. Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.

    PubMed

    Pekin, Burak K

    2013-12-01

    Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas. PMID:23869856

  12. 40 CFR 1.43 - Office of Chemical Safety and Pollution Prevention.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Office of Chemical Safety and Pollution... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.43 Office of Chemical Safety and Pollution Prevention. The Assistant Administrator, Office of Chemical Safety and Pollution Prevention (OCSPP), serves as...

  13. Novel approaches to improving the chemical safety of the meat chain towards toxicants.

    PubMed

    Engel, E; Ratel, J; Bouhlel, J; Planche, C; Meurillon, M

    2015-11-01

    In addition to microbiological issues, meat chemical safety is a growing concern for the public authorities, chain stakeholders and consumers. Meat may be contaminated by various chemical toxicants originating from the environment, treatments of agricultural production or food processing. Generally found at trace levels in meat, these toxicants may harm human health during chronic exposure. This paper overviews the key issues to be considered to ensure better control of their occurrence in meat and assessment of the related health risk. We first describe potential contaminants of meat products. Strategies to move towards a more efficient and systematic control of meat chemical safety are then presented in a second part, with a focus on emerging approaches based on toxicogenomics. The third part presents mitigation strategies to limit the impact of process-induced toxicants in meat. Finally, the last part introduces methodological advances to refine chemical risk assessment related to the occurrence of toxicants in meat by quantifying the influence of digestion on the fraction of food contaminants that may be assimilated by the human body. PMID:26043665

  14. Novel approaches to improving the chemical safety of the meat chain towards toxicants.

    PubMed

    Engel, E; Ratel, J; Bouhlel, J; Planche, C; Meurillon, M

    2015-11-01

    In addition to microbiological issues, meat chemical safety is a growing concern for the public authorities, chain stakeholders and consumers. Meat may be contaminated by various chemical toxicants originating from the environment, treatments of agricultural production or food processing. Generally found at trace levels in meat, these toxicants may harm human health during chronic exposure. This paper overviews the key issues to be considered to ensure better control of their occurrence in meat and assessment of the related health risk. We first describe potential contaminants of meat products. Strategies to move towards a more efficient and systematic control of meat chemical safety are then presented in a second part, with a focus on emerging approaches based on toxicogenomics. The third part presents mitigation strategies to limit the impact of process-induced toxicants in meat. Finally, the last part introduces methodological advances to refine chemical risk assessment related to the occurrence of toxicants in meat by quantifying the influence of digestion on the fraction of food contaminants that may be assimilated by the human body.

  15. Screening for Chemical Contributions to Breast Cancer Risk: A Case Study for Chemical Safety Evaluation

    PubMed Central

    Ackerman, Janet M.; Dairkee, Shanaz H.; Fenton, Suzanne E.; Johnson, Dale; Navarro, Kathleen M.; Osborne, Gwendolyn; Rudel, Ruthann A.; Solomon, Gina M.; Zeise, Lauren; Janssen, Sarah

    2015-01-01

    Background Current approaches to chemical screening, prioritization, and assessment are being reenvisioned, driven by innovations in chemical safety testing, new chemical regulations, and demand for information on human and environmental impacts of chemicals. To conceptualize these changes through the lens of a prevalent disease, the Breast Cancer and Chemicals Policy project convened an interdisciplinary expert panel to investigate methods for identifying chemicals that may increase breast cancer risk. Methods Based on a review of current evidence, the panel identified key biological processes whose perturbation may alter breast cancer risk. We identified corresponding assays to develop the Hazard Identification Approach for Breast Carcinogens (HIA-BC), a method for detecting chemicals that may raise breast cancer risk. Finally, we conducted a literature-based pilot test of the HIA-BC. Results The HIA-BC identifies assays capable of detecting alterations to biological processes relevant to breast cancer, including cellular and molecular events, tissue changes, and factors that alter susceptibility. In the pilot test of the HIA-BC, chemicals associated with breast cancer all demonstrated genotoxic or endocrine activity, but not necessarily both. Significant data gaps persist. Conclusions This approach could inform the development of toxicity testing that targets mechanisms relevant to breast cancer, providing a basis for identifying safer chemicals. The study identified important end points not currently evaluated by federal testing programs, including altered mammary gland development, Her2 activation, progesterone receptor activity, prolactin effects, and aspects of estrogen receptor β activity. This approach could be extended to identify the biological processes and screening methods relevant for other common diseases. Citation Schwarzman MR, Ackerman JM, Dairkee SH, Fenton SE, Johnson D, Navarro KM, Osborne G, Rudel RA, Solomon GM, Zeise L, Janssen S. 2015

  16. [Non-animal toxicology in the safety testing of chemicals].

    PubMed

    Heinonen, Tuula; Tähti, Hanna

    2013-01-01

    There is an urgent need to develop predictive test methods better than animal experiments for assessing the safety of chemical substances to man. According to today's vision this is achieved by using human cell based tissue and organ models. In the new testing strategy the toxic effects are assessed by the changes in the critical parameters of the cellular biochemical routes (AOP, adverse toxic outcome pathway-principle) in the target tissues. In vitro-tests are rapid and effective, and with them automation can be applied. The change in the testing paradigm is supported by all stakeholders: scientists, regulators and people concerned on animal welfare.

  17. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  18. Some issues in risk assessment for agricultural chemicals.

    PubMed

    Rodricks, J V; Rachman, N J

    1990-01-01

    Risk assessment is now a significant feature of most environmental risk management programs, in both industry and government. The purpose of this paper is to describe the elements of risk assessment, their strengths and limitations, and their relationship to other activities, including research and risk management. Risk assessment issues to be examined are those especially important to the agricultural community, including problems of high-risk subpopulations, exposure through unauthorized pathways (e.g., those resulting from groundwater contamination or pesticide misuse), and inadequacies in toxicity and residue data bases.

  19. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  20. DETERMINANTS OF PERCEIVED AGRICULTURAL CHEMICAL RISK IN THREE WATERSHEDS IN THE MIDWESTERN UNITED STATES. (R825761)

    EPA Science Inventory

    Abstract

    Recent epidemiologic research on the relationship between agricultural chemical use and human health has focused on possible risks to both farmers and nonfarm publics through such avenues as airborne chemical drift and contamination of drinking water. While ag...

  1. Pesticide regulations for agriculture: Chemically flawed regulatory practice.

    PubMed

    Gamble, Donald S; Bruccoleri, Aldo G

    2016-08-01

    Two categories of pesticide soil models now exist. Government regulatory agencies use pesticide fate and transport hydrology models, including versions of PRZM.gw. They have good descriptions of pesticide transport by water flow. Their descriptions of chemical mechanisms are unrealistic, having been postulated using the universally accepted but incorrect pesticide soil science. The objective of this work is to report experimental tests of a pesticide soil model in use by regulatory agencies and to suggest possible improvements. Tests with experimentally based data explain why PRZM.gw predictions can be wrong by orders of magnitude. Predictive spreadsheet models are the other category. They are experimentally based, with chemical stoichiometry applied to integral kinetic rate laws for sorption, desorption, intra-particle diffusion, and chemical reactions. They do not account for pesticide transport through soils. Each category of models therefore lacks what the other could provide. They need to be either harmonized or replaced. Some preliminary tests indicate that an experimental mismatch between the categories of models will have to be resolved. Reports of pesticides in the environment and the medical problems that overlap geographically indicate that government regulatory practice needs to account for chemical kinetics and mechanisms. Questions about possible cause and effect links could then be investigated. PMID:27166991

  2. The Implementation of the Food Safety Modernization Act and the Strength of the Sustainable Agriculture Movement.

    PubMed

    Wiseman, Samuel R

    2015-01-01

    In the wake of growing public concerns over salmonella outbreaks and other highly publicized food safety issues, Congress passed the FDA Food Safety Modernization Act in 2011, which placed more stringent standards on food growing and packaging operations. In negotiations preceding the Act's passage, farmers of local, sustainable food argued that these rules would unduly burden local agricultural operations or, at the extreme, drive them out of business by creating overly burdensome rules. These objections culminated in the addition of the Tester-Hagan Amendment to the Food Safety Modernization Act, which created certain exemptions for small farms. Proposed Food and Drug Administration (FDA) rules to implement the Act threatened to weaken this victory for small farm groups, however, prompting a loud response from small farmers and local food proponents. The FDA's second set of proposed rules, issued in September 2014 in response to these and other complaints, were, perhaps surprisingly, responsive to small farmers' concerns. Using comments submitted to the FDA, this article explores the responses of the agriculture industry and public health organizations, as well as small farm groups, consumers of local food, and sustainable agriculture interests (which, for simplicity, I alternately describe as comprising the "sustainable agriculture" or "small farm" movement), to three aspects of the FDA's proposed rules--involving manure application, on-farm packing activities, and exemptions for very small farms--to assess the strength of the sustainable agriculture movement. The rules involving manure application and on-farm packing, it turns out, reveal little about the independent political strength of the local food movement, as large industry groups also objected to these provisions. But for the third issue discussed here--exemptions for very small farms--the interests of sustainable agriculture groups were directly opposed to both industry and public health organizations

  3. The Implementation of the Food Safety Modernization Act and the Strength of the Sustainable Agriculture Movement.

    PubMed

    Wiseman, Samuel R

    2015-01-01

    In the wake of growing public concerns over salmonella outbreaks and other highly publicized food safety issues, Congress passed the FDA Food Safety Modernization Act in 2011, which placed more stringent standards on food growing and packaging operations. In negotiations preceding the Act's passage, farmers of local, sustainable food argued that these rules would unduly burden local agricultural operations or, at the extreme, drive them out of business by creating overly burdensome rules. These objections culminated in the addition of the Tester-Hagan Amendment to the Food Safety Modernization Act, which created certain exemptions for small farms. Proposed Food and Drug Administration (FDA) rules to implement the Act threatened to weaken this victory for small farm groups, however, prompting a loud response from small farmers and local food proponents. The FDA's second set of proposed rules, issued in September 2014 in response to these and other complaints, were, perhaps surprisingly, responsive to small farmers' concerns. Using comments submitted to the FDA, this article explores the responses of the agriculture industry and public health organizations, as well as small farm groups, consumers of local food, and sustainable agriculture interests (which, for simplicity, I alternately describe as comprising the "sustainable agriculture" or "small farm" movement), to three aspects of the FDA's proposed rules--involving manure application, on-farm packing activities, and exemptions for very small farms--to assess the strength of the sustainable agriculture movement. The rules involving manure application and on-farm packing, it turns out, reveal little about the independent political strength of the local food movement, as large industry groups also objected to these provisions. But for the third issue discussed here--exemptions for very small farms--the interests of sustainable agriculture groups were directly opposed to both industry and public health organizations

  4. A Whole-System Approach to Understanding Agricultural Chemicals in the Environment

    USGS Publications Warehouse

    ,

    2009-01-01

    The effects of the use of agricultural chemicals and other practices associated with agriculture on the quality of streams and groundwater is well known; however, less is known about how those effects may vary across different geographic regions of the Nation. Scientists at the U.S. Geological Survey (USGS) are conducting studies on the transport and fate of agricultural chemicals in diverse agricultural settings across the country using comparable and consistent methodology and study designs (fig. 1; Capel and others, 2004; Capel and others, 2008). Assessments in five study areas have been completed, and the results highlight how environmental processes and agricultural practices interact to affect the movement and transformation of agricultural chemicals in the environment. The studies address major environmental compartments, including surface water, groundwater, the unsaturated zone, the streambed, and the atmosphere, as well as the pathways that interconnect these compartments. The study areas represent major agricultural settings, such as irrigated diverse cropping in the West and corn and soybean row cropping in the Midwest and, therefore, findings are relevant throughout much of the Nation.

  5. Release mitigation spray safety systems for chemical demilitarization applications.

    SciTech Connect

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  6. Epidemiology of health and safety risks in agriculture and related industries. Practical applications for rural physicians.

    PubMed Central

    Zejda, J E; McDuffie, H H; Dosman, J A

    1993-01-01

    Epidemiologic studies document that work in the agricultural sector is associated with many occupational health hazards. Exposure to organic dusts and airborne microorganisms and their toxins may lead to respiratory disorders. The burden of exposure-related chronic bronchitis, asthma, hypersensitivity pneumonitis, organic-dust toxic syndrome, and chronic airflow limitation can be diminished by appropriate preventive measures. The contribution of exposures to agricultural chemicals to cancers and neurodegenerative disorders is being investigated. Some studies document that farmers and those in related industries are at higher risk for the development of cancer of the stomach, soft tissue sarcoma, non-Hodgkin's lymphoma, and multiple myeloma. Chronic encephalopathy and Parkinson's and Alzheimer's diseases are being studied in relation to agricultural chemicals. The possible carcinogenicity and neurotoxicity of pesticides emphasize the need to promote the safe use of chemicals. Another area for health promotion programs is disabling injuries and traumatic deaths. Farm accidents are important because of their frequent occurrence among young people and disturbing fatality rates. Other health issues of concern in these industries include skin diseases, hearing loss, and stress. PMID:8470386

  7. Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Lathrop, Timothy R.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is part of an Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. Water-quality samples were collected in Leary Weber Ditch and in the major hydrologic compartments of the Leary Weber Ditch Basin during 2003 and 2004. Hydrologic compartments that contribute water and agricultural chemicals to Leary Weber Ditch are rain water, overland-flow water, soil water, tile-drain water, and ground water. Samples were analyzed for selected pesticides, nutrients, and major ions.

  8. Agricultural chemicals at the outlet of a shallow carbonate aquifer

    USGS Publications Warehouse

    Felton, G.K.

    1996-01-01

    A groundwater catchment, located in Woodford and Jessamine Counties in the Inner Bluegrass of Kentucky, was instrumented to develop long- term flow and water quality data. The land uses on this 1 620-ha catchment consist of approximately 59% in grasses consisting of beef farms, horse farms, and a golf course; 16% row crops; 6% orchard: 13% forest; and 6% residential. Water samples were analyzed twice a week for, Ca++, Mg++, Na+, Cl-, HCO3-, O4=, NO3-, total solids, suspended solids, fecal coliforms, fecal streptococci, and triazines. Flow rate and average ambient temperature were also recorded. No strong linear relationship was developed between chemical concentrations and other parameters. The transient nature of the system was emphasized by one event that drastically deviated from others. Pesticide data were summarized and the 'flushing' phenomena accredited to karst systems was discussed. The total solids content in the spring was consistent at approximately 2.06 mg/L. Fecal bacteria contamination was well above drinking water limits (fecal coliform and fetal streptococci averages were I 700 and 4 300 colony-forming-units/100 mL, respectively) and the temporal variation in bacterial contamination was not linked to any other variable.

  9. Safety evaluation of chemical mixtures and combinations of chemical and non-chemical stressors.

    PubMed

    Jonker, D; Freidig, A P; Groten, J P; de Hollander, A E M; Stierum, R H; Woutersen, R A; Feron, V J

    2004-01-01

    Recent developments in hazard identification and risk assessment of chemical mixtures are reviewed. Empirical, descriptive approaches to study and characterize the toxicity of mixtures have dominated during the past two decades, but an increasing number of mechanistic approaches have made their entry into mixture toxicology. A series of empirical studies with simple chemical mixtures in rats is described in some detail because of the important lessons from this work. The development of regulatory guidelines for the toxicological evaluation of chemical mixtures is discussed briefly. Current issues in mixture toxicology include the adverse health effects of ambient air pollution; the application of such modern, sophisticated methodologies as genomics, bioinformatics, and physiologically based pharmacokinetic modeling; and databases for mixture toxicity. Finally, the state of the art of our knowledge on the potential adverse health effects of combined exposures to chemicals and non-chemical stressors (noise, heat/cold, microorganisms, immobilization, restraint, or transportation), research initiatives in these fields, and the development of an indicator for the cumulative health impact of multiple environmental exposures are discussed. PMID:15329008

  10. Edible safety requirements and assessment standards for agricultural genetically modified organisms.

    PubMed

    Deng, Pingjian; Zhou, Xiangyang; Zhou, Peng; Du, Zhong; Hou, Hongli; Yang, Dongyan; Tan, Jianjun; Wu, Xiaojin; Zhang, Jinzhou; Yang, Yongcun; Liu, Jin; Liu, Guihua; Li, Yonghong; Liu, Jianjun; Yu, Lei; Fang, Shisong; Yang, Xiaoke

    2008-05-01

    This paper describes the background, principles, concepts and methods of framing the technical regulation for edible safety requirement and assessment of agricultural genetically modified organisms (agri-GMOs) for Shenzhen Special Economic Zone in the People's Republic of China. It provides a set of systematic criteria for edible safety requirements and the assessment process for agri-GMOs. First, focusing on the degree of risk and impact of different agri-GMOs, we developed hazard grades for toxicity, allergenicity, anti-nutrition effects, and unintended effects and standards for the impact type of genetic manipulation. Second, for assessing edible safety, we developed indexes and standards for different hazard grades of recipient organisms, for the influence of types of genetic manipulation and hazard grades of agri-GMOs. To evaluate the applicability of these criteria and their congruency with other safety assessment systems for GMOs applied by related organizations all over the world, we selected some agri-GMOs (soybean, maize, potato, capsicum and yeast) as cases to put through our new assessment system, and compared our results with the previous assessments. It turned out that the result of each of the cases was congruent with the original assessment. PMID:18289760

  11. Edible safety requirements and assessment standards for agricultural genetically modified organisms.

    PubMed

    Deng, Pingjian; Zhou, Xiangyang; Zhou, Peng; Du, Zhong; Hou, Hongli; Yang, Dongyan; Tan, Jianjun; Wu, Xiaojin; Zhang, Jinzhou; Yang, Yongcun; Liu, Jin; Liu, Guihua; Li, Yonghong; Liu, Jianjun; Yu, Lei; Fang, Shisong; Yang, Xiaoke

    2008-05-01

    This paper describes the background, principles, concepts and methods of framing the technical regulation for edible safety requirement and assessment of agricultural genetically modified organisms (agri-GMOs) for Shenzhen Special Economic Zone in the People's Republic of China. It provides a set of systematic criteria for edible safety requirements and the assessment process for agri-GMOs. First, focusing on the degree of risk and impact of different agri-GMOs, we developed hazard grades for toxicity, allergenicity, anti-nutrition effects, and unintended effects and standards for the impact type of genetic manipulation. Second, for assessing edible safety, we developed indexes and standards for different hazard grades of recipient organisms, for the influence of types of genetic manipulation and hazard grades of agri-GMOs. To evaluate the applicability of these criteria and their congruency with other safety assessment systems for GMOs applied by related organizations all over the world, we selected some agri-GMOs (soybean, maize, potato, capsicum and yeast) as cases to put through our new assessment system, and compared our results with the previous assessments. It turned out that the result of each of the cases was congruent with the original assessment.

  12. Using social marketing to address barriers and motivators to agricultural safety and health best practices.

    PubMed

    Yoder, Aaron M; Murphy, Dennis J

    2012-01-01

    Social marketing is an intervention development strategy that pays considerable attention to barriers to and motivators for behavioral change or adoption of recommended behaviors. Barriers are obstacles that prevent individuals from changing or adopting behaviors and are often referred to as the "cons" or "costs" of doing something. Motivators, on the other hand, are factors that encourage individuals to change or adopt behaviors and are often referred to as the "pros," "benefits," or "influencing factors" of doing something. Importantly, social marketing does not target education or knowledge change as an end point; rather, it targets behavior change. Studies across several types of desired behaviors (e.g., smoking cessation, weight control, more exercise, sunscreen use, radon testing) using the Stages of Change model have found systematic relationships between stages of change and pros and cons of changing behavior. A review of literature identifies numerous research and intervention studies that directly reference social marketing in agricultural safety and health, studies that identify reasons why parents allow their children to be exposed to hazardous situations on the farm, and reasons why youth engage in risky behaviors, but only two studies were found that show evidence of systematically researching specific behavioral change motivating factors. The authors offer several suggestions to help address issues relating to social marketing and agricultural safety and health.

  13. Biofuels and North American agriculture--implications for the health and safety of North American producers.

    PubMed

    Gunderson, Paul D

    2008-01-01

    This decade has provided North American agricultural producers with opportunity to not only produce fiber and food, but also fuel and other industrial products. The drivers incenting this development could be sustained well into the future, therefore workforce safety and health implications are likely to persist for some time. Within production agriculture, the 'feedstock growth and harvest cycle' and 'transport' sectors possess the changing exposures experienced by workers. The Conference explored the following exposures: distiller's grains and bio-processing byproducts, spent catalyst, solvent brine, microbial agents, genetically modified organisms, discharge effluent, H2O dilutes, change in cropping patterns and resultant use of different seeding and harvest technologies, pests (whether target or non-target), and rural traffic resulting from concentrated movement of massive quantities of biomass and grain. Other issues of a more general public health nature such as watershed implications, other environmental impacts, emissions, uneven economic development potential, public safety issues associated with transport of both fuel and other industrial products, and rural emergency medical service need were explored. And, agronomic impacts were noted, including tillage change, potassium buildup in soil, nutrient depletion, sedimentation and erosion of tillable soil, and local esthetics. It was concluded that rural venues for formation and exploration of public policy need to be created.

  14. Physician training in agricultural safety and health: the Emory Agromedicine Training Project.

    PubMed

    Frumkin, Howard; Mason, Suzanne

    2004-01-01

    This paper describes the Emory Agromedicine Training Project, a component of Occupational Medicine residency training at Emory University since 1991. The Project places occupational medicine residents in rural settings, where they perform a range of activities: working on farms, service visits to farms, grand rounds presentations to rural hospitals, public presentations in farm communities, and clinical service in the migrant health program. In addition they complete a directed reading syllabus and a research project. The rotation has been successful in building the residents' knowledge of agricultural safety and health, instilling positive attitudes toward the field, and achieving desired behaviors and skills. In addition, strong statewide networking was accomplished through this initiative. Areas of limited success include the small number of residents trained, some resident dissatisfaction with intense travel requirements and security concerns, and inability to secure long-term funding. We conclude that agricultural safety and health is highly suitable for inclusion in occupational medicine training, and this model should be extended to primary care specialties such as family practice.

  15. Agricultural Chemical Use and White Male Cancer Mortality in Selected Rural Farm Counties.

    ERIC Educational Resources Information Center

    Stokes, C. Shannon; Brace, Kathy D.

    A study of 1,497 nonmetropolitan counties was conducted to test the possible contribution of agricultural chemical use to cancer mortality rates in rural counties. The dependent variables were 20-year age-adjusted mortality rates for 1950 to 1969 for five categories of cancer: genital, urinary, lymphatic, respiratory, and digestive. Because sex…

  16. OPEN BURNING OF AGRICULTURAL BIOMASS: PHYSICAL AND CHEMICAL PROPERTIES OF PARTICLE-PHASE EMISSIONS

    EPA Science Inventory

    This effort presents the physical and chemical characterization of PM2.5 emissions from simulated agricultural fires of surface residuals of two major grain crops, rice (Oryza sativa) and wheat (Triticum aestivum L). The O2 levels and CO/CO

  17. VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN.

    ERIC Educational Resources Information Center

    CHRISTENSEN, MAYNARD; CLARK, RAYMOND M.

    THIS STUDY WAS CONDUCTED TO DETERMINE THE VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT BELOW THE MANUFACTURING LEVEL IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN. NINE FUNCTIONS PERFORMED IN THE INDUSTRY WERE LISTED--RESEARCH, TRANSPORTATION, PROCESSING, PUBLIC RELATIONS, SALES, SERVICE, OFFICE RECORDS AND MANAGEMENT, MAINTENANCE, AND…

  18. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture

    PubMed Central

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken. PMID:27486573

  19. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture.

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken. PMID:27486573

  1. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    PubMed

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  2. High-Throughput Toxicity Testing: New Strategies for Assessing Chemical Safety

    EPA Science Inventory

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct add...

  3. Safety in the Chemical Laboratory: Fire Safety and Fire Control in the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Wilbraham, A. C.

    1979-01-01

    Discusses fire safety and fire control in the chemistry laboratory. The combustion process, extinguishing equipment, extinguisher maintenance and location, and fire safety and practices are included. (HM)

  4. Agricultural chemicals in alluvial aquifers in Missouri after the 1993 flood

    USGS Publications Warehouse

    Heimann, D.C.; Richards, J.M.; Wilkison, D.H.

    1997-01-01

    Intense rains produced flooding during the spring and summer of 1993 over much of the midwestern USA including many agricultural areas of Missouri. Because of potential contamination from floodwater, an investigation was conducted to determine the changes in concentrations of agricultural chemicals in water samples from alluvial wells in Missouri after the flood. Water samples from 80 alluvial wells with historical data were collected in March, July, and November 1994, and analyzed for dissolved herbicides, herbicide metabolites, and nitrate (NO3). There were no statistically significant differences in the distribution of alachlor ((2,chloro-2'-6'-diethyl-N-[methoxymethyl]acetanilide), atrazine (2-chloro- 4-ethylamino-6-isopropylamino-1, 3, 5 triazine), and nitrate concentrations between pre- and postflood samples (?? = 0.05). The detection frequency of alachlor and atrazine in postflood samples was generally lower than the frequency in preflood samples. Analyses of agricultural chemicals in water samples from an intensely sampled well field indicate significant differences between the distribution of dissolved P concentrations in pre- and postflood samples (?? = 0.05). However, no significant differences were detected between the pre- and postflood distributions of NO3 or ammonia concentrations. Because of the numerous sources of temporal variability and the relatively short record of water-quality data for the study wells, a cause-and-effect relation between changes in agricultural chemical concentrations and a single factor of the 1993 flood is difficult to determine. Based on the results of this study, the 1993 flood did not cause widespread or long-term significant changes in concentrations of agricultural chemicals in water from alluvial aquifers in Missouri.

  5. Safety in the Chemical Laboratory. Safety in the Laboratory: Are We Making Any Progress?

    ERIC Educational Resources Information Center

    McKusick, Blaine C.

    1987-01-01

    Reviews trends in laboratory safety found in both industrial and academic situations. Reports that large industrial labs generally have excellent safety programs but that, although there have been improvements, academia still lags behind industry in safety. Includes recommendations for improving lab safety. (ML)

  6. Requirements analysis for safety-critical systems: A chemical batch processing example

    NASA Astrophysics Data System (ADS)

    Delemos, R.; Saeed, A.; Anderson, T.

    1994-01-01

    An essential basis for the development of software for safety-critical systems is to establish high-quality requirements specifications. In the paper the authors present a methodology for requirements analysis that consists of: a framework which facilitates the systematic analysis of the safety requirements, a graph which records the safety specifications and their relationships, and a set of procedures for the quality analysis of the safety specifications. To illustrate the approach a case study, based on chemical batch processing, is presented.

  7. Field calibration of surface: a model of agricultural chemicals in surface waters.

    PubMed

    Gustafson, D I

    1990-10-01

    Agricultural chemicals sporadically occur at detectable levels in the surface waters of intensively farmed watersheds. HSPF, a previously released model of agricultural chemicals in surface water, had been used to predict concentrations which were much higher (10 X) than those actually observed during monitoring studies. A new model, SURFACE, is described here which is much simpler than HSPF and gives better predictions of surface water concentrations. SURFACE uses PRZM, an EPA model, to calculate edge-of-field runoff losses and simple hydraulic routing algorithms to determine concentrations at the bottom of large river basins. In water systems sampled during 1985 and 1986, SURFACE predictions of annualized mean concentrations for alachlor, atrazine, cyanazine and metolachlor were within 0.09 ppb half of the time.

  8. Water and Agricultural-Chemical Transport in a Midwestern, Tile-Drained Watershed: Implications for Conservation Practices

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.; Frey, Jeffrey W.; Wilson, John T.

    2007-01-01

    The study of agricultural chemicals is one of five national priority topics being addressed by the National Water-Quality Assessment (NAWQA) Program in its second decade of studies, which began in 2001. Seven watersheds across the Nation were selected for the NAWQA agricultural-chemical topical study. The watersheds selected represent a range of agricultural settings - with varying crop types and agricultural practices related to tillage, irrigation, artificial drainage, and chemical use - as well as a range of landscapes with different geology, soils, topography, climate, and hydrology (Capel and others, 2004). Chemicals selected for study include nutrients (nitrogen and phosphorus) and about 50 commonly used pesticides. This study design leads to an improved understanding of many factors that can affect the movement of water and chemicals in different agricultural settings. Information from these studies will help with decision making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields (Capel and others, 2004). This Fact Sheet highlights the results of the NAWQA agricultural chemical study in the Leary Weber Ditch Watershed in Hancock County, Indiana. This watershed was selected to represent a tile-drained, corn and soybean, humid area typical in the Midwest.

  9. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

    PubMed Central

    Stokes, Michael E.; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma. PMID:25183965

  10. When Vacant Lots Become Urban Gardens: Characterizing the Perceived and Actual Food Safety Concerns of Urban Agriculture in Ohio.

