Science.gov

Sample records for agricultural chemicals including

  1. Agricultural chemical utilization and human health.

    PubMed Central

    Mushak, E W; Piver, W T

    1992-01-01

    The public is justifiably concerned about the human health effects of agricultural chemicals. The many gaps in information about the mechanisms of toxic action, human exposures, and the nature and extent of human health effects are large. Very few older pesticides, in particular, have been tested for human health effects. Workers who produce, harvest, store, transport, process, and prepare food and fibers are exposed to many chemicals that are potentially hazardous and that are used in agriculture. The occupational health of these workers has not been adequately studied, and protective efforts have sometimes been minimal. Valid and accurate risk assessment is best based on sound information about how chemicals, in this case agricultural chemicals, are involved in toxic events--their mechanisms of action. These health effects include tumor promotion, chronic and acute neurotoxicity, immunotoxicity, and reproductive and developmental toxicity. Another key part of risk assessment is exposure assessment. Fundamental studies of the toxicology of target organisms and nontarget organisms exposed to agricultural chemicals are needed to discover and develop better solutions to the problems of agricultural pest control, including better formulations, optimal application rates and public education in safety and alternative agricultural practices. The large number of pesticides that have never been adequately tested for effects on human health is particularly worrisome in light of emerging information about delayed nervous system effects. PMID:1396466

  2. Aerosol simulation including chemical and nuclear reactions

    SciTech Connect

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.

  3. Perceptions of Vocational Agriculture Instructors Regarding Knowledge and Importance of Including Selected Agricultural Mechanics Units in the Vocational Agriculture Program.

    ERIC Educational Resources Information Center

    Heimgartner, Dale C.; Foster, Richard M.

    1981-01-01

    A survey of teachers in five northwestern states revealed that respondents in all states rated the units of arc welding and oxyacetylene welding as the most important units to be included in secondary vocational agriculture programs. (LRA)

  4. Agricultural Chemicals and Radiation. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    The document is designed to be used as a resource in teaching vocational agriculture high school students about the environment. Agricultural chemicals are the major focus, with some attention to radiation. The importance of safety in agricultural chemical use is stressed, with descriptions of the pesticide label; protective clothing; respiratory…

  5. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  6. 29 CFR 780.116 - Commodities included by reference to the Agricultural Marketing Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commodities § 780.116 Commodities included by reference to the Agricultural Marketing Act. (a) Section 3(f... defined as agricultural commodities in section 15(g) of the Agricultural Marketing Act, as amended (12 U.S...) of the Agricultural Marketing Act is that derived from a living tree, the production of...

  7. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  8. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  9. Holistic Watershed-Scale Approach for Studying Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Capel, P. D.; Domagalski, J. L.

    2006-05-01

    The USGS National Water-Quality Assessment (NAWQA) Program studied the water quality of 51 areas across the United States during its first decade (1991-2001). Analyses of results from that phase of the NAWQA Program indicated that detailed studies of the processes affecting water quality could aid in the interpretation of these data, help to determine the direction and scope of future monitoring studies, and add to the understanding of the sources, transport and fate of non-point source chemicals, such as from agriculture. Now in the second decade of investigations, the NAWQA Program has initiated new process-based detailed studies to increase our understanding at the scale of a small watershed (about 3-15 square kilometers), nested within the larger basins studied during the first decade. The holistic, mass-budget approach for small agricultural watersheds that was adopted includes processes, and measures water and chemicals in the atmosphere, surface water, tile drains, overland flow, and within various sub-surface environments including the vadose, saturated, and hyporheic zones. The primary chemicals of interest were nutrients (nitrogen and phosphorous), the triazine and acetanilide herbicides, and the organophosphorus insecticides. Extensive field observations were made, and numerical models were developed to simulate important environmental compartments and interfaces associated with the transport and fate of agricultural chemicals. It is well recognized that these field measurements and simulations cannot fully achieve a full mass budget at this scale, but the approach provides a useful means for comparisons of various processes in different environmental settings. The results gained using this approach will add to the general knowledge of environmental transport and fate processes, and have transfer value to unstudied areas and different scales of investigation. The five initial study areas started in 2002, included watersheds in California, Indiana

  10. AGRICULTURAL CHEMICALS SALES AND SERVICE. AGRICULTURAL SUPPLY - SALES AND SERVICE OCCUPATIONS, MODULE NUMBER 10.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING HIGH SCHOOL OR POST-SECONDARY STUDENTS FOR EMPLOYMENT IN AGRICULTURAL CHEMICAL SALES AND SERVICE. ONE OF A SERIES OF MODULES FOR AGRICULTURAL SUPPLY OCCUPATIONS, IT WAS DEVELOPED ON THE BASIS OF DATA FROM STATE STUDIES BY A NATIONAL TASK FORCE. APPLICABLE TO TWO LEVELS OF INSTRUCTION,…

  11. THE USE OF CHEMICALS IN THE FIELD OF FARM ANIMAL HEALTH (NUTRITION, ENTOMOLOGY, PATHOLOGY). AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVE OF THIS MODULE IS TO PREPARE TECHNICIANS IN THE FIELD OF THE USE OF CHEMICALS FOR ANIMAL HEALTH. SECTIONS INCLUDE -- (1)…

  12. Toxicological procedures for assessing the carcinogenic potential of agricultural chemicals.

    PubMed

    Krewski, D; Clayson, D; Collins, B; Munro, I C

    1982-01-01

    Pesticides and other agricultural chemicals are now widely used throughout the world as a means of improving crop yields in order to meet the increasing demands being placed upon the global food supply. In Canada, the use of such chemicals is controlled through government regulations established jointly by the Department of Agriculture and the Department of National Health & Welfare. Such regulations require a detailed evaluation of the toxicological characteristics of the chemical prior to its being cleared for use. In this paper, procedures for assessing the carcinogenic potential of agricultural and other chemicals are discussed. Consideration is given to both the classical long-term in vivo carcinogen bioassay in rodent or other species and the more recently developed short-term in vitro tests based on genetic alterations in bacterial and other test systems.

  13. Atmospheric Transport and Deposition of Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Majewski, M. S.; Vogel, J. R.; Capel, P. D.

    2006-05-01

    Concentrations of more than 80 pesticides and select transformation products were measured in atmospheric deposition during two growing seasons in five agricultural areas across the United States. Rainfall samples were collected at study areas in California, Indiana, Maryland, and Nebraska. In the arid Yakima Valley of Washington, dry deposition for the same compounds was estimated using air concentration measurements and depositional models. In the predominantly corn, soybean, and alfalfa growing region of Nebraska, Indiana, and Maryland, the herbicides acetochlor, alachlor, atrazine, and metolachlor where the predominant pesticides detected, and the highest concentrations ranged from 0.64 microgram per liter (ug/L) for metolachlor in a small, predominantly dairy use dominated watershed in Maryland to 6.6 ug/L and 19 ug/L for atrazine in Indiana and Nebraska, respectively. California showed a different seasonal occurrence pattern and suite of detected pesticides because the rainy season occurs during the winter months and a wide variety of crops are grown throughout the year. With the exception of metolachlor (0.23 ug/L, max.), the corn and soybean herbicides were not used to any great extent in the California study area and were not detected. The insecticides diazinon (1.21 ug/L, max.) and chlorpyrifos (0.12 ug/L, max.) were detected in nearly every sample taken in California. The Washington study area was similar to California in terms of the variety of crops grown and the pesticides use, but it receives very little rainfall. Dry deposition was estimated at this site from air concentrations and particle settling velocities. The results of these studies show the importance of the atmosphere as an additional source of pesticide loading to agricultural watersheds.

  14. Using reverse osmosis to remove agricultural chemicals from groundwater

    SciTech Connect

    Baier, J.H.; Lykins, B.W.; Fronk, C.A.; Kramer, S.J.

    1987-01-01

    Suffolk County, N.Y., has examined its groundwater for agricultural and organic contaminants since 1978. Recent discoveries of specific chemicals in private wells increased the concern over contamination and spurred a study to determine a cost-effective system for removing agricultural chemicals from groundwater. Tests of cellulose acetate; spiral-wound, thin-film composite; and hollow-fiber membranes showed that reverse osmosis should be considered for pesticide and organics removal. Pilot tests should be conducted on in-situ water to assure proper process design.

  15. Importance of Including Language Arts Instruction as Part of the Vocational Agriculture Program of Study.

    ERIC Educational Resources Information Center

    Foster, Richard M.; Kahler, Alan A.

    1979-01-01

    The purpose of this study was to determine the importance of including language arts instruction as part of the vocational agriculture program. Perceptions of students, parents, teachers, principals, and counselors were examined to identify specific skills to be integrated into vocational agriculture instruction. (SK)

  16. Importance of Including Values Instruction As a Part of Vocational Agriculture Programs of Study.

    ERIC Educational Resources Information Center

    Birkenholz, Robert J.; Kahler, Alan A.

    1982-01-01

    Vocational agriculture program participants were interviewed to determine the importance of including instruction in values development for students. Data analysis revealed that enhancing values is an important part of vocational agriculture programs. Students generally rated the importance of each value category lower than teachers,…

  17. THE USE OF CHEMICALS AS SOIL ADDITIVES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 3.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. IT IS ONE OF A SERIES OF MODULES DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. SECTIONS ARE (1) PHYSICAL AND CHEMICAL ALTERATION OF SOIL WITH CHEMICAL ADDITIVES, (2) TERMINOLOGY AND COMPUTATIONS, (3)…

  18. DEVELOPMENT OF ADME DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS

    EPA Science Inventory

    DEVELOPMENT OF ADME DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS
    Pastoor, Timothy1, Barton, Hugh2
    1 Syngenta Crop Protection, Greensboro, NC, USA.
    2 EPA, Office of Research and Development-NHEERL, RTP, NC, USA.

    A multi-stakeholder series of discussions d...

  19. A Whole-System Approach to Understanding Agricultural Chemicals in the Environment

    USGS Publications Warehouse

    ,

    2009-01-01

    The effects of the use of agricultural chemicals and other practices associated with agriculture on the quality of streams and groundwater is well known; however, less is known about how those effects may vary across different geographic regions of the Nation. Scientists at the U.S. Geological Survey (USGS) are conducting studies on the transport and fate of agricultural chemicals in diverse agricultural settings across the country using comparable and consistent methodology and study designs (fig. 1; Capel and others, 2004; Capel and others, 2008). Assessments in five study areas have been completed, and the results highlight how environmental processes and agricultural practices interact to affect the movement and transformation of agricultural chemicals in the environment. The studies address major environmental compartments, including surface water, groundwater, the unsaturated zone, the streambed, and the atmosphere, as well as the pathways that interconnect these compartments. The study areas represent major agricultural settings, such as irrigated diverse cropping in the West and corn and soybean row cropping in the Midwest and, therefore, findings are relevant throughout much of the Nation.

  20. The challenges of including impacts on biodiversity in agricultural life cycle assessments.

    PubMed

    Gabel, Vanessa M; Meier, Matthias S; Köpke, Ulrich; Stolze, Matthias

    2016-10-01

    Agriculture is considered to be one of the main drivers for worldwide biodiversity loss but the impacts of agricultural production on biodiversity have not been extensively considered in Life Cycle Assessments (LCAs). Recent realisation that biodiversity impact should be included in comprehensive LCAs has led to attempts to develop and implement methods for biodiversity impact assessment. In this review, twenty-two different biodiversity impact assessment methods have been analysed to identify their strengths and weaknesses in terms of their comprehensiveness in the evaluation of agricultural products. Different criteria, which had to meet the specific requirements of biodiversity research, life cycle assessment methodology, and the evaluation of agricultural products, were selected to investigate the identified methods. Very few of the methods were developed with the specific intention of being used for agricultural LCAs. Furthermore, none of the methods can be applied globally while at the same time being able to differentiate between various agricultural intensities. Global value chains and the increasing awareness of different biodiversity impacts of agricultural production systems demand the development of evaluation methods that are able to overcome these shortcomings. Despite the progress that has already been achieved, there are still unresolved difficulties which need further research and improvement.

  1. THE USE OF CHEMICALS AS HERBICIDES. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR ENTRY AND ADVANCEMENT IN AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVES OF THIS MODULE ARE TO DEVELOP ABILITIES NECESSARY FOR OCCUPATIONS CONCERNED WITH CHEMICAL WEED…

  2. THE USE OF CHEMICALS AS FERTILIZERS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. ONE OF A SERIES OF EIGHT MODULES, IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SUBJECT MATTER AREAS ARE (1) CHEMICAL NUTRITION OF PLANTS, (2) PLANT GROWTH, (3) TERMINOLOGY,…

  3. THE USE OF CHEMICALS TO CONTROL FIELD RODENTS AND OTHER PREDATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. IT IS ONE OF A SERIES OF MODULES DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS ARE (1) USE OF CHEMICALS FOR RODENT CONTROL AND ERADICATION, (2) TERMINOLOGY AND COMPUTATIONS, (3) RODENT…

  4. Amphibians and agricultural chemicals: review of the risks in a complex environment.

    PubMed

    Mann, Reinier M; Hyne, Ross V; Choung, Catherine B; Wilson, Scott P

    2009-11-01

    Agricultural landscapes, although often highly altered in nature, provide habitat for many species of amphibian. However, the persistence and health of amphibian populations are likely to be compromised by the escalating use of pesticides and other agricultural chemicals. This review examines some of the issues relating to exposure of amphibian populations to these chemicals and places emphasis on mechanisms of toxicity. Several mechanisms are highlighted, including those that may disrupt thyroid activity, retinoid pathways, and sexual differentiation. Special emphasis is also placed on the various interactions that may occur between different agro-chemicals and between chemicals and other environmental factors. We also examine the indirect effects on amphibian populations that occur when their surrounding pond communities are altered by chemicals.

  5. Agricultural Chemical Safety. A Guide to Safe Handling of Pesticides. Teacher's Handbook, Student Manual, and Transparencies.

    ERIC Educational Resources Information Center

    Van de Vanter, Gordon L.

    Intended for teachers and students, this agricultural chemical safety package of instructional materials pertaining to the safe handling of pesticides was developed by Vocational Education Productions of California State Polytechnic College. Included are a teachers' handbook, a student manual, and 20 transparency masters. The teachers' handbook is…

  6. 29 CFR 780.116 - Commodities included by reference to the Agricultural Marketing Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commodity’ includes, in addition to other agricultural commodities, crude gum (oleoresin) from a living tree, and the following products as processed by the original producers of the crude gum (oleoresin) from which derived: Gum spirits of turpentine, and gum resin, as defined in the Naval Stores Act,...

  7. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  8. Water and Agricultural-Chemical Transport in a Midwestern, Tile-Drained Watershed: Implications for Conservation Practices

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.; Frey, Jeffrey W.; Wilson, John T.

    2007-01-01

    The study of agricultural chemicals is one of five national priority topics being addressed by the National Water-Quality Assessment (NAWQA) Program in its second decade of studies, which began in 2001. Seven watersheds across the Nation were selected for the NAWQA agricultural-chemical topical study. The watersheds selected represent a range of agricultural settings - with varying crop types and agricultural practices related to tillage, irrigation, artificial drainage, and chemical use - as well as a range of landscapes with different geology, soils, topography, climate, and hydrology (Capel and others, 2004). Chemicals selected for study include nutrients (nitrogen and phosphorus) and about 50 commonly used pesticides. This study design leads to an improved understanding of many factors that can affect the movement of water and chemicals in different agricultural settings. Information from these studies will help with decision making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields (Capel and others, 2004). This Fact Sheet highlights the results of the NAWQA agricultural chemical study in the Leary Weber Ditch Watershed in Hancock County, Indiana. This watershed was selected to represent a tile-drained, corn and soybean, humid area typical in the Midwest.

  9. THE USE OF CHEMICALS AS INSECTICIDES--PLANTS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THIS GUIDE IS ONE OF A SERIES DESIGNED TO PROVIDE GROUP INSTRUCTION AND INDIVIDUAL OCCUPATIONAL EXPERIENCE FOR POST-SECONDARY STUDENTS PREPARING FOR EMPLOYMENT AS AGRICULTURAL CHEMICAL TECHNICIANS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. THE OBJECTIVES ARE TO DEVELOP (1) INTEREST, APPRECIATION, AND UNDERSTANDING…

  10. Chemical transport from paired agricultural and restored prairie watersheds

    USGS Publications Warehouse

    Schilling, K.E.

    2002-01-01

    A five-year record of streamflow and chemical sampling data was evaluated to assess the effects of large-scale prairie restoration on transport of NO3-N, Cl, and SO4 loads from paired 5000-ha watersheds located in Jasper County, Iowa. Water quality conditions monitored during land use conversion from row crop agriculture to native prairie in the Walnut Creek watershed were compared with a highly agricultural control watershed (Squaw Creek). Combining hydrograph separation with a load estimation program, baseflow and stormflow loads of NO3-N, Cl, and SO4 were estimated at upstream and downstream sites on Walnut Creek and a downstream site on Squaw Creek. Chemical export in both watersheds was found to occur primarily with baseflow, with baseflow transport greatest during the late summer and fall. Lower Walnut Creek watershed, which contained the restored prairie areas, exported less NO3-N and Cl compared with upper Walnut Creek and Squaw Creek watersheds. Average flow-weighted concentrations of NO3-N exceeded 10 mg/L in upper Walnut Creek and Squaw Creek, but were estimated to be 6.6 mg/L in lower Walnut Creek. Study results demonstrate the utility of partitioning loads into baseflow and stormflow components to identify sources of pollutant loading to streams.

  11. The role of chemical engineering in medicinal research including Alzheimer's.

    PubMed

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.

  12. Computations of fluid mixtures including solid carbon at chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Bourasseau, Emeric

    2013-06-01

    One of the key points of the understanding of detonation phenomena is the determination of equation of state of the detonation products mixture. Concerning carbon rich explosives, detonation products mixtures are composed of solid carbon nano-clusters immersed in a high density fluid phase. The study of such systems where both chemical and phase equilibriums occur simultaneously represents an important challenge and molecular simulation methods appear to be one of the more promising way to obtain some answers. In this talk, the Reaction Ensemble Monte Carlo (RxMC) method will be presented. This method allows the system to reach the chemical equilibrium of a mixture driven by a set of linearly independent chemical equations. Applied to detonation product mixtures, it allows the calculation of the chemical composition of the mixture and its thermodynamic properties. Moreover, an original model has been proposed to take explicitly into account a solid carbon meso-particle in thermodynamic and chemical equilibrium with the fluid. Finally our simulations show that the intrinsic inhomogeneous nature of the system (i.e. the fact that the solid phase is immersed in the fluid phase) has an important impact on the thermodynamic properties, and as a consequence must be taken into account.

  13. Studies by the U.S. Geological Survey on sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, Paul D.; Hamilton, Pixie A.; Erwin, Martha L.

    2004-01-01

    Information from these studies will help with decision-making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields. This information also will benefit the U.S. Environmental Protection Agency, the Department of Agriculture, local and regional water managers, and agricultural chemical manufacturers who are involved in managing chemical use and pesticide registration.

  14. Chemical equilibrium of ablation materials including condensed species

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Brinkley, K. L.

    1975-01-01

    Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.

  15. Agricultural chemicals in alluvial aquifers in Missouri after the 1993 flood

    USGS Publications Warehouse

    Heimann, D.C.; Richards, J.M.; Wilkison, D.H.

    1997-01-01

    Intense rains produced flooding during the spring and summer of 1993 over much of the midwestern USA including many agricultural areas of Missouri. Because of potential contamination from floodwater, an investigation was conducted to determine the changes in concentrations of agricultural chemicals in water samples from alluvial wells in Missouri after the flood. Water samples from 80 alluvial wells with historical data were collected in March, July, and November 1994, and analyzed for dissolved herbicides, herbicide metabolites, and nitrate (NO3). There were no statistically significant differences in the distribution of alachlor ((2,chloro-2'-6'-diethyl-N-[methoxymethyl]acetanilide), atrazine (2-chloro- 4-ethylamino-6-isopropylamino-1, 3, 5 triazine), and nitrate concentrations between pre- and postflood samples (?? = 0.05). The detection frequency of alachlor and atrazine in postflood samples was generally lower than the frequency in preflood samples. Analyses of agricultural chemicals in water samples from an intensely sampled well field indicate significant differences between the distribution of dissolved P concentrations in pre- and postflood samples (?? = 0.05). However, no significant differences were detected between the pre- and postflood distributions of NO3 or ammonia concentrations. Because of the numerous sources of temporal variability and the relatively short record of water-quality data for the study wells, a cause-and-effect relation between changes in agricultural chemical concentrations and a single factor of the 1993 flood is difficult to determine. Based on the results of this study, the 1993 flood did not cause widespread or long-term significant changes in concentrations of agricultural chemicals in water from alluvial aquifers in Missouri.

  16. A novel model for estimating organic chemical bioconcentration in agricultural plants

    SciTech Connect

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without the need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.

  17. Using GIS and logistic regression to estimate agricultural chemical concentrations in rivers of the midwestern USA

    USGS Publications Warehouse

    Battaglin, W.A.

    1996-01-01

    Agricultural chemicals (herbicides, insecticides, other pesticides and fertilizers) in surface water may constitute a human health risk. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during the fall, winter and spring. Natural and anthropogenic variables of river drainage basins, such as soil permeability, the amount of agricultural chemicals applied or percentage of land planted in corn, affect agricultural chemical concentrations in rivers. Logistic regression (LGR) models are used to investigate relations between various drainage basin variables and the concentration of selected agricultural chemicals in rivers. The method is successful in contributing to the understanding of agricultural chemical concentration in rivers. Overall accuracies of the best LGR models, defined as the number of correct classifications divided by the number of attempted classifications, averaged about 66%.

  18. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture

    PubMed Central

    Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  19. Performance Objectives, Task Analysis, Learning Content, Content Limits, and Domain Referenced Tests for the Agricultural Chemicals Catalog. Final Report.

    ERIC Educational Resources Information Center

    Hamilton, William; And Others

    This document contains Indiana agricultural chemicals curriculum materials based on the Vocational-Technical Education Consortium of States (VTECS) Agricultural Chemicals Catalog. It is intended to improve preparation of high school and adult students for handling and using agricultural chemicals and for jobs as chemical salespersons or chemical…

  20. Factors influencing Australian agricultural workers' self-efficacy using chemicals in the workplace.

    PubMed

    Blackman, Ian R

    2012-11-01

    A hypothetical model was formulated to explore which factors can simultaneously influence the self-reported ability of agricultural employees to embrace chemical safety practices. Eight variables were considered in the study, including the employees' gender, age, duration of current employment status, and whether they were employed full-time or part-time. The self-efficacy measures of 169 participants were then estimated by measuring their self-rated ability to understand and perform different chemical safety practices. Models identifying employee self-efficacy pathways leading to worker readiness to engage in chemical safety were then tested using Partial Least Squares Path Analysis. Study results suggest that employees' self-efficacy to successfully engage in safe chemical practices in their workplace can be directly predicted by four variables, with additional indirect effects offered by one other variable, which cumulatively account for 41% of the variance of employees' chemical safety self-efficacy scores. The most significant predictor variables that directly influenced employees' self-efficacy in adopting chemical safety practices in the workplace were worker age, gender, years of employment, and concurrent confidence (self-efficacy) arising from prior experience using chemicals in the workplace. The variables of employees' prior knowledge and understanding about the use of administrative controls and personal protective equipment to protect workers from chemical exposure had no direct influence on self-efficacy to handle chemical emergencies. Employees' unfamiliarity with risk control strategies and reliance on material safety data sheets for information suggest that ongoing and targeted training are necessary if chemical safety issues are to be addressed.

  1. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  2. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  3. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-06-01

    Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  4. EPA requires major agricultural chemical dealer to safely manage pesticides

    EPA Pesticide Factsheets

    SAN FRANCISCO - Today, the U.S. Environmental Protection Agency announced settlements with two associated companies for the improper storage and containment of agricultural pesticides. Fertizona, a large fertilizer and crop protection retailer, and

  5. Problems associated with the use of chemicals by agricultural workers.

    PubMed

    Baloch, U K

    1985-01-01

    The agricultural productivity in Pakistan is hampered by insects, diseases, and weeds, which are reported causing losses ranging up to 50%, estimated at a total value of over 900 million U.S. dollars. The use of pesticides in Pakistan started in 1954 with 254 metric tons of formulation, increasing to the level of 16,226 metric tons in 1976-77. Since the import and use of pesticides was in the public sector, the promulgation of the Agricultural Pesticides Ordinance was delayed to 1971 and the Rules to 1973. Under these Rules exist provisions necessary for the registration, marketing, and safe use of pesticides. Through the Agricultural Pesticides Technical Advisory Committee consisting of members drawn from the various Federal and Provincial agencies relevant to the subject, the Ministry of Food, Agriculture and Cooperatives, Government of Pakistan, is responsible for its implementation, but no regular agency for monitoring the implementation of the Rules exists. The extent of health hazards to agricultural workers as a result of exposure to pesticides, among other things, depends on the socioeconomic and educational background of their society, the local laws governing registration, and the scientific and regulatory institutional setup of the country. The above factors, of particular relevance to Pakistan, are discussed.

  6. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  7. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  8. Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.

    PubMed

    Pekin, Burak K

    2013-12-01

    Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas.

  9. AGRICULTURAL CHEMICAL SAFETY ASSESSMENT: A MULTISECTOR APPROACH TO THE MODERNIZATION OF HUMAN SAFETY REQUIREMENTS.

    EPA Science Inventory

    Better understanding of toxicological mechanisms, enhanced testing capabilities, and demands for more sophisticated data for safety and health risk assessment have generated international interest in improving the current testing paradigm for agricultural chemicals. To address th...

  10. 75 FR 9437 - Wacker Chemical Corporation Wacker Polymers Division a Subsidiary of Wacker Chemie AG Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Employment and Training Administration Wacker Chemical Corporation Wacker Polymers Division a Subsidiary of... Chemical Corporation Wacker Polymers Division a Subsidiary of Wacker Chemie AG Including On-Site Leased... Assistance on July 16, 2009, applicable to workers of Wacker Chemical Corporation, Wacker Polymers...

  11. Insect chemical ecology research in the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Aldrich, Jeffrey R; Bartelt, Robert J; Dickens, Joseph C; Knight, Alan L; Light, Douglas M; Tumlinson, James H

    2003-01-01

    This multi-author paper reviews current work by USDA-ARS scientists in the field of chemical ecology. Work with pheromones, the discovery and development of the codling moth kairomone, studies on insect-plant interactions and chemically mediated tritrophic plant-insect interactions have led to practical methods for control of important insect pests.

  12. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  13. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  14. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  15. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  16. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  17. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFETY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  18. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFERY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  19. DETERMINANTS OF PERCEIVED AGRICULTURAL CHEMICAL RISK IN THREE WATERSHEDS IN THE MIDWESTERN UNITED STATES. (R825761)

    EPA Science Inventory

    Abstract

    Recent epidemiologic research on the relationship between agricultural chemical use and human health has focused on possible risks to both farmers and nonfarm publics through such avenues as airborne chemical drift and contamination of drinking water. While ag...

  20. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  1. Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Lathrop, Timothy R.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is part of an Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. Water-quality samples were collected in Leary Weber Ditch and in the major hydrologic compartments of the Leary Weber Ditch Basin during 2003 and 2004. Hydrologic compartments that contribute water and agricultural chemicals to Leary Weber Ditch are rain water, overland-flow water, soil water, tile-drain water, and ground water. Samples were analyzed for selected pesticides, nutrients, and major ions.

  2. Agricultural chemicals at the outlet of a shallow carbonate aquifer

    USGS Publications Warehouse

    Felton, G.K.

    1996-01-01

    A groundwater catchment, located in Woodford and Jessamine Counties in the Inner Bluegrass of Kentucky, was instrumented to develop long- term flow and water quality data. The land uses on this 1 620-ha catchment consist of approximately 59% in grasses consisting of beef farms, horse farms, and a golf course; 16% row crops; 6% orchard: 13% forest; and 6% residential. Water samples were analyzed twice a week for, Ca++, Mg++, Na+, Cl-, HCO3-, O4=, NO3-, total solids, suspended solids, fecal coliforms, fecal streptococci, and triazines. Flow rate and average ambient temperature were also recorded. No strong linear relationship was developed between chemical concentrations and other parameters. The transient nature of the system was emphasized by one event that drastically deviated from others. Pesticide data were summarized and the 'flushing' phenomena accredited to karst systems was discussed. The total solids content in the spring was consistent at approximately 2.06 mg/L. Fecal bacteria contamination was well above drinking water limits (fecal coliform and fetal streptococci averages were I 700 and 4 300 colony-forming-units/100 mL, respectively) and the temporal variation in bacterial contamination was not linked to any other variable.

  3. VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN.

    ERIC Educational Resources Information Center

    CHRISTENSEN, MAYNARD; CLARK, RAYMOND M.

    THIS STUDY WAS CONDUCTED TO DETERMINE THE VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT BELOW THE MANUFACTURING LEVEL IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN. NINE FUNCTIONS PERFORMED IN THE INDUSTRY WERE LISTED--RESEARCH, TRANSPORTATION, PROCESSING, PUBLIC RELATIONS, SALES, SERVICE, OFFICE RECORDS AND MANAGEMENT, MAINTENANCE, AND…

  4. Preventing Agricultural Chemical Exposure: A Safety Program Manual. Participatory Education with Farmworkers in Pesticide Safety.

    ERIC Educational Resources Information Center

    Wake Forest Univ., Winston-Salem, NC. Dept. of Family and Community Medicine.

    Preventing Agricultural Chemical Exposure among North Carolina Farmworkers (PACE) is a project designed to describe farmworker pesticide exposure and to develop an educational intervention to reduce farmworker pesticide exposure. The PACE project used a community participation framework to ensure that the community played a significant role in…

  5. Agricultural Chemical Use and White Male Cancer Mortality in Selected Rural Farm Counties.

    ERIC Educational Resources Information Center

    Stokes, C. Shannon; Brace, Kathy D.

    A study of 1,497 nonmetropolitan counties was conducted to test the possible contribution of agricultural chemical use to cancer mortality rates in rural counties. The dependent variables were 20-year age-adjusted mortality rates for 1950 to 1969 for five categories of cancer: genital, urinary, lymphatic, respiratory, and digestive. Because sex…

  6. OPEN BURNING OF AGRICULTURAL BIOMASS: PHYSICAL AND CHEMICAL PROPERTIES OF PARTICLE-PHASE EMISSIONS

    EPA Science Inventory

    This effort presents the physical and chemical characterization of PM2.5 emissions from simulated agricultural fires of surface residuals of two major grain crops, rice (Oryza sativa) and wheat (Triticum aestivum L). The O2 levels and CO/CO

  7. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture

    PubMed Central

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken. PMID:27486573

  8. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture.

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken.

  9. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Toxic fables: the advertising and marketing of agricultural chemicals in the great plains, 1945-1985.

    PubMed

    Vail, David D

    2012-12-01

    This paper examines how pesticides and their technologies were sold to farmers and pilots throughout the midtwentieth century. It principally considers how marketing rhetoric and advertisement strategies used by chemical companies and aerial spraying firms influenced the practices and perspectives of farm producers in the Great Plains. In order to convince landowners and agricultural leaders to buy their pesticides, chemical companies generated advertisements that championed local crop health, mixture accuracy, livestock safety and a chemical-farming 'way of life' that kept fields healthy and productive. Combining notions of safety, accuracy and professionalism with pest eradication messages reinforced the standards that landowners, pilots and agriculturalists would hold regarding toxicity and risk when spraying their fields. As the politics of health changed in the aftermath of Rachel Carson's Silent Spring, these companies and aerial spraying outfits responded by keeping to a vision of agricultural health that required poisons for protection through technological accuracy.

  11. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, C.A.; Grant, W.E.; Mora, M.A.; Woodin, M.

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove

  12. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, Catherine A.; Grant, William E.; Mora, Miguel A.; Woodin, Marc

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove

  13. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Wuebbles, Donald J.

    1994-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O3, NO(x), Cl(x), HCl, N2O5, ClONO2 are calculated.

  14. Chemical usage in production agriculture: do crop insurance and off-farm work play a part?

    PubMed

    Chang, Hung-Hao; Mishra, Ashok K

    2012-08-30

    In recent years a growing body of literature in the agricultural policy arena has examined the association between crop insurance and off-farm employment. However, little is known about the extent to which these two activities may be related to environmental quality, in particular their impacts on fertilizer/chemical use of the farm. To fill this gap, this paper examines the effect of crop insurance and off-farm work on fertilizer/chemical expenses within the farm household framework. Quantile regression results from a national representative farm-level data show that off-farm work by the farm operator tends to decrease fertilizer/chemical expenses, and the effect is more pronounced at the higher percentiles of the distribution of fertilizer/chemical expense. In contrast, a positive effect of crop insurance on fertilizer/chemical expenses is evident, and the effect is robust across the entire distribution.

  15. Temporal trends of selected agricultural chemicals in Iowa's groundwater, 1982-1995: Are things getting better?

    USGS Publications Warehouse

    Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.

