Science.gov

Sample records for agricultural drainage pipes

  1. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  2. Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  3. Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers and land improvement contractors, especially in the Midwest U.S., need methods to not only locate buried agricultural drainage pipe, but also to determine if the pipes are functioning properly with respect to water delivery. Previous investigations have already demonstrated the feasibility o...

  4. Agricultural drainage pipe detection using ground penetrating radar: Effects of antenna orientation relative to drainage pipe directional trend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...

  5. A GPR agricultural drainage pipe detection case study: Effects of antenna orientation relative to drainage pipe directional trend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...

  6. AGRICULTURAL DRAINAGE PIPE DETECTION USING GROUND-PENETRATING RADAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the efficiency of soil water removal on farmland that already contains a functioning subsurface drainage system often requires reducing the average spacing distance between drain lines. This is typically accomplished by installing new drain lines between the older ones. However, before th...

  7. Condensed research overview of agricultural drainage pipe detection and assessment using ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural subsurface drainage practices are employed in many places throughout the world to remove excess water from soil, thereby improving crop production. In order to improve and evaluate the efficiency of these subsurface drainage systems, non-destructive methods are needed to not only locate...

  8. Agricultural drainage practices in Ireland

    NASA Astrophysics Data System (ADS)

    Ryan, T. D.

    1986-02-01

    Agricultural drainage practices are reviewed under two main headings: arterial drainage of river catch-ments by developing main channels, and field drainage of smaller parcels of land using pipes and open trenches. The use of cost/benefit analysis on the arterial drainage program is considered and the inherent errors are discussed. Conservation of the environment is described as it applies to land-scaping, fisheries, and wildlife, and the drainage authorities are shown to have an enlightened attitude to proper preservation of the world around us.

  9. Pipe downchute stormwater drainage system

    SciTech Connect

    Gross, W.E.

    1995-12-31

    SCS Engineers (SCS) was provided with the challenge of developing a completely enclosed pipe downchute system for stormwater drainage at the Fresh Kills Landfill in New York City, the largest landfill in the world. With a total landfill drainage subshed totaling over 1000 acres, and an average yearly precipitation at the site of approximately 4.2 feet, the final constructed stormwater drainage system would capture and convey over 591 million gallons of stormwater runoff per year, and discharge it into 17 stormwater basins.This paper describes the drainage system.

  10. DRAINAGE PIPE DETECTOR: GROUND PENETRATING RADAR SHOWS PROMISE IN LOCATING BURIED SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the more frustrating problems confronting farmers and land improvement contractors in the Midwestern United States involves locating buried agricultural drainage pipes. Conventional geophysical methods, particularly ground penetrating radar (GPR), presently being used for environmental and co...

  11. Agricultural Drainage Management Systems Task Force (ADMSTF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Drainage Management Systems (ADMS) Task Force was initiated during a Charter meeting in the fall of 2002 by dedicated professional employees of Federal, State, and Local Government Agencies and Universities. The Agricultural Drainage Management (ADM) Coalition was established in 200...

  12. Drainage Pipe Detection and Assessment Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The research conducted to date clearly shows that ground penetrating radar (GPR) is feasible for use locating buried drainage pipes in both farm and golf course settings. Within farm settings, GPR seems to work quite well locating drainage pipes buried within one meter of the surface, and the succes...

  13. Nutrient Attenuation Under Natural Conditions in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are common practice in agricultural landscapes with poorly drained soils. Even though high concentrations of nutrients and other agricultural chemicals have been reportedly associated with agricultural drainage ditches, processes affecting nutrient transport in these ditches are not...

  14. Assessing Nutrient Transport Following Dredging of Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are vital for many agricultural landscapes in the U.S. Previous research has indicated that dredging agricultural drainage ditches may degrade water quality. In this study, we monitored nutrient transport in two drainage ditches for six years (2003-2008), during which t...

  15. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost...

  16. ECOLOGY AND MANAGEMENT OF AGRICULTURAL DRAINAGE DITCHES: A LITERATURE REVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  17. Ecology and management of agricultural drainage ditches: a literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  18. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  19. Environmental and socio-economic impacts of pipe drainage in Pakistan.

    PubMed

    Ghumman, Abdul Razzaq; Ghazaw, Yousry Mahmoud; Hashmi, Hashim Nisar; Kamal, Mumtaz Ahmed; Niazi, Muhammed Farooq

    2012-03-01

    Many drainage schemes and salinity control projects have been executed world wide. Pipe drainage has widely been used in Pakistan, Egypt and India to control waterlogging. The impact of pipe drainage on land and water was evaluated in this paper using data of three pipe drainage projects in Pakistan namely Khushab Salinity Control and Reclamation Project, Fourth Drainage Project in Faisalabad and Swabi Salinity Control and Reclamation Project. Data by regular monitoring of these projects were collected. The effect of pipe drainage on water table depth at these three locations has been compared. Water quality and soil salinity improvement due to the pipe drainage has also been investigated. Data, related to water table depths and discharges from drain pipes/wells, was collected. Observation wells, installed at various places by the Water and Power Development Authority, were used for collection of this data. To evaluate the impact of the projects on salinity, soil samples from all the three locations were tested. A questionnaire was prepared to get the view of the people about the projects. It was revealed that in these areas, due to subsurface pipe drainage, the percentage of the abandoned land has been considerably decreased. Over drainage was observed in a few places of the projects. The farmers at such places were asked to change their cropping patterns. Ultimately, there has been an increase in area under cultivation, crop yields and cropping intensity in the projects' area. PMID:21603921

  20. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  1. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  2. Determining potential for microbial atrazine degradation in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passage of agricultural runoff through vegetated drainage ditches has been shown to reduce the amount of pesticides, such as atrazine, exiting agricultural watersheds. Previous studies found that microbial communities in soil from fields treated with atrazine display enhanced rates of atrazine degr...

  3. Nutrient Transport in Dredged Reaches of Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are a vital component of many of the more productive agricultural landscapes in the United States. These systems often require intensive management to ensure adequate removal of water from the system, but little is known about how ditch management affects nutrient losse...

  4. Laboratory feasibility evaluation of a new modified iron product for use as a filter material to treat agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards throug...

  5. Corrosion Evaluation and Durability Estimation of Aluminized Steel Drainage Pipes

    NASA Astrophysics Data System (ADS)

    Akhoondan, Mersedeh

    Aluminized steel pipes are expected to have a long service life, e.g. 75 years. Spiral ribbed aluminized pipes (SRAP) have been widely specified and used by the Florida Department of Transportation (FDOT) for drainage of runoff water. Confidence in the long term durability of SRAP has been challenged by recent unexpected early corrosion failures in various Florida locations. SRAP premature corrosion incidents have occurred in two modalities. Mode A has taken place in near-neutral soil environments and has often been associated with either gross manufacturing defects (i.e. helical cuts) or corrosion concentration at or near the ribs. Mode B took place in pipes in contact with limestone backfill and corrosion damage was in the form of perforations, not preferentially located at the ribs, and not necessarily associated with other deficiencies. These failures motivated this research. The objectives of this work are to establish to what extent the Mode A corrosion incidents can be ascribed to manufacturing defects, that can be rectified by appropriate quality control, as opposed to an intrinsic vulnerability to corrosion of regularly produced SRAP due to ordinary forming strains and to determine the mechanism responsible for Mode B corrosion including the role that limestone backfill played in that deterioration. To achieve those objectives, laboratory experiments were conducted to replicate the conditions for Mode A and Mode B. Overall, the findings of this and previous work suggest that much of the corrosion damage observed in the Mode A incidents were promoted more by manufacturing deficiencies and less by any possible inherent susceptibility of corrosion at the ribs of SRAP that was produced following appropriate quality control. Experiments to explore the causes of Mode B corrosion showed that high pH values, sufficient to cause dissolution of the passive film on aluminum, can develop under exposure of limestone to flowing natural water. The findings substantiate

  6. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  7. Regulation of agricultural drainage to San Joaquin River

    SciTech Connect

    Johns, G.E.; Watkins, D.A. )

    1989-02-01

    A technical committee reported on: (1) proposed water quality objectives for the San Joaquin River Basin; (2) proposed effluent limitations for agricultural drainage discharges in the basin to achieve these objectives; and (3) a proposal to regulate these discharges. The costs and economic impact of achieving various alternative water quality objectives were also evaluated. The information gathered by the technical committee will be used by the Regional Board along with other information in their review of the San Joaquin River Basin Water Quality Control Plan and their actions to regulate agricultural drainage in the San Joaquin Valley. The results of the Technical Committee's efforts as reported in Regulation of Agricultural Drainage to the San Joaquin River, August 1987. Based on the available information, the improvement in water quality resulting from implementation of the interim selenium objective and long-term objectives for salts, molybdenum and boron is necessary to provide reasonable protection to beneficial uses. The costs needed to implement these objectives seem reasonable. However, data on the: (1) concentrations of selenium that protect aquatic ecosystems in the basin; (2) concentrations of selenium that protect human consumers of fish and wildlife; and (3) drainage flows and quality produced in and upgradient of the drainage study area need to be developed and reviewed before a long-term selenium water quality objective is implemented. 16 refs., 2 figs., 4 tabs.

  8. Vertical distribution of phosphorus in agricultural drainage ditch soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Mary...

  9. Denitrification of agricultural drainage line water via immobilized denitrification sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. One potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to 1...

  10. Managing Delmarva Agricultural Drainage Ditches for Water Quality Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for draining storm and subsurface water from farmland on the Delmarva Peninsula. Ditches are unique ecosystems, having the features of both streams and wetlands. Ditches often provide the only wetland and aquatic habitats on farmland. Ditches carry, store,...

  11. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  12. Influence of Physical Habitat and Agricultural Contaminants on Fishes within Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are used within agricultural watersheds for the removal of excess water from agricultural fields. These headwater streams have been constructed or modified so they possess an enlarged trapezoidal cross-section, straightened channels, and riparian zones lacking woody veg...

  13. Nutrient mitigation efficiency in agricultural drainage ditches: An influence of landscape properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage systems are integral parts of the agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental conventional and controlled (with weirs) agricultural drainage ditche...

  14. Nitrate loading and isotopic signatures in subsurface agricultural drainage systems.

    PubMed

    Smith, E L; Kellman, L M

    2011-01-01

    Artificially draining soils using subsurface tiles is a common practice on many agricultural fields. High levels of nitrate-nitrogen (NO-N) are often released from these systems; therefore, knowledge on the sources and processes controlling NO-N in drainage systems is needed. A dual isotope study (δN and δO) was used to investigate three subsurface drainage systems (shallow, conventional, and controlled) in Onslow, Nova Scotia, Canada. The objectives of this study were (i) to identify which drainage system more effectively reduced the NO-N loading, (ii) to examine differences in isotopic signatures under identical nutrient and cropping regimes for a fixed soil type, and (iii) to identify the utility of different drainage systems in controlling nutrient flows. Nitrate concentrations measured ranged from 0.92 to 11.8, from 2.3 to 17.3, and from 2.1 to 19.8 mg L for the shallow, conventional, and controlled drains, respectively. Total NO-N loading from shallow and controlled drains were 20 and 5.6 kg ha, respectively, lower than conventional (39.1 kg ha). The isotopic composition of NO-N for all drainage types appeared to be a mixture of two organic sources (manure and soil organic matter) via the process of nitrification. There was no evidence that denitrification played a significant role in removing NO-N during transport. Overall, shallow drainage reduced NO-N loading but offered no water conservation benefits. Combining the benefits of decreased NO-N loading from shallow systems with water control capability may offer the best solution to reducing nutrient loadings into water systems, achieving optimal crop yield, and decreasing drainage installation costs. PMID:21712595

  15. MITIGATION CAPACITIES OF AGRICULTURAL DRAINAGE DITCHES FOR FERTILIZER CONTAMINATION FROM NO-TILL COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are important routes of preferential flow in agricultural systems providing a rapid, more direct path for nutrient (N and P) laden drainage waters to reach downstream environments. Drainage ditches are forgotten links between agricultural farms and receiving waters, th...

  16. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  17. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  18. Use of Unchannelized Agricultural Streams as a Guiding Image for Restoring Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches or channelized headwater streams are a common landscape feature in the Midwestern United States. These streams have been channelized and maintained for removal of excess water from agricultural fields without regard for the aquatic biota. The use of pristine forested wa...

  19. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  20. Phosphorus transport in agricultural subsurface drainage: a review.

    PubMed

    King, Kevin W; Williams, Mark R; Macrae, Merrin L; Fausey, Norman R; Frankenberger, Jane; Smith, Douglas R; Kleinman, Peter J A; Brown, Larry C

    2015-03-01

    Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research has focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be negligible. Perceptions of subsurface P transport, however, have evolved, and considerable work has been conducted to better understand the magnitude and importance of subsurface P transport and to identify practices and treatments that decrease subsurface P loads to surface waters. The objectives of this paper were (i) to critically review research on P transport in subsurface drainage, (ii) to determine factors that control P losses, and (iii) to identify gaps in the current scientific understanding of the role of subsurface drainage in P transport. Factors that affect subsurface P transport are discussed within the framework of intensively drained agricultural settings. These factors include soil characteristics (e.g., preferential flow, P sorption capacity, and redox conditions), drainage design (e.g., tile spacing, tile depth, and the installation of surface inlets), prevailing conditions and management (e.g., soil-test P levels, tillage, cropping system, and the source, rate, placement, and timing of P application), and hydrologic and climatic variables (e.g., baseflow, event flow, and seasonal differences). Structural, treatment, and management approaches to mitigate subsurface P transport-such as practices that disconnect flow pathways between surface soils and tile drains, drainage water management, in-stream or end-of-tile treatments, and ditch design and management-are also discussed. The review concludes by identifying gaps in the current understanding of P transport in subsurface drains and suggesting areas where future research is needed. PMID:26023966

  1. Subsurface agricultural irrigation drainage: the need for regulation.

    PubMed

    Lemly, A D

    1993-04-01

    Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented. PMID:8484025

  2. Transformation Of Arsenic In Agricultural Drainage Water Disposed Into An Evaporation Basin In California, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, a high agricultural production area in USA. The irrigation drainage water contains elevated concentrations of trace elements, including S...

  3. Hydrologic Impact Of Subsurface Drainage Of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Johannsen, C. J.; Bowling, L. C.

    2005-12-01

    Although subsurface drainage has benefited agricultural productions in many regions of the U.S., there are also concerns about the potential impacts of these systems on watershed hydrology and water quality. This study was focused on tile lines identification and hydrologic response of subsurface drainage systems for the Agronomy Center for Research and Education (ACRE), West Lafayette, Indiana and the Southeastern Purdue Agriculture Center (SEPAC) in southeastern, Indiana. The purpose of the study was to develop and evaluate a remote sensing methodology for automatic detection of tile lines from aerial photographs and to evaluate the Distributed Hydrology Soil-Vegetation Model (DHSVM) to analyze the hydrologic response of tile drained fields. A step-wise approach was developed to first use different image enhancement techniques to increase the visual distinction of tile lines from other details in the image. A new classification model was developed to identify locations of subsurface tiles using a decision tree classifier which compares the multiple data sets such as enhanced image data, land use class, soil drainage class, hydrologic group and surface slope. Accuracy assessment of the predicted tile map was done by comparing the locations of tile drains with existing historic maps and ground-truth data. The overall performance of decision tree classifier model coupled with other pre- and post- classification methods shows that this model can be a very effective tool in identifying tile lines from aerial photographs over large areas of land. Once the tile map was created, the DHSVM was applied to ACRE and SEPAC respectively to see the hydrological impact of the subsurface drainage network. Observed data for 3-years (1998-2000) at ACRE and for 6-years (1993-1998) at SEPAC were used to calibrate and validate the model. The model was simulated for three scenarios: 1) baseline scenario (no tiles), 2) with known tile lines and 3) with tile lines created through

  4. Laboratory Feasibility Evaluation of a New Modified Iron Product for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2010-12-01

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards through the soil profile to be intercepted by the buried drainage pipes and then discharged with drainage water into neighboring streams and lakes, oftentimes producing adverse environmental impacts on local, regional, and national scales. On-site drainage water filter treatment systems can potentially be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. A recently developed modified iron product may have promise as a filter material used within this type of drainage water treatment system. Therefore, a laboratory study was initiated to directly evaluate the feasibility of employing this new modified iron product as a filter material to treat drainage waters. Laboratory research included saturated falling-head hydraulic conductivity tests, contaminant (nutrient/pesticide) removal batch tests, and saturated solute transport column experiments. The saturated falling-head hydraulic conductivity tests indicate that the unaltered modified iron product by itself has a high enough hydraulic conductivity (> 1.0 x 10-3 cm/s) to normally allow sufficient water flow rates that are needed to make this material hydraulically practical for use in drainage water filter treatment systems. Modified iron hydraulic conductivity can be improved substantially (> 1 x 10-2 cm/s) by using only the portion of this material that is retained on a 100 mesh sieve (particle size > 0.15 mm). Batch test results carried out with spiked drainage water and either unaltered or 100 mesh sieved modified iron showed nitrate reductions of greater than 30% and 100% removal of the pesticide, atrazine. Saturated solute transport columns tests with spiked drainage water

  5. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  6. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  7. Effect of subsurface drainage on streamflow in an agricultural headwater watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial drainage, also known as subsurface or tile drainage is paramount to sustaining crop production agriculture in the poorly-drained, humid regions of the world. Hydrologic assessments of individual plots and fields with tile drainage are becoming common; however, a major void exists in our u...

  8. Phosphorus dynamics within agricultural drainage ditches in the lower Mississippi Alluvial Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive phosphorus loading from fertilizers in agriculture results in enriched runoff and downstream freshwater and saltwater aquatic system eutrophication. This study evaluated phosphorus dynamics in agricultural drainage ditches across eight sites within the Lower Mississippi Alluvial Valley (LM...

  9. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...

  10. FISH-HABITAT RELATIONSHIPS IN DRAINAGE DITCHES WITHIN A PREDOMINANTLY AGRICULTURAL WATERSHED IN CENTRAL OHIO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are a common landscape feature in Ohio, and constitute 25% of stream habitat in Ohio. Management of drainage ditches focuses on removing excess water from agricultural fields without considering the influence of these actions on the biota living within ditches. Informat...

  11. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  12. Location and assessment of drainage pipes beneath farm fields and golf course greens using ground penetrating radar: A research summary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing the efficiency of soil water removal, and in turn crop productivity, on farmland already containing a subsurface drainage system, typically involves installing new drain lines between the old ones. However, before this approach can be attempted, the older drainage pipes need to be located...