    PubMed

    Kaiser, Michelle L; Williams, Michele L; Basta, Nicholas; Hand, Michelle; Huber, Sarah

    2015-11-01

    This study was intended to characterize the perceived risks of urban agriculture by residents of four low-income neighborhoods in which the potential exists for further urban agriculture development and to provide data to support whether any chemical hazards and foodborne pathogens as potential food safety hazards were present. Sixty-seven residents participated in focus groups related to environmental health, food security, and urban gardening. In addition, soils from six locations were tested. Residents expressed interest in the development of urban gardens to improve access to healthy, fresh produce, but they had concerns about soil quality. Soils were contaminated with lead (Pb), zinc, cadmium (Cd), and copper, but not arsenic or chromium. Results from our study suggest paint was the main source of soil contamination. Detectable polyaromatic hydrocarbon (PAH) levels in urban soils were well below levels of concern. These urban soils will require further management to reduce Pb and possibly Cd bioavailability to decrease the potential for uptake into food crops. Although the number of locations in this study is limited, results suggest lower levels of soil contaminants at well-established gardens. Soil tillage associated with long-term gardening could have diluted the soil metal contaminants by mixing the contaminants with clean soil. Also, lower PAH levels in long-term gardening could be due to enhanced microbial activity and PAH degradation, dilution, or both due to mixing, similar to metals. No foodborne pathogen targets were detected by PCR from any of the soils. Residents expressed the need for clearness regarding soil quality and gardening practices in their neighborhoods to consume food grown in these urban areas. Results from this study suggest long-term gardening has the potential to reduce soil contaminants and their potential threat to food quality and human health and to improve access to fresh produce in low-income urban communities. PMID:26555531

  11. When Vacant Lots Become Urban Gardens: Characterizing the Perceived and Actual Food Safety Concerns of Urban Agriculture in Ohio.

    PubMed

    Kaiser, Michelle L; Williams, Michele L; Basta, Nicholas; Hand, Michelle; Huber, Sarah

    2015-11-01

    This study was intended to characterize the perceived risks of urban agriculture by residents of four low-income neighborhoods in which the potential exists for further urban agriculture development and to provide data to support whether any chemical hazards and foodborne pathogens as potential food safety hazards were present. Sixty-seven residents participated in focus groups related to environmental health, food security, and urban gardening. In addition, soils from six locations were tested. Residents expressed interest in the development of urban gardens to improve access to healthy, fresh produce, but they had concerns about soil quality. Soils were contaminated with lead (Pb), zinc, cadmium (Cd), and copper, but not arsenic or chromium. Results from our study suggest paint was the main source of soil contamination. Detectable polyaromatic hydrocarbon (PAH) levels in urban soils were well below levels of concern. These urban soils will require further management to reduce Pb and possibly Cd bioavailability to decrease the potential for uptake into food crops. Although the number of locations in this study is limited, results suggest lower levels of soil contaminants at well-established gardens. Soil tillage associated with long-term gardening could have diluted the soil metal contaminants by mixing the contaminants with clean soil. Also, lower PAH levels in long-term gardening could be due to enhanced microbial activity and PAH degradation, dilution, or both due to mixing, similar to metals. No foodborne pathogen targets were detected by PCR from any of the soils. Residents expressed the need for clearness regarding soil quality and gardening practices in their neighborhoods to consume food grown in these urban areas. Results from this study suggest long-term gardening has the potential to reduce soil contaminants and their potential threat to food quality and human health and to improve access to fresh produce in low-income urban communities.

  12. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    ERIC Educational Resources Information Center

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  13. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture

    PubMed Central

    Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  14. Improving health and safety conditions in agriculture through professional training of Florida farm labor supervisors.

    PubMed

    Morera, Maria C; Monaghan, Paul F; Tovar-Aguilar, J Antonio; Galindo-Gonzalez, Sebastian; Roka, Fritz M; Asuaje, Cesar

    2014-01-01

    Because farm labor supervisors (FLSs) are responsible for ensuring safe work environments for thousands of workers, providing them with adequate knowledge is critical to preserving worker health. Yet a challenge to offering professional training to FLSs, many of whom are foreign-born and have received different levels of education in the US and abroad, is implementing a program that not only results in knowledge gains but meets the expectations of a diverse audience. By offering bilingual instruction on safety and compliance, the University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) FLS Training program is helping to improve workplace conditions and professionalize the industry. A recent evaluation of the program combined participant observation and surveys to elicit knowledge and satisfaction levels from attendees of its fall 2012 trainings. Frequency distributions and dependent- and independent-means t-tests were used to measure and compare participant outcomes. The evaluation found that attendees rated the quality of their training experience as either high or very high and scored significantly better in posttraining knowledge tests than in pretraining knowledge tests across both languages. Nonetheless, attendees of the trainings delivered in English had significantly higher posttest scores than attendees of the trainings delivered in Spanish. As a result, the program has incorporated greater standardization of content delivery and staff development. Through assessment of its program components and educational outcomes, the program has documented its effectiveness and offers a replicable approach that can serve to improve the targeted outcomes of safety and health promotion in other states.

  15. Spatial data in geographic information system format on agricultural chemical use, land use, cropping practices in the United States

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1995-01-01

    The spatial data in geographic information system format described in this report consist of estimates for all counties in the conterminous United States of the annual use of 96 herbicides in 1989; annual sales of nitrogen fertilizer, in tons, for 1985-91; and agricultural expenses, land use, chemical use, livestock holdings, and cropping practices in 1987. The source information, originally in tabular form, is summarized as digital polygon attribute data in the 18 geographic information system spatial data layers (coverages) provided. The information in these coverages can be used in estimating regional agricultural-chemical use or agricultural practices and in producing visual displays and mapping relative rates of agricultural-chemical use or agricultural practices across broad regions of the United States.

  16. Assuring the Safety of Chemicals through Improved Exposure Science

    EPA Science Inventory

    Thousands of chemicals are currently in commercial use and hundreds more are introduced each year. Of these, only a small fraction has been assessed adequately for potential risks. Existing chemical testing and exposure measurement protocols are expensive and time consuming. Fu...

  17. Heavy metals in agricultural soils of the European Union with implications for food safety.

    PubMed

    Tóth, G; Hermann, T; Da Silva, M R; Montanarella, L

    2016-03-01

    Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000km(2) needs local assessment and eventual remediation action.

  18. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  19. Chemical Safety. Part II: Tips for Dealing with Laboratory Hazards.

    ERIC Educational Resources Information Center

    Young, Jay A.

    1997-01-01

    Discusses the importance of involving students in assessing the risks versus the benefits of specific laboratory activities, completing accident/incident reports, and performing periodic safety inspections. Concludes that involving students enhances their awareness of both hazards and precautions that must be taken. Provides them another avenue…

  20. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  1. Safety in the Chemical Laboratory: Cyclohexane as a Cryoscopic Solvent.

    ERIC Educational Resources Information Center

    Steffel, Margaret J.

    1981-01-01

    Suggests that cyclohexane be used as a solvent in experiments usually using benzene, which has been placed on the list of chemicals that are confirmed carcinogens. Reasons for selection of cyclohexane and experimental procedures using this solvent are described. (CS)

  2. Safety in the Chemical Laboratory: Hazards in a Photography Lab.

    ERIC Educational Resources Information Center

    Houk, Cliff; Hart, Charles

    1987-01-01

    Described are case studies illustrating chemical hazards in a photography lab due to compounds containing cyanide. Suggestions for preventing problems including proper procedures, housekeeping, facilities, and ventilation are considered. (RH)

  3. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    SciTech Connect

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy`s (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions.

  4. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  5. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  6. Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety.

    PubMed

    Heikens, Alex; Panaullah, Golam M; Meharg, Andy A

    2007-01-01

    High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition

  7. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    PubMed

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-01

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.

  8. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    PubMed

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-01

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination. PMID:27171137

  9. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    NASA Astrophysics Data System (ADS)

    Priore, Ryan J.; Olkhovyk, Oksana; Drauch, Amy; Treado, Patrick; Kim, Moon; Chao, Kaunglin

    2009-05-01

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin industry, has recently been used to increase the apparent protein content of animal feed, of infant formula, as well as powdered and liquid milk in the dairy industry. Such contaminants, even at regulated levels, pose serious health risks. Chemical imaging technology provides the ability to evaluate large volumes of agricultural products before reaching the consumer. In this presentation, recent advances in chemical imaging technology that exploit Raman, fluorescence and near-infrared (NIR) are presented for the detection of contaminants in agricultural products.

  10. Chemical Safety Management Program for Lockheed Martin Energy Systems operations at the Y-12 Plant

    SciTech Connect

    C.W. McMahon

    2000-03-24

    Operated by Lockheed Martin Energy Systems (Energy Systems), the Department of Energy (DOE) Oak Ridge Y-12 Plant is a manufacturing facility that plays an integral role in the DOE nuclear weapons complex. Fulfilling the national security mission at the Y-12 Plant, continuing to be the cornerstone of uranium and lithium technologies for DOE, and providing customers with solutions for challenging manufacturing needs requires usage of a variety of chemicals and chemical processes. Performing this work safely while protecting workers, the public, and the environment is their commitment. The purpose of this document is to provide a description of the essential components of chemical safety, the integration of these components into the Y-12 Integrated Safety Management System (ISMS), and the functional integration of chemical safety issues across Y-12 organizations and programs managed by Energy Systems.

  11. Safety in the Chemical Laboratory. Synthesis-Laboratory Fumehoods.

    ERIC Educational Resources Information Center

    Adams, John B., Jr.

    1989-01-01

    Described is a procedure by which the performance of chemical hoods can be tested. This procedure uses a mixture of dry ice and water to create a "smoke" for use in the test. Implications for sash design, performance evaluations and testing under standard and nonstandard conditions are discussed. (CW)

  12. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... Request for Information designed to identify issues related to modernization of the PSM Standard and... key information in a useable format, including by thoroughly reviewing categories of chemicals for which information is provided to first responders and the manner in which it is made available, so as...

  13. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Occupational Safety and Health Administration The Standard on Process Safety Management of Highly Hazardous... the Standard on Process Safety Management of Highly Hazardous Chemicals. DATES: Comments must be... elements of the standard; completing a compilation of written process safety information; performing...

  14. Safety evaluation of chemically modified beta-lactoglobulin administered intravaginally.

    PubMed

    Guo, Xuetao; Qiu, Lixia; Wang, Yonghong; Wang, Yue; Meng, Yuanguang; Zhu, Yun; Lu, Lu; Jiang, Shibo

    2016-06-01

    Currently, there is no specific antiviral therapy for treatment of HPV infection. Jiang and colleagues previously reported that anhydride-modified proteins have inhibitory activities against multiple viruses including HPV. Here, we evaluated the safety of 3-hydroxyphthalic anhydride-modified bovine beta-lactoglobulin, designated JB01, vaginally applied in women infected by high-risk HPV. After the vaginal application of JB01 in 38 women for 3 months, no serious adverse events were reported, and normalization of the vaginal micro-environment has been observed. It can be concluded that JB01-BD is safe for vaginal use in HPV-infected women, suggesting its potential application for the treatment of HPV infection.

  15. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    ERIC Educational Resources Information Center

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  16. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

  17. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    PubMed

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. PMID:27565314

  18. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin indus...

  19. Agricultural Safety and Health: A Resource Guide. Rural Information Center Publication Series, No. 40. Revised Edition.

    ERIC Educational Resources Information Center

    Zimmerman, Joy, Comp.

    This guide lists resource materials that address agricultural occupational injuries and diseases and their prevention. Many of the entries were derived from the AGRICOLA database produced by the National Agricultural Library and include journal articles, books, government reports, training materials, and audiovisual materials. The first section…

  20. Safety and Certification Considerations for Expanding the Use of UAS in Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Vertstynen, Harry A.

    2016-01-01

    The agricultural community is actively engaged in adopting new technologies such as unmanned aircraft systems (UAS) to help assess the condition of crops and develop appropriate treatment plans. In the United States, agricultural use of UAS has largely been limited to small UAS, generally weighing less than 55 lb and operating within the line of sight of a remote pilot. A variety of small UAS are being used to monitor and map crops, while only a few are being used to apply agricultural inputs based on the results of remote sensing. Larger UAS with substantial payload capacity could provide an option for site-specific application of agricultural inputs in a timely fashion, without substantive damage to the crops or soil. A recent study by the National Aeronautics and Space Administration (NASA) investigated certification requirements needed to enable the use of larger UAS to support the precision agriculture industry. This paper provides a brief introduction to aircraft certification relevant to agricultural UAS, an overview of and results from the NASA study, and a discussion of how those results might affect the precision agriculture community. Specific topics of interest include business model considerations for unmanned aerial applicators and a comparison with current means of variable rate application. The intent of the paper is to inform the precision agriculture community of evolving technologies that will enable broader use of unmanned vehicles to reduce costs, reduce environmental impacts, and enhance yield, especially for specialty crops that are grown on small to medium size farms.

  1. Quantification of surface defects on chemically protective gloves following their use in agriculture.

    PubMed

    Canning, K M; Jablonski, W; McQuillan, P B

    1998-01-01

    Chemically protective gloves are one of the most widely used barriers against hand exposure to pesticide contamination available to workers in primary industry. Polyvinyl chloride and nitrile butadiene rubber gloves were collected from four typical agricultural enterprises in Tasmania. Surface images of new and used gloves, up to 1000 x magnification, were obtained from an environmental scanning electron microscope and were used to classify defects, such as cracks, crazes, cavities, convexities, smooth areas and slumps. Some defects, e.g. cracks, were related to the working life of the gloves, whereas others, e.g. slumps, were associated with the manufacturing process. After viewing, the gloves were analysed by X-ray energy-dispersive spectroscopy. Phosphorus and sulfur peaks were indicative of pesticide retention. Rinsates from the interior of used polyvinyl chloride gloves were analysed by gas chromatography and mass spectrometry. Pesticide traces were found suggesting inadequate protection against dermal exposure. It is concluded that these gloves were unable to withstand the rigours of agricultural work because of the nature of the surface defects and they were contaminated with pesticides, outside and inside. Thus, their management needs improvement. PMID:9852491

  2. Laboratory conditions and safety in a chemical warfare agent analysis and research laboratory.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Kose, Songul

    2002-08-01

    Toxic chemicals have been used as weapons of war and also as means of terrorist attacks on civilian populations. Research focusing on chemical warfare agents (CWAs) may be associated with an increased risk of exposure to and contamination by these agents. This article summarizes some of the regulations concerning designation and safety in a CWA analysis and research laboratory and medical countermeasures in case of an accidental exposure. The design of such a laboratory, coupled with a set of safety guidelines, provides for the safe conduct of research and studies involving CWAs. Thus, a discussion of decontamination and protection means against CWAs is also presented.

  3. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. PMID:26005752

  4. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories.

  5. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  6. Intelligent Chemical Sensor Systems for In-space Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  7. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  8. The Safety "Use Case": Co-Developing Chemical Information Management and Laboratory Safety Skills

    ERIC Educational Resources Information Center

    Stuart, Ralph B.; McEwen, Leah R.

    2016-01-01

    The 2015 edition of the American Chemical Society's "Guidelines and Evaluation Procedures for Bachelor's Degree Programs" identifies six skill sets that undergraduate chemistry programs should instill in their students. In our roles as support staff for chemistry departments at two different institutions (one a Primarily Undergraduate…

  9. Chemical-radiation degradation of natural oligoamino-polysaccharides for agricultural application

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Migdal, W.; Swietoslawski, J.; Swietoslawski, J.; Jakubaszek, U.; Tarnowski, T.

    2007-11-01

    The main objective of the research was to elaborate the method of degradation of natural aminopolysaccharides to obtain a product applicable as biospecimen in protection and stimulation of the plants growth. Depolymerization of chitosan can be carried out by radiation or chemical degradation combined with irradiation method. The efficiency of these methods was verified by viscometric analysis. The chemical-radiation method was much more appropriate from economical point of view. By application of this method it was possible to obtain product with lower crystalline phase content than initial one, what was proved by X-ray diffraction studies. Finally preliminary agricultural tests on spring rape seeds were performed. The results show that the biggest growth was observed for chitosan (molecular weight 47,000 Da) in concentration of 0.1 g/kg of seeds. The higher concentration did not affect plant's growth. The average growth over-ground plant parts was about 16-22%, diameter of roots was about 11-13%, and mass of roots was about 51-65% higher in comparison to the control.

  10. Maiorchino Cheese: Physico-Chemical, Hygienic and Safety Characteristics

    PubMed Central

    Ravidà, Andrea; Mandanici, Alessandro; Ferrantelli, Vincenzo; Chetta, Michele; Verzera, Antonella

    2015-01-01

    This study assessed the physical, chemical, and microbiological characteristics of traditional Maiorchino cheese (Italy) made from raw ewe’s milk or from a mixture with goat’s milk. Cheese samples from the same batch were analyzed after 20 days and 6, 8, 12, 17 and 24 months of ripening. A decrease in moisture level lead to progressive total solids concentration (fat, total nitrogen, total solids and chloride) during ripening. Aw values decreased from 0.97 (day 20) to 0.85 (month 24), while pH increased from 4.99 to 5.41 (6 months) followed a by reduction until 4.85 (month 24). In samples analysed 20 days after cheesemaking, aerobic mesophilic count was 1.8•107 CFU/g, Enterobacteriaceae were 2.7•106 CFU/g, Staphylococcus spp. were 1.8•104 CFU/g, and yeasts 4.5•105 CFU/g. Sulphite reducing bacteria were not found. Lactic bacteria count at 30°C (LAB30) and 42°C (LAB42) was about 108 CFU/g (day 20); LAB30 reduced until month 8; LAB 42 reduced until month 12; both were not detectable at months 17 and 24. Cheese-making process does not consider commercial starter cultures and LAB group is heterogeneous because of its natural microflora. Yeasts were considered as typical microflora of Maiorchino. Volatile compounds were examined at 6, 12 and 24 months of ripening; 54 components were identified. Statistical analysis showed that the seasoning period of 12 months was the best for Maiorchino flavour attributes. The characterisation of Maiorchino traditional cheese may be considered as significant for this old traditional product, with the aim of obtaining the PDO certification. PMID:27800379

  11. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    SciTech Connect

    Not Available

    1992-11-01

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  12. Potential chemical and microbiological risks on human health from urban wastewater reuse in agriculture. Case study of wastewater effluents in Spain.

    PubMed

    Muñoz, Ivan; Tomàs, Núria; Mas, Jordi; García-Reyes, Juan Fracisco; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2010-05-01

    Potential health risks derived from wastewater reuse in agriculture have been evaluated with Risk Assessment modelling techniques, in a case study involving the effluents of two Spanish wastewater treatment plants. One of the plants applies primary and secondary treatment, and the other one applies an additional tertiary treatment. Health risks were assessed on the basis of ingesting contaminated food, due to exposure to: (i) 22 chemical pollutants, namely pharmaceuticals and personal care products (PPCPs), and priority pollutants included in the European Framework Directive, and (ii) microorganisms, namely enterovirus. Chemical Risk Assessment has been carried out following the European Commission's technical guidelines, while risks from exposure to viruses have been evaluated by means of Quantitative Microbial Risk Assessment, assuming a virus to coliform ratio of 1:10(5). The results of the chemical assessment show that there is a margin of safety above 100 for all substances, with the exception of gemfibrozil, for which the mean margin of safety (MOS) is above 100, but the lower bound of MOS with a 95 % confidence interval lies in the 3-4 range. A MOS under 100 was also found for 2,3,7,8-TCDD in one of the effluents. The assessment of risks from viruses shows a very low probability of infection. The overall results show that risks are lower for the plant applying tertiary treatment, especially concerning microbiological parameters.

  13. Aligning the 3Rs with new paradigms in the safety assessment of chemicals.

    PubMed

    Burden, Natalie; Mahony, Catherine; Müller, Boris P; Terry, Claire; Westmoreland, Carl; Kimber, Ian

    2015-04-01

    There are currently several factors driving a move away from the reliance on in vivo toxicity testing for the purposes of chemical safety assessment. Progress has started to be made in the development and validation of non-animal methods. However, recent advances in the biosciences provide exciting opportunities to accelerate this process and to ensure that the alternative paradigms for hazard identification and risk assessment deliver lasting 3Rs benefits, whilst improving the quality and relevance of safety assessment. The NC3Rs, a UK-based scientific organisation which supports the development and application of novel 3Rs techniques and approaches, held a workshop recently which brought together over 20 international experts in the field of chemical safety assessment. The aim of this workshop was to review the current scientific, technical and regulatory landscapes, and to identify key opportunities towards reaching these goals. Here, we consider areas where further strategic investment will need to be focused if significant impact on 3Rs is to be matched with improved safety science, and why the timing is right for the field to work together towards an environment where we no longer rely on whole animal data for the accurate safety assessment of chemicals.

  14. Commercialization of Turbulent Combustion Code CREBCOM for Chemical Industry Safety

    SciTech Connect

    Rohatgi, Upendra

    2007-06-30

    . Kurchatov (KI) performed experiments at close to full-scale in mixtures of room temperature methane and air to develop the CREBCOM code which was used for explosion simulation in confined geometrics, such as chemical reactors and converters. The code was validated by comparison of the code simulations with experimental data obtained under prototypic reactor mixture conditions.

  15. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  16. Investigating the Chemical Safety of Household Products. Teacher's Guide [and] Student Materials.

    ERIC Educational Resources Information Center

    Davison, Phil J.

    This document provides teaching guidelines and student material for a unit intended for use in high school science or consumer programs. Time allotment is from four to six hours of classroom time. The objective of this capsule is to investigate the chemical safety of household products by teaching students how to form a hypothesis through the…

  17. Safety in the Chemical Laboratory--Chemical Management: A Method for Waste Reduction.

    ERIC Educational Resources Information Center

    Pine, Stanley H.

    1984-01-01

    Discusses methods for reducing or eliminating waste disposal problems in the chemistry laboratory, considering both economic and environmental aspects of the problems. Proposes inventory control, shared use, solvent recycling, zero effluent, and various means of disposing of chemicals. (JM)

  18. Effects of topography on the transport of agricultural chemicals to groundwater in a sand-plain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    Geochemical data were collected to investigate the effects of topography and focused recharge on the transport of agricultural chemicals to groundwater through sandy soils. The research was done at a topographically high (upland) site and a depressional (lowland) site within a corn field. Agricultural chemicals that move readily with water were most directly affected by focused recharge to the lowland site. Surface runoff of water to the lowland site was the primary cause for the generally greater flux of chloride, nitrate nitrogen, and sulfate compared with the upland site. Based on data from the unsaturated zone, for example, the average annual fluxes of these chemicals in 1992–1993 were 5.1, 3.4, and 1.7 times greater, respectively, at the lowland site. Study results indicate that consideration should be given to modifying site-specific management farming technology to account for varying recharge rates in different topographic settings. By reducing chemical application rates in topographic depressions, where focused recharge of chemicals occurs because of surface runoff, farmers could improve ground-water quality as well as reduce expenditures for agricultural chemicals.

  19. Using Chemical Tracers to Estimate Pesticide Mass Discharge in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Simmons, A. N.; Allen-King, R. M.; Van Biersel, T. P.; Keller, C. K.; Smith, J. L.

    2001-12-01

    The goal of this research is to use environmental tracers to quantify the contributions of subsurface and surface runoff to predict the mass discharge of non-point source agricultural pollutants to rivers at multiple scales of study. Easily measured chemical tracers, such as electrical conductivity (EC), are used to distinguish ground and surface water contributions to the river system. The study area is the Missouri Flat Creek watershed, a 14,400 ha semi-arid dryland agricultural setting located near Pullman, WA. Ground and surface water samples are collected at approximately two-week intervals from an ephemeral stream and a tile drain located in actively farmed and topographically constrained fields ( ~20 ha), and from seven stream-gaging stations. Surface water discharge is monitored continuously. Samples are routinely analyzed for two pesticides (the insecticide lindane or gamma-hexachlorocyclohexane (HCH) and the herbicide triallate, S-(2,3,3-trichloroallyl) diisopropylthiocarbamate), a nutrient (nitrate), and the tracers EC and silica. Lindane is applied as a seed coating on most spring and fall crops in the region. Observed lindane concentrations in the different hydrologic reservoirs ranged over approximately two orders of magnitude, from typically less than the detection limit ( ~0.005 μ g/L) in most soil pore water and groundwater samples to a weighted mean of 0.25 μ g/L in field (ephemeral stream) surface runoff. A two-component, ground and surface water, hydrograph separation was performed using tile drain and ephemeral stream tracer concentrations from field plots to represent groundwater and surface runoff end-members. The hydrograph separation was used to predict lindane discharge. Reasonable agreement between model and observed lindane discharge timing and trend supports the hypothesis that in-stream pesticide is derived from annual surface runoff. During the high flow winter months, the model predictions are two to five times greater than

  20. Agricultural chemicals and the quality of prairie-pothole wetlands for adult and juvenile waterfowl -- what are the concerns?

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Swanson, G.A.; Borthwick, S.M.; DeWeese, L.R.

    1988-01-01

    A review of the literature and results of ongoing studies indicates that the potential for agricultural chemicals, particularly aerially-applied insecticides, to enter prairie potholes and reduce the quality of these wetlands for waterfowl is great, and that a coordinated effort by farmers, wildlife managers, and regulatory agencies is needed to minimize these impacts

  1. Agricultural chemicals and the quality of prairie-pothole wetlands for adult and juvenile waterfowl - what are the concerns?

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Swanson, G.A.; Borthwick, S.

    1988-01-01

    A review of the literature and results of ongoing studies indicates that the potential for agricultural chemicals, particularly aerially-applied insecticides, to enter prairie potholes and reduce the quality of these wetlands for waterfowl is great, and that a coordinated effort by farmers, wildlife managers, and regulatory agencies is needed to minimize these impacts.

  2. Physical and chemical characterizations of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-08-01

    Biochar has received large attention as a strategy to tackle against carbon emission. Not only carbon fixation has been carried out but also other merits for agricultural application due to unique physical and chemical character such as absorption of contaminated compounds in soil, trapping ammonia and methane emission from compost, and enhancement of fertilizer quality. In our study, different local waste feed stocks (rice husk, rice straw, wood chips of apple tree (Malus Pumila) and oak tree (Quercus serrata)), in Aomori, Japan, were utilized for creating biochar with different temperature (400-800 °C). Concerning to the biochar production, the pyrolysis of lower temperature had more biochar yield than higher temperature pyrolysis process. On the contrary, surface areas and adsorption characters have been increased as increasing temperature. The proportions of carbon content in the biochars also increased together with increased temperatures. Infrared-Fourier spectra (FT-IR) and 13C-NMR were used to understand carbon chemical compositions in our biochars, and it was observed that the numbers of the shoulders representing aromatic groups, considered as stable carbon structure appeared as the temperature came closer to 600 °C, as well as in FT-IR. In rice materials, the peak assigned to SiO2, was observed in all biochars (400-800 °C) in FT-IR. We suppose that the pyrolysis at 600 °C creates the most recalcitrant character for carbon sequestration, meanwhile the pyrolysis at 400 °C produces the superior properties as a fertilizer by retaining volatile and easily labile compounds which promotes soil microbial activities.

  3. [Global trends of food safety information associated with chemicals in food].

    PubMed

    Yamamoto, Miyako; Uneyama, Chikako; Toda, Miou; Morikawa, Kaoru

    2005-01-01

    Recently, a number of food safety problems have frequently arisen and consumer concerns have drastically increased. In order to meet these concerns, we have been publishing a biweekly bulletin called "Food Safety Information" since April 2003, monitoring the latest information from overseas on food safety. In this paper, we analyze the recent trends of information on food chemicals in the bulletin published between April 2003 and March 2005 in order to clarify the problems that need to be followed up. Among the 1,199 entries on food chemicals included in the bulletin, about 50% were from the EU and European organizations such as the FSA (UK). Approximately 20% of the total information focused on food contaminants such as heavy metals, dioxins, PCBs and mycotoxins. Scientific evidence-based information on dietary supplements and herb products was also suggested to be important to protect public health as well as food contaminants. We monitor the latest information on food safety constantly and continuously, which is important for long-term follow up of food safety issues of concern. We also provide the bulletin to the general public through the website as well as to researchers and risk managers. PMID:16541754

  4. Modelling of agricultural combination driver behaviour from the aspect of safety of movement.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Pawłowski, Tadeusz; Kromulski, Jacek

    2014-01-01

    Statistics show that the travel of agricultural machinery to a work area and their movement during labour is the source of many serious accidents. The most dangerous in consequences prove to be those that occur during transport and associated with maneuvering tractors and machinery (about 30% of all fatal accidents). It can be assumed that at least some of these accidents were caused indirectly by the specific design features of agricultural machines which adversely affect the driveability. The single- and multi-loop structures of the driver-vehicle system models are formulated to study the contributions of various preview and prediction strategies to the path tracking and dynamic performance of the articulated vehicle. In the presented study the compensatory model of driver utilizes the lateral acceleration of the tractor, roll angle of trailer sprung mass and the articulation rate as the internal motion feedback variables. The control model of steering of an agricultural set has been implemented in the Matlab/Simulink environment. The model has been constructed with the use of stochastic methods and operational transmittances describing the various components of the system. The model operational transmittances has been estimated using Box-Jenkins and continuous-time process models from input-output data. The model has been tested using experimental data from road investigation of the agricultural set. PMID:24959798

  5. Modelling of agricultural combination driver behaviour from the aspect of safety of movement.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Pawłowski, Tadeusz; Kromulski, Jacek

    2014-01-01

    Statistics show that the travel of agricultural machinery to a work area and their movement during labour is the source of many serious accidents. The most dangerous in consequences prove to be those that occur during transport and associated with maneuvering tractors and machinery (about 30% of all fatal accidents). It can be assumed that at least some of these accidents were caused indirectly by the specific design features of agricultural machines which adversely affect the driveability. The single- and multi-loop structures of the driver-vehicle system models are formulated to study the contributions of various preview and prediction strategies to the path tracking and dynamic performance of the articulated vehicle. In the presented study the compensatory model of driver utilizes the lateral acceleration of the tractor, roll angle of trailer sprung mass and the articulation rate as the internal motion feedback variables. The control model of steering of an agricultural set has been implemented in the Matlab/Simulink environment. The model has been constructed with the use of stochastic methods and operational transmittances describing the various components of the system. The model operational transmittances has been estimated using Box-Jenkins and continuous-time process models from input-output data. The model has been tested using experimental data from road investigation of the agricultural set.