    1997-01-01

    Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.

  16. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  17. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  18. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology.

    PubMed

    Stokes, Michael E; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to "fit all," new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to "personalize" agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma.

  19. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

    PubMed Central

    Stokes, Michael E.; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma. PMID:25183965

  20. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic.

    PubMed Central

    Jobling, S; Reynolds, T; White, R; Parker, M G; Sumpter, J P

    1995-01-01

    Sewage, a complex mixture of organic and inorganic chemicals, is considered to be a major source of environmental pollution. A random screen of 20 organic man-made chemicals present in liquid effluents revealed that half appeared able to interact with the estradiol receptor. This was demonstrated by their ability to inhibit binding of 17 beta-estradiol to the fish estrogen receptor. Further studies, using mammalian estrogen screens in vitro, revealed that the two phthalate esters butylbenzyl phthalate (BBP) and di-n-butylphthalate (DBP) and a food antioxidant, butylated hydroxyanisole (BHA) were estrogenic; however, they were all less estrogenic than the environmental estrogen octylphenol. Phthalate esters, used in the production of various plastics (including PVC), are among the most common industrial chemicals. Their ubiquity in the environment and tendency to bioconcentrate in animal fat are well known. Neither BBP nor DBP were able to act as antagonists, indicating that, in the presence of endogenous estrogens, their overall effect would be cumulative. Recently, it has been suggested that environmental estrogens may be etiological agents in several human diseases, including disorders of the male reproductive tract and breast and testicular cancers. The current finding that some phthalate compounds and some food additives are weakly estrogenic in vitro, needs to be supported by further studies on their effects in vivo before any conclusions can be made regarding their possible role in the development of these conditions. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7556011

  1. Spatial data in geographic information system format on agricultural chemical use, land use, cropping practices in the United States

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1995-01-01

    The spatial data in geographic information system format described in this report consist of estimates for all counties in the conterminous United States of the annual use of 96 herbicides in 1989; annual sales of nitrogen fertilizer, in tons, for 1985-91; and agricultural expenses, land use, chemical use, livestock holdings, and cropping practices in 1987. The source information, originally in tabular form, is summarized as digital polygon attribute data in the 18 geographic information system spatial data layers (coverages) provided. The information in these coverages can be used in estimating regional agricultural-chemical use or agricultural practices and in producing visual displays and mapping relative rates of agricultural-chemical use or agricultural practices across broad regions of the United States.

  2. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    PubMed

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  3. Driving pest populations: Agricultural chemicals lead to an adaptive syndrome in Nilaparvata lugens Stal (Hemiptera: Delphacidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some of the effects of contemporary climate change and agricultural practices include increased pest ranges and thermotolerances and phonological mismatches between pest insects and their natural enemies. The brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a serious pest ...

  4. Chemical status of selenium in evaporation basins for disposal of agricultural drainage.

    PubMed

    Gao, S; Tanji, K K; Dahlgren, R A; Ryu, J; Herbel, M J; Higashi, R M

    2007-09-01

    Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.

  5. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  6. Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals.

    PubMed

    Zhang, Fu-Shen; Yamasaki, S; Nanzyo, M

    2002-02-04

    The chemical characteristics of 89 municipal waste ashes, including food scrap ash (FSA), animal waste ash (AWA), horticulture waste ash (HWA), sewage sludge ash (SSA) and incinerator bottom ash (IBA), from various locations in Japan were examined with the aim of evaluating their suitability for use in agriculture. Although the waste ashes came from different sources and consisted of various materials, the gross elemental composition was similar. Acid neutralization capacity (liming effect) for the waste ashes was equivalent to 10-30% of CaO and followed the sequence SSA > IBA > AWA > FSA > HWA. Average P concentrations for the five types of waste ashes ranged from 10 to 29 g kg(-1) and average K concentrations ranged from 14 to 63 g kg(-1), respectively. Metal contents in the waste ashes were compared with levels in Japanese agricultural soils. K in the waste ashes was 1.3-6 times higher and Ca was 3-12 times higher; contents of the other metals in FSA, AWA and HWA were generally less than five times higher, but Ni, Cu, Zn, Cd, Sn, Pb in SSA or IBA were approximately 10-200 times higher than those in soils. Moreover, the ceiling amounts of waste ashes that may be applied to main Japanese agricultural soils were calculated by using soil contamination standards for Cu. Water solubility of P and metals in the waste ashes were also examined.

  7. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  8. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  9. Does exposure to agricultural chemicals increase the risk of prostate cancer among farmers?

    PubMed

    Parent, Marie-Elise; Désy, Marie; Siemiatycki, Jack

    2009-01-01

    Several studies suggest that farmers may be at increased risk of prostate cancer. The present analysis, based on a large population-based case-control study conducted among men in the Montreal area in the early 1980's, aim at identifying occupational chemicals which may be responsible for such increases. The original study enrolled 449 prostate cancer cases, nearly 4,000 patients with other cancers, as well as 533 population controls. Subjects were interviewed about their occupation histories, and a team of industrial hygienists assigned their past exposures using a checklist of some 300 chemicals. The present analysis was restricted to a study base of men who had worked as farmers earlier in their lives. There were a total of 49 men with prostate cancers, 127 with other cancers and 56 population controls. We created a pool of 183 controls combining the patients with cancers at sites other than the prostate and the population controls. We then estimated the odds ratio for prostate cancer associated with exposure to each of 10 agricultural chemicals, i.e., pesticides, arsenic compounds, acetic acid, gasoline engine emissions, diesel engine emissions, polycyclic aromatic hydrocarbons from petroleum, lubricating oils and greases, alkanes with >or=18 carbons, solvents, and mononuclear aromatic hydrocarbons. Based on a model adjusting for age, ethnicity, education, and respondent status, there was evidence of a two-fold excess risk of prostate cancer among farmers with substantial exposure to pesticides [odds ratio (OR)=2.3, 95% confidence interval (CI) 1.1-5.1], as compared to unexposed farmers. There was some suggestion, based on few subjects, of increased risks among farmers ever exposed to diesel engine emissions (OR=5.7, 95% CI 1.2-26.5). The results for pesticides are particularly noteworthy in the light of findings from previous studies. Suggestions of trends for elevated risks were noted with other agricultural chemicals, but these are largely novel and need

  10. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    PubMed

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-07

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.

  11. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    PubMed

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications.

  12. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions

    NASA Astrophysics Data System (ADS)

    Hays, Michael D.; Fine, Philip M.; Geron, Christopher D.; Kleeman, Michael J.; Gullett, Brian K.

    We present the physical and chemical characterization of particulate matter (PM 2.5) emissions from simulated agricultural fires (AFs) of surface residuals of two major grain crops, rice ( Oryza sativa) and wheat ( Triticum aestivum L.). The O 2 levels and CO/CO 2 ratios of the open burn simulations are typical of the field fires of agricultural residues. In the AF plumes, we observe predominantly accumulation mode (100-1000 nm) aerosols. The mean PM 2.5 mass emission factors from replicate burns of the wheat and rice residuals are 4.7±0.04 and 13.0±0.3 g kg -1 of dry biomass, respectively. The combustion-derived PM emissions from wheat are enriched in K (31% weight/weight, w/w) and Cl (36% w/w), whereas the PM emissions from rice are largely carbonaceous (84% w/w). Molecular level gas chromatography/mass spectrometry analysis of PM 2.5 solvent extracts identifies organic matter that accounts for as much as 18% of the PM mass emissions. A scarcity of detailed PM-phase chemical emissions data from AFs required that comparisons among other biomass combustion groups (wildfire, woodstove, and fireplace) be made. Statistical tests for equal variance among these groups indicate that the degree to which molecular emissions vary is compound dependent. Analysis of variance testing shows significant differences in the mean values of certain n-alkane, polycyclic aromatic hydrocarbon (PAH), oxy-PAH, and sugar marker compounds common to the biomass combustion types. Individual pairwise comparisons of means at the combustion group level confirm this result but suggest that apportioning airborne PM to these sources may require a more comprehensive use of the chemical emissions fingerprints. Hierarchical clustering of source test observations using molecular markers indicates agricultural fuels as distinct from other types of biomass combustion or biomass species. Rough approximations of the total potential PM 2.5 emissions outputs from the combustion of the wheat and rice

  13. New oilseed crops for fuels and chemicals: ecological and agricultural considerations

    SciTech Connect

    Draper, H.M. III

    1982-01-01

    A new approach to agriculture involving oilseed crops for fuels and chemicals is proposed. Such an approach to biomass energy would be designed to benefit the limited-resource farmer in the United States and the Third World, while at the same time not aggravating global ecological problems such as deforestation and desertification. Since food versus fuel conflicts arise when plants are grown for industrial uses on good lands, productivity questions are examined, with the conclusion that fundamental biological constraints will limit yields on marginal lands. Conventional vegetable oil crops are limited in their climatic requirements or are not well adapted to limited-resource farming; therefore, new oilseeds more adaptable to small farming are proposed. Such plants would be for specialty chemicals or to meet local energy needs. Chemicals produced would be low-volume, labor-intensive, and possibly high-priced. A list of 281 potential new oilseeds is provided, and each is classified according to potential, multiple product potential, and vegetative characteristics. Using climatic data which are available for most areas, a method of making rough productivity estimates for unconventional wild plant oilseeds is proposed, and example resource estimates are provided for the southeastern United States.

  14. Three-dimensional chemo-thermomechanically coupled simulation of curing adhesives including viscoplasticity and chemical shrinkage

    NASA Astrophysics Data System (ADS)

    Liebl, Christoph; Johlitz, Michael; Yagimli, Bülent; Lion, Alexander

    2012-05-01

    Based on the one-dimensional material model developed by Liebl et al. (Arch Appl Mech, 2011) a three-dimensional viscoelastic-viscoplastic material model for small deformations of curing adhesives on the basis of continuum mechanics is proposed in this contribution. The model describes the most relevant phenomena which occur during curing processes in the automotive industry and includes the effects of temperature and degree of cure on the mechanical properties of the material. Thermal expansion as well as chemical shrinkage are also contained. The yield stress for the viscoplastic part of the model goes back to the work of Schlimmer and Mahnken (Int J Numer Meth Eng 63:1461-1477, 2005), but is formulated in reference to the degree of cure and the temperature. Therefore this model considers chemo-thermomechanical coupling and extends the plasticity approach of Schlimmer and Mahnken, which is devised for cured adhesives, to the whole curing range, from the uncured to the fully cured adhesive. A peculiar focus is hereby laid on epoxy resins used in the automotive industry as structural adhesives.

  15. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  16. Does Exposure to Agricultural Chemicals Increase the Risk of Prostate Cancer among Farmers?

    PubMed Central

    Parent, Marie-Élise; Désy, Marie; Siemiatycki, Jack

    2009-01-01

    Several studies suggest that farmers may be at increased risk of prostate cancer. The present analysis, based on a large population-based case-control study conducted among men in the Montreal area in the early 1980’s, aim at identifying occupational chemicals which may be responsible for such increases. The original study enrolled 449 prostate cancer cases, nearly 4,000 patients with other cancers, as well as 533 population controls. Subjects were interviewed about their occupation histories, and a team of industrial hygienists assigned their past exposures using a checklist of some 300 chemicals. The present analysis was restricted to a study base of men who had worked as farmers earlier in their lives. There were a total of 49 men with prostate cancers, 127 with other cancers and 56 population controls. We created a pool of 183 controls combining the patients with cancers at sites other than the prostate and the population controls. We then estimated the odds ratio for prostate cancer associated with exposure to each of 10 agricultural chemicals, i.e., pesticides, arsenic compounds, acetic acid, gasoline engine emissions, diesel engine emissions, polycyclic aromatic hydrocarbons from petroleum, lubricating oils and greases, alkanes with ≥18 carbons, solvents, and mononuclear aromatic hydrocarbons. Based on a model adjusting for age, ethnicity, education, and respondent status, there was evidence of a two-fold excess risk of prostate cancer among farmers with substantial exposure to pesticides [odds ratio (OR)=2.3, 95% confidence interval (CI) 1.1–5.1], as compared to unexposed farmers. There was some suggestion, based on few subjects, of increased risks among farmers ever exposed to diesel engine emissions (OR=5.7, 95% CI 1.2–26.5). The results for pesticides are particularly noteworthy in the light of findings from previous studies. Suggestions of trends for elevated risks were noted with other agricultural chemicals, but these are largely novel and

  17. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories.

  18. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  19. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  20. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  1. The 5th World Congress of chemical engineering: Technologies critical to a changing World. Volume II: Agriculture, food biotechnology biomedical electric power process safety

    SciTech Connect

    1996-12-31

    Volume 2 of the proceedings from the 5th World Congress of Chemical Engineering covers four major topic areas from which papers were selected for the database: Agriculture, Food; Biotechnology; Electric Power, and Process Safety. Pertinent subtopics include: Renewable Resource Engineering; Special Processes in the Food Industry; Advances in Metabolite Production; Advances in Fermentation and Cell Culture Engineering; Coal and Nuclear Central Station Power Plants; Large Natural Gas Fired Power Stations; Distributed Generation; Potential Impact of Biomass Energy; and Chemical Hazards in Plant Design. 29 papers were selected from Volume 1 for the database.

  2. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and

  3. Plasma-chemical technology of treatment of halogen-containing waste including polychlorinated biphenyls

    NASA Astrophysics Data System (ADS)

    Gusarov, E. E.; Malkov, Yu. P.; Stepanov, S. G.; Troshchinenko, G. A.; Zasypkin, I. M.

    2010-12-01

    We consider the developed plasma-chemical technology of halogen-containing substances treatment. The paper contains the experimental plant schematic and the positive results obtained after the treatment of tetrafluoromethane, ozone-damaging freon 12, polychlorinated biphenyls (PCB), the waste containing fluoride and chloride organics. The technology is proposed for industrial application.

  4. Test driving ToxCast: endocrine profiling for1858 chemicals included in phase II

    EPA Science Inventory

    Introduction: Identifying chemicals to test for potential endocrine disruption beyond those already implicated in the peer-reviewed literature is a challenge. This review is intended to help by summarizing findings from the Environmental Protection Agency’s (EPA) ToxCast™ high th...

  5. Effects of topography on the transport of agricultural chemicals to groundwater in a sand-plain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    Geochemical data were collected to investigate the effects of topography and focused recharge on the transport of agricultural chemicals to groundwater through sandy soils. The research was done at a topographically high (upland) site and a depressional (lowland) site within a corn field. Agricultural chemicals that move readily with water were most directly affected by focused recharge to the lowland site. Surface runoff of water to the lowland site was the primary cause for the generally greater flux of chloride, nitrate nitrogen, and sulfate compared with the upland site. Based on data from the unsaturated zone, for example, the average annual fluxes of these chemicals in 1992–1993 were 5.1, 3.4, and 1.7 times greater, respectively, at the lowland site. Study results indicate that consideration should be given to modifying site-specific management farming technology to account for varying recharge rates in different topographic settings. By reducing chemical application rates in topographic depressions, where focused recharge of chemicals occurs because of surface runoff, farmers could improve ground-water quality as well as reduce expenditures for agricultural chemicals.

  6. Occurrence and Transport of Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.; Wilson, John T.; Meyer, Michael T.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is one of seven first-order basins selected from across the United States as part of the Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. The nationwide study was designed to increase the understanding of the links between the sources of water and agricultural chemicals (nutrients and pesticides) and the transport and fate of these chemicals through the environment. Agricultural chemicals were detected in Leary Weber Ditch and in every associated hydrologic compartment sampled during 2003 and 2004. Pesticides were detected more frequently in samples collected from overland flow and from the ditch itself and less frequently in ground-water samples. The lowest concentrations of pesticides and nutrients were detected in samples of rain, soil water, and ground water. The highest concentrations of pesticides and nutrients were detected in samples of tile-drain water, overland flow, and water from Leary Weber Ditch. Samples collected from the tile drain, overland flow and Leary Weber Ditch soon after chemical applications to the fields and coincident with rainfall and increased streamflow had higher concentrations of pesticides and nutrients than samples collected a longer time after the chemicals were applied. A mass-balance mixing analysis based on potassium concentrations indicated that tile drains are the primary contributor of water to Leary Weber Ditch, but overland flow is also an important contributor during periods of high-intensity rainfall. When maximum rainfall intensity was 0.5 inches per hour or lower, overland flow contributed about 10 percent and tile drains contributed about 90 percent of the flow to Leary Weber Ditch. When maximum rainfall intensity was 0.75 inches per hour or greater, overland flow contributed about 40 percent and tile drains contributed about 60 percent of the flow to the ditch. Ground

  7. Energy landscapes of a hairpin peptide including NMR chemical shift restraints.

    PubMed

    Carr, Joanne M; Whittleston, Chris S; Wade, David C; Wales, David J

    2015-08-21

    Methods recently introduced to improve the efficiency of protein structure prediction simulations by adding a restraint potential to a molecular mechanics force field introduce additional input parameters that can affect the performance. Here we investigate the changes in the energy landscape as the relative weight of the two contributions, force field and restraint potential, is systematically altered, for restraint functions constructed from calculated nuclear magnetic resonance chemical shifts. Benchmarking calculations were performed on a 12-residue peptide, tryptophan zipper 1, which features both secondary structure (a β-hairpin) and specific packing of tryptophan sidechains. Basin-hopping global optimization was performed to assess the efficiency with which lowest-energy structures are located, and the discrete path sampling approach was employed to survey the energy landscapes between unfolded and folded structures. We find that inclusion of the chemical shift restraints improves the efficiency of structure prediction because the energy landscape becomes more funnelled and the proportion of local minima classified as native increases. However, the funnelling nature of the landscape is reduced as the relative contribution of the chemical shift restraint potential is increased past an optimal value.

  8. Physical and chemical characterizations of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-08-01

    Biochar has received large attention as a strategy to tackle against carbon emission. Not only carbon fixation has been carried out but also other merits for agricultural application due to unique physical and chemical character such as absorption of contaminated compounds in soil, trapping ammonia and methane emission from compost, and enhancement of fertilizer quality. In our study, different local waste feed stocks (rice husk, rice straw, wood chips of apple tree (Malus Pumila) and oak tree (Quercus serrata)), in Aomori, Japan, were utilized for creating biochar with different temperature (400-800 °C). Concerning to the biochar production, the pyrolysis of lower temperature had more biochar yield than higher temperature pyrolysis process. On the contrary, surface areas and adsorption characters have been increased as increasing temperature. The proportions of carbon content in the biochars also increased together with increased temperatures. Infrared-Fourier spectra (FT-IR) and 13C-NMR were used to understand carbon chemical compositions in our biochars, and it was observed that the numbers of the shoulders representing aromatic groups, considered as stable carbon structure appeared as the temperature came closer to 600 °C, as well as in FT-IR. In rice materials, the peak assigned to SiO2, was observed in all biochars (400-800 °C) in FT-IR. We suppose that the pyrolysis at 600 °C creates the most recalcitrant character for carbon sequestration, meanwhile the pyrolysis at 400 °C produces the superior properties as a fertilizer by retaining volatile and easily labile compounds which promotes soil microbial activities.

  9. Chemical Composition of Wildland and Agricultural Biomass Burning Particles Measured Downwind During BBOP Study

    NASA Astrophysics Data System (ADS)

    Fortner, E.; Onasch, T. B.; Shilling, J.; Pekour, M. S.; Kleinman, L. I.; Sedlacek, A. J., III; Worsnop, D. R.

    2014-12-01

    The Biomass Burning Observation Project (BBOP), a Department of Energy (DOE) sponsored study, measured wildland fires in the Pacific Northwest and prescribed agricultural burns in the Central Southeastern US from the DOE Gulfstream-1 (G-1) aircraft platform over a four month period in 2013. The chemical composition of the emitted particulate emissions were characterized using an Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) and will be presented in the context of the fire location and source. The SP-AMS was operated with both laser and resistively heated tungsten vaporizers, alternatively turning the laser vaporizer on and off. With the laser vaporizer off, the instrument operated as a standard HR-AMS. Under these sampling conditions, the non-refractory chemical composition of the biomass burning particles will be characterized as a function of the fuel type burned and the observed modified combustion efficiency and observed changes during downwind transport. Specific attention will focus on the level of oxidation (i.e., O:C, H:C, and OM:OC ratios), anhydrosugar, and aromatic content. With the laser vaporizer on, the SP-AMS was also sensitive to the refractory black carbon content, in addition to the non-refractory components, and will be presented within the context of technique-specific collection efficiencies. Under these sampling conditions, addition information on the mass of black carbon, the OM/BC ratio, and the RBC(coat-to-core) ratio will be examined, with a focus on correlating with the simultaneous optical measurements.

  10. Streptococcus suis sorption on agricultural soils: role of soil physico-chemical properties.

    PubMed

    Zhao, Wenqiang; Liu, Xing; Huang, Qiaoyun; Cai, Peng

    2015-01-01

    Understanding pathogen sorption on natural soil particles is crucial to protect public health from soilborne and waterborne diseases. Sorption of pathogen Streptococcus suis on 10 agricultural soils was examined, and its correlations with soil physico-chemical properties were also elucidated. S. suis sorption isotherms conformed to the linear equation, with partition coefficients (Ks) ranging from 12.7 mL g(-1) to 100.1 mL g(-1). Bacteria were observed to sorb on the external surfaces of soil aggregates by scanning electron microscopy. Using Pearson correlation and linear regression analysis, solution pH was found to have significant negative correlations with Ks. Stepwise multiple regression and path analysis revealed that pH and cation exchange capacity (CEC) were the main factors influencing sorption behaviors. The obtained overall model (Ks=389.6-45.9×pH-1.3×CEC, R(2)=0.943, P<0.001) can accurately predict Ks values. However, the variability in Ks was less dependent on soil organic matter, specific surface area, soil texture and zeta potential, probably due to the internal-surface shielding phenomenon of soil aggregates. Additionally, the sorption trends cannot be interpreted by interaction energy barriers calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, suggesting the limits of DLVO theory in describing pathogen sorption on natural soils. Our results also indicated soil pH and CEC should be preferentially considered when modeling S. suis sorption process.

  11. Reconnaissance of the occurrence of agricultural chemicals in ground water in Haywood, Lake, Obion and Shelby Counties, Tennessee

    USGS Publications Warehouse

    Hanchar, D.W.

    1991-01-01

    Data on the occurrence of agricultural chemicals in ground wafer in Tennessee are sparse. The surficial alluvial aquifer is an important source of domestic water supply in West Tennessee, and potentially is subject fo contamination from the application of agricultural chemicals in the area. Nineteen shallow wells completed in the alluvial aquifers in areas of high density agricultural use were sampled in the winter and again in the summer of 1988 to ascertain the occurrence of agricultural chemical in ground water. Although no triazine herbicides or organophosphorus insecticides were detected in any of the wells sampled, elevated nitrite plus nitrate (as nitrogen) concentrations were detected. Results from the winter sampling period indicate a range of nitrite plus nitrate (as nitrogen) concentrations of less than 0.1 to 7.8 milligrams per liter with a median concentration of 2.6 milligrams per liter. Results from the summer sampling period indicate a range of nitrite plus nitrate (as nitrogen) concentrations of less than 0.1 to 8.9 milligrams per liter, median, 2.5 milligrams per liter. The highest concentrations occurred in the shallowest wells, and, in one instance, in a shallow well near a heavily irrigated field.

  12. 77 FR 13352 - Exxonmobil Chemical Company Films Business Division Including on-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Leased Workers From Manpower, RCG-IT and Genesis Macedon, NY; Amended Certification Regarding Eligibility... workers of the subject firm. The company reports that workers leased from RCG-IT and Genesis were employed... these findings, the Department is amending this certification to include workers leased from RCG-IT...

  13. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use.

    PubMed

    Govasmark, Espen; Stäb, Jessica; Holen, Børge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-01

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg(-1) DM) and copper (23-93 mg kg(-1) DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg(-1) DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg(-1)) and ∑ PAH 16 (0.2-1.98 mg kg(-1) DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg(-1) DM) and thiabendazol (<0.14-0.73 mg kg(-1) DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  14. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  15. An in vitro skin sensitization assay termed EpiSensA for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens.

    PubMed

    Saito, Kazutoshi; Takenouchi, Osamu; Nukada, Yuko; Miyazawa, Masaaki; Sakaguchi, Hitoshi

    2017-04-01

    To evaluate chemicals (e.g. lipophilic chemicals, pre/pro-haptens) that are difficult to correctly evaluate using in vitro skin sensitization tests (e.g. DPRA, KeratinoSens or h-CLAT), we developed a novel in vitro test termed "Epidermal Sensitization Assay: EpiSensA" that uses reconstructed human epidermis. This assay is based on the induction of multiple marker genes (ATF3, IL-8, DNAJB4 and GCLM) related to two keratinocyte responses (inflammatory or cytoprotective) in the induction of skin sensitization. Here, we first confirmed the mechanistic relevance of these marker genes by focusing on key molecules that regulate keratinocyte responses in vivo (P2X7 for inflammatory and Nrf2 for cytoprotective responses). The up-regulation of ATF3 and IL-8, or DNAJB4 and GCLM induced by the representative sensitizer 2,4-dinitrochlorobenzene in human keratinocytes was significantly suppressed by a P2X7 specific antagonist KN-62, or by Nrf2 siRNA, respectively, which supported mechanistic relevance of marker genes. Moreover, the EpiSensA had sensitivity, specificity and accuracy of 93%, 100% and 93% for 29 lipophilic chemicals (logKow≥3.5), and of 96%, 75% and 88% for 43 hydrophilic chemicals including 11 pre/pro-haptens, compared with the LLNA. These results suggested that the EpiSensA could be a mechanism-based test applicable to broad sets of chemicals including lipophilic chemicals and pre/pro-haptens.

  16. Pesticide resistance from historical agricultural chemical exposure in Thamnocephalus platyurus (Crustacea: Anostraca).

    PubMed

    Brausch, John M; Smith, Philip N

    2009-02-01

    Extensive pesticide usage in modern agriculture represents a considerable anthropogenic stressor to freshwater ecosystems throughout the United States. Acute toxicity of three of the most commonly used agricultural pesticides (Methyl Parathion 4ec, Tempo SC Ultra, Karmex DF, and DDT) was determined in two different wild-caught strains of the fairy shrimp Thamnocephalus platyurus. Fairy shrimp collected from playas surrounded by native grasslands were between 200% and 400% more sensitive than fairy shrimp derived from playas in agricultural watersheds for Methyl Parathion 4ec, Tempo SC Ultra, and Karmex DF, likely due to the development of resistance. Additionally, reduced sensitivity to DDT was observed among fairy shrimp from agriculturally-impacted playas as compared to those from native grassland-dominated playas. These data suggest that fairy shrimp inhabiting playas in agricultural regions have developed some degree of resistance to a variety of agrochemicals in response to historical usage.

  17. Fast analysis of high-energy compounds and agricultural chemicals in water with desorption electrospray ionization mass spectrometry.

    PubMed

    Mulligan, Christopher C; MacMillan, Denise K; Noll, Robert J; Cooks, R Graham

    2007-01-01

    Novel sampling and detection methods using desorption electrospray ionization (DESI) are examined in the detection of explosives (RDX, TNT, HMX, and TNB) and agricultural chemicals (atrazine, alachlor and acetochlor) from aqueous matrices and authentic contaminated groundwater samples. DESI allows analysis of solid and liquid compounds directly from surfaces of interest with little or no sample preparation. Significant savings in analysis time and sample preparation are realized. The methods investigated here include (i) immediate analysis of filter paper wetted with contaminated water samples without further sample preparation, (ii) rapid liquid-liquid extraction (LLE), and (iii) analyte extraction from contaminated groundwater samples on-site using solid-phase extraction (SPE) membranes, followed by direct DESI analysis of the membrane. The wetted filter paper experiment demonstrates the maximum sample throughput for DESI analysis of aqueous matrices but has inadequate sensitivity for some of these analytes. Both the LLE and the SPE methods have adequate sensitivity. The resulting SPE membranes and/or small volume solvent extracts produced in these experiments are readily transported to off-site facilities for direct analysis by DESI. This realizes a significant reduction in the costs of sample shipping compared with those for typical liter-sized samples of groundwater. Total analysis times for these preliminary DESI analyses are comparable with or shorter than those for GC/MS and limits of detection approach environmental action levels for these compounds while maintaining a modest relative standard deviation. Tandem mass spectrometric data is used to provide additional specificity as needed.

  18. [The discussion of the infiltrative model of chemical knowledge stepping into genetics teaching in agricultural institute or university].

    PubMed

    Zou, Ping; Luo, Pei-Gao

    2010-05-01

    Chemistry is an important group of basic courses, while genetics is one of the important major-basic courses in curriculum of many majors in agricultural institutes or universities. In order to establish the linkage between the major course and the basic course, the ability of application of the chemical knowledge previously learned in understanding genetic knowledge in genetics teaching is worthy of discussion for genetics teachers. In this paper, the authors advocate to apply some chemical knowledge previously learned to understand genetic knowledge in genetics teaching with infiltrative model, which could help students learn and understand genetic knowledge more deeply. Analysis of the intrinsic logistic relationship among the knowledge of different courses and construction of the integral knowledge network are useful for students to improve their analytic, comprehensive and logistic abilities. By this way, we could explore a new teaching model to develop the talents with new ideas and comprehensive competence in agricultural fields.

  19. Potential impacts of agricultural chemicals on waterfowl and other wildlife inhabiting prairie wetlands: An evaluation of research needs and approaches

    USGS Publications Warehouse

    Grue, C.E.; DeWeese, L.R.; Mineau, P.; Swanson, G.A.; Foster, J.R.; Arnold, P.M.; Huckins, J.N.; Sheenan, P.J.; Marshall, W.K.; Ludden, A.P.

    1986-01-01

    The potential for agricultural chemicals to enter prairie-pothole wetlands and impact wildlife dependent on these wetlands for survival and reproduction appears to be great. However, the actual risk to wetland wildlife from the inputs of these chemicals cannot be adequately assessed at this time, because of insufficient data. Available data on the use of pesticides in the prairie-pothole region and the toxicity of these pesticides suggest that insecticides pose the greatest hazard to wetland wildlife, particularly birds. The majority of the most widely used insecticides within the region are very toxic to aquatic invertebrates and birds. Of particular concern are the impacts of agricultural chemicals on the quality of the remaining wetlands in the region and whether or not these impacts have contributed to observed declines in waterfowl populations. Although existing data suggest that adult and juvenile waterfowl may not be more sensitive to these chemicals than are other wetland wildlife, their food habits and feeding behaviors may make them more vulnerable to direct toxic effects or chemical-induced changes in the abundance of aquatic invertebrates. Laboratory and field studies in the United States and Canada are critically needed to assess these potential impacts.

  20. The Acquisition and Application of Absorption, Distribution, Metabolism, and Excretion (ADME) Data in Agricultural Chemical Safety Assessments

    SciTech Connect

    Barton, H. A.; Pastoor, Timothy P.; Baetcke, Karl; Chambers, Janice E.; Diliberto, Janet; Doerrer, Nancy G.; Driver, Jeffrey H.; Hastings, Charles E.; Iyengar, Seshadri; Krieger, Robert; Stahl, Bernhard; Timchalk, Chuck

    2006-01-01

    The ILSI Health and Environmental Sciences Institute (HESI) formed the Agricultural Chemical Safety Assessment (ACSA) Technical Committee in the year 2000 to design a toxicity testing scheme that would incorporate current understanding of pesticide toxicology and exposure and recognize the specificity of agricultural products. The purpose of and background for the ACSA project are described in detail in the companion paper by Carmichael et al. (2006). As the proposed tiered testing approach for agricultural chemical safety assessment evolved, the ACSA Technical Committee and its task forces (Carmichael et al., 2006; Cooper et al., 2006; Doe et al., 2006) worked toward the following objectives: (1) Provide information that can be applied to a range of relevant human exposure situations. (2) Characterize effects that have the potential to damage human health at exposure levels approximating those that might be encountered in the use of these compounds. (3) Avoid high doses that cause unnecessary public concern (e.g., safety assessments should focus on doses that are relevant to realistic human exposures while maintaining adequate power for the experimental studies to detect toxicity). (4) Use the minimum number of animals necessary to produce a thorough safety assessment of the chemicals of interest. (5) Inflict the minimum amount of distress on animals. (6) Minimize excessive and unnecessary use of resources by regulatory authorities and industry, which could be used to address other issues of concern. (7) Increase both the efficiency and relevance of the current safety assessment process.

  1. Chemical residues in Dolphins from the US Atlantic coast including atlantic bottlenose obtained during the 1987/88 mass mortality

    SciTech Connect

    Kuehl, D.W.; Haebler, R.; Potter, C.

    1991-01-01

    Bottlenose dolphins (Tursiops truncatus) collected during the 1987/88 mass mortality event along the Atlantic coast of the United States have been analyzed for anthropogenic chemical contaminants. Average contaminant concentrations in adult males were higher than the average concentrations measured in adult females. Females could be divided into two groups by contaminant concentrations, one with low concentrations, and another with concentrations 4.4 times (PCBs) to 8.9 times (p,p'-DDE) greater. Contaminant concentrations in bottlenose were generally greater than the concentrations measured in either common (Delphinus delphis) or white-sided (Lagernorhynchus acutus) dolphins from the western North Atlantic Ocean. A subset of animals screened for unusual chemical contaminants showed that numerous polybrominated chemicals were present, including polybrominated biphenyls and diphenyl ethers not previously found in marine mammals from U.S. coastal waters.