  13. Long term monitoring of leachate flux into drainage pipes of MSW landfills.

    PubMed

    Münnich, Kai; Bauer, Jan; Fricke, Klaus

    2012-01-01

    The measurement of leachate quality and quantity is an essential part of the monitoring of landfills in the different phases during their lifespan. These measurements allow the evaluation of the decomposition processes in the landfill and the efficiency of technical installations for the reduction of the leachate generation. Normally the measurements are made at the outlet of larger sections of the landfill or at the overall landfill. An identification of smaller parts with different biological or hydraulic behaviour within the landfill section is not possible in that case. In the framework of a long-term research project concerning the monitoring of landfills, different devices for small-scale identification of the leachate discharge were developed at the Technical University of Braunschweig. The device allows a measurement of the leachate discharge inside a single drainage pipe having a length up to 375  m. The measurements showed the influence of changes in operation. It was found that the discharge in the pipes and the efficiency of the drainage system was strongly influenced by deformations and torsion of the high-density polyethylene pipes and unequal settlements of the subsoil. The discharge of leachate in the drainage system was, as expected, very non-uniform and in parts the leachate was not flowing inside the pipes, but rather in the surrounding gravel layer. Furthermore, large differences in leachate quality may occur, whereas the differences in discharge volume are small. With the developed system it is possible to control the efficiency and the functioning of top cover systems for landfills. PMID:21030425

  14. Laboratory Evaluation of Sulfur Modified Iron for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2009-12-01

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. On-site water filter treatment systems can be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. Sulfur modified iron is a relatively unknown industrial product that may have promise for use as a filter material to remove contaminants from subsurface drainage waters. Sulfur modified iron (SMI) is a high surface area iron powder (zero valent iron) that has been altered via chemical reaction with pure sulfur to produce a sulfur/iron surface coating on the iron particles. A laboratory investigation was conducted with contaminant removal batch tests, saturated falling-head hydraulic conductivity tests, and saturated solute transport column experiments to evaluate the feasibility for using SMI to treat subsurface drainage waters. Contaminant removal batch tests showed that three SMI samples were much more effective removing nitrate (> 94% nitrate removed) than three zero valent iron samples (< 10% nitrate removed). Batch test results additionally showed that SMI removed greater that 94% of dissolved phosphate, but was not particularly effective removing the pesticide, atrazine (< 37% atrazine removed). Hydraulic conductivity tests indicated that all three SMI samples that were evaluated had sufficient hydraulic conductivity, much greater than the 1 x 10-3 cm/s standard used for stormwater sand filters. The saturated solute transport tests confirmed that SMI can be effective removing nitrate and phosphate from drainage waters. Analysis of column effluent also showed that the large majority of nitrate removed by SMI was converted to ammonium. Consequently, these laboratory findings support the use of SMI in

  15. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  16. Redox Chemistry and Transformation of Arsenic and Selenium in Agricultural Drainage Disposal Ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation ponds are being used for disposal of agricultural drainage waters in the San Joaquin Valley (SJV) of California since there is no option for disposal outside of the valley. The drainage water contains elevated levels of salts and trace elements including arsenic (As) and selenium (Se). T...

  17. Seasonal Patterns of Nitrogen and Phosphorus Losses in Agricultural Drainage Ditches in Northern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches convey nutrient laden waters from agricultural landscapes to receiving waters. Surface drainage ditches are landscape features that have been overlooked for non-point source pollution mitigation of receiving waters. The objective of this study was to determine the nitrogen and phosp...

  18. Impact of dredging on dissolved phosphorus transport in agricultural drainage ditches of the Atlantic Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic coastal plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches...

  19. A Characterization of Benthic Macroinvertebrate Communities in Agricultural Drainage Ditches of the Northeast Arkansas Delta, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches have large differences in hydroperiod and provide additional water residence time to mitigate farm runoff before it reaches receiving water bodies. These ditch wetland habitats harbor a characteristic benthic macroinvertebrate fauna reflective of the assimilative capac...

  20. VEGETATION DEVELOPMENT OF THREE CONSTRUCTED WETLANDS RECEIVING AGRICULTURAL RUN-OFF AND SUBSURFACE DRAINAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Case studies of terrestrial and aquatic vegetation development in three constructed wetlands receiving agricultural drainage were conducted. Surveys were completed on three Wetland Reservoir Subirrigation System (WRSIS) constructed wetlands located in Defiance, Fulton, and Van Wert counties in north...

  1. INNOVATIVE USES OF VEGETATED DRAINAGE DITCHES FOR REDUCING AGRICULTURAL RUNOFF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing concerns over agricultural contributions to water quality degradation have resulted in increased emphasis on discovering new, innovative best management practices (BMPs) to decrease effects of storm water runoff containing potential agricultural pollutants. Vegetated agricultural ditches pla...

  2. Consolidation drainage and climate change may reduce Piping Plover habitat in the Great Plains

    USGS Publications Warehouse

    McCauley, Lisa A.; Anteau, Michael J.; Post van der Burg, Max

    2015-01-01

    Many waterbird species utilize a diversity of aquatic habitats; however, with increasing anthropogenic needs to manage water regimes there is global concern over impacts to waterbird populations. The federally threatened Piping Plover (Charadrius melodus; hereafter plovers) is a shorebird that breeds in three habitat types in the Prairie Pothole Region of North Dakota, South Dakota, and Canada: riverine sandbars; reservoir shorelines; and prairie wetlands. Water surface areas of these habitats fluctuate in response to wet-dry periods; decreasing water surface areas expose shorelines that plovers utilize for nesting. Climate varies across the region so when other habitats are unavailable for plover nesting because of flooding, prairie wetlands may periodically provide habitat. Over the last century, many of the wetlands used by plovers in the Prairie Pothole Region have been modified to receive water from consolidation drainage (drainage of smaller wetlands into another wetland), which could eliminate shoreline nesting habitat. We evaluated whether consolidation drainage and fuller wetlands have decreased plover presence in 32 wetlands historically used by plovers. We found that wetlands with more consolidation drainage in their catchment and wetlands that were fuller had a lower probability of plover presence. These results suggest that plovers could have historically used prairie wetlands during the breeding season but consolidation drainage and/or climate change have reduced available shoreline habitat for plovers through increased water levels. Prairie wetlands, outside of some alkali wetlands in the western portion of the region, are less studied as habitat for plovers when compared to river and reservoir shorelines. Our study suggests that these wetlands may have played a larger role in plover ecology than previously thought. Wetland restoration and conservation, through the restoration of natural hydrology, may be required to ensure that adequate habitat

  3. DRAINAGE MATERIALS AND THEIR EVOLUTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An historical account of the development and innovation of drainage materials in the World is given. For more than 100 years prior to 1970, clay and concrete tile were the most common for agricultural drainage. Smooth-wall plastic pipe was used to a limited extent in the late 1950's for subdrain con...

  4. FGD gypsum filters remove soluble phosphorus from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decades of chicken litter applications has led to phosphorus (P) levels up to ten times the agronomic optimum in soils of the Delmarva Peninsula. This legacy P is a major source of P entering drainage ditches that eventually empty into the Chesapeake Bay. A Flue Gas Desulfurization (FGD) gypsum ditc...

  5. Assessment of In-Stream Phosphorus Dynamics in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intensive row crop agricultural systems in the Midwestern United States can enrich surface waters with nutrients. This project was conducted to evaluate the in-stream processing of P in agricultural ditches. Phosphorus injection studies were conducted at seven sites along three drainage ditches ...

  6. Investigation of denitrifying microbe communities within an agricultural drainage system fitted with low-grade weirs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing wetland characteristics in agricultural drainage ditches with the use of low-grade weirs, has been identified as a potential best management practice (BMP) to mitigate nutrient runoff from agriculture landscapes. This study examined microbe community abundance and diversity involved in den...

  7. Agricultural Drainage Ditches Mitigate N and P Loads as a Function of Hydrological Variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities play a substantial role in non-point pollution of receiving waters. Several efforts to remediate pollution sources include constructed wetlands, buffer strips and best management practices. However, agricultural drainage ditches are primary intercept wetlands that have not be...

  8. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  9. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  10. Laboratory evaluation of sulfur modified iron for use as a filter material to treat agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these sur...

  11. Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled drainage in agricultural ditches contributes to a drainage management strategy with potential environmental and production benefits. Innovative drainage strategies including spatially orientated low-grade weirs show promise to significantly improve nutrient (e.g. nitrate-N) reductions by...

  12. RESPONSE OF SKINNER LAKE (INDIANA) TO AGRICULTURAL DRAINAGE

    EPA Science Inventory

    During 1976-1981, various land management practices were initiated on the agricultural watershed of Skinner Lake in Noble County, Indiana. Land treatment practices implemented on the watershed were chosen from the data and experience gained from the nonpoint source pollution stud...

  13. Phosphorus transport in agricultural subsurface drainage: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be ...

  14. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  15. Nutrient Mitigation Efficiency in Agricultural Drainage Ditches: An Influence of Landscape Management.

    PubMed

    Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun

    2016-06-01

    Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches. PMID:27022936

  16. Chemical Status Of Selenium In Evaporation Basins For Disposal Of Agricultural Drainage.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins (or ponds) are the most commonly used facilities to dispose selenium (Se)-laden agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley in California. However, there is a continuous concern on potential risk of Se in evaporation basin waters to water...

  17. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remediation of excess nitrogen (N) in agricultural runoff can be enhanced by establishing wetland vegetation but the role of denitrification in N removal is not well understood in drainage ditches. We quantified differences in N retention during experimental runoff events followed by stagnant period...

  18. Vegetation Changes and Partitioning of Selenium in 4-Year-Old Constructed Wetlands Treating Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The knowledge of vegetation management and the partitioning of selenium (Se) in treatment wetlands is essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage water in the San Joaquin Valley, California. Vegetation changes in six vegetated wetl...

  19. Fishes in drainage ditches: what does it mean for the management of agricultural watersheds?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on how conservation practices influence the biota within agricultural drainage ditches is limited. We are evaluating fish-habitat relationships within ditches in Indiana and Ohio to gain an understanding of the potential impacts of conservation practices. Our results suggest that practic...

  20. On-site denitrification beds could reduce indirect greenhouse gas emissions from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) laden agricultural drainage waters are non-point sources of indirect nitrous oxide (N2O) emissions, which represent a significant fraction of total N2O emissions in the USA. On-site denitrification beds filled with woodchips were used to reduce NO3- under carbon rich anaerobic conditi...

  1. Aquatic macroinvertebrate communities within agricultural drainage ditches and streams of the Upper Big Walnut Creek watershed, Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are headwater streams that have been modified or constructed for agricultural drainage. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management of ditches focuses on removing excess water from agricultural fiel...

  2. Controlled drainage and wetlands to reduce agricultural pollution: a lysimetric study.

    PubMed

    Borin, M; Bonaiti, G; Giardini, L

    2001-01-01

    Controlled drainage and wetlands could be very effective practices to control nitrogen pollution in the low-lying agricultural plains of northeast Italy, but they are not as popular as in other countries. An experiment on lysimeters was therefore carried out in 1996-1998, with the double aim of obtaining local information to encourage the implementation of these practices and to gain more knowledge on the effects involved. Controlled drainage + subirrigation and wetlands were all considered as natural systems where alternative water table management could ameliorate water quality, and were compared with a typical water management scheme for crops in the open field. Eight treatments were considered: free drainage on maize (Zea mays L.) and sugarbeet (Beta vulgaris L.), two treatments of controlled drainage on the same crops, and five wetland treatments using common reed [Phragmites australis (Cav.) Trin. ex Steud.], common cattail (Typha latifolia L.), and tufted sedge (Carex elata All.), with different water table or flooding levels. Lysimeters received about 130 g m 2 of N with fertilization and irrigation water, with small differences among treatments. The effects of treatments were more evident for NO3-N concentrations than for the other chemical parameters (total Kjeldahl nitrogen, pH, and electrical conductivity), with significantly different medians among free drainage (33 mg L(-1)), controlled drainage (1.6 and 2.6 mg L(-1)), and wetlands (0.5-0.7 mg L(-1)). Referring to free drainage, NO3-N losses were reduced by 46 to 63% in controlled drainage and 95% in the average of wetlands. Wetlands also reduced losses of total dissolved solids from 253 g m(-2) (average of crop treatments) to 175 g m(-2) (average of wetlands). PMID:11476512

  3. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Presser, T.S.; Davis, R.A.

    1996-01-01

    Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 ??g/l, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 ??g/l in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage. Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.

  4. Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage.

    PubMed

    Pronger, Jack; Schipper, Louis A; Hill, Reece B; Campbell, David I; McLeod, Malcolm

    2014-07-01

    The drainage and conversion of peatlands to productive agro-ecosystems leads to ongoing surface subsidence because of densification (shrinkage and consolidation) and oxidation of the peat substrate. Knowing the ra0te of this surface subsidence is important for future land-use planning, carbon accounting, and economic analysis of drainage and pumping costs. We measured subsidence rates over the past decade at 119 sites across three large, agriculturally managed peatlands in the Waikato region, New Zealand. The average contemporary (2000s-2012) subsidence rate for Waikato peatlands was 19 ± 2 mm yr (± SE) and was significantly less ( = 0.01) than the historic rate of 26 ± 1 mm yr between the 1920s and 2000s. A reduction in the rate of subsidence through time was attributed to the transition from rapid initial consolidation and shrinkage to slower, long-term, ongoing oxidation. These subsidence rates agree well with a literature synthesis of temperate zone subsidence rates reported for similar lengths of time since drainage. A strong nonlinear relationship was found between temperate zone subsidence rates and time since initial peatland drainage: Subsidence (mm yr) = 226 × (years since drained) ( = 0.88). This relationship suggests that time since drainage exerts strong control over the rate of peatland subsidence and that ongoing peatland subsidence rates can be predicted to gradually decline with time in the absence of major land disturbance. PMID:25603091

  5. Study of the use of truck tire beads as drainage pipe and analysis of the economics of tire disposal in Oklahoma. Part 1. Culverts. Final report

    SciTech Connect

    Everett, J.W.; Gattis, J.L.

    1994-07-01

    In an attempt to find alternate ways of dealing with waste truck tires, a private tire recycling company developed a pipe from the tire bead and sidewall. The tire-pipe has seen limited use as a roadway drainage culvert. To encourage wider use of this product, an evaluation of pipe performance was performed. The evaluation consisted of (1) inspections of existing installations; (2) structural tests; and (3) leakage tests. The study found that the majority of installations were performing well. Compared with corrugated steel and fiberglass pipes, the tire-pipe exhibited favorable structural performance. An individual tire-pipe section was found to be watertight. However, when tested in the open-air (not in the ground), the tire-pipe joints were found to leak. Development of an improved end connection would improve the utility of the tire-pipe.

  6. Effect of Dredging an Agricultural Drainage Ditch on Water Column Herbicide Concentration, as Predicted by Fluvarium Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In artificially drained agricultural areas, dredging of drainage ditches is often necessary to ensure drainage of fields adequate to permit field operations. Fluvarium experiments were performed in order to evaluate the potential of the bed material changes associated with ditch dredging to impact ...

  7. Evaluating Ditch Drainage Control Structure for Mitigating Export of Nitrogen from Agricultural Fields in the Choptank River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Choptank River watershed has an extensive network of agricultural drainage ditches that are significant pathways of nitrogen export from production fields and negatively impact water quality in the Chesapeake Bay. The use of controlled drainage structures on ditches to regulate water flow has b...

  8. Evidence for the use of low-grade weirs in drainage ditches to improve nutrient reductions from agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential function of drainage ditches is to remove water from the agricultural landscape to avoid crop senescence through flooding and soil saturation. Commonly used slotted board risers provide drainage management strategies over the dormant season; however, by introducing innovative, low-gra...

  9. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  10. Laboratory evaluation of zero valent iron and sulfur modified iron filter materials for agricultural drainage water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On site filter treatment systems have the potential to remove nutrients and pesticides from agricultural subsurface drainage waters. The effectiveness and efficiency of this type of drainage water treatment will depend on the actual filter materials utilized. Two promising filter materials that coul...

  11. Influence of subsurface drainage on quantity and quality of dissolved organic matter export from agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Dalzell, Brent J.; King, Jennifer Y.; Mulla, David J.; Finlay, Jacques C.; Sands, Gary R.

    2011-06-01

    Despite its importance for aquatic ecosystem function and watershed carbon budgets, little is known about how land use influences dissolved organic matter (DOM) export. We investigated the influence of subsurface soil drainage, widespread in the Midwestern United States, on DOM export from agricultural fields designed to drain water at either 13 mm d-1 (conventional) or 51 mm d-1 (intense). Intense drainage exported 55% (±22%) more dissolved organic carbon (DOC) per year than conventional drainage due to both increased concentration and water yield. DOC export from plots was strongly dependent on precipitation and showed considerable interannual variability. Mean DOC concentrations in drainage water were low (1.62 and 1.87 mg L-1 for conventional and intense treatments), and fluorescence index (FI) measurements showed that it had a microbial source with little evidence of terrestrially derived material, suggesting that flow through deeper, organic-poor soil horizons is important in regulating DOC export from these plots. We compared DOM in subsurface drains with downstream ditch and stream sites. Increases in DOC concentration and molecular weight accompanied by decreasing FI values at downstream sites showed that streams gain a large amount of terrestrially derived DOM during base flow transport through agricultural landscapes, probably from riparian zones. These results show that DOM compositional characteristics change with catchment area and that the relevant observation scale for DOM dynamics is likely to vary among watersheds. This study also demonstrates that land management practices can directly affect DOC via changes to water flow paths. These results are critical for improving model estimates of DOM export from agricultural landscapes as well as predicting how DOC export will respond to changing land use and climate.

  12. Considerations for assessments of wadable drainage systems in the agriculturally dominated deltas of Arkansas and Mississippi.

    PubMed

    Stephens, W W; Moore, M T; Farris, J L; Bouldin, J L; Cooper, C M

    2008-10-01

    The watershed approach, currently used to assess regional streams in the United States, emphasizes least-disturbed reference conditions. Consideration of extensive wadable drainage systems found in Arkansas and Mississippi deltas challenges concepts of disturbance within a landscape of historic agricultural land use. Seventeen wadable drainage ditch sites in Arkansas and Mississippi deltas were characterized using water quality parameters and rapid bioassessment protocols. In all, 19 fish and 105 macroinvertebrate taxa were identified. Macroinvertebrate assemblages were dominated by coleopteran, dipteran, and hemipteran taxa at most drainage sites. Predominance of mobile, early colonists in ditches limits applicability of some metrics for assessment of stream integrity beyond prevalent conditions of ephemeral water quantity and habitat maintenance. This study provides evidence of considerable variability of physical characteristics, water quality, and fish and invertebrate metrics in wadable drainage systems. It indicates a disparity in usefulness of the watershed approach, emphasizing least-disturbed reference conditions, in assessing ecological integrity for a region with ditches as dominant landscape features. PMID:18305980

  13. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  14. In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada

    USGS Publications Warehouse

    Oremland, R.S.; Steinberg, N.A.; Presser, T.S.; Miller, L.G.