  6. Measurement of natural radioactivity in chemical fertilizer and agricultural soil: evidence of high alpha activity.

    PubMed

    Ghosh, Dipak; Deb, Argha; Bera, Sukumar; Sengupta, Rosalima; Patra, Kanchan Kumar

    2008-02-01

    People are exposed to ionizing radiation from the radionuclides that are present in different types of natural sources, of which phosphate fertilizer is one of the most important sources. Radionuclides in phosphate fertilizer belonging to 232Th and 238U series as well as radioisotope of potassium (40K) are the major contributors of outdoor terrestrial natural radiation. The study of alpha activity in fertilizers, which is the first ever in West Bengal, has been performed in order to determine the effect of the use of phosphate fertilizers on human health. The data have been compared with the alpha activity of different types of chemical fertilizers. The measurement of alpha activity in surface soil samples collected from the cultivated land was also performed. The sampling sites were randomly selected in the cultivated land in the Midnapore district, which is the largest district in West Bengal. The phosphate fertilizer is widely used for large agricultural production, mainly potatoes. The alpha activities have been measured using solid-state nuclear track detectors (SSNTD), a very sensitive detector for alpha particles. The results show that alpha activity of those fertilizer and soil samples varies from 141 Bq/kg to 2,589 Bq/kg and from 109 Bq/kg to 660 Bq/kg, respectively. These results were used to estimate environmental radiation exposure on human health contributed by the direct application of fertilizers.

  7. Impact of Long Farm Working Hours on Child Safety Practices in Agricultural Settings

    ERIC Educational Resources Information Center

    Marlenga, Barbara; Pahwa, Punam; Hagel, Louise; Dosman, James; Pickett, William

    2010-01-01

    Objectives: To characterize working hours of adult farm owner-operators and their spouses by season, and to examine associations between working hours and farm safety practices affecting children. Methods: We conducted a secondary analysis of cross-sectional survey data collected as part of an existing study of injury and its determinants.…

  8. [Chemical compound safety: typology of competency accreditation for assay centers and analytical laboratories].

    PubMed

    Menditto, Antonio; Chiodo, Ferdinando

    2002-01-01

    The use of chemicals warrants many benefits on which modern society is entirely dependent. On the other hand, the lack of reliable information about the impact of the use of chemicals raises increasing concern. In order to guarantee the safety of chemicals it is mandatory to proceed to risk assessment, which in turn consists of hazard evaluation and exposure estimation. These activities are strictly dependent upon the availability of reliable data and information, produced by, e.g., test facilities, test laboratories and clinical laboratories, the specific competence of which has been properly recognised. All this applies in the pre-marketing phase as well as during the use of chemical substances. In this latter phase it is necessary to carry out an appropriate monitoring of environment, food and, in specific situations, human beings (biological monitoring). In the field of chemical safety, standards, legal instruments and operative instruments are nowadays available. These tools make it possible to assess both the quality of data and the competence of the entities involved in the production of the data themselves.

  9. Chemical food safety issues in the United States: past, present, and future.

    PubMed

    Jackson, Lauren S

    2009-09-23

    Considerable advances have been made over the past century in the understanding of the chemical hazards in food and ways for assessing and managing these risks. At the turn of the 20th century, many Americans were exposed to foods adulterated with toxic compounds. In the 1920s the increasing use of insecticides led to concerns of chronic ingestion of heavy metals such as lead and arsenic from residues remaining on crops. By the 1930s, a variety of agrochemicals were commonly used, and food additives were becoming common in processed foods. During the 1940s and 1950s advances were made in toxicology, and more systematic approaches were adopted for evaluating the safety of chemical contaminants in food. Modern gas chromatography and liquid chromatography, both invented in the 1950s and 1960s, were responsible for progress in detecting, quantifying, and assessing the risk of food contaminants and adulterants. In recent decades, chemical food safety issues that have been the center of media attention include the presence of natural toxins, processing-produced toxins (e.g., acrylamide, heterocyclic aromatic amines, and furan), food allergens, heavy metals (e.g., lead, arsenic, mercury, cadmium), industrial chemicals (e.g., benzene, perchlorate), contaminants from packaging materials, and unconventional contaminants (melamine) in food and feed. Due to the global nature of the food supply and advances in analytical capabilities, chemical contaminants will continue to be an area of concern for regulatory agencies, the food industry, and consumers in the future.

  10. Testing Chemical Safety: What Is Needed to Ensure the Widespread Application of Non-animal Approaches?

    PubMed

    Burden, Natalie; Sewell, Fiona; Chapman, Kathryn

    2015-05-01

    Scientists face growing pressure to move away from using traditional animal toxicity tests to determine whether manufactured chemicals are safe. Numerous ethical, scientific, business, and legislative incentives will help to drive this shift. However, a number of hurdles must be overcome in the coming years before non-animal methods are adopted into widespread practice, particularly from regulatory, scientific, and global perspectives. Several initiatives are nevertheless underway that promise to increase the confidence in newer alternative methods, which will support the move towards a future in which less data from animal tests is required in the assessment of chemical safety.

  11. Testing Chemical Safety: What Is Needed to Ensure the Widespread Application of Non-animal Approaches?

    PubMed Central

    Burden, Natalie; Sewell, Fiona; Chapman, Kathryn

    2015-01-01

    Scientists face growing pressure to move away from using traditional animal toxicity tests to determine whether manufactured chemicals are safe. Numerous ethical, scientific, business, and legislative incentives will help to drive this shift. However, a number of hurdles must be overcome in the coming years before non-animal methods are adopted into widespread practice, particularly from regulatory, scientific, and global perspectives. Several initiatives are nevertheless underway that promise to increase the confidence in newer alternative methods, which will support the move towards a future in which less data from animal tests is required in the assessment of chemical safety. PMID:26018957

  12. Safety Issues of HG and PB as IFE Target Materials: Radiological Versus Chemical Toxicity

    SciTech Connect

    Reyes, S; Latkowski, J F; Cadwallader, L C; Moir, R W; Rio, G. D; Sanz, J

    2002-11-11

    We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the USDOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.

  13. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  14. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use.

    PubMed

    Govasmark, Espen; Stäb, Jessica; Holen, Børge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-01

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg(-1) DM) and copper (23-93 mg kg(-1) DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg(-1) DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg(-1)) and ∑ PAH 16 (0.2-1.98 mg kg(-1) DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg(-1) DM) and thiabendazol (<0.14-0.73 mg kg(-1) DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low. PMID:21865025

  15. Physical and Chemical Properties of Bench Sediments in Self-Formed Agricultural Drainage Channels

    NASA Astrophysics Data System (ADS)

    Brooker, M.; Witter, J.; Islam, K. R.; Mouser, P. J.

    2014-12-01

    Two-stage ditches are a novel approach to managing agricultural drainage and are designed with floodplain benches set within the banks of a standard, trapezoidal channel. The floodplain bench serves to attenuate pollutant loads in surface waters through (1) capture of sediments, (2) nutrient assimilation by vegetation, and (3) transformation of C and residual N and P by indigenous microorganisms. Two-stage channels have been constructed in the tri-state region of Ohio-Michigan-Indiana over the last decade with initial results indicating C and P sequestration and enhanced N removal via denitrification. However, the sustainability and the net ecosystem services provided by these designs are relatively unknown beyond this timeframe. To better characterize the properties of two-stage ditches aged more than a decade, we examined the physical and chemical properties of sediments in unplanned, self-formed floodplain benches across 5 distinct Midwest ecoregions. Established benches were selected from 3 locations within each ecoregion and sampled along depth and bench-positional gradients from geo-referenced sites. The sediment-bound C, N, and P concentrations were quantified along with soil texture and channel geomorphology. Nutrient concentrations did not differ across bench position (upstream, downstream, near bank, or near channel); however, significant differences were observed between ecoregions. Steeper slopes and higher benches were associated with higher sand content than surrounding soils and promoted greater storage of C and N. Gradual slopes, on the other hand, were associated with higher clay and silt content. Across these specific ecoregions, P storage declined with increasing depth. However, this was unexplained by the particle size distribution at these depths. Further research is therefore needed to investigate whether P is released from waterlogged sediments or there is biological redistribution of this nutrient across the column depth.

  16. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa.

    PubMed

    Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue

    2014-11-01

    Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability. PMID:25139029

  17. [The discussion of the infiltrative model of chemical knowledge stepping into genetics teaching in agricultural institute or university].

    PubMed

    Zou, Ping; Luo, Pei-Gao

    2010-05-01

    Chemistry is an important group of basic courses, while genetics is one of the important major-basic courses in curriculum of many majors in agricultural institutes or universities. In order to establish the linkage between the major course and the basic course, the ability of application of the chemical knowledge previously learned in understanding genetic knowledge in genetics teaching is worthy of discussion for genetics teachers. In this paper, the authors advocate to apply some chemical knowledge previously learned to understand genetic knowledge in genetics teaching with infiltrative model, which could help students learn and understand genetic knowledge more deeply. Analysis of the intrinsic logistic relationship among the knowledge of different courses and construction of the integral knowledge network are useful for students to improve their analytic, comprehensive and logistic abilities. By this way, we could explore a new teaching model to develop the talents with new ideas and comprehensive competence in agricultural fields.

  18. Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land.

    PubMed

    Alvarenga, P; Palma, P; Gonçalves, A P; Fernandes, R M; Cunha-Queda, A C; Duarte, E; Vallini, G

    2007-05-01

    The use of organic waste and compost as a source of organic matter and nutrients is a common practice to improve soil physico-chemical properties, meanwhile reducing the need for inorganic fertilisers. Official guidelines to assess sewage sludge and compost quality are mostly based on total metal content of these residues. Measurement of the total concentration of metals may be useful as a general index of contamination, but provides inadequate or little information about their bioavailability, mobility or toxicity when the organic residue is applied to the soil. However, ecotoxicity tests provide an integrated measure of bioavailability and detrimental effects of contaminants in the ecosystem. In the present study, three different types of biodegradable organic residues (BORs) have been considered: sewage sludge from municipal wastewater treatment (SS), compost from the organic fraction of unsorted municipal solid waste (MSWC), and garden waste compost (GWC). The BORs were subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn), in order to verify their suitability for land application. Water leachability was determined through the DIN 38414-S4 method, while the modified BCR sequential extraction procedure was used for metal speciation. Ecotoxicity of the BORs was studied by direct and indirect bioassays. Direct toxicity bioassays were: plant growth tests with cress (Lepidium sativum L.) and barley (Hordeum vulgare L.), and earthworm (Eisenia fetida) mortality. On the other hand, indirect exposure bioassays, with leachate from the residues, took into account: luminescent bacteria (Vibrio fischeri), seed germination (L. sativum and H. vulgare) and Daphnia magna immobilization. As far as total metal concentration is concerned, with particular reference to Zn, SS resulted neither suitable for the use in agriculture nor compatible to be disposed of as an inert material into landfill, according to the Directive 1999/31/EC. Zinc

  19. Ensuring Adequate Health and Safety Information for Decision Makers during Large-Scale Chemical Releases

    NASA Astrophysics Data System (ADS)

    Petropoulos, Z.; Clavin, C.; Zuckerman, B.

    2015-12-01

    The 2014 4-Methylcyclohexanemethanol (MCHM) spill in the Elk River of West Virginia highlighted existing gaps in emergency planning for, and response to, large-scale chemical releases in the United States. The Emergency Planning and Community Right-to-Know Act requires that facilities with hazardous substances provide Material Safety Data Sheets (MSDSs), which contain health and safety information on the hazardous substances. The MSDS produced by Eastman Chemical Company, the manufacturer of MCHM, listed "no data available" for various human toxicity subcategories, such as reproductive toxicity and carcinogenicity. As a result of incomplete toxicity data, the public and media received conflicting messages on the safety of the contaminated water from government officials, industry, and the public health community. Two days after the governor lifted the ban on water use, the health department partially retracted the ban by warning pregnant women to continue avoiding the contaminated water, which the Centers for Disease Control and Prevention deemed safe three weeks later. The response in West Virginia represents a failure in risk communication and calls to question if government officials have sufficient information to support evidence-based decisions during future incidents. Research capabilities, like the National Science Foundation RAPID funding, can provide a solution to some of the data gaps, such as information on environmental fate in the case of the MCHM spill. In order to inform policy discussions on this issue, a methodology for assessing the outcomes of RAPID and similar National Institutes of Health grants in the context of emergency response is employed to examine the efficacy of research-based capabilities in enhancing public health decision making capacity. The results of this assessment highlight potential roles rapid scientific research can fill in ensuring adequate health and safety data is readily available for decision makers during large

  20. Application of color mixing for safety and quality inspection of agricultural products

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin

    2005-11-01

    In this paper, color-mixing applications for food safety and quality was studied, including two-color mixing and three-color mixing. It was shown that the chromaticness of the visual signal resulting from two- or three-color mixing is directly related to the band ratio of light intensity at the two or three selected wavebands. An optical visual device using color mixing to implement the band ratio criterion was presented. Inspection through human vision assisted by an optical device that implements the band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical color mixing technique were given for the inspection of chicken carcasses with various diseases and for the detection of chilling injury in cucumbers. Simulation results showed that discrimination by chromaticness that has a direct relation with band ratio can work very well with proper selection of the two or three narrow wavebands. This novel color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  1. Three-color mixing for classifying agricultural products for safety and quality.

    PubMed

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Kim, Moon S

    2006-05-20

    A three-color mixing application for food safety inspection is presented. It is shown that the chromaticness of the visual signal resulting from the three-color mixing achieved through our device is directly related to the three-band ratio of light intensity at three selected wavebands. An optical visual device using three-color mixing to implement the three-band ratio criterion is presented. Inspection through human vision assisted by an optical device that implements the three-band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical three-color mixing technique are given for the inspection of chicken carcasses with various diseases and for apples with fecal contamination. With proper selection of the three narrow wavebands, discrimination by chromaticness that has a direct relation with the three-band ratio can work very well. In particular, compared with the previously presented two-color mixing application, the conditions of chicken carcasses were more easily identified using the three-color mixing application. The novel three-color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  2. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective.

    PubMed

    Pinto, Clidia E M; Farias, Davi F; Carvalho, Ana F U; Oliveira, José T A; Pereira, Mirella L; Grangeiro, Thalles B; Freire, José E C; Viana, Daniel A; Vasconcelos, Ilka M

    2015-09-01

    Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs.

  3. Occurrence and transport of agricultural chemicals in the Mississippi River basin, July through August 1993

    USGS Publications Warehouse

    Goolsby, Donald A.; Battaglin, William A.; Thurman, E. Michael

    1993-01-01

    Heavy rainfall and severe flooding in the upper Mississippi River Basin from mid-June through early August 1993 flushed extraordinarily large amounts of agricultural chemicals (herbicides and nitrate) into the Mississippi River, many of its tributaries, and, ultimately, the Gulf of Mexico. Even though extremely high streamflows were recorded during the flood in 1993, concentrations of herbicides, such as atrazine, alachlor, cyanazine, and metolachlor, were similar to the maximum concentrations measured during spring and summer 1991 and 1992. It was anticipated that the higher streamflows during the flood would dilute the concentrations of herbicides that are usually flushed into streams in late spring and summer. Instead, concentrations were similar to those measured during much lower flows, but the daily loads of herbicides transported in some reaches of the Mississippi River were higher than those measured in 1991 and 1992. The total atrazine load transported to the Gulf of Mexico from April through August 1993 (539,000 kilograms) was about 80 percent higher than that for the same period in 1991 and 235 percent higher than for the same period in 1992. The concentrations of atrazine and cyanazine in a few individual samples exceeded health-based limits for drinking water. However, because drinking-water regulations are based on the average of at least four quarterly samples, the annual average concentrations in the Mississippi River probably will not exceed these limits for 1993. Nitrate concentrations were similar to those measured during spring and summer 1991 and 1992. The loads of nitrate-nitrogen transported into the Gulf of Mexico during July and August 1993 were as much as 5,734 metric tons per day. These loads generally are similar to those measured in spring 1991 and 1992 but larger than those measured in summer 1991 and 1992. The total nitrate-nitrogen load transported to the Gulf of Mexico from April through August 1993 (827,000 metric tons) was about

  4. The Efficacy of a Condensed "Seeking Safety" Intervention for Women in Residential Chemical Dependence Treatment at 30 Days Posttreatment

    ERIC Educational Resources Information Center

    Cash Ghee, Anna; Bolling, Lanny C.; Johnson, Candace S.

    2009-01-01

    This study examined the efficacy of a condensed version of the "Seeking Safety" intervention in the reduction of trauma-related symptoms and improved drug abstinence rates among women in residential chemical dependence treatment. One hundred and four women were randomly assigned to treatment including a condensed (six session) "Seeking Safety"…

  5. Two-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  6. Two-color mixing for classifying agricultural products for safety and quality.

    PubMed

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  7. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Ryan, J.V.; Perry, E.; Linak, W.P.; DeMarini, D.M.; Williams, R.W.

    1989-01-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open-field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. The study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  8. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  9. Chemical Safety for Sustainability (CSS): Human in vivobiomonitoring data for complementing results from in vitro toxicology -A Commentary

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has instituted the Chemical Safety for Sustainability (CSS) research program for assessing the health and environmental impact of manufactured chemicals. This is a broad program wherein one of the tasks is to develop high throughput...

  10. [Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: a principal component analysis].

    PubMed

    Liu, Ting; Ren, Zong-Ling; Zhang, Chi; Chen, Xu-Fei; Zhou, Bo; Dai, Jun

    2012-03-01

    Taking mixed agricultural organic wastes cattle manure and rice straw (C:N = 28.7:1) as the substrate of earthworm Eisenia foetida, an experiment was conducted to study the effects of earthworm on the changes of the chemical and biological properties of wastes during vermi-composting. After 30 days of vermi-composting, the substrate' s pH and C/N decreased while the total P content increased significantly, and the total N, available N, dissolved organic carbon, available P content, microbial biomass-C, respiration rate, and microbial quotient increased by 8.5% , 2.6%, 1.8%, 6.3%, 21.2%, 4.4%, and 30.0% whereas the organic matter content and metabolic quotient decreased by 5.0% and 21.9%, respectively, as compared with natural composting. Vermi-composting made the substrate have higher invertase, acid phosphatase, and alkaline phosphatase activities but lower catalase and urease activities. Principal component analysis and discriminant analysis confirmed the significant differences in the substrate' s chemical and biological properties between vermi-composting and natural composting. This study indicated that vermi-composting was superior to natural composting, which could obviously improve the chemical and biological properties of composted organic materials, being a high efficient technology for the management of agricultural organic wastes. PMID:22720625

  11. Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?

    PubMed Central

    Carvalho, Raquel N.; Arukwe, Augustine; Ait-Aissa, Selim; Bado-Nilles, Anne; Balzamo, Stefania; Baun, Anders; Belkin, Shimshon; Blaha, Ludek; Brion, François; Conti, Daniela; Creusot, Nicolas; Essig, Yona; Ferrero, Valentina E. V.; Flander-Putrle, Vesna; Fürhacker, Maria; Grillari-Voglauer, Regina; Hogstrand, Christer; Jonáš, Adam; Kharlyngdoh, Joubert B.; Loos, Robert; Lundebye, Anne-Katrine; Modig, Carina; Olsson, Per-Erik; Pillai, Smitha; Polak, Natasa; Potalivo, Monica; Sanchez, Wilfried; Schifferli, Andrea; Schirmer, Kristin; Sforzini, Susanna; Stürzenbaum, Stephen R.; Søfteland, Liv; Turk, Valentina; Viarengo, Aldo; Werner, Inge; Yagur-Kroll, Sharon; Zounková, Radka; Lettieri, Teresa

    2014-01-01

    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations. PMID:24958932

  12. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

    PubMed

    Carvalho, Raquel N; Arukwe, Augustine; Ait-Aissa, Selim; Bado-Nilles, Anne; Balzamo, Stefania; Baun, Anders; Belkin, Shimshon; Blaha, Ludek; Brion, François; Conti, Daniela; Creusot, Nicolas; Essig, Yona; Ferrero, Valentina E V; Flander-Putrle, Vesna; Fürhacker, Maria; Grillari-Voglauer, Regina; Hogstrand, Christer; Jonáš, Adam; Kharlyngdoh, Joubert B; Loos, Robert; Lundebye, Anne-Katrine; Modig, Carina; Olsson, Per-Erik; Pillai, Smitha; Polak, Natasa; Potalivo, Monica; Sanchez, Wilfried; Schifferli, Andrea; Schirmer, Kristin; Sforzini, Susanna; Stürzenbaum, Stephen R; Søfteland, Liv; Turk, Valentina; Viarengo, Aldo; Werner, Inge; Yagur-Kroll, Sharon; Zounková, Radka; Lettieri, Teresa

    2014-09-01

    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations. PMID:24958932

  13. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone. Copyright ?? 2002 Elsevier Science B.V.

  14. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, Geoffrey N.; Landon, Matthew K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5–2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  15. Agricultural chemicals and prairie pothole wetlands: Meeting the needs of the resource and the farmer -- U.S. perspective

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Messmer, T.A.; Henry, D.B.; Swanson, G.A.; DeWeese, L.R.

    1989-01-01

    Included are the reasons for concern over the effects of agrichemicals (pesticides and fertilizers) on prairie-pothole wetlands in the United States. Summarized are the results of studies conducted to date on this topic. Identified is additional research needed to assess the impacts of agrichemicals on these wetlands. Included is a discussion of management strategies and initiatives which we believe may minimize inputs of these chemicals and their impacts on wetlands and waterfowl within this portion of the prairie pothole region, while still meeting the needs of the agricultural community.

  16. Margins of safety provided by COSHH Essentials and the ILO Chemical Control Toolkit.

    PubMed

    Jones, Rachael M; Nicas, Mark

    2006-03-01

    COSHH Essentials, developed by the UK Health and Safety Executive, and the Chemical Control Toolkit (Toolkit) proposed by the International Labor Organization, are 'control banding' approaches to workplace risk management intended for use by proprietors of small and medium-sized businesses. Both systems group chemical substances into hazard bands based on toxicological endpoint and potency. COSSH Essentials uses the European Union's Risk-phrases (R-phrases), whereas the Toolkit uses R-phrases and the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals. Each hazard band is associated with a range of airborne concentrations, termed exposure bands, which are to be attained by the implementation of recommended control technologies. Here we analyze the margin of safety afforded by the systems and, for each hazard band, define the minimal margin as the ratio of the minimum airborne concentration that produced the toxicological endpoint of interest in experimental animals to the maximum concentration in workplace air permitted by the exposure band. We found that the minimal margins were always <100, with some ranging to <1, and inversely related to molecular weight. The Toolkit-GHS system generally produced margins equal to or larger than COSHH Essentials, suggesting that the Toolkit-GHS system is more protective of worker health. Although, these systems predict exposures comparable with current occupational exposure limits, we argue that the minimal margins are better indicators of health protection. Further, given the small margins observed, we feel it is important that revisions of these systems provide the exposure bands to users, so as to permit evaluation of control technology capture efficiency. PMID:16172140

  17. Chemical tracers illustrate pathways of solute discharge from artificially drained agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Kennedy, C. D.; Bataille, C. P.; Liu, Z.; Ale, S.; VanDeVelde, J. H.; Roswell, C.; Bowling, L. C.

    2012-12-01

    Drainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. To address this gap, we coupled hydrological pathway data from stable isotopes and conservative solute tracers with measurements of the flux of agricultural nitrate and road-salt chloride from two catchments lying within the Wabash River Basin, a major source of nitrate to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both nitrate and chloride) was transported early in the storm and (2) higher transport of chloride-laden pre-event soil water relative to shallow groundwater elevated in nitrate occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of chloride and nitrate differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  18. Magnitude and costs of groundwater contamination from agricultural chemicals: a national perspective. Staff report

    SciTech Connect

    Nielsen, E.G.; Lee, L.K.

    1987-06-01

    Evidence is mounting that agricultural pesticide and fertilizer applications are causing groundwater contamination in some parts of the United States. A synthesis of national data has enabled researchers to identify regions potentially affected by contamination from pesticides and fertilizers and to estimate the number of people in these regions who rely on groundwater for their drinking water needs. The study found that pesticides and nitrates from fertilizers do not necessarily occur together in potentially contaminated regions.

  19. A Review of Aquaculture Practices and Their Impacts on Chemical Food Safety from a Regulatory Perspective.

    PubMed

    Boison, Joe O; Turnipseed, Sherri B

    2015-01-01

    Aquaculture is currently one of the most rapidly growing food production industries in the world. The increasing global importance for this industry stems primarily from the fact that it is reducing the gap between the supply and demand for fish products. Commercial aquaculture contributes significantly to the economies of many countries since high-value fish species are a major source of foreign exchange. This review looks at the aquaculture industry, the issues raised by the production of fish through aquaculture for food security, the sustainability of the practice to agriculture, what the future holds for the industry in the next 10-20 years, and why there is a need to have available analytical procedures to regulate the safe use of chemicals and veterinary drugs in aquaculture. PMID:26024870

  20. A Review of Aquaculture Practices and Their Impacts on Chemical Food Safety from a Regulatory Perspective.

    PubMed

    Boison, Joe O; Turnipseed, Sherri B

    2015-01-01

    Aquaculture is currently one of the most rapidly growing food production industries in the world. The increasing global importance for this industry stems primarily from the fact that it is reducing the gap between the supply and demand for fish products. Commercial aquaculture contributes significantly to the economies of many countries since high-value fish species are a major source of foreign exchange. This review looks at the aquaculture industry, the issues raised by the production of fish through aquaculture for food security, the sustainability of the practice to agriculture, what the future holds for the industry in the next 10-20 years, and why there is a need to have available analytical procedures to regulate the safe use of chemicals and veterinary drugs in aquaculture.

  1. [Chemical safety as a problem of epidemiology of non-infectious diseases].

    PubMed

    Shestopalov, N V; Shandala, M G

    2013-01-01

    Based on the analysis of adopted in sanitary science methodology for the study and evaluation of the biological action and hygienic significance of environmental factors there was shown the need for the use of laws and methodology of classical epidemiology to ensure the chemical safety in the recognition and elimination of the group of diseases of chemical etiology, outbreaks of similar non infectious diseases. It is stated that individually small "non-toxic" doses of chemicals, but "loading" a large population and forming a large collective dose apparently can be implemented in a stochastic population health damage, detectable only on the basis of large-scale epidemiological studies to assess the risk. These approaches are presented to be especially important for agents in the environment, optimal for which is not absence, but the presence for provision of necessary target effect (pesticides, disinfectants and other household products, etc.). The main task of the epidemiological analysis of local toxic "bursts" and large-scale "epidemics" of this kind is an optimization of the complex of measures implemented by an adequate assessment of their medical, social and economic performance. PMID:24340593

  2. A regional monitoring network to investigate the occurrence of agricultural chemicals in near-surface aquifers of the midcontinental USA

    USGS Publications Warehouse

    Kolpin, D.W.; Goolsby, D.A.

    1995-01-01

    Previous state and national surveys conducted in the mid-continental USA have produced a wide range in results regarding the occurrence of agricultural chemicals in groundwater. At least some of these differences can be attributed to inconsistencies between the surveys, such as different analytical reporting limits. The US Geological Survey has designed a sampling network that is geographically and hydrogeologically representative of near-surface aquifers in the corn- and soybean-producing region of the midcontinental USA. More than 800 water quality samples have been collected from the network since 1991. Six of the seven most frequently detected compounds from this study were herbicide metabolites. A direct relation was determined between tritium content to herbicide and nitrate contamination. The unconsolidated aquifers sampled were found to be more susceptible to herbicide and nitrate contamination than the bedrock aquifers. Knowledge of the regional occurrence and distribution of agricultural chemicals acquired through the study of data collected at network sites will assist policy makers and planners with decisions regarding the protection of drinking-water supplies.

  3. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    PubMed

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used

  4. The World Library of Toxicology, Chemical Safety, and Environmental Health (WLT).

    PubMed

    Wexler, Philip; Gilbert, Steven G; Thorp, Nick; Faustman, Elaine; Breskin, Donna D

    2012-03-01

    The World Library of Toxicology, Chemical Safety, and Environmental Health, commonly referred to as the World Library of Toxicology (WLT), is a multilingual online portal of links to key global resources, representing a host of individual countries and multilateral organizations. The Site is designed as a network of, and gateway to, toxicological information and activities from around the world. It is built on a Wiki platform by a roster of Country Correspondents, with the aim of efficiently exchanging information and stimulating collaboration among colleagues, and building capacity, with the ultimate objective of serving as a tool to help improve global public health. The WLT was publicly launched on September 7, 2009, at the Seventh Congress of Toxicology in Developing Countries (CTDC-VII) in Sun City, South Africa.