  2. Chemical Cues which Include Amino Acids Mediate Species-Specific Feeding Behavior in Invasive Filter-Feeding Bigheaded Carps.

    PubMed

    Claus, Aaron W; Sorensen, Peter W

    2017-03-15

    This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.

  3. [Total contents of heavy metals and their chemical fractionation in agricultural soils at different locations of Beijing City].

    PubMed

    Chen, Zhi-Fan; Zhao, Ye; Guo, Ting-Zhong; Wang, Shui-Feng; Tian, Qing

    2013-06-01

    In this study, 23 groups of suited typical soil-wheat grain samples were collected from different locations of Beijing city (central city, suburban plain and exurban plain), the accumulation, chemical forms and bioavailability of heavy metals in arable soils under different human activity intensity were analyzed, and their source identifications and health risk were discussed. The results showed that (1) Urban soils exhibited Pb contamination with an average concentration (35.59 mg x kg(-1)) above the WHO limit, probably due to the emission of traffic activities and industrial processes. In addition, long-term sewage irrigation and other agricultural activities led to local metal contamination in the suburban agricultural soils. (2) Cu, Zn and Pb were predominantly associated with the residual (35%-75%) and organic (23%-53%) fractions, followed by Fe/Mn oxide (1%-19%), and very small proportion of carbonate (n. d.-5%) and exchangeable (n. d.-2%) fraction. Furthermore, compared with the suburban agricultural soils, Pb, Zn and Cu in the urban agricultural soils showed higher mobility, whereas the exurban agricultural soils presented the lowest mobility. For Cd, the order was contrary. Besides, Cd showed the highest bioavailability among the four metals in suburban and exurban arable soils due to its considerable proportion of exchangeable (13% -31%) and carbonate fractions (11%-27%). (3) Cd and Zn contents in wheat grains were largely dependent on the Fe/Mn ox. fractions in the studied soils (P < 0.05, r were 0.43-0.7). (4) Pb and Zn concentrations in wheat grains in some of the urban and suburban agricultural soils were above the standard limit, which might bring potential risk for the health of the local residents.

  4. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Ryan, J.V.; Perry, E.; Linak, W.P.; DeMarini, D.M.; Williams, R.W.

    1989-01-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open-field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. The study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  5. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae)

    PubMed Central

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-01-01

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters. PMID:27876748

  6. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae).

    PubMed

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-11-23

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters.

  7. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  8. Agricultural land application of pulp and paper mill sludges in the Donnacona area, Quebec: Chemical evaluation and crop response

    SciTech Connect

    Veillette, A.X.; Tanguay, M.G.

    1997-12-31

    Primary paper mill sludges from a thermomechanical pulp (TMP) mill were land applied at the rate of 20 metric ton per hectare (t/ha) for agricultural purposes in the Donnacona area, Quebec, in May 1994 and May 1995. Eleven agricultural sites featuring various crops were tested over two seasons to measure the impact of TMP primary paper mill sludges on soil, plant tissue and crop yield. Cereal and potato crops showed a significant increase in yield. TMP Primary sludges were also applied at the rate of 225 t/ha for land reclamation purposes of one site at the end of 1994. Soils were tested every second month. Chemical crop analyses were also performed. The first year crop response was satisfactory. Combined (primary and secondary) TMP sludges were added at the rate of 200 t/ha in the beginning of 1996. Soil, vadose zone water and crop analysis are being investigated. Impressive crop responses were obtained in the 1996 season.

  9. GCKP84-general chemical kinetics code for gas-phase flow and batch processes including heat transfer effects

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1984-01-01

    A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.

  10. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, Geoffrey N.; Landon, Matthew K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5–2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  11. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone. Copyright ?? 2002 Elsevier Science B.V.

  12. Magnitude and costs of groundwater contamination from agricultural chemicals: a national perspective. Staff report

    SciTech Connect

    Nielsen, E.G.; Lee, L.K.

    1987-06-01

    Evidence is mounting that agricultural pesticide and fertilizer applications are causing groundwater contamination in some parts of the United States. A synthesis of national data has enabled researchers to identify regions potentially affected by contamination from pesticides and fertilizers and to estimate the number of people in these regions who rely on groundwater for their drinking water needs. The study found that pesticides and nitrates from fertilizers do not necessarily occur together in potentially contaminated regions.

  13. EPA Resolves Violations with Newport Beach, Calif. Company for Failure to Report Imported Agricultural Chemicals

    EPA Pesticide Factsheets

    LOS ANGELES -The U.S. Environmental Protection Agency settled its case against American Vanguard Corporation, located in Newport Beach, Calif., for failure to report toxic chemical substances imported by two of its subsidiary companies. American Vang

  14. Chemical alternatives assessment of different flame retardants - A case study including multi-walled carbon nanotubes as synergist.

    PubMed

    Aschberger, Karin; Campia, Ivana; Pesudo, Laia Quiros; Radovnikovic, Anita; Reina, Vittorio

    2017-04-01

    Flame retardants (FRs) are a diverse group of chemicals used as additives in a wide range of products to inhibit, suppress, or delay ignition and to prevent the spread of fire. Halogenated FRs (HFRs) are widely used because of their low impact on other material properties and the low loading levels necessary to meet the required flame retardancy. Health and environmental hazards associated with some halogenated FRs have driven research for identifying safer alternatives. A variety of halogen-free FRs are available on the market, including organic (phosphorus and nitrogen based chemicals) and inorganic (metals) materials. Multi-walled carbon nanotubes (MWCNT) have been demonstrated to act as an effective/synergistic co-additive in some FR applications and could thereby contribute to reducing the loading of FRs in products and improving their performance. As part of the FP7 project DEROCA we carried out a chemical alternatives assessment (CAA). This is a methodology for identifying, comparing and selecting safer alternatives to chemicals of concern based on criteria for categorising human and environmental toxicity as well as environmental fate. In the project we assessed the hazard data of different halogen-free FRs to be applied in 5 industrial and consumer products and here we present the results for MWCNT, aluminium diethylphosphinate, aluminium trihydroxide, N-alkoxy hindered amines and red phosphorus compared to the HFR decabromodiphenylether. We consulted the REACH guidance, the criteria of the U.S.-EPA Design for Environment (DfE) and the GreenScreen® Assessment to assess and compare intrinsic properties affecting the hazard potential. A comparison/ranking of exposure reference values such as Derived No Effect Levels (DNELs) showed that FRs of concern are not identified by a low DNEL. A comparison based on hazard designations according to the U.S.-EPA DfE and GreenScreen® for human health endpoints, aquatic toxicity and environmental fate showed that the

  15. A regional monitoring network to investigate the occurrence of agricultural chemicals in near-surface aquifers of the midcontinental USA

    USGS Publications Warehouse

    Kolpin, D.W.; Goolsby, D.A.

    1995-01-01

    Previous state and national surveys conducted in the mid-continental USA have produced a wide range in results regarding the occurrence of agricultural chemicals in groundwater. At least some of these differences can be attributed to inconsistencies between the surveys, such as different analytical reporting limits. The US Geological Survey has designed a sampling network that is geographically and hydrogeologically representative of near-surface aquifers in the corn- and soybean-producing region of the midcontinental USA. More than 800 water quality samples have been collected from the network since 1991. Six of the seven most frequently detected compounds from this study were herbicide metabolites. A direct relation was determined between tritium content to herbicide and nitrate contamination. The unconsolidated aquifers sampled were found to be more susceptible to herbicide and nitrate contamination than the bedrock aquifers. Knowledge of the regional occurrence and distribution of agricultural chemicals acquired through the study of data collected at network sites will assist policy makers and planners with decisions regarding the protection of drinking-water supplies.

  16. Alteration of gene expression in human cells treated with the agricultural chemical diazinon: possible interaction in fetal development.

    PubMed

    Mankame, T; Hokanson, R; Fudge, R; Chowdhary, R; Busbee, D

    2006-05-01

    Agricultural chemicals frequently alter human health or development, typically because they have endocrine agonist or antagonist activities and alter hormone-regulation of gene expression. The insecticide, diazinon, was evaluated for gene expression disrupting activity using MCF-7 cells, an estrogen-dependent human cell line, to examine the capacity of the insecticide to disrupt gene expression essential for morphological development, immune system development or function, and/or central nervous system development and function. MCF-7 cells were treated with 30, 50 or 67 ppm diazinon, and gene expression was measured in treated cells compared to expression in untreated or estrogen-treated cells. DNA microarray analysis of diazinon-treated cells showed significant up- or down-regulation of a large number of genes compared to untreated cells. Of the 600 human genes on the Phase 1 chip utilized for these studies, two specific genes--calreticulin and TGF-beta3--were selected for corroboration using quantitative real time PCR (qrtPCR). qrtPCR, completed to assess gene expression levels for calreticulin and TGFbeta3, confirmed results showing significant up-regulation of these two genes obtained from the microarray data. These studies were designed to provide baseline data on the gene expression-altering capacity of a specific chemical, diazinon, and allow a partial assessment of the potentially deleterious effects associated with exposure of human cells to this chemical. Currently, it is not known whether results from cells in vitro can be extrapolated to human health consequences of chemical exposure.

  17. Reactive oxygen species (ROS) induce chemical and structural changes on human insulin in vitro, including alterations in its immunoreactivity.

    PubMed

    Olivares-Corichi, Ivonne M; Ceballos, Guillermo; Ortega-Camarillo, Clara; Guzman-Grenfell, Alberto M; Hicks, Juan J

    2005-01-01

    Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense. Peroxidations induced by ROS are the key of chemical and structural modifications of biomolecules including circulating proteins. To elucidate the effect of ROS on circulating proteins and considering the presence of oxidative stress in Diabetes Mellitus, the effects of ROS, in vitro, on human insulin were studied. We utilized the Fenton reaction for free hydroxyl radical (HO*) generation in presence of human recombinant insulin measuring chemical changes on its molecular structure. The induced changes in insulin were: a) significant increase on absorbance (280 nm) due to phenylalanine hydroxylation (0.023 +/- 0.007 to 0.13 +/- 0.07). b) Peroxidation products formed on amino acids side branches (peroxyl and alcohoxyl group); measured as increased capacity of reduce nitroblue of tetrazolium (NBT) to formazan (0.007 +/- 0.007 to 0.06 +/- 0.02). c) Increased concentration of free carbonyl groups (8.8 +/- 8.7 to 45.6 +/- 20.2 pmoles dinitrophenylhidrazones/nmol insulin) with lost of secondary structure, and d) Modification of epithopes decreasing the insulin antigen-antibody reactivity measured as a decrease in insulin concentration by RIA. In conclusion, the radical hydroxyl in vitro is able to induce molecular modifications on insulin.

  18. Distribution of organic carbon and chemicals in agricultural soils (BET method)

    NASA Astrophysics Data System (ADS)

    Schnitzler, F.; Séquaris, J.-M.; Berns, A. E.; Burauel, P.

    2009-04-01

    Modelling the dynamics of soil organic carbon and chemicals in soils requires compartmentalisation in pools or fractions. The determination of organic carbon and chemical concentration in all fractions is often time-consuming or not realisable due to low amount of soil fractions. Therefore, we developed an analytical method to calculate distributions of organic carbon and chemicals in soil without any chemical extraction method. Two sets of experiments were conducted with undisturbed soil columns under field-like conditions. In the first set, maize straw was incorporated into the topsoil and after three months incubation, the 14C-labelled chemicals benazolin or benzo[a]pyrene were applied. The second set was treated equally, but without maize addition. After a total incubation time of six months, the topsoil layers were fractionated with a physical aggregate size fractionation procedure[1]. The content of organic carbon and the distribution of the chemicals were detected in the gained soil fractions. Furthermore, the BET method was used to determine the specific surface area (SSA) of selected soil fractions. It can be shown that a fraction of organic carbon and chemicals is dependent on the SSA. The slopes of these linear relationships have been used for the estimation of the organic carbon[2] or chemicals associated to the clay fraction. Thus, mass concentrations of organic carbon or chemicals located in the clay and silt+sand fraction can be calculated. It has been found that the influence of the incorporated maize straw on the amount of organic carbon in the fractions is low due to strong mineralisation processes. In general, the amount of organic carbon in the silt+sand fraction is higher than in the clay fraction. In contrary, the 14C-activity of the chemicals is higher in the clay fraction than in the silt+sand fraction. However, the addition of maize straw increases the amount of 14C-activity in the silt+sand fraction. The calculated distribution

  19. Application of an integrated strategy for monitoring of contaminants, including endocrine active chemicals, in Great Lakes Areas of Concern

    EPA Science Inventory

    Chemical monitoring strategies are most effective for those chemicals whose hazards are well understood and for which sensitive and cost effective analytical methods are available. Unfortunately, such chemicals represent a minor fraction of those that may currently occur in the e...

  20. Physical and chemical characterization of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-12-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.

  1. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin.

    PubMed

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-09-01

    The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.

  2. Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle

    NASA Astrophysics Data System (ADS)

    Komiya, Tsuyoshi

    2004-08-01

    It is 20 years since Allègre [Tectonophys 81 (1982) 109] proposed chemical geodynamics as an integrated study of the chemical and physical structure and evolution of the solid Earth. Accumulation of geochemical data of modern magmatic rocks (e.g. [Annu. Rev. Earth Planet. Sci. 14 (1986) 493] and whole mantle tomography (e.g. [J. Geophys. Res. 97 (1992) 4809]) allow us to understand present-day mantle dynamics, and consider more recent geodynamics models (e.g. [Earth Planet. Sci. Lett. 90 (1988) 297]). However, complete investigation of geodynamics requires addressing not only the present-day structure of the earth and its elemental distributions, but also the historical evolution of the earth [Earth Planet. Sci. Lett. 86 (1987) 175], but no current tectonic models include the latter object. Recent remarkable progress of geology, petrology and geochemistry of Precambrian orogenic belts brings about decoding of the Archean tectonics and evolution of the solid earth through geologic time. Especially, understanding the thermal and compositional evolution of the mantle is essential for decoding the whole history of the Earth, because the mantle constitutes more than 85% of the earth. However, there are two inherent problems that require explanation; post-magmatic alteration, and interpretation of the tectonic setting of the magmatism. We eliminated elemental movements during alteration by comparison with whole rock compositions and with major and rare earth element compositions of relict igneous clinopyroxenes (Cpx). The tectonic setting of mafic magmatism was estimated by an independent method of the composition of greenstones; application of the concept of accretionary geology to the Archean greenstone belts. And we found MORB-affinity greenstones from five different-aged greenstone belts. The potential temperature and FeO content of the upper mantle were estimated by comparison of the most primitive MORB from 3.8 to 1.9 Ga with recent melting experiments. The result

  3. Effects of residential and agricultural land uses on the chemical quality of baseflow of small streams in the Croton Watershed, southeastern New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2000-01-01

    Findings— Concentrations of selected chemical constituents in baseflow were strongly affected by the predominant land use in a given basin. Land uses included forested undeveloped, unsewered residential, sewered residential, and agricultural (horse and dairy farms). A positive linear relation was indicated for chloride concentration in baseflow and the basin's annual rate of road-salt application (or density of two-lane roads). Chloride concentration exhibits a relatively stable relation to road-salt application rate or 2-lane road density throughout the year. Positive linear relations were indicated for nitrate concentration in baseflow and the basins unsewered housing density. Nitrate is characterized by a different relation to unsewered housing density for each season, with the highest observed nitrate concentrations during the winter and the lowest concentrations during the summer. Baseflow nitrate concentrations in sewered basins, and in unsewered basins with riparian wetland buffers between residential development and the stream, were lower than concentrations predicted from unsewered-housing density.

  4. Potential chemical and microbiological risks on human health from urban wastewater reuse in agriculture. Case study of wastewater effluents in Spain.

    PubMed

    Muñoz, Ivan; Tomàs, Núria; Mas, Jordi; García-Reyes, Juan Fracisco; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2010-05-01

    Potential health risks derived from wastewater reuse in agriculture have been evaluated with Risk Assessment modelling techniques, in a case study involving the effluents of two Spanish wastewater treatment plants. One of the plants applies primary and secondary treatment, and the other one applies an additional tertiary treatment. Health risks were assessed on the basis of ingesting contaminated food, due to exposure to: (i) 22 chemical pollutants, namely pharmaceuticals and personal care products (PPCPs), and priority pollutants included in the European Framework Directive, and (ii) microorganisms, namely enterovirus. Chemical Risk Assessment has been carried out following the European Commission's technical guidelines, while risks from exposure to viruses have been evaluated by means of Quantitative Microbial Risk Assessment, assuming a virus to coliform ratio of 1:10(5). The results of the chemical assessment show that there is a margin of safety above 100 for all substances, with the exception of gemfibrozil, for which the mean margin of safety (MOS) is above 100, but the lower bound of MOS with a 95 % confidence interval lies in the 3-4 range. A MOS under 100 was also found for 2,3,7,8-TCDD in one of the effluents. The assessment of risks from viruses shows a very low probability of infection. The overall results show that risks are lower for the plant applying tertiary treatment, especially concerning microbiological parameters.

  5. Comparing bottom-up and top-down approaches at the landscape scale, including agricultural activities and water systems, at the Roskilde Fjord, Denmark

    NASA Astrophysics Data System (ADS)

    Lequy, Emeline; Ibrom, Andreas; Ambus, Per; Massad, Raia-Silvia; Markager, Stiig; Asmala, Eero; Garnier, Josette; Gabrielle, Benoit; Loubet, Benjamin

    2015-04-01

    The greenhouse gas nitrous oxide (N2O) mainly originates in direct emissions from agricultural soils due to microbial reactions stimulated by the use of nitrogen fertilisers. Indirect N2O emissions from water systems due to nitrogen leaching and deposition from crop fields range between 26 and 37% of direct agricultural emissions, indicating their potential importance and uncertainty (Reay et al. 2012). The study presented here couples a top-down approach with eddy covariance (EC) and a bottom-up approach using different models and measurements. A QCL sensor at 96-m height on a tall tower measures the emissions of N2O from 1100 ha of crop fields and from the south part of the Roskilde fjord, in a 5-km radius area around the tall tower at Roskilde, Denmark. The bottom-up approach includes ecosystem modelling with CERES-EGC for the crops and PaSIM for the grasslands, and the N2O fluxes from the Roskilde fjord are derived from N2O sea water concentration measurements. EC measurements are now available from July to December 2014, and indicate a magnitude of the emissions from the crop fields around 0.2 mg N2O-N m-2 day-1 (range -9 to 5) which is consistent with the CERES-EGC simulations and calculations using IPCC emission factors. N2O fluxes from the Roskilde fjord in May and July indicated quite constant N2O concentrations around 0.1 µg N L-1 despite variations of nitrate and ammonium in the fjord. The calculated fluxes from these concentrations and the tall tower measurements consistently ranged between -7 and 6 mg N2O-N m-2 day-1. The study site also contains a waste water treatment plant, whose direct emissions will be measured in early 2015 using a dynamic plume tracer dispersion method (Mønster et al. 2014). A refined source attribution methodology together with more measurements and simulations of the N2O fluxes from the different land uses in this study site will provide a clearer view of the dynamics and budgets of N2O at the regional scale. The

  6. Agricultural chemicals in Iowa's ground water, 1982-95: What are the trends?

    USGS Publications Warehouse

    Koplin, Dana W.; Hallberg, George; Sneck-Fahrer, D. A.; Libra, Robert

    1997-01-01

    The Iowa Department of Natural Resources. Geological Survey Bureau: the University of Iowa Hygienic Laboratory; and the U.S. Geological Survey (USGS) have been working together to address this question. As part of the Iowa Ground-Water Monitoring Program (IGWM). water samples have been collected from selected Iowa municipal wells since 1982. An examination of this data identified two trends: (1) concentrations of atrazine in Iowa's ground water generally were decreasing over time, and (2) concentrations of metolachlor generally were increasing. Continuing ground-water sampling can determine if these trends represent long-term changes in chemical concentrations.

  7. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Linak, W.P.; Ryan, J.V.; Perry, E.; Williams, R.W.; DeMarini, D.M.

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions.

  8. Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series.

    PubMed

    Cárdenas, Carlos; Heidar-Zadeh, Farnaz; Ayers, Paul W

    2016-09-14

    We present benchmark values for the electronic chemical potential and chemical hardness from reference data for ionization potentials and electron affinities. In cases where the energies needed to compute these quantities are not available, we estimate the ionization potential of the metastable (di)anions by extrapolation along the isoelectronic series, taking care to ensure that the extrapolated data satisfy reasonable intuitive rules to the maximum possible extent. We also propose suitable values for the chemical potential and chemical hardness of zero-electron species. Because the values we report are faithful to the trends in accurate data on atomic energies, we believe that our proposed values for the chemical potential and chemical hardness are ideally suited to conceptual studies of chemical trends across the periodic table. The critical nuclear charge (Z critical) of the isoelectronic series with 2 < N < 96 has also been reported for the first time.

  9. 75 FR 879 - National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... Employment and Training Administration National Starch and Chemical Company Specialty Starches Division..., applicable to workers of National Starch and Chemical Company, Specialty Starches Division, Island Falls.... The workers were engaged in the production of drum dried and modified food starches. New...

  10. Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals.

    PubMed

    Kwon, Jung-Hwan; Lee, So-Young; Kang, Hyun-Joong; Mayer, Philipp; Escher, Beate I

    2016-11-01

    Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properties of chemicals. For example, short-term ecotoxicity data are required for chemicals with production volume greater than 1 or 10 ton/y according to REACH, without considering chemical properties. Highly hydrophobic chemicals are characterized by low water solubility and slow bioconcentration kinetics, which may hamper the interpretation of short-term toxicity experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanol-water partition coefficient (Kow) greater than 10(6) are not expected to reach sufficiently high internal concentrations for exerting effects within the test duration of acute tests with fish and invertebrates, even though they might be intrinsically toxic. This toxicity cutoff was explained by the slow uptake, i.e., by kinetics, not by thermodynamic limitations. Predictions were confirmed by data entries of the OECD's screening information data set (SIDS) (n = 746), apart from a few exceptions concerning mainly organometallic substances and those with inconsistency between water solubility and Kow. Taking error propagation and model assumptions into account, we thus propose a revision of data requirements for highly hydrophobic chemicals with log Kow > 7.4: Short-term toxicity tests can be limited to algae that generally have the highest uptake rate constants, whereas the primary focus of the assessment should be on persistence, bioaccumulation, and long-term effects.

  11. Agricultural chemicals in ground and surface water in a small watershed in Clayton County, Iowa, 1988-91

    USGS Publications Warehouse

    Kalkhoff, S.J.; Schaap, B.D.

    1995-01-01

    Nitrogen was present in all water samples from Deer Creek. Nitrate concentrations ranged from 0.70 to 17 mg/L. Alachlor was detected in 11 percent of the samples, atrazine in 69 percent, cyanazine in 19 percent, and metolachlor in 33 percent. Alachlor concentrations ranged from less than 0.10 to 0.53 ug/L, atrazine ranged from less than 0.10 to 55 ug/L, cyanazine ranged from less than 0.10 to 12 ug/L, and metolachlor ranged from less than 0.10 to 69 ug/L. Herbicide detections occurred most frequently in late spring and early summer during or just following chemical application. Overland flow is an important source of nitrogen and herbicides to Deer Creek. Substantial amounts of agricultural chemicals are transported from the watershed. As much as 4,700 pounds, or 6.7 pounds per acre, of nitrogen were estimated to be transported from the watershed in 1 year. Nitrogen loads transported from the Deer Creek watershed were less during dry years than during years with average or greater than average rainfall.

  12. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were

  13. Development of hazard analysis by critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities.

    PubMed

    Ropkins, Karl; Ferguson, Andrew; Beck, Angus J

    2003-01-01

    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards in the food chain. Effective HACCP requires the consideration of all chemical microbiological, and physical hazards. However, current procedures focus primarily on microbiological and physical hazards, while chemical aspects of HACCP have received relatively little attention. In this article we discuss the application of HACCP to organic chemical contaminants and the problems that are likely to be encountered in agriculture. We also present generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, that is, cereal crops,raw meats, and milk.

  14. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.

    PubMed

    Sadeek, Sadeek A; Negm, Nabel A; Hefni, Hassan H H; Wahab, Mostafa M Abdel

    2015-11-01

    Biosorption of Cu(II), Co(II) and Fe(III) ions from aqueous solutions by rice husk, palm leaf and water hyacinth was investigated as a function of initial pH, initial heavy metal ions concentration and treatment time. The adsorption process was examined by two adsorption isotherms: Langmuir and Freundlich isotherms. The experimental data of biosorption process were analyzed using pseudo-first order, pseudo-second order kinetic models. The equilibrium biosorption isotherms showed that the three studied biosorbents possess high affinity and sorption capacity for Cu(II), Co(II) and Fe(III) ions. Rice husk showed more efficiency than palm leaf and water hyacinth. Adsorption of Cu(II) and Co(II) was more efficient in alkaline medium (pH 9) than neutral medium due to the high solubility of metal ion complexes. The metal removal efficiency of each biosorbent was correlated to its chemical structure. DTA studies showed formation of metal complex between the biosorbents and the metal ions. The obtained results showed that the tested biosorbents are efficient and alternate low-cost biosorbent for removal of heavy metal ions from aqueous media.

  15. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments.

    PubMed

    Chaudhry, Vasvi; Rehman, Ateequr; Mishra, Aradhana; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2012-08-01

    Community level physiological profiling and pyrosequencing-based analysis of the V1-V2 16S rRNA gene region were used to characterize and compare microbial community structure, diversity, and bacterial phylogeny from soils of chemically cultivated land (CCL), organically cultivated land (OCL), and fallow grass land (FGL) for 16 years and were under three different land use types. The entire dataset comprised of 16,608 good-quality sequences (CCL, 6,379; OCL, 4,835; FGL, 5,394); among them 12,606 sequences could be classified in 15 known phylum. The most abundant phylum were Proteobacteria (29.8%), Acidobacteria (22.6%), Actinobacteria (11.1%), and Bacteroidetes (4.7%), while 24.3% of the sequences were from bacterial domain but could not be further classified to any known phylum. Proteobacteria, Bacteroidetes, and Gemmatimonadetes were found to be significantly abundant in OCL soil. On the contrary, Actinobacteria and Acidobacteria were significantly abundant in CCL and FGL, respectively. Our findings supported the view that organic compost amendment (OCL) activates diverse group of microorganisms as compared with conventionally used synthetic chemical fertilizers. Functional diversity and evenness based on carbon source utilization pattern was significantly higher in OCL as compared to CCL and FGL, suggesting an improvement in soil quality. This abundance of microbes possibly leads to the enhanced level of soil organic carbon, soil organic nitrogen, and microbial biomass in OCL and FGL soils as collated with CCL. This work increases our current understanding on the effect of long-term organic and chemical amendment applications on abundance, diversity, and composition of bacterial community inhabiting the soil for the prospects of agricultural yield and quantity of soil.

  16. Organic polymer-metal nano-composites for opto-electronic sensing of chemicals in agriculture

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2013-03-01

    Recent research findings led the team to conclude that a long lasting and inexpensive colorimetric sensor for monitoring ammonia emission from manure in confined animal feeding operations could eventually become feasible. The sensor uses robust method of opto-electronic spectroscopic measurement of the reversible change of the color of a sensitive nano-composite reagent film in response to ammonia. The film is made of a metal (gold, platinum, or palladium) nano-colloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption in the region 550 to 650 nm) is enhanced by the nano-particles (~10 nm in size) in two ways: (a) concentration of the optical field near the nano-particle due to the plasmon resonance; and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to make a miniature and rugged sensing element without compromising its sensitivity of less than 1 ppm for the range 0 to 100 ppm. The sensor underwent field tests in commercial broiler farms in Georgia, Alabama, and Arkansas and was compared against a commercial photoacoustic gas analyzer. The sensor output correlated well with the data from the photoacoustic analyzer (correlation coefficient not less than 0.9 and the linear regression slope after calibration close to 1.0) for several weeks of continuous operation. The sources of errors were analyzed and the conclusions on the necessary improvements and the potential use of the proposed device were made.

  17. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China.

    PubMed

    Chen, Weiwei; Tong, Daniel; Zhang, Shichun; Dan, Mo; Zhang, Xuelei; Zhao, Hongmei

    2015-12-01

    This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city, China. Ambient air was sampled by filter-based samplers and online PM monitors. The filter samples were analyzed to determine the abundance of ionic/inorganic elements, organic carbon (OC) and elemental carbon (EC). The daily PM10 concentrations varied significantly over the monitoring period, with an average of 168±63 (in the range of 52-277)μg/m(3) during the land preparation/planting period (26 April-15 June), 85±65 (36-228)μg/m(3) during the growing season (16 June-25 September), and 207±88 (103-310)μg/m(3) during the harvest period (26 September-31 October). PM2.5 accounted for 44%, 56% and 66% of atmospheric PM10 during these periods, respectively. The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00 (LST) during the growing and harvesting seasons, while a gradual increase throughout the daytime until 17:00 was observed during tilling season. Mineral dust elements (Al, Ca, Fe, and Mg) dominated the PM10 chemical composition during the tilling season; OC, NO3(-), SO4(2-) and NH4(+) during the growing season; and carbonaceous species (i.e., OC and EC) during the harvesting season. Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region. Therefore, development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling.

  18. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    USGS Publications Warehouse

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Of the models tested, RZWQM, HYDRUS2D, VS2DT, GLEAMS and PRZM had graphical user interfaces. Extensive documentation was available for RZWQM, HYDRUS2D, and VS2DT. RZWQM can explicitly simulate water and solute flux in macropores, and both HYDRUS2D and VS2DT can simulate water and solute flux in two dimensions. The version of RZWQM tested had a maximum simulation depth of 3 meters. The complex models simulate the formation, transport, and fate of degradates of up to three to five compounds including the parent, with the exception of VS2DT, which simulates the transport and fate of a single compound.

  19. Including exposure variability in the life cycle impact assessment of indoor chemical emissions: the case of metal degreasing.

    PubMed

    Golsteijn, Laura; Huizer, Daan; Hauck, Mara; van Zelm, Rosalie; Huijbregts, Mark A J

    2014-10-01

    The present paper describes a method that accounts for variation in indoor chemical exposure settings and accompanying human toxicity in life cycle assessment (LCA). Metal degreasing with dichloromethane was used as a case study to show method in practice. We compared the human toxicity related to the degreasing of 1m(2) of metal surface in different exposure scenarios for industrial workers, professional users outside industrial settings, and home consumers. The fraction of the chemical emission that is taken in by exposed individuals (i.e. the intake fraction) was estimated on the basis of operational conditions (e.g. exposure duration), and protective measures (e.g. local exhaust ventilation). The introduction of a time-dependency and a correction for protective measures resulted in reductions in the intake fraction of up to 1.5 orders of magnitude, compared to application of existing, less advanced models. In every exposure scenario, the life cycle impacts for human toxicity were mainly caused by indoor exposure to metal degreaser (>60%). Emissions released outdoors contributed up to 22% of the life cycle impacts for human toxicity, and the production of metal degreaser contributed up to 19%. These findings illustrate that human toxicity from indoor chemical exposure should not be disregarded in LCA case studies. Particularly when protective measures are taken or in the case of a short duration (1h or less), we recommend the use of our exposure scenario-specific approach.

  20. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  1. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  2. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  3. Product and rate determinations with chemically activated nucleotides in the presence of various prebiotic materials, including other mono- and polynucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Alberas, D. J.; Rosenbach, M. T.; Bernasconi, C. F.; Chang, S.

    1991-01-01

    We are investigating the reactions of ImpN's in the presence of a number of prebiotically plausible materials, such as metal ions, phosphate, amines and other nucleotides and hope to learn more about the stability/reactivity of ImpN's in a prebiotic aqueous environment. We find that, in the presence of phosphate, ImpN's form substantial amounts of diphosphate nucleotides. These diphosphate nucleotides are not very good substrates for template directed reactions, but are chemically activated and are known to revert to the phosphoimidazolides in the presence of imidazole under solid state conditions. With respect to our studies of the oligomerization reaction, the determination of the dimerization rate constant of a specific ImpN (guanosine 5'-phospho 2 methylimidazolide) both in the absence and the presence of the template leads to the conclusion that at 37 C the dimerization is not template directed, although the subsequent polymerization steps are. In other words, this specific polynucleotide synthesizing system favors the elongation of oligonucleotides as compared with the formation of dimers and trimers. This favoring of the synthesis of long as opposed to short oligonucleotides may be regarded as a rudimentary example of natural selection at the molecular level.

  4. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-10-01

    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, i.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  5. Resistance of halobacterial isolates from Permian rock salt to physico-chemical extremes, including heat and a simulated Martian atmosphere.