    1991-01-01

    Dissimilatory in situ selenate reduction to elemental selenium in sediments from irrigated agricultural drainage regions of western Nevada was measured at ambient Se oxyanion concentrations. Selenate reduction was rapid, with turnover rate constants ranging from 0.04 to 1.8 h-1 at total Se concentrations in pore water of 13 to 455 nM. Estimates of removal rates of selenium oxyanions were 14, 38, and 155 ??mol m-2 day-1 for South Lead Lake, Massie Slough, and Hunter Drain, respectively.

  15. Relative Contributions of Habitat and Water Quality to the Integrity of Fish Communities in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of agricultural drainage ditches focuses on removing water from agricultural fields and ignores the potential impacts of these hydrological and geomorphological modifications on the water quality and aquatic biota. There is a need to identify methods of incorporating environmental conside...

  16. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation and storm water runoff from agricultural fields has the potential to cause impairment to downstream aquatic receiving systems. Over the last several years, scientists have discovered the benefit of using edge-of-field practices, such as vegetated agricultural drainage ditches, in the mit...

  17. VEGETATION AND ALGAL COMMUNITY COMPOSITION AND DEVELOPMENT OF THREE CONSTRUCTED WETLANDS RECEIVING AGRICULTURAL RUNOFF AND SUBSURFACE DRAINAGE, 1998 TO 2001

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) aim to reduce non-point source pollution from agricultural fields while maintaining crop yield and creating wetland wildlife habitat. The WRSIS system directs drainage water from agricultural fields to flow into a passively revegetated constructed wetl...

  18. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  19. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  20. Preliminary results from agricultural drainage water management CIG projects on Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field demonstrations were monitored to compare the crop yields, drainage discharge, and nutrient loadings to streams from managed and unmanaged subsurface drainage systems. Paired drainage systems within the same field, under similar soil, area, cropping, and management conditions, were identified. ...

  1. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Bataille, Clement; Liu, Zhongfang; Ale, Srinivasulu; VanDeVelde, Justin; Roswell, Charles R.; Bowling, Laura C.; Bowen, Gabriel J.

    2012-10-01

    SummaryDrainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of NO3--laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. In this study, we quantified the flux and hydrological pathways of agricultural NO3- and road-salt Cl- from catchments lying within the Wabash River Basin, a major source of NO3- to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both NO3- and Cl) was transported early in the storm and (2) higher transport of Cl--laden pre-event soil water relative to shallow groundwater elevated in NO3- occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of Cl- and NO3- differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  2. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  3. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  4. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    PubMed

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons. PMID:26921569

  5. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California: runoff toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to investigate the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas), and the amphipod, Hyalella azteca, was measured for ...

  6. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    PubMed

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW. PMID:26465302

  7. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  8. A classification of drainage and macropore flow in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Heppell, C. M.; Worrall, F.; Burt, T. P.; Williams, R. J.

    2002-01-01

    This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two-year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non-antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity-driven and duration-driven. Intensity-driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long-duration events. For these events the amount of macropore flow approaches a maximum value whatever the

  9. Quality of shallow groundwater and drainage water in irrigated agricultural lands in a Mediterranean coastal region of Turkey.

    PubMed

    Odemiş, Berkant; Bozkurt, Sefer; Ağca, Necat; Yalçin, Mehmet

    2006-04-01

    Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO(3), HCO(3), Cl and SO(4)). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C(3)S(1) in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C(2)S(1) to C(4)S(2) in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001). PMID:16614781

  10. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min. PMID:26985876

  11. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content. PMID:25910602

  12. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage

    NASA Astrophysics Data System (ADS)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90 °C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  13. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively. PMID:17184816

  14. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  15. Physical and Chemical Properties of Bench Sediments in Self-Formed Agricultural Drainage Channels

    NASA Astrophysics Data System (ADS)

    Brooker, M.; Witter, J.; Islam, K. R.; Mouser, P. J.

    2014-12-01

    Two-stage ditches are a novel approach to managing agricultural drainage and are designed with floodplain benches set within the banks of a standard, trapezoidal channel. The floodplain bench serves to attenuate pollutant loads in surface waters through (1) capture of sediments, (2) nutrient assimilation by vegetation, and (3) transformation of C and residual N and P by indigenous microorganisms. Two-stage channels have been constructed in the tri-state region of Ohio-Michigan-Indiana over the last decade with initial results indicating C and P sequestration and enhanced N removal via denitrification. However, the sustainability and the net ecosystem services provided by these designs are relatively unknown beyond this timeframe. To better characterize the properties of two-stage ditches aged more than a decade, we examined the physical and chemical properties of sediments in unplanned, self-formed floodplain benches across 5 distinct Midwest ecoregions. Established benches were selected from 3 locations within each ecoregion and sampled along depth and bench-positional gradients from geo-referenced sites. The sediment-bound C, N, and P concentrations were quantified along with soil texture and channel geomorphology. Nutrient concentrations did not differ across bench position (upstream, downstream, near bank, or near channel); however, significant differences were observed between ecoregions. Steeper slopes and higher benches were associated with higher sand content than surrounding soils and promoted greater storage of C and N. Gradual slopes, on the other hand, were associated with higher clay and silt content. Across these specific ecoregions, P storage declined with increasing depth. However, this was unexplained by the particle size distribution at these depths. Further research is therefore needed to investigate whether P is released from waterlogged sediments or there is biological redistribution of this nutrient across the column depth.

  16. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  17. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments.

    PubMed

    Freeman, John L; Bañuelos, Gary S

    2011-11-15

    Genetic variation in salt (Na(2)SO(4), NaCl) and boron (B) tolerance among four ecotypes of the selenium (Se) hyperaccumulator Stanleya pinnata (Pursh) Britton was utilized to select tolerant genotypes capable of phytoremediating Se from salt, B, and Se-laden agricultural drainage sediment. The few individual salt/B tolerant genotypes were successfully selected from among a large population of highly salt/B sensitive seedlings. The distribution, hyperaccumulation, and volatilization of Se were then examined in selected plants capable of tolerating the high salt/B laden drainage sediment. Salt/B tolerant genotypes from each of the four ecotypes had mean Se concentrations ranging from 2510 ± 410 to 1740 ± 620 in leaves and 3180 ± 460 to 2500 ± 1060 in seeds (μg Se g(-1) DW ± SD), while average daily Se volatilization rates ranged from 722 ± 375 to 1182 ± 575 (μg Se m(-2) d(-1) ± SD). After two growing seasons (∼18 months), we estimated that hyperaccumulation and volatilization of Se by tolerant S. pinnata genotypes and their associated microbes can remove approximately 30% of the total soil Se in 0-30 cm sediment. The salt/B tolerant S. pinnata genotypes selected and characterized herein represent promising new tools for the successful phytoremediation of Se from salt/B and Se-laden agricultural drainage sediments. PMID:21988205

  18. Characterising and classifying agricultural drainage channels for sediment and phosphorus management

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice

    2016-04-01

    In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were

  19. Selenium and nitrate removal from agricultural drainage using the AIWPS(R) technology

    SciTech Connect

    Green, F.B.; Lundquist, T.J.; Quinn, N.W.T.; Zarate, M.A.; Zubieta, I.X.; Oswald, W.J.

    2003-01-02

    Monthly Maximum Discharge Limits (MMDL) have been established for selenium in irrigation drainage by the State of California and the U.S. Environmental Protection Agency following observations of avian teratogenesis at the Kesterson Reservoir in the San Joaquin Valley of California. As a result of these and other adverse effects, farmers and drainage districts on the western side of the San Joaquin Valley must reduce selenium concentrations in irrigation, drainage discharged to the San Joaquin River. Drainage treatment will be required in the near future to meet existing MMDL and future Total Maximum Discharge Limits (TMDL) for the San Joaquin River. A 0.4-hectare Algal Bacterial Selenium Removal (ABSR) Facility was designed and constructed at the Panoche Drainage District in 1995 and 1996 using the Advanced Integrated Wastewater Pond Systems (R) or AIWPS (R) Technology. Each of two physically identical systems combined a Reduction Pond (RP) with a shallow, peripheral algal High Rate Pond (HRP). A Dissolved Air Flotation (DAF) unit and a slow sand filter were used to remove particulate selenium from the effluent of each system. The two systems were operated under different modes of operation and the bacterial substrate varied in each system. The rates of nitrate and selenium removal were compared. Microalgae were harvested using DAF and used as a carbon-rich substrate for nitrate- and selenate-reducing bacteria. Mass removals of total soluble selenium of 77 percent or greater were achieved over a three-year period. Nitrate and selenate were removed by assimilatory and dissimilatory bacterial reduction, and nitrate was also removed by algal assimilation. The final removal of particulate selenium is the focus of ongoing investigations. The removal of particulate selenium is expected to increase the overall removal of selenium to greater than 90 percent and would allow farmers and drainage districts to discharge irrigation drainage in compliance with regulatory

  20. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.

    PubMed

    Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H

    2016-10-01

    Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. PMID:27344249

  1. Metals in agricultural produce associated with acid-mine drainage in Mount Morgan (Queensland, Australia).

    PubMed

    Vicente-Beckett, Victoria A; McCauley, Gaylene J Taylor; Duivenvoorden, Leo J

    2016-01-01

    Acid-mine drainage (AMD) into the Dee River from the historic gold and copper mine in Mount Morgan, Queensland (Australia) has been of concern to farmers in the area since 1925. This study sought to determine the levels of AMD-related metals and sulfur in agricultural produce grown near the mine-impacted Dee River, compare these with similar produce grown in reference fields (which had no known AMD influence), and assess any potential health risk using relevant Australian or US guidelines. Analyses of lucerne (Medicago sativa; also known as alfalfa) from five Dee fields showed the following average concentrations (mg/kg dry basis): Cd < 1, Cu 11, Fe 106, Mn 52, Pb < 5, Zn 25 and S 3934; similar levels were found in lucerne hay (used as cattle feed) from two Dee fields. All lucerne and lucerne hay data were generally comparable with levels found in the lucerne reference fields, suggesting no AMD influence; the levels were within the US National Research Council (US NRC) guidelines for maximum tolerable cattle dietary intake. Pasture grass (also cattle feed) from two fields in the Dee River floodplains gave mean concentrations (mg/kg dry) of Cd 0.14, Cu 12, Fe 313, Mn 111, Pb 1.4, Zn 86 and S 2450. All metal levels from the Dee and from reference sites were below the US NRC guidelines for maximum tolerable cattle dietary intake; however, the average Cd, Cu and Fe levels in Dee samples were significantly greater than the corresponding levels in the pasture grass reference sites, suggesting AMD influence in the Dee samples. The average levels in the edible portions of mandarin oranges (Citrus reticulata) from Dee sites (mg/kg wet weight) were Cd 0.011, Cu 0.59, Fe 2.2, Mn 0.56, Pb 0.18, S 91 and Zn 0.96. Cd and Zn were less than or close to, average Fe and Mn levels were at most twice, Cd 1.8 or 6.5 times, and Pb 8.5 or 72 times the maximum levels in raw oranges reported in the US total diet study (TDS) or the Australian TDS, respectively. Average Cd, Fe, Mn, Pb and

  2. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  3. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After several decades of applying chicken litter to meet crop demands for nitrogen, high levels of legacy phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty to the Chesapeake Bay. The objective of this study was to design, constru...

  4. Acceleration of Selenium Volatilization in Seleniferous Agricultural Drainage Sediments Amended With Methionine and Casein.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation is a potential tool for the management of excessive Se in drainage sediment residing in the San Luis Drain in central California via plant extraction or biological volatilization of Se. This two-year field study in 2004/2005 examined the ability of organic amendments-methionine and ...

  5. Removing soluble phosphorus from agricultural drainage waters using FGD gypsum filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decades of applying chicken litter to meet nitrogen demand has led to accumulation of phosphorus (P) in soils of the Delmarva Peninsula. This legacy P that now approaches levels up to ten times the agronomic optimum is a major source of P entering drainage ditches that eventually empty into the Ches...

  6. Using FGD gypsum to remove soluble phosphorus from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After several decades of applying chicken litter to meet crop demands for nitrogen, high levels of legacy phosphorus (P) in soils of the Delmarva Peninsula are a major source of soluble P entering drainage ditches that empty to the Chesapeake Bay. In April, 2007, Flue Gas Desulfurization (FGD) gypsu...

  7. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  8. Laboratory evaluation of porous iron composite for drainage water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards throug...

  9. Coupled modelling of the effect of overpressure on water discharge in a tile drainage system

    NASA Astrophysics Data System (ADS)

    Henine, H.; Nédélec, Y.; Ribstein, P.

    2014-04-01

    The effect of subsurface drainage on agricultural catchment outflow has been debated for quite some time. Concerning downstream peak flow, it is a complex task to predict the impact of agricultural drainage because different flow media are involved: the soil, pipe drainage networks and open channel networks. In France, drain pipes are designed to operate under a free-surface flow condition. Nevertheless, during intense rainfall events, some pipe sections may flow under pressurised conditions, so that a complex interaction between pipe networks and groundwater flows appears in the vicinity of these sections. In this paper, an integrated modelling strategy is considered in order to analyse these flow interactions. A 1D Saint-Venant network model is combined with a 2D Boussinesq shallow groundwater flow model by means of special internal boundary conditions which take into account the flow interactions. This study follows field experiments conducted in a small subsurface drained catchment, where drainage discharge and pressure heads were monitored in a buried pipe collector and water table profiles were monitored in the field. The simulation results of the coupled model are in good agreement with experimental observations. Moreover, it satisfactorily simulates the behaviour of the drainage system during the pressurisation stages. The model is also applied to a scenario addressing the effect of pressurisation, as compared to non-pressurisation, at the outlet. The coupled model reveals the relation existing between pipe pressurisation and hydrograph timing. Pipe pressurisation results in temporary storage of discharging water, which is released later when pressurisation stops.

  10. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  11. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%. PMID:17270250

  12. Evaluation of management options for disposal of salt and trace element laden agricultural drainage water from the Fallon Indian Reservation, Fallon, Nevada

    SciTech Connect

    Tokunaga, Tetsu; Benson, S.

    1991-03-01

    This is the final report describing work performed on the Fallon Indian Reservation by the Earth Sciences Division at Lawrence Berkeley Laboratory during FY90. These investigations were initiated at the request of the United States Bureau of Reclamation in response to recent concerns regarding disposal of agriculture drainage water from the Reservation. The Reservation is transected by numerous irrigation and drainage canals, including the TJ Drain. Recent investigations by the US Fish and Wildlife Service have demonstrated that water in the TJ Drain is toxic to several aquatic indicator organisms, including bluegills, fathead minnows and daphnids. This information, coupled with recent die-offs of fish and birds, has lead to concern about continued discharge of TJ Drain water into local surface waters. In late 1990, plans for closing the TJ Drain and providing for alternative drainage were initiated. We aim to provide information for assessing options fro disposal of agricultural drainage water from the Reservation. In particular, our studies focuses on irrigation and drainage of lands currently serviced by the TJ Drain. Options for continued irrigation and drainage of the Reservation fall broadly into two categories: options that provide an alternative to drain water disposal into the SWMA; and options that include continuing the current practice of drain water disposal into the SWMA. Other options include elements of both of these alternatives. Additional discussion of specific options will follow a brief summary of the technical work supporting our assessment of drainage related issues at the Reservation. 67 refs., 57 figs., 15 tabs.

  13. Hydrological variability and agricultural drainage ditch nutrient mitigation capacity: Inorganic nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of inorganic nitrogen fertilizers on agricultural landscapes has the potential to generate environmental degradation concerns at fine to coarse scales across the catchment and landscape. Inorganic nitrogen species (nitrate, nitrite, ammonia) are typically associated with subsurface f...

  14. Nutrient removal of agricultural drainage water using algal turf scrubbers and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  15. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus loading from non-point sources such as agricultural landscapes contributes to downstream aquatic ecosystem degradation. Specifically within the Mississippi watershed, enriched runoff contributions have far reaching consequences for coastal water eutrophication and Gulf of Mexico hypoxia. ...

  16. Benthic invertebrates of benchmark streams in agricultural areas of eastern Wisconsin, Western Lake Michigan Drainages

    USGS Publications Warehouse

    Rheaume, S.J.; Lenz, B.N.; Scudder, B.C.

    1996-01-01

    Information gathered from these benchmark streams can be used as a regional reference for comparison with other streams in agricultural areas, based on communities of aquatic biota, habitat, and water quality.

  17. Laboratory Testing of Foundry Sands as Bulking Agents for Porous Media Filters Used to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2008-12-01

    Foundry sands are industrial byproducts that may have potential application as bulking agents that when mixed with small amounts of more chemically reactive materials (i.e. sulfur modified iron, fly ash, etc.) can be used to produce porous media filters capable of removing contaminants from agricultural drainage waters. Foundry sand bulking agents are attractive primarily as a low cost means to maintain the hydraulic efficiency of a filter. Secondarily, the foundry sands themselves may have some capacity for removal of agricultural nutrients and pesticides from water. Consequently, a laboratory study was initiated to quantify hydraulic efficiency and agricultural contaminant removal abilities of six foundry sands. Of the six foundry sands tested, all were obtained in central Ohio, three from iron casting foundries, two from steel casting foundries, and one from an aluminum casting foundry. Hydraulic efficiencies of the foundry sands were assessed by measuring hydraulic conductivity with twice replicated falling-head permeability tests. Batch tests were employed to evaluate foundry sand potential to treat water containing nitrate and phosphate nutrients, along with the pesticide, atrazine. Five of the six foundry sand samples had measured hydraulic conductivity values from 7.6 x 10-3 cm/s to 3.8 x 10-2 cm/s, which is in the range of hydraulic conductivity values found for clean sand. The one foundry sand that was an exception had much lower measured hydraulic conductivity values of 2.75 x 10-5 cm/s and 5.76 x 10-5 cm/s. For the batch tests conducted, none of the nitrate was removed by any of the six foundry sands; however, conversely, almost all of the phosphate was removed by each foundry sand. Batch test atrazine removal results were much more varied. Compared with baseline batch tests, one foundry sand removed two thirds of the atrazine, one foundry sand removed about one half of the atrazine, three foundry sands removed about a third of the atrazine, and one

  18. Impact of intensified irrigated agriculture and climate change on nitrogen loading in the Amu Darya drainage basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2013-04-01

    Pollutant loading and water losses by evapotranspiration are two main problems of intensified irrigated agricultural in arid and semi-arid regions. Climatic changes can further increase water losses and alter transport pathways for contaminants and nutrients. Identification of dominant processes that control nitrogen (N) loading in the highly managed Amu Darya Drainage Basin (ADRB), the largest sub-basin in the Aral Sea Drainage Basin (ASDB), is considered by looking at a 40-years (1960-2000) data record of dissolved inorganic nitrogen (DIN). Furthermore, hydrologic distributed modelling was used to investigate how N transport pathways and travel times have changed with past irrigation expansion, and is likely to change further in response to projected future hydro-climatic trends. River discharge has decreased drastically during the considered 40-years period in ADRB. Future climate and land-use projections show that downstream regions even are at risk of total surface water depletion within a future 30-years period. Decreasing riverine DIN concentration was observed near the Aral Sea outlet despite increasing N fertilizer application throughout the 40-years period. The reduction in concentrations could not be explained by increased N crop uptake, improved fertilization application or improved irrigation efficiency. Instead, this must primarily be due to a considerable increase in reuse in irrigation which extends the flow-path lengths and enhances N retention. A relationship between increased recirculation ratio (defined as the basin-scale return flow divided by the outflow) and decreased Cout/Cin ratio was developed, and shown to be valid for a relatively wide uncertainty range. An observed six-fold decrease in DIN load was primarily, but not exclusively, due to the drastic river flow reduction. Consequently, N accumulation in the soil-groundwater system has accelerated since the N fertilization has been maintained high throughout the period of considerable

  19. Nutrient content at the sediment-water interface of tile-fed agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive network of tile drains present in the Midwest USA accelerate losses of nutrients to receiving ditches, rivers and eventually to the Gulf of Mexico. Nutrient inputs from agricultural watersheds and their role in affecting water quality have received increased attention recently; however, be...