  5. 'Geo'chemical research: a key building block for nuclear waste disposal safety cases.

    PubMed

    Altmann, Scott

    2008-12-12

    Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case

  6. Regulation and safety implementation of nanotechnology for chemical enterprises in the Central Europe Space

    NASA Astrophysics Data System (ADS)

    Falk, A.; Hartl, S.; Sinner, F.

    2013-04-01

    As result of the gradually increasing nanotechnology sector there is the necessity of a contemporary analysis of the present regulations used for nanomaterials, to outline the current situation of the nanotechnology sector, to promote international cooperation and research's coordination to overcome disciplinary boundaries, to fill the gap between more and less experienced regions and to turn investments in R&D in industrial innovations. The general objective of the Central Europe project NANOFORCE, which is developed by national and regional chemistry associations and R&D Centres of the Central Europe area, is to foster the innovative nanotechnology-sector networks across Central Europe regions by bringing together public and private organizations to carry out collaborative and interdisciplinary researches on nanomaterials (in the frame of REACH Regulation) and to turn the most promising laboratory results into innovative industrial applications. To build up a legal advisory board for chemical enterprises starting in nanotechnology, a state of the art report on existing safety procedures and nanotech related regulations was produced to give an overview on currently available regulations used by chemical industries and manufacturing companies within the European region to secure their products. The main emphasis was placed on REACH regulation to search for relevant sections concentrating on nanomaterials which are applicable for nanotechnology. In addition, all relevant directives and amendments of REACH were screened with regard to identify gaps where action is still needed and give possible recommendations for the European Commission. Beyond literature research a questionnaire for producers, users, researchers and financiers was developed with the goal to collect information about the nanotechnology sector in the CE region concerning development, financial status, and international cooperation within joint ventures, safety and nanotoxicology.

  7. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    SciTech Connect

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  8. Agricultural Health and Safety

    MedlinePlus

    ... in extreme weather conditions Risk of injury from operating farm equipment and motorized vehicles Risk of injury ... working with livestock Risk of electrocution to persons operating large equipment that can contact overhead power lines ...

  9. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, Catherine A.; Grant, William E.; Mora, Miguel A.; Woodin, Marc

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove

  10. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, C.A.; Grant, W.E.; Mora, M.A.; Woodin, M.

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove

  11. Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook.

    PubMed

    Gassmann, M; Olsson, O; Stamm, C; Weiler, M; Kümmerer, K

    2015-11-01

    Diffuse entry of pesticide residues from agriculture into rivers is spatially unevenly distributed. Therefore, the identification of critical source areas (CSAs) may support water quality management in agricultural catchments. In contrast to former studies, we followed the hypothesis that not only hydrological and topographical characteristics but also physico-chemical properties of pesticide residues have a major influence on their loss to rivers and on corresponding formation of CSAs. We designed a virtual experiment, i.e. a numerical experiment as close as possible to environmental conditions, in a headwater catchment where pronounced spatial differences in hydrological transport processes were identified in the past. 144 scenarios with different combinations of adsorption coefficients (KOC = 10-1000 ml/g) and transformation half-lives (DT50 = 3-60 days) for pesticide parent compounds (PCs) and their transformation products (TPs) were simulated using the catchment-scale spatially distributed reactive transport model ZIN-AgriTra. Export fractions of substances in the virtual experiment ranged from 0.001-15% for pesticides and 0.001-1.8% for TPs. The results of the scenario investigations suggest that more of the calculated export mass variability could be attributed to KOC than to DT50 for both PCs and TPs. CSAs for TPs were spatially more equally distributed in the catchment than for PC export which was likely an effect of changing physico-chemical properties during transformation. The ranking of highest export fields was different between PCs and TPs for most of the investigated scenarios but six fields appeared among the top ten export fields in 95% of the scenarios, which shows the influence of site characteristics such as tile drains or soil properties in the catchment. Thus, the highest export fields were determined by a combination of site characteristics and substance characteristics. Therefore, despite the challenge of widely differing physico-chemical

  12. Practical management of chemicals and hazardous wastes: An environmental and safety professional`s guide

    SciTech Connect

    Kuhre, W.L.

    1995-08-01

    This book was written to help the environmental and safety student learn about the field and to help the working professional manage hazardous material and waste issues. For example, one issue that will impact virtually all of these people mentioned is the upcoming environmental standardization movement. The International Standards Organization (ISO) is in the process of adding comprehensive environmental and hazardous waste management systems to their future certification requirements. Most industries worldwide will be working hard to achieve this new level of environmental management. This book presents many of the systems needed to receive certification. In order to properly manage hazardous waste, it is important to consider the entire life cycle, including when the waste was a useful chemical or hazardous material. Waste minimization is built upon this concept. Understanding the entire life cycle is also important in terms of liability, since many regulations hold generators responsible from cradle to grave. This book takes the life-cycle concept even further, in order to provide additional insight. The discussion starts with the conception of the chemical and traces its evolution into a waste and even past disposal. At this point the story continues into the afterlife, where responsibility still remains.

  13. Human-based systems in drug and chemical safety testing--toward replacement, the 'single R'.

    PubMed

    Coleman, Robert A

    2014-12-01

    The Three Rs was a concept originally conceived as a means of reducing the suffering of laboratory animals that are used largely in identifying any potential safety issues with chemicals to which humans may be exposed. However, with growing evidence of the shortcomings of laboratory animal testing to reliably predict human responsiveness to such chemicals, questions are now being asked as to whether it is appropriate to use animals as human surrogates at all. This raises the question of whether, of the original Three Rs, two--Reduction and Refinement--are potentially redundant, and whether, instead, we should concentrate on the third R: Replacement. And if this is the best way forward, it is inevitable that this R should be based firmly on human biology. The present review outlines the current state-of-the-art regarding our access to human biology through in vitro, in silico and in vivo technologies, identifying strengths, weaknesses and opportunities, and goes on to address the prospect of achieving a single R, with some suggestions as to how to progress toward this goal.

  14. Physical and chemical characterization of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-12-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.

  15. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  16. Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity.

    PubMed

    Diaz, James H

    2016-03-01

    Most emerging infectious diseases today are arthropod-borne and cannot be prevented by vaccinations. Because insect repellents offer important topical barriers of personal protection from arthropod-borne infectious diseases, the main objectives of this article were to describe the growing threats to public health from emerging arthropod-borne infectious diseases, to define the differences between insect repellents and insecticides, and to compare the efficacies and toxicities of chemical and plant-derived insect repellents. Internet search engines were queried with key words to identify scientific articles on the efficacy, safety, and toxicity of chemical and plant-derived topical insect repellants and insecticides to meet these objectives. Data sources reviewed included case reports; case series; observational, longitudinal, and surveillance studies; and entomological and toxicological studies. Descriptive analysis of the data sources identified the most effective application of insect repellents as a combination of topical chemical repellents, either N-diethyl-3-methylbenzamide (formerly N, N-diethyl-m-toluamide, or DEET) or picaridin, and permethrin-impregnated or other pyrethroid-impregnated clothing over topically treated skin. The insecticide-treated clothing would provide contact-level insecticidal effects and provide better, longer lasting protection against malaria-transmitting mosquitoes and ticks than topical DEET or picaridin alone. In special cases, where environmental exposures to disease-transmitting ticks, biting midges, sandflies, or blackflies are anticipated, topical insect repellents containing IR3535, picaridin, or oil of lemon eucalyptus (p-menthane-3, 8-diol or PMD) would offer better topical protection than topical DEET alone. PMID:26827259

  17. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and

  18. Agricultural chemicals in Iowa's ground water, 1982-95: What are the trends?

    USGS Publications Warehouse

    Koplin, Dana W.; Hallberg, George; Sneck-Fahrer, D. A.; Libra, Robert

    1997-01-01

    The Iowa Department of Natural Resources. Geological Survey Bureau: the University of Iowa Hygienic Laboratory; and the U.S. Geological Survey (USGS) have been working together to address this question. As part of the Iowa Ground-Water Monitoring Program (IGWM). water samples have been collected from selected Iowa municipal wells since 1982. An examination of this data identified two trends: (1) concentrations of atrazine in Iowa's ground water generally were decreasing over time, and (2) concentrations of metolachlor generally were increasing. Continuing ground-water sampling can determine if these trends represent long-term changes in chemical concentrations.

  19. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Linak, W.P.; Ryan, J.V.; Perry, E.; Williams, R.W.; DeMarini, D.M.

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions.

  20. [Establishment of standards and specifications for chemical substances in foods and evaluation of exposure to maintain food safety].

    PubMed

    Maitani, Tamio

    2005-01-01

    Currently, consumers are very anxious about many chemical substances contained in foods. To maintain food safety, the Ministry of Health, Labour and Welfare of Japan establishes standards and specifications on toxic chemical substances in foods, establishes analytical methods for surveillance, and investigates the daily dietary intake of food contaminants every year. This paper describes what sorts of standards and specifications for toxic chemical substances in foods have been established and what kinds of research on daily dietary intake have been performed. As the subjects for description, pesticide residues, toxic metals, dioxins, acrylamide, food additives, genetically modified food products, so-called health foods, and food allergens are included.

  1. Agricultural chemicals in ground and surface water in a small watershed in Clayton County, Iowa, 1988-91

    USGS Publications Warehouse

    Kalkhoff, S.J.; Schaap, B.D.

    1995-01-01

    Nitrogen was present in all water samples from Deer Creek. Nitrate concentrations ranged from 0.70 to 17 mg/L. Alachlor was detected in 11 percent of the samples, atrazine in 69 percent, cyanazine in 19 percent, and metolachlor in 33 percent. Alachlor concentrations ranged from less than 0.10 to 0.53 ug/L, atrazine ranged from less than 0.10 to 55 ug/L, cyanazine ranged from less than 0.10 to 12 ug/L, and metolachlor ranged from less than 0.10 to 69 ug/L. Herbicide detections occurred most frequently in late spring and early summer during or just following chemical application. Overland flow is an important source of nitrogen and herbicides to Deer Creek. Substantial amounts of agricultural chemicals are transported from the watershed. As much as 4,700 pounds, or 6.7 pounds per acre, of nitrogen were estimated to be transported from the watershed in 1 year. Nitrogen loads transported from the Deer Creek watershed were less during dry years than during years with average or greater than average rainfall.

  2. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were

  3. Chemicals from western hardwoods and agricultural residues. Appendix volume (manuscript copies). Semiannual report

    SciTech Connect

    Not Available

    1980-04-01

    This appendix volume contains papers on the following topics: the associative effects among organosolv lignin components; the effect of heating and quenching rates on volatiles produced from combustion-level-heat-flux pyrolysis of biomass; and the effect of particle size on volatiles produced from plasma pyrolysis of lignin. Organosolv lignins isolated under relatively mild conditions from angiosperms are composed of entities having low molecular weights. The extent to which an individual component may participate in association depends appreciably upon the relative proportions of the other species present. A simple conduction model is used to adequately predict the devolatilization rate of lignin pellets. The data reported has application to processes in which densified biomass is a fuel or feedstock and the heat transfer rate appears to limit the reaction rate. Models of biomass pyrolysis presented in the literature are reviewed for effect of particle size on product distribution. Compressed lignin pellets of varying sizes are pyrolyzed in a microwave plasma and char and volatile yields are reported as functions of particle size. Chemical analyses of noncondensible and condensible volatiles are presented and possible formation mechanisms are discussed.

  4. Chemical Compositional, Biological, and Safety Studies of a Novel Maple Syrup Derived Extract for Nutraceutical Applications

    PubMed Central

    2015-01-01

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup. PMID:24983789

  5. Chemical compositional, biological, and safety studies of a novel maple syrup derived extract for nutraceutical applications.

    PubMed

    Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P

    2014-07-16

    Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup.

  6. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 1926.64 Section 1926.64 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.64 Process safety management of highly hazardous...

  7. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 1926.64 Section 1926.64 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.64 Process safety management of highly hazardous...

  8. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 1926.64 Section 1926.64 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.64 Process safety management of highly hazardous...

  9. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 1926.64 Section 1926.64 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.64 Process safety management of highly hazardous...

  10. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments.

    PubMed

    Chaudhry, Vasvi; Rehman, Ateequr; Mishra, Aradhana; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2012-08-01

    Community level physiological profiling and pyrosequencing-based analysis of the V1-V2 16S rRNA gene region were used to characterize and compare microbial community structure, diversity, and bacterial phylogeny from soils of chemically cultivated land (CCL), organically cultivated land (OCL), and fallow grass land (FGL) for 16 years and were under three different land use types. The entire dataset comprised of 16,608 good-quality sequences (CCL, 6,379; OCL, 4,835; FGL, 5,394); among them 12,606 sequences could be classified in 15 known phylum. The most abundant phylum were Proteobacteria (29.8%), Acidobacteria (22.6%), Actinobacteria (11.1%), and Bacteroidetes (4.7%), while 24.3% of the sequences were from bacterial domain but could not be further classified to any known phylum. Proteobacteria, Bacteroidetes, and Gemmatimonadetes were found to be significantly abundant in OCL soil. On the contrary, Actinobacteria and Acidobacteria were significantly abundant in CCL and FGL, respectively. Our findings supported the view that organic compost amendment (OCL) activates diverse group of microorganisms as compared with conventionally used synthetic chemical fertilizers. Functional diversity and evenness based on carbon source utilization pattern was significantly higher in OCL as compared to CCL and FGL, suggesting an improvement in soil quality. This abundance of microbes possibly leads to the enhanced level of soil organic carbon, soil organic nitrogen, and microbial biomass in OCL and FGL soils as collated with CCL. This work increases our current understanding on the effect of long-term organic and chemical amendment applications on abundance, diversity, and composition of bacterial community inhabiting the soil for the prospects of agricultural yield and quantity of soil.

  11. Organic polymer-metal nano-composites for opto-electronic sensing of chemicals in agriculture

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2013-03-01

    Recent research findings led the team to conclude that a long lasting and inexpensive colorimetric sensor for monitoring ammonia emission from manure in confined animal feeding operations could eventually become feasible. The sensor uses robust method of opto-electronic spectroscopic measurement of the reversible change of the color of a sensitive nano-composite reagent film in response to ammonia. The film is made of a metal (gold, platinum, or palladium) nano-colloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption in the region 550 to 650 nm) is enhanced by the nano-particles (~10 nm in size) in two ways: (a) concentration of the optical field near the nano-particle due to the plasmon resonance; and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to make a miniature and rugged sensing element without compromising its sensitivity of less than 1 ppm for the range 0 to 100 ppm. The sensor underwent field tests in commercial broiler farms in Georgia, Alabama, and Arkansas and was compared against a commercial photoacoustic gas analyzer. The sensor output correlated well with the data from the photoacoustic analyzer (correlation coefficient not less than 0.9 and the linear regression slope after calibration close to 1.0) for several weeks of continuous operation. The sources of errors were analyzed and the conclusions on the necessary improvements and the potential use of the proposed device were made.

  12. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China.

    PubMed

    Chen, Weiwei; Tong, Daniel; Zhang, Shichun; Dan, Mo; Zhang, Xuelei; Zhao, Hongmei

    2015-12-01

    This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city, China. Ambient air was sampled by filter-based samplers and online PM monitors. The filter samples were analyzed to determine the abundance of ionic/inorganic elements, organic carbon (OC) and elemental carbon (EC). The daily PM10 concentrations varied significantly over the monitoring period, with an average of 168±63 (in the range of 52-277)μg/m(3) during the land preparation/planting period (26 April-15 June), 85±65 (36-228)μg/m(3) during the growing season (16 June-25 September), and 207±88 (103-310)μg/m(3) during the harvest period (26 September-31 October). PM2.5 accounted for 44%, 56% and 66% of atmospheric PM10 during these periods, respectively. The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00 (LST) during the growing and harvesting seasons, while a gradual increase throughout the daytime until 17:00 was observed during tilling season. Mineral dust elements (Al, Ca, Fe, and Mg) dominated the PM10 chemical composition during the tilling season; OC, NO3(-), SO4(2-) and NH4(+) during the growing season; and carbonaceous species (i.e., OC and EC) during the harvesting season. Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region. Therefore, development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling.

  13. School Siting Near Industrial Chemical Facilities: Findings from the U.S. Chemical Safety Board’s Investigation of the West Fertilizer Explosion

    PubMed Central

    Tinney, Veronica A.; Denton, Jerad M.; Sciallo-Tyler, Lucy; Paulson, Jerome A.

    2016-01-01

    Background: The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigated the 17 April 2013 explosion at the West Fertilizer Company (WFC) that resulted in 15 fatalities, more than 260 injuries, and damage to more than 150 buildings. Among these structures were four nearby school buildings cumulatively housing children in grades kindergarten–12, a nursing care facility, and an apartment complex. The incident occurred during the evening when school was not in session, which reduced the number of injuries. Objectives: The goal of this commentary is to illustrate the consequences of siting schools near facilities that store or use hazardous chemicals, and highlight the need for additional regulations to prevent future siting of schools near these facilities. Discussion: We summarize the findings of the CSB’s investigation related to the damaged school buildings and the lack of regulation surrounding the siting of schools near facilities that store hazardous chemicals. Conclusions: In light of the current lack of federal authority for oversight of land use near educational institutions, state and local governments should take a proactive role in promulgating state regulations that prohibit the siting of public receptors, such as buildings occupied by children, near facilities that store hazardous chemicals. Citation: Tinney VA, Denton JM, Sciallo-Tyler L, Paulson JA. 2016. School siting near industrial chemical facilities: findings from the U.S. Chemical Safety Board’s investigation of the West Fertilizer Explosion. Environ Health Perspect 124:1493–1496; http://dx.doi.org/10.1289/EHP132 PMID:27483496

  14. An Alternative Treatment of Trace Chemical Constituents in Calculated Chemical Source Terms for Hanford Tank Farms Safety Analsyes

    SciTech Connect

    Huckaby, James L.

    2006-09-26

    Hanford Site high-level radioactive waste tank accident analyses require chemical waste toxicity source terms to assess potential accident consequences. Recent reviews of the current methodology used to generate source terms and the need to periodically update the sources terms has brought scrutiny to the manner in which trace waste constituents are included in the source terms. This report examines the importance of trace constituents to the chemical waste source terms, which are calculated as sums of fractions (SOFs), and recommends three changes to the manner in which trace constituents are included in the calculation SOFs.

  15. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  16. Examples of Solutions to Stakeholder Needs Related to Food Safety/Security as Provided by the USDA Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the USA has one of the most abundant and wholesome food supplies in the world, based on the nature and number of recent food borne illnesses and costly product recalls we must remain ever vigilant to develop and implement strategies to enhance food safety and quality at various points in th...

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  18. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  19. Development of agricultural biotechnology and biosafety regulations used to assess the safety of genetically modified crops in Iran.

    PubMed

    Mousavi, Amir; Malboobi, Mohammad A; Esmailzadeh, Nasrin S

    2007-01-01

    Rapid progress in the application of biotechnological methodologies and development of genetically modified crops in Iran necessitated intensive efforts to establish proper organizations and prepare required rules and regulations at the national level to ensure safe application of biotechnology in all pertinent aspects. Practically, preparation of a national biotechnology strategic plan in the country coincided with development of a national biosafety framework that was the basis for the drafted biosafety law. Although biosafety measures were observed by researchers voluntarily, the establishment of national biosafety organizations since the year 2000 built a great capacity to deal with biosafety issues in the present and future time, particularly with respect to food and agricultural biotechnology.

  20. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM CONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    SciTech Connect

    Hopkins, Andrea M.; Jackson, George W.; Minette, Michael J.; Ewalt, John R.; Cooper, Thurman D.; Scott, Paul A.; Jones, Susan A.; Scheele, Randall D.; Charboneau, Stacy L.

    2005-10-12

    The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for decontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed. Fluor is investigating plutonium decontamination chemicals as a result of concerns regarding the safety of chemical procedures following a fire at Rocky Flats in 2003. The fire at Rocky Flats occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. Although the investigation of the fire was not conclusive as to cause, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. Because of this underlying uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials using wet disposition and dry disposition of the waste generated in the decontamination process and the storage conditions to which the waste drum would be exposed. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Hanford waste storage conditions are such that there is added

  1. 75 FR 29754 - Claims of Confidentiality of Certain Chemical Identities Contained in Health and Safety Studies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... processes used in the manufacturing or processing of a chemical substance or mixture or, in the case of a... on the public version of the TSCA Chemical Substances Inventory (TSCA Inventory) and submitted in..., identified by docket identification (ID) number EPA-HQ-OPPT-2010-0446, by one of the following......

  2. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    SciTech Connect

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  3. [Chemical analytical aspects of hygiene safety of the use of methyl tertiary-butyl ether in the production of gasoline].

    PubMed

    Malysheva, A G; Rastyannikov, E G; Kozlova, N Yu; Artyushina, I Yu

    2014-01-01

    There was developed, certified and recommended for the practical application the technique for control in the water used as a high-octane oxygenated gasoline additive methyl tert-butyl ether with the use of chromatography-mass spectrometry method with a sensitivity of (0.005 mg/dm3) below the level of existing foreign regulations. Technique is introduced into the Federal Information Fund to ensure the unity of measurements. The possibility of applying the proposed method of analysis for monitoring chemical contamination of water sources and the quality control and safety of drinking water has been shown.

  4. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Song, Yu; Mao, Yi; Mao, Zhichun; Wu, Yusheng; Li, Mengmeng; Huang, Xin; He, Qichao; Hu, Min

    2014-08-01

    To determine the contribution of the open burning of wheat straw residues to local PM2.5 during the harvest season of June 2013, PM2.5 was sampled in an agricultural region in eastern China. The sampling site was approximately 1 km from the nearest wheat field. Chemical compositions were analyzed, and source apportionment was undertaken using the positive matrix factorization model. The average PM2.5 concentration was 110.7 μg/m3, containing 36.4 μg/m3 organics, 7.3 μg/m3 EC, 6.0 μg/m3 potassium (K) and 4.9 μg/m3 chloride ion (Cl-). The sampling period was divided into three phases: the pre-local-burning phase (Phase 1), the local-burning phase (Phase 2) and the post-local-burning phase (Phase 3). In Phase 2, the concentrations of PM2.5 and the organics, EC, K and Cl- in PM2.5 were 163.6 μg/m3, 59.0 μg/m3, 12.2 μg/m3, 11.0 μg/m3 and 10.8 μg/m3, respectively, which were all remarkably higher than in both Phase 1 and Phase 3. Eight sources of PM2.5 were determined, including two types of wheat residue burning sources, which showed a significant difference in Cl- content. The atmospheric relative humidity (RH) and the aging process of PM2.5 might be the causes: only fresh particulate emissions from wheat residue burning could feature high-concentration Cl- under high RH conditions. In Phase 2, wheat residue burning contributed 51.3% of PM2.5, 75.8% of OC, 74.5% of EC, 90.1% of K and 104.1% of Cl-. These percentages were lower in Phases 1 and 3 than in Phase 2. Wheat residue burning caused such severe air pollution that it's necessary to prohibit the open burning of crop residues in order to protect public health and the environment.

  5. Nonpoint-source agricultural chemicals in ground water in Nebraska; preliminary results for six areas of the High Plains Aquifer

    USGS Publications Warehouse

    Chen, Hsiu-Hsiung; Druliner, A.D.

    1987-01-01

    The reconnaissance phase of a study to determine the occurrence of agricultural chemicals from nonpoint sources in groundwater in six areas, which represented the major provinces of the High Plains aquifer in Nebraska is described. In 1984, water from 82 wells in the 6 study areas was analyzed for nitrate, and water from 57 of the 82 wells was analyzed for triazine herbicides. Data for 9 of the 21 independent variables suspected of affecting concentrations of nitrate and triazine herbicides in groundwater were compiled from the 82 well sites. The variables and their ranges are: hydraulic gradient (XI), 0.006-0.0053; hydraulic conductivity (X2), 5-149 ft/day; specific discharge (X3), 0.0128-0.2998 ft/day; depth to water (X4), 3-239 ft; well depth (X5), 40-550 ft; annual precipitation (X6), 12.0-39.3 inches; soil permeability (X7), 0.76-9.0 inches; irrigation well density (X8), 0-8 irrigation wells/ sq mi; and annual nitrogen fertilizer use (X9), 0-260 lbs of nitrogen/acre. Nitrate concentrations ranged from < 0.1 to 45 mg/L as nitrogen. Triazine herbicide concentrations were detected in samples from five of the six study areas in concentrations ranging from < 0.1 to 2.3 mg/L. Statistical tests indicated that there were significant differences in nitrate concentrations among the six study areas, while no significant differences in triazine herbicide concentrations were found. Concentrations of nitrate and triazine herbicide were significantly larger in more intensively irrigated areas. Preliminary correlations with the independent variables and nitrate concentrations indicated significant relations at the 95% confidence level with variables X2, X5, and X8. Correlations with triazine herbicide concentrations indicated significant relations with variables X2 , X3, X5, X6, and X8, and with nitrate concentrations (X10). By using a simple multiple regression technique, variables X5, X8, and X9 explained about 51% of the variation in nitrate concentrations. Variables X3

  6. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials that could foreseeably occur. Note: Safety data sheets meeting the requirements of 29 CFR 1910... requirements in 29 CFR 1910.252(a) have been implemented prior to beginning the hot work operations; it shall... action plan for the entire plant in accordance with the provisions of 29 CFR 1910.38. In addition,...

  7. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Material Safety Data Sheets meeting the requirements of 29 CFR 1910.1200(g) may be used to comply with this... requirements in 29 CFR 1910.252(a) have been implemented prior to beginning the hot work operations; it shall... action plan for the entire plant in accordance with the provisions of 29 CFR 1910.38. In addition,...

  8. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials that could foreseeably occur. Note: Safety data sheets meeting the requirements of 29 CFR 1910... requirements in 29 CFR 1910.252(a) have been implemented prior to beginning the hot work operations; it shall... action plan for the entire plant in accordance with the provisions of 29 CFR 1910.38. In addition,...

  9. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials that could foreseeably occur. Note: Material Safety Data Sheets meeting the requirements of 29 CFR... requirements in 29 CFR 1910.252(a) have been implemented prior to beginning the hot work operations; it shall... action plan for the entire plant in accordance with the provisions of 29 CFR 1910.38. In addition,...

  10. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Material Safety Data Sheets meeting the requirements of 29 CFR 1910.1200(g) may be used to comply with this... requirements in 29 CFR 1910.252(a) have been implemented prior to beginning the hot work operations; it shall... action plan for the entire plant in accordance with the provisions of 29 CFR 1910.38. In addition,...

  11. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials that could foreseeably occur. Note: Material Safety Data Sheets meeting the requirements of 29 CFR... requirements in 29 CFR 1926.352 have been implemented prior to beginning the hot work operations; it shall... action plan for the entire plant in accordance with the provisions of 29 CFR 1926.35(a). In addition,...

  12. Safety Training for the Developmentally Disabled in Icon Recognition for the Safe Use of Hazardous Chemicals

    ERIC Educational Resources Information Center

    Sandoz, Jeff

    2005-01-01

    This unique document is a training manual for individuals such as job coaches and janitorial crew supervisors who train and work with Developmentally Disabled (DD) workers in vocational classrooms and on job sites. These workers need to be taught the importance of safety in the workplace using methods appropriate to their developmental needs. The…

  13. [Cumulative risk assessment for consumers of agricultural crops polluted with one chemical class pesticide residues (case of triazole fungicides)].

    PubMed

    Koval'chuk, N M; Omel'chuk, S T

    2011-01-01

    Different indices of cumulative risk assessment of combination of residues of pesticides which may simultaneously be present in raw agricultural crops, based on toxic evaluation of such combination have been presented. Risk for population health due to consumption of raw agricultural crops with triazole residues is acceptable on hazard index, point of departure index and cumulative risk index, exceeds allowable level on criterion "total margin of exposure". PMID:22768736

  14. Relative safety of traditional agricultural tractor power take-off (PTO) drivelines compared to fluid power--a review.

    PubMed

    Thomas, R S; Buckmaster, D R

    2003-08-01

    Nearly all tractor PTO arrangements used today consist of a rotating mechanical shaft with two or more universal joints and splined couplings. Although this method of power transfer has been the standard for decades, it continues to be a hazard to farm workers. Commonly, PTO accidents involve the snagging of clothes, resulting in the victim being rapidly and violently drawn into (and around) the rotating shaft. Entanglement injuries are both common and severe in the agricultural workforce, with poor shielding maintenance as a contributing factor. If PTO loads were driven with fluid power, this entanglement hazard would be eliminated. With high-pressure injection injury being the principal hazard, the fluid power alternative appears to pose a lower risk in terms of both frequency of occurrence and severity of injury. PMID:12970954

  15. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. PMID:20665304

  16. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas.

  17. Chemical Safety for Sustainability (CSS): human in vivo biomonitoring data for complementing results from in vitro toxicology--a commentary.