    NASA Astrophysics Data System (ADS)

    Leuko, S.; Weidler, G.; Radax, C.; Stan-Lotter, H.

    2003-04-01

    Extremely halophilic archaebacteria (halobacteria) are found today in hypersaline surface waters, such as the brines in solar salterns, or the Dead Sea. However, from Alpine rock salt of Permo-Triassic age several species of halobacteria were isolated during the last years (1, 2). Halobacteria are not known to produce spores or dormant forms; thus it remains enigmatic how they survived in the salt sediments. Extraterrestrial halite has been detected in meteorites from Mars and from the asteroids; in addition, the Jovian moon Europa is thought to contain a salty ocean. Therefore halobacteria would be useful model organisms when considering the search for extraterrestrial life. We are developing experimental protocols to evaluate the effects of physico-chemical stress factors on halobacteria, in particular present-day Martian conditions. But the effect of higher temperatures is also of interest, since Mars may have been warmer in the past, and the Alpine salt sediments are known to have experienced local temperature peaks. Cells of Halococcus dombrowskii (2) and, for comparison, of Halobacterium sp. NRC-1 were grown in complex medium, containing up to 4 M NaCl (2). Aliquots of cultures were kept at minus 70oC for several days, or freeze-dried in a lyophilizer, or incubated at temperatures of 50 to 80oC for 24 hours, respectively. In addition, exposure experiments of halobacterial cells in a liquid nitrogen cooled Martian simulation chamber were begun. Survival of cells was evaluated by determining colony-forming units and by examination of cellular morphology by fluorescence microscopy, following staining with the LIVE-DEAD kit. Results indicated that the LIVE-DEAD kit can be successfully used in the presence of 4 M NaCl, although it was developed for tests at low ionic strength. Data will be presented which show that Hc. dombrowskii survived deep freezing, temperatures of up to 80 oC and Martian atmospheric conditions generally better than Halobacterium sp. NRC-1

  6. Nonpoint-source agricultural chemicals in ground water in Nebraska; preliminary results for six areas of the High Plains Aquifer

    USGS Publications Warehouse

    Chen, Hsiu-Hsiung; Druliner, A.D.

    1987-01-01

    The reconnaissance phase of a study to determine the occurrence of agricultural chemicals from nonpoint sources in groundwater in six areas, which represented the major provinces of the High Plains aquifer in Nebraska is described. In 1984, water from 82 wells in the 6 study areas was analyzed for nitrate, and water from 57 of the 82 wells was analyzed for triazine herbicides. Data for 9 of the 21 independent variables suspected of affecting concentrations of nitrate and triazine herbicides in groundwater were compiled from the 82 well sites. The variables and their ranges are: hydraulic gradient (XI), 0.006-0.0053; hydraulic conductivity (X2), 5-149 ft/day; specific discharge (X3), 0.0128-0.2998 ft/day; depth to water (X4), 3-239 ft; well depth (X5), 40-550 ft; annual precipitation (X6), 12.0-39.3 inches; soil permeability (X7), 0.76-9.0 inches; irrigation well density (X8), 0-8 irrigation wells/ sq mi; and annual nitrogen fertilizer use (X9), 0-260 lbs of nitrogen/acre. Nitrate concentrations ranged from < 0.1 to 45 mg/L as nitrogen. Triazine herbicide concentrations were detected in samples from five of the six study areas in concentrations ranging from < 0.1 to 2.3 mg/L. Statistical tests indicated that there were significant differences in nitrate concentrations among the six study areas, while no significant differences in triazine herbicide concentrations were found. Concentrations of nitrate and triazine herbicide were significantly larger in more intensively irrigated areas. Preliminary correlations with the independent variables and nitrate concentrations indicated significant relations at the 95% confidence level with variables X2, X5, and X8. Correlations with triazine herbicide concentrations indicated significant relations with variables X2 , X3, X5, X6, and X8, and with nitrate concentrations (X10). By using a simple multiple regression technique, variables X5, X8, and X9 explained about 51% of the variation in nitrate concentrations. Variables X3

  7. [Cumulative risk assessment for consumers of agricultural crops polluted with one chemical class pesticide residues (case of triazole fungicides)].

    PubMed

    Koval'chuk, N M; Omel'chuk, S T

    2011-01-01

    Different indices of cumulative risk assessment of combination of residues of pesticides which may simultaneously be present in raw agricultural crops, based on toxic evaluation of such combination have been presented. Risk for population health due to consumption of raw agricultural crops with triazole residues is acceptable on hazard index, point of departure index and cumulative risk index, exceeds allowable level on criterion "total margin of exposure".

  8. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    PubMed

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health.

  9. The Calculation of NMR Chemical Shifts in Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory.

    PubMed

    Skachkov, Dmitry; Krykunov, Mykhaylo; Kadantsev, Eugene; Ziegler, Tom

    2010-05-11

    We present here a method that can calculate NMR shielding tensors from first principles for systems with translational invariance. Our approach is based on Kohn-Sham density functional theory and gauge-including atomic orbitals. Our scheme determines the shielding tensor as the second derivative of the total electronic energy with respect to an external magnetic field and a nuclear magnetic moment. The induced current density due to a periodic perturbation from nuclear magnetic moments is obtained through numerical differentiation, whereas the influence of the responding perturbation in terms of the external magnetic field is evaluated analytically. The method is implemented into the periodic program BAND. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn-Sham potential fully without the use of effective core potentials. Results from calculations of NMR shielding constants based on the present approach are presented for isolated molecules as well as systems with one-, two- and three-dimensional periodicity. The reported values are compared to experiment and results from calculations on cluster models.

  10. THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] {<=} -3.5 , ,

    SciTech Connect

    Yong, David; Norris, John E.; Bessell, M. S.; Asplund, M.; Christlieb, N.; Beers, Timothy C.; Barklem, P. S.; Frebel, Anna; Ryan, S. G. E-mail: jen@mso.anu.edu.au E-mail: martin@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: afrebel@mit.edu

    2013-01-01

    We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] {<=} -2.5, of which 86 are extremely metal poor, [Fe/H] {<=} -3.0. Our program stars include 10 new objects with [Fe/H] {<=} -3.5. We identify a sample of 'normal' metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to 'normal' stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus T {sub eff}, which likely reflects non-LTE and/or three-dimensional effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions.

  11. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  12. Measurements of aerosol-cloud interactions, including on-line particle chemical composition, at the Jungfraujoch Global Atmospheric Watch Station

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Alfarra, M. R.; Williams, P. I.; Bower, K. N.; Gallagher, M. W.; Choularton, T. W.; Weingartner, E.; Corrigan, C.; Baltensperger, U.

    2003-04-01

    The Global Atmospheric Watch research laboratory is located in the Sphinx building, 3580 m asl; 46.55oN, 7.98oE on the Jungfraujoch in the Swiss Alps. The site is exposed to a wide range of conditions and frequently samples long range transported lower free tropospheric air, and is exposed to cloudy conditions. The Paul Scherrer Institute have previously developed a dual inlet system that allows measurements of the total sub-micron aerosol population (dry residuals and interstitial particles) and interstitial particles alone to be made alternately every few minutes. During July 2002 an Aerodyne Aerosol Mass Spectrometer was coupled to the dual inlet and was used to sample the composition of both the total particle distribution and the interstitial fraction and hence derive the mass loadings of the dry droplet residuals. In out of cloud conditions the aerosol composition can be linked to air mass history and age of the air mass. Microphysical measurements include cloud droplet size distributions made using an FSSP and also a new phase Doppler anemometry system. A comparison between these probes will be made. Two different types of cloud droplet spectra were observed. In the first type a large number of cloud droplets were measured with a single, narrow drop size distribution and modal diameter of around 10 um. In the second type, a bimodal cloud droplet spectrum occurred with a smaller mode (by number) at around 20 um, in addition to the 10 um mode. The aerosol mass spectrometry shows that the composition of the residuals from the two spectrum types is very different, the former type being composed mainly of sulphate, the latter a combination of nitrate, sulphate and organic material. We have also shown that the organic material observed is highly oxidized. We argue that the bimodality arises as a result of mixing of cloud droplets below the site that have been activated separately: the larger a less numerous mode in the widespread strato-cumulus forming under low

  13. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    USGS Publications Warehouse

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analysis of water from each well and spring inventoried. Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking water limit in a water sample from one well.

  14. Three-dimensional chemical mapping by EFTEM-TomoJ including improvement of SNR by PCA and ART reconstruction of volume by noise suppression.

    PubMed

    Messaoudi, Cédric; Aschman, Nicolas; Cunha, Marcel; Oikawa, Tetsuo; Sorzano, Carlos O Sanchez; Marco, Sergio

    2013-12-01

    Electron tomography is becoming one of the most used methods for structural analysis at nanometric scale in biological and materials sciences. Combined with chemical mapping, it provides qualitative and semiquantitative information on the distribution of chemical elements on a given sample. Due to the current difficulties in obtaining three-dimensional (3D) maps by energy-filtered transmission electron microscopy (EFTEM), the use of 3D chemical mapping has not been widely adopted by the electron microscopy community. The lack of specialized software further complicates the issue, especially in the case of data with a low signal-to-noise ratio (SNR). Moreover, data interpretation is rendered difficult by the absence of efficient segmentation tools. Thus, specialized software for the computation of 3D maps by EFTEM needs to include optimized methods for image series alignment, algorithms to improve SNR, different background subtraction models, and methods to facilitate map segmentation. Here we present a software package (EFTEM-TomoJ, which can be downloaded from http://u759.curie.fr/fr/download/softwares/EFTEM-TomoJ), specifically dedicated to computation of EFTEM 3D chemical maps including noise filtering by image reconstitution based on multivariate statistical analysis. We also present an algorithm named BgART (for background removing algebraic reconstruction technique) allowing the discrimination between background and signal and improving the reconstructed volume in an iterative way.

  15. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  16. The Most Metal-poor Stars. II. Chemical Abundances of 190 Metal-poor Stars Including 10 New Stars with [Fe/H] <= -3.5

    NASA Astrophysics Data System (ADS)

    Yong, David; Norris, John E.; Bessell, M. S.; Christlieb, N.; Asplund, M.; Beers, Timothy C.; Barklem, P. S.; Frebel, Anna; Ryan, S. G.

    2013-01-01

    We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] <= -2.5, of which 86 are extremely metal poor, [Fe/H] <= -3.0. Our program stars include 10 new objects with [Fe/H] <= -3.5. We identify a sample of "normal" metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to "normal" stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus T eff, which likely reflects non-LTE and/or three-dimensional effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal 281.D-5015).

  17. Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis

    PubMed Central

    Schinasi, Leah; Leon, Maria E.

    2014-01-01

    This paper describes results from a systematic review and a series of meta-analyses of nearly three decades worth of epidemiologic research on the relationship between non-Hodgkin lymphoma (NHL) and occupational exposure to agricultural pesticide active ingredients and chemical groups. Estimates of associations of NHL with 21 pesticide chemical groups and 80 active ingredients were extracted from 44 papers, all of which reported results from analyses of studies conducted in high-income countries. Random effects meta-analyses showed that phenoxy herbicides, carbamate insecticides, organophosphorus insecticides and the active ingredient lindane, an organochlorine insecticide, were positively associated with NHL. In a handful of papers, associations between pesticides and NHL subtypes were reported; B cell lymphoma was positively associated with phenoxy herbicides and the organophosphorus herbicide glyphosate. Diffuse large B-cell lymphoma was positively associated with phenoxy herbicide exposure. Despite compelling evidence that NHL is associated with certain chemicals, this review indicates the need for investigations of a larger variety of pesticides in more geographic areas, especially in low- and middle-income countries, which, despite producing a large portion of the world’s agriculture, were missing in the literature that were reviewed. PMID:24762670

  18. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities--A Comparison between Chemical Fertilizers and Bioinoculants.

    PubMed

    Gupta, Rashi; Bisaria, V S; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant's growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields.

  19. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  20. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  1. Agricultural and water-quality conflicts. Economic dimensions of the problem. Agriculture information bulletin

    SciTech Connect

    Crutchfield, S.; Hansen, L.; Ribaudo, M.

    1993-07-01

    Modern farm production practices, which use agricultural chemicals, benefit consumers through lower prices and increased output. Consequences of agricultural production, however, such as soil erosion, chemical runoff and leaching, and wetlands conversion, may impair surface and ground water quality. These off-farm water-quality effects impose costs on society, including damage to fish and wildlife resources, costs of avoiding potential health hazards and preserving natural environments, and lost recreational opportunities. The report summarizes conflicts between agricultural production and water quality and discusses policies that stress the use of economic and technical assistance incentives to encourage adoption of pollution-reducing farming practices.

  2. THE ACQUISITION AND APPLICATION OF ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION (ADME) DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS

    EPA Science Inventory

    A multi-sector international group of government, academic, and industry scientists has developed a proposal for an improved testing scheme for assessing the safety of crop protection chemicals. Incorporation of pharmacokinetic studies describing the absorption, distribution, me...

  3. Expressing the sense of the House of Representatives that specialty crops are a vital part of agriculture in the United States, that the Committee on Agriculture should propose funding for programs that support specialty crops priorities, and that legislation should be passed that includes funding reflecting specialty crops as a growing and important part of United States agriculture.

    THOMAS, 113th Congress

    Rep. DelBene, Suzan K. [D-WA-1

    2013-04-25

    05/03/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. Geologic research in support of sustainable agriculture

    USGS Publications Warehouse

    Gough, L.P.; Herring, J.R.

    1993-01-01

    The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.

  5. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  6. Hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer at a site in Story County, Iowa, 1992-93

    USGS Publications Warehouse

    Buchmiller, R.C.

    1995-01-01

    A reconnaissance study was conducted during 1992-93 to collect background hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer near Ames, Iowa. Observation wells were drilled to characterize the surficial geologic materials of a field-scale study site and to provide locations for collecting waterlevel and agricultural-chemical data. Walnut Creek, a tributary to the South Skunk River, forms a lateral boundary on the northern edge of the field site. Water-level measurements showed a hydraulic-head gradient towards the South Skunk River under both wet and dry conditions at the study site. Walnut Creek appears to be losing water to the aquifer during most hydrologic conditions. More than 20 milligrams per liter of nitrate as nitrogen were present consistently in water from the southeastern part of the study site. Nitrate-as-nitrogen concentrations in water samples from other locations routinely did not exceed 10 milligrams per liter. The herbicide atrazine was detected most often, 36 of 38 times, in water samples collected from observation wells adjacent to Walnut Creek. Atrazine was not used on the study site during 1992-93 but was found frequently in water samples from Walnut Creek. Therefore, Walnut Creek appears to be a source of herbicide contamination to the alluvial aquifer.

  7. Methane in groundwater used for Japanese agriculture: Its relationship to other physico-chemical properties and possible tropospheric source stength

    SciTech Connect

    Watanabe, A.; Kimura, M. ); Kasuya, M.; Kotake, M.; Katoh, T. )

    1994-01-01

    This paper presents results of measurements of dissolved methane found in ground water samples from Aichi Prefecture, Japan, taken from wells which were used for agricultural irrigation. It is a part of the overall program to account of methane sources and sinks in the environment. Detectable methane concentrations were found in more than half of the 131 samples taken. Based on the detected methane concentrations, and the estimated ground water usage, this source represents only 1.4% of the methane production from paddy fields in this geographic region.

  8. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  9. The Frontlines of Medicine Project: a proposal for the standardized communication of emergency department data for public health uses including syndromic surveillance for biological and chemical terrorism.

    PubMed

    Barthell, Edward N; Cordell, William H; Moorhead, John C; Handler, Jonathan; Feied, Craig; Smith, Mark S; Cochrane, Dennis G; Felton, Christopher W; Collins, Michael A

    2002-04-01

    The Frontlines of Medicine Project is a collaborative effort of emergency medicine (including emergency medical services and clinical toxicology), public health, emergency government, law enforcement, and informatics. This collaboration proposes to develop a nonproprietary, "open systems" approach for reporting emergency department patient data. The common element is a standard approach to sending messages from individual EDs to regional oversight entities that could then analyze the data received. ED encounter data could be used for various public health initiatives, including syndromic surveillance for chemical and biological terrorism. The interlinking of these regional systems could also permit public health surveillance at a national level based on ED patient encounter data. Advancements in the Internet and Web-based technologies could allow the deployment of these standardized tools in a rapid time frame.

  10. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  11. Photovoltaic off-farm agricultural applications. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Adolfson, W. F.

    1982-02-01

    The major off farm agricultural applications and photovoltaic system options available for supplying electricity and low temperature heat required by these industries are highlighted. The off farm agricultural industry, which includes food processing, agricultural chemicals, tobacco and alcohol fuels, consumes about 2 percent of the United States energy supply for direct heat and mechanical power. Photovoltaic energy systems can cut energy costs in many of these industrial applications, although early market penetration may be hampered by certain market barriers.

  12. Nesting biology of laughing gulls Larus atricilla in relation to agricultural chemicals in south Texas USA 1978-1981

    USGS Publications Warehouse

    White, D.H.; Mitchell, C.A.; Prouty, R.M.

    1983-01-01

    Various aspects of the breeding biology of Laughing Gulls (Larus atricilla) have been studied extensively in Florida (Dinsmore and Schreiber 1974, Schreiber et al. 1979, Schreiber and Schreiber 1980), New Jersey (Bongiorno 1970, Burger and Beer 1976, Burger 1976, Montevecchi 1978), and Massachusetts (Noble and Wurm 1943), but little is known of their yearly fledging success in Texas or elsewhere. The Laughing Gull is a common colonial nester along most of the Texas coast, second only to the Cattle Egret (Bubulcus ibis) in breeding abundance; however, the Laughing Gull may be threatened in Texas because of suspected declines at certain traditional nesting locales (Blacklock et al. 1979). Since Laughing Gulls often nest in proximity to agricultural and industrial areas, we were concerned that environmental pollutants might be adversely affecting productivity. In 1978-1981 we conducted studies along the south Texas coast to learn more about the nesting ecology of Laughing Gulls and to evaluate the effects of environmental contaminants on reproduction.

  13. Two-stage bottom-up tiered approach combining several alternatives for identification of eye irritation potential of chemicals including insoluble or volatile substances.

    PubMed

    Hayashi, Kazuhiko; Mori, Taeko; Abo, Takayuki; Ooshima, Kenichi; Hayashi, Takumi; Komano, Tomoko; Takahashi, Yutaka; Sakaguchi, Hitoshi; Takatsu, Akihiko; Nishiyama, Naohiro

    2012-10-01

    For the assessment of eye irritation, one alternative test may not completely replace the rabbit Draize test. In the present study, we examined the predictive potential of a tiered approach analyzing the results from several alternatives (i.e., the Short Time Exposure (STE) test, the EpiOcular assay, the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) assay and the Bovine Corneal Opacity and Permeability (BCOP) assay) for assessing Globally Harmonized System (GHS) eye irritation categories. Fifty-six chemicals including alcohols, surfactants, and esters were selected with a balanced GHS category and a wide range of chemical classes. From a standpoint of both assessable sample numbers and predictive accuracy, the more favorable tiered approach was considered to be the two-stage bottom-up tiered approach combining the STE test, the EpiOcular assay followed by the BCOP assay (accuracy 69.6%, under prediction rate 8.9%). Moreover, a more favorable predictive capacity (accuracy 71.4%, under prediction rate 3.6%) was obtained when high volatile alcohols/esters with vapor pressures >6 kilopascal (kPa) at 25°C were evaluated with EpiOcular assay instead of the STE test. From these results, the two-stage bottom-up tiered approach combining the STE test, the EpiOcular assay followed by the BCOP assay might be a promising method for the classification of GHS eye irritation category (Not classified (NC), Category 2 (Cat. 2), and Category 1 (Cat. 1)) for a wide range of test chemicals regardless of solubility.

  14. Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: an in vitro study with benzo(a)pyrene and testosterone

    SciTech Connect

    Kao, J.; Patterson, F.K.; Hall, J.

    1985-12-01

    Because viable skin possesses enzyme activities, including those involved in the metabolism of xenobiotics, the extent to which cutaneous metabolism may influence the percutaneous fate of topically applied chemicals in the skin was examined in mammalian skin maintained as short-term organ cultures. Skin samples from mouse, rat, rabbit, guinea pig, marmoset, and man were examined. The results from studies with benzo(a)pyrene (BP) and testosterone showed that, in all species, metabolic viability was a major factor involved in the in vitro skin permeation of surface-applied chemicals. Permeation was accompanied by extensive cutaneous first pass metabolism; both parent compounds and a full spectrum of metabolites were found in the receptor fluid from viable skin preparations. However, in previously frozen nonviable skin preparations, essentially only unchanged parent compounds were detected in the receptor fluid. Permeation of BP and testosterone was highest in mouse skin, and significant species variations in the metabolite profiles were observed. Studies with mouse skin also demonstrated that induction of cutaneous drug-metabolizing enzymes can result in a two- to threefold increase in the in vitro permeation of topical BP, and a significant reduction in permeation was observed when KCN was added to the perfusion medium. These results indicate that diffusional and metabolic processes are intimately involved in the percutaneous fate of surface-applied chemicals. The relative importance of these processes is dependent upon the physicochemical properties of the compounds and the metabolic capabilities of the skin toward the compounds in question. Furthermore, these findings suggest that meaningful in vitro studies on skin absorption should consider both diffusion and cutaneous biotransformation of the applied compound.

  15. Organic contaminants in Great Lakes tributaries: Identification of watersheds and chemicals of greatest concern

    EPA Science Inventory

    Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...

  16. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  17. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    USGS Publications Warehouse

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  18. A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts.

    PubMed

    Monteiro, Sara; Carreira, Alexandra; Freitas, Regina; Pinheiro, Ana Margarida; Ferreira, Ricardo Boavida

    2015-01-01

    There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed.

  19. A Nontoxic Polypeptide Oligomer with a Fungicide Potency under Agricultural Conditions Which Is Equal or Greater than That of Their Chemical Counterparts

    PubMed Central

    Monteiro, Sara; Carreira, Alexandra; Freitas, Regina; Pinheiro, Ana Margarida; Ferreira, Ricardo Boavida

    2015-01-01

    There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed. PMID:25849076

  20. An evaluation of the VOST method for non-halogenated compounds at a agricultural chemical manufacturing facility

    SciTech Connect

    Jackson, M.D.; Bursey, J.T.; McGaughey, J.F.; Merrill, R.G.

    1997-12-31

    Laboratory testing and one field evaluation study have been performed to assess the performance of the VOST method non-halogenated volatile organic analytes listed in Title III of the Clean Air Act Amendments of 1990. This paper reports on a second field evaluation study performed at a different source category to demonstrate that the methodology is riot source-specific. An incinerator that burned chemical waste was selected as the second test site. The field test was designed according to the guidelines of EPA Method 301, using gaseous dynamic spiking. Volatile organic compounds were spiked into two of four quadruple VOST trains as a gaseous spike. A minimum of ten quadruple sampling runs each was performed for VOST. Each quadruple run used four collocated sampling probes attached to four similar sampling trains, with two spiked trains and two unspiked trains. Statistical analysis of the results was performed according to the guidelines of EPA Method 301. Using the EPA Method 301 criteria for acceptable performance (correction factor between 0.70 and 1.30, with relative standard deviation of 50% or less), the VOST methodology showed acceptable performance in a chemical waste incinerator emissions matrix for the following compounds: benzene, n-hexane, 2,2,4-trimethylpentane, and toluene.

  1. Influence of a combination of agricultural chemicals on embryos of the endangered gold-striped salamander (Chioglossa lusitanica).

    PubMed

    Ortiz-Santaliestra, M E; Fernández-Benéitez, M J; Lizana, M; Marco, A

    2011-05-01

    Pollution from agrochemicals may be contributing to the global decline of amphibian populations. Environmentally relevant concentrations of a fertiliser, ammonium nitrate, and a commercial formulation of the herbicide glyphosate Roundup Plus were tested on the embryonic development of Chioglossa lusitanica. This study introduces new data at three different levels. First, we provide previously unknown information about hatchling traits of C. lusitanica. Second, we present the first ecotoxicological study of this endangered species, to which environmental pollution is considered a major threat. Third, we conduct the first experiment with an amphibian species exposed to a mixture of a glyphosate-based herbicide and a nitrogenous fertiliser. Control individuals hatched with an average (±SD) total length of 18.77 (±2.02) mm and at an average Harrison's developmental stage of 44.58 (±1.24). Mean hatching time among controls was 11.52 (±1.29) weeks. None of the chemicals or their interaction produced lethal effects; however, a significant interaction was found when analysing total length at hatching. Individuals exposed to the herbicide hatched at a larger size than controls, and this effect was especially clear when the fertiliser was added to the water. The absence of pollutant-related mortality or severe sublethal effects is in agreement with most studies indicating a high tolerance of amphibian embryos to agrochemicals. However, further research considering other life stages and additional natural factors (i.e., predators, food availability) is needed to estimate the ecological impact of chemical mixtures on C. lusitanica.

  2. Synthesis, characterization, quantum chemical calculations and evaluation of antioxidant properties of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids

    NASA Astrophysics Data System (ADS)

    Gür, Mahmut; Muğlu, Halit; Çavuş, M. Serdar; Güder, Aytaç; Sayıner, Hakan S.; Kandemirli, Fatma

    2017-04-01

    A series of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids were synthesized, and their structures were elucidated by the UV, IR, 1H NMR, 13C NMR spectroscopies and elemental analysis. The UV and IR calculations of the molecules were performed by using B3LYP, HF and MP2 methods with selected 6-311++G(2d,2p), 6-311++G(3df,3pd) and cc-pvtz basis sets. Dipole moment, polarizability, chemical hardness/softness and electronegativity were also calculated and analyzed. Experimental FT-IR spectra and UV-Vis spectrum of the compounds were compared with theoretical data. Furthermore, antioxidant activities of the compounds were practised via different test methods such as 2,2-diphenyl-1-picryl-hydrazyl (DPPHrad), N,N-dimethyl-p-phenylenediamine (DMPDrad +), and 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTSrad +) scavenging activity assays. When compared with standards (BHA-Butylated hydroxyanisole, RUT-Rutin, and TRO-Trolox), it was observed that especially XIII and XIV which include methoxy groups at the o- and m-positions, respectively, had effective activities.

  3. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  4. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children.

    PubMed

    Xue, Jingchuan; Wu, Qian; Sakthivel, Sivasubramanian; Pavithran, Praveen V; Vasukutty, Jayakumar R; Kannan, Kurunthachalam

    2015-02-01

    Obesity has been recognized as a major global public health concern. In particular, childhood obesity is a major risk factor for other health issues, such as type 2 diabetes, in later stages of life. A few earlier studies have associated exposure to endocrine-disrupting chemicals (EDCs) with childhood obesity. There is limited information, however, on exposure to EDCs and childhood obesity in India. In this study, urinary levels of 26 EDCs were determined in 49 obese and 27 non-obese Indian children. Eleven EDCs, including 2,2-bis(4-hydroxyphenyl)propane (BPA), 4,4'-sulfonyldiphenol (BPS), methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), 4-hydroxybenzoic acid (4-HB), 3,4-dihydroxybenzoic acid (3,4-DHB), triclosan (TCS), benzophenone-3 (BP3), bisphenol A diglycidyl ether (BADGE), and bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H2O) were found in >70% of urine samples. No significant associations were found between childhood obesity and most target chemicals studied, except for 3,4-DHB, which showed a significant positive association. Urinary concentrations of 3,4-DHB were higher in obese children than in non-obese children, independent of age, sex, family income, parent education, physical activity, and urinary creatinine. Urinary concentrations of several EDCs were higher in Indian children than the concentrations reported for children in the USA and China. To our knowledge, this is the first study to report urinary concentrations of several EDCs in Indian children.

  5. Agriculture, Environmental Education Guide.

    ERIC Educational Resources Information Center

    Project I-C-E, Green Bay, WI.

    This agriculture guide, for use at the secondary level, is one of a series of guides, K-12, which were developed by teachers to help introduce environmental education into the total curriculum. Environmental problems are present in every community where agriculture education is offered, and therefore many agriculture teachers have included some…

  6. Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland

    USGS Publications Warehouse

    Böhlke, J.K.; Denver, J.M.

    1995-01-01

    The history and fate of groundwater nitrate (NO3−) contamination were compared in 2 small adjacent agricultural watersheds in the Atlantic coastal plain by combined use of chronologic (CCl2F2, 3H), chemical (dissolved solids, gases), and isotopic (δ15N,δ13C, δ34S) analyses of recharging groundwaters, discharging groundwaters, and surface waters. The results demonstrate the interactive effects of changing agricultural practices, groundwater residence times, and local geologic features on the transfer of NO3− through local flow systems. Recharge dates of groundwaters taken in 1990–1992 from the surficial aquifer in the Chesterville Branch and Morgan Creek watersheds near Locust Grove, Maryland, ranged from pre-1940 to the late 1980’s. When corrected for localized denitrification by use of dissolved gas concentrations, the dated waters provide a 40-year record of the recharge rate of NO3−, which increased in both watersheds by a factor of 3–6, most rapidly in the 1970's. The increase in groundwater NO3− over time was approximately proportional to the documented increase in regional N fertilizer use, and could be accounted for by oxidation and leaching of about 20–35% of the fertilizer N. Groundwaters discharging upward beneath streams in both watersheds had measured recharge dates from pre-1940 to 1975, while chemical data for second-order reaches of the streams indicated average groundwater residence times in the order of 20+ years. At the time of the study, NO3− discharge rates were less than NO3− recharge rates for at least two reasons: (1) discharge of relatively old waters with low initial NO3− concentrations, and (2) local denitrification. In the Chesterville Branch watershed, groundwaters remained oxic throughout much of the surficial aquifer and discharged relatively unaltered to the stream, which had a relatively high NO3−concentration (9–10 mg/L as N). In the Morgan Creek watershed, groundwaters were largely reduced and

  7. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    PubMed

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-02

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.

  8. A Farming Revolution: Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Klinkenborg, Verlyn

    1995-01-01

    Growing realization of the economic, social, and environmental costs of conventional agriculture has led many U.S. farmers to embrace and become advocates for agricultural practices that limit the need for pesticides and chemical fertilizers, decrease soil erosion, and improve soil health. Some hope that sustainable agriculture can promote smaller…

  9. A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region

    SciTech Connect

    Goldsborough, S. Scott

    2009-06-15

    An ignition delay correlation has been developed for iso-octane based on the functional behavior exhibited by a detailed chemical kinetic mechanism. The correlation employs a traditional Arrhenius-based, power law formulation, {tau}=A{phi}{sup {alpha}}p{sup {beta}}{chi}{sub O{sub 2}}{sup {gamma}} x exp ({lambda}), including dependencies for equivalence ratio ({phi}), pressure (p) and oxygen percentage ({chi}{sub O2}). However the exponents for these parameters, {alpha}, {beta}, and {gamma}, respectively, are expressed as third-order polynomials with respect to temperature in order to capture changes in functionality seen across different regimes. At very low temperatures {alpha}, {beta}, and {gamma} are forced to a constant value, as seen within the mechanism. The activation energy term, {lambda}, is written as a combination of two quadratic expressions so that the behavior in the negative temperature coefficient (NTC) region can be captured. A pressure-dependent term is also included in the expression for {lambda} in order to reduce the activation energy at higher pressures in the NTC region due to increased low temperature reactivity, and the appearance of cool flame, or low temperature heat release (LTHR). The resulting expression contains 37 constants. The new correlation is applicable over a wide range of conditions and can be used for data comparisons and mechanism evaluation, as well as systems-level engineering simulations. In this work experimental data from rapid compression machines (RCM) and shock tubes (ST) are compared through normalizing features of the correlation, and the performance of a detailed kinetic mechanism is evaluated based on the functional behavior of the {alpha}, {beta}, {gamma} and {lambda} parameters. Six hundred and sixty-one (661) data points have been used to fit the 37 constants of the expression where the experimental conditions cover {phi}=0.2-2.0, p=1-60atm, {chi}{sub O{sub 2}} and T=650-2000 K. Data normalized through the

  10. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.

  11. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  12. Electron donor concentrations in sediments and sediment properties at the agricultural chemicals team research site near New Providence, Iowa, 2006-07

    USGS Publications Warehouse

    Maharjan, Bijesh; Korom, Scott F.; Smith, Erik A.

    2013-01-01

    The concentrations of electron donors in aquifer sediments are important to the understanding of the fate and transport of redox-sensitive constituents in groundwater, such as nitrate. For a study by the U.S. Geological Survey National Water-Quality Assessment Program, 50 sediment samples were collected from below the water table from 11 boreholes at the U.S. Geological Survey Agricultural Chemicals Team research site near New Providence, Iowa, during 2006-07. All samples were analyzed for gravel, sand (coarse, medium, and fine), silt, clay, Munsell soil color, inorganic carbon content, and for the following electron donors: organic carbon, ferrous iron, and inorganic sulfide. A subset of 14 sediment samples also was analyzed for organic sulfur, but all of these samples had concentrations less than the method detection limit; therefore, the presence of this potential electron donor was not considered further. X-ray diffraction analyses provided important semi-quantitative information of well-crystallized dominant minerals within the sediments that might be contributing electron donors.