  20. Low-grade weirs in agricultural drainage ditches: An experimental approach to decreasing nitrate-N

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural runoff carries high nutrient loads to receiving waters contributing to eutrophication. Managed wetlands can be used in integrated management efforts to intercept nutrients before they enter downstream aquatic systems, but detailed information regarding sorption and desorption of P by we...

  1. (226) RA AND (228) RA ACTIVITIES ASSOCIATED WITH AGRICULTURAL DRAINAGE PONDS AND WETLAND PONDS IN THE KANKAKEE WATERSHED, IL-IN, USA

    EPA Science Inventory

    Background radioactivity is elevated in many agricultural drainage ponds and also constructed wetland ponds in the Kankakee watershed. During 1995-1999, gross-a and -B activities were measured up to 455 and 1650 mBq L-1, respectively. 226Ra and 228Ra averaged 139 and 192 mBq L-01...

  2. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  3. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters.

    PubMed

    Bryant, Ray B; Buda, Anthony R; Kleinman, Peter J A; Church, Clinton D; Saporito, Louis S; Folmar, Gordon J; Bose, Salil; Allen, Arthur L

    2012-01-01

    High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch. PMID:22565248

  4. Contaminant exposure of willets feeding in agricultural drainages of the lower Rio Grande valley of south Texas

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1991-01-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Laguna Madre of South Texas and at two other Texas coastal sites. Mean liver concentration of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in livers for all locations (means = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides.

  5. Contaminant exposure of willets feeding in agricultural drainages of the Lower Rio Grande Valley of South Texas.

    PubMed

    Custer, T W; Mitchell, C A

    1991-02-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Laguna Madre of South Texas and at two other Texas coastal sites. Mean liver concentration of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in livers for all locations (means = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides. PMID:24241892

  6. A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials.

    PubMed

    Lyngsie, G; Borggaard, O K; Hansen, H C B

    2014-03-15

    Phosphorus (P) eutrophication of lakes and streams, coming from drained farmlands, is a serious problem in areas with intensive agriculture. Installation of P sorbing filters at drain outlets may be a solution. Efficient sorbents to be used for such filters must possess high P bonding affinity to retain ortho-phosphate (Pi) at low concentrations. In addition high P sorption capacity, fast bonding and low desorption is necessary. In this study five potential filter materials (Filtralite-P(®), limestone, calcinated diatomaceous earth, shell-sand and iron-oxide based CFH) in four particle size intervals were investigated under field relevant P concentrations (0-161 μM) and retentions times of 0-24 min. Of the five materials examined, the results from P sorption and desorption studies clearly demonstrate that the iron based CFH is superior as a filter material compared to calcium based materials when tested against criteria for sorption affinity, capacity and stability. The finest CFH and Filtralite-P(®) fractions (0.05-0.5 mm) were best with P retention of ≥90% of Pi from an initial concentration of 161 μM corresponding to 14.5 mmol/kg sorbed within 24 min. They were further capable to retain ≥90% of Pi from an initially 16 μM solution within 1½ min. However, only the finest CFH fraction was also able to retain ≥90% of Pi sorbed from the 16 μM solution against 4 times desorption sequences with 6 mM KNO3. Among the materials investigated, the finest CFH fraction is therefore the only suitable filter material, when very fast and strong bonding of high Pi concentrations is needed, e.g. in drains under P rich soils during extreme weather conditions. PMID:24275107

  7. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  8. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark

    NASA Astrophysics Data System (ADS)

    Gachango, F. G.; Pedersen, S. M.; Kjaergaard, C.

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  9. Analysis of the potential impacts on surface water quality resulting from the proposed use of the San Luis Drain to transport agricultural drainage through the northern Grasslands

    SciTech Connect

    Quinn, N.W.T.

    1992-05-01

    An Environmental Assessment and initial Study for the interim use of a portion of the San Luis Drain for conveyance water through the Grassland Water District and adjacent Grassland areas was conducted. The project proposes the use of 18 miles of the San Luis Drain for the conveyance of agricultural drainage water for a period of five years and the elimination of agricultural drainage discharges from 76 miles of existing channels in and adjacent to the Grassland Water District. A report was prepared to (a) quantify the potential project effects on surface water quality within Salt and Mud Sloughs and the San Joaquin River using currently available data, and (b) to improve the understanding of existing water supply and drainage operations within the Grassland area. After submission of the original report it was brought to the attention of one of the coauthors that the database on selenium and boron concentrations in drainage water did not include the water quality data collected by the Regional Water Quality Control Board (CRWQCB). In addition, the US Bureau of Reclamation (USBR) requested further examination of Grasslands hydrology to estimate the quantity of supplemental water that would be needed to restore the San Joaquin River to the same TDS and trace element concentrations prior to implementation of the project. This report addresses these issues.

  10. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  11. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  12. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Fittings. Drainage fittings shall be recessed drainage pattern with smooth interior waterways of the same... vent. Where required by structural design, wet-vented drain piping may be offset vertically when...

  13. A simulation-based suitability index of the quality and quantity of agricultural drainage water for reuse in irrigation.

    PubMed

    Allam, Ayman; Fleifle, Amr; Tawfik, Ahmed; Yoshimura, Chihiro; El-Saadi, Aiman

    2015-12-01

    The suitability of agricultural drainage water (ADW) for reuse in irrigation was indexed based on a simulation of quality and quantity. The ADW reuse index (DWRI) has two components; the first one indicates the suitability of water quality (QLT) for reuse in irrigation based on the mixing ratio of ADW to canal irrigation water without violating the standards of using mixed water in irrigation, while the second indicates the available water quantity (QNT) based on the ratio of the available ADW to the required reuse discharge to meet the irrigation requirements alongside the drain. The QLT and QNT values ranged from 0 to ≥3 and from 0 to ≥0.40, respectively. Correspondingly, five classes from excellent to poor and from high scarcity to no scarcity were proposed to classify the QLT and QNT values, respectively. This approach was then applied to the Gharbia drain in the Nile Delta, Egypt, combined with QUAL2Kw simulations in the summer and winter of 2012. The QLT values along the drain ranged from 1.11 to 2.91 and 0.68 to 1.73 for summer and winter, respectively. Correspondingly, the QLT classes ranged from good to very good and from fair to good, respectively. In regard to QNT, values ranged from 0.10 to 0.62 and from 0.10 to 0.88 for summer and winter, respectively. Correspondingly, the QNT classes ranged from medium scarcity to no scarcity for both seasons. The demonstration of DWRI in the Gharbia drain suggests that the proposed index presents a simple tool for spatially evaluating the suitability of ADW for reuse in irrigation. PMID:26196072

  14. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... be used to join copper tubing to threaded pipe. (c) Drain outlets. (1) Each manufactured home shall.... (2) (e) Size of drainage piping—(1) Fixture load. Except as provided by § 3280.611(d), drain pipe.... (2) Size. A wet-vented drain pipe shall be 2 inches minimum diameter and at least one pipe...

  15. Laboratory Batch Test Evaluation of Five Filter Materials for Removal of Nutrients and Pesticides From Drainage Waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. Various filte...

  16. Indirect emissions and isotopologue signatures of N2O from agricultural drainage water of a Pleistocene lowland catchment in North-Eastern Germany

    NASA Astrophysics Data System (ADS)

    Weymann, D.; Well, R.; Kahle, P.; Tiemeyer, B.; Flessa, H.

    2011-12-01

    Artificial drainage of low- and wetlands is a common practice in many agricultural regions to facilitate crop production. Agricultural drainage water was shown to be supersaturated with nitrous oxide (N2O), a major greenhouse gas thought to contribute to global warming and to the destruction of stratospheric ozone. Therefore, drainage of agricultural land has potential for indirect N2O emissions which are a highly uncertain component of the global N2O budget. This case study focuses on these emissions and further tries to unravel the source processes of N2O as well as the impact of its hydrological controls by applying an isotopologue approach. The research area was an intensively tile drained agricultural catchment embedded in the Pleistocene lowland of the federal state Mecklenburg-Vorpommern (North-Eastern Germany). Water sampling was conducted during the consecutive hydrological winter periods 2007/2008 and 2008/2009 by sampling a collector drain outlet and an adjacent drainage ditch. Besides concentrations of dissolved N2O and NO3- we determined the isotopologue signatures of N2O by measuring δ15Nbulk and δ18O as well as the 15N 'site preference', which characterizes the intramolecular distribution of the N isotopes within the asymmetric N2O molecule and is a promising tool to distinguish between the main source processes of N2O, nitrification and denitrification. The investigated hydrological winter periods varied considerably concerning the weather and hydrological conditions. During the comparatively wet winter period 2007/2008, indirect N2O emissions accounted for 0.17 kg N2O-N ha-1 a-1 and were thus higher than during the colder and comparatively dry 2008/2009 period, where we found 0.12 kg N2O-N ha-1 a-1. The emission factors for both sampling periods were 0.23 % and 0.17 % of the N input, respectively, and therefore in good agreement with the current IPCC default value of 0.25 %. The isotopologue signatures of N2O reflected the different hydrological

  17. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    SciTech Connect

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  18. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., correctly located according to the size and type of fixture to be connected. (1) Water closet connection.... (2) (e) Size of drainage piping—(1) Fixture load. Except as provided by § 3280.611(d), drain pipe.... (2) Size. A wet-vented drain pipe shall be 2 inches minimum diameter and at least one pipe...

  19. Long-Term Monitoring of Waterborne Pathogens and Microbial Source Tracking Markers in Paired Agricultural Watersheds under Controlled and Conventional Tile Drainage Management

    PubMed Central

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward

    2014-01-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274

  20. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds. PMID:26605832

  1. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  2. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution. PMID:23784054

  3. Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium.

    PubMed

    Wu, Lin

    2004-03-01

    The consequences of elevated Se accumulation at the Kesterson Reservoir National Wildlife Refuge in the Central Valley of California created adverse effects on wildlife and led to extensive research on the behavior of Se in both the wetland and upland ecosystems. Selenium concentrations in water entering the Kesterson Reservoir averaged 300 microg L(-1). In pond waters 20-30% of the Se was selenate, while only 2% was selenite in the drainage water entering the reservoir. Submerged rooted aquatic plants fed on by water birds were found to contain 18-390 mg Se kg(-1) dry weight. Mosquitofish collected from the San Luis Drain contained 332 mg Se kg(-1), and those collected from the ponds ranged from 339 to 380 mg kg(-1). Livers of water birds had Se concentrations ranging from 19.9 to 127 mg kg(-1). The high concentrations of Se accumulation in the food chain of the wetland strongly suggest that Se bioaccumulation was the cause of death and deformity of embryos of the waterfowl nesting at the wetland habitat. In June 1986, the Kesterson Reservoir was closed to drain-water inputs, and the wetland was transformed to an upland grassland. New remedial plans were proposed. These new plans involved soil, water, and vegetation management to dissipate Se by bioaccumulation and volatilization through soil microorganisms and plants. The investigations of the potential transfer of Se from farm land into the crop and vegetables in the Central Valley indicated that plant tissue Se concentrations generally fall in a nonseleniferous category, except that the highest Se concentration of cotton was at a threshold where toxicity in animals could occur at a relatively low frequency. At the Kesterson upland grassland habitat, average total Se concentrations ranged from 500 to 8000 microg kg(-1) and water-extractable Se ranged from 10 to 700 microg kg(-1) in the top 15 cm of soil and varied greatly, by a factor greater than 100, among soil samples. Uptake of Se by the plants was

  4. Integrated on-farm drainage management for drainage water disposal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Providing environmentally safe methods for drainage water disposal is a significant challenge for irrigated agriculture. Subsurface drainage water contains salt and nutrients that may have significant deleterious effects on surface water quality. A system was developed for the reuse of saline drai...

  5. Stream Invertebrate Communities, Water Quality, and Land-Use Patterns in an Agricultural Drainage Basin of Northeastern Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Whiles, Matt R.; Brock, Brent L.; Franzen, Annette C.; Dinsmore, Steven C., II

    2000-11-01

    We used invertebrate bioassessment, habitat analysis, geographic information system analysis of land use, and water chemistry monitoring to evaluate tributaries of a degraded northeast Nebraska, USA, reservoir. Bimonthly invertebrate collections and monthly water chemistry samples were collected for two years on six stream reaches to identify sources contributing to reservoir degradation and test suitability of standard rapid bioassessment methods in this region. A composite biotic index composed of seven commonly used metrics was effective for distinguishing between differentially impacted sites and responded to a variety of disturbances. Individual metrics varied greatly in precision and ability to discriminate between relatively impacted and unimpacted stream reaches. A modified Hilsenhoff index showed the highest precision (reference site CV = 0.08) but was least effective at discriminating among sites. Percent dominance and the EPT (number of Ephemeroptera, Plecoptera, and Trichoptera taxa) metrics were most effective at discriminating between sites and exhibited intermediate precision. A trend of higher biotic integrity during summer was evident, indicating seasonal corrections should differ from other regions. Poor correlations were evident between water chemistry variables and bioassessment results. However, land-use factors, particularly within 18-m riparian zones, were correlated with bioassessment scores. For example, there was a strong negative correlation between percentage of rangeland in 18-m riparian zones and percentage of dominance in streams (r 2 = 0.90, P < 0.01). Results demonstrate that standard rapid bioassessment methods, with some modifications, are effective for use in this agricultural region of the Great Plains and that riparian land use may be the best predictor of stream biotic integrity.

  6. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W., Jr.; Jaynes, M.L.

    1994-01-01

    large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  7. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  8. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  9. Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field.

    PubMed

    Edwards, M; Topp, E; Metcalfe, C D; Li, H; Gottschall, N; Bolton, P; Curnoe, W; Payne, M; Beck, A; Kleywegt, S; Lapen, D R

    2009-07-01

    Land application of municipal biosolids can be a source of environmental contamination by pharmaceutical and personal care products (PPCPs). This study examined PPCP concentrations/temporally discrete mass loads in agricultural tile drainage systems where two applications of biosolids had previously taken place. The field plots received liquid municipal biosolids (LMB) in the fall of 2005 at an application rate of approximately 93,500 L ha (-1), and a second land application was conducted using dewatered municipal biosolids (DMB) applied at a rate of approximately 8Mg dw ha (-1) in the summer of 2006 [corrected].The DMB land application treatments consisted of direct injection (DI) of the DMB beneath the soil surface at a nominal depth of approximately 0.11 m, and surface spreading (SS) plus subsequent tillage incorporation of DMB in the topsoil (approximately 0.10 m depth). The PPCPs examined included eight pharmaceuticals (acetaminophen, fluoxetine, ibuprofen, gemfibrozil, naproxen, carbamazepine, atenolol, sulfamethoxazole), the nicotine metabolite cotinine, and two antibacterial personal care products triclosan and triclocarban. Residues of naproxen, cotinine, atenolol and triclosan originating from the fall 2005 LMB application were detected in tile water nearly nine months after application (triclocarban was not measured in 2005). There were no significant differences (p>0.05) in PPCP mass loads among the two DMB land application treatments (i.e., SS vs. DI); although, average PPCP mass loads late in the study season (>100 days after application) were consistently higher for the DI treatment relative to the SS treatment. While the concentration of triclosan (approximately 14,000 ng g(-1) dw) in DMB was about twice that of triclocarban (approximately 8000 ng g(-1) dw), the average tile water concentrations for triclosan were much higher (43+/-5 ng L(-1)) than they were for triclocarban (0.73+/-0.14 ng L(-1)). Triclosan concentrations (maximum observed in 2006

  10. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  11. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    EPA Science Inventory

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  12. Representing natural and manmade drainage systems in an earth system modeling framework

    SciTech Connect

    Li, Hongyi; Wu, Huan; Huang, Maoyi; Leung, Lai-Yung R.

    2012-08-27

    Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.

  13. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  14. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  15. Spatial distribution of pipe collapses in Goodwin Creek Watershed, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion of soil pipes can induce pipe collapses that affect soil erosion process and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe co...

  16. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Grading and drainage. 1924.108 Section 1924.108 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE PROGRAM REGULATIONS CONSTRUCTION AND...

  17. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  18. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  19. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  20. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  1. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  2. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  3. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  4. 46 CFR 56.50-50 - Bilge and ballast piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... drainage of small pockets or spaces in which case 11/2-inch diameter may be used. For vessels less than 150... commercial size not more than one-fourth inch under the required diameter may be used. Bilge suction pipes...=Length of compartment, in feet. d=Required internal diameter of suction pipe, in inches. Note 1. For...

  5. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  6. Drainage efficiency in the urban environment under non-extreme rainfall

    NASA Astrophysics Data System (ADS)

    Aronica, G.; Lanza, L.

    2003-04-01

    It is a common experience that failures in urban drainage systems occur quite frequently as a consequence of rainfall events presenting relatively lower return periods than expected, even in the case of correctly designed sewer networks and pipes. Inlets are in those cases the critical nodes, and efficient drainage is only ensured when care is taken on their appropriate design and positioning within the drainage area. The lack of maintenance and overloads in the hydraulic system conducing street waters into the pipe network are often responsible for drainage failures and the consequent flooding of urban areas. Simulation of the drainage network efficiency should therefore take into account both the hydraulics of sewer pipes and the performances of the surface-subsurface connecting devices. Assuming correct dimensioning and positioning, still large uncertainties hold about the actual operation of such simple devices, due to unpredictable obstruction effects or anyway limited drainage capabilities. This contribution amplifies upon the evaluation of these uncertainties by employing a mixed approach made of some deterministic and stochastic components. The deterministic part is obtained by using an hyperbolic hydraulic model for the simulation of flood wave propagation over surface urban drainage structures, i.e. streets and pathways. The stochastic component is intended as the efficiency function controlling the inlets operation at various stages of the drainage process. The aim is to evaluate the effects of unpredictable drainage failures in a distributed form throughout the system in order to assess the efficiency of the drainage network as a whole.

  7. ON-FARM DISPOSAL OF SALINE DRAINAGE WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal of saline drainage water from irrigated agriculture is a significant world-wide problem. Researchers in the San Joaquin Valley (SJV) of California developed an integrated on farm drainage water management system (IFDM) that can be used to solve this problem in an environmentally sound metho...

  8. The Extent of Cropland Drainage in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial drainage, whether surface or subsurface, profoundly affects the productivity of soils and the hydrology of watersheds. Modern production agriculture would not be possible without the extensive drainage network that has been built up starting in about the 1850's. While an unqualified succe...

  9. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Grading and drainage. 1924.108 Section 1924.108... REGULATIONS CONSTRUCTION AND REPAIR Planning and Performing Site Development Work § 1924.108 Grading and... affect the structure and show proposed solutions. Grading will promote drainage of surface water...

  10. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  11. Piping Analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Burns & McDonnell provide architectural and engineering services in planning, design and construction of a wide range of projects all over the world. In design analysis, company regularly uses COSMIC computer programs. In computer testing piping design of a power plant, company uses Pipe Flexibility Analysis Program (MEL-21) to analyze stresses due to weight, temperature, and pressure found in proposed piping systems. Individual flow rates are put into the computer, then computer calculates the pressure drop existing across each component; if needed, design corrections or adjustments can be made and rechecked.

  12. Filtration and drainage in geotechnical/geoenvironmental engineering. Geotechnical special publication No. 78

    SciTech Connect

    Reddi, L.N.; Bonala, M.V.S.

    1998-07-01

    Existing criteria for soil filter selection were developed primarily in the earth dam industry, and were based largely on retention principles involving comparison of the particle sizes of base soil and filter material. Stability of base soils has been the primary concern of this industry. The evolving industries of waste containment and soil remediation should use filters designed with a broader perspective. The papers in this volume represent the state-of-the-art in laboratory, field, and theoretical investigations on all aspects of filtration and drainage. Topics include granular vs. geotextile filters, leachate collection systems, soil clogging, filter cakes, analytical modeling, strain effects, pipe box testing to stimulate toe drain performance, agricultural drain envelope design and lab testing, and lessons from the failure of the LS Hydroelectric Power Project Dam.

  13. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian buffers are a proven practice for removing NO3 from both overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage most of the subsurface flow leaving fields is passed through the buffers in drainage pipes leaving little opportunity for NO3 rem...

  14. 49 CFR 192.189 - Vaults: Drainage and waterproofing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Components § 192.189 Vaults: Drainage and waterproofing. (a) Each vault must be designed so as to minimize the entrance of water. (b) A vault containing gas piping may not be connected by means of a drain connection to any other underground structure. (c) Electrical equipment in vaults must conform to...

  15. WATER DRAINAGE MODEL

    SciTech Connect

    J.B. Case

    2000-05-30

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  16. Impacts of drainage water management on subsurface drain flow, nitrate concentration, and nitrate loads in Indiana

    EPA Science Inventory

    Drainage water management is a conservation practice that has the potential to reduce drainage outflow and nitrate (NO3) loss from agricultural fields while maintaining or improving crop yields. The goal of this study was to quantify the impact of drainage water management on dra...

  17. SIMULATING LONG-TERM PERFORMANCE OF DRAINAGE WATER MANAGEMENT ACROSS THE MIDWESTERN UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under conventional drainage (CVD), excess soil water in agricultural fields is allowed to drain freely through artificial subsurface drainage lines. In contrast, drainage water management (DWM) utilizes a control structure at the end of the lines to regulate drain flow by varying the depth of the d...

  18. Nitrogen fate in drainage ditches of the Coastal Plain after dredging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are a key conduit of nitrogen (N) from agricultural fields to surface water. The effect of ditch dredging, a common practice to improve drainage, on the fate of N in ditch effluent is not well understood. This study evaluated the effect of dredging on N transport in drainage ditches...

  19. 25 CFR 162.611 - Payment of fees and drainage and irrigation charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Payment of fees and drainage and irrigation charges. 162... AND PERMITS Non-Agricultural Leases § 162.611 Payment of fees and drainage and irrigation charges. (a) Any lease covering lands within an irrigation project or drainage district shall require the lessee...

  20. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  1. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  2. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  3. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  4. Agricultural NPS control of phosphorus in the New York State, Lake Ontario Basin. Volume 2. Fertilizer trials on organic soils in the Lake Ontario Drainage Basin. Final report, 1985-1986

    SciTech Connect

    Klausner, S.; Duxbury, J.; Goyette, E.

    1991-02-01

    There are approximately 2.3 million hectares of cropland in New York. Cultivated organic soils comprise about 12,000 hectares or 0.5% of the total cropped land. The organic soils are used exclusively for intensive vegetable production with onions being the primary crop. About 50% of these soils are located within the Lake Ontario drainage basin. A comprehensive field study was conducted to evaluate the yield response of onions across a broad range of N, P, and K fertilizer inputs and to correlate the level of response with soil testing parameters. A primary objective was to develop an estimate of P loss in drainage water to the Lake Ontario drainage basin and how this loss is influenced by P fertilizer management.

  5. Antioxidative, hemocompatible, fluorescent carbon nanodots from an "end-of-pipe" agricultural waste: exploring its new horizon in the food-packaging domain.

    PubMed

    Das Purkayastha, Manashi; Manhar, Ajay Kumar; Das, Vijay Kumar; Borah, Anjan; Mandal, Manabendra; Thakur, Ashim Jyoti; Mahanta, Charu Lata

    2014-05-21

    The attention of researchers is burgeoning toward oilseed press-cake valorization for its high protein content. Protein removal from oil-cakes generates large quantities of fibrous residue (oil-and-protein spent meal) as a byproduct, which currently has very limited practical utility. In the wake of increasing awareness in waste recycling, a simple environmentally benign hydrothermal carbonization process to convert this "end-of-pipe" waste (spent meal) into antioxidative, hemocompatible, fluorescent carbonaceous nanoparticles (FCDs) has been described. In the present investigation, an interesting application of FCDs in fabricating low-cost rapeseed protein-based fluorescent film, with improved antioxidant potential (17.5-19.3-fold) and thermal stability has been demonstrated. The nanocomposite film could also be used as forgery-proof packaging due to its photoluminescence property. For assessing the feasibility of antioxidative FCDs in real food systems, a comparative investigation was further undertaken to examine the effect of such nanocarbon-loaded composite film on the oxidative shelf life of rapeseed oil. Oil samples packed in nanocomposite film sachets showed significant delay in oxidative rancidity compared to those packed in pristine protein-film sachet (free fatty acids, peroxide value, and thiobarbituric acid-reactive substances reduced up to 1.4-, 2-, and 1.2-fold, respectively). The work presents a new concept of biobased fluorescent packaging and avenues for harnessing this potent waste. PMID:24784501

  6. Ditch Drainage Management for Water Quality Improvement: Ditch Drainage Treatment Structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural productivity is often dependent on drainage ditches to remove excessive water from fields. Although such ditches can act to transport nutrients and other contaminants directly to surface waters, they also represent a potential interaction point in which runoff from non-point areas are ...

  7. Quantifying subsurface hydrology effects on chemical transport in drainage ditches using a 20-meter flume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture drainage ditches serve as the veins of the Midwestern agricultural landscapes. The transport of chemical fertilizers and pesticides in these ditches affect the local and downstream ecosystems. Although much research has already been conducted on chemical transport in streams and drainage...

  8. Farm Drainage in the United States. History, Status, and Prospects. Miscellaneous Publication Number 1455.

    ERIC Educational Resources Information Center

    Pavelis, George A., Ed.

    This publication covers the historical, technological, economic, and environmental aspects of agricultural drainage. It draws from the combined knowledge of academic and U.S. Department of Agriculture professionals in public policy, drainage theory, planning, engineering, environmental science, and economics. The main purpose is to review the…

  9. Fate and movement of selenium from drainage sediments disposed onto soil with and without vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal options for accumulated salty and selenium-laden agricultural drainage sediments are needed to protect the agricultural ecosystem near the San Luis Drain in central California. Thus, a 7-year pilot-scale field study evaluated the effect of disposing Se-laden drainage sediment with a (total ...

  10. Spatial Variation of Soil Phosphorus Within a Drainage Ditch Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches serve as P transport pathways from fields to surface waters. Little is known about the spatial variation of P at the soil-water interface within ditch networks. We quantified the spatial variation of surficial (0–5 cm) soil P within vegetated agricultural ditches on a f...

  11. Temporal variability of nitrogen and phosphorus transport in subsurface drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage is a necessity for crop production agriculture in humid climates with poorly drained soils. The Midwestern United States is the most productive agricultural area in the world. In excess of 20.6 million ha (37%) of the tillable acres in the Midwest are managed with subsurface tile...

  12. Minerals and mine drainage

    SciTech Connect

    Thomson, B.M.; Turney, W.R.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of wastewater related to minerals and mine drainage. Topics covered include: environmental regulations and impacts; and characterization, prevention, treatment and reclamation. 65 refs.

  13. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  14. Urine drainage bags

    MedlinePlus

    ... catheter and urine drainage bag because you have urinary incontinence (leakage), urinary retention (not being able to urinate), ... wall repair Inflatable artificial sphincter Radical prostatectomy Stress urinary incontinence Urge incontinence Urinary incontinence Urinary incontinence - injectable implant ...

  15. Preoperative biliary drainage.

    PubMed

    Saxena, Payal; Kumbhari, Vivek; Zein, Mohamad E L; Khashab, Mouen A

    2015-01-01

    The role of preoperative biliary drainage (PBD) in patients with distal or proximal biliary obstruction secondary to resectable tumors has been a matter for debate. A review of the literature using Medline, Embase and Cochrane databases was undertaken for studies evaluating routes of drainage (endoscopic or percutaneous) and stent types (plastic or metal) in patients with resectable disease. Preoperative biliary drainage is indicated for relief of symptomatic jaundice, cholangitis, patients undergoing neoadjuvant therapy or those patients where surgery may be delayed. Endoscopic methods are preferred over percutaneous methods because of lower complication rates. In patients with proximal biliary obstruction, PBD should be guided by imaging studies to aid in selective biliary cannulation for unilateral drainage in order to reduce the risk of cholangitis in undrained liver segments. PMID:25293587

  16. Adequate drainage system design for heap leaching structures.

    PubMed

    Majdi, Abbas; Amini, Mehdi; Nasab, Saeed Karimi

    2007-08-17

    The paper describes an optimum design of a drainage system for a heap leaching structure which has positive impacts on both mine environment and mine economics. In order to properly design a drainage system the causes of an increase in the acid level of the heap which in turn produces severe problems in the hydrometallurgy processes must be evaluated. One of the most significant negative impacts induced by an increase in the acid level within a heap structure is the increase of pore acid pressure which in turn increases the potential of a heap-slide that may endanger the mine environment. In this paper, initially the thickness of gravelly drainage layer is determined via existing empirical equations. Then by assuming that the calculated thickness is constant throughout the heap structure, an approach has been proposed to calculate the required internal diameter of the slotted polyethylene pipes which are used for auxiliary drainage purposes. In order to adequately design this diameter, the pipe's cross-sectional deformation due to stepped heap structure overburden pressure is taken into account. Finally, a design of an adequate drainage system for the heap structure 2 at Sarcheshmeh copper mine is presented and the results are compared with those calculated by exiting equations. PMID:17321044

  17. Topological Analysis of Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan; Rao, Suresh

    2016-04-01

    Urban drainage networks are an essential component of infrastructure, and comprise the aggregation of underground pipe networks carrying storm water and domestic waste water for eventual discharge to natural stream networks. Growing urbanization has contributed to rapid expansion of sewer networks, vastly increasing their complexity and scale. Importance of sewer networks has been well studied from an engineering perspective, including resilient management, optimal design, and malfunctioning impact. Yet, analysis of the urban drainage networks using complex networks approach are lacking. Urban drainage networks consist of manholes and conduits, which correspond to nodes and edges, analogous to junctions and streams in river networks. Converging water flows in these two networks are driven by elevation gradient. In this sense, engineered urban drainage networks share several attributes of flows in river networks. These similarities between the two directed, converging flow networks serve the basis for us to hypothesize that the functional topology of sewer networks, like river networks, is scale-invariant. We analyzed the exceedance probability distribution of upstream area for practical sewer networks in South Korea. We found that the exceedance probability distributions of upstream area follow power-law, implying that the sewer networks exhibit topological self-similarity. The power-law exponents for the sewer networks were similar, and within the range reported from analysis of natural river networks. Thus, in line with our hypothesis, these results suggest that engineered urban drainage networks share functional topological attributes regardless of their structural dissimilarity or different underlying network evolution processes (natural vs. engineered). Implications of these findings for optimal design of sewer networks and for modeling sewer flows will be discussed.

  18. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  19. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  20. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  1. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  2. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) BUT CLOSER RANGE SHOWING BRICK STRUCTURE WHICH CARRIED WATER FROM THE GUTTER DRAIN PIPE INTO THE BRICK DRAIN ALONG THE GROUND AND AWAY FROM THE FOUNDATION OF THE HOUSE - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  3. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  4. Use of Water Fluxmeters to Measure Drainage

    SciTech Connect

    Gee, Glendon W.; Ward, Andy L.; Zhang, Z. F.; Anandacoomaraswamy, A.

    2004-03-24

    Water supplies throughout the world are rapidly diminishing in quantity and quality. Efforts over the next decade must focus on methods which use water more efficiently for agriculture, industry, and recreational purposes, and at the same time reduce the potential for groundwater pollution. To assist in this effort, we have developed an improved method to simultaneously measure drainage quantity and quality using a water fluxmeter. Our water fluxmeter is a wick-lysimeter fitted with a small tipping-spoon and a solution-collection system. The only moving part is the tipping spoon. We have tested our fluxmeters under a range of conditions, from non-vegetated desert settings in Washington State USA, to irrigated tea plantations in Sri Lanka. Conditions of over-irrigation have been documented with our fluxmeters. When 4200 mm of water was applied to sandy soil via drip irrigation, at the Washington State site, over 3100 mm of drainage occurred. In contrast, at the same site, in the absence of both irrigation and vegetation, drainage was found to range from 0 mm/yr for a 1-m-deep silt loam soil to more than 100 mm/yr for a coarse-gravel surface. Solute transport, related to nitrate leaching can also be analyzed using water fluxmeters. Water fluxmeters have provided a reliable and inexpensive method to assess both quantity and quality of drainage waters over a wide range of environmental conditions.

  5. Continual Evaluation of Ditch Sediment and Phosphorus Dynamics in tile fed Drainage Ditches in the St. Joseph Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Persistent phosphorus (P) amendments to agricultural land continue to be the leading cause of eutrophication and surface water degradation. Therefore, understanding P transport and interaction with agricultural drainage ditch sediments is vital for the development of effective predictive models and ...

  6. PLANT SENESCENCE: A MECHANISM FOR NUTRIENT RELEASE IN TEMPERATE AGRICULTURAL WETLANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture drainage ditches are primary intercept wetlands in amelioration of nutrient pollution from agricultural fields. Drainage ditches, as integral components of the agricultural landscape, remove surface run-off and act as major conduits of nutrients from agricultural lands to receiving water...

  7. Ultrasonic pipe assessment

    SciTech Connect

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  8. Shield For Flexible Pipe

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  9. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A Text Size What's in ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  10. Short cracks in piping and piping welds

    SciTech Connect

    Wilkowski, G.M.; Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Krishnaswamy, P.; Landow, M.; Marschall, C.W.; Rahman, S.; Scott, P. )

    1992-04-01

    This is the second semiannual report of the US Nuclear Regulatory Commission's Short Cracks in Piping and Piping Welds research program. The program began in March 1990 and will extend for 4 years. The intent of this program is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break analyses or in-service flaw evaluations. Only quasi-static loading rates are evaluated since the NRC's International Piping Integrity Research Group (IPIRG) program is evaluating the effects of seismic loading rates on cracked piping systems. Progress for through-wall-cracked pipe involved (1) conducting a 28-inch diameter stainless steel SAW and 4-inch diameter French TP316 experiments, (2) conducting a matrix of FEM analyses to determine GE/EPRI functions for short TWC pipe, (3) comparison of uncracked pipe maximum moments to various analyses and FEM solutions, (4) development of a J-estimation scheme that includes the strength of both the weld and base metals. Progress for surface-cracked pipe involved (1) conducting two experiments on 6-inch diameter pipe with d/t = 0.5 and {Theta}/{pi} = 0.25 cracks, (2) comparisons of the pipe experiments to Net-Section-Collapse predictions, and (3) modification of the SC.TNP and SC.TKP J-estimation schemes to include external surface cracks.

  11. Arsenic Speciation and Accumulation In Evapoconcentrating Waters Of Agricultural Evaporation Basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To sustain agricultural productivity, evaporation basins (or ponds) have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, USA. The drainage water contains elevated concentration of trace elements including sele...

  12. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  13. Minerals and mine drainage

    SciTech Connect

    Liang, H.C.; Thomson, B.M.

    2009-09-15

    A review of literature published in 2008 and early 2009 on research related to the production of acid mine drainage and/or in the dissolution of minerals as a result of mining, with special emphasis on the effects of these phenomena on the water quality in the surrounding environment, is presented. This review is divided into six sections: 1) Site Characterization and Assessment, 2) Protection, Prevention, and Restoration, 3) Toxicity Assessment, 4) Environmental Fate and Transport, 5) Biological Characterization, and 6) Treatment Technologies. Because there is much overlap in research areas associated with minerals and mine drainage, many papers presented in this review can be classified into more than one category, and the six sections should not be regarded as being mutually-exclusive, nor should they be thought of as being all-inclusive.

  14. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  15. Current- and past-use pesticide prevalence in drainage ditches in the Lower Mississippi Alluvial Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Pesticide use is ubiquitous in agriculture and often results in applied pesticides entering adjacent aquatic systems. This study seasonally analyzed a suite of 17 current and past-use pesticides in both drainage waters and sediments to evaluate the prevalence of pesticides in drainage di...

  16. Assimilation of agrichemicals and sediments in runoff within drainage ditches and constructed wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine was amended into an agricultural drainage ditch and constructed wetlands for the purpose of monitoring transport and fate of the pesticide. Aqueous half lives of 6 and 16 to 48 days in drainage ditch and constructed wetlands, respectively, were found. Flow paths of 50 m and 103 to 281 m we...

  17. Tile drainage simulation in SWAT2012: Parameterization and evaluation in an Indiana watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the poorly drained soils of the Midwestern United States, subsurface drainage is an important flow pathway in the agricultural landscape; it therefore needs to be included in modeling studies. The new tile drainage simulation method in the Soil Water Assessment Tool (SWAT), based on the Hooghoudt...

  18. Laboratory comparison of four iron-based filter materials for drainage water phosphate treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphate released with agricultural subsurface drainage water can cause environmental degradation of downstream water bodies. On-site filter treatment with iron-based filter materials could potentially remove phosphate from drainage waters before these waters are discharged into local streams. Th...

  19. Rye Cover Crop and Gamagrass Strip Effects on NO3 Concentration and Load in Tile Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant portion of the nitrate(NO3) from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or tiles. We compared two cropping system modifications for NO3 concentration and load in subsurface drainag...

  20. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  1. Importance of instream wood characteristics for developing restoration designs for channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instr...

  2. Characteristics of instream wood within channelized agricultural headwater streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instre...

  3. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  4. Nutrient export in tile drainage: Comparing manure injection to fertigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage of agricultural land is implicated as a major source of nutrients to the Mississippi River. To protect water quality, land application of manure should maximize crop nutrient use and minimize nutrient loss. Weather constraints and regulations restrict the period during which...

  5. Models Robustness for Simulating Drainage and NO3-N Fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance ofhree models – LEACHM, NCSWAP, and SOIL-SOILN–for simulating drainage and NO3-N leaching fluxes in an intense p...

  6. Nutrient Transport in Tile-Fed Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches receive water and associated contaminants from agricultural fields via surface runoff or sub-surface tile drains. Little consideration has been given to the processes affecting nutrient transport once in surface water. The objective of this research was to evaluate the nutrient fa...

  7. Contributions of systematic tile drainage to watershed scale phosphorus transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) transport from agricultural fields continues be a focal point for addressing harmful algal blooms (HABs) and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. Research on th...

  8. Crop yield evaluation under controlled drainage in Ohio, United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage water management (NRCS Practice Code 554) is an important agricultural water management practice for reducing nitrate loading to surface water across the Midwest US. There may also be a positive crop yield benefit which could add incentive for adoption of the practice. Results from a three ...

  9. Assessment of drainage nitrogen losses on a yield-scaled basis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface nitrogen (N) losses represent a major environmental concern in agriculture, particularly from fields containing artificial drainage to prevent saturated soil conditions and increase crop production. To develop sustainable intensification strategies and achieve high yields with minimal en...

  10. Insulated waterproof drainage material

    SciTech Connect

    Tarko, P.L.

    1988-03-15

    An insulative waterproof drainage material is described comprising: a sheet of rigid material having hills and valleys therein to define a core having opposed surfaces; permeable fabric material attached to one of the opposed surfaces; and a layer of thermally insulative material on the other of the opposed surfaces. The insulative material has first surface covering the hills and valleys and a second surface oppositely disposed from the first surface defining an outer surface. The outer surface is spaced a preselected distance D from the hills of the core. The pre-selected distance D define an insulative material thickness corresponding to a pre-selected thermal value.

  11. Random walk approach for dispersive transport in pipe networks

    NASA Astrophysics Data System (ADS)

    Sämann, Robert; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: particle transport, random walk, pipe, network, HYSTEM-EXTAN, OpenGeoSys After heavy pluvial events in urban areas the available drainage system may be undersized at peak flows (Fuchs, 2013). Consequently, rainwater in the pipe network is likely to spill out through manholes. The presence of hazardous contaminants in the pipe drainage system represents a potential risk to humans especially when the contaminated drainage water reaches the land surface. Real-time forecasting of contaminants in the drainage system needs a quick calculation. Numerical models to predict the fate of contaminants are usually based on finite volume methods. Those are not applicable here because of their volume averaging elements. Thus, a more efficient method is preferable, which is independent from spatial discretization. In the present study, a particle-based method is chosen to calculate transport paths and spatial distribution of contaminants within a pipe network. A random walk method for particles in turbulent flow in partially filled pipes has been developed. Different approaches for in-pipe-mixing and node-mixing with respect to the geometry in a drainage network are shown. A comparison of dispersive behavior and calculation time is given to find the fastest model. The HYSTEM-EXTRAN (itwh, 2002) model is used to provide hydrodynamic conditions in the pipe network according to surface runoff scenarios in order to real-time predict contaminant transport in an urban pipe network system. The newly developed particle-based model will later be coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). References: Fuchs, L. (2013). Gefährdungsanalyse zur Überflutungsvorsorge kommunaler Entwässerungssysteme. Sanierung und Anpassung von Entwässerungssystemen-Alternde Infrastruktur und Klimawandel, Österreichischer Wasser-und Abfallwirtschaftsverband, Wien, ISBN, 978-3. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie Gmb

  12. Heat pipe flight experiments

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1973-01-01

    OAO 3 heat pipe flight experiments to check out weightlessness behavior are reported. Tested were a hollow channel screen system with helical grooves, a heat pipe with a wicking system of horizontal grooves, and a spiral artery pipe with multichannel fluid return to the evaporator. Flight experiment data proved that all heat pipe geometries containing wicking systems provided uninterrupted fluid return to the condensators during weightlessness and sufficient cooling for isothermalizing optical instruments onboard OAO.

  13. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  14. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  15. Effects of drainage salinity evolution on irrigation management

    NASA Astrophysics Data System (ADS)

    Kan, Iddo

    2003-12-01

    A soil physics theory of solute movement through a drained saturated zone underlying agricultural land is introduced into a long-term economic analysis of farm-level irrigation management; this is an alternative to the immediate, homogeneous blending assumption employed in previous studies as a base for calculating changes in drainage salinity over time. Using data from California, the effect of drainage salinity evolution is analyzed through a year-by-year profit optimization under the requirement of on-farm drainage disposal. Paths of optimal land allocation among crop production with fresh surface water, saline drainage reuse and evaporation ponds appear to depend on the relative profitability of the first two; that of reuse is affected by the trend of drainage salinity. Tile spacing and environmental regulations associated with evaporation ponds affect the timing of evaporation pond construction. The system converges into a solution involving both drainage-disposal activities; this solution includes an outlet for salts and is therefore sustainable. Following this strategy, the system is asymptotically approaching a steady state that possesses both hydrological and salt balances. Economic implications associated with land retirement programs in California are discussed.

  16. [Thoracic drainage technique for emergencies].

    PubMed

    Orsini, B; Bonnet, P M; Avaro, J P

    2010-02-01

    The purpose of this report is to describe a simple, reproducible technique for pleural drainage. This technique that requires scant resources should be used only in life-threatening situations calling for pleural drainage. It is not intended to replace conventional techniques. PMID:20337108

  17. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming

    2015-10-01

    In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network. PMID:26022395

  18. 65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL MAST IN LOWER LEFT CORNER; PIPES TO LAUNCHER IN UPPER LEFT CORNER; PIPES TO FLAME BUCKET IN LOWER RIGHT CORNER OF PHOTOGRAPH. POTABLE WATER PIPING IN UPPER RIGHT CORNER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Agriculture Education. Agriculture Structures.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…

  20. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture. PMID:23490108

  1. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  2. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  3. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  4. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  5. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  6. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  7. Watershed scale nitrogen and phosphorus partitioning between surface and subsurface drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage is a necessity for crop production agriculture in humid climates with poorly drained soils. The Midwestern United States is the most productive agricultural area in the world. In excess of 20.6 million ha (37%) of the tillable acres in the Midwest are managed with subsurface tile...

  8. Filtering Phosphorus and Heavy Metals from Ditch Drainage Water Using Byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High phosphorus (P) concentrations in drainage from agricultural lands that flows to the Chesapeake Bay contribute to impairment of water quality. Byproducts that effectively sorb P have been applied to soils and animal manure to reduce dissolved P losses in runoff from agricultural soils. Such mate...

  9. Use of control drainage in ditch management on the Delmarva Peninsula for improved water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased nutrients in the Chesapeake Bay region is partly linked to agricultural activities. In the Choptank River basin, one way of nutrient transport from agricultural fields is through extensive drainage open ditches. Studies have shown that annually an average of 6% of nitrate applied to agricu...

  10. Surface runoff and tile drainage transport of phosphorus in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Midwestern US offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without drainage, as the high water table would potentially damage crops and not allow machinery to be in the fields at crit...

  11. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  12. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  13. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  14. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  15. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  16. Underground radial pipe network

    SciTech Connect

    Peterson, D.L.

    1984-04-24

    The network, useful in conducting fluids to underground sites, is an assembly of flexible pipes or tubes, suspended from and connected to a drill pipe. The flexible pipes, assembled in a bundle, are spring biased to flare outwardly in an arcuate manner when a releasable cap on the distal end of the bundle is removed. The assembled bundle is inserted into and lowered down a bore hole. When the cap is released, the pipes flare radially and outwardly. Fluid, pumped into and through the assembly, can be directed into the underground formation for various purposes.

  17. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  18. Pipe crawler apparatus

    DOEpatents

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  19. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  20. Sustaining Irrigated Agriculture in Arid Areas: Lessons Learned in the San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conventional wisdom is that drainage is required to sustain irrigation in arid and semiarid areas. However, disposal of saline drainage water is a problem throughout the world that is challenging the sustainability of irrigated agriculture. The presence of elements besides salt in the drainage w...

  1. Effect of ditch dredging on the fate of nutrients in deep drainage ditches of the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dredging of drainage ditches in artificially drained systems is necessary to ensure that agricultural fields are drained adequately. This study compared the potential impacts of dredging on water quality. Using a fluvarium (stream simulator), bed material collected from drainage ditches prior to d...

  2. These Pipes Are "Happening"

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  3. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  4. Extendable pipe crawler

    DOEpatents

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  5. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  6. Implications of fish-habitat relationships for designing restoration projects within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized headwater streams are common throughout agricultural watersheds in the Midwestern United States. Management of these streams focuses on drainage without consideration of the other ecosystem services they are capable of providing. Restoration of channelized agricultural headwater stream...

  7. AN INNOVATIVE SYSTEM FOR BIOREMEDIATION OF AGRICULTURAL CHEMICALS FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Agricultural chemicals (both inorganic and organic) in drainage discharge from watersheds have raised concerns about the quality of surface water resources. For example, hypoxia in the Gulf of Mexico has been related to the nutrients discharging from agricultural watersheds...

  8. Influence of watershed-scale pesticide management on channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are streams that have been created or modified for agricultural drainage. Elevated pesticide concentrations frequently occur within these modified streams and represent a threat to their ecological integrity. Pesticide management (i.e., use of alternative ...

  9. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... bronze adaptor or wrought copper fittings shall be used to join copper tubing to threaded pipe. (c) Drain...) Fixture load. Except as provided by § 3280.611(d), drain pipe sizes shall be determined by the type of... connected to the drain piping at or below the vertical offsets. (2) Size. A wet-vented drain pipe shall be...

  10. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  11. Effectiveness of vegetated agricultural drainage ditches in mitigating insecticide loadings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown that runoff and spray-drift are important sources of nonpoint-source insecticide pollution of surface waters. Owing to this, public concern over the presence of insecticides in surface and ground water has resulted in intensive scientific efforts to find economical, yet environmen...

  12. Sediment delivery from agricultural land to rivers via subsurface drainage

    NASA Astrophysics Data System (ADS)

    Chapman, A. S.; Foster, I. D. L.; Lees, J. A.; Hodgkinson, R. A.

    2005-10-01

    Diffuse sources of sediment and sediment-associated nutrients are of increasing environmental concern because of their impacts on receiving water courses. The aim of the research reported here was to monitor the outflow from four field (land) drains at two farms in the English Midlands in order to estimate the quantity of sediment delivered to the local rivers and the most likely sources and processes involved. A multiparameter sediment unmixing model was employed, using environmental magnetic, geochemical and radionuclide tracers in order to determine the most likely origin of sediments transported through the drains. Results demonstrated that there was a generally linear relationship between drainflow sediment loss and drainflow volume and that the majority (>70%) of the sediment exported from the drains was derived from topsoil. Macropore flow through heavily cracked soils is supported by the data to be the most likely means of sediment delivery to the drains. In one catchment, drains contributed over 50% of the annual sediment budget. Spatial and temporal variations in the sources of sediment reaching one drain outlet were investigated in detail. A link between soil moisture deficit (SMD) and the frequency of high-intensity rainfall events was used to explain the appearance and persistence of a new sediment source in this drain after October 1998. It is concluded that field drains have the potential to be significant conduits of sediment and agrochemicals in a wide variety of environments in the UK. It is also suggested that this potential may increase if projected climate change leads to more intense rainfall events and increases in SMD across a greater area of the UK.

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  14. Piping stress handbook. Second edition

    SciTech Connect

    Helguero, V.

    1986-01-01

    This abridged volume contains the following: Coefficients of thermal expansion. Allowable stress range for ANSI/ASME Power Piping Code B31.1. Stress intensification and flexibility factors. Pressure and stress ratios. Design criteria for allowable loads, moment, and stresses. Properties of pipe. Weight and dimensions of pipe and components. Pipe support selection and design. Fundamentals of expansion joints. Index.

  15. Experimenting with a "Pipe" Whistle

    ERIC Educational Resources Information Center

    Stafford, Olga

    2012-01-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here…

  16. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  17. An electrohydrodynamic heat pipe.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  18. Electrohydrodynamic heat pipes.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  19. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  20. AutoPIPE Extract Program

    SciTech Connect

    Cline, Barbara E.

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  1. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  2. AutoPIPE Extract Program

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straightmore » pipe, branch lines and ring geometries.« less

  3. An electrohydrodynamic heat pipe

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    Dielectric liquid for transfer of heat provides liquid flow from the condenser section to the evaporator section in conventional heat pipes. Working fluid is guided or pumped by an array of wire electrodes connected to a high-voltage source.

  4. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  5. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  6. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  7. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  8. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  9. Freezable heat pipe

    DOEpatents

    Ernst, Donald M.; Sanzi, James L.

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  10. Neurophysiology of pipe flow

    NASA Astrophysics Data System (ADS)

    Barkley, Dwight

    2014-11-01

    This work explores the connection between the transition to turbulence in pipe flow and the dynamics of excitable media, as exemplified by nerve cells. The primary goal is to leverage years of extensive analysis of neural systems to understand the dynamics of transitional turbulence. To demonstrate the predictive nature of the approach, model simulations will be presented for puffs in pipe flow for cases not previously studied experimentally.

  11. Drainage ditches facilitate frog movements in a hostile landscape

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    Ditches are common in landscapes influenced by agricultural, forestry, and peat mining activities, and their value as corridors remains unassessed. Pond-breeding amphibians can encounter hostile environments when moving between breeding, summering, or hibernation sites, and are likely to benefit from the presence of ditches in the landscape. Within a system consisting of ditch networks in bogs mined for peat in eastern New Brunswick, Canada, I quantified the breeding, survival, and movements of green frogs (Rana clamitans melanota) in drainage ditches and also surveyed peat fields. Frogs rarely ventured on peat fields and most individuals frequented drainage ditches containing water, particularly in late summer. Though frogs did not breed in ditches, their survival rate in ditches was high (88%). Ditches did not hinder frog movements, as frogs moved independently of the current. Results indicate that drainage ditches containing water enable some movements between habitats isolated by peat mining, in contrast to peat surfaces, and suggest they function as amphibian movement corridors. Thus, such drainage ditches may mitigate the effects of peat extraction on amphibian populations. At the very least, these structures provide an alternative to hostile peat surfaces. This study highlights that small-scale corridors are potentially valuable in population dynamics. ?? Springer 2005.

  12. Models Robustness for Simulating Drainage and NO3-N Fluxes

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  13. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  14. Benefits of digital thoracic drainage systems.

    PubMed

    Danitsch, Debbie

    A number of risks and complications are associated with traditional chest drainage systems. A trust decided to trial digital drainage systems, and found the new systems improved treatment time and patient mobility. PMID:22536712

  15. Heat Pipe Integrated Microsystems

    SciTech Connect

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to

  16. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Drainage systems. 3280.610 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Plumbing Systems § 3280.610 Drainage systems. (a) General. (1) Each fixture directly connected to the drainage system shall be installed with...

  17. Mine Drainage Control and Treatment Options

    EPA Science Inventory

    This presentation is the third in a series of webinars for Region 10's Hardrock Mine Geochemistry and Hydrology Webinar Workshops. It will discuss briefly how mine drainage forms, some suggested mitigation methods, how ions in the drainage change if drainage does get to the envi...

  18. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    NASA Astrophysics Data System (ADS)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  19. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga

    2007-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler. Reduction of pipe diameter after dynamic loading and explosive welding was ˜2%.

  20. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  1. Remotely operated pipe connector

    DOEpatents

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  2. Condeep drainage systems speed consolidation

    SciTech Connect

    Not Available

    1982-12-01

    The foundation drainage systems underlying the 6 Condeep platforms installed in the North Sea have successfully speeded up the rate of sediment consolidation and stabilization of the platform. The systems on 2 of the first concrete gravity units have now been shut down after full consolidation. The drainage, or antiliquefaction system, is vital during the first storm periods before full consolidation has taken place. In the case of the last Condeep platforms installed on stiff clays, full consolidation has taken place within a period of 2 yr. As the base of each concrete gravity platform is divided into skirt compartments, it is possible to adjust the water pressure within each compartment separately and adjust for the tilting of the structure.

  3. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  4. Heat Pipe Technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  5. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  6. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  7. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  8. Composite drill pipe

    DOEpatents

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem , Josephson; Marvin , Neubert; Hans

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  9. Heat pipes and use of heat pipes in furnace exhaust

    SciTech Connect

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  10. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  11. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  12. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  13. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  14. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  15. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  16. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium

    NASA Astrophysics Data System (ADS)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2010-06-01

    Collapsible loess-derived soils are prone to soil piping erosion, where enlargement of macropores may lead to a subsurface pipe network and eventually to soil collapse and gully development. This study aims at understanding the main factors controlling spatial patterns of piping in loess-derived soils under a temperate climate. To map the spatial distribution of piping and identify the environmental controls on its distribution, a regional survey was carried out in a 236 km 2 study area in the Flemish Ardennes (Belgium). Orthophotos taken at optimal field conditions (winter) were analyzed to detect piping in open landscapes and ground thruthing was systematically done through field surveys. In total, 137 parcels having 560 collapsed pipes were mapped. Dimensions of the sinkholes and local slope gradient were measured in the field and topographical variables were derived from LiDAR data. Land use plays an important role as 97% of the sites with piping are found under pasture. The probability of piping increases rapidly on hillslopes with gradients exceeding 8% and with a concave profile and plan curvature, enhancing subsurface flow concentration. The zones with soil profiles on shallow loess over a relatively thin layer of homogeneous blue massive clays (Aalbeke Member) are most prone to piping. Soil characteristics are of less importance to explain piping occurrence. Furthermore, the topographical threshold line indicating the critical slope gradient for a given contributing drainage area was determined. This threshold line (negative power relation) is similar to the threshold line for shallow gully initiation.

  17. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  18. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  19. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  20. Deployable heat-pipe radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1978-01-01

    Loop temperatures are controlled effectively under varying load conditions. Radiator has four separate pieces of hardware: heat-pipe panel, flexible heat-pipe leader, heat exchanger, fluid header. Single-fluid transport capacities of about 850 watts, corresponding to 51,000 watt-inches, have been achieved in 90 degree bend orientation of heat-pipe header.

  1. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  2. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  3. Implications of the results of colonization experiments for designing riparian restoration projects adjacent to agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams and their riparian habitats in the Midwestern United States have been modified for agricultural drainage. Agricultural drainage often results in reductions of physical habitat diversity, shifts from woody to herbaceous riparian vegetation, and the loss of riparian habitat. T...

  4. Defect characterization in pipe-to-pipe welds in large diameter stainless steel piping

    SciTech Connect

    Rawl, D.E. Jr.; West, S.L.; Wheeler, D.A.; Louthan, M.R. Jr.

    1990-01-01

    Metallurgical evaluation of pipe-to-pipe welds in large-diameter, Type 304 stainless steel piping used to construct the moderator/coolant water systems for Savannah River Site reactors has demonstrated that small weld defects found in this 1950-vintage system do not compromise the integrity of the system. The weld defects were too small for detection by the pre-service standard radiographic inspection, but were found through systematic ultrasonic testing (UT) and penetrant testing (PT) evaluations of piping that had been removed during upgrades to the piping system. The defects include lack of weld penetration, slag inclusions, and other weld metal discontinuities. These discontinuities typically did not propagate during more than 35 years of service. The defects examined were too small and isolated to degrade the mechanical properties of the pipe-to-pipe weldments and therefore did not compromise the integrity of the piping system. 14 refs., 7 figs.

  5. Drainage area data for Alabama streams

    USGS Publications Warehouse

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  6. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...

  7. Effect of dredging on the fate of nutrients in drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dredging of drainage ditches is necessary to ensure that agricultural fields are drained adequately. The objective of this research was to quantify the potential impacts of dredging on nutrient transport within these fluvial systems. Ditch bed material was collected from ditches before and after d...

  8. Phosphorus losses from drainage systems: breaking the surface tile riser connection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In freshwater ecosystems, phosphorus is generally the nutrient most limiting algal growth. Agricultural drainage systems in the upper Midwestern US are generally designed to drain water as quickly as possible, in order to ensure trafficability and minimize crop damage due to flooding. An unintended ...

  9. Using RZWQM-DSSAT to Stimulate Drainage Water Management Across the United States Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased concentrations of nitrate-nitrogen in the surface water bodies of the Mississippi River basin have resulted from the widespread practice of subsurface drainage in agricultural systems throughout the region. Also, hypoxia in the Gulf of Mexico has been linked directly to the transport of ni...

  10. Storm water management: Potential for lower cost & more benefits if farmers & municipalities cooperate on tile drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common approach to protect communities from the ravages of stream flooding is to construct storm water retention basins upstream from the property to be protected. Retention basins are an expensive solution and often take valuable agricultural land out of production. Improved drainage of agricultu...

  11. Short-term sustainability of drainage water reuse: Spatio-temporal impacts on soil chemical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greater urban demand for finite water resources, increased frequency of drought resulting from erratic weather, and increased pressure to reduce drainage water volumes have intensified the scrutiny of water used for irrigated agriculture in arid zones throughout the world. A study was initiated in ...

  12. Applying SWAT for impact analysis of tile drainage on streamflow in a snow dominated watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid trend of adopting tile drainage practice to boost agricultural production has been observed in the Red River Valley watershed (RRVW) in North Dakota due to a wet weather pattern in the region since 1993. Increasing chances of snow-melt spring flooding have also been noted in recent years. In...

  13. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  14. Dynamics of phosphorus transfers from heavily manured coastal plain soils to drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the dynamics of phosphorus (P) transport in agricultural drainage ditches is essential to their improved management for water quality protection. Seven ditches draining soils with a 20+ yr history of receiving poultry litter and Mehlich-3 P averaging 441 mg/kg (parts per million) were ...

  15. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  16. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  17. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  18. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  19. Flexible Heat Pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Wolf, D. A.

    1985-01-01

    Narrow Tube carries 10 watts or more to moving parts. Heat pipe 12 inches long and diameter of 0.312 inch (7.92mm). Bent to minimum radius of 2.5 blocks. Flexible section made of 321 stainless steel tubing (Cajon Flexible Tubing or equivalent). Evaporator and condenser made of oxygen free copper. Working fluid methanol.

  20. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  1. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  2. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  3. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  4. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  5. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  6. Vocational Agriculture Education. Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Smith, Eddie; And Others

    To assist teachers in agricultural mechanics in providing comprehensive instruction to their students, this curriculum guide treats both the mechanical skills and knowlege necessary for this specialized area. Six sections are included, as follow: orientation and safety; agricultural mechanics skills; agricultural power and machinery; agricultural…

  7. Mine Drainage Generation and Control Options.

    PubMed

    Wei, Xinchao; Rodak, Carolyn M; Zhang, Shicheng; Han, Yuexin; Wolfe, F Andrew

    2016-10-01

    This review provides a snapshot of papers published in 2015 relevant to the topic of mine drainage generation and control options. The review is broken into 3 sections: Generation, Prediction and Prevention, and Treatment Options. The first section, mine drainage generation, focuses on the characterization of mine drainage and the environmental impacts. As such, it is broken into three subsections focused on microbiological characterization, physiochemical characterization, and environmental impacts. The second section of the review is divided into two subsections focused on either the prediction or prevention of acid mine drainage. The final section focuses on treatment options for mine drainage and waste sludge. The third section contains subsections on passive treatment, biological treatment, physiochemical treatment, and a new subsection on beneficial uses for mine drainage and treatment wastes. PMID:27620096

  8. Algal-bacterial treatment facility removes selenium from drainage water

    SciTech Connect

    Quinn, Nigel W.T.; Lundquist, Tryg J.; Green, F. Bailey; Zarate, Max A.; Oswald, William J.; Leighton, Terrance

    2000-01-25

    A demonstration algal-bacterial selenium removal (ABSR) facility has been treating agricultural drainage water in the Panoche Drainage District on the west side of the San Joaquin Valley since 1997. The project goals are to demonstrate the effectiveness of the ABSR technology for selenium removal, to investigate potential wildlife exposure to selenium at full-scale facilities, and to develop an operational plant configuration that will minimize the life-cycle cost for each pound of selenium removed. The facility consists of a series of ponds designed to promote native microorganisms that remove nitrate and selenium. Previous treatment research efforts sought to reduce selenium concentrations to less than 5 mu g/L, but the ABSR Facility demonstration focuses on providing affordable reduction of the selenium load that is discharged to the San Joaquin River. During 1997 and 1998, the best-performing ABSR plant configuration reduced nitrate by more than 95 percent and reduced total soluble selenium mass by 80 percent. Ongoing investigations focus on optimizing operational parameters and determining operational costs and scale-up engineering requirements. The preliminary total cost estimate for a 10-acre-foot per day ABSR facility is less than $200 per acre-foot of treated drainage water.

  9. Drainage divides, Massachusetts-Hudson River basin

    USGS Publications Warehouse

    Wandle, S. William, Jr.

    1982-01-01

    Drainage boundaries for selected subbasins in northern Berkshire County, Massachusetts, are delineated on five topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for rivers where the drainage area is greater than 3 square miles. Successive sites are indicated where the intervening area is at least 6 square miles on tributary streams and 10 square miles along the Hoosic or North Branch Noosic Rivers. (USGS)

  10. Drainage in a rising foam.

    PubMed

    Yazhgur, Pavel; Rio, Emmanuelle; Rouyer, Florence; Pigeonneau, Franck; Salonen, Anniina

    2016-01-21

    Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different. PMID:26554500

  11. RECYCLING OF RUNOFF AND DRAINAGE WATER IN THE MIDWEST U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An innovative agricultural water management system has been developed and is being tested for reduction of nonpoint source pollution of surface water streams. The system includes a constructed wetland and a water storage reservoir linked to subsurface pipes used at different times to drain or irriga...

  12. Non-destructive evaluation of spiral-welded pipes using flexural guided waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Tang, Zhifeng; Lü, Fuzai; Pan, Xiaohong

    2016-02-01

    Millions of miles of pipes are being used in both civil and industrial fields. Spiral-welded pipes, which are widely applied in fields such as drainage, architecture as well as oil and gas storage and transportation, are difficult to inspect due to their complex geometry. Guided waves have shown a great potential in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) for such cases. Flexural guided waves that propagate at a helix angle relative to the axial direction of pipe, are the most appropriate modes for inspecting spiral-welded pipes. The classical Normal Mode Expansion method (NME) is adopted to disseminate the forced response and perturbation analysis of a steel pipe with respect to a time delay circular loading. A time delay circular array transducer (TDCAT) is proposed for the purpose of exciting pure flexural mode in pipes. Pure flexural mode can be excited when the time delay parameter is specifically designed. The theoretical prediction is verified by finite element numerical evaluation and spiral-welded pipe inspection experiment.

  13. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  14. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  15. Explosive welding of pipes

    NASA Astrophysics Data System (ADS)

    Drennov, O.; Burtseva, O.; Kitin, A.

    2006-08-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  16. Heat Pipes For Alyeska

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The heat pipes job is to keep the arctic ground frozen. The permafrost soil alternately freezes and thaws with seasonal temperature changes causing surface dislocations and problems for the builders. In winter, a phenomenon called frost-heaving uplifts the soil. It is something like the creation of highway potholes by the freezing of rainwater below the roadbed, but frost-heaving exerts a far greater force. Thawing of the frost in the summer causes the soil to settle unevenly. Therefore it is necessary to keep the soil in a continually frozen state so the pipeline won't rupture. To solve this problem, McDonnell Douglas Corp. applied heat pipe principles in the design of the vertical supports that hold up the pipeline.

  17. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  18. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  19. Electrohydrodynamic heat pipe research

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1973-01-01

    Experimental and theoretical applications to electrohydrodynamic heat pipe (EHDHP) research are presented. Two problems in the research which are discussed are the prediction of the effective thermal conductance of an EHDHP with threaded grooves for fluid distribution to the evaporator of an EHDHP. Hydrodynamic equations are included along with a discussion of boundary conditions and burn-out conditions. A discussion of the theoretical and experimental results is presented.

  20. The Effects of Three Conservation Practices on N Loss to Subsurface Drainage as Simulated by RZWQM

    NASA Astrophysics Data System (ADS)

    Malone, R. W.; Ma, L.; Jaynes, D. B.

    2011-12-01

    Because agricultural systems with subsurface drainage are so complex, computer simulation modeling is one method to understand and predict the interactive effects of different conditions (weather, management, soils) on crop production and nitrate transport. The Root Zone Water Quality Model (RZWQM) was used to simulate the effects of three very promising practices to reduce N loss in subsurface drainage: winter cover crops, late spring soil N testing for N application rates (LSNT), and controlled drainage. Results suggest the model accurately simulated these practices compared to conventional practices. For example, observed and simulated nitrate reductions in central Iowa were: 59% and 49% (winter cover crop), 22% and 32% (controlled drainage) and, statistically significant in a paired watershed setting according to autoregressive techniques (LSNT). Using the tested model to investigate these practices under long-term weather and management conditions under subsurface drainage revealed that: the effect of winter cover crops on nitrate loss remained relatively constant under a wide range of N application rates; controlled drainage can reduce nitrate loss about 50% across the Midwest U.S. corn belt in locations where it is feasible to implement; and that the annual LSNT-based N rate differences are mainly due to variation in early-season precipitation and temperature.

  1. Guidable pipe plug

    DOEpatents

    Glassell, Richard L.; Babcock, Scott M.; Lewis, Benjamin E.

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  2. Light Pipe Thermophotovoltaics (LTPV)

    NASA Astrophysics Data System (ADS)

    Chubb, Donald L.

    2007-02-01

    In a conventional thermophotovoltaic (TPV) energy converter the radiation from the emitter to the photovoltaic (PV) array is transmitted in a vacuum or air where the index of refraction, n = 1. The intensity of the radiation is proportional to n2. Therefore, the incident intensity on the PV array could be greatly increase if the medium between the emitter and the PV array had n > 1. This light pipe TPV (LTPV) concept was introduced by The Quantum Group at the Third National Renewable Energy Laboratory (NREL) TPV Conference in 1997. This paper presents a theoretical analysis of the LTPV concept. The solution of the one-dimensional energy equation that includes both thermal conduction and radiation yields the temperature distribution through the light pipe. Applying the analysis to a zinc selenide (ZnSe) light pipe yielded the following result. For an emitter temperature of 1000K the convertible radiation(photon energy >PV bandgap energy) that reaches the photovoltaic(PV) cell is 1 W/cm2. At the same emitter temperature, a conventional TPV converter would have 1/8 W/cm2 of convertible radiation. Thus, the LTPV concept makes possible lower temperature operation than current TPV converters.

  3. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Drainage system. 3285.604 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one...

  4. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Drainage system. 3285.604 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one...

  5. Drainage Water Management for the Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage is an essential water management practice on many highly productive fields in the Midwest. However, nitrate carried in drainage water can lead to local water quality problems and contribute to hypoxia in the Gulf of Mexico, so strategies are needed to reduce the nitrate load...

  6. Modeling coastal plain drainage ditches with SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the low-relief Eastern Shore region of Maryland, extensive land areas used for crop production require drainage systems either as tile drains or open ditches. The prevalence of drainage ditches in the region is being linked to increased nutrient loading of the Chesapeake Bay. Process-based water ...

  7. Growth and Comprehensive Quality Index of Tomato under Rain Shelters in Response to Different Irrigation and Drainage Treatments

    PubMed Central

    Shao, Guang-cheng; Wang, Ming-hui; Liu, Na; Yuan, Min; Kumar, Prem; She, Dong-Li

    2014-01-01

    The effects of two levels of irrigation water (100%, 60%) and buried underground pipe depths (0.8 m, 0.6 m) under rain shelters' conditions on yield and some quality parameters of tomato were investigated. A fully randomized factorial experiment was conducted between April and August in 2011 and 2012 at Hohai University. It was found that drainage treatments enhanced biomass production, whereas soil desiccation led to biomass reduction. At 60 cm buried underground pipe depths, the drought treatments increased the mean root weight and root-shoot ratio by 14% and 39%, respectively. The main effects of drainage treatments on the fruit quality were increases in total soluble solids (TSS), soluble sugar (SS), and vitamin C (VC) compared to the control. In addition, drainage treatments increased the average yield by 13% and 9%, respectively, in both years. The drought treatments did not significantly alter fruit yield, although mean single fruit weight was slightly reduced. Instead, these treatments tend to have great potential to improve fruit quality (TSS, SS, and VC) to variable extents. In both years, the drought treatment at 60 cm buried underground pipe depths proved to possess the highest comprehensive quality index based on Principal Component Analysis. PMID:25054180

  8. Growth and comprehensive quality index of tomato under rain shelters in response to different irrigation and drainage treatments.

    PubMed

    Shao, Guang-cheng; Wang, Ming-hui; Liu, Na; Yuan, Min; Kumar, Prem; She, Dong-Li

    2014-01-01

    The effects of two levels of irrigation water (100%, 60%) and buried underground pipe depths (0.8 m, 0.6 m) under rain shelters' conditions on yield and some quality parameters of tomato were investigated. A fully randomized factorial experiment was conducted between April and August in 2011 and 2012 at Hohai University. It was found that drainage treatments enhanced biomass production, whereas soil desiccation led to biomass reduction. At 60 cm buried underground pipe depths, the drought treatments increased the mean root weight and root-shoot ratio by 14% and 39%, respectively. The main effects of drainage treatments on the fruit quality were increases in total soluble solids (TSS), soluble sugar (SS), and vitamin C (VC) compared to the control. In addition, drainage treatments increased the average yield by 13% and 9%, respectively, in both years. The drought treatments did not significantly alter fruit yield, although mean single fruit weight was slightly reduced. Instead, these treatments tend to have great potential to improve fruit quality (TSS, SS, and VC) to variable extents. In both years, the drought treatment at 60 cm buried underground pipe depths proved to possess the highest comprehensive quality index based on Principal Component Analysis. PMID:25054180

  9. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  10. Experimenting with a ``Pipe'' Whistle

    NASA Astrophysics Data System (ADS)

    Stafford, Olga

    2012-04-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here allows students in a physics of music or introductory physics course to study an example of an "edge tone" device that produces discrete sound frequencies. From their textbooks, students likely know about standing waves produced by pipes or strings, as well as the resonant frequencies for open and closed pipes. To go a bit further, they can also learn how the frequency of the sound wave depends on the orifice-to-edge distance of the wind instrument.

  11. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  12. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  13. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. PMID:26023969

  14. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  15. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  16. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  17. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  18. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  19. Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural runoff containing nitrogen fertilizer is a major contributor to eutrophication in aquatic systems. One method of lowering amounts of nitrogen entering rivers or lakes is the transport of runoff through vegetated drainage ditches. Drainage ditch vegetation can enhance the mitigation of...

  20. Oxygen-18 dynamics in precipitation and streamflow in a semi-arid agricultural watershed, Eastern Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, oxygen-18 and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stre...

  1. Differences in instream wood characteristics between channelized and unchannelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...

  2. Influence of riparian habitat on aquatic macroinvertebrate community colonization within riparian zones of agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about aquatic macroinvertebrate colonization of aquatic habitats within riparian zones of headwater streams in the Midwestern United States. Many headwater streams and their riparian habitats in this region have been modified for agricultural drainage. Riparian habitat modifications ...

  3. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... affect the structure and show proposed solutions. Grading will promote drainage of surface water away from buildings and foundations, minimize earth settlement and erosion, and assure that drainage...

  4. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... affect the structure and show proposed solutions. Grading will promote drainage of surface water away from buildings and foundations, minimize earth settlement and erosion, and assure that drainage...

  5. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  6. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  7. Polymeric heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin

    1988-01-01

    A wick for use in a capillary loop pump heat pipe is described. The wick material is an essentially uniformly porous, permeable, open-cell, polyethylene thermoplastic foam having an ultrahigh average molecular weight of from approximately 1 to 5 million, and an average pore size of about 10 to 12 microns. A representative material having these characteristics is POREX UF, which has an average molecular weight of about 3 million. This material is fully compatible with the FREONs and anhydrous ammonia and allows for the use of these very efficient working fluids in capillary loops.

  8. Heat pipes - Thermal diodes

    NASA Astrophysics Data System (ADS)

    Aptekar, B. F.; Baum, J. M.; Ivanovskii, M. N.; Kolgotin, F. F.; Serbin, V. I.

    The performance concept and peculiarities of the new type of thermal diode with the trap and with the wick breakage are dealt with in the report. The experimental data were obtained and analysed for the working fluid mass and the volume of the liquid in the wick on the forward-mode limiting heat transfer. The flow rate pulsation of the working fluid in the wick was observed visually on the setup with the transparent wall. The quantitative difference on the data on the investigated thermal diode and on the identical heat pipes without the wick breakage is found experimentally concerning the forward-mode limiting heat transfer.

  9. Removal of Pipe Fouling Inside Pipes Using Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Nakagawa, Noritoshi; Fujihara, Masaya; Wu, Chaoqun; Satonobu, Jun

    Since fouling generated inside pipes of chemistry plant equipment, shortens “its life”, periodical maintenance such as cleaning or replacement is needed. Therefore, the development of a safe and sanitary method of preventing a corrosion and blockage inside pipes is desired. In this study, a vibration system, composed of a bolt-clamped Langevin transducer and a pipe, was employed to experimentally study the possibility of fouling removal. In the experiment, a flexural vibration was excited in a pipe containing fouling using ultrasonic waves. When the pipe was made to vibrate, with calcium carbonate or starch used as the fouling, it was shown that the fouling was diffused into the air, and except at the node of the flexural vibration, the fouling was removed completely. Also, the result showed that a higher input voltage to the transducer was more effective in removing the fouling.

  10. Endoscopic Gallbladder Drainage for Acute Cholecystitis

    PubMed Central

    Widmer, Jessica; Alvarez, Paloma; Sharaiha, Reem Z.; Gossain, Sonia; Kedia, Prashant; Sarkaria, Savreet; Sethi, Amrita; Turner, Brian G.; Millman, Jennifer; Lieberman, Michael; Nandakumar, Govind; Umrania, Hiren; Gaidhane, Monica

    2015-01-01

    Background/Aims Surgery is the mainstay of treatment for cholecystitis. However, gallbladder stenting (GBS) has shown promise in debilitated or high-risk patients. Endoscopic transpapillary GBS and endoscopic ultrasound-guided GBS (EUS-GBS) have been proposed as safe and effective modalities for gallbladder drainage. Methods Data from patients with cholecystitis were prospectively collected from August 2004 to May 2013 from two United States academic university hospitals and analyzed retrospectively. The following treatment algorithm was adopted. Endoscopic retrograde cholangiopancreatography (ERCP) with sphincterotomy and cystic duct stenting was initially attempted. If deemed feasible by the endoscopist, EUS-GBS was then pursued. Results During the study period, 139 patients underwent endoscopic gallbladder drainage. Among these, drainage was performed in 94 and 45 cases for benign and malignant indications, respectively. Successful endoscopic gallbladder drainage was defined as decompression of the gallbladder without incidence of cholecystitis, and was achieved with ERCP and cystic duct stenting in 117 of 128 cases (91%). Successful endoscopic gallbladder drainage was also achieved with EUS-guided gallbladder drainage using transmural stent placement in 11 of 11 cases (100%). Complications occurred in 11 cases (8%). Conclusions Endoscopic gallbladder drainage techniques are safe and efficacious methods for gallbladder decompression in non-surgical patients with comorbidities. PMID:26473125

  11. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  12. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  13. Drainage investment and wetland loss: an analysis of the national resources inventory data

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1994-01-01

    The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.

  14. Agricultural Waste.

    PubMed

    Shu, Huajie; Zhang, Panpan; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2015-10-01

    The management and disposal of agricultural waste are drawn more and more attention because of the increasing yields and negative effects on the environment. However, proper treatments such as converting abundant biomass wastes into biogas through anaerobic digestion technology, can not only avoid the negative impacts, but also convert waste into available resources. This review summarizes the studies of nearly two hundred scholars from the following four aspects: the characterization, reuse, treatment, and management of agricultural waste. PMID:26420088

  15. Retroperitoneoscopic drainage of a psoas abscess.

    PubMed

    Katara, Avinash N; Shah, Rasik S; Bhandarkar, Deepraj S; Unadkat, Rajan J

    2004-09-01

    Pyogenic psoas abscess in the pediatric age group is a primary condition caused mostly by Staphylococcus aureus. The preferred treatment is percutaneous or surgical drainage under a cover of systemic antibiotics. Laparoscopic drainage scores over open surgery in terms of minimal invasion, shorter hospital stay, better patient comfort, and more complete drainage compared with the percutaneous approach. The authors report a case of a 4-year-old boy with a psoas abscess that was effectively drained laparoscopically through an extraperitoneal approach. PMID:15359416

  16. Heat Pipe Blocks Return Flow

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  17. Pipe crawler with stabilizing midsection

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe crawler having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ``inch worm`` fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  18. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  19. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  20. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  1. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  2. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  3. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  4. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  5. Vibration analysis methods for piping

    NASA Astrophysics Data System (ADS)

    Gibert, R. J.

    1981-09-01

    Attention is given to flow vibrations in pipe flow induced by singularity points in the piping system. The types of pressure fluctuations induced by flow singularities are examined, including the intense wideband fluctuations immediately downstream of the singularity and the acoustic fluctuations encountered in the remainder of the circuit, and a theory of noise generation by unsteady flow in internal acoustics is developed. The response of the piping systems to the pressure fluctuations thus generated is considered, and the calculation of the modal characteristics of piping containing a dense fluid in order to obtain the system transfer function is discussed. The TEDEL program, which calculates the vibratory response of a structure composed of straight and curved pipes with variable mechanical characteristics forming a three-dimensional network by a finite element method, is then presented, and calculations of fluid-structural coupling in tubular networks are illustrated.

  6. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  7. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  8. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  9. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  10. Long-term changes in stream bank soil pipes and the effects of afforestation

    NASA Astrophysics Data System (ADS)

    Jones, J. A. A.; Cottrell, C. I.

    2007-03-01

    Natural soil pipes are now recognized as potentially significant elements in hillslope drainage systems, sometimes developing into open channel tributaries or contributing often substantial volumes of quick flow to streams. However, there has been no detailed, long-term monitoring study of the evolution of pipe networks to indicate how permanent they are or how readily they may develop into open channels. This paper reports a resurvey of a section of stream bank in the English Peak District and compares it with the original survey 35 years previous. Comparison of the distribution, size, and shape of pipes on both banks of a 250 m stretch of the stream reveals significant changes. There were no cases of roof collapse forming new open channels. However, there has been a significant change in land use within the basin, with afforestation of the east bank. The resurvey shows a marked reduction in the number and size of pipes on the forested bank, but no significant change on the opposite bank that has remained moorland. The number of pipe outlets on the afforested bank halved over the period, and their mean diameter has reduced by 30%. In combination with the reduced number the smaller size resulted in a 71% reduction in the total area of stream bank occupied by pipe outlets on the forested bank. It is postulated that the change is primarily due to a change in the amount of throughflow beneath the forest caused by an increase in evapotranspiration.

  11. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of pipe-outlet terracing on quantity and quality of surface runoff and ground water in a small carbonate-rock basin near Churchtown, Pennsylvania, 1983-89

    USGS Publications Warehouse

    Lietman, P.L.; Gustafson-Minnich, L. C.; Hall, D.W.

    1997-01-01

    Terracing effects on surface-runoff and ground- water quantity and quality were investigated by the U.S. Geological Survey, in cooperation with Pennsylvania Department of Environmental Resources, during 1983-89 at a 23.1-acre agricultural site in Lancaster County, Pa., as part of the 1982 Rural Clean Water Program. The site, underlain by carbonate rock, was primarily corn and alfalfa fields; the median slope was 6 percent.Normal precipitation is about 42 inches per year. Average annual runoff was 11 percent and ground- water recharge was 37 percent of precipitation.Runoff quantity, suspended-sediment, and nutrient data, ground-water level and nutrient data, and precipitation-quantity data were collected for 21 months prior to, and 58 months after, pipe-outlet terrace construction. Data were analyzed by use of graphical, regression, covariate, cluster, Mann- Whitney Rank Sum test, and double-mass curvetechniques. Terracing changed runoff characteristics. Storm characteristics were similar throughout the study period. However, after terracing, storms producing less than 0.4 inch of precipitation rarely produced runoff. Total-storm discharge as a function of precipitation did not change significantly throughout the range of runoff-producing storms after terracing. Multiple-discharge peaks on hydrographs before terracing did not occur after terracing when hydrographs reflected the stepwisedraining of each terrace through the pipe outlet. After an initial 2-year period of terrace stabilization, suspended-sediment yield in runoff decreased significantly as a function of runoff. This result was expected because terracing decreased runoff energy, and because terrace ponding allowed time for sediment redeposition. Nitrate plus nitrite yields increased proportionally throughout the range of runoff during the post-terracing period relative to the pre- terracing period. After terracing, a combination of increased soil contact time and increased nitrification caused by wetter

  12. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2009-12-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  13. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2010-01-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  14. Toward strict liability for abandoned mine drainage

    SciTech Connect

    Bryan, M.D.

    1983-01-01

    This note examines ways to impose responsibility for abating the pollution caused by mine drainage. It describes coal mine drainage and control techniques, then examines abatement responsibility under the common law doctrine of public nuisance, the Surface Mining Control and Reclamation Act of 1977, the Federal Water Pollution Control Act, and the Resource Conservation and Recovery Act of 1976. More statutory and regulatory controls will probably be devised in the near future, given the serious problem such drainage poses and the lack of existing controls. It is also likely, given the trend apparent in the statutes and cases, that such controls will adopt rules of strict liability for abandoned mine drainage based on mere ownership of property. 175 references.

  15. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  16. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  17. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  18. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  19. PRIORITY POLLUTANT REMOVAL FROM MINE DRAINAGE

    EPA Science Inventory

    A study of the removal of selected priority pollutants from acid mine drainage was conducted at EPA's Crown, West Virginia, site. The pollutants studied were the volatiles benzene, chloroform, methylene chloride, tetrachloroethene, toluene, trans-dichloroethene; the semivolatiles...

  20. Fractal Analysis of Drainage Basins on Mars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  1. Capture and Characterization of Particulates Exported from Farm Drainage During a Storm Event: Effect on Phosphorus Loading

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2014-12-01

    Phosphorus (P)-enriched particulates in farms canals within the Everglades Agricultural Area (EAA) are susceptible to transport and contribute to the overall P load. During storm events, the volume of drainage discharge is significantly higher, and with it the mass of particulates exported. The particulates exported in the drainage water associated with tropical storm Isaac contained 47% higher OM, 65% higher TP, and 93% higher labile KCl-P fraction compared to the sediments. Based on the equilibrium P concentrations at the sediment-water interface, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single storm event exported up to 64% of the total P load compared to the rest of the year.

  2. Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems.

    PubMed

    Gaynor, J D; Tan, C S; Drury, C F; Welacky, T W; Ng, H Y F; Reynolds, W D

    2002-01-01

    Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport. PMID:11841063

  3. Assessment of drainage water quality in pre- and post-irrigation seasons for supplemental irrigation use.

    PubMed

    Alexakis, Dimitris; Gotsis, Dimitris; Giakoumakis, Spyros

    2012-08-01

    Knowledge on hydrochemistry is very important to assess the quality of water for effective management of water resources or drainage water reuse. On this basis, an assessment of water quality was conducted in the Agoulinitsa district in Peloponnese (western Greece). Both drainage and irrigation channel water samples have been collected, treated, and subjected to chemical analysis. A characterization has been carried out using the Piper-trilinear diagram. Assessment of the water samples from the point of view of sodium adsorption ratio, Na(+)%, and residual sodium carbonate indicated that 60.0% and 83.3% of the drainage water samples during pre- and post-irrigation season, respectively, as well as the irrigation channel water samples, are chemically suitable for irrigation use. Moreover, assessment of the water samples by comparing quality parameters with the Food and Agriculture Organization guidelines indicated that 20.0% and 44.4% of the drainage water samples collected during pre- and post-irrigation season, respectively, as well as the irrigation channel water samples could cause slight to moderate problems to the plants. On the other hand, 80.0% and 55.6% of the drainage water samples collected during pre- and post-irrigation season, respectively, could cause immediate development of severe problems to the plants growth. PMID:21915601

  4. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  5. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160

  6. [The value of wound drainage with or without suction].

    PubMed

    Schmidt, J; Hasselbach, A; Schnorr, W; Baranek, T; Letsch, R

    2005-11-01

    Even though the discussion for desisting from wound drainage has arisen, this is not reflected in the reality of surgical treatment. In more than 90% of all procedures wound drainage is used. It remains to be proven whether suction drainage actually is superior to gravity drainage in everyday use. In a random study with 200 patients it was proven that suction drainage shows no significant advantage in liquid quantum, haematoma and the frequency of complications. We conclude that the economically favourable gravity drainage can replace the more expensive suction drainage in most cases. PMID:16228157

  7. Adaption to extreme rainfall with open urban drainage system: an integrated hydrological cost-benefit analysis.

    PubMed

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten

    2013-03-01

    This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken. PMID:23334752

  8. Adaption to Extreme Rainfall with Open Urban Drainage System: An Integrated Hydrological Cost-Benefit Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten

    2013-03-01

    This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.

  9. Heat pipe technology: A biblography with abstracts

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe research and development projects conducted during April through June 1972, is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) test and operation, (6) subject and author index, and (7) heat pipe related patents.

  10. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  11. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  12. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  13. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  14. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  15. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  16. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  17. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  18. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  19. Leachate storage transport tanker loadout piping

    SciTech Connect

    Whitlock, R.W.

    1994-11-18

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility.

  20. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  1. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  2. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  3. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  4. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  5. Decontaminating Aluminum/Ammonia Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1985-01-01

    Internal gas slugs reduced or eliminated. Manufacturing method increases efficiency of aluminum heat pipes in which ammonia is working fluid by insuring pipe filled with nearly pure charge of ammonia. In new process heat pipe initially closed with stainless-steel valve instead of weld so pipe put through several cycles of filling, purging, and accelerated aging.

  6. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  7. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  8. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  9. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  10. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  11. Heat pipe experiment on SPAS 01

    NASA Astrophysics Data System (ADS)

    Kock, H.; Kreeb, H.; Savage, C.

    1986-08-01

    The second flight of Challenger carried a heat pipe experiment, designed to measure the performance of constant conductance heat pipe diodes over a period of 16 hr. The experiment platform and the flight results on variable conductance heat pipe housekeeping radiators, including the temperature distribution at these heat pipe versus experiment time are presented. All equipment is shown to be space qualified.

  12. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Piping. 76.25-30 Section 76.25-30 Shipping COAST GUARD... System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where...

  13. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 108.475 Section 108.475 Shipping COAST GUARD... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  14. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 108.475 Section 108.475 Shipping COAST GUARD... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  15. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.25-30 Section 76.25-30 Shipping COAST GUARD... System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where...

  16. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Used pipe. 195.114 Section 195.114 Transportation... PIPELINE Design Requirements § 195.114 Used pipe. Any used pipe installed in a pipeline system must comply with § 195.112 (a) and (b) and the following: (a) The pipe must be of a known specification and...

  17. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds... butt welds must meet the following: (1) Butt welds of pipes made from carbon, carbon manganese, or...

  18. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false New pipe. 195.112 Section 195.112 Transportation... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or...

  19. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  20. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  1. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  2. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A cumulative bibliography on heat pipe research and development projects is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) testing and operation, (6) subject and author index, and (7) heat pipe related patents.

  3. Determination of Secondary Encasement Pipe Design Pressure

    SciTech Connect

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  4. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  5. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  6. Heat pipe transient response approximation

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2002-01-01

    A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper. .

  7. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  8. Long-term tillage and drainage influences on greenhouse gas fluxes from a poorly-drained soil of central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive tillage practices and poorly-drained soils of Midwestern USA are the prime reasons for greenhouse gas (GHG) fluxes from agriculture. The naturally poorly-drained soils prevalent in this region require subsurface drainage for improved aeration and improved crop productivity. Soil surface GH...

  9. The MANAGE drain load database: Review and compilation of more than fifty years of North American drainage nutrient studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As agriculture in the 21st century is faced with increasing pressure to reduce negative environmental impacts while continuing to efficiently produce food, fiber, and fuel, it becomes ever more important to reflect upon more than half a century of drainage water quality research to identify paths fo...

  10. APEX. AutoPIPE Extract Program

    SciTech Connect

    Cline, B.E.

    1992-07-01

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  11. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  12. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  13. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts

    PubMed Central

    Săftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter

    2015-01-01

    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage, or surgical drainage. The aim of this review is to assess critically the current literature concerning EUS-guided pseudocyst drainage and to review the place of the procedure in the clinical decision management algorithms of these patients. PMID:26643700

  14. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts.

    PubMed

    Saftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter

    2015-01-01

    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage, or surgical drainage. The aim of this review is to assess critically the current literature concerning EUS-guided pseudocyst drainage and to review the place of the procedure in the clinical decision management algorithms of these patients. PMID:26643700

  15. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  16. AGRICULTURAL EXTENSION.

    ERIC Educational Resources Information Center

    FARQUHAR, R.N.

    AUSTRALIAN AGRICULTURAL EXTENSION HAS LONG EMPHASIZED TECHNICAL ADVISORY SERVICE AT THE EXPENSE OF THE SOCIOECONOMIC ASPECTS OF FARM PRODUCTION AND FARM LIFE. ONLY IN TASMANIA HAS FARM MANAGEMENT BEEN STRESSED. DEMANDS FOR THE WHOLE-FARM APPROACH HAVE PRODUCED A TREND TOWARD GENERALISM FOR DISTRICT OFFICERS IN MOST STATES. THE FEDERAL GOVERNMENT,…

  17. AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    DEALTON, ERNEST L.

    TODAY'S SUCCESSFUL FARMER MUST POSSESS THE SKILLS OF A BUSINESSMAN, SCIENTIST, AND MECHANIC TO SURVIVE COMPETITION IN AGRICULTURE, THE LARGEST INDUSTRY IN THE UNITED STATES. THIS COMPETITION HAS CAUSED AN INCREASE IN THE SIZE OF FARMS AND RANCHES IN AN ATTEMPT TO CURTAIL OPERATIONAL EXPENSES AND TO INCREASE PRODUCTION. WITH THE SCIENTIFIC…

  18. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Artificial Drainage (1992) and Irrigation Types (1997)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular dataset represents the estimated area of artificial drainage for the year 1992 and irrigation types for the year 1997 compiled for every catchment of NHDPlus for the conterminous United States. The source datasets were derived from tabular National Resource Inventory (NRI) datasets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 1997). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others 2007) The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that

  19. B Plant process piping replacement feasibility study

    SciTech Connect

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  20. Heat-Transfer Coupling For Heat Pipes

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.