    PubMed

    Pleil, Joachim D; Williams, Marc A; Sobus, Jon R

    2012-12-17

    The U.S. Environmental Protection Agency (EPA) has instituted the Chemical Safety for Sustainability (CSS) research program for assessing the health and environmental impact of manufactured chemicals. This is a broad program wherein one of the tasks is to develop high throughput screening (HTS) methods and follow-up confirmation for toxicity at realistic environmental exposure levels. The main tools under this task are in vitro toxicity testing, in silico molecular modeling, and in vivo (systemic) measurements documentation. The in vivo research component is intended to support and corroborate in vitro chemical toxicity prioritization with observations of systemic perturbations and statistical parameters derived from intact (living) organisms. Based on EPA's Biomonitoring Framework for human health research, such observations are intended to link environmental exposures to a cascade of biomarker chemicals to help identify and clarify adverse outcome pathways within the context of systems biology. This commentary discusses the issues regarding interpretation of in vitro changes from HTS as an adverse result, an adaptive (non-adverse) response, or a random/irrelevant occurrence. A second goal is to inform in vitro strategies as to relevant dosing (potency) levels at the cellular level that reflect realistic systemic exposures. Although we recognize the high value of in vivo animal toxicity testing, herein we focus on observational (minimally invasive) human biomonitoring methods and propose complementary in vivo testing that could help guide the design of high-throughput analyses and the ultimate interpretation of their outcomes.

  18. The EPC approach to estimating safety from exposure to environmental chemicals.

    PubMed

    Williams, C A; Jones, H D; Freeman, R W; Wernke, M J; Williams, P L; Roberts, S M; James, R C

    1994-12-01

    Reference doses (RfDs) and reference concentrations (RfCs) developed by the United States Environmental Protection Agency (USEPA) are typically used in the quantitation of risk of potential adverse human health effects from exposure to environmental chemicals. For a large number of chemicals, however, USEPA RfDs and RfCs have not yet been determined. Thus, for risk assessments that involve a large number of chemicals, there is insufficient toxicity information with which to evaluate potential adverse human health effects for all chemicals present at a particular site. Due to this insufficiency, the risk assessor must either (1) ignore potential exposures on the assumption that omitting these exposures does not significantly alter decisions concerning the remediation of the site or (2) undertake a lengthy and costly analysis to generate the necessary RfDs or RfCs. A potential solution to this problem is to develop estimated permissible concentrations (EPCs), values which represent permissible environmental concentrations or related acceptable daily dosages derived from occupational exposure limits. In the present analysis, acceptable daily dosages determined using the EPC method were compared to USEPA RfDs or RfCs which were converted to dosages based on standard exposure assumptions. Based on a comparative analysis of EPCs and USEPA reference values for 103 chemicals, it was found that EPC daily dosages represent a reasonably conservative surrogate value when USEPA or state reference values are unavailable. Given that there are hundreds of chemicals with occupational exposure limits but no state or USEPA reference values, acceptance of the EPC methodology would provide an interim solution for the problem of insufficient toxicity information for a substantial number of environmental chemical contaminants.

  19. Collaborative decision support and documentation in chemical safety with KnowSEC.

    PubMed

    Baumeister, Joachim; Striffler, Albrecht; Brandt, Marc; Neumann, Michael

    2016-01-01

    To protect the health of human and environment, the European Union implemented the REACH regulation for chemical substances. REACH is an acronym for Registration, Evaluation, Authorization, and Restriction of Chemicals. Under REACH, the authorities have the task of assessing chemical substances, especially those that might pose a risk to human health or environment. The work under REACH is scientifically, technically and procedurally a complex and knowledge-intensive task that is jointly performed by the European Chemicals Agency and member state authorities in Europe. The assessment of substances under REACH conducted in the German Environment Agency is supported by the knowledge-based system KnowSEC, which is used for the screening, documentation, and decision support when working on chemical substances. The software KnowSEC integrates advanced semantic technologies and strong problem solving methods. It allows for the collaborative work on substances in the context of the European REACH regulation. We discuss the applied methods and process models and we report on experiences with the implementation and use of the system. PMID:27110289

  20. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    2000-01-01

    The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

  1. Safety in the Chemical Laboratory: Risk Management: A Growing Concern in University Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Orr, Edward W.; Ghee, William K.

    1985-01-01

    This article (1) defines risk management and discusses alternatives to treating exposures facing those operating chemical laboratories; (2) indicates how two Virginia universities did or did not apply the risk management concept to their laboratory settings; and (3) identifies potential sources of information on this subject. (JN)

  2. The Role of Labeling in Chemical Health and Safety: Recent Developments.

    ERIC Educational Resources Information Center

    Young, Jay A.

    1983-01-01

    The purpose of constructing labels is to communicate those scientific facts related to hazards and to select and describe the reasonable precautions that should be taken to prevent otherwise unforseeable harm. Recent developments in the use of combined numeric and pictorial symbols in chemical label construction are described. (JN)

  3. Exposure to Hazardous Chemical Substances--A Major Campus Environmental Health & Safety Concern.

    ERIC Educational Resources Information Center

    Robinson, Donald A.; Sorensen, Alfred J.

    1980-01-01

    A broad spectrum of potentially hazardous chemicals offers serious exposure risks to members of college and university communities. A formal program is needed to minimize exposure to these substances and maintain a prevention oriented protective program. The University of Massachusetts has developed such a program. (JN)

  4. High-throughput Raman chemical imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm × 1 mm excitation line normally ...

  5. Safety in the Chemical Laboratory: Is Thioacetamide a Serious Health Hazard in Inorganic Chemistry Laboratories?

    ERIC Educational Resources Information Center

    Elo, Hannu

    1987-01-01

    Describes the potential health hazards of using thioacetamide in introductory courses where students are involved in qualitative inorganic analysis. Describes the chemical as possessing carcinogenic, hepatotoxic, and mutagenic properties. Cautions that thioacetamide has caused various biochemical changes in the liver, and recommends limited uses…

  6. Impact Assessment and Participant Profiles of Extension's Education Programs for Agricultural Chemical/Seed Retailers and Crop Advisors.

    ERIC Educational Resources Information Center

    Schmitt, Michael A.; Durgan, Beverly R.; Iverson, Sarah M.

    2000-01-01

    Responses from 698 agriculture professionals indicate that extension programs have positive agronomic and environmental impact and attendance was influenced more by topics and speakers than cost. Greater impact can be achieved through partnerships with companies, associations, and agencies to target professionals who will be able to use or…

  7. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities--A Comparison between Chemical Fertilizers and Bioinoculants.

    PubMed

    Gupta, Rashi; Bisaria, V S; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant's growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields. PMID:26231030

  8. Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis

    PubMed Central

    Schinasi, Leah; Leon, Maria E.

    2014-01-01

    This paper describes results from a systematic review and a series of meta-analyses of nearly three decades worth of epidemiologic research on the relationship between non-Hodgkin lymphoma (NHL) and occupational exposure to agricultural pesticide active ingredients and chemical groups. Estimates of associations of NHL with 21 pesticide chemical groups and 80 active ingredients were extracted from 44 papers, all of which reported results from analyses of studies conducted in high-income countries. Random effects meta-analyses showed that phenoxy herbicides, carbamate insecticides, organophosphorus insecticides and the active ingredient lindane, an organochlorine insecticide, were positively associated with NHL. In a handful of papers, associations between pesticides and NHL subtypes were reported; B cell lymphoma was positively associated with phenoxy herbicides and the organophosphorus herbicide glyphosate. Diffuse large B-cell lymphoma was positively associated with phenoxy herbicide exposure. Despite compelling evidence that NHL is associated with certain chemicals, this review indicates the need for investigations of a larger variety of pesticides in more geographic areas, especially in low- and middle-income countries, which, despite producing a large portion of the world’s agriculture, were missing in the literature that were reviewed. PMID:24762670

  9. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities – A Comparison between Chemical Fertilizers and Bioinoculants

    PubMed Central

    Gupta, Rashi; Bisaria, V. S.; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant’s growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields. PMID:26231030

  10. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  11. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  12. Combination of chemical analyses and animal feeding trials as reliable procedures to assess the safety of heat processed soybean seeds.

    PubMed

    Vasconcelos, Ilka M; Brasil, Isabel Cristiane F; Oliveira, José Tadeu A; Campello, Cláudio C; Maia, Fernanda Maria M; Campello, Maria Verônica M; Farias, Davi F; Carvalho, Ana Fontenele U

    2009-06-10

    This study assessed whether chemical analyses are sufficient to guarantee the safety of heat processing of soybeans (SB) for human/animal consumption. The effects of extrusion and dry-toasting were analyzed upon seed composition and performance of broiler chicks. None of these induced appreciable changes in protein content and amino acid composition. Conversely, toasting reduced all antinutritional proteins by over 85%. Despite that, the animals fed on toasted SB demonstrated a low performance (feed efficiency 57.8 g/100 g). Extrusion gave place to higher contents of antinutrients, particularly of trypsin inhibitors (27.53 g/kg flour), but animal performance was significantly (p < 0.05) better (feed efficiency 63.2 g/100 g). Upon the basis of chemical analyses, dry-toasting represents the treatment of choice. However, considering the results of the feeding trials, extrusion appears to be the safest method. In conclusion, in order to evaluate the reliability of any processing method intended to improve nutritional value, the combination of chemical and animal studies is necessary.

  13. Safety evaluation of chemicals in food: toxicological data profiles for pesticides

    PubMed Central

    Vettorazzi, G.; Miles-Vettorazzi, P.

    1975-01-01

    The sources of the scientific information used over the past several years by the Joint FAO/WHO Meetings on Pesticide Residues in carrying out toxicological evaluations are classified systematically according to compound and subject for the first time in this paper. It is hoped that those engaged in the toxicological assessment of pesticide chemicals, for the purpose of standardizing pesticide tolerances or for developing criteria of acceptability, will profit from this classification. PMID:779805

  14. The first field trials of the chemically synthesized malaria vaccine SPf66: safety, immunogenicity and protectivity.

    PubMed

    Amador, R; Moreno, A; Valero, V; Murillo, L; Mora, A L; Rojas, M; Rocha, C; Salcedo, M; Guzman, F; Espejo, F

    1992-01-01

    This paper reports the results of the first field study performed to assess the safety, immunogenicity and protectivity of the synthetic malaria vaccine SPf66 directed against the asexual blood stages of Plasmodium falciparum. Clinical and laboratory tests were performed on all volunteers prior to and after each immunization, demonstrating that no detectable alteration was induced by the immunization process. The vaccines were grouped as high, intermediate or low responders according to their antibody titres directed against the SPf66 molecule. Two of the 185 (1.08%) SPf66-vaccinated and nine of the 214 (4.20%) placebo-vaccinated volunteers developed P. falciparum malaria. The efficacy of the vaccine was calculated as 82.3% against P. falciparum and 60.6% against Plasmodium vivax.

  15. Agricultural Research Service

    MedlinePlus

    ... Protection Crop Production and Protection Natural Resources and Sustainable Agricultural Systems Nutrition, Food Safety, and Quality Overseas ... LA, MS, NC, PR, SC) Footer Content ARS Home | USDA.gov | Site Map | Statements and Disclaimers | Plain ...

  16. 12th meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals: susceptibility to environmental hazards.

    PubMed Central

    Barrett, J C; Vainio, H; Peakall, D; Goldstein, B D

    1997-01-01

    The 12th meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals (SGOMSEC) considered the topic of methodologies for determining human and ecosystem susceptibility to environmental hazards. The report prepared at the meeting describes measurement of susceptibility through the use of biological markers of exposure, biological markers of effect, and biomarkers directly indicative of susceptibility of humans or of ecosystems. The utility and validity of these biological markers for the study of susceptibility are evaluated, as are opportunities for developing newer approaches for the study of humans or of ecosystems. For the first time a SGOMSEC workshop also formally considered the issue of ethics in relation to methodology, an issue of particular concern for studies of susceptibility. PMID:9255554

  17. Optimizing Economic Indicators in the Case of Using Two Types of State-Subsidized Chemical Fertilizers for Agricultural Production

    NASA Astrophysics Data System (ADS)

    Boldea, M.; Sala, F.

    2010-09-01

    We admit that the mathematical relation between agricultural production f(x, y) and the two types of fertilizers x and y is given by function (1). The coefficients that appear are determined by using the least squares method by comparison with the experimental data. We took into consideration the following economic indicators: absolute benefit, relative benefit, profitableness and cost price. These are maximized or minimized, thus obtaining the optimal solutions by annulling the partial derivatives.

  18. Safety and Efficacy of Transplantation with Allogeneic Skin Tumors to Treat Chemically-Induced Skin Tumors in Mice.

    PubMed

    Zhang, Zhiwei; Sun, Hua; Zhang, Jianhua; Ge, Chunlei; Dong, Suwei; Li, Zhen; Li, Ruilei; Chen, Xiaodan; Li, Mei; Chen, Yun; Zou, Yingying; Qian, Zhongyi; Yang, Lei; Yang, Jinyan; Zhu, Zhitao; Liu, Zhimin; Song, Xin

    2016-01-01

    BACKGROUND Transplantation with allogeneic cells has become a promising modality for cancer therapy, which can induce graft-versus-tumor (GVT) effect. This study was aimed at assessing the safety, efficacy, and tissue type GVT (tGVT) response of transplantation with allogeneic skin tumors to treat chemically-induced skin tumors in mice. MATERIAL AND METHODS FVB/N and ICR mice were exposed topically to chemicals to induce skin tumors. Healthy ICR mice were transplanted with allogeneic skin tumors from FVB/N mice to test the safety. The tumor-bearing ICR mice were transplanted with, or without, allogeneic skin tumors to test the efficacy. The body weights (BW), body condition scores (BCS), tumor volumes in situ, metastasis tumors, overall survival, and serum cytokines were measured longitudinally. RESULTS Transplantation with no more than 0.03 g allogeneic skin tumors from FVB/N mice to healthy ICR mice was safe. After transplantation with allogeneic skin tumors to treat tumor-bearing mice, it inhibited the growth of tumors slightly at early stage, accompanied by fewer metastatic tumors at 24 days after transplantation (21.05% vs. 47.37%), while there were no statistically significant differences in the values of BW, BCS, tumor volumes in situ, metastasis tumors, and overall survival between the transplanted and non-transplanted groups. The levels of serum interleukin (IL)-2 were significantly reduced in the controls (P<0.05), but not in the recipients, which may be associated with the tGVT response. CONCLUSIONS Our results suggest that transplantation with allogeneic skin tumors is a safe treatment in mice, which can induce short-term tGVT response mediated by IL-2. PMID:27587310

  19. Safety and Efficacy of Transplantation with Allogeneic Skin Tumors to Treat Chemically-Induced Skin Tumors in Mice

    PubMed Central

    Zhang, Zhiwei; Sun, Hua; Zhang, Jianhua; Ge, Chunlei; Dong, Suwei; Li, Zhen; Li, Ruilei; Chen, Xiaodan; Li, Mei; Chen, Yun; Zou, Yingying; Qian, Zhongyi; Yang, Lei; Yang, Jinyan; Zhu, Zhitao; Liu, Zhimin; Song, Xin

    2016-01-01

    Background Transplantation with allogeneic cells has become a promising modality for cancer therapy, which can induce graft-versus-tumor (GVT) effect. This study was aimed at assessing the safety, efficacy, and tissue type GVT (tGVT) response of transplantation with allogeneic skin tumors to treat chemically-induced skin tumors in mice. Material/Methods FVB/N and ICR mice were exposed topically to chemicals to induce skin tumors. Healthy ICR mice were transplanted with allogeneic skin tumors from FVB/N mice to test the safety. The tumor-bearing ICR mice were transplanted with, or without, allogeneic skin tumors to test the efficacy. The body weights (BW), body condition scores (BCS), tumor volumes in situ, metastasis tumors, overall survival, and serum cytokines were measured longitudinally. Results Transplantation with no more than 0.03 g allogeneic skin tumors from FVB/N mice to healthy ICR mice was safe. After transplantation with allogeneic skin tumors to treat tumor-bearing mice, it inhibited the growth of tumors slightly at early stage, accompanied by fewer metastatic tumors at 24 days after transplantation (21.05% vs. 47.37%), while there were no statistically significant differences in the values of BW, BCS, tumor volumes in situ, metastasis tumors, and overall survival between the transplanted and non-transplanted groups. The levels of serum interleukin (IL)-2 were significantly reduced in the controls (P<0.05), but not in the recipients, which may be associated with the tGVT response. Conclusions Our results suggest that transplantation with allogeneic skin tumors is a safe treatment in mice, which can induce short-term tGVT response mediated by IL-2. PMID:27587310

  20. [Safety of food additives in Japan].

    PubMed

    Ito, Sumio

    2011-01-01

    Recently, many accidents relating to food happened in Japan. The consumer's distrust for food, food companies, and the administration is increasing. The consumer especially has an extreme refusal feeling for chemicals such as food additives and agricultural chemicals, and begins to request agricultural chemical-free vegetables and food additive-free food. Food companies also state no agricultural chemicals and no food additives to correspond with consumers' request and aim at differentiating. The food additive is that the Ministry of Health, Labour and Welfare specifies the one that person's health might not be ruined by providing for Food Sanitation Law Article 10 in our country. The standard for food additives and standard for use of food additives are provided according to regulations of Food Sanitation Law Article 11. Therefore, it is thought that the food additive used is safe now. Then, it reports on the procedure and the safety examination, etc. in our country for designation for food additive this time.

  1. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  2. High-throughput Raman chemical imaging for evaluating food safety and quality

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2014-05-01

    A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm x 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7-2889.0 cm-1 and a 23 cm wide area. An example application, for authenticating milk powder, was presented to demonstrate the system performance. In four minutes, the system acquired a 512x110x1024 hypercube (56,320 spectra) from four 47-mm-diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.

  3. MedlinePlus: Food Safety

    MedlinePlus

    ... reached its expiration date. United States Department of Agriculture Start Here 4 Basic Steps to Food Safety ... Spanish Basics for Handling Food Safely (Department of Agriculture, Food Safety and Inspection Service) - PDF Be Food ...

  4. Microbial and chemical safety of non-commercially packaged water stored for emergency use.

    PubMed

    Gerla, Stephanie R; Lloyd, Michelle A; Eggett, Dennis L; Pike, Oscar A

    2015-09-01

    Water storage is one of the most important components of emergency preparedness. Potable water is needed for ensuring the survival and well-being of disaster victims. Consumers may store water in previously used beverage or other food-grade containers for emergency use; however, this practice poses potential safety risks. Water stored in various containers for emergency purposes in residences within the state of Utah was tested for various contaminants. Of 240 samples, seven contained coliforms and 14 samples had free chlorine levels over the Environmental Protection Agency (EPA) 4 parts per million limit. There was a negative correlation between chlorine levels and age of water. The probability that a container had free chlorine present decreased by 4% for each month of storage, suggesting the importance of preventing subsequent contamination of water during storage and use. Water in clear polyethylene terephthalate plastic soda bottles (n=16), even when stored for >18 months, did not exceed 0.3 parts per billion (ppb) antimony, a level significantly lower than the EPA limit of 6.0 ppb antimony. These results support the practice of utilizing previously used containers, when properly cleaned and chlorinated, for emergency water storage.

  5. Hydration and chemical ingredients in sport drinks: food safety in the European context.

    PubMed

    Urdampilleta, Aritz; Gómez-Zorita, Saioa; Soriano, José M; Martínez-Sanz, José M; Medina, Sonia; Gil-Izquierdo, Angel

    2015-05-01

    Before, during and after physical activity, hydration is a limiting factor in athletic performance. Therefore, adequate hydration provides benefits for health and performance of athletes. Besides, hydration is associated to the intake of carbohydrates, protein, sodium, caffeine and other substances by different dietary aids, during the training and/or competition by athletes. These requirements have led to the development of different products by the food industry, to cover the nutritional needs of athletes. Currently in the European context, the legal framework for the development of products, substances and health claims concerning to sport products is incomplete and scarce. Under these conditions, there are many products with different ingredients out of European Food Safety Authority (EFSA) control where claims are wrong due to no robust scientific evidence and it can be dangerous for the health. Further scientific evidence should be constructed by new clinical trials in order to assist to the Experts Commitees at EFSA for obtaining robust scientific opinions concerning to the functional foods and the individual ingredients for sport population.

  6. Palatability and chemical safety of apple juice fortified with pomegranate peel extract.

    PubMed

    Altunkaya, Arzu; Hedegaard, Rikke V; Harholt, Jesper; Brimer, Leon; Gökmen, Vural; Skibsted, Leif H

    2013-10-01

    Pomegranate peel extract (PPE), a by-product of the pomegranate juice industry with potential health effects, was explored for use to fortify reconstituted apple juice in the concentration range 0.5 to 2.0% (w/w). Radical scavenging and antioxidative capacities of the fortified apple juices were evaluated using (i) electron spin resonance (ESR) to quantify their ability to scavenge the stable radical Fremy's salt and (ii) the Trolox equivalent antioxidant capacity (TEAC) assay and compared to apple juice without fortification as control. The highest antioxidative capacity was found in the apple juice fortified with the highest percentage of pomegranate peel extract, while the optimal sensory quality was found by addition of 0.5 g PPE per 100 mL. The Artemia salina assay was used as a fast screening method for evaluating overall toxicity, and showed little toxicity with up to 1.0 g per 100 mL addition of PPE, but increasing toxicity at higher concentrations. Accordingly, it is important to balance addition of PPE, when used for enrichment of apple juice in order to obtain a healthier product, without compromising the sensorial quality or toxicological safety of the apple juice. Concentrations between 0.5 and 1.0 g PPE per 100 mL seem to be acceptable.

  7. Palatability and chemical safety of apple juice fortified with pomegranate peel extract.

    PubMed

    Altunkaya, Arzu; Hedegaard, Rikke V; Harholt, Jesper; Brimer, Leon; Gökmen, Vural; Skibsted, Leif H

    2013-10-01

    Pomegranate peel extract (PPE), a by-product of the pomegranate juice industry with potential health effects, was explored for use to fortify reconstituted apple juice in the concentration range 0.5 to 2.0% (w/w). Radical scavenging and antioxidative capacities of the fortified apple juices were evaluated using (i) electron spin resonance (ESR) to quantify their ability to scavenge the stable radical Fremy's salt and (ii) the Trolox equivalent antioxidant capacity (TEAC) assay and compared to apple juice without fortification as control. The highest antioxidative capacity was found in the apple juice fortified with the highest percentage of pomegranate peel extract, while the optimal sensory quality was found by addition of 0.5 g PPE per 100 mL. The Artemia salina assay was used as a fast screening method for evaluating overall toxicity, and showed little toxicity with up to 1.0 g per 100 mL addition of PPE, but increasing toxicity at higher concentrations. Accordingly, it is important to balance addition of PPE, when used for enrichment of apple juice in order to obtain a healthier product, without compromising the sensorial quality or toxicological safety of the apple juice. Concentrations between 0.5 and 1.0 g PPE per 100 mL seem to be acceptable. PMID:23989519

  8. Agricultural Aircraft for Site-Specific Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a convenient platform to aid in precision agriculture, in which pesticide, fertilizer or other field inputs are applied only where they are needed. This saves on chemical and farm resources, and reduces environmental loading. Remote sensing is used to spot areas of the ...

  9. Chemical effects head-loss research in support of generic safety issue 191.

    SciTech Connect

    Park, J. H.; Kasza, K.; Fisher, B.; Oras, J.; Natesan, K.; Shack, W. J.; Nuclear Engineering Division

    2006-10-31

    This summary report describes studies conducted at Argonne National Laboratory on the potential for chemical effects on head loss across sump screens. Three different buffering solutions were used for these tests: trisodium phosphate (TSP), sodium hydroxide, and sodium tetraborate. These pH control agents used following a LOCA at a nuclear power plant show various degrees of interaction with the insulating materials Cal-Sil and NUKON. Results for Cal-Sil dissolution tests in TSP solutions, settling rate tests of calcium phosphate precipitates, and benchmark tests in chemically inactive environments are also presented. The dissolution tests were intended to identify important environmental variables governing both calcium dissolution and subsequent calcium phosphate formation over a range of simulated sump pool conditions. The results from the dissolution testing were used to inform both the head loss and settling test series. The objective of the head loss tests was to assess the head loss produced by debris beds created by Cal-Sil, fibrous debris, and calcium phosphate precipitates. The effects of both the relative arrival time of the precipitates and insulation debris and the calcium phosphate formation process were specifically evaluated. The debris loadings, test loop flow rates, and test temperature were chosen to be reasonably representative of those expected in plants with updated sump screen configurations, although the approach velocity of 0.1 ft/s used for most of the tests is 3-10 times that expected in plants with large screens . Other variables were selected with the intent to reasonably bound the head loss variability due to arrival time and calcium phosphate formation uncertainty. Settling tests were conducted to measure the settling rates of calcium phosphate precipitates (formed by adding dissolved Ca to boric acid and TSP solutions) in water columns having no bulk directional flow. For PWRs where NaOH and sodium tetraborate are used to control

  10. Development of Nested, Heterogeneous Ground-Water Flow Models for Study of Transport and Fate of Agricultural Chemicals, Merced County, California

    NASA Astrophysics Data System (ADS)

    Phillips, S. P.; Green, C. T.; Zamora, C.

    2006-05-01

    Multi-scale models of ground-water flow were developed as part of a study of the transport and fate of agricultural chemicals by the National Water-Quality Assessment (NAWQA) Program of the US Geological Survey. Agricultural chemicals of interest included forms of nitrogen and selected pesticides A three- dimensional local-scale model (17 square km) surrounds a well-instrumented, 1-km transect near the Merced River within a principally agricultural land-use setting. This model is nested within a regional-scale model (2,700 square km) of northeastern San Joaquin Valley, California, which provides hydrologically reasonable boundary conditions for the local model. Boundary fluxes were passed from the regional to local model using a hydraulic-conductivity-weighted distribution. The heterogeneity of aquifer materials was incorporated explicitly into the regional and local models. Three-dimensional kriging was used to interpolate sediment texture data from about 3,500 drillers' logs in the regional model area. The resulting distribution of sediment texture was used to estimate hydraulic parameters for each cell in the 16-layer regional model. A subset of these data was used to generate multiple transition-probability-based realizations of hydrofacies distributions for the 110-layer local model. Explicit depiction of heterogeneity in hydraulic conductivity and porosity in the local model incorporates macro-scale hydrodynamic dispersion into the flow model, allowing more direct comparison of particle-tracking results to tracer-derived estimates of ground-water age. Water levels measured in multi-depth wells along the 1-km transect were used to calibrate the local model (median error 0.12 m). Two-dimensional heat-flow models calibrated using continuous multi-depth temperature data from below the bed of the Merced River suggest an annual range of ground-water inflow of about 0-2.4 cm/d for water year 2005. This estimate compares reasonably well to the 4 cm/d simulated in the

  11. Hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer at a site in Story County, Iowa, 1992-93

    USGS Publications Warehouse

    Buchmiller, R.C.

    1995-01-01

    A reconnaissance study was conducted during 1992-93 to collect background hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer near Ames, Iowa. Observation wells were drilled to characterize the surficial geologic materials of a field-scale study site and to provide locations for collecting waterlevel and agricultural-chemical data. Walnut Creek, a tributary to the South Skunk River, forms a lateral boundary on the northern edge of the field site. Water-level measurements showed a hydraulic-head gradient towards the South Skunk River under both wet and dry conditions at the study site. Walnut Creek appears to be losing water to the aquifer during most hydrologic conditions. More than 20 milligrams per liter of nitrate as nitrogen were present consistently in water from the southeastern part of the study site. Nitrate-as-nitrogen concentrations in water samples from other locations routinely did not exceed 10 milligrams per liter. The herbicide atrazine was detected most often, 36 of 38 times, in water samples collected from observation wells adjacent to Walnut Creek. Atrazine was not used on the study site during 1992-93 but was found frequently in water samples from Walnut Creek. Therefore, Walnut Creek appears to be a source of herbicide contamination to the alluvial aquifer.

  12. [Application of Tessier-AAS to the non-biological transformation mechanism of chemical speciation of lead in red soil in agricultural area of central China].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Wang, Jia-hong

    2015-02-01

    The soil contamination of heavy metals, from the areas of mine, highway, industrial area, agricultural land and so on, is nowadays a serious issue all over the world. The contamination of heavy metals in large agricultural area might lead to the decrease of products quality and economic value. Actually, the accumulation amount of heavy metals by crops is much more related to the activated speciation, which is exchangeable and able to transform to the forms of carbonates, Fe-Mn oxides, organic matter and residual. Thus, the investigation to reveal the transformation mechanism of heavy metals caused by soil conditions might be appropriate to reduce the contaminated risk to crops. The vermicular red soil from the agricultural area of central China was used as sample in the paper, and the Tessier Sequential Extraction Procedure-atomic absorption spectroscopy (AAS) was applied to discuss the chemical speciation and non-biological transformation mechanism of Pb at different conditions. The results showed: the total amount of Pb is 32.56 mg x kg(-1), lower than the first level of the State Environmental Quality Standard for Soils. The Pb content of different speciation, with decreased concentration, is residual (54.55% of total Pb content), bound to Fe-Mn oxides, bound to organic matter, bound to carbonates and exchangeable. The pH value of red soil is related to the charge amount on surface of inorganic colloids and organic matter, and the water content of red soil would change the redox potential, effective for the variation of chemical speciation of Pb. The environmental factors of straw dosage and aging time could change Pb speciation, with Pb concentration of residual form the highest. The Muller index of Igeo is 0.3025, indicating the contribution of human activities. The Tessier Sequential Extraction Procedure-AAS is effective for the non-biological transformation mechanism identification of Pb speciation in red soil.