  13. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  14. Theme: Changes in Agricultural Education.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 1997

    1997-01-01

    Includes "Changes in Agricultural Education in Tennessee" (Byerley, Todd); "Evolving Focus for Agricultural Education Graduates?" (Schlink); "Researching Adult Organizations in Agricultural Education" (Seevers, Dormody); "Past 25 Years" (Klein, Luft); "Agricultural Education" (Sibiga, Mannebach); "Don't Look Back" (Butcher); "Changes in…

  15. Urban Agriculture Program Planning Guide.

    ERIC Educational Resources Information Center

    Hemp, Paul E.; Ethridge, Jim

    Urban agriculture may be defined as those areas of agriculture that are practiced in metropolitan settings, plus knowledge and skills in agricultural subject areas which lead to vocational proficiency and improved quality of life or effective citizenship. Agriculture areas that are especially significant in urban settings include ornamental…

  16. Environmental behavior and analysis of agricultural sulfur.

    PubMed

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted.

  17. Chemical composition of Ivorian Artabotrys insignis leaf oil. Combined analysis including (13)C NMR, to quantify germacrene A and β-elemene.

    PubMed

    Gooré, Stéphane G; Ouattara, Zana A; Yapi, Thierry A; Békro, Yves-Alain; Tomi, Pierre; Paoli, Mathieu; Tomi, Félix

    2017-02-20

    The chemical composition of leaf essential oil from Artabotrys insignis Engler & Diels collected from Cote d'Ivoire was determined by GC(FID), GC-MS and (13)C NMR. The main compounds were β-elemene (66.8%) and germacrene A (17.1%). The true content of germacrene A/β-elemene was obtained by combining GC(FID) and (13)C NMR data.

  18. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.

  19. Long-Term Effect of Agricultural Reclamation on Soil Chemical Properties of a Coastal Saline Marsh in Bohai Rim, Northern China

    PubMed Central

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (−42.2%) and total nitrogen (TN) (−25.8%) at surface layer (0–30 cm) as well as their stratification ratios (SRs) (0–5 cm:50–70 cm and 5–10 cm:50–70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0–30 cm) and their SRs (0–5 cm:50–70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0–100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20–70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0–10 cm layer and anions at 5–100 cm layer, mainly decreasing the proportion of Na+, Cl− and SO42−. Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0–20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm. PMID:24695526

  20. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW.

  1. Agriculture: Newsroom

    EPA Pesticide Factsheets

    Agriculture Newsroom. News releases, reports, and other documents from around EPA that are of interest or direct importance to the environmental management or compliance efforts of the agricultural community.

  2. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  3. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  4. Health and safety risks in production agriculture.

    PubMed Central

    Von Essen, S G; McCurdy, S A

    1998-01-01

    Production agriculture is associated with a variety of occupational illnesses and injuries. Agricultural workers are at higher risk of death or disabling injury than most other workers. Traumatic injury commonly occurs from working with machinery or animals. Respiratory illness and health problems from exposures to farm chemicals are major concerns, and dermatoses, hearing loss, certain cancers, and zoonotic infections are important problems. Innovative means of encouraging safe work practices are being developed. Efforts are being made to reach all groups of farmworkers, including migrant and seasonal workers, farm youth, and older farmers. PMID:9795581

  5. Health and safety risks in production agriculture.

    PubMed

    Von Essen, S G; McCurdy, S A

    1998-10-01

    Production agriculture is associated with a variety of occupational illnesses and injuries. Agricultural workers are at higher risk of death or disabling injury than most other workers. Traumatic injury commonly occurs from working with machinery or animals. Respiratory illness and health problems from exposures to farm chemicals are major concerns, and dermatoses, hearing loss, certain cancers, and zoonotic infections are important problems. Innovative means of encouraging safe work practices are being developed. Efforts are being made to reach all groups of farmworkers, including migrant and seasonal workers, farm youth, and older farmers.

  6. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    PM2.5 mass concentrations and chemical compositions sampled over a 13-month period at a Central European rural background site (Košetice) are presented in this work. A comprehensive chemical analysis of PM2.5 was performed, which provided elemental composition (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, and Pb) and the concentration of water-soluble inorganic anions (SO42 -, NO3-. Cl-, NO2-, Br-, and H2PO4-) and cations (Na+, NH4+, K+, Ca2 +, and Mg2 +), elemental and organic carbon (EC and OC), and levoglucosan. Spearman correlation coefficients between individual chemical species and particle number concentrations were calculated for the following six size ranges: 10-25 nm (N10-25), 25-50 nm (N25-50), 50-80 nm (N50-80), 80-150 nm (N80-150), 150-300 nm (N150-300), and 300-800 nm (N300-800). Average concentrations of individual species were comparable with concentrations reported from similar sites across Central Europe. Organic matter (OM) accounted for 45% of the PM2.5 mass (calculated from OC by a factor of 1.6), while the second most common component were secondary aerosols (SO42 -: 19%, NO3-: 14%, NH4+: 10%), which accounted for 43% of the mass. Based on levoglucosan analysis, 31% of OM was attributed to emissions associated with biomass burning (OMBB). EC concentrations, determined using the EUSAAR_2 thermal optical protocol, contributed 4% to PM2.5 mass. A total of 1% of the mass was attributed to a mineral matter source, while the remaining 6% was from an undetermined mass. Seasonal variations showed highest concentrations of NO3- and OMBB in winter, nitrate share in spring, and an increase in percentage of SO42 - and mineral matter in summer. The largest seasonal variation was found for species associated with wood and coal combustion (levoglucosan, K+, Zn, Pb, As), which had clear maxima during winter. Correlation analysis of different size fraction particle number concentrations was used to distinguish the influence

  7. On-line measurements of emissions and atmospheric fate of compounds from agricultural waste management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural emissions impact air quality on a local and regional basis. Research on the emissions and reduction of greenhouse gases from agriculture has become commonplace due to concerns about climate but other chemical compounds also impact air quality. These include compounds that are photochemi...

  8. One hundred years of the Division of Agricultural and Food Chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Division of Agricultural and Food Chemistry (AGFD)of the American Chemical Society was 100 years old in 2008. ACS grouped papers into sections at its national meetings starting in 1904, including one dealing with agricultural, biological, and sanitary chemistry. This section became AGFD on Dec...

  9. Theme: Marketing Agricultural Education.

    ERIC Educational Resources Information Center

    Staller, Bernie L.; And Others

    1988-01-01

    Consists of six articles on marketing agricultural education. Topics include (1) being consumer conscious, (2) cooperating with agribusiness, (3) preparing students for postsecondary education, (4) allowing concurrent enrollments, (5) saving the failing agricultural program, and (6) refocusing the curriculum toward agrimarketing. (CH)

  10. Agricultural Occupations Handbook.

    ERIC Educational Resources Information Center

    Lark, Floyd J.; Henderson, Billie

    This agricultural occupations handbook was developed from the Dictionary of Occupational Titles (DOT) and the U.S. Departments of Health, Education, and Welfare, and Labor publication, Vocational Education and Occupations. It includes the U.S. Office of Education coding for the instructional area of agriculture and the cluster coding for the…

  11. Vocational Agriculture I.

    ERIC Educational Resources Information Center

    Patton, Bob; Harp, Keith

    These course materials are designed to provide a foundation of basic knowledge in production agriculture as a prelude to further education in vocational agriculture. The guide contains 6 sections and 22 units of instruction. Each unit includes all or most of eight basic components: performance objectives, suggested activities for the teacher,…

  12. Invasive species in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production of food, feed, fiber or fuel is a local human activity with global ecological impacts, including the potential to foster invasions. Agriculture plays an unusual role in biological invasions, in that it is both a source of non-indigenous invasive species (NIS) and especially s...

  13. Theme: Urban Agriculture.

    ERIC Educational Resources Information Center

    Ellibee, Margaret; And Others

    1990-01-01

    On the theme of secondary agricultural education in urban areas, this issue includes articles on opportunities, future directions, and implications for the profession; creative supervised experiences for horticulture students; floral marketing, multicultural education; and cultural diversity in urban agricultural education. (JOW)

  14. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  15. The PM2.5 chemical composition in an industrial zone included in a large urban settlement: main sources and local background.

    PubMed

    Squizzato, Stefania; Masiol, Mauro; Visin, Flavia; Canal, Andrea; Rampazzo, Giancarlo; Pavoni, Bruno

    2014-08-01

    Chemical analyses, receptor modeling and meteorological data were combined to determine the composition and sources of PM2.5 sampled daily in a large area in Italy characterized by a high number of heterogeneous industrial emissions and contiguous to a major urban center. The PM2.5 local background in the area, i.e. the common basic composition and concentrations of PM2.5, was determined. Factor analysis-multiple linear regression analysis (FA-MLRA) was used to identify and quantify the main PM sources. Groups of samples with similar source contributions were then sorted using cluster analysis. The potential source location and the influence of long range transport were investigated by using the conditional probability function (CPF) and the potential source contribution function (PSCF) respectively. On an annual basis, five sources of PM were found relevant. Industrial emissions accounted for 3% of PM mass, whereas the main contribution to PM was related to a combination of ammonium nitrate, combustion (54%) and road traffic (36%), mainly related to urban emissions. The PM2.5 background was estimated to account for 20 μg m(-3). It comprises contributions of 55% ammonium nitrate and combustion, 46% road traffic, 6% fossil fuel combustion and 3% industrial emissions. Source contributions are influenced by both local atmospheric circulation and regional transport.

  16. Receptor- and ligand-based study of fullerene analogues: comprehensive computational approach including quantum-chemical, QSAR and molecular docking simulations.

    PubMed

    Ahmed, Lucky; Rasulev, Bakhtiyor; Turabekova, Malakhat; Leszczynska, Danuta; Leszczynski, Jerzy

    2013-09-21

    Fullerene and its derivatives have potential antiviral activity due to their specific binding interactions with biological molecules. In this study fullerene derivatives were investigated by the synergic combination of three approaches: quantum-mechanical calculations, protein-ligand docking and quantitative structure-activity relationship methods. The protein-ligand docking studies and improved structure-activity models have been able both to predict binding affinities for the set of fullerene-C60 derivatives and to help in finding mechanisms of fullerene derivative interactions with human immunodeficiency virus type 1 aspartic protease, HIV-1 PR. Protein-ligand docking revealed several important molecular fragments that are responsible for the interaction with HIV-1 PR. In addition, a density functional theory method has been utilized to identify the optimal geometries and predict physico-chemical parameters of the studied compounds. The 5-variable GA-MLRA based model showed the best predictive ability (r(2)training = 0.882 and r(2)test = 0.738), with high internal and external correlation coefficients.

  17. 7 CFR 201.7 - Purity (including variety).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Purity (including variety). 201.7 Section 201.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS Records for Agricultural and Vegetable Seeds § 201.7 Purity (including variety). The...

  18. The Omics Revolution in Agricultural Research

    PubMed Central

    2015-01-01

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10–14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research. PMID:26468989

  19. The Omics Revolution in Agricultural Research.

    PubMed

    Van Emon, Jeanette M

    2016-01-13

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10-14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research.

  20. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  1. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  2. Agricultural Machinery - Equipment. Agricultural Cooperative Training. Vocational Agricluture. Revised.

    ERIC Educational Resources Information Center

    Sandlin, David, Comp.; And Others

    Designed for students enrolled in the Agricultural Cooperative Part-Time Training Program, this course of study contains 12 units on agricultural machinery mechanics. Units include (examples of unit topics in parentheses): introduction (agricultural mechanics as an occupation; safety--shop and equipment; use of holding devices, jacks, lifts, and…

  3. Including non-dietary sources into an exposure assessment of the European Food Safety Authority: The challenge of multi-sector chemicals such as Bisphenol A.

    PubMed

    von Goetz, N; Pirow, R; Hart, A; Bradley, E; Poças, F; Arcella, D; Lillegard, I T L; Simoneau, C; van Engelen, J; Husoy, T; Theobald, A; Leclercq, C

    2017-04-01

    In the most recent risk assessment for Bisphenol A for the first time a multi-route aggregate exposure assessment was conducted by the European Food Safety Authority. This assessment includes exposure via dietary sources, and also contributions of the most important non-dietary sources. Both average and high aggregate exposure were calculated by source-to-dose modeling (forward calculation) for different age groups and compared with estimates based on urinary biomonitoring data (backward calculation). The aggregate exposure estimates obtained by forward and backward modeling are in the same order of magnitude, with forward modeling yielding higher estimates associated with larger uncertainty. Yet, only forward modeling can indicate the relative contribution of different sources. Dietary exposure, especially via canned food, appears to be the most important exposure source and, based on the central aggregate exposure estimates, contributes around 90% to internal exposure to total (conjugated plus unconjugated) BPA. Dermal exposure via thermal paper and to a lesser extent via cosmetic products may contribute around 10% for some age groups. The uncertainty around these estimates is considerable, but since after dermal absorption a first-pass metabolism of BPA by conjugation is lacking, dermal sources may be of equal or even higher toxicological relevance than dietary sources.

  4. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    USGS Publications Warehouse

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational

  5. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA.

    PubMed

    Steinle-Darling, Eva; Zedda, Marco; Plumlee, Megan H; Ridgway, Harry F; Reinhard, Martin

    2007-09-01

    Reverse osmosis (RO) treatment has been found to be effective for a wide range of organics but generally small, polar, uncharged molecules such as N-nitrosodimethylamine (NDMA) can be poorly rejected. The rejection of seven N-nitrosoalkylamines with molecular masses in the range of 78-158Da, including NDMA, N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip) by three commercial brackish-water reverse osmosis membranes was studied in flat-sheet cells under cross-flow conditions. The membranes used were ESPA3 (Hydranautics), LFC3 (Hydranautics) and BW-30 (Dow/Filmtec), commonly used in water reuse applications. The effects of varying ionic strength and pH, dip-coating membranes with PEBAX 1657, a hydrophilic polymer, and artificial fouling with alginate on nitrosamine rejection were quantified. Rejection in deionized (DI) water increased with molecular mass from 56 to 70% for NDMA, to 80-91% for NMEA, 89-97% for NPyr, 92-98% for NDEA, and to beyond the detection limits for NPip, NDPA and NDBA. For the nitrosamines with quantifiable transmission, linear correlations (r(2)>0.97) were found between the number of methyl groups and the log(transmission), with factor 0.35 to 0.55 decreases in transmission per added methyl group. A PEBAX coating lowered the ESPA3 rejection of NDMA by 11% but increased the LFC3 and BW30 rejection by 6% and 15%, respectively. Artificially fouling ESPA3 membrane coupons with 170g/m(2) alginate decreased the rejection of NDMA by 18%. A feed concentration of 100mM NaCl decreased rejection of NDMA by 15% and acidifying the DI water feed to pH=3 decreased the rejection by 5%, whereas increasing the pH to 10 did not have a significant (p<0.05) effect.

  6. Agricultural Energy Practices. Agriculture Energy.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with agricultural energy practices. Its objective is for the student to be able to discuss energy use and conservation of resources in the production of agricultural products. Some topics covered are basic uses of direct energy in…

  7. Agriculture Education. Agricultural Metal Working.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agricultural metal working. The guide presents units of study in the following areas: (1) oxyacetylene welding, (2) arc welding, (3) sheet metal, (4) blueprint reading for welders and (5) job…

  8. Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes

    PubMed Central

    Allen, Joseph G.; Flanigan, Skye S.; LeBlanc, Mallory; Vallarino, Jose; MacNaughton, Piers; Stewart, James H.; Christiani, David C.

    2015-01-01

    Background: There are > 7,000 e-cigarette flavors currently marketed. Flavoring chemicals gained notoriety in the early 2000s when inhalation exposure of the flavoring chemical diacetyl was found to be associated with a disease that became known as “popcorn lung.” There has been limited research on flavoring chemicals in e-cigarettes. Objective: We aimed to determine if the flavoring chemical diacetyl and two other high-priority flavoring chemicals, 2,3-pentanedione and acetoin, are present in a convenience sample of flavored e-cigarettes. Methods: We selected 51 types of flavored e-cigarettes sold by leading e-cigarette brands and flavors we deemed were appealing to youth. E-cigarette contents were fully discharged and the air stream was captured and analyzed for total mass of diacetyl, 2,3-pentanedione, and acetoin, according to OSHA method 1012. Results: At least one flavoring chemical was detected in 47 of 51 unique flavors tested. Diacetyl was detected above the laboratory limit of detection in 39 of the 51 flavors tested, ranging from below the limit of quantification to 239 μg/e-cigarette. 2,3-Pentanedione and acetoin were detected in 23 and 46 of the 51 flavors tested at concentrations up to 64 and 529 μg/e-cigarette, respectively. Conclusion: Because of the associations between diacetyl and bronchiolitis obliterans and other severe respiratory diseases observed in workers, urgent action is recommended to further evaluate this potentially widespread exposure via flavored e-cigarettes. Citation: Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P, Stewart JH, Christiani DC. 2016. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ Health Perspect 124:733–739; http://dx.doi.org/10.1289/ehp.1510185 PMID:26642857

  9. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  10. Agriculture Sectors

    EPA Pesticide Factsheets

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  11. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  12. Agricultural Waste.

    PubMed

    Shu, Huajie; Zhang, Panpan; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2015-10-01

    The management and disposal of agricultural waste are drawn more and more attention because of the increasing yields and negative effects on the environment. However, proper treatments such as converting abundant biomass wastes into biogas through anaerobic digestion technology, can not only avoid the negative impacts, but also convert waste into available resources. This review summarizes the studies of nearly two hundred scholars from the following four aspects: the characterization, reuse, treatment, and management of agricultural waste.

  13. Agriculture: About EPA's National Agriculture Center

    EPA Pesticide Factsheets

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  14. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica's region, Greece.

    PubMed

    Botsou, Fotini; Sungur, Ali; Kelepertzis, Efstratios; Soylak, Mustafa

    2016-10-01

    We report in this study the magnetic properties and partitioning patterns of selected trace metals (Pb, Zn, Cu, Cd, Ni) in roadside and off-road (>200m distance from the road edge) agricultural soils collected along two major highways in Greece. Sequential extractions revealed that the examined trace metals for the entire data set were predominantly found in the residual fraction, averaging 37% for Cd up to 80% for Cu. Due to the strong influence of lithogenic factors, trace metal pseudototal contents of the roadside soils did not differ significantly to those of the off-road soils. Magnetic susceptibility and frequency dependent magnetic susceptibility determinations showed a magnetic enhancement of soils; however, it was primarily related to geogenic factors and not to traffic-derived magnetic particles. These results highlight that in areas characterized by strong geogenic backgrounds, neither pseudototal trace metal contents nor magnetic properties determinations effectively capture traffic-related contamination of topsoils. The vehicular emission signal was traced by the increased acid-soluble and reducible trace metal contents of the roadside soils compared to their off-road counterparts. In the case of Cu and Zn, changes in the partitioning patterns were also observed between the roadside and off-road soils. Environmental risks associated with agricultural lands extending at the margins of the studied highways may arise from the elevated Ni contents (both pseudototal and potentially mobile), and future studies should investigate Ni levels in the edible parts of plants grown on these agricultural soils.

  15. Chemical characterization of ash generated from alfalfa stem gasification: Agricultural and environmental implications. Quarterly report, July 1, 1997--September 30, 1997

    SciTech Connect

    Rosen, C.; Mozaffari, M.; Russelle, M.; Nater, E.

    1997-10-30

    This progress report provides results of Toxicity Characteristics Leaching Procedures (TCLP) and Synthetic Leachate Test Procedure (SLTP) for the alfalfa stem ash. The TCLP simulates solute leaching in landfill by using acetic acid as a solvent and SLTP simulates potential for leaching from synthetic acid rain. This report also provides information on detailed chemical characterization of organic and inorganic constituents of the ash. The analysis performed includes information on compounds that may represent a potential risk to human or animal health and those constituents that may have beneficial use as soil amendments and conditioners. A sample of the fly (filter) ash from the test burn conducted in Finland was received in May 1997 and used for initial investigation. Three additional fly ash samples and one sample of bottom ash (reactor bed ash) were received in June 1997. The samples were either tested at the University of Minnesota or sent to a reputable laboratory, and various tests were conducted according to the standard methods. The result of the comprehensive tests conducted in May 1997 (report submitted previously) were used as a screening procedure for conducting tests on June 1997 samples. To provide a more comprehensive representation of ash characteristics the results for fly ash received in May are presented along with results from fly ash samples received in July. The average, range and coefficient of variation (CV) are provided. The TCLP and SLTP tests conducted in the laboratory indicated that the concentration of heavy metals were below or close to the detection limits for fly and bottom ash samples (Tables 1 and 2). The ash was also characterized for a number of classes of organic compounds that may pose potential environmental or health risks. These are polyaromatic hydrocarbons (PAHs), total and individual dioxin and furan compounds.

  16. Agriculture-related anaemias.

    PubMed

    Fleming, A F

    1994-12-01

    Man evolved as a hunter-gatherer, and the invention and spread of agriculture was followed by changes in diet, the environment and population densities which have resulted in globally high prevalences of anaemias due to nutritional deficiencies of iron, folate and (locally) vitamin B12, to infestations by hookworm and schistosomes, to malaria, and to the natural selection for the genes for sickle-cell diseases, beta-thalassaemias, alpha-thalassaemias, glucose-6-phosphate dehydrogenase deficiency, ovalocytosis and possibly (locally) elliptocytosis. The present explosion of population is driving an expansion of agriculture, especially the cultivation of rice, and this has led often to disastrous increases of transmission of malaria, schistosomiasis and other diseases, to widespread chemical pollution, and to degradation of the environment. Anaemia, as the commonest manifestation of human disease, is a frequent consequence. The urgent need for increased food production is matched by the urgent need for assessment and control of the health impact of agricultural development.

  17. [Chemical risk in farming].

    PubMed

    Moretto, Angelo

    2013-01-01

    The most important chemical risks in agriculture are plant protection products. Exposure evaluation in agriculture is not an easy task and cannot be carried out with the tools and methodologies of industrial exposures. However, toxicological studies on plant protection products, that are compulsory, provide a lot of useful information for actual risk assessment. Exposure evaluation can be carried out on the basis of exposure models and on semiquantitative measures based on the observation of the activity as it is carried our by the farmer. It is therefore possible to develop risk profiles that can guide exposure evaluation and health surveillance. Concentrated animal feeding operations are associated with several chemical risks including disinfectants, antibiotics, and gases such as ammonia and hydrogen sulfide, in addition to organic dusts and endotoxins.

  18. Geogenic and agricultural controls on the geochemical composition of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Mol, Gerben; Saaltink, Remon; Griffioen, Jasper; Birke, Manfred

    2014-05-01

    Purpose: Concern about the environmental impact of agriculture caused by intensification is growing as large amounts of nutrients and contaminants are introduced into the environment. The aim of this paper is to identify the geogenic and agricultural controls on the elemental composition of European, grazing and agricultural soils. Materials and methods: Robust factor analysis was applied to data series for Al,B,Ca, Cd,Co, Cu, Fe, K, Mg,Mn, Na,Ni, P, S, Se, Sr, U, Zn (ICP-MS) and SiO2, K2O, Na2O, Fe2O3, Al2O3 (XRF) based on the European GEMAS dataset. In addition, the following general soil properties were included: clay content, pH, chemical index of alteration (CIA), loss on ignition (LOI), cation exchange capacity (CEC), total organic carbon (TOC) and total carbon and total sulfur. Furthermore, this dataset was coupled to a dataset containing information of historic P2O5 fertilization across Europe. Also, a mass balance was carried out for Cd, Cu and Zn to determine if concentrations of these elements found in the soils have their origin in historic P2O5 fertilization. Results and discussion: Seven geogenic factors and one agricultural factor were found of which four prominent ones (all geogenic): chemical weathering, reactive iron-aluminum oxide minerals, clay minerals and carbonate minerals. Results for grazing and agricultural soils were near identical, which further proofs the prominence of geogenic controls on the total elemental composition. When the cumulative amount of P2O5 fertilization was considered, no extra agriculture-related factors became visible. The mass balance confirms these observations. Conclusion: Overall, the geological controls are more important for the total soil chemistry in agricultural and grazing land soils than the anthropogenic controls.

  19. Transport of agricultural chemicals in surface flow, tileflow, and streamflow of Walnut Creek Watershed near Ames, Iowa, April 1991-September 1993

    USGS Publications Warehouse

    Soenksen, P.J.

    1996-01-01

    Chemical loss ratios indicated differences in the transport characteristics of the three subwatersheds. The downstream subwatershed, which has steeper terrain, a more-developed natural drainage system, and fewer tiles than the two upland subwatersheds, had the largest loss rates for all three chemicals 206 percent for nitrate as nitrogen (October 1992-September 1993) and 20 percent for atrazine and 2.9 percent for metolachlor (April-September 1993). For May-July 1993, when most of the herbicides were transported, the downstream subwatershed also had the largest cumulative unit discharge and the largest streamflow-to-precipitation ratios.

  20. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Dick, W.; Chen, L.; Nelson, S. Jr.

    1998-12-31

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called Fluesorbent has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable soil amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGD by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved. Detailed yield and chemical data are presented.

  1. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2016-10-01

    The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol) than those obtained on a semi-technical scale.

  2. AGRICULTURAL EXTENSION.

    ERIC Educational Resources Information Center

    FARQUHAR, R.N.

    AUSTRALIAN AGRICULTURAL EXTENSION HAS LONG EMPHASIZED TECHNICAL ADVISORY SERVICE AT THE EXPENSE OF THE SOCIOECONOMIC ASPECTS OF FARM PRODUCTION AND FARM LIFE. ONLY IN TASMANIA HAS FARM MANAGEMENT BEEN STRESSED. DEMANDS FOR THE WHOLE-FARM APPROACH HAVE PRODUCED A TREND TOWARD GENERALISM FOR DISTRICT OFFICERS IN MOST STATES. THE FEDERAL GOVERNMENT,…

  3. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  4. Topical Hazard Evaluation Program of Candidate Insect Repellent AI3-30180-c, US Department of Agriculture Proprietary Chemical, April 1982 - September 1984.

    DTIC Science & Technology

    1985-01-10

    irritation photochemical chemical and 10 percent reaction under test con- irritation in humans. (wlv) Oil of Bergamot ditions. 2 * - Study No. 75-51-0367-85...control (oil of Bergamot ), than unirradiated skin areas. a and diluent were applied to additional skin areas to serve as unirradiated control sites

  5. Topical Hazard Evaluation Program of Candidate Insect Repellent A13-38349a US Department of Agriculture Proprietary Chemicals, July 1981-January 1983.

    DTIC Science & Technology

    1983-08-16

    reaction (w/v) Oil of Bergamot irritation reaction under test (positive control) in 95% under test conditions and is ethyl alcohol was conditions, not...the rabbits, 0.05 mL cation and irradiation of the test chemical, caused greater irritant positive control (oil of effects than in un- Bergamot ) and

  6. U.S. Department of Agriculture/Corps of Engineers Cooperative Aquatic Plant Control Research. Annual Report for FY 1981. Biological and Chemical Control Technologies.

    DTIC Science & Technology

    1983-10-01

    evaluated for efficacy in controlling hydrilla, watermilfoil, sago pondweed, and chara (Table 13), hygro- phila, cabomba, bacopa , and coontail (Table 14...CB), Bacopa (B), and Coontail (CT) Posureatment Control, percent RLMduation Chemical Company Rate 2 weeks 4 weeks 6 weeks Date Deianation or Sowce mg

  7. Modern Agriculture in Advanced Placement Human Geography.

    ERIC Educational Resources Information Center

    Lanegran, David A.

    2000-01-01

    Discusses the four sections of the Advanced Placement (AP) human geography course focusing on agriculture: (1) development and diffusion of agriculture; (2) major agricultural production regions; (3) rural land use and change; and (4) impacts of modern agricultural change. Includes references and a resource list. (CMK)

  8. Agricultural Resources Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains four units with relevant problem areas and is intended as a source unit for agricultural education. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. Each problem area includes some or all of the…

  9. Biofertilizers: a potential approach for sustainable agriculture development.

    PubMed

    Mahanty, Trishna; Bhattacharjee, Surajit; Goswami, Madhurankhi; Bhattacharyya, Purnita; Das, Bannhi; Ghosh, Abhrajyoti; Tribedi, Prosun

    2017-02-01

    The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

  10. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  11. Agricultural aviation medicine in the Soviet Union.

    PubMed

    Mohler, S R

    1980-05-01

    The Soviet Union has developed one of the world's most sophisticated civil aviation medicine programs. The program gives specific attention to aerial application operations and includes special preflight pilot medical examinations, aircraft with specialized protective airflow systems for the pilots, minimum flight altitude spraying limit of 5 m, and the use of a "chemical log book" by each pilot in addition to the flight log book. These and additional steps--i.e. limiting a pilot's daily agricultural flights to 4-6 h--have led to a reported USSR agricultural aviation annual accident rate near zero. The Soviet workhorse aircraft, the Antonov AN-2, can serve multipurpose roles since, when not used for application flights, it can be rapidly converted to executive, courier, cargo, or air taxi, or air ambulance use. A new, single-engine turbojet biplane, the Polish M-15, is undergoing evaluation in the Soviet Union as a replacement for the AN-2. Countries with very high agricultural aircraft accident rates may wish to study the Soviet approach, especially the use by the pilot of a chemical log book.

  12. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period.

    PubMed

    Neugschwandtner, Reinhard W; Tlustos, Pavel; Komárek, Michael; Száková, Jirina; Jakoubková, Lucie

    2012-09-01

    Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.

  13. Vocational Agriculture II.

    ERIC Educational Resources Information Center

    Harp, Keith; Steward, Jim

    This curriculum guide was developed for second-year courses in vocational agriculture in Oklahoma. The curriculum contains 5 sections organized in 16 instructional units. The units follow a standard format established in 1970 for development of instructional materials for all Oklahoma vocational teachers. This format includes eight basic…

  14. Agriculture. Poultry Livestock.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for agricultural production, specifically for poultry, is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a task sheet for developing leadership skills, and a task list.…

  15. Agriculture. Beef Livestock.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for agricultural production, specifically for beef livestock, is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a task sheet for developing leadership skills, and a task…

  16. Agriculture. Sheep Livestock.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for agricultural production, specifically for sheep, is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a task sheet for developing leadership skills, and a task list. Each…

  17. Agriculture. Dairy Livestock.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for agricultural production, specifically for dairy livestock, is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a task sheet for developing leadership skills, and a task…

  18. Agriculture. Swine Livestock.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for agricultural production, specifically for swine, is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a task sheet for developing leadership skills, and a task list. Each…

  19. Nanotechnology in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview is given of the application of nanotechnology to agriculture. This is an active field of R&D, where a large number of findings and innovations have been reported. For example, in soil management, applications reported include nanofertilizers, soil binders, water retention aids, and nut...

  20. The Advanced Program of Vocational Agriculture in Louisiana. Ag III and Ag IV (11th and 12th Grades). Volume I. Bulletin No. 1725.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide consists of materials for use in teaching an advanced course in vocational agriculture designed for 11th and 12th grade students. Addressed in the individual units of the guide are the following topics: farm and agribusiness planning, employment-seeking skills, agricultural chemicals, and conservation. Each unit includes a…

  1. Proceedings: Agricultural Technology Alliance

    SciTech Connect

    1997-09-01

    This report is a compilation of field trip overviews, presentations and committee reports from the EPRI-ATA meeting held in Boise, Idaho, May 28-30, 1997. The field trips consisted of an Agriculture and Aquaculture Tour, a tour of Idaho as America's Seed Supplier, and a Production of Milk, Cheese and Electricity tour. Presentations and committee reports include the following: (1) Idaho Seed Industry; (2) Controlled Environment Agriculture; (3) Irrigation in the North West: An Overview; (4) Drip Irrigation; (5) Sprinkler Irrigation; (6) Current Status of the ATA; (7) ATA Office Report; (8) Committee Reports; (9) Steering Committee Minutes.

  2. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  3. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  4. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  5. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  6. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  7. 7 CFR 58.529 - Chemical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Chemical requirements. 58.529 Section 58.529 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cheese Bearing Usda Official Identification § 58.529 Chemical requirements. (a) Moisture. See §...

  8. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  9. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  10. USSR Report, Agriculture.

    DTIC Science & Technology

    2007-11-02

    JPRS publications contain information primarily from foreign newspapers, periodicals and books, but also from news agency transmissions and broad- casts. Materials from foreign-language sources are translated; those from English-language sources are transcribed or reprinted, with the original phrasing and other characteristics retained. This document includes articles concerning agriculture issues in the USSR. Topics include: crop progress and weather reporting, livestock, regional development , agro-economicss and organizations, tilling and cropping technology.

  11. Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties.