  13. Farm Health and Safety

    MedlinePlus

    ... jobs in the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, ... equipment can also reduce accidents. Occupational Safety and Health Administration

  14. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles.

    PubMed

    Chen, Yu; Chen, Hangrong; Shi, Jianlin

    2013-06-18

    The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges

  15. Nesting biology of laughing gulls Larus atricilla in relation to agricultural chemicals in south Texas USA 1978-1981

    USGS Publications Warehouse

    White, D.H.; Mitchell, C.A.; Prouty, R.M.

    1983-01-01

    Various aspects of the breeding biology of Laughing Gulls (Larus atricilla) have been studied extensively in Florida (Dinsmore and Schreiber 1974, Schreiber et al. 1979, Schreiber and Schreiber 1980), New Jersey (Bongiorno 1970, Burger and Beer 1976, Burger 1976, Montevecchi 1978), and Massachusetts (Noble and Wurm 1943), but little is known of their yearly fledging success in Texas or elsewhere. The Laughing Gull is a common colonial nester along most of the Texas coast, second only to the Cattle Egret (Bubulcus ibis) in breeding abundance; however, the Laughing Gull may be threatened in Texas because of suspected declines at certain traditional nesting locales (Blacklock et al. 1979). Since Laughing Gulls often nest in proximity to agricultural and industrial areas, we were concerned that environmental pollutants might be adversely affecting productivity. In 1978-1981 we conducted studies along the south Texas coast to learn more about the nesting ecology of Laughing Gulls and to evaluate the effects of environmental contaminants on reproduction.

  16. Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture.

    PubMed

    Pasquini, M W; Alexander, M J

    2004-02-01

    Urban centres produce most of the world's waste and between a third and a half goes uncollected. The answer to the problem of waste disposal lies partly in agriculture, as waste can be extremely nutrient-rich. In the last decade there has been a tremendous increase in the developing world in total city area under informal food production and there are many examples of waste recycling onto the urban or peri-urban plots. Farmers on the Jos Plateau, Nigeria, have developed a successful soil fertility management strategy based on the combination of inorganic fertilisers, manure and urban waste ash. This study sought to provide some preliminary data on urban waste ash produced by open burning and used in farming in a developing country. Ash samples were collected from different locations around Jos and tested for C, N, pH, P, Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Ni, Cd and Pb. It was found that ash is an effective liming material (because of the high pH, and high Ca, Mg and K contents), and has the potential to contribute significant quantities of micro-nutrients such as Mn, Zn and Cu. Ash, however, is far from being a homogenous material and its variability means that its fertilising potential will vary between batches and that, even if mean and median levels are low, there is the risk of the formation of localised areas of soil with excessive heavy metal contents (this is particularly the case with Pb). Further research is required to determine the plant-availability of these elements in the ash and to assess the wider environmental and health implications of uncontrolled, open burning of waste as a means of producing ash for agricultural purposes.

  17. Agricultural Machinery - Equipment. Agricultural Cooperative Training. Vocational Agricluture. Revised.

    ERIC Educational Resources Information Center

    Sandlin, David, Comp.; And Others

    Designed for students enrolled in the Agricultural Cooperative Part-Time Training Program, this course of study contains 12 units on agricultural machinery mechanics. Units include (examples of unit topics in parentheses): introduction (agricultural mechanics as an occupation; safety--shop and equipment; use of holding devices, jacks, lifts, and…

  18. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  19. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    USGS Publications Warehouse

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  20. Environmental behavior and analysis of agricultural sulfur.

    PubMed

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted.

  1. Environmental behavior and analysis of agricultural sulfur.

    PubMed

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. PMID:26108794

  2. Effects of residential and agricultural land uses on the chemical quality of baseflow of small streams in the Croton Watershed, southeastern New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2000-01-01

    Findings— Concentrations of selected chemical constituents in baseflow were strongly affected by the predominant land use in a given basin. Land uses included forested undeveloped, unsewered residential, sewered residential, and agricultural (horse and dairy farms). A positive linear relation was indicated for chloride concentration in baseflow and the basin's annual rate of road-salt application (or density of two-lane roads). Chloride concentration exhibits a relatively stable relation to road-salt application rate or 2-lane road density throughout the year. Positive linear relations were indicated for nitrate concentration in baseflow and the basins unsewered housing density. Nitrate is characterized by a different relation to unsewered housing density for each season, with the highest observed nitrate concentrations during the winter and the lowest concentrations during the summer. Baseflow nitrate concentrations in sewered basins, and in unsewered basins with riparian wetland buffers between residential development and the stream, were lower than concentrations predicted from unsewered-housing density.

  3. A Nontoxic Polypeptide Oligomer with a Fungicide Potency under Agricultural Conditions Which Is Equal or Greater than That of Their Chemical Counterparts

    PubMed Central

    Monteiro, Sara; Carreira, Alexandra; Freitas, Regina; Pinheiro, Ana Margarida; Ferreira, Ricardo Boavida

    2015-01-01

    There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed. PMID:25849076

  4. An evaluation of the VOST method for non-halogenated compounds at a agricultural chemical manufacturing facility

    SciTech Connect

    Jackson, M.D.; Bursey, J.T.; McGaughey, J.F.; Merrill, R.G.

    1997-12-31

    Laboratory testing and one field evaluation study have been performed to assess the performance of the VOST method non-halogenated volatile organic analytes listed in Title III of the Clean Air Act Amendments of 1990. This paper reports on a second field evaluation study performed at a different source category to demonstrate that the methodology is riot source-specific. An incinerator that burned chemical waste was selected as the second test site. The field test was designed according to the guidelines of EPA Method 301, using gaseous dynamic spiking. Volatile organic compounds were spiked into two of four quadruple VOST trains as a gaseous spike. A minimum of ten quadruple sampling runs each was performed for VOST. Each quadruple run used four collocated sampling probes attached to four similar sampling trains, with two spiked trains and two unspiked trains. Statistical analysis of the results was performed according to the guidelines of EPA Method 301. Using the EPA Method 301 criteria for acceptable performance (correction factor between 0.70 and 1.30, with relative standard deviation of 50% or less), the VOST methodology showed acceptable performance in a chemical waste incinerator emissions matrix for the following compounds: benzene, n-hexane, 2,2,4-trimethylpentane, and toluene.

  5. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  6. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts. PMID:25757330

  7. Safety in Science Laboratories.

    ERIC Educational Resources Information Center

    Education in Science, 1978

    1978-01-01

    Presents 12 amendments to the second edition of Safety in Science Laboratories. Covers topics such as regular inspection of equipment, wearing safety glasses, dating stock chemicals, and safe use of chemicals. (MA)

  8. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  9. Safety Tips.

    ERIC Educational Resources Information Center

    Nagel, Miriam C., Ed.

    1984-01-01

    Outlines a cooperative effort in Iowa to eliminate dangerous or unwanted chemicals from school science storerooms. Also reviews the Council of State Science Supervisor's safety program and discusses how to prevent cuts and punctures from jagged glass tubing. (JN)

  10. Chemical Safety Improvement Act

    THOMAS, 113th Congress

    Sen. Lautenberg, Frank R. [D-NJ

    2013-05-22

    02/04/2014 Committee on Environment and Public Works Subcommittee on Water and Wildlife. Hearings held. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  12. Bromine Safety

    SciTech Connect

    Meyers, B

    2001-04-09

    The production and handling in 1999 of about 200 million kilograms of bromine plus substantial derivatives thereof by Great Lakes Chemical Corp. and Albemarle Corporation in their southern Arkansas refineries gave OSHA Occupational Injury/Illness Rates (OIIR) in the range of 0.74 to 1.60 reportable OIIRs per 200,000 man hours. OIIRs for similar industries and a wide selection of other U.S. industries range from 1.6 to 23.9 in the most recent OSHA report. Occupational fatalities for the two companies in 1999 were zero compared to a range in the U.S.of zero for all computer manufacturing to 0.0445 percent for all of agriculture, forestry and fishing in the most recent OSHA report. These results show that bromine and its compounds can be considered as safe chemicals as a result of the bromine safety standards and practices at the two companies. The use of hydrobromic acid as an electrical energy storage medium in reversible PEM fuel cells is discussed. A study in 1979 of 20 megawatt halogen working fluid power plants by Oronzio de Nora Group found such energy to cost 2 to 2.5 times the prevailing base rate at that time. New conditions may reduce this relative cost. The energy storage aspect allows energy delivery at maximum demand times where the energy commands premium rates. The study also found marginal cost and performance advantages for hydrobromic acid over hydrochloric acid working fluid. Separate studies in the late 70s by General Electric also showed marginal performance advantages for hydrobromic acid.

  13. 20150325 - Application of High-Throughput In Vitro Assays for Risk-Based Chemical Safety Decisions of Environmental and Industrial Chemicals (SOT presentation)

    EPA Science Inventory

    Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment n...

  14. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health. PMID:25663406

  15. Electron donor concentrations in sediments and sediment properties at the agricultural chemicals team research site near New Providence, Iowa, 2006-07

    USGS Publications Warehouse

    Maharjan, Bijesh; Korom, Scott F.; Smith, Erik A.

    2013-01-01

    The concentrations of electron donors in aquifer sediments are important to the understanding of the fate and transport of redox-sensitive constituents in groundwater, such as nitrate. For a study by the U.S. Geological Survey National Water-Quality Assessment Program, 50 sediment samples were collected from below the water table from 11 boreholes at the U.S. Geological Survey Agricultural Chemicals Team research site near New Providence, Iowa, during 2006-07. All samples were analyzed for gravel, sand (coarse, medium, and fine), silt, clay, Munsell soil color, inorganic carbon content, and for the following electron donors: organic carbon, ferrous iron, and inorganic sulfide. A subset of 14 sediment samples also was analyzed for organic sulfur, but all of these samples had concentrations less than the method detection limit; therefore, the presence of this potential electron donor was not considered further. X-ray diffraction analyses provided important semi-quantitative information of well-crystallized dominant minerals within the sediments that might be contributing electron donors.

  16. A Farming Revolution: Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Klinkenborg, Verlyn

    1995-01-01

    Growing realization of the economic, social, and environmental costs of conventional agriculture has led many U.S. farmers to embrace and become advocates for agricultural practices that limit the need for pesticides and chemical fertilizers, decrease soil erosion, and improve soil health. Some hope that sustainable agriculture can promote smaller…

  17. Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; safety considerations related to extractables and leachables.

    PubMed

    Jenke, Dennis

    2007-10-01

    A review is provided on the general topic of the compatibility of plastic materials with pharmaceutical products, with specific emphasis on the safety aspects associated with extractables and leachables related to such plastic materials. PMID:17701994

  18. Chemical mechanical polishing of Indium phosphide, Gallium arsenide and Indium gallium arsenide films and related environment and safety aspects

    NASA Astrophysics Data System (ADS)

    Matovu, John Bogere

    As scaling continues with advanced technology nodes in the microelectronic industry to enhance device performance, the performance limits of the conventional substrate materials such as silicon as a channel material in the front-end-of-the-line of the complementary metal oxide semiconductor (CMOS) need to be surmounted. These challenges have invigorated research into new materials such as III-V materials consisting of InP, GaAs, InGaAs for n-channel CMOS and Ge for p-channels CMOS to enhance device performance. These III-V materials have higher electron mobility that is required for the n-channel while Ge has high hole mobility that is required for the p-channel. Integration of these materials in future devices requires chemical mechanical polishing (CMP) to achieve a smooth and planar surface to enable further processing. The CMP process of these materials has been associated with environment, health and safety (EH&S) issues due to the presence of P and As that can lead to the formation of toxic gaseous hydrides. The safe handling of As contaminated consumables and post-CMP slurry waste is essential. In this work, the chemical mechanical polishing of InP, GaAs and InGaAs films and the associated environment, health and safety (EH&S) issues are discussed. InP removal rates (RRs) and phosphine generation during the CMP of blanket InP films in hydrogen peroxide-based silica particle dispersions in the presence and absence of three different multifunctional chelating carboxylic acids, namely oxalic acid, tartaric acid, and citric acid are reported. The presence of these acids in the polishing slurry resulted in good InP removal rates (about 400 nm min-1) and very low phosphine generation (< 15 ppb) with very smooth post-polish surfaces (0.1 nm RMS surface roughness). The optimized slurry compositions consisting of 3 wt % silica, 1 wt % hydrogen peroxide and 0.08 M oxalic acid or citric acid that provided the best results on blanket InP films were used to evaluate

  19. Safety evaluation of food contact paper and board using chemical tests and in vitro bioassays: role of known and unknown substances.

    PubMed

    Honkalampi-Hämäläinen, U; Bradley, E L; Castle, L; Severin, I; Dahbi, L; Dahlman, O; Lhuguenot, J-C; Andersson, M A; Hakulinen, P; Hoornstra, D; Mäki-Paakkanen, J; Salkinoja-Salonen, M; Turco, L; Stammati, A; Zucco, F; Weber, A; von Wright, A

    2010-03-01

    In vitro toxicological tests have been proposed as an approach to complement the chemical safety assessment of food contact materials, particularly those with a complex or unknown chemical composition such as paper and board. Among the concerns raised regarding the applicability of in vitro tests are the effects of interference of the extractables on the outcome of the cytotoxicity and genotoxicity tests applied and the role of known compounds present in chemically complex materials, such as paper and board, either as constituents or contaminants. To answer these questions, a series of experiments were performed to assess the role of natural substances (wood extracts, resin acids), some additives (diisopropylnaphthalene, phthalates, acrylamide, fluorescent whitening agents) and contaminants (2,4-diaminotoluene, benzo[a]pyrene) in the toxicological profile of paper and board. These substances were individually tested or used to spike actual paper and board extracts. The toxic concentrations of diisopropylnaphthalenes and phthalates were compared with those actually detected in paper and board extracts showing conspicuous toxicity. According to the results of the spiking experiments, the extracts did not affect the toxicity of tested chemicals nor was there any significant metabolic interference in the cases where two compounds were used in tests involving xenobiotic metabolism by the target cells. While the identified substances apparently have a role in the cytotoxicity of some of the project samples, their presence does not explain the total toxicological profile of the extracts. In conclusion, in vitro toxicological testing can have a role in the safety assessment of chemically complex materials in detecting potentially harmful activities not predictable by chemical analysis alone. PMID:20087806

  20. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  1. School Chemistry Laboratory Safety Guide

    ERIC Educational Resources Information Center

    Brundage, Patricia; Palassis, John

    2006-01-01

    The guide presents information about ordering, using, storing, and maintaining chemicals in the high school laboratory. The guide also provides information about chemical waste, safety and emergency equipment, assessing chemical hazards, common safety symbols and signs, and fundamental resources relating to chemical safety, such as Material…

  2. Current concepts on integrative safety assessment of active substances of botanical, mineral or chemical origin in homeopathic medicinal products within the European regulatory framework.

    PubMed

    Buchholzer, Marie-Luise; Werner, Christine; Knoess, Werner

    2014-03-01

    For active substances of botanical, mineral or chemical origin processed in homeopathic medicinal products for human use, the adequate safety principles as with other human medicinal products are applied in line with the European regulatory framework. In homeopathy, nonclinical safety assessment is facing a particular challenge because of a multitude and diversity of source materials used and due to rarely available toxicological data. Thus, current concepts applied by the national regulatory authority in Germany (BfArM) on integrative safety assessment of raw materials used in homeopathic medicinal products involve several evaluation approaches like the use of the Lowest Human Recommended Dose (LHRD), toxicological limit values, Threshold of Toxicological Concern (TTC), data from food regulation or the consideration of unavoidable environmental or dietary background exposure. This publication is intended to further develop and clarify the practical use of these assessment routes by exemplary application on selected homeopathic preparations. In conclusion, the different approaches are considered a very useful scientific and simultaneously pragmatic procedure in differentiated risk assessment of homeopathic medicinal products. Overall, this paper aims to increase the visibility of the safety issues in homeopathy and to stimulate scientific discussion of worldwide existing regulatory concepts on homeopathic medicinal products.

  3. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety.

    PubMed

    Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen

    2014-10-01

    This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety.

  4. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.

  5. Long-Term Effect of Agricultural Reclamation on Soil Chemical Properties of a Coastal Saline Marsh in Bohai Rim, Northern China

    PubMed Central

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (−42.2%) and total nitrogen (TN) (−25.8%) at surface layer (0–30 cm) as well as their stratification ratios (SRs) (0–5 cm:50–70 cm and 5–10 cm:50–70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0–30 cm) and their SRs (0–5 cm:50–70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0–100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20–70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0–10 cm layer and anions at 5–100 cm layer, mainly decreasing the proportion of Na+, Cl− and SO42−. Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0–20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm. PMID:24695526

  6. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. PMID

  7. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW.

  8. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm. PMID:24695526

  9. Missouri Elementary Science Safety Manual.

    ERIC Educational Resources Information Center

    Lemons, Judith L.

    The purpose of this safety manual is to provide a resource to help manage and minimize potential risks in science classrooms where students spend up to 60% of instructional time engaged in hands-on activities. Information on general laboratory safety, science equipment safety, safety with plants, safety with animals, safety with chemicals, field…

  10. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  11. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  12. Safety in the Chemical Laboratory: Please Do Not Touch: Some Thoughts on Temporary Labels in the Laboratory.

    ERIC Educational Resources Information Center

    Pitt, Martin J.

    1984-01-01

    Discusses six common problems which may occur when using temporary labels on chemicals, samples, or mixtures in teaching or research laboratories. Solutions to each of these problems are offered. (JN)

  13. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  14. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  15. An in vitro method for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing.

    PubMed

    McKim, James M; Keller, Donald J; Gorski, Joel R

    2012-12-01

    Chemical sensitization is a serious condition caused by small reactive molecules and is characterized by a delayed type hypersensitivity known as allergic contact dermatitis (ACD). Contact with these molecules via dermal exposure represent a significant concern for chemical manufacturers. Recent legislation in the EU has created the need to develop non-animal alternative methods for many routine safety studies including sensitization. Although most of the alternative research has focused on pure chemicals that possess reasonable solubility properties, it is important for any successful in vitro method to have the ability to test compounds with low aqueous solubility. This is especially true for the medical device industry where device extracts must be prepared in both polar and non-polar vehicles in order to evaluate chemical sensitization. The aim of this research was to demonstrate the functionality and applicability of the human reconstituted skin models (MatTek Epiderm(®) and SkinEthic RHE) as a test system for the evaluation of chemical sensitization and its potential use for medical device testing. In addition, the development of the human 3D skin model should allow the in vitro sensitization assay to be used for finished product testing in the personal care, cosmetics, and pharmaceutical industries. This approach combines solubility, chemical reactivity, cytotoxicity, and activation of the Nrf2/ARE expression pathway to identify and categorize chemical sensitizers. Known chemical sensitizers representing extreme/strong-, moderate-, weak-, and non-sensitizing potency categories were first evaluated in the skin models at six exposure concentrations ranging from 0.1 to 2500 µM for 24 h. The expression of eight Nrf2/ARE, one AhR/XRE and two Nrf1/MRE controlled gene were measured by qRT-PCR. The fold-induction at each exposure concentration was combined with reactivity and cytotoxicity data to determine the sensitization potential. The results demonstrated that

  16. An in vitro method for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing.

    PubMed

    McKim, James M; Keller, Donald J; Gorski, Joel R

    2012-12-01

    Chemical sensitization is a serious condition caused by small reactive molecules and is characterized by a delayed type hypersensitivity known as allergic contact dermatitis (ACD). Contact with these molecules via dermal exposure represent a significant concern for chemical manufacturers. Recent legislation in the EU has created the need to develop non-animal alternative methods for many routine safety studies including sensitization. Although most of the alternative research has focused on pure chemicals that possess reasonable solubility properties, it is important for any successful in vitro method to have the ability to test compounds with low aqueous solubility. This is especially true for the medical device industry where device extracts must be prepared in both polar and non-polar vehicles in order to evaluate chemical sensitization. The aim of this research was to demonstrate the functionality and applicability of the human reconstituted skin models (MatTek Epiderm(®) and SkinEthic RHE) as a test system for the evaluation of chemical sensitization and its potential use for medical device testing. In addition, the development of the human 3D skin model should allow the in vitro sensitization assay to be used for finished product testing in the personal care, cosmetics, and pharmaceutical industries. This approach combines solubility, chemical reactivity, cytotoxicity, and activation of the Nrf2/ARE expression pathway to identify and categorize chemical sensitizers. Known chemical sensitizers representing extreme/strong-, moderate-, weak-, and non-sensitizing potency categories were first evaluated in the skin models at six exposure concentrations ranging from 0.1 to 2500 µM for 24 h. The expression of eight Nrf2/ARE, one AhR/XRE and two Nrf1/MRE controlled gene were measured by qRT-PCR. The fold-induction at each exposure concentration was combined with reactivity and cytotoxicity data to determine the sensitization potential. The results demonstrated that

  17. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  18. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014.

  19. Food Supply and Food Safety Issues in China

    PubMed Central

    Lam, Hon-Ming; Remais, Justin; Fung, Ming-Chiu; Xu, Liqing; Sun, Samuel Sai-Ming

    2013-01-01

    Food supply and food safety are major global public health issues, and are particularly important in heavily populated countries such as China. Rapid industrialisation and modernisation in China are having profound effects on food supply and food safety. In this Review, we identified important factors limiting agricultural production in China, including conversion of agricultural land to other uses, freshwater deficits, and soil quality issues. Additionally, increased demand for some agricultural products is examined, particularly those needed to satisfy the increased consumption of animal products in the Chinese diet, which threatens to drive production towards crops used as animal feed. Major sources of food poisoning in China include pathogenic microorganisms, toxic animals and plants entering the food supply, and chemical contamination. Meanwhile, two growing food safety issues are illegal additives and contamination of the food supply by toxic industrial waste. China’s connections to global agricultural markets are also having important effects on food supply and food safety within the country. Although the Chinese Government has shown determination to reform laws, establish monitoring systems, and strengthen food safety regulation, weak links in implementation remain. PMID:23746904

  20. Agriculture and water quality. Agriculture Information Bulletin

    SciTech Connect

    Crowder, B.M.; Ribaudo, M.O.; Young, C.E.

    1988-08-01

    Agriculture generates byproducts that may contribute to the contamination of the Nation's water supply. Any effective regulations to ban or restrict agricultural-chemical or land-use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface waterways in runoff; some leach through soil into ground water. Because surface-water systems and ground water systems are interrelated, farm-management practices need to focus on water quality in both systems. Modifying farm-management practices may raise production costs in some areas. Farmers can reduce runoff losses by reducing input use, implementing soil-conservation practices, and changing land use. Also at issue is who should pay for improving water quality.

  1. Aquaculture feed and food safety.

    PubMed

    Tacon, Albert G J; Metian, Marc

    2008-10-01

    The ultimate objective of an aquaculture feed manufacturer and aquaculture food supplier is to ensure that the feed or food produced is both safe and wholesome. Reported food safety risks, which may be associated with the use of commercial animal feeds, including compound aquaculture feeds, usually result from the possible presence of unwanted contaminants, either within the feed ingredients used or from the external contamination of the finished feed on prolonged storage. The major animal feed contaminants that have been reported to date have included Salmonellae, mycotoxins, veterinary drug residues, persistent organic pollutants, agricultural and other chemicals (solvent residues, melamine), heavy metals (mercury, lead, cadmium) and excess mineral salts (hexavalent chromium, arsenic, selenium, flourine), and transmissible spongiform encephalopathies. Apart from the direct negative effect of these possible contaminants on the health of the cultured target species, there is a risk that the feed contaminants may be passed along the food chain, via contaminated aquaculture produce, to consumers. In recent years, public concern regarding food safety has increased as a consequence of the increasing prevalence of antibiotic residues, persistent organic pollutants, and chemicals in farmed seafood. The important role played by the Food and Agriculture Organization of the United Nations (FAO) and the Codex Alimentarius Commission in the development of international standards, guidelines, and recommendations to protect the health of consumers and ensure fair practices in the food trade is discussed. PMID:18991902

  2. Hand Safety

    MedlinePlus

    ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ...

  3. Hand Safety

    MedlinePlus

    ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ...

  4. Chemical Products in the Home, Workshop and Garden. Proceed with Caution; Consumer Safety in the Home, II.

    ERIC Educational Resources Information Center

    Saskatchewan Consumer and Commercial Affairs, Regina.

    The average home has chemical products to clean floors, kill insects, clean ovens, thin paint, remove grease, and perform countless other chores. Many consumers remain unaware of the dangers these products bring into the home. This booklet provides information on the safe use, storage, and disposal of these products. The compounds found in…

  5. Theme: Teaching Physical Science Applications in Agriculture.

    ERIC Educational Resources Information Center

    Osborne, Edward W.; And Others

    1996-01-01

    Includes "Preparing Teachers to Teach Agriscience" (Osborne); "Physical Sciences and Agriculture" (Buriak); "Using Experiments to Teach Agriculture" (Miller); "Oooh-Ahhh: So That's How It Works!" (Loschen); "Keeping Agriculture in Agriscience" (Moss); "Sharpening Twist Drills" (McHargue, Hood); and "Safety in the Agriscience Laboratory"…

  6. Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making

    PubMed Central

    Amcoff, Patric; Benigni, Romualdo; Blackburn, Karen; Carney, Edward; Cronin, Mark; Deluyker, Hubert; Gautier, Francoise; Judson, Richard S.; Kass, Georges E.N.; Keller, Detlef; Knight, Derek; Lilienblum, Werner; Mahony, Catherine; Rusyn, Ivan; Schultz, Terry; Schwarz, Michael; Schüürmann, Gerrit; White, Andrew; Burton, Julien; Lostia, Alfonso M.; Munn, Sharon; Worth, Andrew

    2015-01-01

    Background Safety assessment for repeated dose toxicity is one of the largest challenges in the process to replace animal testing. This is also one of the proof of concept ambitions of SEURAT-1, the largest ever European Union research initiative on alternative testing, co-funded by the European Commission and Cosmetics Europe. This review is based on the discussion and outcome of a workshop organized on initiative of the SEURAT-1 consortium joined by a group of international experts with complementary knowledge to further develop traditional read-across and include new approach data. Objectives The aim of the suggested strategy for chemical read-across is to show how a traditional read-across based on structural similarities between source and target substance can be strengthened with additional evidence from new approach data—for example, information from in vitro molecular screening, “-omics” assays and computational models—to reach regulatory acceptance. Methods We identified four read-across scenarios that cover typical human health assessment situations. For each such decision context, we suggested several chemical groups as examples to prove when read-across between group members is possible, considering both chemical and biological similarities. Conclusions We agreed to carry out the complete read-across exercise for at least one chemical category per read-across scenario in the context of SEURAT-1, and the results of this exercise will be completed and presented by the end of the research initiative in December 2015. Citation Berggren E, Amcoff P, Benigni R, Blackburn K, Carney E, Cronin M, Deluyker H, Gautier F, Judson RS, Kass GE, Keller D, Knight D, Lilienblum W, Mahony C, Rusyn I, Schultz T, Schwarz M, Schüürmann G, White A, Burton J, Lostia AM, Munn S, Worth A. 2015. Chemical safety assessment using read-across: assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ Health Perspect 123:1232

  7. Using the WTO/TBT enquiry point to monitor tendencies in the regulation of environment, health, and safety issues affecting the chemical industry.

    PubMed

    Pio Borges Menezes, Rodrigo; Maria de Souza Antunes, Adelaide

    2005-04-01

    The growing importance of technical regulation affecting the use and sale of chemical products is a topic of interest not only for the chemical industry, but also for governments, nongovernmental organizations, consumers, and interested communities. The results of such regulation on behalf of the environment, health and safety of individuals, as well as its economic effects on industrial activity, are well understood in the United States and recently in the European Union. In less developed countries, however, the general level of public understanding of these issues is still minimal. It is common knowledge that the so-called "regulatory asymmetry" between countries at different levels of development contributes to the establishment of technical barriers to trade. Such asymmetries, however, also have other impacts: the displacement of polluting industrial sectors to countries which have less demanding regulations, the concentration of unsafe and harmful environmental conditions in certain parts of the globe, and the competitive disadvantage for industries located in countries where control is more rigid. This study analyses information on a wide range of technical regulations issued by World Trade Organization (WTO) members, and focuses on those regulations that affect the chemical industry. This information is available through the WTO Enquiry Points, organizations created in each country to administrate the Technical Barriers to Trade Agreement (TBT). This article consists of an analysis of 4,301 notifications of technical regulations by WTO member states in the 7-year period following the establishment of the WTO in 1995. Starting from this mass of information, 585 notifications that affect the circulation or use of chemical products were isolated. Of this group, 71% refer to only 15 countries. This group of notifications was further classified according to their motivation (the environment, health, safety), by the type of product affected (medications, fuels

  8. Chemical analysis of estragole in fennel based teas and associated safety assessment using the Margin of Exposure (MOE) approach.