    PubMed

    Azzaz, Ahmed Amine; Jellali, Salah; Akrout, Hanene; Assadi, Aymen Amine; Bousselmi, Latifa

    2016-10-10

    The present study investigates the alkaline modification of raw orange tree sawdust (ROS) for an optimal removal of methylene blue (MB), as a cationic dye model, from synthetic solutions. The effects of operating parameters, namely, sodium hydroxide (NaOH) concentrations, ROS doses in NaOH solutions, stirring times, and initial MB concentrations on dye removal efficiency, were followed in batch mode. The process optimization was performed through the response surface methodology approach (RSM) by using Minitab17 software. The results showed that the order of importance of the followed parameters was NaOH treatment concentrations > stirring times > initial MB concentrations > ROS doses in NaOH solutions. The optimal experimental conditions ensuring the maximal MB removal efficiency was found for a NaOH treatment concentration of 0.14 M, a stirring time of 1 h, a ROS dose in NaOH solutions of 50 g L(-1), and an initial MB concentration of 69.5 mg L(-1). Specific analyses of the raw and alkali-treated biomasses, e.g., SEM/EDS and XRD analyses, demonstrated an important modification of the crystalline structure of the wooden material and a significant increase in its surface basic functional groups. Kinetic and isotherm studies of MB removal from synthetic solutions by ROS and the alkali-treated material (ATOS) showed that for both adsorbents, the pseudo-second-order and Langmuir model fitted the best the experimental data, respectively, which indicates that MB removal might be mainly a chemical and a monolayer process. Furthermore, thanks to the chemical modification of the ROS, the MB maximal uptake capacity has increased from about 39.7 to 78.7 mg g(-1). On the other hand, due to the competition phenomenon, the coexistence of MB and Zn(II) ions could significantly decrease the MB removal efficiency. A maximal decrease of about 32 % was registered for an initial Zn(II) concentration of 140 mg L(-1). Desorption experiments undertaken at natural pH (without

  12. Chemical forms of heavy metals in agricultural soils affected by coal mining in the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China.

    PubMed

    Shang, Wenqin; Tang, Quan; Zheng, Liugen; Cheng, Hua

    2016-12-01

    Total concentrations of heavy metals in soils may not be enough to understand their mobility and bioavailability. It is important to evaluate the degree of association of heavy metals with different chemical forms of soil. The sequential extraction method was applied to evaluate the mobile behavior of Cd, Cr, Cu, Ni, Pb, and Zn in 42 representative soil samples from the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China. The results showed that mean concentrations of heavy metals were higher than background values of Huaibei City surface soil by a factor of 1.16 to 3.21 (Cd, 3.21; Cr, 1.19; Cu, 1.16; Ni, 1.23; Zn, 1.85) except Pb (0.89). Most of the total Cr, Cu, Ni, Pb, and Zn were present in the residual forms (above 70 %), while Cd was dominated by the exchangeable forms (42 %). The correlations analysis showed that the mobility of Cd, Cu, Pb, and Zn in soil was affected by both physicochemical properties and total metal concentrations. In contrast, the moblity of Cr and Ni of soil was mainly affected by their total metal concentrations. According to assessments by the potential ecological risk index (RI) and the risk assessment code (RAC), Cr, Cu, Ni, Pb, and Zn posed no or low risk. However, Cd presents high to very high risk, due to its higher exchangeable and carbonate-bound fractions.

  13. Agricultural Science--Striving for Excellence.

    ERIC Educational Resources Information Center

    Budke, Wesley E.; And Others

    1991-01-01

    Six articles examine several of the critical components of program and personnel development in agricultural science including linkages between agriscience and natural resources teachers and high school science teachers, science in agriculture, biological science applications, and hydroponics. (JOW)

  14. Agricultural Business and Management Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains 5 teaching units for 44 agricultural business and management cluster problem areas. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. The five units are as follows: (1) agribusiness operation and…

  15. Nitrate in groundwater and water sources used by riparian trees in an agricultural watershed: A chemical and isotopic investigation in southern Minnesota

    USGS Publications Warehouse

    Komor, S.C.; Magner, J.A.

    1996-01-01

    This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of ??D values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate- poor, deep groundwater. Upwelling deep groundwater contained ammonium with a ??15N of 5??? that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate ??15N values in shallow groundwater to decrease by as much as 19.5???. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass- shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these

  16. Nitrate in ground water and water sources used by riparian trees in an agricultural watershed: A chemical and isotopic investigation in southern Minnesota

    USGS Publications Warehouse

    Komor, Stephen C.; Magner, J.

    1996-01-01

    This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate-poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass-shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these

  17. Traumatic injuries in agriculture.

    PubMed

    Hard, D L; Myers, J R; Gerberich, S G

    2002-02-01

    The National Coalition for Agricultural Safety and Health (NCASH) in 1988 addressed issues in agriculture and noted "a sense of urgency... arose from the recognition of the unabating epidemic of traumatic death and injury in American farming . . ." This article provides an update to the NCASH conference on traumatic injuries in agriculture, a history on how the facts and figures were arrived at for the NCASH conference, and a current report on the status of traumatic injuries in agriculture in the U.S. Fatal and nonfatal injuries are addressed along with national and regional surveillance systems. The Census of Fatal Occupational Injuries (CFOI) was used for reporting national agricultural production fatal injuries from 1992-1998 (25.8 deaths per 100,000 workers), the Traumatic Injury Surveillance of Farmers (TISF) 1993-1995 was used to report nonfatal injuries occurring nationally (7.5/100 workers), and Regional Rural Injury Studies I and II (RRIS-I and RRIS-II) were used to illustrate a regional approach along with in-depth, specific analyses. Fatality rates, which showed some decline in the 1980s, were fairly constant during the 1990s. Changes in nonfatal injury rates for this sector could not be assessed due to a lack of benchmark data. The main concerns identified in the 1989 NCASH report continue today: tractors are the leading cause of farm-related death due mostly to overturns; older farmers continue to be at the highest risk for farm fatalities; and traumatic injuries continue to be a major concern for youth living or working on U.S. farms. Fatal and nonfatal traumatic injuries associated with agricultural production are a major public health problem that needs to be addressed through comprehensive approaches that include further delineation of the problem, particularly in children and older adults, and identification of specific risk factors through analytic efforts. Continued development of relevant surveillance systems and implementation of appropriate

  18. Recovery of agricultural nutrients from biorefineries.

    PubMed

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction.

  19. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS (CONTINUED) PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling Establishments § 455.60 Applicability; description of repackaging of agricultural pesticides performed...

  20. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling Establishments § 455.60 Applicability; description of repackaging of agricultural pesticides performed by...

  1. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS (CONTINUED) PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling Establishments § 455.60 Applicability; description of repackaging of agricultural pesticides performed...

  2. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS (CONTINUED) PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling Establishments § 455.60 Applicability; description of repackaging of agricultural pesticides performed...

  3. 40 CFR 455.60 - Applicability; description of repackaging of agricultural pesticides performed by refilling...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... repackaging of agricultural pesticides performed by refilling establishments subcategory. 455.60 Section 455... STANDARDS PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides Performed at Refilling Establishments § 455.60 Applicability; description of repackaging of agricultural pesticides performed by...

  4. Revision of Import and Export Requirements for Controlled Substances, Listed Chemicals, and Tableting and Encapsulating Machines, Including Changes To Implement the International Trade Data System (ITDS); Revision of Reporting Requirements for Domestic Transactions in Listed Chemicals and Tableting and Encapsulating Machines; and Technical Amendments. Final rule.

    PubMed

    2016-12-30

    The Drug Enforcement Administration is updating its regulations for the import and export of tableting and encapsulating machines, controlled substances, and listed chemicals, and its regulations relating to reports required for domestic transactions in listed chemicals, gamma-hydroxybutyric acid, and tableting and encapsulating machines. In accordance with Executive Order 13563, the Drug Enforcement Administration has reviewed its import and export regulations and reporting requirements for domestic transactions in listed chemicals (and gamma-hydroxybutyric acid) and tableting and encapsulating machines, and evaluated them for clarity, consistency, continued accuracy, and effectiveness. The amendments clarify certain policies and reflect current procedures and technological advancements. The amendments also allow for the implementation, as applicable to tableting and encapsulating machines, controlled substances, and listed chemicals, of the President's Executive Order 13659 on streamlining the export/import process and requiring the government-wide utilization of the International Trade Data System (ITDS). This rule additionally contains amendments that implement recent changes to the Controlled Substances Import and Export Act (CSIEA) for reexportation of controlled substances among members of the European Economic Area made by the Improving Regulatory Transparency for New Medical Therapies Act. The rule also includes additional substantive and technical and stylistic amendments.

  5. Chemical and biochemical properties of Stagnic Albeluvisols organic matter as result of long-term agricultural management and native forest ecosystem

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Kõlli, Raimo; Wojciech Szajdak, Lech

    2010-05-01

    Soil organic matter (SOM) is considered to be as the most important factor in soil forming, development and continuous functioning. Sequestrated into SOM organic carbon concentrations, pools and residence time in soil, as well acting intensity of interconnected with SOM edaphon are soil type specific or characteristic to certain soil types. In depending on soil moisture regime, calcareousness and clay content for each soil type certain soil organic carbon (SOC) retaining capacity and its vertical distribution pattern are characteristic. However, land use change (crop rotation, continuous cropping, no-tillage, melioration, rewetting) has greatest influence mainly on fabric of epipedon and biological functions of soil cover. Stagnic Albeluvisols are largely distributed at Tartu County. They form here more than half from arable soils. The establishment of long-term field trial and forest research area in these regions for biochemical analysis of Stagnic Albeluvisols' organic matter is in all respects justified. In 1989, an international long-term experiment on the organic nitrogen or IOSDV (Internationale Organische Stickstoffdauerdiingungsversuche) with three-field crop rotation (potato - spring wheat - spring barley) was started at Eerika near Tartu (58° 22.5' N; 26° 39.8' E) on Stagnic Albeluvisol. The main aims of this study were to determine the long-term effects of cropping systems on physico-chemical properties of soils and their productivity. The design of this field experiment is similar to other European network of IOSDV experiments. Before the establishment of this experiment in 1989 it was in set-aside state (5-6 years) as field-grass fallow. It was used as arable land in condition of state farm during 1957-83. Average agrochemical characteristics of the plough horizon of soil in the year of establishment were the following: humus content 17.1 g kg-1, total nitrogen content 0.9 g kg-1, C:N ratio 11 and pHKCl 6.3. DL soluble phosphorus content was 44 mg

  6. Agricultural lung diseases.

    PubMed Central

    Kirkhorn, S R; Garry, V F

    2000-01-01

    Agriculture is considered one of the most hazardous occupations. Organic dusts and toxic gases constitute some of the most common and potentially disabling occupational and environmental hazards. The changing patterns of agriculture have paradoxically contributed to both improved working conditions and increased exposure to respiratory hazards. Animal confinement operations with increasing animal density, particularly swine confinement, have contributed significantly to increased intensity and duration of exposure to indoor air toxins. Ongoing research has implicated bacterial endotoxins, fungal spores, and the inherent toxicity of grain dusts as causes of upper and lower airway inflammation and as immunologic agents in both grain and animal production. Animal confinement gases, particularly ammonia and hydrogen sulfide, have been implicated as additional sources of respiratory irritants. It has become evident that a significant percentage of agricultural workers have clinical symptoms associated with long-term exposure to organic dusts and animal confinement gases. Respiratory diseases and syndromes, including hypersensitivity pneumonitis, organic dust toxic syndrome, chronic bronchitis, mucous membrane inflammation syndrome, and asthmalike syndrome, result from ongoing acute and chronic exposures. In this review we focus upon the emerging respiratory health issues in a changing agricultural economic and technologic environment. Environmental and occupational hazards and exposures will be emphasized rather than clinical diagnosis and treatment. Methods of prevention, from both engineering controls and personal respiratory perspectives, are also addressed. PMID:10931789

  7. Agricultural lung diseases.

    PubMed

    Kirkhorn, S R; Garry, V F

    2000-08-01

    Agriculture is considered one of the most hazardous occupations. Organic dusts and toxic gases constitute some of the most common and potentially disabling occupational and environmental hazards. The changing patterns of agriculture have paradoxically contributed to both improved working conditions and increased exposure to respiratory hazards. Animal confinement operations with increasing animal density, particularly swine confinement, have contributed significantly to increased intensity and duration of exposure to indoor air toxins. Ongoing research has implicated bacterial endotoxins, fungal spores, and the inherent toxicity of grain dusts as causes of upper and lower airway inflammation and as immunologic agents in both grain and animal production. Animal confinement gases, particularly ammonia and hydrogen sulfide, have been implicated as additional sources of respiratory irritants. It has become evident that a significant percentage of agricultural workers have clinical symptoms associated with long-term exposure to organic dusts and animal confinement gases. Respiratory diseases and syndromes, including hypersensitivity pneumonitis, organic dust toxic syndrome, chronic bronchitis, mucous membrane inflammation syndrome, and asthmalike syndrome, result from ongoing acute and chronic exposures. In this review we focus upon the emerging respiratory health issues in a changing agricultural economic and technologic environment. Environmental and occupational hazards and exposures will be emphasized rather than clinical diagnosis and treatment. Methods of prevention, from both engineering controls and personal respiratory perspectives, are also addressed.

  8. Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) Blastospores with Agricultural Chemicals Used for Management of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)

    PubMed Central

    Avery, Pasco B.; Pick, David A.; Aristizábal, Luis F.; Kerrigan, James; Powell, Charles A.; Rogers, Michael E.; Arthurs, Steven P.

    2013-01-01

    Biorational insecticides are being increasingly emphasized for inclusion in integrated pest management programs for invasive insects. The entomopathogenic fungus, Isaria fumosorosea, can be used to help manage the Asian citrus psyllid with minimal impact on beneficial arthropods, but its effectiveness may be compromised by agrochemicals used to control concurrent arthropod pests and diseases. We evaluated the compatibility of I. fumosorosea blastospores with a range of spray oils and copper-based fungicides registered for use in citrus groves. Results of laboratory and greenhouse tests showed a range of responses of the fungus to the different materials, including compatibility and incompatibility. Overall, I. fumosorosea growth in vitro was reduced least by petroleum-based materials and most by botanical oils and borax, and some of the copper-based fungicides, suggesting that tank mixing of I. fumosorosea with these latter products should be avoided. However, equivalent negative effects of test materials on fungal pathogenicity were not always observed in tests with adult psyllids. We hypothesize that some oils enhanced adherence of blastospores to the insect cuticle, overcoming negative impacts on germination. Our data show that care should be taken in selecting appropriate agrochemicals for tank-mixing with commercial formulations of entomopathogenic fungi for management of citrus pests. The prospects of using I. fumosorosea for managing the invasive Asian citrus psyllid and other citrus pests are discussed. PMID:26462531

  9. Influence of an iron-rich amendment on chemical lability and plant (Raphanus sativus L.) availability of two metallic elements (As and Pb) on mine-impacted agricultural soils.

    PubMed

    Kim, Juhee; Kim, Yong-Seong; Hyun, Seunghun; Moon, Deok Hyun; Chang, Jun Young

    2016-10-01

    Variation of the chemical extractability and phytoavailability of two metallic elements (e.g., As and Pb) on amendment-treated soils was investigated. Four mine-impacted agricultural soils contaminated with both As (174-491 mg kg(-1)) and Pb (116-357 mg kg(-1)) were amended with an iron-rich sludge at the rate of 5 % (w/w). After a 4-, 8-, and 16-week incubation, the extractability of metallic elements was assessed by sequential extraction procedure (SEP; F1-F5). The control without amendment was also run. In amended soils, the labile element mass (i.e., F1 + F2) promptly decreased (15-48 % of As and 5-10 % of Pb) in 4 weeks, but the decrement was continued over 16 weeks up to 70 and 28 % for As and Pb, respectively. The labile mass decrement was quantitatively corresponded with the increment of F3 (bound to amorphous metal oxides). In plant test assessed by radish (Raphanus sativus) grown on the 16-week soils, up to 57 % of As and 28 % of Pb accumulation was suppressed and 10-43 % of growth (i.e., shoot/root elongation and fresh weight) was improved. For both the control and amended soils, element uptake by plant was well correlated with their labile soil concentrations (r (2) = 0.799 and 0.499 for As and Pb, respectively). The results confirmed that the iron-rich material can effectively suppress element uptake during R. sativus seedling growth, most likely due to the chemical stabilization of metallic elements in growth medium.

  10. Measuring Florida Extension Faculty's Agricultural Paradigmatic Preferences

    ERIC Educational Resources Information Center

    Warner, Laura A.; Murphrey, Theresa Pesl; Lawver, David E.; Baker, Matt; Lindner, James R.

    2014-01-01

    The demand for sustainable agriculture has increased, and many institutions, including the University of Florida, have adopted agricultural sustainability as a major goal. Extension has been identified as a critical information source, important in disseminating sustainable agricultural growing techniques. However, research has demonstrated that…

  11. Collaboration between Science and Agriculture Teachers

    ERIC Educational Resources Information Center

    Stephenson, Lee G.; Warnick, Brian K.; Tarpley, Rudy S.

    2008-01-01

    The focus of this descriptive study was to determine the type and frequency of collaborative activities occurring between agriculture teachers and science teachers who taught in schools with agricultural education programs. Additional foci of this study included determining the extent to which science and agriculture teachers value collaborative…

  12. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  13. Evaluation of protein safety in the context of agricultural biotechnology.

    PubMed

    Delaney, Bryan; Astwood, James D; Cunny, Helen; Conn, Robin Eichen; Herouet-Guicheney, Corinne; Macintosh, Susan; Meyer, Linda S; Privalle, Laura; Gao, Yong; Mattsson, Joel; Levine, Marci

    2008-05-01

    One component of the safety assessment of agricultural products produced through biotechnology is evaluation of the safety of newly expressed proteins. The ILSI International Food Biotechnology Committee has developed a scientifically based two-tiered, weight-of-evidence strategy to assess the safety of novel proteins used in the context of agricultural biotechnology. Recommendations draw upon knowledge of the biological and chemical characteristics of proteins and testing methods for evaluating potential intrinsic hazards of chemicals. Tier I (potential hazard identification) includes an assessment of the biological function or mode of action and intended application of the protein, history of safe use, comparison of the amino acid sequence of the protein to other proteins, as well as the biochemical and physico-chemical properties of the proteins. Studies outlined in Tier II (hazard characterization) are conducted when the results from Tier I are not sufficient to allow a determination of safety (reasonable certainty of no harm) on a case-by-case basis. These studies may include acute and repeated dose toxicology studies and hypothesis-based testing. The application of these guidelines is presented using examples of transgenic proteins applied for agricultural input and output traits in genetically modified crops along with recommendations for future research considerations related to protein safety assessment.

  14. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Simon, Nancy S.; Ingle, Sarah N.

    2011-01-01

    μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P

  15. Vocational Agriculture Handbook for Agriculture Cooperative Training.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This handbook was designed to assist school administrators, vocational administrators, vocational agricultural teachers, and area consultants of vocational agriculture in developing, implementing, and improving an agricultural cooperative training program (especially in Texas). The handbook, which presents information in a narrative format,…

  16. Agricultural Education: Key to Providing Broader Opportunities for Third World Women in Production Agriculture.

    ERIC Educational Resources Information Center

    Lelle, Mark A.; Holt, Barbara A.

    1987-01-01

    The authors focus on providing opportunities for women in Third World countries in agriculture. A review of the body of knowledge in agricultural development and of the issues surrounding current world food crises is included. (CH)

  17. Solar charged agriculture

    SciTech Connect

    Heckeroth, S.

    1999-07-01

    It is becoming obvious that the developed world's reliance on petroleum for transportation and agricultural production is not sustainable. Industrial agriculture currently uses an average of 200 gallons of diesel per acre (1,900 liters per hectare) per year. Sustainability requires a transition to the use of non-polluting renewable energy sources, as well as small scale farming techniques. This paper outlines the tremendous potential electric tractors offer in a variety of applications all over the world, including greenhouses and organic farms, toxic cleanup, bomb disposal and mine sweeping, as well as use as a mobile power source in remote areas and in emergency applications. An electric tractor can be charged from photovoltaic panels, either on the tractor in the form of a shade canopy or mounted on the roof of a building.

  18. Agricultural Marketing.

    ERIC Educational Resources Information Center

    Helt, Lawrence; And Others

    Designed for use in farm business management adult programs, this marketing curriculum includes six teaching lessons and professional staff products. The following topics are covered in the lessons: introduction to marketing; interpretation of price/demand/supply cycles and fundamental outlook trends (carryover/projections/disappearance); farmers'…

  19. Potential use and perspectives of nitric oxide donors in agriculture.

    PubMed

    Marvasi, Massimiliano

    2017-03-01

    Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry.

  20. Applications of metabolomics in agriculture.

    PubMed

    Dixon, Richard A; Gang, David R; Charlton, Adrian J; Fiehn, Oliver; Kuiper, Harry A; Reynolds, Tracey L; Tjeerdema, Ronald S; Jeffery, Elizabeth H; German, J Bruce; Ridley, William P; Seiber, James N

    2006-11-29

    Biological systems are exceedingly complex. The unraveling of the genome in plants and humans revealed fewer than the anticipated number of genes. Therefore, other processes such as the regulation of gene expression, the action of gene products, and the metabolic networks resulting from catalytic proteins must make fundamental contributions to the remarkable diversity inherent in living systems. Metabolomics is a relatively new approach aimed at improved understanding of these metabolic networks and the subsequent biochemical composition of plants and other biological organisms. Analytical tools within metabolomics including mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy can profile the impact of time, stress, nutritional status, and environmental perturbation on hundreds of metabolites simultaneously resulting in massive, complex data sets. This information, in combination with transcriptomics and proteomics, has the potential to generate a more complete picture of the composition of food and feed products, to optimize crop trait development, and to enhance diet and health. Selected presentations from an American Chemical Society symposium held in March 2005 have been assembled to highlight the emerging application of metabolomics in agriculture.

  1. USE OF AGRICULTURAL PESTICIDES AND PROSTATE CANCER RISK IN THE AGRICULTURAL HEALTH STUDY COHORT

    EPA Science Inventory

    The role of specific agricultural chemicals in relation to prostate cancer risk has not been firmly established due to the lack of precise exposure data. We examined the relationship between 45 common agricultural pesticides and prostate cancer incidence in a prospective cohor...

  2. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    NASA Technical Reports Server (NTRS)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  3. China Report, Agriculture, No. 266

    DTIC Science & Technology

    2007-11-02

    Cultivated Land Stressed (S. Deshan; NONGYE JINGJI WENTI [PROBLEMS IN AGRICULTURAL ECONOMICS], No 12, 23 Dec 82) 3 PRC Sets Policy On Chemical...83) 35 Disease-Resistant Cotton Variety Cultivation Praised (HEBEI RIBAO, 28 Mar 83) 38 Drive Against Wheat Aphids and Stem Rust Reported...expanding peasants’ private plots on hilly land and giving more collectively-owned barren mountain slopes to peasants for tree cultivation under

  4. Vocational Agriculture Computer Handbook.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort.

    This document is a catalog of reviews of computer software suitable for use in vocational agriculture programs. The reviews were made by vocational agriculture teachers in Kentucky. The reviews cover software on the following topics: farm management, crop production, livestock production, horticulture, agricultural mechanics, general agriculture,…

  5. Theme: Agricultural Literacy.

    ERIC Educational Resources Information Center

    Deeds, Jacquelyn P.; And Others

    1991-01-01

    Six theme articles attempt to define and advocate agricultural literacy, review the status of K-8 agricultural literacy programs in states, discuss an Oklahoma study of agricultural literacy, clarify the meaning of sustainable agriculture, and describe the Future Farmers of America's Food for America program for elementary students. (SK)

  6. Chemical burns

    PubMed Central

    Cartotto, Robert C.; Peters, Walter J.; Neligan, Peter C.; Douglas, Leith G.; Beeston, Jeff

    1996-01-01

    Objectives To report a burn unit’s experience with chemical burns and to discuss the fundamental principles in managing chemical burns. Design A chart review. Setting A burn centre at a major university-affiliated hospital. Patients Twenty-four patients with chemical burns, representing 2.6% of all burn admissions over an 8-year period at the Ross Tilley Regional Adult Burn Centre. Seventy-five percent of the burn injuries were work-related accidents. Chemicals involved included hydrofluoric acid, sulfuric acid, black liquor, various lyes, potassium permanganate and phenol. Results Fourteen patients required excision and skin grafting. Complications were frequent and included ocular chemical contacts, wound infections, tendon exposures, toe amputation and systemic reactions from absorption of chemical. One patient died from a chemical scald burn to 98% of the body surface area. Conclusions The key principles in the management of chemical burns include removal of the chemical, copious irrigation, limited use of antidotes, correct estimation of the extent of injury, identification of systemic toxicity, treatment of ocular contacts and management of chemical inhalation injury. Individualized treatment is emphasized. PMID:8640619

  7. A threshold area ratio of organic to conventional agriculture causes recurrent pathogen outbreaks in organic agriculture.

    PubMed

    Adl, S; Iron, D; Kolokolnikov, T

    2011-05-01

    Conventional agriculture uses herbicides, pesticides, and chemical fertilizers that have the potential to pollute the surrounding land, air and water. Organic agriculture tries to avoid using these and promotes an environmentally friendly approach to agriculture. Instead of relying on herbicides, pesticides and chemical fertilizers, organic agriculture promotes a whole system approach to managing weeds, pests and nutrients, while regulating permitted amendments. In this paper, we consider the effect of increasing the total area of agricultural land under organic practices, against a background of conventional agriculture. We hypothesized that at a regional scale, organic agriculture plots benefit from existing in a background of conventional agriculture, that maintains low levels of pathogens through pesticide applications. We model pathogen dispersal with a diffusive logistic equation in which the growth/death rate is spatially heterogeneous. We find that if the ratio of the organic plots to conventional plots remains below a certain threshold l(c), the pest population is kept small. Above this threshold, the pest population in the organic plots grows rapidly. In this case, the area in organic agriculture will act as a source of pest to the surrounding region, and will always infect organic plots as they become more closely spaced. Repeated localized epidemics of pest outbreaks threaten global food security by reducing crop yields and increasing price volatility. We recommend that regional estimates of this threshold are necessary to manage the growth of organic agriculture region by region.

  8. Information requirements for agriculture: The next decade

    NASA Astrophysics Data System (ADS)

    Johannsen, Chris J.; Falconer, Allan; Wigton, William

    1997-01-01

    International agriculture needs improved capabilities for crop production monitoring and management data. Many countries, using an area frame sample, have begun to integrate GIS and remote sensing in their national crop inventory statistics programs and as the basis for famine early warning systems. The demand for accurate digital data has been heightened by the boom in precision farming which requires analysis of data collected at 1-5 meter spatial intervals. Manipulation and interaction of such data as digital soils maps, field boundary maps, drainage maps, yield monitor images, fertilizer, seed and chemical rate applications are primary to precision farming. Interest is building in the use of remotely sensed data to compare with yield image maps to assist in management decisions. The demand for digital data at all levels will increase dramatically as data are collected for local, regional and national statistics, the management of crop production, transportation to markets, crop insurance decisions, marketing commodity futures and delivery of data to farm consultants. Users in the United States will include county extension educators, crop consultants, ag industry agronomists, farm management groups among others. In a global context the users will include development agencies, national governments, agribusiness and the investment community as well as international organizations concerned with the environmental issues related to agriculture and land use.

  9. Agricultural Aircraft Aid

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Farmers are increasingly turning to aerial applications of pesticides, fertilizers and other materials. Sometimes uneven distribution of the chemicals is caused by worn nozzles, improper alignment of spray nozzles or system leaks. If this happens, job must be redone with added expense to both the pilot and customer. Traditional pattern analysis techniques take days or weeks. Utilizing NASA's wind tunnel and computer validation technology, Dr. Roth, Oklahoma State University (OSU), developed a system for providing answers within minutes. Called the Rapid Distribution Pattern Evaluation System, the OSU system consists of a 100-foot measurement frame tied in to computerized analysis and readout equipment. System is mobile, delivered by trailer to airfields in agricultural areas where OSU conducts educational "fly-ins." A fly-in typically draws 50 to 100 aerial applicators, researchers, chemical suppliers and regulatory officials. An applicator can have his spray pattern checked. A computerized readout, available in five to 12 minutes, provides information for correcting shortcomings in the distribution pattern.

  10. Agricultural Education and Agricultural Communications: Striking a Proper Balance in the Academy.

    ERIC Educational Resources Information Center

    Tucker, Mark; Whaley, Sherrie R.; Cano, Jamie M.

    2003-01-01

    Uses a framework of educational sociology to illustrate benefits and challenges of agricultural communications' relationships with agricultural education departments and private industry. Examines agricultural communications as an academic field and the influences of home department, journalism, and industry. Issues include graduate education…

  11. U.S.-State Agricultural Data. Agriculture Information Bulletin Number 512.

    ERIC Educational Resources Information Center

    Womack, Letricia M.; Traub, Larry G.

    This report presents agricultural information for each state and the United States as a whole for the years 1981-1985. Included are data on population, land use, agricultural production, farm income, value of assets on farms, and selected characteristics of farms. The primary data sources are the "1982 Census of Agriculture," the…

  12. Light, Including Ultraviolet

    PubMed Central

    Maverakis, Emanual; Miyamura, Yoshinori; Bowen, Michael P.; Correa, Genevieve; Ono, Yoko; Goodarzi, Heidi

    2009-01-01

    Ultraviolet (UV) light is intricately linked to the functional status of the cutaneous immune system. In susceptible individuals, UV radiation can ignite pathogenic inflammatory pathways leading to allergy or autoimmunity. In others, this same UV radiation can be used as a phototherapy to suppress pathogenic cutaneous immune responses. These vastly different properties are a direct result of UV light’s ability to ionize molecules in the skin and thereby chemically alter them. Sometimes these UV-induced chemical reactions are essential, the formation of pre-vitamin D3 from 7-dehydrocholesterol, for example. In other instances they can be potentially detrimental. UV radiation can ionize a cell’s DNA causing adjacent pyrimidine bases to chemically bond to each other. To prevent malignant transformation, a cell may respond to this UV-induced DNA damage by undergoing apoptosis. Although this pathway prevents skin cancer it also has the potential of inducing or exacerbating autoreactive immune responses by exposing the cell’s nuclear antigens. Ultaviolet-induced chemical reactions can activate the immune system by a variety of other mechanisms as well. In response to UV irradiation keratinocytes secrete cytokines and chemokines, which activate and recruit leukocytes to the skin. In some individuals UV-induced chemical reactions can synthesize novel antigens resulting in a photoallergy. Alternatively, photosensitizing molecules can damage cells by initiating sunburn-like phototoxic reactions. Herein we review all types of UV-induced skin reactions, especially those involving the immune system. PMID:20018479

  13. Chemical microsensors

    SciTech Connect

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  14. Agriculture Supplies & Services. Volume 3 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The third of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains twenty-five units of instruction in the area of agricultural mechanics. Among the unit topics included are (1) Farm Safety, (2) Ignition Systems; (3) Servicing Wheel Bearings, (4) Oxyacetylene Cutting, (5) Servicing the…

  15. Congressional District Schools: Forerunner of Federally Supported Vocational Agriculture.

    ERIC Educational Resources Information Center

    Hillison, John

    1989-01-01

    Before the Smith-Hughes Act, Congressional district agricultural schools in Alabama, Georgia, and Virginia provided an early example of federal support for vocational agriculture. Although agricultural instruction was included, these schools were in reality comprehensive high schools that set precedents for subsequent agricultural curricula. (SK)

  16. Climate-smart agriculture for food security

    NASA Astrophysics Data System (ADS)

    Lipper, Leslie; Thornton, Philip; Campbell, Bruce M.; Baedeker, Tobias; Braimoh, Ademola; Bwalya, Martin; Caron, Patrick; Cattaneo, Andrea; Garrity, Dennis; Henry, Kevin; Hottle, Ryan; Jackson, Louise; Jarvis, Andrew; Kossam, Fred; Mann, Wendy; McCarthy, Nancy; Meybeck, Alexandre; Neufeldt, Henry; Remington, Tom; Sen, Pham Thi; Sessa, Reuben; Shula, Reynolds; Tibu, Austin; Torquebiau, Emmanuel F.

    2014-12-01

    Climate-smart agriculture (CSA) is an approach for transforming and reorienting agricultural systems to support food security under the new realities of climate change. Widespread changes in rainfall and temperature patterns threaten agricultural production and increase the vulnerability of people dependent on agriculture for their livelihoods, which includes most of the world's poor. Climate change disrupts food markets, posing population-wide risks to food supply. Threats can be reduced by increasing the adaptive capacity of farmers as well as increasing resilience and resource use efficiency in agricultural production systems. CSA promotes coordinated actions by farmers, researchers, private sector, civil society and policymakers towards climate-resilient pathways through four main action areas: (1) building evidence; (2) increasing local institutional effectiveness; (3) fostering coherence between climate and agricultural policies; and (4) linking climate and agricultural financing. CSA differs from 'business-as-usual' approaches by emphasizing the capacity to implement flexible, context-specific solutions, supported by innovative policy and financing actions.

  17. Agricultural Chartbook 1988. Agriculture Handbook No. 673.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    These charts present an overview of the current economic health of American agriculture. The charts move from the national and international arenas to farm economic health measures and crop and livestock trends. A small amount of descriptive narrative accompanies most of the charts. Charts depicting the economic picture of U.S. agriculture include…

  18. 1986 Agricultural Chartbook. Agriculture Handbook No. 663.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    This book contains 310 charts, tables, and graphs containing statistical information about agriculture-related commodities and services, primarily in the United States, in 1986. The book is organized in seven sections that cover the following topics: (1) the farm (farm income, farm population, farm workers, food and fiber system, agriculture and…

  19. Pulmonary Health Effects of Agriculture

    PubMed Central

    Nordgren, Tara M.; Bailey, Kristina L.

    2016-01-01

    Purpose of review Occupational exposures in the agricultural industry are associated with numerous lung diseases, including chronic obstructive pulmonary disease, asthma, hypersensitivity pneumonitis, lung cancer and interstitial lung diseases. Efforts are ongoing to ascertain contributing factors to these negative respiratory outcomes and improve monitoring of environmental factors leading to disease. In this review, recently published studies investigating the deleterious effects of occupational exposures in the agricultural industry are discussed. Recent findings Occupational exposures to numerous agricultural environment aerosols, including pesticides, fungi, and bacteria are associated with impaired respiratory function and disease. Increases in certain farming practices, including mushroom and greenhouse farming, present new occupational exposure concerns. Improved detection methods may provide opportunities to better monitor safe exposure levels to known lung irritants. Summary In the agricultural industry, occupational exposures to organic and inorganic aerosols lead to increased risk for lung disease amongst workers. Increased awareness of respiratory risks and improved monitoring of agricultural environments are necessary to limit pulmonary health risks to exposed populations. PMID:26761627

  20. Agricultural sources of contaminants of emerging concern and adverse health effects on freshwater fish

    USGS Publications Warehouse

    Tillitt, Donald E.; Buxton, Herbert T.

    2011-01-01

    Agricultural contaminants of emerging concern (CECs) are generally thought of as certain classes of chemicals associated with animal feeding and production facilities. Veterinary pharmaceuticals used in animal food production systems represent one of the largest groups of CECs. In our review, we discuss the extensive increase in use of antibiotics in animal feeding operations (AFOs) around the world. AFOs are a major consumer of antibiotics and other veterinary pharmaceuticals and over the past decade there has been growing information on the occurrence, release, and fate of CECs from animal food production operations, including the application of pharmaceutical-containing manure to agricultural fields and releases from waste lagoons. Concentrations of CECs in surface and ground water in proximity to AFOs correspond to their presence in the AFO wastes. In many cases, the environmental concentrations of agriculturally-derived CECs are below toxicity thresholds. Hormones and hormone replacement compounds are a notable exception, where chemical concentrations near AFOs can exceed concentrations known to cause adverse effects on endocrine-related functions in fish. In addition, some agricultural pesticides, once thought to be safe to non-target organisms, have demonstrated endocrine-related effects that may pose threats to fish populations in agricultural regions. That is, we have pesticides with emerging concerns, thus, the concern is emerging and not necessarily the chemical. In this light, one must consider certain agricultural pesticides to be included in the list of CECs. Even though agricultural pesticides are routinely evaluated in regulatory testing schemes which have been used for decades, the potential hazards of some pesticides have only recently been emerging. Emerging concerns of pesticides in fish include interference with hormone signaling pathways; additive (or more than additive) effects from pesticide mixtures; and adverse population-level effects at

  1. Weather extremes could affect agriculture

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  2. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil.

    PubMed

    Garau, Giovanni; Castaldi, Paola; Deiana, Salvatore; Campus, Paolo; Mazza, Antonio; Deiana, Pietrino; Pais, Antonio

    2012-10-30

    assessed in a pot experiment. Plant growth was unaffected (wheat) or stimulated (bean) by the amendment addition in the 0.5-3.0% range while the higher amendment rate (i.e. 5.0%) was detrimental for both plant species indicating a phytotoxic effect which could be due to different factors such as an excess of calcium in soil, a suppression of Mg uptake or the higher EC values detected at the highest amendment rate. It is concluded that ground P. lividus endoskeletons have potential as a soil amendment to ameliorate chemical and biological properties of acidic Mediterranean soils. This seems particularly relevant, especially at the lower amendment rates, since for the first time, a sustainable management system is proposed for P. lividus processing waste, which foresees economic value in the sea urchin by-product through its re-use within the agricultural production system.

  3. Crop Farm Employee. Agricultural Cooperative Training. Vocational Agriculture. Revised.

    ERIC Educational Resources Information Center

    Boyd, Chester; And Others

    Designed for students enrolled in the Vocational Agricultural Cooperative Part-Time Training Program, this course of study contains 13 units for crop farm employees. Units include (examples of unit topics in parentheses): introduction (opportunities in farming, farming as a science, and farming in the United States), farm records (keeping farm…

  4. Agriculture: Climate Change

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  5. Agriculture: Land Use

    EPA Pesticide Factsheets

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  6. Strategies for Agriculture.

    ERIC Educational Resources Information Center

    Crosson, Pierre R.; Rosenberg, Norman J.

    1989-01-01

    Discusses the change of agricultural methods with human population growth. Describes the trends of world food production, changes in farmland, use of fertilizer, and 13 agricultural research institutions. Lists 5 references for further reading. (YP)

  7. Traditional Agriculture and Permaculture.

    ERIC Educational Resources Information Center

    Pierce, Dick

    1997-01-01

    Discusses benefits of combining traditional agricultural techniques with the concepts of "permaculture," a framework for revitalizing traditions, culture, and spirituality. Describes school, college, and community projects that have assisted American Indian communities in revitalizing sustainable agricultural practices that incorporate…

  8. The impact of mining activities on agriculture

    NASA Astrophysics Data System (ADS)

    Saghatelyan, A.; Sahakyan, L.

    2009-04-01

    The present study was designed to assess environmental status of the territory of the city of Kapan and neighboring agricultural farms with an emphasis on the impact of the tailing repository and operation of the Kapan copper plant on soil, water and plant pollution. The region has long been known for its abundant copper and polymetallic deposits with vein- and stockwork-type mineralization. Moreover, historically Kapan was the miners' city and a powerful copper mining and dressing plant has been operating there since 1846. The performed geochemical survey and a sanitary-hygienic assessment of pollution of the Kapan's soils have indicated high contents of Cu, Pb, Ni, Mo and As vs. the background and Maximum Acceptable Concentrations (MAC). The assessment of pollution levels of surface water, including natural and industrial streams, has indicated that unlike natural stream waters, mining waters from the adit and industrial stream waters were high in a number of toxic (Cd, As, Hg) and ore (Cu, Zn) elements. Activation of most chemical elements and particularly of heavy metals in water environment rapidly brings to pollution of environmental components (soils, plants, etc.), and as a result heavy metals enter the human organism via trophic chains. So, in the frame of the research eco-toxicological studies were performed on accumulation of heavy metals (Cu, Ni, Cr, Zn, Sn, Mo), including high toxic elements (As, Hg, Pb, Cd) in agricultural soils and in the basic assortment of agricultural crops. The research covered agricultural lands within the bounds of the city and private plots in neighboring villages. Wholly, 24 vegetable, melon field, cereal (corn), oil-bearing (sunflower) species adding spicy herbs and fruits were studied. It should be stressed that agricultural crops growing on the study sites are used provide food products not only by the population of this particular city and neighboring villages, but of other cities, too. It means that the average number of

  9. Fungal biology and agriculture: revisiting the field

    USGS Publications Warehouse

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  10. Unnecessary Chemicals

    ERIC Educational Resources Information Center

    Johnson, Anita

    1978-01-01

    Discusses the health hazards resulting from chemical additions of many common products such as cough syrups, food dyes, and cosmetics. Steps being taken to protect consumers from these health hazards are included. (MDR)

  11. Advanced agricultural biotechnologies and sustainable agriculture.

    PubMed

    Lyson, Thomas A

    2002-05-01

    Agricultural biotechnologies are anchored to a scientific paradigm rooted in experimental biology, whereas sustainable agriculture rests on a biological paradigm that is best described as ecological. Both biotechnology and sustainable agriculture are associated with particular social science paradigms: biotechnology has its foundation in neoclassical economics, but sustainability is framed by an emerging community-centered, problem-solving perspective. Fundamentally, biotechnology and neoclassical economics are reductionist in nature. Sustainability and community problem-solving, however, are nonreductionist. Given these differences, we might see the development of two rather distinct systems of food production in the near future.

  12. Information for Agricultural Development.

    ERIC Educational Resources Information Center

    Kaungamno, E. E.

    This paper describes the major international agricultural information services, sources, and systems; outlines the existing information situation in Tanzania as it relates to problems of agricultural development; and reviews the improvements in information provision resources required to support the process of agricultural development in Tanzania.…

  13. Chapter 3: Cropland Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2013, cropland agriculture resulted in total emissions of approximately 209 MMT CO2 eq. of greenhouse gases (GHG). Cropland agriculture is responsible for almost half (46%) of all emissions from the agricultural sector. Nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions from c...

  14. Agricultural Structures, Volume II.

    ERIC Educational Resources Information Center

    Linhardt, Richard E.; Burhoe, Steve

    This guide to a curriculum unit in agricultural structures is designed to expand the curriculum materials available in vocational agriculture in Missouri. It and Agricultural Structures I (see note) provide reference materials to systematize the curriculum. The six units cover working with concrete (19 lessons, 2 laboratory exercises), drawing and…

  15. Agriculture Business and Management.

    ERIC Educational Resources Information Center

    Seperich, George; And Others

    This curriculum guide is intended for vocational agriculture teachers who deliver agricultural business and management programs at the secondary or postsecondary level. It is based on the Arizona validated occupational competencies and tasks for management and supervisory positions in agricultural business. The competency/skill and task list…

  16. African Americans and Agriculture.

    ERIC Educational Resources Information Center

    Morgan, Joan

    2000-01-01

    Reviews the opportunities available in the field of agriculture for African American students and notes efforts of the 136 colleges of agriculture to publicize their offerings and recruit students. Profiles six black leaders in agriculture, highlighting their achievements in research and aid to developing countries. A table provides data on annual…

  17. Beyond conservation agriculture

    PubMed Central

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  18. Beyond conservation agriculture.

    PubMed

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  19. A Numerical Analysis of the Transient Response of an Ablation System Including Effects of Thermal Nonequilibrium, Mass Transfer and Chemical Kinetics. Ph.D Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Clark, R. K.

    1972-01-01

    The differential equations governing the transient response of a one-dimensional ablative thermal protection system undergoing stagnation ablation are derived. These equations are for thermal nonequilibrium effects between the pyrolysis gases and the char layer and kinetically controlled chemical reactions and mass transfer between the pyrolysis gases and the char layer. The boundary conditions are written for the particular case of stagnation heating with surface removal by oxidation or sublimation and pyrolysis of the uncharred layer occurring in a plane. The governing equations and boundary conditions are solved numerically using the modified implicit method (Crank-Nicolson method). Numerical results are compared with exact solutions for a number of simplified cases. The comparison is favorable in each instance.

  20. Electrospun nanofibres in agriculture and the food industry: a review.

    PubMed

    Noruzi, Masumeh

    2016-11-01

    The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry.

  1. Agriculture & the Environment. Teacher's Guide.

    ERIC Educational Resources Information Center

    McMurry, Linda Maston

    This teacher's guide offers background information that teachers can use to incorporate topics related to agriculture and the environment into the curriculum. Classroom activities to bring these topics alive for students in grades 6-9 are suggested. Chapters include: (1) Pesticides and Integrated Pest Management; (2) Food Safety; (3) Water…

  2. Agriculture Teachers: An Endangered Species?

    ERIC Educational Resources Information Center

    Hemp, Paul E.

    1979-01-01

    Discusses a 1978 survey highlighting some of the factors which may be related to the critical shortage of agriculture teachers in Illinois and the high rate of turnover among these teachers. These factors include the time required on the job, inadequate salaries, and large classes. (JOW)

  3. Single Sheet Agricultural Mechanics Plans.

    ERIC Educational Resources Information Center

    Schumacher, Leon, Ed.

    This packet contains 25 single-page plans for agricultural mechanics projects. Each plan consists of a one-page set of drawings of the object to be made with a list of needed materials, a cut list, and step-by-step construction procedures on the back of the page. Plans for the following wood projects are included: bluebird house, lawn seat, dog…

  4. Chiral separation of agricultural fungicides.

    PubMed

    Pérez-Fernández, Virginia; García, Maria Ángeles; Marina, Maria Luisa

    2011-09-23

    Fungicides are very important and diverse environmental and agricultural concern species. Their determination in commercial formulations or environmental matrices, requires highly efficient, selective and sensitive methods. A significant number of these chemicals are chiral with the activity residing usually in one of the enantiomers. The different toxicological and degradation behavior observed in many cases for fungicide enantiomers, results in the need to investigate them separately. For this purpose, separation techniques such as GC, HPLC, supercritical fluid chromatography (SFC) and CE have widely been employed although, at present, HPLC still dominates chromatographic chiral analysis of fungicides. This review covers the literature concerning the enantiomeric separation of fungicides usually employed in agriculture grouping the chiral separation methodologies developed for their analysis in environmental, biological, and food samples.

  5. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  6. Chemical, Biological, Radiological, and Nuclear Consequence Management

    EPA Pesticide Factsheets

    The Chemical, Biological, Radiological, and Nuclear CMAD provides scientific support and technical expertise for decontamination of buildings, building contents, public infrastructure, agriculture, and associated environmental media.

  7. Agricultural Education. Proceedings of the Central Region Annual Research Conference (44th, Chicago, Illinois, February 24-25, 1990).

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The following papers are included: "Focusing Agricultural Education Research" (Williams); "A Time Series Analysis of Agricultural Education Student Teachers' Perceptions of Agricultural Mechanics Laboratory Management Competencies" (Schumacher, Johnson); "Determination of the Agricultural Mechanics Laboratory Management Inservice Needs of Missouri…

  8. Investigating the Environmental Effects of Agriculture Practices on Natural Resources: Scientific Contributions of the U.S. Geological Survey to Enhance the Management of Agricultural Landscapes

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey (USGS) enhances and protects the quality of life in the United States by advancing scientific knowledge to facilitate effective management of hydrologic, biologic, and geologic resources. Results of selected USGS research and monitoring projects in agricultural landscapes are presented in this Fact Sheet. Significant environmental and social issues associated with agricultural production include changes in the hydrologic cycle; introduction of toxic chemicals, nutrients, and pathogens; reduction and alteration of wildlife habitats; and invasive species. Understanding environmental consequences of agricultural production is critical to minimize unintended environmental consequences. The preservation and enhancement of our natural resources can be achieved by measuring the success of improved management practices and by adjusting conservation policies as needed to ensure long-term protection.

  9. Lunar outpost agriculture

    NASA Technical Reports Server (NTRS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    1991-01-01

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  10. Lunar outpost agriculture

    NASA Astrophysics Data System (ADS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  11. Percent Agricultural Land Cover on Steep Slopes

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  12. Agricultural Education in the South Pacific.

    ERIC Educational Resources Information Center

    Sutherland, J. A.

    This document is an English-language abstract (approximately 1,500 words) of a paper presenting the results of a survey conducted in 1967 by the Food and Agricultural Organization (FAO) of the United Nations at the request of the South Pacific Commission. The survey included existing facilities for agricultural education in the several territories…

  13. Measurement of gas and aerosol agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  14. Agriculture waste and rising CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there are many uncertainties concerning agriculture’s role in global environmental change including the effects of rising atmospheric CO2 concentration. A viable and stable world food supply depends on productive agricultural systems, but environmental concerns within agriculture have to...

  15. Agricultural aviation application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States has the most advanced equipment and applications in agricultural aviation. It also has a complete service system in agricultural aviation. This article introduces the current status of aerial application including service, equipment, and aerial application techniques. It has a c...

  16. Agricultural Products: Program Planning Guide: Volume 4.

    ERIC Educational Resources Information Center

    Welton, Richard; Robb, Sam

    The program planning guide for agricultural products was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of meat and meat byproducts, dairy processing, fruit and vegetable…

  17. Using Visuals in Agricultural Extension Programs.

    ERIC Educational Resources Information Center

    International Cooperation Administration (Dept. of State), Washington, DC.

    One of a series of booklets designed to answer questions about agricultural communications is presented. This booklet illustrates how visual teaching speeds learning and effects faster agricultural progress. Chapter titles include: (1) Visuals and Learning, (2) Visuals in Extension Teaching; (3) Presentation Visuals; (4) Drama and Music; (5)…

  18. Migrant labor in agriculture: an international comparison.

    PubMed

    Martin, P L

    1985-01-01

    The May 1984 Conference on Migrant Labor in Agriculture at the University of California-Davis discussed papers by 22 farm labor experts from 12 nations. Each industrial nation utilizes a different set of public and private policies to supply workers for labor-intensive agriculture, but none is entirely satisfactory. Labor-intensive agriculture is becoming more dependent on workers who are shut out of labor markets. Some countries have simply accepted foreign workers in agriculture, while others have adopted policies to integrate farm and nonfarm labor markets. Polices to reduce agriculture's reliance on workers-without-options include restructuring employment practices to employ fewer seasonal workers for longer periods, mechanizing production, and importing fruits and vegetables from nearby developing countries. This article explains the salient features of labor-intensive agriculture, the various polices for obtaining seasonal farmworkers, and options to reduce farming's dependence on migrant labor.

  19. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  20. Ground-water monitoring plan, water quality, and variability of agricultural chemicals in the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1998-2000

    USGS Publications Warehouse

    Kelly, Brian P.

    2002-01-01

    wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a

  1. Agricultural waste utilization and management

    SciTech Connect

    Not Available

    1985-01-01

    These papers were presented at a symposium on the management and use of agricultural waste products, including food industry wastes. Topics covered include fat and protein recovery from fish wastes, treatments for straw to improve its digestibility, using food industry wastes as animal feeds, various manure treatments and studies of its combustion properties, fermentation, methane and ethanol production, hemp waste water treatment, and heat recovery from manure combustion.

  2. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  3. 7 CFR 735.105 - Care of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.105 Care of agricultural products. Each warehouse operator must at all times, including during...

  4. Sustainable agriculture: how to sustain a production system in a changing environment.

    PubMed

    Wagner, W C

    1999-01-01

    During the past 10-15 years, sustainable agriculture has progressed from a focus primarily on a low-input, organic farming approach with a major emphasis on small fruit or vegetable production farms, often described as Low Input Sustainable Agriculture, to the current situation where sustainability is an important part of mainstream animal and plant production units. The US Department of Agriculture programmes cover a broad range of activities, including conserving the natural resource base, enhancing environmental quality, and sustaining productivity of the nation's farms. The use of Geographic Information Systems technology to direct application of fertilisers, pesticides, and herbicides is one example of a rapidly emerging technology that can reduce use of external inputs, protect the agricultural environment, and improve economic returns. This Geographic Information Systems technology also is being used to localise animal pest and disease problems, assist in regulatory or control measures, and identify high risk areas that might need different management systems or should be avoided as sites for animal production. Use of intensive grazing systems also has increased markedly over the past 5-6 years. These systems will allow longer grazing seasons in southern parts of the USA, provide more efficient use of the forages being produced and reduce labour costs in the typical dairy operation. Major animal and plant production agriculture-oriented programmes at the US Department of Agriculture focus on integrated production systems, use of Integrated Pest Management techniques, and development of alternative methods to manage pests and diseases that reduce or avoid the use of drugs and chemicals. The US Department of Agriculture has a programme for sustainable agriculture, the Sustainable Agriculture Research and Education programme, which emphasises alternative approaches for animal and plant production systems.

  5. Maternal Residential Exposure to Agricultural Pesticides and ...

    EPA Pesticide Factsheets

    Birth defects are responsible for a large proportion of disability and infant mortality. Exposure to a variety of pesticides have been linked to increased risk of birth defects. We conducted a case-control study to estimate the associations between a residence-based metric of agricultural pesticide exposure and birth defects. We linked singleton live birth records for 2003-2005 from the North Carolina (NC) State Center for Health Statistics to data from the NC Birth Defects Monitoring Program. Included women had residence at delivery inside NC and infants with gestational ages from 20-44 weeks (n=304,906). Pesticide exposure was assigned using a previously constructed metric, estimating total chemical exposure (pounds of active ingredient) based on crops within 500 meters of maternal residence, specific dates of pregnancy, and chemical application dates based on the planting/harvesting dates of each crop. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for four categories of exposure (90th percentiles) compared to unexposed. Models were adjusted for maternal race, age at delivery, education, marital status, and smoking status. We observed elevated ORs for congenital heart defects and certain structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems (e.g., OR (95% CI) (highest exposure vs. unexposed) for tracheal esophageal fistula/esophageal atresia = 1.98 (0.69, 5.66), and OR for atr

  6. Agricultural Occupations Program Planning Guide.

    ERIC Educational Resources Information Center

    Hemp, Paul E.; Mayer, Leon

    The major program objectives of agricultural occupations courses are (1) to develop agricultural competencies needed by individuals engaged in or preparing to engage in production agriculture, and in agricultural occupations other than production agriculture; (2) to develop an understanding of the career opportunities in agriculture; (3) to…

  7. Agricultural origins: centers and noncenters.

    PubMed

    Harlan, J R

    1971-10-29

    I propose the theory that agriculture originated independently in three different areas and that, in each case, there was a system composed of a center of origin and a noncenter, in which activities of domestication were dispersed over a span of 5,000 to 10,000 kilometers. One system includes a definable Near East center and a noncenter in Africa; another system includes a North Chinese center and a noncenter in Southeast Asia and the South Pacific; the third system includes a Mesoamerican center and a South American noncenter. There are suggestions that, in each case, the center and noncenter interact with each other. Crops did not necessarily originate in centers (in any conventional concept of the term), nor did agriculture necessarily develop in a geographical "center."

  8. Biotic stress resistance in agriculture through antimicrobial peptides.

    PubMed

    Sarika; Iquebal, M A; Rai, Anil

    2012-08-01

    Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates. AMPs can be classified as cationic or anionic, based on net charges. Large number of databases and tools are available in the public domain which can be used for development of new genetically modified disease resistant varieties/breeds for agricultural production. The results of the biotechnological research as well as genetic engineering related to AMPs have shown high potential for reduction of economic losses of agricultural produce due to pathogens. In this article, an attempt has been made to introduce the role of AMPs in relation to plants and animals. Their functional and structural characteristics have been described in terms of its role in agriculture. Different sources of AMPs and importance of these sources has been reviewed in terms of its availability. This article also reviews the bioinformatics resources including different database tools and algorithms available in public domain. References of promising biotechnology research in relation to AMPs, prospects of AMPs for further development of genetically modified varieties/breeds are highlighted. AMPs are valuable resource for students, researchers, educators and medical and industrial personnel.

  9. Technology Of Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Bates, Maynard E.

    1995-01-01

    Report discusses controlled-environment agriculture (CEA) for commercial production of organisms, whether plants or animals. Practiced in greenhouses to produce food on nonarable lands. Describes conceptual regenerative system that incorporates biological, physical, and chemical processes to support humans in extraterrestrial environments.

  10. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  11. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  12. Including Jews in Multiculturalism.

    ERIC Educational Resources Information Center

    Langman, Peter F.

    1995-01-01

    Discusses reasons for the lack of attention to Jews as an ethnic minority within multiculturalism both by Jews and non-Jews; why Jews and Jewish issues need to be included; and addresses some of the issues involved in the ethical treatment of Jewish clients. (Author)

  13. Pesticide Health and Safety Challenges Facing Informal Sector Workers: A Case of Small-scale Agricultural Workers in Tanzania.

    PubMed

    Ngowi, Aiwerasia; Mrema, Ezra; Kishinhi, Stephen

    2016-08-01

    The Tanzania informal sector is growing fast, with precarious working conditions and particular hazards for women and children in agriculture. Hazardous agricultural chemicals including pesticides are mostly imported and have been used for many years. Despite the role played by pesticides in food security and vector control, these chemicals are responsible for acute and chronic illnesses among communities. The availability of obsolete persistent organic pesticides on the open market indicates existence of an inadequate regulatory system. People who get injured or ill in the agriculture sector in Tanzania receive health services in primary health care facilities where professionals have little or no knowledge of pesticides. We are presenting the pesticide health and safety challenges faced by small-scale farmers who fall in the informal sector. Achievements that have been made by the government and other players to reduce and prevent pesticide exposures and poisoning are also outlined.

  14. Modules in Agricultural Education for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the 38 curriculum modules in this packet for agricultural mechanics instruction contains a brief description of the module content, a list of the major divisions or units, the overall objectives, objectives by unit, content outline and suggested teaching methods, student application activities, and evaluation procedures. A listing of…

  15. Modules in Agricultural Education for Agricultural Resources.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the 31 curriculum modules in this packet for agricultural resources instruction contains a brief description of the module content, a list of the major division or units, the overall objective, objectives by units, content outline and suggested teaching methods, student application activities, and evaluation procedures. A list of resource…

  16. Hands-On Activities and Challenge Tests in Agricultural and Environmental Education

    ERIC Educational Resources Information Center

    Poudel, D. D.; Vincent, L. M.; Anzalone, C.; Huner, J.; Wollard, D.; Clement, T.; DeRamus, A.; Blakewood, G.

    2005-01-01

    Many agricultural and environmental problems are interrelated and overlapping. Several agencies, including nonprofit organizations, have developed programs to educate schoolchildren about agricultural and environmental issues; however, programs that integrate both agricultural and environmental learning, especially among middle and high school…

  17. Effects of conservation practices on fishes, amphibians, and reptiles within agricultural streams and wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices have been traditionally used to manage soil and water resources to improve agricultural production, and now include methods to reduce the environmental impacts of agriculture on streams and wetlands. These practices have been regularly implemented within agricultural watershed...

  18. Challenges for global agricultural research.

    PubMed

    Blake, R O

    1992-03-01

    The Green Revolution of the 60s can not be expected to continue to feed the world as its population continues to grow. Innovations in plant varieties, chemical inputs, and irrigation did result in more food; however, the cost of this innovation was loss of soil and fertility, poisoning of ground water, waterlogging, and salination of fields. If the world's food production system is to be sustainable and environmentally safe as well as capable of producing 50% more food in the next 20 years, then a lot of research must still be done. Now, instead of 2 international research centers, there are 17. All these centers are operated under the Consultative Group on International Agricultural Research (CGIAR). Another 12 center are currently being set up or cooperating with CGIAR. The scientists are also being asked to develop cost and labor effective ways to improve the soil and conserve water. This change of priorities has come about partly from external pressure, but mostly from: the realization that agricultural productivity must continue to grow at unprecedented rates for the next 4 decades; chemical inputs are often to expensive, unavailable, or dangerous, there is very little room for expanding irrigation; national /agricultural research and extension centers have become underfunded, overly politicized, and ineffective; developing countries can not rely solely upon their fertile land to feed their people, they must bring marginal land into production. To accomplish all this, the World Bank must take a leadership role. It is the only organization with enough money and political power to effectively bring everyone together.

  19. A multi-criteria index for ecological evaluation of tropical agriculture in southeastern Mexico.

    PubMed

    Huerta, Esperanza; Kampichler, Christian; Ochoa-Gaona, Susana; De Jong, Ben; Hernandez-Daumas, Salvador; Geissen, Violette

    2014-01-01

    The aim of this study was to generate an easy to use index to evaluate the ecological state of agricultural land from a sustainability perspective. We selected environmental indicators, such as the use of organic soil amendments (green manure) versus chemical fertilizers, plant biodiversity (including crop associations), variables which characterize soil conservation of conventional agricultural systems, pesticide use, method and frequency of tillage. We monitored the ecological state of 52 agricultural plots to test the performance of the index. The variables were hierarchically aggregated with simple mathematical algorithms, if-then rules, and rule-based fuzzy models, yielding the final multi-criteria index with values from 0 (worst) to 1 (best conditions). We validated the model through independent evaluation by experts, and we obtained a linear regression with an r2 = 0.61 (p = 2.4e-06, d.f. = 49) between index output and the experts' evaluation.

  20. A Multi-Criteria Index for Ecological Evaluation of Tropical Agriculture in Southeastern Mexico

    PubMed Central

    Huerta, Esperanza; Kampichler, Christian; Ochoa-Gaona, Susana; De Jong, Ben; Hernandez-Daumas, Salvador; Geissen, Violette

    2014-01-01

    The aim of this study was to generate an easy to use index to evaluate the ecological state of agricultural land from a sustainability perspective. We selected environmental indicators, such as the use of organic soil amendments (green manure) versus chemical fertilizers, plant biodiversity (including crop associations), variables which characterize soil conservation of conventional agricultural systems, pesticide use, method and frequency of tillage. We monitored the ecological state of 52 agricultural plots to test the performance of the index. The variables were hierarchically aggregated with simple mathematical algorithms, if-then rules, and rule-based fuzzy models, yielding the final multi-criteria index with values from 0 (worst) to 1 (best conditions). We validated the model through independent evaluation by experts, and we obtained a linear regression with an r2 = 0.61 (p = 2.4e-06, d.f. = 49) between index output and the experts’ evaluation. PMID:25405980

  1. Utilization of FGD gypsum in agriculture for environmental benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper will discuss the utilization of FGD gypsum in agriculture for environmental benefits. Gypsum (CaSO4 .2H2O) has been used as an agricultural soil amendment for over 250 years. It is a soluble source of calcium and sulfur for crops and has been shown to improve soil physical and chemical pr...

  2. Global Transformations and Agriculture.

    ERIC Educational Resources Information Center

    Campbell, Rex R.

    1990-01-01

    Examines worldwide political, economic, and social transformations and their impact on agriculture, focusing on biotechnology. Discusses rise of international corporations and accompanying constraints on government power. Sees trend toward increasing agribusiness role in world food and agricultural sectors. Calls for broader views and research in…

  3. Agriculture Power and Machinery.

    ERIC Educational Resources Information Center

    Rogers, Tom

    This guide is intended to assist vocational agriculture teachers who are teaching secondary- or postsecondary-level courses in agricultural power and machinery. The materials presented are based on the Arizona validated occupational competencies and tasks for the following occupations: service manager, shop foreman, service technician, and tractor…

  4. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  5. Agriculture in the Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Midwest United States (Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin) represents one of the most intense areas of agriculture in the world. This area is not only critically important for the United States, but also for world exports of grain and meat for the Un...

  6. USSR Report Agriculture

    DTIC Science & Technology

    2007-11-02

    the last century one of the first Russian agronomists, M. G. Pavlov , in speaking about efficient agriculture, was asked the question, is agriculture...three are agronomists in enterprises--Nikolay Georgiyevich Kovalev, Fedor Akimovich Ivashchenko and Ivan Kirillovich Okhrimenko. All three work under the

  7. Revisiting Supervised Agricultural Experience.

    ERIC Educational Resources Information Center

    Camp, William G.; Clarke, Ariane; Fallon, Maureen

    2000-01-01

    A Delphi panel of 40 agricultural educators unanimously agreed that supervised agricultural experience should remain an integral component of the curriculum; a name change is not currently warranted. Categories recommended were agribusiness entrepreneurship, placement, production, research, directed school lab, communications, exploration, and…

  8. Agricultural Technology Opportunities.

    ERIC Educational Resources Information Center

    North Carolina State Board of Education, Raleigh. Agricultural Technology Education Section.

    Agricultural education programs available through North Carolina's newly created system of industrial education center, technical institutes, and community colleges are described. The information is for use by administrators, and teachers of adult agricultural courses and counselors of high school dropouts and graduates. It describes the need for…

  9. Agriculture: access to technology limited.

    PubMed

    1997-01-01

    From country to country and even regionally, the roles of women in agriculture vary, but most of their labor is in unpaid subsistence production and their contributions tend to be underestimated, according to the results of the [UN] Secretary-General's report. Depending on circumstances, they have complementary roles with men, sharing or dividing tasks in the production of crops, care of animals, and forestry management. In sub-Saharan Africa, for example, women contribute 60-80% of labor in food production for both household consumption and sale, while in Malaysia the women account for only 35% of the agricultural labor force, and in Ireland the participation rate is only 10.4%. Although women make this important amount of labor contributions to agricultural production, "development policies tend to favor export crops to earn foreign exchange and the agricultural research tends to address the improvement of production and technologies for commercial production". This results in limited access for women to technical knowledge and innovations, including irrigation, machinery, farming techniques and extension services. This is strengthened by the fact that most of the extension services target farmers who own land and can obtain credit to invest in input and technology.