    PubMed

    van den Berg, Suzanne J P L; Alhusainy, Wasma; Restani, Patrizia; Rietjens, Ivonne M C M

    2014-03-01

    This study describes the analysis of estragole in dry fennel preparations and in infusions prepared from them and an associated safety assessment. A wide range of estragole levels of 0.15-13.3mg/g dry fennel preparation was found. The estragole content in infusions was considerably lower ranging between 0.4 and 133.4μg/25mL infusion prepared from 1g dry material. Infusions prepared from whole fennel fruits contained about 3-fold less estragole compared to infusions prepared from fine cut fennel material. Safety assessment was performed using the Margin of Exposure (MOE) approach comparing available tumour data to the estimated daily estragole intakes from the consumption of 1-3 cups fennel tea. MOEs obtained for adults generally point at a low priority for risk management, especially when one cup of fennel tea is used daily during lifetime. MOEs for use of fennel teas by children were generally <10,000 indicating a priority for risk management. However, limiting such uses to 1-2weeks, MOEs might be 3 orders of a magnitude higher and there would be no priority for risk management. These results indicate a low priority for risk management actions for use of fennel teas especially for short-term uses proposed for the symptomatic treatment of digestive disorders.

  9. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  10. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy.

    PubMed

    Brownbill, Paul; Chernyavsky, Igor; Bottalico, Barbara; Desoye, Gernot; Hansson, Stefan; Kenna, Gerry; Knudsen, Lisbeth E; Markert, Udo R; Powles-Glover, Nicola; Schneider, Henning; Leach, Lopa

    2016-09-01

    The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice.

  11. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy.

    PubMed

    Brownbill, Paul; Chernyavsky, Igor; Bottalico, Barbara; Desoye, Gernot; Hansson, Stefan; Kenna, Gerry; Knudsen, Lisbeth E; Markert, Udo R; Powles-Glover, Nicola; Schneider, Henning; Leach, Lopa

    2016-09-01

    The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice. PMID:27327413

  12. Safety in Aquaculture

    ERIC Educational Resources Information Center

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  13. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  14. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  15. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Perero, S.; Miola, M.; Vernè, E.; Rosiello, A.; Ferrazzo, V.; Valletta, G.; Sanchez, J.; Ohrlander, M.; Tjörnhammar, S.; Fokine, M.; Laurell, F.; Blomberg, E.; Skoglund, S.; Odnevall Wallinder, I.; Ferraris, M.

    2014-10-01

    This work describes the chemical, mechanical and antibacterial properties of a novel silver nanocluster/silica composite coating, obtained by sputtering, on textiles for use in nuclear bacteriological and chemical (NBC) protection suites and for aerospace applications. The properties of the coated textiles were analyzed in terms of surface morphology, silver concentration and silver release in artificial sweat and synthetic tap water, respectively. No release of silver nanoparticles was observed at given conditions. The water repellency, permeability, flammability and mechanical resistance of the textiles before and after sputtering demonstrated that the textile properties were not negatively affected by the coating. The antibacterial effect was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus and compared with the behavior of uncoated textiles. The coating process conferred all textiles a good antibacterial activity. Optimal deposition conditions were elaborated to obtain sufficient antibacterial action without altering the aesthetical appearance of the textiles. The antibacterial coating retained its antibacterial activity after one cycle in a washing machine only for the Nylon based textile.

  16. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC.

    PubMed

    Zareisedehizadeh, Sogand; Tan, Chay-Hoon; Koh, Hwee-Ling

    2014-01-01

    Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds. PMID:24987426

  17. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition

    PubMed Central

    Kim, Hyeongki; Lee, Kyu-Sun; Kim, Ae-Kyeong; Choi, Miri; Choi, Kwangman; Kang, Mingu; Chi, Seung-Wook; Lee, Min-Sung; Lee, Jeong-Soo; Lee, So-Young; Song, Woo-Joo; Yu, Kweon

    2016-01-01

    ABSTRACT DYRK1A is important in neuronal development and function, and its excessive activity is considered a significant pathogenic factor in Down syndrome and Alzheimer's disease. Thus, inhibition of DYRK1A has been suggested to be a new strategy to modify the disease. Very few compounds, however, have been reported to act as inhibitors, and their potential clinical uses require further evaluation. Here, we newly identify CX-4945, the safety of which has been already proven in the clinical setting, as a potent inhibitor of DYRK1A that acts in an ATP-competitive manner. The inhibitory potency of CX-4945 on DYRK1A (IC50=6.8 nM) in vitro was higher than that of harmine, INDY or proINDY, which are well-known potent inhibitors of DYRK1A. CX-4945 effectively reverses the aberrant phosphorylation of Tau, amyloid precursor protein (APP) and presenilin 1 (PS1) in mammalian cells. To our surprise, feeding with CX-4945 significantly restored the neurological and phenotypic defects induced by the overexpression of minibrain, an ortholog of human DYRK1A, in the Drosophila model. Moreover, oral administration of CX-4945 acutely suppressed Tau hyperphosphorylation in the hippocampus of DYRK1A-overexpressing mice. Our research results demonstrate that CX-4945 is a potent DYRK1A inhibitor and also suggest that it has therapeutic potential for DYRK1A-associated diseases. PMID:27483355

  18. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC

    PubMed Central

    Tan, Chay-Hoon

    2014-01-01

    Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds. PMID:24987426

  19. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition.

    PubMed

    Kim, Hyeongki; Lee, Kyu-Sun; Kim, Ae-Kyeong; Choi, Miri; Choi, Kwangman; Kang, Mingu; Chi, Seung-Wook; Lee, Min-Sung; Lee, Jeong-Soo; Lee, So-Young; Song, Woo-Joo; Yu, Kweon; Cho, Sungchan

    2016-08-01

    DYRK1A is important in neuronal development and function, and its excessive activity is considered a significant pathogenic factor in Down syndrome and Alzheimer's disease. Thus, inhibition of DYRK1A has been suggested to be a new strategy to modify the disease. Very few compounds, however, have been reported to act as inhibitors, and their potential clinical uses require further evaluation. Here, we newly identify CX-4945, the safety of which has been already proven in the clinical setting, as a potent inhibitor of DYRK1A that acts in an ATP-competitive manner. The inhibitory potency of CX-4945 on DYRK1A (IC50=6.8 nM) in vitro was higher than that of harmine, INDY or proINDY, which are well-known potent inhibitors of DYRK1A. CX-4945 effectively reverses the aberrant phosphorylation of Tau, amyloid precursor protein (APP) and presenilin 1 (PS1) in mammalian cells. To our surprise, feeding with CX-4945 significantly restored the neurological and phenotypic defects induced by the overexpression of minibrain, an ortholog of human DYRK1A, in the Drosophila model. Moreover, oral administration of CX-4945 acutely suppressed Tau hyperphosphorylation in the hippocampus of DYRK1A-overexpressing mice. Our research results demonstrate that CX-4945 is a potent DYRK1A inhibitor and also suggest that it has therapeutic potential for DYRK1A-associated diseases. PMID:27483355

  20. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC.

    PubMed

    Zareisedehizadeh, Sogand; Tan, Chay-Hoon; Koh, Hwee-Ling

    2014-01-01

    Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds.

  1. Chemical CO detector for an automatic gas-safety shutoff valve. Final report, June 1984-September 1988

    SciTech Connect

    Goldstein, M.; Anderson, T.

    1991-07-01

    A low cost sensor for carbon monoxide has been developed that exhibits a reversible color change when exposed to CO. Based on a proprietary mixture of metal salts, the solid state sensor gradually changes color from pale yellow to a blue which intensifies with continued exposure to CO in a way that parallels the buildup of carboxyhemoglobin levels in the blood. Technical performance goals were achieved for the CO sensor in laboratory feasibility studies. The chemioptical sensor was integrated into an automatic, photooptic shutoff control system for use with vented and unvented space heaters. The shutoff control was self-powered, using photovoltaic panels to convert light from the space heater pilot light into the electric energy required for operation of electronics. Light from the pilot was directed through a fiber optic cable to the CO sensor, behind which was a photooptic detector. Darkening of the sensor by CO reduced the detector output until a relay, holding the fuel valve open, was deenergized. No nuisance failures were reported among ten space heaters, modified with CO safety shutoffs and placed in residential sites during 10/87 for the 1987-88 heating season. In 5/88 each site was revisited. The shutoff valves on all operational units performed properly when exposed to a controlled level of CO.

  2. Safety on Earth From MARSS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    ENSCO, Inc., developed the Meteorological and Atmospheric Real-time Safety Support (MARSS) system for real-time assessment of meteorological data displays and toxic material spills. MARSS also provides mock scenarios to guide preparations for emergencies involving meteorological hazards and toxic substances. Developed under a Small Business Innovation Research (SBIR) contract with Kennedy Space Center, MARSS was designed to measure how safe NASA and Air Force range safety personnel are while performing weather sensitive operations around launch pads. The system augments a ground operations safety plan that limits certain work operations to very specific weather conditions. It also provides toxic hazard prediction models to assist safety managers in planning for and reacting to releases of hazardous materials. MARSS can be used in agricultural, industrial, and scientific applications that require weather forecasts and predictions of toxic smoke movement. MARSS is also designed to protect urban areas, seaports, rail facilities, and airports from airborne releases of hazardous chemical substances. The system can integrate with local facility protection units and provide instant threat detection and assessment data that is reportable for local and national distribution.

  3. Agriculture Education. Agricultural Metal Working.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agricultural metal working. The guide presents units of study in the following areas: (1) oxyacetylene welding, (2) arc welding, (3) sheet metal, (4) blueprint reading for welders and (5) job…

  4. Chemical Emergencies

    MedlinePlus

    ... agents such as sarin and VX. Many hazardous chemicals are used in industry - for example, chlorine, ammonia, and benzene. Some can be made from everyday items such as household cleaners. Although there are no guarantees of safety during a chemical emergency, you can take actions to protect yourself. ...

  5. Chemical composition, efficacy and safety of Pistacia vera (var. Fandoghi) to inactivate protoscoleces during hydatid cyst surgery.

    PubMed

    Mahmoudvand, Hossein; Kheirandish, Farnaz; Dezaki, Ebrahim Saedi; Shamsaddini, Saeedeh; Harandi, Majid Fasihi

    2016-08-01

    At present, various scolicidal agents have been used for inactivation of protoscoleces during hydatid cyst surgery, however, they are associated with serious adverse side effects including sclerosing colangititis (biliary tract fibrosis), liver necrosis and methaemoglobinaemia. This investigation was designed to evaluate the chemical composition and in vitro scolicidal effects of Pistacia vera (var. Fandoghi) essential oil against protoscoleces of hydatid cysts and also its toxicity in mice model. The components of the P. vera essential oil were identified by gas chromatography/mass spectroscopy (GC/MS) analysis. Protoscoleces were aseptically aspirated from sheep livers having hydatid cysts. Various concentrations of the essential oil (25-200μl/mL) were used for 5-30min. Viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining). In addition, forty male NIH mice were used to determine the acute and sub-acute toxicity of P. vera essential oil for 2 and 14 days, respectively. The main components of P. vera essential oil were limonene (26.21%), α-pinene (18.07%), α-thujene (9.31%) and α-terpinolene (9.28%). Findings of the present study demonstrated that the P. vera essential oil at the concentrations of 100 and 200μl/mL killed 100% protoscoleces after 10 and 5min of exposure, respectively. The LD50 values of intraperitoneal injection of the P. vera essential oil was 2.69ml/kg body weight, and the maximum nonfatal doses were 1.94ml/kg body weight. No significant difference (P>0.05) was observed in the clinical chemistry and hematological parameters following oral administrations of P. vera essential oil at the doses 0.1, 0.2, and 0.4ml/kg for 14 days. The obtained findings demonstrated new chemical composition and promising scolicidal activity of the P. vera with no significant toxicity which might be used as a natural scolicidal agent in hydatid cyst surgery. PMID:27470377

  6. Chemical composition, efficacy and safety of Pistacia vera (var. Fandoghi) to inactivate protoscoleces during hydatid cyst surgery.

    PubMed

    Mahmoudvand, Hossein; Kheirandish, Farnaz; Dezaki, Ebrahim Saedi; Shamsaddini, Saeedeh; Harandi, Majid Fasihi

    2016-08-01

    At present, various scolicidal agents have been used for inactivation of protoscoleces during hydatid cyst surgery, however, they are associated with serious adverse side effects including sclerosing colangititis (biliary tract fibrosis), liver necrosis and methaemoglobinaemia. This investigation was designed to evaluate the chemical composition and in vitro scolicidal effects of Pistacia vera (var. Fandoghi) essential oil against protoscoleces of hydatid cysts and also its toxicity in mice model. The components of the P. vera essential oil were identified by gas chromatography/mass spectroscopy (GC/MS) analysis. Protoscoleces were aseptically aspirated from sheep livers having hydatid cysts. Various concentrations of the essential oil (25-200μl/mL) were used for 5-30min. Viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining). In addition, forty male NIH mice were used to determine the acute and sub-acute toxicity of P. vera essential oil for 2 and 14 days, respectively. The main components of P. vera essential oil were limonene (26.21%), α-pinene (18.07%), α-thujene (9.31%) and α-terpinolene (9.28%). Findings of the present study demonstrated that the P. vera essential oil at the concentrations of 100 and 200μl/mL killed 100% protoscoleces after 10 and 5min of exposure, respectively. The LD50 values of intraperitoneal injection of the P. vera essential oil was 2.69ml/kg body weight, and the maximum nonfatal doses were 1.94ml/kg body weight. No significant difference (P>0.05) was observed in the clinical chemistry and hematological parameters following oral administrations of P. vera essential oil at the doses 0.1, 0.2, and 0.4ml/kg for 14 days. The obtained findings demonstrated new chemical composition and promising scolicidal activity of the P. vera with no significant toxicity which might be used as a natural scolicidal agent in hydatid cyst surgery.

  7. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to Safety,"…

  8. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica's region, Greece.

    PubMed

    Botsou, Fotini; Sungur, Ali; Kelepertzis, Efstratios; Soylak, Mustafa

    2016-10-01

    We report in this study the magnetic properties and partitioning patterns of selected trace metals (Pb, Zn, Cu, Cd, Ni) in roadside and off-road (>200m distance from the road edge) agricultural soils collected along two major highways in Greece. Sequential extractions revealed that the examined trace metals for the entire data set were predominantly found in the residual fraction, averaging 37% for Cd up to 80% for Cu. Due to the strong influence of lithogenic factors, trace metal pseudototal contents of the roadside soils did not differ significantly to those of the off-road soils. Magnetic susceptibility and frequency dependent magnetic susceptibility determinations showed a magnetic enhancement of soils; however, it was primarily related to geogenic factors and not to traffic-derived magnetic particles. These results highlight that in areas characterized by strong geogenic backgrounds, neither pseudototal trace metal contents nor magnetic properties determinations effectively capture traffic-related contamination of topsoils. The vehicular emission signal was traced by the increased acid-soluble and reducible trace metal contents of the roadside soils compared to their off-road counterparts. In the case of Cu and Zn, changes in the partitioning patterns were also observed between the roadside and off-road soils. Environmental risks associated with agricultural lands extending at the margins of the studied highways may arise from the elevated Ni contents (both pseudototal and potentially mobile), and future studies should investigate Ni levels in the edible parts of plants grown on these agricultural soils.

  9. A strategy for safety assessment of chemicals with data gaps for developmental and/or reproductive toxicity.

    PubMed

    Blackburn, Karen; Daston, George; Fisher, Joan; Lester, Cathy; Naciff, Jorge M; Rufer, Echoleah S; Stuard, Sharon B; Woeller, Kara

    2015-07-01

    Alternative methods for full replacement of in vivo tests for systemic endpoints are not yet available. Read across methods provide a means of maximizing utilization of existing data. A limitation for the use of read across methods is that they require analogs with test data. Repeat dose data are more frequently available than are developmental and/or reproductive toxicity (DART) studies. There is historical precedent for using repeat dose data in combination with a database uncertainty factor (UF) to account for missing DART data. We propose that use of the DART decision tree (Wu et al., 2013), in combination with a database UF, provides a path forward for DART data gap filling that better utilizes all of the data. Our hypothesis was that chemical structures identified by the DART tree as being related to structures with known DART toxicity would potentially have lower DART NOAELs compared to their respective repeat dose NOAELs than structures that lacked this association. Our analysis supports this hypothesis and as a result also supports that the DART decision tree can be used as part of weight of evidence in the selection of an appropriate DART database UF factor.

  10. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  11. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  12. Derivation of a chemical-specific adjustment factor (CSAF) for use in the assessment of risk from chronic exposure to ethylene glycol: application of International Programme for Chemical Safety guidelines.

    PubMed

    Palmer, Robert B; Brent, Jeffrey

    2005-09-01

    The International Programme for Chemical Safety (IPCS) has developed a set of guidelines ("the Guidance") for the establishment of Chemical-Specific Adjustment Factors (CSAFs) for in the assessment of toxicity risk to the human population as a result of chemical exposure. The development of case studies is encouraged in the Guidance document and comments on them have been encouraged by the IPCS. One provision in the Guidance is for the determination of CSAFs based on human data. We present a case study of the use of the Guidance for the determination of the CSAF for ethylene glycol (EG) primarily utilizing clinically obtained data. The most relevant endpoint for this analysis was deemed to be acute renal injury. These data were applied based on an assessment of the known pharmaco/toxico-kinetic properties of EG. Because of the lack of both bioaccumulation of EG and reports of chronic or progressive renal injury from EG, it was concluded that the most appropriate model of chronic exposure is one of repeated acute episodes. The most relevant exposure metric was determined to be plasma glycolate concentration. Based on a prospective human study of EG-poisoned patients, the NOAEL for glycolate was found to be 10.1 mM. This value is similar to that obtained from animal data. The application of the Guidelines to this data resulted in a CSAF of 10.24, corresponding to a daily EG dose of 43.7 mg/kg/day. In 2000, Health Canada (HC) produced an animal data-based analysis of the maximum tolerated dose of EG. The results of our analysis are compared with those of HC, and the strengths and weaknesses of these two data types related to EG are discussed. PMID:15990139

  13. Derivation of a chemical-specific adjustment factor (CSAF) for use in the assessment of risk from chronic exposure to ethylene glycol: Application of international programme for chemical safety guidelines

    SciTech Connect

    Palmer, Robert B. . E-mail: RPalmer@Toxicologyassoc.com; Brent, Jeffrey

    2005-09-01

    The International Programme for Chemical Safety (IPCS) has developed a set of guidelines ('the Guidance') for the establishment of Chemical-Specific Adjustment Factors (CSAFs) for in the assessment of toxicity risk to the human population as a result of chemical exposure. The development of case studies is encouraged in the Guidance document and comments on them have been encouraged by the IPCS. One provision in the Guidance is for the determination of CSAFs based on human data. We present a case study of the use of the Guidance for the determination of the CSAF for ethylene glycol (EG) primarily utilizing clinically obtained data. The most relevant endpoint for this analysis was deemed to be acute renal injury. These data were applied based on an assessment of the known pharmaco/toxico-kinetic properties of EG. Because of the lack of both bioaccumulation of EG and reports of chronic or progressive renal injury from EG, it was concluded that the most appropriate model of chronic exposure is one of repeated acute episodes. The most relevant exposure metric was determined to be plasma glycolate concentration. Based on a prospective human study of EG-poisoned patients, the NOAEL for glycolate was found to be 10.1 mM. This value is similar to that obtained from animal data. The application of the Guidelines to this data resulted in a CSAF of 10.24, corresponding to a daily EG dose of 43.7 mg/kg/day. In 2000, Health Canada (HC) produced an animal data-based analysis of the maximum tolerated dose of EG. The results of our analysis are compared with those of HC, and the strengths and weaknesses of these two data types related to EG are discussed.

  14. Agriculture-related anaemias.

    PubMed

    Fleming, A F

    1994-12-01

    Man evolved as a hunter-gatherer, and the invention and spread of agriculture was followed by changes in diet, the environment and population densities which have resulted in globally high prevalences of anaemias due to nutritional deficiencies of iron, folate and (locally) vitamin B12, to infestations by hookworm and schistosomes, to malaria, and to the natural selection for the genes for sickle-cell diseases, beta-thalassaemias, alpha-thalassaemias, glucose-6-phosphate dehydrogenase deficiency, ovalocytosis and possibly (locally) elliptocytosis. The present explosion of population is driving an expansion of agriculture, especially the cultivation of rice, and this has led often to disastrous increases of transmission of malaria, schistosomiasis and other diseases, to widespread chemical pollution, and to degradation of the environment. Anaemia, as the commonest manifestation of human disease, is a frequent consequence. The urgent need for increased food production is matched by the urgent need for assessment and control of the health impact of agricultural development.

  15. Agricultural and food chemistry: 50 years of synergy between AGFD and JAFC.

    PubMed

    Seiber, James N; Kleinschmidt, Loreen A

    2009-09-23

    The Division of Agricultural and Food Chemistry (AGFD) and the American Chemical Society had the foresight to launch the Journal of Agricultural and Food Chemistry in 1953. JAFC, still closely connected with the Division, has grown to be the premier international journal in the field, providing an outlet for publishing original research articles, reviews, perspectives, and editorials, for agricultural and food chemists from many nations. JAFC has expanded coverage of current areas of intense interest, such as bioactive constituents of foods, biotechnology, and biobased products and biofuels, as well as continuing strong coverage of such mainstream categories as food chemistry/biochemistry, analytical methods, safety and toxicology, and agrochemistry. In 2008 alone, JAFC published over 1650 peer-reviewed manuscripts, several symposia (largely from AGFD symposia at ACS National Meetings), and a number of reviews. The synergy between AGFD and JAFC offers many benefits and exciting opportunities for advancing the science of agricultural and food chemistry for the future. PMID:19719123

  16. Agricultural and food chemistry: 50 years of synergy between AGFD and JAFC.

    PubMed

    Seiber, James N; Kleinschmidt, Loreen A

    2009-09-23

    The Division of Agricultural and Food Chemistry (AGFD) and the American Chemical Society had the foresight to launch the Journal of Agricultural and Food Chemistry in 1953. JAFC, still closely connected with the Division, has grown to be the premier international journal in the field, providing an outlet for publishing original research articles, reviews, perspectives, and editorials, for agricultural and food chemists from many nations. JAFC has expanded coverage of current areas of intense interest, such as bioactive constituents of foods, biotechnology, and biobased products and biofuels, as well as continuing strong coverage of such mainstream categories as food chemistry/biochemistry, analytical methods, safety and toxicology, and agrochemistry. In 2008 alone, JAFC published over 1650 peer-reviewed manuscripts, several symposia (largely from AGFD symposia at ACS National Meetings), and a number of reviews. The synergy between AGFD and JAFC offers many benefits and exciting opportunities for advancing the science of agricultural and food chemistry for the future.

  17. 29 CFR 500.102 - Applicability of vehicle safety standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS MIGRANT AND SEASONAL AGRICULTURAL WORKER PROTECTION Motor Vehicle Safety and Insurance for Transportation of Migrant and Seasonal Agricultural Workers, Housing Safety and Health for Migrant Workers Motor... agricultural association to transport any migrant or seasonal agricultural worker shall meet the vehicle...

  18. Agricultural chemistry and bioenergy.

    PubMed

    Orts, William J; Holtman, Kevin M; Seiber, James N

    2008-06-11

    Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. Applications include feedstock characterization and quantification of structural changes resulting from genetic modification and of the intermediates formed during enzymatic and chemical processing; development of improved processes for utilizing chemical coproducts such as lactic acid and glycerol; development of alternative biofuels such as methanol, butanol, and hydrogen; and ways to reduce greenhouse gas emission and/or use carbon dioxide beneficially. Chemists will also be heavily involved in detailing the phytochemical composition of alternative energy crops and genetically improved crops. A resurgence of demand for agricultural chemistry and related disciplines argues for increasing output through targeted programs and on-the-job training. PMID:18473470

  19. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  20. Transport of agricultural chemicals in surface flow, tileflow, and streamflow of Walnut Creek Watershed near Ames, Iowa, April 1991-September 1993

    USGS Publications Warehouse

    Soenksen, P.J.

    1996-01-01

    Chemical loss ratios indicated differences in the transport characteristics of the three subwatersheds. The downstream subwatershed, which has steeper terrain, a more-developed natural drainage system, and fewer tiles than the two upland subwatersheds, had the largest loss rates for all three chemicals 206 percent for nitrate as nitrogen (October 1992-September 1993) and 20 percent for atrazine and 2.9 percent for metolachlor (April-September 1993). For May-July 1993, when most of the herbicides were transported, the downstream subwatershed also had the largest cumulative unit discharge and the largest streamflow-to-precipitation ratios.

  1. Safety and health hazard observations in Hmong farming operations.

    PubMed

    Neitzel, R L; Krenz, J; de Castro, A B

    2014-01-01

    Agricultural workers have a high risk of occupational injuries, illnesses, and fatalities. However, there are very few standardized tools available to assess safety and health in agricultural operations. Additionally, there are a number of groups of agricultural workers, including Hmong refugees and immigrants, for which virtually no information on safety and health conditions is available. This study developed an observation-based methodology for systematically evaluating occupational health and safety hazards in agriculture, and pilot-tested this on several small-scale Hmong farming operations. Each observation assessed of range of safety and health hazards (e.g., musculoskeletal hazards, dust and pollen, noise, and mechanical hazards), as well as on factors such as type of work area, presence of personal protective equipment, and weather conditions. Thirty-six observations were collected on nine farms. The most common hazards observed were bending at the back and lifting <50 pounds. Use of sharp tools without adequate guarding mechanisms, awkward postures, repetitive hand motions, and lifting >50 pounds were also common. The farming activities observed involved almost no power equipment, and no pesticide or chemical handling was observed. The use of personal protective equipment was uncommon. The results of this assessment agreed well with a parallel study of perceived safety and health hazards among Hmong agricultural workers. This study suggests that small-scale Hmong farming operations involve a variety of hazards, and that occupational health interventions may be warranted in this community. The study also demonstrates the utility of standardized assessment tools and mixed-method approaches to hazard evaluation.

  2. Safety and Health Hazard Observations in Hmong Farming Operations

    PubMed Central

    Neitzel, R. L.; Krenz, J.; de Castro, A. B.

    2014-01-01

    Agricultural workers have a high risk of occupational injuries, illnesses, and fatalities. However, there are very few standardized tools available to assess safety and health in agricultural operations. Additionally, there are a number of groups of agricultural workers, including Hmong refugees and immigrants, for which virtually no information on safety and health conditions is available. This study developed an observation-based methodology for systematically evaluating occupational health and safety hazards in agriculture, and pilot-tested this on several small-scale Hmong farming operations. Each observation assessed of range of safety and health hazards (e.g., musculoskeletal hazards, dust and pollen, noise, and mechanical hazards), as well as on factors such as type of work area, presence of personal protective equipment, and weather conditions. Thirty-six observations were collected on nine farms. The most common hazards observed were bending at the back and lifting <50 pounds. Use of sharp tools without adequate guarding mechanisms, awkward postures, repetitive hand motions, and lifting >50 pounds were also common. The farming activities observed involved almost no power equipment, and no pesticide or chemical handling was observed. The use of personal protective equipment was uncommon. The results of this assessment agreed well with a parallel study of perceived safety and health hazards among Hmong agricultural workers. This study suggests that small-scale Hmong farming operations involve a variety of hazards, and that occupational health interventions may be warranted in this community. The study also demonstrates the utility of standardized assessment tools and mixed-method approaches to hazard evaluation. PMID:24911689

  3. Risk assessment of low-level chemical exposures from consumer products under the U.S. Consumer Product Safety Commission chronic hazard guidelines.

    PubMed Central

    Babich, M A

    1998-01-01

    The U.S. Consumer Product Safety Commission (CPSC) is an independent regulatory agency that was created in 1973. The CPSC has jurisdiction over more the 15,000 types of consumer products used in and around the home or by children, except items such as food, drugs, cosmetics, medical devices, pesticides, certain radioactive materials, products that emit radiation (e.g., microwave ovens), and automobiles. The CPSC has investigated many low-level exposures from consumer products, including formaldehyde emissions from urea-formaldehyde foam insulation and pressed wood products, CO and NO2 emmissions from combustion appliances, and dioxin in paper products. Many chemical hazards are addressed under the Federal Hazardous Substances Act (FHSA), which applies to acute and chronic health effects resulting from high- or low-level exposures. In 1992 the Commission issued guidelines for assessing chronic hazards under the FHSA, including carcinogenicity, neurotoxicity, reproductive/developmental toxicity, exposure, bioavailability, risk assessment, and acceptable risk. The chronic hazard guidelines describe a series of default assumptions, which are used in the absence of evidence to the contrary. However, the guidelines are intended to be sufficiently flexible to incorporate the latest scientific information. The use of alternative procedures is permissible, on a case-by-case basis, provided that the procedures used are scientifically defensible and supported by appropriate data. The application of the chronic hazard guidelines in assessing the risks from low-level exposures is discussed. PMID:9539035

  4. Meat Safety and Regulatory Aspects in the European Union

    NASA Astrophysics Data System (ADS)

    Dwinger, Ron H.; Golden, Thomas E.; Hatakka, Maija; Chalus, Thierry

    Meat safety is concerned with chemical, physical and biological aspects. With regard to the chemical aspects, residues and contaminants should be kept at as low a level as possible, but should certainly not exceed the maximum levels laid down in Community legislation. To prevent residues and contaminants in meat, it is essential to follow good agricultural practice, which involves feeding and management requirements, observing the correct withdrawal period, following treatment of animals, with veterinary medicines, a strict selection of raw materials, correct use of pesticides on grassland, preventing the access of animals to toxins or environmental contaminants, etc.