  10. Hemp as an Agricultural Commodity

    DTIC Science & Technology

    2014-02-14

    18 Hemp as an Agricultural Commodity Congressional Research Service Summary Industrial hemp is a variety of Cannabis sativa and is of the same...further processing. Under the current U.S. drug policy, all cannabis varieties, including hemp, are considered Schedule I controlled substances under the...illegal to grow without a DEA permit. Currently, cannabis varieties may be legitimately grown for research purposes only. Among the concerns over

  11. Agricultural legacies in forest environments: tree communities, soil properties, and light availability.

    PubMed

    Flinn, Kathryn M; Marks, P L

    2007-03-01

    Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of

  12. Nutritional therapies (including fosteum).

    PubMed

    Nieves, Jeri W

    2009-03-01

    Nutrition is important in promoting bone health and in managing an individual with low bone mass or osteoporosis. In adult women and men, known losses of bone mass and microarchitecture occur, and nutrition can help minimize these losses. In every patient, a healthy diet with adequate protein, fruits, vegetables, calcium, and vitamin D is required to maintain bone health. Recent reports on nutritional remedies for osteoporosis have highlighted the importance of calcium in youth and continued importance in conjunction with vitamin D as the population ages. It is likely that a calcium intake of 1200 mg/d is ideal, and there are some concerns about excessive calcium intakes. However, vitamin D intake needs to be increased in most populations. The ability of soy products, particularly genistein aglycone, to provide skeletal benefit has been recently studied, including some data that support a new medical food marketed as Fosteum (Primus Pharmaceuticals, Scottsdale, AZ).

  13. [Chemical food contaminants].

    PubMed

    Schrenk, D

    2004-09-01

    Chemical food contaminants are substances which are neither present naturally in the usual raw material used for food production nor are added during the regular production process. Examples are environmental pollutants or contaminants derived from agricultural production of crops or livestock or from inadequate manufacturing of the food product itself. More difficult is the classification of those compounds formed during regular manufacturing such as products of thermal processes including flavoring substances. In these cases, it is common practice to call those compounds contaminants which are known for their adverse effects such as acrylamide, whereas constituents which add to the food-specific flavor such as Maillard products formed during roasting, baking etc. are not termed contaminants. From a toxicological viewpoint this distinction is not always clear-cut. Important groups of chemical contaminants are metals such as mercury or lead, persistent organic pollutants such as polychlorinated biphenyls and related pollutants, which are regularly found in certain types of food originating from background levels of these compounds in our environment. Furthermore, natural toxins form microorganisms or plants, and compounds formed during thermal treatment of food are of major interest. In general, a scientific risk assessment has to be carried out for any known contaminant. This comprises an exposure analysis and a toxicological and epidemiological assessment. On these grounds, regulatory and/or technological measures can often improve the situation. Major conditions for a scientific risk assessment and a successful implementation of regulations are highly developed food quality control, food toxicology and nutritional epidemiology.

  14. The Application of Nano-TiO2 Photo Semiconductors in Agriculture.

    PubMed

    Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Zeng, Zhanghua; Wang, Anqi; Liu, Guoqiang; Cui, Haixin

    2016-12-01

    Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.

  15. The Application of Nano-TiO2 Photo Semiconductors in Agriculture

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Zeng, Zhanghua; Wang, Anqi; Liu, Guoqiang; Cui, Haixin

    2016-11-01

    Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.

  16. Annual Review of Selected Developments; Agricultural Education and Training.

    ERIC Educational Resources Information Center

    United Nations Food and Agriculture Organization, Rome (Italy).

    This document is the second in a series designed to describe agricultural education projects and practices which have been successful in promoting agricultural change and improvement in areas of the world where subsistance agriculture predominates. The projects are included here because of their emphasis on development of human resources and…

  17. Perspectives on communicating risks of chemicals.

    PubMed

    Armbrust, Kevin; Burns, Mitchell; Crossan, Angus N; Fischhoff, David A; Hammond, Larry E; Johnston, John J; Kennedy, Ivan; Rose, Michael T; Seiber, James N; Solomon, Keith

    2013-05-22

    The Agrochemicals Division symposium "Perfecting Communication of Chemical Risk", held at the 244th National Meeting and Exposition of the American Chemical Society in Philadelphia, PA, August 19-23, 2012, is summarized. The symposium, organized by James Seiber, Kevin Armbrust, John Johnston, Ivan Kennedy, Thomas Potter, and Keith Solomon, included discussion of better techniques for communicating risks, lessons from past experiences, and case studies, together with proposals to improve these techniques and their communication to the public as effective information. The case studies included risks of agricultural biotechnology, an organoarsenical (Roxarsone) in animal feed, petroleum spill-derived contamination of seafood, role of biomonitoring and other exposure assessment techniques, soil fumigants, implications of listing endosulfan as a persistant organic pollutant (POP), and diuron herbicide in runoff, including use of catchment basins to limit runoff to coastal ecozones and the Great Barrier Reef. The symposium attracted chemical risk managers including ecotoxicologists, environmental chemists, agrochemists, ecosystem managers, and regulators needing better techniques that could feed into better communication of chemical risks. Policy issues related to regulation of chemical safety as well as the role of international conventions were also presented. The symposium was broadcast via webinar to an audience outside the ACS Meeting venue.

  18. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Factors Influencing Enrollment in Agricultural Education Programs as Expressed by Iowa Secondary Agricultural Education Students.

    ERIC Educational Resources Information Center

    Reis, Randal; Kahler, Alan A.

    1997-01-01

    Iowa secondary students (n=1,429) indicated that the people who most influenced agricultural education enrollment were parents, instructor, friend, and former ag student. Other influences included personal interest, farm background, and fun of participating. They were least satisfied with classroom facilities, agricultural mechanics, and…

  20. Agricultural extension and mass media.

    PubMed

    Perraton, H

    1983-12-01

    To learn more about the use of the mass media for agricultural extension, the World Bank has considered the efforts of 2 units: INADES-formation in West Africa and the Extension Aids Branch of Malawi. The INADES-formation study focuses on Cameroon but also considers work in Rwanda and the Ivory Coast. Some general conclusions emerge from a comparison of the 2 organizations. Malawi operates an extension service which reaches farmers through extension agents, through farmer training centers, and through mass media. The Extension Aids Branch (EAB) has responsibility for its media work and broadcasts 4 1/2 hours of radio each week. Its 6 regular radio programs include a general program which interviews farmers, a music request program in which the music is interspersed with farming advice, a farming family serial, and a daily broadcast of agricultural news and information. The 17 cinema vans show some agricultural films, made by EAB, some entertainment films, and some government information films from departments other than the ministry of agriculture. EAB also has a well-developed program of research and evaluation of its own work. INADES-formation, the training section of INADES, works towards social and economic development of the population. It teaches peasant farmers and extension agents and does this through running face-to-face seminars, by publishing a magazine, "Agripromo," and through correspondence courses. In 1978-79 INADES-formation enrolled some 4500 farmers and extension agents as students. Both of these organizations work to teach farmers better agriculture techniques, and both were created in response to the fact that agricultural extension agents cannot meet all the farmers in their area. Despite the similarity of objective, there are differences in methods and philosophy. The EAB works in a single country and uses a variety of mass media, with print playing a minor role. INADES-formation is an international and nongovernmental organization and its

  1. Engineering cyanobacteria for fuels and chemicals production.

    PubMed

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  2. Chemical Mahjong

    ERIC Educational Resources Information Center

    Cossairt, Travis J.; Grubbs, W. Tandy

    2011-01-01

    An open-access, Web-based mnemonic game is described whereby introductory chemistry knowledge is tested using mahjong solitaire game play. Several tile sets and board layouts are included that are themed upon different chemical topics. Introductory tile sets can be selected that prompt the player to match element names to symbols and metric…

  3. Can agricultural fungicides accelerate the discovery of human antifungal drugs?

    PubMed

    Myung, Kyung; Klittich, Carla J R

    2015-01-01

    Twelve drugs from four chemical classes are currently available for treatment of systemic fungal infections in humans. By contrast, more than 100 structurally distinct compounds from over 30 chemical classes have been developed as agricultural fungicides, and these fungicides target many modes of action not represented among human antifungal drugs. In this article we introduce the diverse aspects of agricultural fungicides and compare them with human antifungal drugs. We propose that the information gained from the development of agricultural fungicides can be applied to the discovery of new mechanisms of action and new antifungal agents for the management of human fungal infections.

  4. 7 CFR 3021.215 - What must I include in my drug-free awareness program?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false What must I include in my drug-free awareness program? 3021.215 Section 3021.215 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE... include in my drug-free awareness program? You must establish an ongoing drug-free awareness program...

  5. 7 CFR 3021.215 - What must I include in my drug-free awareness program?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false What must I include in my drug-free awareness program? 3021.215 Section 3021.215 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE... include in my drug-free awareness program? You must establish an ongoing drug-free awareness program...

  6. 7 CFR 3021.215 - What must I include in my drug-free awareness program?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false What must I include in my drug-free awareness program? 3021.215 Section 3021.215 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE... include in my drug-free awareness program? You must establish an ongoing drug-free awareness program...

  7. Chemical carcinogenesis.

    PubMed

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos

    2007-12-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  8. The Concept of Sustainable Agriculture: Challenges and Prospects

    NASA Astrophysics Data System (ADS)

    Abubakar, M. S.; Attanda, M. L.

    2013-12-01

    Agriculture has changed dramatically, especially since the end of World War II. Food and fibre productivity raised due to new technologies, mechanization, increased chemical use, specialization and government policies that favoured maximizing production. Sustainable agriculture is a subject of great interest and lively debate in many parts of the world. Most agriculturalists agree that the concept of sustainable agriculture is of paramount importance to the sustainability of our biosphere and its ever increasing human population. This paper is an effort to identify the ideas, practices and policies that constitute concept of sustainable agriculture.

  9. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  10. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    SciTech Connect

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  11. Agriculture: Nurseries and Greenhouses

    EPA Pesticide Factsheets

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  12. Nonpoint Source: Agriculture

    EPA Pesticide Factsheets

    Agricultural runoff as a nonpoint source category of pollution. Resouces to learn more a bout conservation practices to reduce water quality impacts from storm water run off and ground water infiltration

  13. Agricultural Education and OSHA

    ERIC Educational Resources Information Center

    Brown, Ronald A.

    1974-01-01

    Agriculture teachers should be interested in and become familiar with the implications of the Williams-Steiger Occupational Safety and Health Act of 1970 for their own benefit, for their students, and for their students' future employers. (AG)

  14. USSR Report Agriculture.

    DTIC Science & Technology

    2007-11-02

    This is USSR Report for Agriculture. It contains the issues with different topics on Major Crop Progress and Weather Reporting, Livestock, Regional Development , Agro-Economics and Organization, Tilling and Cropping Technology.

  15. Collaboration in Agricultural Education.

    ERIC Educational Resources Information Center

    Peterson, Roland L.; And Others

    1995-01-01

    Theme articles discuss environment, food, agriculture, and renewal resources as they relate to science education, learning partnerships, collaboration in Kyrghyzstan, leadership development, opportunities for collaboration, networking, and the creation of a shared course between agribusiness and biology. (JOW)

  16. Serving Agriculture's "Big Business"

    ERIC Educational Resources Information Center

    Schake, L. M.

    1970-01-01

    A new dimension and challenge in Extension activities is emerging as some phases of agriculture evolve from small operations to multimillion dollar agribusiness ventures; the beef cattle commercial feedlot industry in the Southwest is a good example. (EB)

  17. Toward a Sustainable Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Future trends in population growth, energy use, climate change, and globalization will challenge agriculturists to develop innovative production systems that are highly productive and environmentally sound. Furthermore, future agricultural production systems must possess an inherent capacity to adap...

  18. Topical Hazard Evaluation Program of Candidate Insect Repellents AI3-38352a, AI3-38354a, AI3-38355a, US Department of Agriculture Proprietary Chemicals, May 1982 - November 1983.

    DTIC Science & Technology

    1983-11-01

    irrita- chemical and of 10% (wv) A13-38357a, AI3-38360a, tion reaction under Oil of Bergamot (positive and Ar3-38361a did test conditions and control...caused a greater Irritant positive control (Oil of effect than In un- Bergamot ) and diluent were Irradiated skin areas. applied to additional skin

  19. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  20. Agriculture increases individual fitness.

    PubMed

    Kovaka, Karen; Santana, Carlos; Patel, Raj; Akçay, Erol; Weisberg, Michael

    2016-01-01

    We question the need to explain the onset of agriculture by appealing to the second type of multilevel selection (MLS2). Unlike eusocial insect colonies, human societies do not exhibit key features of evolutionary individuals. If we avoid the mistake of equating Darwinian fitness with health and quality of life, the adoption of agriculture is almost certainly explicable in terms of individual-level selection and individual rationality.

  1. USSR Report Agriculture.

    DTIC Science & Technology

    1986-03-06

    simultaneous freeing of production resources for the achievement of other social goals of public development involves improving the structure of the food...in agriculture it becomes possible to free about 2 million hectares of arable land for the purpose of cultivating other crops, about 200,000 persons...insufficient application of mineral fertilizers. The structural changes in agriculture proposed by us, based on the freeing of 2 million hectares of

  2. Lunar agriculture in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Iwaniszewski, S.

    Through the moon' s role in choosing the proper time for planting, harvesting and woodcutting is widely attested in ethnographic reports, the cultural logic and structure of actions by which this celestial body is perceived and used has not been satisfactorily explained. The aim of this paper is to offer such an explanatory framework within which the role of the moon in the agricultural cycle may be explained. My examples of the beliefs about lunar agriculture derive from the Mesoamerican cultural tradition.

  3. The plight of arid land agriculture

    SciTech Connect

    Hinman, C. W.; Hinman, K.W.

    1992-01-01

    This book analyses the problems of the agricultural environment worldwide and possible solutions. Problems covered include the following: famines caused by agricultural land mismanegment in Subsaharan Africa and population increase; improved productivity leading to salinity, erosion, and water depletion; toxic wastes; loging, deforestation, and over-grazing. Agricultural practices, both ancient and modern, in arid lands are described. Food crops suited for arid lands, potential industrial crops, oil extraction from seed and rubber extraction, and biomass as a source of energy are discussed in different chapters. Finally the book deals with optimization of water use, prevention of salinization, and the prospect of global warming.

  4. Agriculture in Gloria Land.

    PubMed

    Pal, M

    1993-01-01

    A farming system has been developed on the Gloria Land farm at the Sri Aurobindo Ashram that uses purely organic materials and achieves yields comparable with or better than those on conventional farms under similar agroclimatic conditions. The stimulus for the conversion to organic farming came from observations of the toxicity of chemical pesticides and their apparent ineffectiveness in reducing the impact of pests and diseases. On the Gloria Land farm, a carefully integrated mixture of activities includes crop growing, animal husbandry, fish rearing and sericulture. Sufficient organic waste is produced to fulfill at the needs of the farm's crops. Energy is partially supplied by biogas produced on the farm. This system is economically viable and ecologically sustainable.

  5. Data Collection Satellite Application in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  6. Role of nanotechnology in agriculture with special reference to management of insect pests.

    PubMed

    Rai, Mahendra; Ingle, Avinash

    2012-04-01

    Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.

  7. Technology transfer in agriculture. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning technology transfer in agriculture. Topics include applications of technology transfer in aquaculture, forestry, soil maintenance, agricultural pollution, agricultural biotechnology, and control of disease and insect pests. Use of computer technology in agriculture and technology transfers to developing countries are discussed. (Contains a minimum of 178 citations and includes a subject term index and title list.)

  8. Technology transfer in agriculture. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning technology transfer in agriculture. Topics include applications of technology transfer in aquaculture, forestry, soil maintenance, agricultural pollution, agricultural biotechnology, and control of disease and insect pests. Use of computer technology in agriculture and technology transfers to developing countries are discussed. (Contains a minimum of 235 citations and includes a subject term index and title list.)

  9. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  10. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  11. [Ecological agriculture: future of Good Agriculture Practice of Chinese materia medica].

    PubMed

    Guo, Lan-ping; Zhou, Liang-yun; Mo, Ge; Wang, Sheng; Huang, Lu-qi

    2015-09-01

    Based on the ecological and economic problems in Good Agriculture Practice (GAP) of Chinese material medica, we introduced the origin, concept, features and operative technology of eco-agriculture worldwide, emphasizing its modes on different biological levels of landscape, ecosystem, community, population, individual and gene in China. And on this basis, we analyzed the background and current situation of eco-agriculture of Chinese materia medica, and proposed its development ideas and key tasks, including: (1) Analysis and planning of the production pattern of Chinese material medica national wide. (2) Typical features extraction of regional agriculture of Chinese materia medica. (3) Investigation of the interaction and its mechanism between typical Chinese materia medica in each region and the micro-ecology of rhizosphere soil. (4) Study on technology of eco-agriculture of Chinese materia medica. (5) Extraction and solidification of eco-agriculture modes of Chinese materia medica. (6) Study on the theory of eco-agriculture of Chinese materia medica. Also we pointed out that GAP and eco-agriculture of Chinese material medica are both different and relative, but they are not contradictory with their own features. It is an irresistible trend to promote eco-agriculture in the GAP of Chinese material medica and coordinate ecological and economic development.

  12. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types.

  13. Biosurfactants in agriculture.

    PubMed

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  14. Epidemiology of health and safety risks in agriculture and related industries. Practical applications for rural physicians.

    PubMed Central

    Zejda, J E; McDuffie, H H; Dosman, J A

    1993-01-01

    Epidemiologic studies document that work in the agricultural sector is associated with many occupational health hazards. Exposure to organic dusts and airborne microorganisms and their toxins may lead to respiratory disorders. The burden of exposure-related chronic bronchitis, asthma, hypersensitivity pneumonitis, organic-dust toxic syndrome, and chronic airflow limitation can be diminished by appropriate preventive measures. The contribution of exposures to agricultural chemicals to cancers and neurodegenerative disorders is being investigated. Some studies document that farmers and those in related industries are at higher risk for the development of cancer of the stomach, soft tissue sarcoma, non-Hodgkin's lymphoma, and multiple myeloma. Chronic encephalopathy and Parkinson's and Alzheimer's diseases are being studied in relation to agricultural chemicals. The possible carcinogenicity and neurotoxicity of pesticides emphasize the need to promote the safe use of chemicals. Another area for health promotion programs is disabling injuries and traumatic deaths. Farm accidents are important because of their frequent occurrence among young people and disturbing fatality rates. Other health issues of concern in these industries include skin diseases, hearing loss, and stress. PMID:8470386

  15. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  16. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  17. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management.

    PubMed

    Smith, L A; Thomson, S J

    2003-01-01

    A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.

  18. Agriculture and water pollution

    NASA Astrophysics Data System (ADS)

    Page, G. William

    The attempt by certain jurisdictions to preserve a rural lifestyle by means of farmland preservation may produce some unwanted side effects, such as polluted water supplies. While there are many excellent and important reasons to preserve high-quality agricultural land for food production, efforts to retain or encourage agricultural activities in areas experiencing rapid population growth may produce some serious environmental problems.For the entire post-WW II period the United States has experienced almost continuous suburban sprawl. Many incorporated areas, experiencing rapid development, have attempted to preserve open-space and less-developed land uses by actively attempting to preserve agricultural activities. Often the most recent migrants to a growing municipality exemplify the ‘last in’ syndrome by being among the most vociferous in attempting to halt further development.

  19. [Musculoskeletal disorders in agriculture].

    PubMed

    Bernard, Christophe; Tourne, Mathias

    2007-06-15

    Musculoskeletal disorders (MSD) are a major area of concern in the occupational world. The agricultural industry is particularly affected: 93 percent of occupational diseases in agriculture are MSD. Carpal tunnel syndrome occurs in one third of the cases. Shoulder is the second most common location. The most affected occupational areas are meat production, viticulture, market gardening, horticulture and small animal farming. This MSD phenomenon, of multifactorial origin, which has been amplifying for two decades, has led to some consensus in terms of definition and prevention strategy. The aim is to identify, limit or even suppress risk factors through worker training as well as through actions related to work organization. Regarding occupational health and safety in agriculture, two fronts of progress have been mentioned: the creation of a statistic observatory of MSD (disease, occupational area and cost) and the assessment of prevention activities. Finally, a new issue is being discussed: sustainable prevention of MSD.

  20. 29 CFR 780.616 - Operations included in raising livestock.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in raising livestock. 780.616 Section... Employment in Agriculture and Livestock Auction Operations Under the Section 13(b)(13) Exemption Requirements for Exemption § 780.616 Operations included in raising livestock. Raising livestock includes...

  1. Health hazards to children in agriculture.

    PubMed

    Wilk, V A

    1993-09-01

    Children comprise a significant portion of the agricultural workforce and are exposed to many workplace hazards, including farm machinery, pesticides, poor field sanitation, unsafe transportation, and fatigue from doing physically demanding work for long periods. Migrant farmworker children face the additional hazard of substandard or nonexistent housing in the fields. Children account for a disproportionate share of agricultural workplace fatalities and disabling injuries, with more than 300 deaths and 27,000 injuries per year. The most common cause of fatal and nonfatal injury among children in agriculture is farm machinery, with tractors accounting for the greatest number. Remedies to the problems of child labor must take into account family economics and the need for child care. Labor law reform and rigorous enforcement of existing laws and of workplace health and safety requirements are vital to better protect the children and adults working in agriculture.

  2. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  3. Agriculture Supplies & Services. Volume 2 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The second of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains units of instruction in three major areas: (1) Animal Science, (2) Supervised Training Programs--Farm Business Management, and (3) Career Selection/Public Relations. Typical of the sixteen units included in the first…

  4. Agriculture Supplies & Services. Volume 1 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The first of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains units of instruction in two major areas: (1) plant and soil science and (2) leadership (Future Farmers of America). Typical of the nineteen units included in the first section are the following: Plant Insect Control, Plant…

  5. 7 CFR 46.38 - Sundays and holidays included.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE MARKETING OF PERISHABLE AGRICULTURAL COMMODITIES REGULATIONS (OTHER THAN RULES OF PRACTICE) UNDER THE PERISHABLE AGRICULTURAL COMMODITIES ACT, 1930 Sundays...

  6. The U.S. Chemical Industry, Foreign Chemical Industries

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry provides data on the chemical production of Japan, West Germany, United Kingdom, Italy, and France, including the output of major chemical products in these nations. (PR)

  7. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  8. Agriculture, Forestry, Range Resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J., Jr.

    1973-01-01

    Significant results obtained from ERTS-1 observations of agriculture, forestry, and range resources are summarized. Four major parts are covered: (1) crop classification and mensuration; (2) timber and range resources survey and classification; (3) soil survey and mapping; and (4) subdiscipline areas.

  9. Popular misconceptions: agricultural biotechnology.

    PubMed

    McHughen, Alan; Wager, Robert

    2010-12-31

    Agricultural biotechnology, especially genetic engineering or genetic modification (GM), is a topic of considerable controversy worldwide. The public debate is fraught with polarized views and opinions, some are held with religious zeal. Unfortunately, it is also marked with much ignorance and misinformation. Here we explore some popular misconceptions encountered in the public debate.

  10. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed.

  11. Antimicrobial Resistance in Agriculture.

    PubMed

    Thanner, Sophie; Drissner, David; Walsh, Fiona

    2016-04-19

    In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans.

  12. Curriculum Guide for Agriculture.

    ERIC Educational Resources Information Center

    Oregon State Board of Education, Salem. Div. of Community Colleges and Career Education.

    Developed through a cooperative effort by industry and education, this curriculum guide outlines the basic knowledge and skills necessary for entry-level competencies in the broad field of agriculture, or for entrance into a post-high school program. This guide is one of several developed for Oregon's new approach to secondary education called…

  13. Agriculture Education. Horticulture.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in ornamental horticulture. The guide presents units of study in the following areas: (1) horticulture and job opportunities, (2) preparing soil mixtures, (3) control, (4) plant propagation, (5) plant…

  14. USSR Report, Agriculture

    DTIC Science & Technology

    1984-05-04

    exists beyond the Urals. Extensive flooding is expected here on the Lower Tunguska . Spring upper levels will be surpassed on the rivers of...extraordinary event . Allow me to cite an example involving another oblast and another branch of agriculture. In 1982, 55 farms in Orel Oblast obtained

  15. Urban conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables are important sources of vitamins and nutrients for human nutrition. United States Department of Agriculture recommends filling half of the food plates with vegetables in every meal. While it is important in promoting good health, access to fresh vegetables is limited especially in urban ...

  16. Agriculture Sales and Services.

    ERIC Educational Resources Information Center

    Carlile, Robert

    Designed to assist teachers in improving instruction in agriculture and related areas, this curriculum guide is written in terms of student performance using measurable objectives, and is a suggested method of group instruction for students who are employed in an agribusiness program. The material is intended to cover those items which every…

  17. Agriculture: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This guide, which was written as an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System, outlines the suggested scope and sequence of a 3-year program in agriculture. The guide consists of a course description; general course objectives;…

  18. Agriculture Education. Farm Machinery.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in farm machinery. The guide presents units of study in the following areas: (1) small gas engines, (2) job opportunities, (3) tractors, (4) engines, (5) hydraulics, (6) electrical system, (7) combine…

  19. Agricultural Education in Australia.

    ERIC Educational Resources Information Center

    Farquhar, R. N.

    This document is an English-language abstract (approximately 1,500 words) of a comprehensive survey of education and training for agriculture in Australia. The present facilities are described, and then set against estimates of present and future needs. Constructive proposals are made as to how these needs can best be met by agricultural…

  20. USSR Report, Agriculture.

    DTIC Science & Technology

    2007-11-02

    evaluation of the phyto- sanitary condition of the fields were not coordinated with the calendar- phenological schedules, some agronomists were unable...During the first year following its introduction, an intensified variation of this agricultural technology enabled the Tambov grain growers to produce

  1. 76 FR 59998 - Notice of Intent To Suspend the Postharvest Chemical Use Survey and All Associated Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE National Agricultural Statistics Service Notice of Intent To Suspend the Postharvest Chemical Use Survey and All Associated Reports AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice...

  2. Consequence and Resilience Modeling for Chemical Supply Chains

    NASA Technical Reports Server (NTRS)

    Stamber, Kevin L.; Vugrin, Eric D.; Ehlen, Mark A.; Sun, Amy C.; Warren, Drake E.; Welk, Margaret E.

    2011-01-01

    The U.S. chemical sector produces more than 70,000 chemicals that are essential material inputs to critical infrastructure systems, such as the energy, public health, and food and agriculture sectors. Disruptions to the chemical sector can potentially cascade to other dependent sectors, resulting in serious national consequences. To address this concern, the U.S. Department of Homeland Security (DHS) tasked Sandia National Laboratories to develop a predictive consequence modeling and simulation capability for global chemical supply chains. This paper describes that capability , which includes a dynamic supply chain simulation platform called N_ABLE(tm). The paper also presents results from a case study that simulates the consequences of a Gulf Coast hurricane on selected segments of the U.S. chemical sector. The case study identified consequences that include impacted chemical facilities, cascading impacts to other parts of the chemical sector. and estimates of the lengths of chemical shortages and recovery . Overall. these simulation results can DHS prepare for and respond to actual disruptions.

  3. Annual Southern Region Research Conference in Agricultural Education. Proceedings (36th, Williamsburg, Virginia, March 22-23, 1987).

    ERIC Educational Resources Information Center

    1987

    The following papers are included in this proceedings of a conference on agricultural education: "Misuse of Statistics" (Miller); "Significance of Doctoral Research in Agricultural Education" (Moore, Bailey, Burnett); "Identification of Science-Related Competencies Taught in Vocational Agriculture Programs in…

  4. Chemical Emergencies

    MedlinePlus

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  5. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    PubMed

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  6. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  7. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    PubMed Central

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-01-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas. PMID:27830739

  8. Translational research in agricultural biology - enhancing crop resistivity against environmental stress alongside nutritional quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural security, including producing nutritious food, is needed to make agriculture sustainable. All kinds of genetically engineered (transgenic) lines have been developed, including transgenic lines that have promise of withstanding environmental extremes (abiotic and biotic) and others that...

  9. Introduction to Vocational Agriculture/Agribusiness. Unit A-1.

    ERIC Educational Resources Information Center

    Luft, Vernon D.; Backlund, Paul

    This secondary curriculum guide is comprised of three jobs (units of instruction) designed to introduce students to vocational agriculture. An introductory section lists the jobs included in the guide, intended use, unit objectives, and references. Jobs included are (1) Recognizing the Importance of Agriculture, (2) Understanding the Vocational…

  10. Conventionalization, Civic Engagement, and the Sustainability of Organic Agriculture

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2011-01-01

    It is often assumed that organic farming is synonymous with sustainable agriculture. The broad goals of sustainable agriculture include economic profitability, environmental stewardship, and community vitality. However, the "question of sustainability" (Ikerd, 2008) can be asked of any type of farming, including organic production. One…

  11. Including public perspectives in industrial biotechnology and the biobased economy.

    PubMed

    Paula, Lino; Birrer, Frans

    2006-01-01

    Industrial ("white") biotechnology promises to contribute to a more sustainable future. Compared to current production processes, cases have been identified where industrial biotechnology can decrease the amount of energy and raw materials used to make products and also reduce the amount of emissions and waste produced during production. However, switching from products based on chemical production processes and fossil fuels towards "biobased" products is at present not necessarily economically viable. This is especially true for bulk products, for example ethanol production from biomass. Therefore, scientists are also turning to genetic modification as a means to develop organisms that can produce at lower costs. These include not only micro-organisms, but also organisms used in agriculture for food and feed. The use of genetic modification for "deliberate release" purposes, in particular, has met great opposition in Europe. Many industrial biotechnology applications may, due to their scale, entail deliberate releases of GM organisms. Thus, the biobased economy brings back a familiar question; is it ethically justifiable, and acceptable to citizens, to expose the environment and society to the risks associated with GM, in order to protect that same environment and to sustain our affluent way of life? For a successful innovation towards a biobased economy, its proponents, especially producers, need to take into account (take responsibility for) such issues when developing new products and processes. These issues, and how scientists can interact with citizens about them in a timely way, are further explored in projects at Delft University and Leiden University, also in collaboration with Utrecht University.

  12. Perceptions Regarding Planning Activities and Supervision Strategies for Supervised Agricultural Experience Programs.

    ERIC Educational Resources Information Center

    Swortzel, Kirk A.

    1996-01-01

    Responses from 71% of 150 Tennessee agriculture teachers surveyed indicated that those teaching in multiple departments, subscribing to "Agricultural Education Magazine," and including supervised agricultural experiences (SAE) in grading were more positive about planning. Those not having agricultural education in high school, including…

  13. Agricultural Education Division, American Vocational Association Convention (Houston, Texas, December 3-8, 1976).

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    This document contains the abstract of each presentation (approximately 50) of the Agricultural Division, American Vocational Association Convention (1976). Topics covered include agricultural education research, teaching and administration of agricultural education, and teacher education in agriculture. The following are sample paper topics:…

  14. Toxicology and Chemical Safety.

    ERIC Educational Resources Information Center

    Hall, Stephen K.

    1983-01-01

    Topics addressed in this discussion of toxicology and chemical safety include routes of exposure, dose/response relationships, action of toxic substances, and effects of exposure to chemicals. Specific examples are used to illustrate the principles discussed. Suggests prudence in handling any chemicals, whether or not toxicity is known. (JN)

  15. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas.

  16. Agricultural Awareness Days: Integrating Agricultural Partnerships and STEM Education

    ERIC Educational Resources Information Center

    Campbell, Brian T.; Wilkinson, Carol A.; Shepherd, Pamela J.

    2014-01-01

    In the United States there is a need to educate young children in science, technology, and agriculture. Through collaboration with many agricultural groups, the Southern Piedmont Agricultural Research and Education Center has set up a program that works with 3rd grade students and teachers to reinforce the science that has been taught in the…

  17. Chemical warfare

    PubMed Central

    Samuels, Richard Ian; Mattoso, Thalles Cardoso; Moreira, Denise D.O.

    2013-01-01

    Leaf-cutting ants are well known for their highly complex social organization, which provides them with a strong defense against parasites invading their colonies. Besides this attribute, these insects have morphological, physiological and structural characteristics further reinforcing the defense of their colonies. With the discovery of symbiotic bacteria present on the integument of leaf-cutting ants, a new line of defense was proposed and considered to be specific for the control of a specialized fungal parasite of the ants’ fungus gardens (Escovopsis). However, recent studies have questioned the specificity of the integumental bacteria, as they were also found to inhibit a range of fungi, including entomopathogens. The microbiota associated with the leaf-cutting ant gardens has also been proposed as another level of chemical defense, protecting the garden from parasite invasion. Here we review the chemical defense weaponry deployed by leaf-cutting ants against parasites of their fungus gardens and of the ants themselves. PMID:23795235

  18. Core II Materials for Rural Agricultural Programs. Units A-D.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th-grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are orientation to agricultural occupations (orientation to vocational agricultural course and developing effective study…

  19. USSR Report Agriculture.

    DTIC Science & Technology

    1986-04-24

    following fallow with minimal soil cultivation are damaged to a lesser degree by click beetles and darkling beetles and the harm caused by root rots...receipts and so forth); LPKh specialization and cooperation; the creation of organized forms for supplying them with feed, light mechanization equipment...Llnterview with V.G. Shuntova, chief of the Department of Agricultural Implements and Light Mechanization Equipment of the Central Union of Consumer’s

  20. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.