  5. Agriculture & the Environment. Teacher's Guide.

    ERIC Educational Resources Information Center

    McMurry, Linda Maston

    This teacher's guide offers background information that teachers can use to incorporate topics related to agriculture and the environment into the curriculum. Classroom activities to bring these topics alive for students in grades 6-9 are suggested. Chapters include: (1) Pesticides and Integrated Pest Management; (2) Food Safety; (3) Water…

  6. Science & Safety: Making the Connection.

    ERIC Educational Resources Information Center

    Council of State Science Supervisors, VA.

    This document provides information on the most commonly asked science safety questions by science teachers primarily at the secondary school level. Topics include the legal responsibilities of a science teacher, a general safety checklist, proper labeling and storing of chemicals, purchasing of new chemicals and disposing of old chemicals, a…

  7. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  8. AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    STEVENS, GLENN Z.

    FEDERAL LEGISLATION HAS PROVIDED FOR PUBLIC PROGRAMS OF OCCUPATIONAL AGRICULTURE EDUCATION IN LAND GRANT COLLEGES AND UNIVERSITIES, LOCAL SCHOOL DISTRICTS, AND MANPOWER DEVELOPMENT PROGRAMS. PROGRAM OBJECTIVES SHOULD BE TO DEVELOP KNOWLEDGE AND SKILLS, PROVIDE OCCUPATIONAL GUIDANCE AND PLACEMENT, AND DEVELOP ABILITIES IN HUMAN RELATIONS AND…

  9. AGRICULTURAL EXTENSION.

    ERIC Educational Resources Information Center

    FARQUHAR, R.N.

    AUSTRALIAN AGRICULTURAL EXTENSION HAS LONG EMPHASIZED TECHNICAL ADVISORY SERVICE AT THE EXPENSE OF THE SOCIOECONOMIC ASPECTS OF FARM PRODUCTION AND FARM LIFE. ONLY IN TASMANIA HAS FARM MANAGEMENT BEEN STRESSED. DEMANDS FOR THE WHOLE-FARM APPROACH HAVE PRODUCED A TREND TOWARD GENERALISM FOR DISTRICT OFFICERS IN MOST STATES. THE FEDERAL GOVERNMENT,…

  10. Impacts of soil and water pollution on food safety and health risks in China.

    PubMed

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach. PMID:25603422

  11. Impacts of soil and water pollution on food safety and health risks in China.

    PubMed

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.

  12. Pesticide safety among farmworkers: perceived risk and perceived control as factors reflecting environmental justice.

    PubMed Central

    Arcury, Thomas A; Quandt, Sara A; Russell, Gregory B

    2002-01-01

    Farmworkers in the United States constitute a population at risk for serious environmental and occupational illness and injury as well as health disparities typically associated with poverty. Pesticides are a major source of occupational injury and illness to which farmworkers are exposed. Efforts to provide safety training for farmworkers have not been fully evaluated. Based on the Health Belief Model, this analysis examines how safety information affects perceived pesticide safety risk and control among farmworkers and how perceived risk and control affect farmworker knowledge and safety behavior. Data are based on interviews conducted in 1999 with 293 farmworkers in eastern North Carolina as part of the Preventing Agricultural Chemical Exposure in North Carolina Farmworkers' Project. Perceived pesticide risk and perceived pesticide control scales were developed from interview items. Analysis of the items and scales showed that farmworkers had fairly high levels of perceived risk from pesticides and perceived control of pesticide safety. Receiving information about pesticide safety (e.g., warning signs) reduced perceived risk and increased perceived control. Pesticide exposure knowledge was strongly related to perceived risk. However, perceived risk had a limited relationship to safety knowledge and was not related to safety behavior. Perceived control was not related to pesticide exposure knowledge, but was strongly related to safety knowledge and safety behavior. A key tenet of environmental justice is that communities must have control over their environment. These results argue that for pesticide safety education to be effective, it must address issues of farmworker control in implementing workplace pesticide safety. PMID:11929733

  13. Agriculture Supplies & Services. Volume 3 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The third of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains twenty-five units of instruction in the area of agricultural mechanics. Among the unit topics included are (1) Farm Safety, (2) Ignition Systems; (3) Servicing Wheel Bearings, (4) Oxyacetylene Cutting, (5) Servicing the…

  14. Safety in the Chemical Laboratory.

    ERIC Educational Resources Information Center

    Gerlach, Rudolph

    1986-01-01

    Background information is provided on the registered trademark "TLV" (Threshold Limit Value), the term used to express tolerable concentrations. The TLV of a compound is an estimate extrapolated from some defined damage to humans or animals at higher concentrations or by drawing analogies between similar concentrations. (JN)

  15. Chemical Compatibility and Safety of Imidacloprid/Flumethrin Collar (Seresto®) Concomitantly Used with Imidacloprid/Moxidectin (Advocate®, Advantage® Multi) and Emodepside/Praziquantel (Profender®) Spot-on Formulations.

    PubMed

    Krüdewagen, Eva Maria; Remer, Carolin; Deuster, Katrin; Schunack, Bettina; Wolken, Sonja; Crafford, Dionne; Fourie, Josephus; Stanneck, Dorothee

    2015-08-01

    Safety of concomitant use of veterinary products is of clinical interest. A series of studies was performed to evaluate the chemical compatibility and short term dermal and systemic safety of an imidacloprid/flumethrin collar (Seresto(®)/ Foresto(®), Bayer) used concomitantly with spot-on or tablet formulations.Chemical compatibility was evaluated in-vitro (study reference A) on collar pieces, followed by two small, non-controlled clinical studies (study reference B) in both, cats and dogs. The studies showed, that certain solvents affected the collar in-vitro, but not in their marketed formulations.Dermal and systemic safety of different spot-on or tablet formulations was first evaluated in a small, non-controlled clinical study (study reference C) in cats and dogs, via clinical observations only, followed by controlled clinical safety studies of concomitant use with imidacloprid/ moxidectin (Advocate(®)/ Advantage(®) Multi, Bayer) in dogs and cats (study reference D) and emodepside/ praziquantel (Profender(®), Bayer) in cats (study reference E), assessing safety aspects by clinical observations and statistical analyses of hematology and clinical chemistry parameters compared to baseline values and between treated and control groups.Dermal safety findings over all clinical studies (study references B to E) matched those already described for the respective products and included transient cosmetic changes (oily hair and crystal formation) at the site of spot-on application and broken hair, transient alopecia and skin alterations at the site of collar application. There were no indications of these findings aggravating under the conditions of concurrent use. There were no systemic safety findings of clinical significance in any of the clinical safety studies (study reference C to E). Assessment of blood parameters revealed some deviations from baseline levels and from the reference range in dogs as well as in cats, but no clinical relevance could be deduced

  16. Chemical Compatibility and Safety of Imidacloprid/Flumethrin Collar (Seresto®) Concomitantly Used with Imidacloprid/Moxidectin (Advocate®, Advantage® Multi) and Emodepside/Praziquantel (Profender®) Spot-on Formulations.

    PubMed

    Krüdewagen, Eva Maria; Remer, Carolin; Deuster, Katrin; Schunack, Bettina; Wolken, Sonja; Crafford, Dionne; Fourie, Josephus; Stanneck, Dorothee

    2015-08-01

    Safety of concomitant use of veterinary products is of clinical interest. A series of studies was performed to evaluate the chemical compatibility and short term dermal and systemic safety of an imidacloprid/flumethrin collar (Seresto(®)/ Foresto(®), Bayer) used concomitantly with spot-on or tablet formulations.Chemical compatibility was evaluated in-vitro (study reference A) on collar pieces, followed by two small, non-controlled clinical studies (study reference B) in both, cats and dogs. The studies showed, that certain solvents affected the collar in-vitro, but not in their marketed formulations.Dermal and systemic safety of different spot-on or tablet formulations was first evaluated in a small, non-controlled clinical study (study reference C) in cats and dogs, via clinical observations only, followed by controlled clinical safety studies of concomitant use with imidacloprid/ moxidectin (Advocate(®)/ Advantage(®) Multi, Bayer) in dogs and cats (study reference D) and emodepside/ praziquantel (Profender(®), Bayer) in cats (study reference E), assessing safety aspects by clinical observations and statistical analyses of hematology and clinical chemistry parameters compared to baseline values and between treated and control groups.Dermal safety findings over all clinical studies (study references B to E) matched those already described for the respective products and included transient cosmetic changes (oily hair and crystal formation) at the site of spot-on application and broken hair, transient alopecia and skin alterations at the site of collar application. There were no indications of these findings aggravating under the conditions of concurrent use. There were no systemic safety findings of clinical significance in any of the clinical safety studies (study reference C to E). Assessment of blood parameters revealed some deviations from baseline levels and from the reference range in dogs as well as in cats, but no clinical relevance could be deduced

  17. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period.

    PubMed

    Neugschwandtner, Reinhard W; Tlustos, Pavel; Komárek, Michael; Száková, Jirina; Jakoubková, Lucie

    2012-09-01

    Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.

  18. Safety harness

    DOEpatents

    Gunter, Larry W.

    1993-01-01

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  19. 9 CFR 318.9 - Samples of products, water, dyes, chemicals, etc., to be taken for examination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Samples of products, water, dyes, chemicals, etc., to be taken for examination. 318.9 Section 318.9 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY...

  20. 9 CFR 318.9 - Samples of products, water, dyes, chemicals, etc., to be taken for examination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Samples of products, water, dyes, chemicals, etc., to be taken for examination. 318.9 Section 318.9 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY...

  1. 9 CFR 318.9 - Samples of products, water, dyes, chemicals, etc., to be taken for examination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Samples of products, water, dyes, chemicals, etc., to be taken for examination. 318.9 Section 318.9 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND...

  2. 9 CFR 318.9 - Samples of products, water, dyes, chemicals, etc., to be taken for examination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Samples of products, water, dyes, chemicals, etc., to be taken for examination. 318.9 Section 318.9 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND...

  3. Safety Control and Safety Education at Technical Institutes

    NASA Astrophysics Data System (ADS)

    Iino, Hiroshi

    The importance of safety education for students at technical institutes is emphasized on three grounds including safety of all working members and students in their education, research and other activities. The Kanazawa Institute of Technology re-organized the safety organization into a line structure and improved safety minds of all their members and now has a chemical materials control system and a set of compulsory safety education programs for their students, although many problems still remain.

  4. Editor’s Highlight: Development of an In vitro Assay Measuring Uterine-Specific Estrogenic Responses for Use in Chemical Safety Assessment

    PubMed Central

    Miller, Michelle M.; Alyea, Rebecca A.; LeSommer, Caroline; Doheny, Daniel L.; Rowley, Sean M.; Childs, Kristin M.; Balbuena, Pergentino; Ross, Susan M.; Dong, Jian; Sun, Bin; Andersen, Melvin A.

    2016-01-01

    A toxicity pathway approach was taken to develop an in vitro assay using human uterine epithelial adenocarcinoma (Ishikawa) cells as a replacement for measuring an in vivo uterotrophic response to estrogens. The Ishikawa cell was determined to be fit for the purpose of recapitulating in vivo uterine response by verifying fidelity of the biological pathway components and the dose-response predictions to women of child-bearing age. Expression of the suite of estrogen receptors that control uterine proliferation (ERα66, ERα46, ERα36, ERβ, G-protein coupled estrogen receptor (GPER)) were confirmed across passages and treatment conditions. Phenotypic responses to ethinyl estradiol (EE) from transcriptional activation of ER-mediated genes, to ALP enzyme induction and cellular proliferation occurred at concentrations consistent with estrogenic activity in adult women (low picomolar). To confirm utility of this model to predict concentration-response for uterine proliferation with xenobiotics, we tested the concentration-response for compounds with known uterine estrogenic activity in humans and compared the results to assays from the ToxCast and Tox21 suite of estrogen assays. The Ishikawa proliferation assay was consistent with in vivo responses and was a more sensitive measure of uterine response. Because this assay was constructed by first mapping the key molecular events for cellular response, and then ensuring that the assay incorporated these events, the resulting cellular assay should be a reliable tool for identifying estrogenic compounds and may provide improved quantitation of chemical concentration response for in vitro-based safety assessments. PMID:27503385

  5. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  6. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  7. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  8. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  9. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  10. Nitrate in groundwater and water sources used by riparian trees in an agricultural watershed: A chemical and isotopic investigation in southern Minnesota

    USGS Publications Warehouse

    Komor, S.C.; Magner, J.A.

    1996-01-01

    This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of ??D values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate- poor, deep groundwater. Upwelling deep groundwater contained ammonium with a ??15N of 5??? that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate ??15N values in shallow groundwater to decrease by as much as 19.5???. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass- shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these

  11. Nitrate in ground water and water sources used by riparian trees in an agricultural watershed: A chemical and isotopic investigation in southern Minnesota

    USGS Publications Warehouse

    Komor, Stephen C.; Magner, J.

    1996-01-01

    This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate-poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass-shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these

  12. Chemical Management System

    1998-10-30

    CMS provides an inventory of all chemicals on order or being held in the laboratory, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNNL staff with hazardous chemical information to better manage their inventories. CMS is comprised of five major modules: 1) chemical purchasing, 2) chemical inventory, 3) chemical names, properties, and hazard groups, 4) reporting, and 5) system administration.

  13. Developing a Roadmap for Integrating Computational and In Vitro Approaches in Risk-Based Chemical Safety Decisions (SSCT-SweTox)

    EPA Science Inventory

    Multiple drivers shape the types of chemical assessments performed within many regulatory agencies including economic considerations, data availability, and the ultimate application of the assessment. The result is that chemical assessments are “fit-for-purpose” ranging from pri...

  14. Evaluation of a multiplex real-time PCR method for detecting shiga toxin-producing Escherichia coli in beef and comparison to the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology laboratory guidebook method.

    PubMed

    Fratamico, Pina M; Wasilenko, Jamie L; Garman, Bradley; Demarco, Daniel R; Varkey, Stephen; Jensen, Mark; Rhoden, Kyle; Tice, George

    2014-02-01

    The "top-six" non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) most frequently associated with outbreaks and cases of foodborne illnesses have been declared as adulterants in beef by the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS). Regulatory testing in beef began in June 2012. The purpose of this study was to evaluate the DuPont BAX System method for detecting these top six STEC strains and strains of E. coli O157:H7. For STEC, the BAX System real-time STEC suite was evaluated, including a screening assay for the stx and eae virulence genes and two panel assays to identify the target serogroups: panel 1 detects O26, O111, and O121, and panel 2 detects O45, O103, O145. For E. coli O157:H7, the BAX System real-time PCR assay for this specific serotype was used. Sensitivity of each assay for the PCR targets was ≥1.23 × 10(3) CFU/ml in pure culture. Each assay was 100% inclusive for the strains tested (20 to 50 per assay), and no cross-reactivity with closely related strains was observed in any of the assays. The performance of the BAX System methods was compared with that of the FSIS Microbiology Laboratory Guidebook (MLG) methods for detection of the top six STEC and E. coli O157:H7 strains in ground beef and beef trim. Generally, results of the BAX System method were similar to those of the MLG methods for detecting non-O157 STEC and E. coli O157:H7. Reducing or eliminating novobiocin in modified tryptic soy broth (mTSB) may improve the detection of STEC O111 strains; one beef trim sample inoculated with STEC O111 produced a negative result when enriched in mTSB with 8 mg/liter novobiocin but was positive when enriched in mTSB without novobiocin. The results of this study indicate the feasibility of deploying a panel of real-time PCR assay configurations for the detection and monitoring of the top six STEC and E. coli O157:H7 strains in beef. The approach could easily be adapted

  15. Two Year Core Curriculum for Agricultural Education in Montana. Revised.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This core curriculum consists of materials for use in conducting a two-year secondary level agricultural education course. Addressed in the individual units of the guide are the following topics: leadership; agricultural career planning; supervised occupational experience programs (SOEPs); agricultural mechanics (shop management and safety,…

  16. University Students' Perceptions of Issues Related to Agriculture.

    ERIC Educational Resources Information Center

    Terry, Robert, Jr.; Lawver, David E.

    1995-01-01

    Telephone interviews with 390 of 400 college students revealed an overall favorable impression of food safety and agriculture's impact on the economy and environment. Males were more positive about animal welfare and production agriculture. Gender, college major, and hometown were related to attitudes about agriculture issues. (SK)

  17. Chemistry laboratory safety manual available

    NASA Technical Reports Server (NTRS)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  18. Guide for Science Laboratory Safety.

    ERIC Educational Resources Information Center

    McDermott, John J.

    General and specific safety procedures and recommendations for secondary school science laboratories are provided in this guide. Areas of concern include: (1) chemicals (storage, disposal, toxicity, unstable and incompatible chemicals); (2) microorganisms; (3) plants; (4) animals; (5) electricity; (6) lasers; (7) rockets; (8) eye safety and…

  19. Chemical and biochemical properties of Stagnic Albeluvisols organic matter as result of long-term agricultural management and native forest ecosystem

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Kõlli, Raimo; Wojciech Szajdak, Lech

    2010-05-01

    Soil organic matter (SOM) is considered to be as the most important factor in soil forming, development and continuous functioning. Sequestrated into SOM organic carbon concentrations, pools and residence time in soil, as well acting intensity of interconnected with SOM edaphon are soil type specific or characteristic to certain soil types. In depending on soil moisture regime, calcareousness and clay content for each soil type certain soil organic carbon (SOC) retaining capacity and its vertical distribution pattern are characteristic. However, land use change (crop rotation, continuous cropping, no-tillage, melioration, rewetting) has greatest influence mainly on fabric of epipedon and biological functions of soil cover. Stagnic Albeluvisols are largely distributed at Tartu County. They form here more than half from arable soils. The establishment of long-term field trial and forest research area in these regions for biochemical analysis of Stagnic Albeluvisols' organic matter is in all respects justified. In 1989, an international long-term experiment on the organic nitrogen or IOSDV (Internationale Organische Stickstoffdauerdiingungsversuche) with three-field crop rotation (potato - spring wheat - spring barley) was started at Eerika near Tartu (58° 22.5' N; 26° 39.8' E) on Stagnic Albeluvisol. The main aims of this study were to determine the long-term effects of cropping systems on physico-chemical properties of soils and their productivity. The design of this field experiment is similar to other European network of IOSDV experiments. Before the establishment of this experiment in 1989 it was in set-aside state (5-6 years) as field-grass fallow. It was used as arable land in condition of state farm during 1957-83. Average agrochemical characteristics of the plough horizon of soil in the year of establishment were the following: humus content 17.1 g kg-1, total nitrogen content 0.9 g kg-1, C:N ratio 11 and pHKCl 6.3. DL soluble phosphorus content was 44 mg

  20. Chemical and biochemical properties of Stagnic Albeluvisols organic matter as result of long-term agricultural management and native forest ecosystem

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Kõlli, Raimo; Wojciech Szajdak, Lech

    2010-05-01

    Soil organic matter (SOM) is considered to be as the most important factor in soil forming, development and continuous functioning. Sequestrated into SOM organic carbon concentrations, pools and residence time in soil, as well acting intensity of interconnected with SOM edaphon are soil type specific or characteristic to certain soil types. In depending on soil moisture regime, calcareousness and clay content for each soil type certain soil organic carbon (SOC) retaining capacity and its vertical distribution pattern are characteristic. However, land use change (crop rotation, continuous cropping, no-tillage, melioration, rewetting) has greatest influence mainly on fabric of epipedon and biological functions of soil cover. Stagnic Albeluvisols are largely distributed at Tartu County. They form here more than half from arable soils. The establishment of long-term field trial and forest research area in these regions for biochemical analysis of Stagnic Albeluvisols' organic matter is in all respects justified. In 1989, an international long-term experiment on the organic nitrogen or IOSDV (Internationale Organische Stickstoffdauerdiingungsversuche) with three-field crop rotation (potato - spring wheat - spring barley) was started at Eerika near Tartu (58° 22.5' N; 26° 39.8' E) on Stagnic Albeluvisol. The main aims of this study were to determine the long-term effects of cropping systems on physico-chemical properties of soils and their productivity. The design of this field experiment is similar to other European network of IOSDV experiments. Before the establishment of this experiment in 1989 it was in set-aside state (5-6 years) as field-grass fallow. It was used as arable land in condition of state farm during 1957-83. Average agrochemical characteristics of the plough horizon of soil in the year of establishment were the following: humus content 17.1 g kg-1, total nitrogen content 0.9 g kg-1, C:N ratio 11 and pHKCl 6.3. DL soluble phosphorus content was 44 mg

  1. Characteristics of instream wood within channelized agricultural headwater streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instre...

  2. Importance of instream wood characteristics for developing restoration designs for channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instr...

  3. Agricultural biosecurity.

    PubMed

    Waage, J K; Mumford, J D

    2008-02-27

    The prevention and control of new pest and disease introductions is an agricultural challenge which is attracting growing public interest. This interest is in part driven by an impression that the threat is increasing, but there has been little analysis of the changing rates of biosecurity threat, and existing evidence is equivocal. Traditional biosecurity systems for animals and plants differ substantially but are beginning to converge. Bio-economic modelling of risk will be a valuable tool in guiding the allocation of limited resources for biosecurity. The future of prevention and management systems will be strongly influenced by new technology and the growing role of the private sector. Overall, today's biosecurity systems are challenged by changing national priorities regarding trade, by new concerns about environmental effects of biological invasions and by the question 'who pays?'. Tomorrow's systems may need to be quite different to be effective. We suggest three changes: an integration of plant and animal biosecurity around a common, proactive, risk-based approach; a greater focus on international cooperation to deal with threats at source; and a commitment to refocus biosecurity on building resilience to invasion into agroecosystems rather than building walls around them.

  4. Immunization. Safety and Use of Polio Vaccines. Briefing Report to the Chairman, Subcommittee on Natural Resources, Agriculture Research and Environment, Committee on Science, Space, and Technology, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    This report presents information on the status of the safety and use of polio vaccines in the United States. Topics discussed include: (1) the role of the Food and Drug Administration (FDA) in processing an inactivated polio vaccine license application; (2) the steps the federal government has taken to improve the safety of the vaccine; (3) the…

  5. Food safety.

    PubMed

    Borchers, Andrea; Teuber, Suzanne S; Keen, Carl L; Gershwin, M Eric

    2010-10-01

    Food can never be entirely safe. Food safety is threatened by numerous pathogens that cause a variety of foodborne diseases, algal toxins that cause mostly acute disease, and fungal toxins that may be acutely toxic but may also have chronic sequelae, such as teratogenic, immunotoxic, nephrotoxic, and estrogenic effects. Perhaps more worrisome, the industrial activities of the last century and more have resulted in massive increases in our exposure to toxic metals such as lead, cadmium, mercury, and arsenic, which now are present in the entire food chain and exhibit various toxicities. Industrial processes also released chemicals that, although banned a long time ago, persist in the environment and contaminate our food. These include organochlorine compounds, such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (dichlorodiphenyl dichloroethene) (DDT), other pesticides, dioxins, and dioxin-like compounds. DDT and its breakdown product dichlorophenyl dichloroethylene affect the developing male and female reproductive organs. In addition, there is increasing evidence that they exhibit neurodevelopmental toxicities in human infants and children. They share this characteristic with the dioxins and dioxin-like compounds. Other food contaminants can arise from the treatment of animals with veterinary drugs or the spraying of food crops, which may leave residues. Among the pesticides applied to food crops, the organophosphates have been the focus of much regulatory attention because there is growing evidence that they, too, affect the developing brain. Numerous chemical contaminants are formed during the processing and cooking of foods. Many of them are known or suspected carcinogens. Other food contaminants leach from the packaging or storage containers. Examples that have garnered increasing attention in recent years are phthalates, which have been shown to induce malformations in the male reproductive system in laboratory animals, and bisphenol A, which negatively

  6. [Evaluation of the risk of delayed adverse effects of chronic combined exposure to radiation and chemical factors with the purpose to ensure safety in orbital and exploration space missions].

    PubMed

    Shafirkin, A V; Mukhamedieva, L N; Tatarkin, S V; Barantseva, M Iu

    2012-01-01

    The work had the aim to anatomize the existing issues with providing safety in extended orbital and exploration missions for ensuing estimation of actual values of the total radiation risk for the crew, and risks of other delayed effects of simultaneous exposure to ionizing radiation and chemical pollutants in cabin air, and a number of other stressful factors inevitable in space flight. The flow of chronic experiments for separate and combined studies with reproduction of air makeup and radiation doses in actual orbital and predicted exploration missions is outlined. To set safety limits, new approaches should be applied to the description of gradual norm degradation to pathologies in addition to several generalized quantitative indices of adaptation and straining of the regulatory systems, as well as of effectiveness of the compensatory body reserve against separate and combined exposure.

  7. [Evaluation of the risk of delayed adverse effects of chronic combined exposure to radiation and chemical factors with the purpose to ensure safety in orbital and exploration space missions].

    PubMed

    Shafirkin, A V; Mukhamedieva, L N; Tatarkin, S V; Barantseva, M Iu

    2012-01-01

    The work had the aim to anatomize the existing issues with providing safety in extended orbital and exploration missions for ensuing estimation of actual values of the total radiation risk for the crew, and risks of other delayed effects of simultaneous exposure to ionizing radiation and chemical pollutants in cabin air, and a number of other stressful factors inevitable in space flight. The flow of chronic experiments for separate and combined studies with reproduction of air makeup and radiation doses in actual orbital and predicted exploration missions is outlined. To set safety limits, new approaches should be applied to the description of gradual norm degradation to pathologies in addition to several generalized quantitative indices of adaptation and straining of the regulatory systems, as well as of effectiveness of the compensatory body reserve against separate and combined exposure. PMID:22624477

  8. Human Stem Cell Derived Cardiomyocytes: An Alternative Model to Evaluate Environmental Chemical Cardiac Safety and Development of Predictive Adverse Outcome Pathways

    EPA Science Inventory

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally...

  9. Programs in Animal Agriculture.

    ERIC Educational Resources Information Center

    Herring, Don R.; And Others

    1980-01-01

    Five topics relating to programs in animal agriculture are addressed: (1) the future of animal agriculture; (2) preparing teachers in animal agriculture; (3) how animal programs help young people; (4) a nontraditional animal agriculture program; and (5) developing competencies in animal agriculture. (LRA)

  10. Food Safety Should Come 1st on The 4th

    MedlinePlus

    ... for food safety at the U.S. Department of Agriculture (USDA). "This is likely because people are spending ... degrees, the USDA says. SOURCE: U.S. Department of Agriculture, news release, June 27, 2016 HealthDay Copyright (c) ...

  11. 7 CFR 2.51 - Deputy Under Secretary for Food Safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Deputy Under Secretary for Food Safety. 2.51 Section 2.51 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Food Safety § 2.51 Deputy Under Secretary...

  12. 7 CFR 2.51 - Deputy Under Secretary for Food Safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Deputy Under Secretary for Food Safety. 2.51 Section 2.51 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Food Safety § 2.51 Deputy Under Secretary...

  13. 7 CFR 2.51 - Deputy Under Secretary for Food Safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Deputy Under Secretary for Food Safety. 2.51 Section 2.51 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Food Safety § 2.51 Deputy Under Secretary...

  14. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  15. An Operational Safety and Health Program.

    ERIC Educational Resources Information Center

    Uhorchak, Robert E.

    1983-01-01

    Describes safety/health program activities at Research Triangle Institute (North Carolina). These include: radioisotope/radiation and hazardous chemical/carcinogen use, training, monitoring, disposal; chemical waste management; air monitoring and analysis; medical program; fire safety/training, including emergency planning; Occupational Safety and…

  16. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  17. Agricultural Education at Risk.

    ERIC Educational Resources Information Center

    Evans, Donald E.

    1988-01-01

    Discusses educational reform in the context of agricultural education. Covers a recent report on agricultural education reform by the National Academy of Sciences, state legislative initiatives, and several recommendations for the future of agricultural education. (CH)

  18. Laboratory Safety Manual for Alabama Schools. Bulletin 1975. No. 20.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    This document presents the Alabama State Department of Education guidelines for science laboratory safety, equipment, storage, chemical safety, rocket safety, electrical safety, safety with radioisotopes, and safety with biologicals. Also included is a brief bibliography, a teacher's checklist, a listing of laser facts and regulations, and a…

  19. Contractor safety training reciprocity

    SciTech Connect

    Melancon, R.

    1996-08-01

    In June, 1995, the National Petroleum Refiners Association (NPRA) adhoc committee on Contractor Safety Training, turned over the task of developing reciprocity agreements with all Contractor Safety Training Councils to the Executive Directors of each of the Council`s. The Council representatives were to develop these agreements based on the NPRA adhoc committee training objectives that were developed jointly by representatives of the petroleum industry, chemical industry, contractors and the Council`s.

  20. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    USGS Publications Warehouse

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational