Science.gov

Sample records for agricultural drainage systems

  1. Agricultural Drainage Management Systems Task Force (ADMSTF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Drainage Management Systems (ADMS) Task Force was initiated during a Charter meeting in the fall of 2002 by dedicated professional employees of Federal, State, and Local Government Agencies and Universities. The Agricultural Drainage Management (ADM) Coalition was established in 200...

  2. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  3. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest.

  4. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. PMID:25163598

  5. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization.

    PubMed

    Lin, Z Q; Cervinka, V; Pickering, I J; Zayed, A; Terry, N

    2002-07-01

    The Integrated on-Farm Drainage Management (IFDM) system was designed to dispose of selenium (Se)-contaminated agricultural irrigation drainage water through the sequential reuse of saline drainage water to grow crops having different salt tolerance. This study quantified the extent of biological volatilization in Se removal from the IFDM system located in the western San Joaquin Valley, California. Selenium volatilization from selected treatment areas, including pickleweed (Salicornia bigelovii Torr.), saltgrass (Distichlis spicata L.), bare soil, and the solar evaporator, was monitored biweekly using an open-flow sampling chamber system during the pickleweed growing season from February to September 1997, and monthly from September 1997 to January 1998. Biological volatilization from the pickleweed section removed 62.0 +/- 3.6 mg Se m(-2) y(-1) to the atmosphere, which was 5.5-fold greater than the Se accumulated in pickleweed tissues (i.e., phytoextraction). The total Se removed by volatilization from the bare soil, saltgrass, and the solar evaporator was 16.7 +/- 1.1, 4.8 +/- 0.3, and 4.3 +/- 0.9mg Se m(-2) y(-1), respectively. Selenium removal by volatilization accounted for 6.5% of the annual total Se input (957.7mg Sem(-2) y(-1)) in the pickleweed field, and about 1% of the total Se input (432.7 mg Se m(-2) y(-1)) in the solar evaporator. We concluded that Se volatilization under naturally occurring field conditions represented a relatively minor, but environmentally important pathway of Se removal from the IFDM system.

  6. Agricultural drainage practices in Ireland

    NASA Astrophysics Data System (ADS)

    Ryan, T. D.

    1986-02-01

    Agricultural drainage practices are reviewed under two main headings: arterial drainage of river catch-ments by developing main channels, and field drainage of smaller parcels of land using pipes and open trenches. The use of cost/benefit analysis on the arterial drainage program is considered and the inherent errors are discussed. Conservation of the environment is described as it applies to land-scaping, fisheries, and wildlife, and the drainage authorities are shown to have an enlightened attitude to proper preservation of the world around us.

  7. Investigation of denitrifying microbe communities within an agricultural drainage system fitted with low-grade weirs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing wetland characteristics in agricultural drainage ditches with the use of low-grade weirs, has been identified as a potential best management practice (BMP) to mitigate nutrient runoff from agriculture landscapes. This study examined microbe community abundance and diversity involved in den...

  8. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  9. Selenium stable isotope ratios in California agricultural drainage water management systems.

    PubMed

    Herbel, Mitchell J; Johnson, Thomas M; Tanji, Kenneth K; Gao, Suduan; Bullen, Thomas D

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments. PMID:12175032

  10. Selenium stable isotope ratios in California agricultural drainage water management systems.

    PubMed

    Herbel, Mitchell J; Johnson, Thomas M; Tanji, Kenneth K; Gao, Suduan; Bullen, Thomas D

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  11. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  12. Nutrient mitigation efficiency in agricultural drainage ditches: An influence of landscape properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage systems are integral parts of the agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental conventional and controlled (with weirs) agricultural drainage ditche...

  13. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  14. Water Quality Significance of Wetlands Receiving Agricultural Drainage

    NASA Astrophysics Data System (ADS)

    Stringfellow, W.; Sharon, B.; Engelage, S.; Hanlon, J.; Graham, J.; Burks, R.

    2007-12-01

    The San Joaquin Valley is one of the most productive agricultural regions in the world and this productivity is heavily dependent on irrigated agricultural. An inevitable consequence of irrigated agricultural is the generation of return-flows conveyed down-gradient in agricultural drains that eventually discharge to surface waters. Agricultural drainage often has poor water quality characteristics, but demand for water in California is high and agricultural drainage is often diverted for secondary use, including the maintenance of ponds and wetlands. Additionally, agricultural drainage often discharges into riparian wetlands, rather than into the open river channel. In this study we tested the hypothesis that wetlands were mitigating or buffering the impact of agricultural drainage and that discharge of agricultural drainage into wetland buffer zones would provide water quality benefits. Water samples were collected at wetland, agricultural, and mixed drainages in the San Joaquin River basin and analyzed for a broad array of physical and chemical water quality parameters, including nutrients and organic carbon. At selected wetlands, input-output studies were conducted to determine wetland specific water quality effects. The water quality of drainages influenced by wetlands was compared to drainages that were predominantly influenced by other types of land-use. Wetland influenced drainages are more likely to have higher DOC concentrations that other drainages, including agricultural and mixed urban-agricultural drains. Wetland dominated drainages had lower nitrates than agricultural drainages and studies of individual wetlands demonstrated that wetlands remove soluble phosphate and nitrate, but produce DOC and biochemical oxygen demand (BOD). Overall land use in a drainage was a less significant determinant of water quality than soil type and the presence or absence of wetlands. The specific trihalomethane formation potential (THMFP) of the DOC from wetland

  15. Agricultural drainage pipe detection using ground penetrating radar: Effects of antenna orientation relative to drainage pipe directional trend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...

  16. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  17. Representing natural and manmade drainage systems in an earth system modeling framework

    SciTech Connect

    Li, Hongyi; Wu, Huan; Huang, Maoyi; Leung, Lai-Yung R.

    2012-08-27

    Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.

  18. Ecology and management of agricultural drainage ditches: a literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  19. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  20. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales.

  1. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  2. Pipe downchute stormwater drainage system

    SciTech Connect

    Gross, W.E.

    1995-12-31

    SCS Engineers (SCS) was provided with the challenge of developing a completely enclosed pipe downchute system for stormwater drainage at the Fresh Kills Landfill in New York City, the largest landfill in the world. With a total landfill drainage subshed totaling over 1000 acres, and an average yearly precipitation at the site of approximately 4.2 feet, the final constructed stormwater drainage system would capture and convey over 591 million gallons of stormwater runoff per year, and discharge it into 17 stormwater basins.This paper describes the drainage system.

  3. Subsurface agricultural irrigation drainage: the need for regulation.

    PubMed

    Lemly, A D

    1993-04-01

    Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented.

  4. Phosphorus transport in agricultural subsurface drainage: a review.

    PubMed

    King, Kevin W; Williams, Mark R; Macrae, Merrin L; Fausey, Norman R; Frankenberger, Jane; Smith, Douglas R; Kleinman, Peter J A; Brown, Larry C

    2015-03-01

    Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research has focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be negligible. Perceptions of subsurface P transport, however, have evolved, and considerable work has been conducted to better understand the magnitude and importance of subsurface P transport and to identify practices and treatments that decrease subsurface P loads to surface waters. The objectives of this paper were (i) to critically review research on P transport in subsurface drainage, (ii) to determine factors that control P losses, and (iii) to identify gaps in the current scientific understanding of the role of subsurface drainage in P transport. Factors that affect subsurface P transport are discussed within the framework of intensively drained agricultural settings. These factors include soil characteristics (e.g., preferential flow, P sorption capacity, and redox conditions), drainage design (e.g., tile spacing, tile depth, and the installation of surface inlets), prevailing conditions and management (e.g., soil-test P levels, tillage, cropping system, and the source, rate, placement, and timing of P application), and hydrologic and climatic variables (e.g., baseflow, event flow, and seasonal differences). Structural, treatment, and management approaches to mitigate subsurface P transport-such as practices that disconnect flow pathways between surface soils and tile drains, drainage water management, in-stream or end-of-tile treatments, and ditch design and management-are also discussed. The review concludes by identifying gaps in the current understanding of P transport in subsurface drains and suggesting areas where future research is needed. PMID:26023966

  5. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  6. Determining potential for microbial atrazine degradation in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passage of agricultural runoff through vegetated drainage ditches has been shown to reduce the amount of pesticides, such as atrazine, exiting agricultural watersheds. Previous studies found that microbial communities in soil from fields treated with atrazine display enhanced rates of atrazine degr...

  7. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  8. Regulation of agricultural drainage to San Joaquin River

    SciTech Connect

    Johns, G.E.; Watkins, D.A. )

    1989-02-01

    A technical committee reported on: (1) proposed water quality objectives for the San Joaquin River Basin; (2) proposed effluent limitations for agricultural drainage discharges in the basin to achieve these objectives; and (3) a proposal to regulate these discharges. The costs and economic impact of achieving various alternative water quality objectives were also evaluated. The information gathered by the technical committee will be used by the Regional Board along with other information in their review of the San Joaquin River Basin Water Quality Control Plan and their actions to regulate agricultural drainage in the San Joaquin Valley. The results of the Technical Committee's efforts as reported in Regulation of Agricultural Drainage to the San Joaquin River, August 1987. Based on the available information, the improvement in water quality resulting from implementation of the interim selenium objective and long-term objectives for salts, molybdenum and boron is necessary to provide reasonable protection to beneficial uses. The costs needed to implement these objectives seem reasonable. However, data on the: (1) concentrations of selenium that protect aquatic ecosystems in the basin; (2) concentrations of selenium that protect human consumers of fish and wildlife; and (3) drainage flows and quality produced in and upgradient of the drainage study area need to be developed and reviewed before a long-term selenium water quality objective is implemented. 16 refs., 2 figs., 4 tabs.

  9. Taxing for stormwater drainage systems.

    PubMed

    Nascimento, N; Cançado, V; Cabral, J R

    2005-01-01

    This article evaluates the possibility of creating a tax for urban drainage in order to make the system self-financing. Average costs of implementation and maintenance of the services were used to individualize the charges and definition of the tax. The conventional drainage system was evaluated along with a source control alternative, water detention in tanks on the lot. The magnitude of the values being charged varies in function of the impermeable surface and the density of the urban area. Preserving creeks in natural conditions and using source control approach, are all options with the advantages of lower investment and smaller burden for the users. PMID:16445195

  10. The Influence of Landscape Drainage on Biogeochemical Cycling of Carbon in Agricultural Ecosystems

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; King, J. Y.; Mulla, D. J.; Finlay, J. C.; Sands, G. R.

    2008-12-01

    The movement of water through agricultural ecosystems is often modified by the presence of open ditches and subsurface tile drainage systems. Despite the common occurrence of these practices, particularly in the corn- and soybean-producing regions of the midwestern United States, much remains unknown about how altered drainage patterns may influence carbon export from agricultural landscapes. In this study, we examined the role of subsurface drainage systems on the quantity and quality of dissolved carbon export from experimental agricultural fields located in south-central Minnesota. Results from two years of observations show that fields with more intense drainage designs (e.g., greater density of subsurface drain lines) have dissolved organic carbon (DOC) concentrations that are similar to conventionally drained fields. However, fields with more intense drainage exhibit greater annual DOC loads due to higher water yields resulting from more intense drainage. In contrast, dissolved inorganic carbon (DIC) concentrations were consistently greater in fields with more intense drainage practices across all flow conditions. Our ongoing work is focused on determining if these differences in DIC concentrations are the result of either increased weathering or increased soil/plant root respiration resulting in increased soil CO2 concentrations. Molecular weight characterization of samples from our experimental fields shows that DOC from subsurface tile drainage is generally comprised of low molecular weight compounds. This low molecular weight signal is less apparent in samples from downstream ditch and river sites which are dominated by higher molecular weight compounds; suggesting that differences in organic matter source and/or processing are apparent over spatial scales transitioning from the field to small watershed. Overall, these results show that subsurface drainage practices fundamentally alter annual DOC and DIC carbon export from agricultural ecosystems as well

  11. Benefits of digital thoracic drainage systems.

    PubMed

    Danitsch, Debbie

    A number of risks and complications are associated with traditional chest drainage systems. A trust decided to trial digital drainage systems, and found the new systems improved treatment time and patient mobility. PMID:22536712

  12. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  13. [Drainage systems in glaucoma surgery].

    PubMed

    Hille, K; Hille, A; Ruprecht, K W

    2002-12-01

    Glaucoma drainage devices, also known as aqueous shunts (AS) are widely used in the USA. They consist of a silicone tube that is inserted into the anterior chamber and connected to a plate made of silicone or polypropylene, the explant. The latter is positioned between the recti muscles and over several weeks the surrounding tissue forms a fibrous bleb around the plate. This serves as a permanent filtration reservoir.Recurrent failure of filtrating surgery is the main indication for the use of AS. Other indications include situations in which the formation of a filtering bleb seems to be unpromising because of extensive conjunctival scarring. Qualified success has been achieved for many years in 50-100% of the eyes treated depending on patient selection. The most serious complication is postoperative hypotonia that can lead to serious chorioidal detachment, suprachorioidal hemorrhage, flat anterior chamber and corneal decompensation. To avoid this complication some devices, i.e.the Ahmed Glaucoma and the Krupin valve have integrated mechanisms to sustain a residual intraocular pressure. With other devices i.e. the Molteno and the Baerveldt devices, the tube has to be temporarily ligated until bleb formation has started. On the other hand fibrous infiltration of the bleb 1-4 months after the surgery often leads to a reversible rise in introcular pressure, which can be treated by massaging the bulbus, needling the bleb or injection of antimetabolites. There are no obvious differences between the various forms of AS with regard to the success of pressure regulation. In summary,by close scrutiny of indications and management of complications,drainage systems are a useful option in the management of complicated glaucoma that carry a high risk of failure from conventional filtering surgery.

  14. Effect of subsurface drainage on streamflow in an agricultural headwater watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial drainage, also known as subsurface or tile drainage is paramount to sustaining crop production agriculture in the poorly-drained, humid regions of the world. Hydrologic assessments of individual plots and fields with tile drainage are becoming common; however, a major void exists in our u...

  15. A GPR agricultural drainage pipe detection case study: Effects of antenna orientation relative to drainage pipe directional trend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...

  16. Laboratory Feasibility Evaluation of a New Modified Iron Product for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2010-12-01

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards through the soil profile to be intercepted by the buried drainage pipes and then discharged with drainage water into neighboring streams and lakes, oftentimes producing adverse environmental impacts on local, regional, and national scales. On-site drainage water filter treatment systems can potentially be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. A recently developed modified iron product may have promise as a filter material used within this type of drainage water treatment system. Therefore, a laboratory study was initiated to directly evaluate the feasibility of employing this new modified iron product as a filter material to treat drainage waters. Laboratory research included saturated falling-head hydraulic conductivity tests, contaminant (nutrient/pesticide) removal batch tests, and saturated solute transport column experiments. The saturated falling-head hydraulic conductivity tests indicate that the unaltered modified iron product by itself has a high enough hydraulic conductivity (> 1.0 x 10-3 cm/s) to normally allow sufficient water flow rates that are needed to make this material hydraulically practical for use in drainage water filter treatment systems. Modified iron hydraulic conductivity can be improved substantially (> 1 x 10-2 cm/s) by using only the portion of this material that is retained on a 100 mesh sieve (particle size > 0.15 mm). Batch test results carried out with spiked drainage water and either unaltered or 100 mesh sieved modified iron showed nitrate reductions of greater than 30% and 100% removal of the pesticide, atrazine. Saturated solute transport columns tests with spiked drainage water

  17. Systemic venous drainage: can we help Newton?

    PubMed

    Corno, Antonio F

    2007-06-01

    In recent years substantial progress occurred in the techniques of cardiopulmonary bypass, but the factor potentially limiting the flexibility of cardiopulmonary bypass remains the drainage of the systemic venous return. In the daily clinical practice of cardiac surgery, the amount of systemic venous return on cardiopulmonary bypass is directly correlated with the amount of the pump flow. As a consequence, the pump flow is limited by the amount of venous return that the pump is receiving. On cardiopulmonary bypass the amount of venous drainage depends upon the central venous pressure, the height differential between patient and inlet of the venous line into the venous reservoir, and the resistance in the venous cannula(s) and circuit. The factors determining the venous return to be taken into consideration in cardiac surgery are the following: (a) characteristics of the individual patient; (b) type of planned surgical procedure; (c) type of venous cannula(s); (d) type of circuit for cardiopulmonary bypass; (e) strategy of cardiopulmonary bypass; (f) use of accessory mechanical systems to increased the systemic venous return. The careful pre-operative evaluation of all the elements affecting the systemic venous drainage, including the characteristics of the individual patient and the type of required surgical procedure, the choice of the best strategy of cardiopulmonary bypass, and the use of the most advanced materials and tools, can provide a systemic venous drainage substantially better than what it would be allowed by the simple "Law of universal gravitation" by Isaac Newton.

  18. Late Pleistocene drainage systems beneath Delaware Bay

    USGS Publications Warehouse

    Knebel, H. J.; Circe, R.C.

    1988-01-01

    Analyses of an extensive grid of seismic-reflection profiles, along with previously published sedimentary data and geologic information from surrounding coastal areas, outline the ancestral drainage systems of the Delaware River beneath lower Delaware Bay. Major paleovalleys within these systems have southeast trends, relief of 10-35 m, widths of 1-8 km, and axial depths of 31-57 m below present sea level. The oldest drainage system was carved into Miocene sands, probably during the late Illinoian lowstand of sea level. It followed a course under the northern half of the bay, continued beneath the Cape May peninsula, and extended onto the present continental shelf. This system was buried by a transgressive sequence of fluvial, estuarine, and shallow-marine sediments during Sangamonian time. At the height of the Sangamonian sea-level transgression, littoral and nearshore processes built the Cape May peninsula southward over the northern drainage system and formed a contiguous submarine sedimentary ridge that extended partway across the present entrance to the bay. When sea level fell during late Wisconsinan time, a second drainage system was eroded beneath the southern half of the bay in response to the southerly shift of the bay mouth. This system, which continued across the shelf, was cut into Coastal Plain deposits of Miocene and younger age and included not only the trunk valley of the Delaware River but a large tributary valley formed by the convergence of secondary streams that drained the Delaware coastal area. During the Holocene rise of sea level, the southern drainage system was covered by a transgressive sequence of fluvial, estuarine, and paralic deposits that accumulated due to the passage of the estuarine circulation cell and to the landward and upward migration of coastal sedimentary environments. Some Holocene deposits have been scoured subsequently by strong tidal currents. The southward migration of the ancestral drainage systems beneath Delaware

  19. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  20. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  1. Chest drainage systems in use.

    PubMed

    Zisis, Charalambos; Tsirgogianni, Katerina; Lazaridis, George; Lampaki, Sofia; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Karapantzos, Ilias; Karapantzou, Chrysanthi; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos; Zarogoulidis, Paul

    2015-03-01

    A chest tube is a flexible plastic tube that is inserted through the chest wall and into the pleural space or mediastinum. It is used to remove air in the case of pneumothorax or fluid such as in the case of pleural effusion, blood, chyle, or pus when empyema occurs from the intrathoracic space. It is also known as a Bülau drain or an intercostal catheter. Insertion of chest tubes is widely performed by radiologists, pulmonary physicians and thoracic surgeons. Large catheters or small catheters are used based on each situation that the medical doctor encounters. In the current review we will focus on the chest drain systems that are in use. PMID:25815304

  2. Laboratory Evaluation of Sulfur Modified Iron for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2009-12-01

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. On-site water filter treatment systems can be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. Sulfur modified iron is a relatively unknown industrial product that may have promise for use as a filter material to remove contaminants from subsurface drainage waters. Sulfur modified iron (SMI) is a high surface area iron powder (zero valent iron) that has been altered via chemical reaction with pure sulfur to produce a sulfur/iron surface coating on the iron particles. A laboratory investigation was conducted with contaminant removal batch tests, saturated falling-head hydraulic conductivity tests, and saturated solute transport column experiments to evaluate the feasibility for using SMI to treat subsurface drainage waters. Contaminant removal batch tests showed that three SMI samples were much more effective removing nitrate (> 94% nitrate removed) than three zero valent iron samples (< 10% nitrate removed). Batch test results additionally showed that SMI removed greater that 94% of dissolved phosphate, but was not particularly effective removing the pesticide, atrazine (< 37% atrazine removed). Hydraulic conductivity tests indicated that all three SMI samples that were evaluated had sufficient hydraulic conductivity, much greater than the 1 x 10-3 cm/s standard used for stormwater sand filters. The saturated solute transport tests confirmed that SMI can be effective removing nitrate and phosphate from drainage waters. Analysis of column effluent also showed that the large majority of nitrate removed by SMI was converted to ammonium. Consequently, these laboratory findings support the use of SMI in

  3. Phosphorus transport in agricultural subsurface drainage: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be ...

  4. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  5. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remediation of excess nitrogen (N) in agricultural runoff can be enhanced by establishing wetland vegetation but the role of denitrification in N removal is not well understood in drainage ditches. We quantified differences in N retention during experimental runoff events followed by stagnant period...

  6. Examination of nitrate concentration, loading and isotope dynamics in subsurface drainage under standard agricultural cropping in Atlantic Canada.

    PubMed

    Smith, E L; Kellman, L M

    2011-11-01

    Intensive agricultural farming practices have the potential to cause high levels of nitrate-nitrogen (NO(3)(-)-N) to be released from tile drainage systems. A better understanding of the temporal dynamics of NO(3)(-)-N loading, δ(15)N and δ(18)O from standard drainage systems is needed, in order to improve our understanding of NO(3)(-)-N transport and transformation processes; particularly, with regards to the imperfectly drained agricultural soils found within Atlantic Canada. Three conventional subsurface drainage plots (48 × 48 m) placed at a 0.80 m soil depth were monitored over a seven month period on sandy loam soil in Onslow, Nova Scotia. Each plot received similar applications of both organic and inorganic fertilizer. Water samples were obtained and analyzed for NO(3)(-)-N concentrations and isotopic signatures of δ(15)N and δ(18)O for NO(3)(-)-N. Maximum NO(3)(-)-N loads were observed in the winter and fall, when both discharge and concentration of the NO(3)(-)-N were highest. Mean isotope values in NO(3)(-) ranged from 3.1 to 8.5‰ for δ(15)N and -3.2 to 17.7‰ for δ(18)O. Results suggest that NO(3)(-)-N from the drainage water was derived from organic sources (i.e. manure and soil organic matter) and that loss via denitrification does not impart an identifiable signature upon the NO(3)(-)-N pool. The dual isotope approach examined here provides insight into N source and transformation processes which may be contributing to the NO(3)(-)-N found within the drainage water. PMID:21816538

  7. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    PubMed

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW.

  8. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    PubMed

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW. PMID:26465302

  9. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Presser, T.S.; Davis, R.A.

    1996-01-01

    Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 ??g/l, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 ??g/l in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage. Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.

  10. Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage.

    PubMed

    Pronger, Jack; Schipper, Louis A; Hill, Reece B; Campbell, David I; McLeod, Malcolm

    2014-07-01

    The drainage and conversion of peatlands to productive agro-ecosystems leads to ongoing surface subsidence because of densification (shrinkage and consolidation) and oxidation of the peat substrate. Knowing the ra0te of this surface subsidence is important for future land-use planning, carbon accounting, and economic analysis of drainage and pumping costs. We measured subsidence rates over the past decade at 119 sites across three large, agriculturally managed peatlands in the Waikato region, New Zealand. The average contemporary (2000s-2012) subsidence rate for Waikato peatlands was 19 ± 2 mm yr (± SE) and was significantly less ( = 0.01) than the historic rate of 26 ± 1 mm yr between the 1920s and 2000s. A reduction in the rate of subsidence through time was attributed to the transition from rapid initial consolidation and shrinkage to slower, long-term, ongoing oxidation. These subsidence rates agree well with a literature synthesis of temperate zone subsidence rates reported for similar lengths of time since drainage. A strong nonlinear relationship was found between temperate zone subsidence rates and time since initial peatland drainage: Subsidence (mm yr) = 226 × (years since drained) ( = 0.88). This relationship suggests that time since drainage exerts strong control over the rate of peatland subsidence and that ongoing peatland subsidence rates can be predicted to gradually decline with time in the absence of major land disturbance.

  11. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes.

    PubMed

    Bouldin, J L; Farris, J L; Moore, M T; Cooper, C M

    2004-12-01

    Agricultural drainage ditches in the Mississippi Alluvial Delta landscape vary from edge-of-field waterways to sizeable drainages. Ditch attributes vary with size, location and maintenance and may aid in mitigation of contaminants from agricultural fields. The goal of this study was to better understand how vegetative characteristics affect water quality in conveyance structures in the context of ditch class and surrounding land use. Characterization of 36 agricultural ditches included presence of riparian buffer strips, water depth, surrounding land use, vegetative cover, and associated aqueous physicochemical parameters. Vegetation was assessed quantitatively, obtaining stem counts in a sub-sample of ditch sites, using random quadrat method. Physical features varied with ditch size and vegetative diversity was higher in larger structures. Polygonum sp. was the dominant bed vegetation and was ubiquitous among site sizes. Macrophytes varied from aquatic to upland species, and included Leersia sp. and upland grasses (Poaceae family) in all drainage size classes. Percent cover of bed and bank varied from 0 to 100% and 70 to 100%, respectively, and highest nutrient values were measured in sites with no buffer strips. These conveyance structures and surrounding buffer zones are being ranked for their ability to reduce excess nutrients, suspended solids, and pesticides associated with runoff. PMID:15325456

  12. Contamination of underwater seal drainage systems in thoracic surgery.

    PubMed

    Hornick, P; John, L C; Wallis, J; Wilkins, V; Rees, G M; Edmondson, S J

    1992-01-01

    The incidence of bacteriological contamination of drainage fluid (water constituting the underwater seal plus drainage effluent) was studied in 38 patients (50 chest drains), up to 6 days after thoracotomy. No bacteriological contamination was demonstrated in any of the samples taken during this period of time. We conclude that the underwater seal drainage system may be left for up to 6 days postoperatively without change of any of its components and without risk of contamination.

  13. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  14. Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California.

    PubMed

    Bañuelos, G S; Lin, Z-Q; Arroyo, I; Terry, N

    2005-09-01

    The presence of large amounts of Se-laden agricultural drainage sediment in the San Luis Drain, Central California, poses a serious toxic threat to wildlife in the surrounding environment. Effective management of the drainage sediment becomes a practical challenge because the sediment is polluted with high levels of Se, B, and salts. This two-year field study was conducted to identify the best plant species that are salt and B tolerant and that have a superior ability of volatilizing Se from drainage sediment. The drainage sediment was mixed with clean soil, and vegetated with salado alfalfa (Medicago sativa 'salado'), salado grass (Sporobulus airoides 'salado'), saltgrass-turf (Distichlis spp. 'NYPA Turf'), saltgrass-forage (Distichlis spicata (L.) Greene), cordgrass (Spartina patens 'Flageo'), Leucaenia (Leucaena leucocephola), elephant grass (Pennistum purpureum), or wild type-Brassica (Brassica spp.). Results show that elephant grass produced the greatest amount of biomass and accumulated highest concentrations of B. Highest concentrations of Se, S, and Cl were observed in wild-type Brassica. Biogenic volatilization of Se by plants and soil microbes was greater in summer. Among the treatments, the mean daily rates of Se volatilization (microg Se m(-2)d(-1)) were wild-type Brassica (39) > saltgrass-turf (31) > cordgrass (27) > saltgrass forage (24) > elephant grass (22) > salado grass (21) > leucaenia (19) > salado alfalfa (14) > irrigated bare soil (11) > non-irrigated bare soil (6). Overall, rates of Se volatilization in drainage sediment were relatively low due to high levels of sulfate. To manage Se in drainage sediment by phytoremediation, the biological volatilization process needs to be enhanced substantially under field conditions.

  15. Selenium and nitrate removal from agricultural drainage using the AIWPS(R) technology

    SciTech Connect

    Green, F.B.; Lundquist, T.J.; Quinn, N.W.T.; Zarate, M.A.; Zubieta, I.X.; Oswald, W.J.

    2003-01-02

    Monthly Maximum Discharge Limits (MMDL) have been established for selenium in irrigation drainage by the State of California and the U.S. Environmental Protection Agency following observations of avian teratogenesis at the Kesterson Reservoir in the San Joaquin Valley of California. As a result of these and other adverse effects, farmers and drainage districts on the western side of the San Joaquin Valley must reduce selenium concentrations in irrigation, drainage discharged to the San Joaquin River. Drainage treatment will be required in the near future to meet existing MMDL and future Total Maximum Discharge Limits (TMDL) for the San Joaquin River. A 0.4-hectare Algal Bacterial Selenium Removal (ABSR) Facility was designed and constructed at the Panoche Drainage District in 1995 and 1996 using the Advanced Integrated Wastewater Pond Systems (R) or AIWPS (R) Technology. Each of two physically identical systems combined a Reduction Pond (RP) with a shallow, peripheral algal High Rate Pond (HRP). A Dissolved Air Flotation (DAF) unit and a slow sand filter were used to remove particulate selenium from the effluent of each system. The two systems were operated under different modes of operation and the bacterial substrate varied in each system. The rates of nitrate and selenium removal were compared. Microalgae were harvested using DAF and used as a carbon-rich substrate for nitrate- and selenate-reducing bacteria. Mass removals of total soluble selenium of 77 percent or greater were achieved over a three-year period. Nitrate and selenate were removed by assimilatory and dissimilatory bacterial reduction, and nitrate was also removed by algal assimilation. The final removal of particulate selenium is the focus of ongoing investigations. The removal of particulate selenium is expected to increase the overall removal of selenium to greater than 90 percent and would allow farmers and drainage districts to discharge irrigation drainage in compliance with regulatory

  16. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  17. Phosphorus losses from drainage systems: breaking the surface tile riser connection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In freshwater ecosystems, phosphorus is generally the nutrient most limiting algal growth. Agricultural drainage systems in the upper Midwestern US are generally designed to drain water as quickly as possible, in order to ensure trafficability and minimize crop damage due to flooding. An unintended ...

  18. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  19. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  20. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... equivalent radius or sweep. (2) Horizontal to vertical. Horizontal drainage lines, connecting with a vertical pipe shall enter through 45-degree “Y” branches, 60-degree “Y” branches, long-turn “TY” branches... “Y” branches, long-turn “TY” branches, or other approved or listed fittings or combination...

  1. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... equivalent radius or sweep. (2) Horizontal to vertical. Horizontal drainage lines, connecting with a vertical pipe shall enter through 45-degree “Y” branches, 60-degree “Y” branches, long-turn “TY” branches... “Y” branches, long-turn “TY” branches, or other approved or listed fittings or combination...

  2. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... equivalent radius or sweep. (2) Horizontal to vertical. Horizontal drainage lines, connecting with a vertical pipe shall enter through 45-degree “Y” branches, 60-degree “Y” branches, long-turn “TY” branches... “Y” branches, long-turn “TY” branches, or other approved or listed fittings or combination...

  3. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... listed fittings or combinations of fittings with equivalent radius or sweep. (2) Horizontal to vertical...-degree “Y” branches, long-turn “TY” branches, sanitary “T” branches, or other approved or listed fittings... horizontal drainage lines shall enter through 45-degree “Y” branches, long-turn “TY” branches, or...

  4. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... equivalent radius or sweep. (2) Horizontal to vertical. Horizontal drainage lines, connecting with a vertical pipe shall enter through 45-degree “Y” branches, 60-degree “Y” branches, long-turn “TY” branches... “Y” branches, long-turn “TY” branches, or other approved or listed fittings or combination...

  5. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  6. VIEW OF DRAINAGE SYSTEM AND WALL OF WELL AT CLOSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF DRAINAGE SYSTEM AND WALL OF WELL AT CLOSER RANGE SHOWING VAULTED BRICK DRAIN AS IT ARCHED OUT FROM THE FOUNDATION (TO CENTER) - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  7. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  8. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.

    PubMed

    Lin, Z Q; Terry, N; Gao, S; Mohamed, S; Ye, Z H

    2010-03-01

    The knowledge of selenium (Se) partitioning in treatment wetlands and wetland vegetation management are essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage in central California. In this field study, samples from different compartments of treatment wetlands were collected and the vegetation change in each wetland cell was examined four years after the wetland's inception. The results showed that saltgrass (Distichlis spicata) and rabbitfoot grass (Polypogon monspeliensis) were less competitive than cattail (Typha latifolia) and saltmarsh bulrush (Scirpus robustus). Over 90% of the wetland cell originally vegetated with saltgrass or rabbitfoot grass was occupied by invasive plants--i.e., when invasive species were not controlled in the wetlands. More Se was likely found in sediments from vegetated regions, compared to the unvegetated areas of the wetland cell. Particularly, rhizosphere sediments accumulated about 4-fold more Se than non-rhizosphere sediments. Among the total Se retained in the wetland 90% of the total Se was partitioned in the top 10-cm layer of sediment. The Se accumulation in plant materials accounted for about 2% of the total Se mass retained in each wetland cell. This field study demonstrated that wetland plants play significant roles in the treatment of Se-laden agricultural drainage.

  9. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds.

    PubMed

    Wong, Keith H K; Truslow, James G; Khankhel, Aimal H; Chan, Kelvin L S; Tien, Joe

    2013-08-01

    The formation of a stably perfused microvasculature continues to be a major challenge in tissue engineering. Previous work has suggested the importance of a sufficiently large transmural pressure in maintaining vascular stability and perfusion. Here we show that a system of empty channels that provides a drainage function analogous to that of lymphatic microvasculature in vivo can stabilize vascular adhesion and maintain perfusion rate in dense, hydraulically resistive fibrin scaffolds in vitro. In the absence of drainage, endothelial delamination increased as scaffold density increased from 6 to 30 mg/mL and scaffold hydraulic conductivity decreased by a factor of 20. Single drainage channels exerted only localized vascular stabilization, the extent of which depended on the distance between vessel and drainage as well as scaffold density. Computational modeling of these experiments yielded an estimate of 0.40-1.36 cm H2O for the minimum transmural pressure required for vascular stability. We further designed and constructed fibrin patches (0.8 × 0.9 cm(2)) that were perfused by a parallel array of vessels and drained by an orthogonal array of drainage channels; only with the drainage did the vessels display long-term stability and perfusion. This work underscores the importance of drainage in vascularization, especially when a dense, hydraulically resistive scaffold is used. PMID:23281125

  10. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  11. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Bataille, Clement; Liu, Zhongfang; Ale, Srinivasulu; VanDeVelde, Justin; Roswell, Charles R.; Bowling, Laura C.; Bowen, Gabriel J.

    2012-10-01

    SummaryDrainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of NO3--laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. In this study, we quantified the flux and hydrological pathways of agricultural NO3- and road-salt Cl- from catchments lying within the Wabash River Basin, a major source of NO3- to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both NO3- and Cl) was transported early in the storm and (2) higher transport of Cl--laden pre-event soil water relative to shallow groundwater elevated in NO3- occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of Cl- and NO3- differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  12. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. PMID:26023969

  13. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    PubMed

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils.

  14. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  15. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  16. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California: runoff toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to investigate the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas), and the amphipod, Hyalella azteca, was measured for ...

  17. Computational Design of Drainage Systems for Vascularized Scaffolds

    PubMed Central

    Truslow, James G.; Price, Gavrielle M.; Tien, Joe

    2009-01-01

    This computational study analyzes how to design a drainage system for porous scaffolds so that the scaffolds can be vascularized and perfused without collapse of the vessel lumens. We postulate that vascular transmural pressure—the difference between lumenal and interstitial pressures—must exceed a threshold value to avoid collapse. Model geometries consisted of hexagonal arrays of open channels in an isotropic scaffold, in which a small subset of channels was selected for drainage. Fluid flow through the vessels and drainage channel, across the vascular wall, and through the scaffold were governed by Navier-Stokes equations, Starling’s Law of Filtration, and Darcy’s Law, respectively. We found that each drainage channel could maintain a threshold transmural pressure only in nearby vessels, with a radius-of-action dependent on vascular geometry and the hydraulic properties of the vascular wall and scaffold. We illustrate how these results can be applied to microvascular tissue engineering, and suggest that scaffolds be designed with both perfusion and drainage in mind. PMID:19481796

  18. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    PubMed

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO₃-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO₃-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage.

  19. Quality of shallow groundwater and drainage water in irrigated agricultural lands in a Mediterranean coastal region of Turkey.

    PubMed

    Odemiş, Berkant; Bozkurt, Sefer; Ağca, Necat; Yalçin, Mehmet

    2006-04-01

    Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO(3), HCO(3), Cl and SO(4)). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C(3)S(1) in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C(2)S(1) to C(4)S(2) in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001). PMID:16614781

  20. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.

  1. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage

    NASA Astrophysics Data System (ADS)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90 °C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  2. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review.

    PubMed

    Vymazal, Jan; Březinová, Tereza

    2015-02-01

    Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong.

  3. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min. PMID:26985876

  4. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review.

    PubMed

    Vymazal, Jan; Březinová, Tereza

    2015-02-01

    Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong. PMID:25461411

  5. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  6. Approach for evaluating inundation risks in urban drainage systems.

    PubMed

    Zhu, Zhihua; Chen, Zhihe; Chen, Xiaohong; He, Peiying

    2016-05-15

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers. Hence, inundation evaluation is becoming increasingly important around the world. This comprehensive assessment involves numerous indices in urban catchments, but the high-dimensional and non-linear relationship between the indices and the risk presents an enormous challenge for accurate evaluation. Therefore, an approach is hereby proposed to qualitatively and quantitatively evaluate inundation risks in urban drainage systems based on a storm water management model, the projection pursuit method, the ordinary kriging method and the K-means clustering method. This approach is tested using a residential district in Guangzhou, China. Seven evaluation indices were selected and twenty rainfall-runoff events were used to calibrate and validate the parameters of the rainfall-runoff model. The inundation risks in the study area drainage system were evaluated under different rainfall scenarios. The following conclusions are reached. (1) The proposed approach, without subjective factors, can identify the main driving factors, i.e., inundation duration, largest water flow and total flood amount in this study area. (2) The inundation risk of each manhole can be qualitatively analyzed and quantitatively calculated. There are 1, 8, 11, 14, 21, and 21 manholes at risk under the return periods of 1-year, 5-years, 10-years, 20-years, 50-years and 100-years, respectively. (3) The areas of levels III, IV and V increase with increasing rainfall return period based on analyzing the inundation risks for a variety of characteristics. (4) The relationships between rainfall intensity and inundation-affected areas are revealed by a logarithmic model. This study proposes a novel and successful approach to assessing risk in urban drainage systems and provides guidance for improving urban drainage systems and inundation preparedness. PMID:26897578

  7. Approach for evaluating inundation risks in urban drainage systems.

    PubMed

    Zhu, Zhihua; Chen, Zhihe; Chen, Xiaohong; He, Peiying

    2016-05-15

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers. Hence, inundation evaluation is becoming increasingly important around the world. This comprehensive assessment involves numerous indices in urban catchments, but the high-dimensional and non-linear relationship between the indices and the risk presents an enormous challenge for accurate evaluation. Therefore, an approach is hereby proposed to qualitatively and quantitatively evaluate inundation risks in urban drainage systems based on a storm water management model, the projection pursuit method, the ordinary kriging method and the K-means clustering method. This approach is tested using a residential district in Guangzhou, China. Seven evaluation indices were selected and twenty rainfall-runoff events were used to calibrate and validate the parameters of the rainfall-runoff model. The inundation risks in the study area drainage system were evaluated under different rainfall scenarios. The following conclusions are reached. (1) The proposed approach, without subjective factors, can identify the main driving factors, i.e., inundation duration, largest water flow and total flood amount in this study area. (2) The inundation risk of each manhole can be qualitatively analyzed and quantitatively calculated. There are 1, 8, 11, 14, 21, and 21 manholes at risk under the return periods of 1-year, 5-years, 10-years, 20-years, 50-years and 100-years, respectively. (3) The areas of levels III, IV and V increase with increasing rainfall return period based on analyzing the inundation risks for a variety of characteristics. (4) The relationships between rainfall intensity and inundation-affected areas are revealed by a logarithmic model. This study proposes a novel and successful approach to assessing risk in urban drainage systems and provides guidance for improving urban drainage systems and inundation preparedness.

  8. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) BUT CLOSER RANGE SHOWING BRICK STRUCTURE WHICH CARRIED WATER FROM THE GUTTER DRAIN PIPE INTO THE BRICK DRAIN ALONG THE GROUND AND AWAY FROM THE FOUNDATION OF THE HOUSE - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  9. Physical and Chemical Properties of Bench Sediments in Self-Formed Agricultural Drainage Channels

    NASA Astrophysics Data System (ADS)

    Brooker, M.; Witter, J.; Islam, K. R.; Mouser, P. J.

    2014-12-01

    Two-stage ditches are a novel approach to managing agricultural drainage and are designed with floodplain benches set within the banks of a standard, trapezoidal channel. The floodplain bench serves to attenuate pollutant loads in surface waters through (1) capture of sediments, (2) nutrient assimilation by vegetation, and (3) transformation of C and residual N and P by indigenous microorganisms. Two-stage channels have been constructed in the tri-state region of Ohio-Michigan-Indiana over the last decade with initial results indicating C and P sequestration and enhanced N removal via denitrification. However, the sustainability and the net ecosystem services provided by these designs are relatively unknown beyond this timeframe. To better characterize the properties of two-stage ditches aged more than a decade, we examined the physical and chemical properties of sediments in unplanned, self-formed floodplain benches across 5 distinct Midwest ecoregions. Established benches were selected from 3 locations within each ecoregion and sampled along depth and bench-positional gradients from geo-referenced sites. The sediment-bound C, N, and P concentrations were quantified along with soil texture and channel geomorphology. Nutrient concentrations did not differ across bench position (upstream, downstream, near bank, or near channel); however, significant differences were observed between ecoregions. Steeper slopes and higher benches were associated with higher sand content than surrounding soils and promoted greater storage of C and N. Gradual slopes, on the other hand, were associated with higher clay and silt content. Across these specific ecoregions, P storage declined with increasing depth. However, this was unexplained by the particle size distribution at these depths. Further research is therefore needed to investigate whether P is released from waterlogged sediments or there is biological redistribution of this nutrient across the column depth.

  10. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  11. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments.

    PubMed

    Freeman, John L; Bañuelos, Gary S

    2011-11-15

    Genetic variation in salt (Na(2)SO(4), NaCl) and boron (B) tolerance among four ecotypes of the selenium (Se) hyperaccumulator Stanleya pinnata (Pursh) Britton was utilized to select tolerant genotypes capable of phytoremediating Se from salt, B, and Se-laden agricultural drainage sediment. The few individual salt/B tolerant genotypes were successfully selected from among a large population of highly salt/B sensitive seedlings. The distribution, hyperaccumulation, and volatilization of Se were then examined in selected plants capable of tolerating the high salt/B laden drainage sediment. Salt/B tolerant genotypes from each of the four ecotypes had mean Se concentrations ranging from 2510 ± 410 to 1740 ± 620 in leaves and 3180 ± 460 to 2500 ± 1060 in seeds (μg Se g(-1) DW ± SD), while average daily Se volatilization rates ranged from 722 ± 375 to 1182 ± 575 (μg Se m(-2) d(-1) ± SD). After two growing seasons (∼18 months), we estimated that hyperaccumulation and volatilization of Se by tolerant S. pinnata genotypes and their associated microbes can remove approximately 30% of the total soil Se in 0-30 cm sediment. The salt/B tolerant S. pinnata genotypes selected and characterized herein represent promising new tools for the successful phytoremediation of Se from salt/B and Se-laden agricultural drainage sediments. PMID:21988205

  12. Characterising and classifying agricultural drainage channels for sediment and phosphorus management

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice

    2016-04-01

    In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were

  13. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  14. Metals in agricultural produce associated with acid-mine drainage in Mount Morgan (Queensland, Australia).

    PubMed

    Vicente-Beckett, Victoria A; McCauley, Gaylene J Taylor; Duivenvoorden, Leo J

    2016-01-01

    Acid-mine drainage (AMD) into the Dee River from the historic gold and copper mine in Mount Morgan, Queensland (Australia) has been of concern to farmers in the area since 1925. This study sought to determine the levels of AMD-related metals and sulfur in agricultural produce grown near the mine-impacted Dee River, compare these with similar produce grown in reference fields (which had no known AMD influence), and assess any potential health risk using relevant Australian or US guidelines. Analyses of lucerne (Medicago sativa; also known as alfalfa) from five Dee fields showed the following average concentrations (mg/kg dry basis): Cd < 1, Cu 11, Fe 106, Mn 52, Pb < 5, Zn 25 and S 3934; similar levels were found in lucerne hay (used as cattle feed) from two Dee fields. All lucerne and lucerne hay data were generally comparable with levels found in the lucerne reference fields, suggesting no AMD influence; the levels were within the US National Research Council (US NRC) guidelines for maximum tolerable cattle dietary intake. Pasture grass (also cattle feed) from two fields in the Dee River floodplains gave mean concentrations (mg/kg dry) of Cd 0.14, Cu 12, Fe 313, Mn 111, Pb 1.4, Zn 86 and S 2450. All metal levels from the Dee and from reference sites were below the US NRC guidelines for maximum tolerable cattle dietary intake; however, the average Cd, Cu and Fe levels in Dee samples were significantly greater than the corresponding levels in the pasture grass reference sites, suggesting AMD influence in the Dee samples. The average levels in the edible portions of mandarin oranges (Citrus reticulata) from Dee sites (mg/kg wet weight) were Cd 0.011, Cu 0.59, Fe 2.2, Mn 0.56, Pb 0.18, S 91 and Zn 0.96. Cd and Zn were less than or close to, average Fe and Mn levels were at most twice, Cd 1.8 or 6.5 times, and Pb 8.5 or 72 times the maximum levels in raw oranges reported in the US total diet study (TDS) or the Australian TDS, respectively. Average Cd, Fe, Mn, Pb and

  15. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.

    PubMed

    Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H

    2016-10-01

    Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. PMID:27344249

  16. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.

    PubMed

    Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H

    2016-10-01

    Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage.

  17. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  18. Nitrate removal from agricultural drainage ditch sediments with amendments of organic carbon: Potential for an innovative best management practice

    USGS Publications Warehouse

    Faust, Derek R.; Kröger, Robert; Miranda, Leandro E.; Rush, Scott A.

    2016-01-01

    Agricultural fertilizer applications have resulted in loading of nutrients to agricultural drainage ditches in the Lower Mississippi Alluvial Valley. The purpose of this study was to determine effects of dissolved organic carbon (DOC) and particulate organic carbon (POC) amendments on nitrate-nitrogen (NO3−-N) removal from overlying water, pore water, and sediment of an agricultural drainage ditch. Two experiments were conducted. In experiment 1, control (i.e., no amendment), DOC, and POC treatments were applied in laboratory microcosms for time intervals of 3, 7, 14, and 28 days. In experiment 2, control, DOC, and POC treatments were applied in microcosms at C/N ratios of 5:1, 10:1, 15:1, and 20:1. There were statistically significant effects of organic carbon amendments in experiment 1 (F2,71 = 27.1, P < 0.001) and experiment 2 (F2,53 = 39.1, P < 0.001), time (F1,71 = 14.5, P < 0.001) in experiment 1, and C/N ratio (F1,53 = 36.5, P < 0.001) in experiment 2. NO3−-N removal varied from 60 to 100 % in overlying water among all treatments. The lowest NO3−-N removals in experiment 1 were observed in the control at 14 and 28 days, which were significantly less than in DOC and POC 14- and 28-day treatments. In experiment 2, significantly less NO3−-N was removed in overlying water of the control compared to DOC and POC treatments at all C/N ratios. Amendments of DOC and POC made to drainage ditch sediment: (1) increased NO3−-N removal, especially over longer time intervals (14 to 28 days); (2) increased NO3−-N removal, regardless of C/N ratio; and (3) NO3−-N removal was best at a 5:1 C/N ratio. This study provides support for continued investigation on the use of organic carbon amendments as a best management practice for NO3−-N removal in agricultural drainage ditches.

  19. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    SciTech Connect

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  20. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  1. Acceleration of Selenium Volatilization in Seleniferous Agricultural Drainage Sediments Amended With Methionine and Casein.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation is a potential tool for the management of excessive Se in drainage sediment residing in the San Luis Drain in central California via plant extraction or biological volatilization of Se. This two-year field study in 2004/2005 examined the ability of organic amendments-methionine and ...

  2. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  3. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  4. Sorption and distribution of aged atrazine residues in the drainage system of an outdoor lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Jablonowski, N. D.; Schäffer, A.; Burauel, P.

    2009-04-01

    Even though the environmental impact of the herbicide atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is a matter of controversy, it is still extensively applied for agricultural purposes. Particularly in the US, atrazine has been applied to approximately 70% of all corn acreages in the last 18 years. Atrazine is banned in the EU but its use is increasing in countries like China, Brazil and India. Therefore, the worldwide soil burden of this compound must be enormous. Atrazine has been found to be highly persistent in the environment and it has been suggested that it is moderately mobile in the soil profile. As a result, it is found in most groundwater aquifers and surface waters in agricultural areas in the US. Even in Germany, where it was prohibited in 1991, it is still found in groundwater wells below agriculturally used land where it was formerly applied. For a long-term outdoor lysimeter experiment with a disturbed soil column, a drainage system of fine gravel was originally embedded at the bottom of the lysimeter. In this drainage system, atrazine and its metabolite 2-hydroxy-atrazine were extracted as long as 22 years after the last atrazine application. Due to the radiolabelling, the spatial distribution of the atrazine residues can be evaluated in fractions like fine clay particles attached to the gravel or in the gravel itself. Approximately 2% of the total gravel consisted of carbonaceous, slag-like particles which might retain most of the atrazine and its residues. The latest data will be presented at the session.

  5. Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise

    NASA Astrophysics Data System (ADS)

    Poulter, Benjamin; Goodall, Jonathan L.; Halpin, Patrick N.

    2008-08-01

    SummaryThe vulnerability of coastal landscapes to sea level rise is compounded by the existence of extensive artificial drainage networks initially built to lower water tables for agriculture, forestry, and human settlements. These drainage networks are found in landscapes with little topographic relief where channel flow is characterized by bi-directional movement across multiple time-scales and related to precipitation, wind, and tidal patterns. The current configuration of many artificial drainage networks exacerbates impacts associated with sea level rise such as salt-intrusion and increased flooding. This suggests that in the short-term, drainage networks might be managed to mitigate sea level rise related impacts. The challenge, however, is that hydrologic processes in regions where channel flow direction is weakly related to slope and topography require extensive parameterization for numerical models which is limited where network size is on the order of a hundred or more kilometers in total length. Here we present an application of graph theoretic algorithms to efficiently investigate network properties relevant to the management of a large artificial drainage system in coastal North Carolina, USA. We created a digital network model representing the observation network topology and four types of drainage features (canal, collector and field ditches, and streams). We applied betweenness-centrality concepts (using Dijkstra's shortest path algorithm) to determine major hydrologic flowpaths based off of hydraulic resistance. Following this, we identified sub-networks that could be managed independently using a community structure and modularity approach. Lastly, a betweenness-centrality algorithm was applied to identify major shoreline entry points to the network that disproportionately control water movement in and out of the network. We demonstrate that graph theory can be applied to solving management and monitoring problems associated with sea level rise

  6. Evaluation of management options for disposal of salt and trace element laden agricultural drainage water from the Fallon Indian Reservation, Fallon, Nevada

    SciTech Connect

    Tokunaga, Tetsu; Benson, S.

    1991-03-01

    This is the final report describing work performed on the Fallon Indian Reservation by the Earth Sciences Division at Lawrence Berkeley Laboratory during FY90. These investigations were initiated at the request of the United States Bureau of Reclamation in response to recent concerns regarding disposal of agriculture drainage water from the Reservation. The Reservation is transected by numerous irrigation and drainage canals, including the TJ Drain. Recent investigations by the US Fish and Wildlife Service have demonstrated that water in the TJ Drain is toxic to several aquatic indicator organisms, including bluegills, fathead minnows and daphnids. This information, coupled with recent die-offs of fish and birds, has lead to concern about continued discharge of TJ Drain water into local surface waters. In late 1990, plans for closing the TJ Drain and providing for alternative drainage were initiated. We aim to provide information for assessing options fro disposal of agricultural drainage water from the Reservation. In particular, our studies focuses on irrigation and drainage of lands currently serviced by the TJ Drain. Options for continued irrigation and drainage of the Reservation fall broadly into two categories: options that provide an alternative to drain water disposal into the SWMA; and options that include continuing the current practice of drain water disposal into the SWMA. Other options include elements of both of these alternatives. Additional discussion of specific options will follow a brief summary of the technical work supporting our assessment of drainage related issues at the Reservation. 67 refs., 57 figs., 15 tabs.

  7. Nutrient removal of agricultural drainage water using algal turf scrubbers and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  8. Hydrological variability and agricultural drainage ditch nutrient mitigation capacity: Inorganic nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of inorganic nitrogen fertilizers on agricultural landscapes has the potential to generate environmental degradation concerns at fine to coarse scales across the catchment and landscape. Inorganic nitrogen species (nitrate, nitrite, ammonia) are typically associated with subsurface f...

  9. Benthic invertebrates of benchmark streams in agricultural areas of eastern Wisconsin, Western Lake Michigan Drainages

    USGS Publications Warehouse

    Rheaume, S.J.; Lenz, B.N.; Scudder, B.C.

    1996-01-01

    Information gathered from these benchmark streams can be used as a regional reference for comparison with other streams in agricultural areas, based on communities of aquatic biota, habitat, and water quality.

  10. Feasibility study of a self-remediation system for mine drainage using its thermal energy

    NASA Astrophysics Data System (ADS)

    Oh, Chamteut; Cheong, Youngwook; Yim, Giljae; Ji, Sangwoo

    2016-04-01

    Mine drainage is defined as the water which is discharged to the ground surface through shafts and/or cracks formed by mining activities. Typically, mine drainage features high concentration of acidity and metals since it passes through the underground. Therefore, for the purpose of protecting the surrounding natural environment, mine drainage should be remediated before being discharged to nature. Mine drainage, due to its nature of being retained underground, shows constant temperature which is independent from the temperature of the atmosphere above ground. This condition allows mine drainage to become a promising renewable energy source since energy can be recovered from water with constant temperature. In this research, a self-remediation system is proposed which remediates the mine drainage through electrochemical reactions powered by the thermal energy of mine drainage. High energy efficiency is able to be achieved by shortening the distance between the energy source and consumption, and therefore, this system has a strong advantage to be actualized. A feasibility study for the system was conducted in this research where the thermal energy of mine drainage over time and depth was calculated as energy supply and the required electrical energy for remediating the mine drainage was measured as energy consumption. While the technology of converting thermal energy directly into electrical energy is yet to be developed, energy balance analysis results showed that the proposed self-remediation system is theoretically possible.

  11. Comparative analysis of the outflow water quality of two sustainable linear drainage systems.

    PubMed

    Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J

    2014-01-01

    Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.

  12. INVESTIGATION OF INAPPROPRIATE POLLUTANTS ENTRIES INTO STORM DRAINAGE SYSTEMS: A USER'S GUIDE

    EPA Science Inventory

    This User's Guide is the result of a series of EPA sponsored research tasks to develop a procedure to investigate non-stormwater entries into storm drainage systems. A number of past projects have found that dry-weather flows discharging from storm drainage systems can contribu...

  13. INVESTIGATION OF DRY-WEATHER POLLUTANT ENTRIES INTO STORM-DRAINAGE SYSTEMS

    EPA Science Inventory

    This article describes the results of a series of research tasks to develop a procedure to investigate non-stormwater (dry-weather) entries into storm drainage systems. Dry-weather flows discharging from storm drainage systems can contribute significant pollutant loadings to rece...

  14. Discontinuous Drainage Systems of NE Hellas Basin, Mars

    NASA Astrophysics Data System (ADS)

    Hargitai, H. I.; Gulick, V. C.

    2015-12-01

    We mapped several valley and channel systems located on the plains NE of Hellas Basin, NW of Dao, Harmakhis, and Reull Valles, using CTX, THEMIS, HiRISE and HRSC data. The dissected terrain is comprised of early Hesperian lava flows. Drainage systems consist of deep, narrow valleys that we interpret as bedrock reaches and small outflow-like, flat-floored channels, that are approximately 1-2 km wide and contain depositional bedforms. In these systems, approximately 130 m deep narrow reaches alternate with wide, shallow sediment-dominated reaches. This morphologic pattern is probably the result downcutting and erosion of bedrock by stream flow and subsequent deposition of the eroded material in the wider reaches downstream in response to local topographic and lithologic changes. The floors of the wider channel reaches contain several stream-lined smooth-surfaced islands, which we interpret as possible bar deposits. In some of these non-terminal depositional reaches, the channels are completely filled by deposits but further downstream the boundaries of the channel walls become apparent again. We interpret these locations as possible sites where stream flow spreads out and infiltrates into the subsurface and then subsequently outflows again to surface where channel walls become more defined. Some channels seem to be associated with the pitted latitude dependent mantle, whereas elevated islands remain smooth and free of pits. In the upper reaches of one channel system, an assemblage of intra-channel features is repeated: knobs, sinuous ridges and elongate, channel-jamming deposits similar to the morphology resulting from glaciers or rock glaciers. One channel system begins with several theater-shaped heads, suggesting a possible formation by sapping. Channel heads are cut into a high-thermal-inertia unit, possibly basaltic bedrock. We propose that this setting is suggestive of terrestrial discontinuous ephemeral stream channel systems.

  15. Laboratory Testing of Foundry Sands as Bulking Agents for Porous Media Filters Used to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2008-12-01

    Foundry sands are industrial byproducts that may have potential application as bulking agents that when mixed with small amounts of more chemically reactive materials (i.e. sulfur modified iron, fly ash, etc.) can be used to produce porous media filters capable of removing contaminants from agricultural drainage waters. Foundry sand bulking agents are attractive primarily as a low cost means to maintain the hydraulic efficiency of a filter. Secondarily, the foundry sands themselves may have some capacity for removal of agricultural nutrients and pesticides from water. Consequently, a laboratory study was initiated to quantify hydraulic efficiency and agricultural contaminant removal abilities of six foundry sands. Of the six foundry sands tested, all were obtained in central Ohio, three from iron casting foundries, two from steel casting foundries, and one from an aluminum casting foundry. Hydraulic efficiencies of the foundry sands were assessed by measuring hydraulic conductivity with twice replicated falling-head permeability tests. Batch tests were employed to evaluate foundry sand potential to treat water containing nitrate and phosphate nutrients, along with the pesticide, atrazine. Five of the six foundry sand samples had measured hydraulic conductivity values from 7.6 x 10-3 cm/s to 3.8 x 10-2 cm/s, which is in the range of hydraulic conductivity values found for clean sand. The one foundry sand that was an exception had much lower measured hydraulic conductivity values of 2.75 x 10-5 cm/s and 5.76 x 10-5 cm/s. For the batch tests conducted, none of the nitrate was removed by any of the six foundry sands; however, conversely, almost all of the phosphate was removed by each foundry sand. Batch test atrazine removal results were much more varied. Compared with baseline batch tests, one foundry sand removed two thirds of the atrazine, one foundry sand removed about one half of the atrazine, three foundry sands removed about a third of the atrazine, and one

  16. Long-Term Monitoring of Waterborne Pathogens and Microbial Source Tracking Markers in Paired Agricultural Watersheds under Controlled and Conventional Tile Drainage Management

    PubMed Central

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward

    2014-01-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274

  17. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming

    2015-10-01

    In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.

  18. (226) RA AND (228) RA ACTIVITIES ASSOCIATED WITH AGRICULTURAL DRAINAGE PONDS AND WETLAND PONDS IN THE KANKAKEE WATERSHED, IL-IN, USA

    EPA Science Inventory

    Background radioactivity is elevated in many agricultural drainage ponds and also constructed wetland ponds in the Kankakee watershed. During 1995-1999, gross-a and -B activities were measured up to 455 and 1650 mBq L-1, respectively. 226Ra and 228Ra averaged 139 and 192 mBq L-01...

  19. Discharge characteristics of four highway drainage systems in Ohio

    USGS Publications Warehouse

    Straub, D.E.

    1995-01-01

    Excessive water in the subbase of high-way combined with large traffic volumes and heavy loads is a major cause of road deterioration. Prompt removal of any excess water in a subbase will decrease the road deterioration and extend the effective life of a highway. This study presents discharge characteristics of four highway subbase drainage systems. These systems consisted of shallow, longitudal trenches with geocomposite drain materials (edge drains made from a polyethylene core surrounded by a geotextile filter fabric) that underline the joint between the shoulder and the traffic lane of State Route 16, approximately 1.0 mile southeast of Granville, Ohio. For selected rainfall-runoff events the maximum discharge, discharge characteristics from April 1991 through November 1993 were computed for three geocomposite products- a post type, an oblong-pipe type, and a cusp type-and a conventional perforated pipe edge drain. In general, the discharge characteristics of the conventional edge drain and that of the oblong-pipe edge drain were similar for most of the rainfall-runoff event characteristics. Both produced most of the highest maximum discharges and largest discharge volumes among the four longitudal edge drains. The post edge drain produced smaller maximum discharge and volumes than the conventional and oblong-pipe edge drains, but it had the shortest lag times for most of the event characteristics. The cusp edge drain produced small maximum discharges and small volumes similar to those from the post edge drain, but it had the longest lag times of all the edge drains for most of the event characteristics. The cusp edge drain may have also had some problems during installation which could have affected the discharge characteristics.

  20. Vaccum drainage system application in the management of operation-related non-regional epidural hematoma

    PubMed Central

    2013-01-01

    Background Epidural intracranial hematoma is one of the most common complications of surgeries for intracranial tumors. The non-regional epidural hematoma is related to severe fluctuation of the intracranial pressure during the operation. The traditional management of hematoma evacuation through craniotomy is time-consuming and may aggravate intracranial pressure imbalance, which causes further complications. We designed a method using vaccum epidural drainage system, and tried to evaluate advantage and the disadvantage of this new technique. Methods Seven patients of intracranial tumors were selected. All of the patients received tumor resection and intra-operative non-regional epidural hematoma was confirmed through intra-operative ultrasound or CT scan. The vaccum drainage system was applied. Another ten patients who received craniotomy for intra-operative non-regional epidural hematoma evacuation were selected as comparison. Regular tests, like serial CT scan, were performed afterward to evaluate the effectiveness and to help deciding when to remove the drainage system. Results The vaccum drainage method was effective in epidual hemotoma clearance and prevented recurrent epidural hemorrhage. The drainage systems were removed within 4 days. All of the patients recovered well. No complications related to the drainage system were observed. Conclusions Compared to the traditional craniotomy, the new method of epidural hemoatoma management using vaccum epidural drainage system proved to be as effective in hematoma clearance, and was less-invasive and easier to perform, with less complication, shorter hospitalization, less economic burden, and better prognosis. PMID:23842198

  1. Effect of overpressure on the catchment outflow of a tile drainage system: an integrated modeling strategy

    NASA Astrophysics Data System (ADS)

    Henine, H.; Nedelec, Y.

    2009-04-01

    The effect of agricultural artificial drainage on catchment outflow has been a debate for quite some time. Predicting the drainage impacts on downstream peak flow is complex because it involves different flow media: soil, drainage pipes' network and open channels. This work follows up field experiments carried out in a small subsurface drained catchment. Flow rates and pressure heads were monitored in buried pipe collectors, within the drainage network, at the junction between field collector and main collector, and at the whole catchment outlet. A watertable profile in the drained field was recorded simultaneously to investigating underground flow during pipe pressurization. Several years of data collection showed that pipe pressurization, during intense rainfall events, induced limited or reversed collector discharge and temporary storage of infiltrated water within the field soil while the water table rose. In order to better understand and predict the influence of the temporary pipe pressurization on field drainage discharge during intense rainfall events, this work proposes an integrated modeling strategy. The modeling approach consists in adapting and coupling a 1D Saint-Venant network model, with a 2D Boussinesq shallow watertable model. Two main issues are addressed here. The first one is the ability of both models to cope with pressurized conditions for both buried pipes and watertable above drain. The second issue deals with assessing the effects of topography and network organization on drainage pipe pressurization.

  2. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  3. Shallow Aquifer Connectivity and Early Season Water Supply of Seasonal Wetlands and Drainages Leading to Regional Drainage Systems

    NASA Astrophysics Data System (ADS)

    McCarten, N. F.; Harter, T.

    2009-12-01

    The Sacramento and San Joaquin Rivers in the Central Valley, California are recognized being seasonally supplied by early season direct surface water runoff and later season snow melt runoff from their tributaries. In addition, early season water supply to these rivers is derived from precipitation (PPT) that has infiltrated into soils underlain by a near surface aquitard, typically at less than 2 m depth. These shallow perched groundwater systems contribute a potentially substantial amount of water from more than 500,000 hectares of landforms associated with geomorphic terraces underlain by these aquitards. Early season water input to seasonal and perennial drainages is regulated by the hydraulic conductivity of the (clay-) loamy soils and by surface and aquitard slope of the local catchments associated with these old alluvial landforms. Research on these landforms and shallow aquifers has identified a complex PPT and evapotranspiration (ET) sensitive system that includes shallow depressions that seasonally produce water table derived wetlands (“vernal pools”). These wetlands have been recognized for a very high level of plant and invertebrate species diversity including endangered species. In addition, these seasonal wetlands provide migratory feeding areas of birds. Our work on these seasonal perched systems shows that as much as 80 percent of the soil column above the aquitard is saturated, during average to high rainfall years, for up to 90 to 120 days. Where the water table of this perched system intercepts the land surface, vernal pools develop. The perched groundwater drains into seasonal surface drainages that ultimately supply the Sacramento and San Joaquin rivers. At the end of the rainy season, both the vernal pools and the perched aquifer rapidly and synchronously disappear. Once the soil is unsaturated, water flow is vertically upward due to ET. Variably saturated modeling of this system was conducted using HYDRUS 2D/3D. Climate inputs were from

  4. Determination of sulfadiazine in phosphate- and DOC-rich agricultural drainage water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Bouyou, P A Léon; Weisser, Johan J; Strobel, Bjarne W

    2014-08-01

    Trace levels of the veterinary antibiotic compound sulfadiazine (SDZ) can be determined in agricultural drainage water samples with this new method. Optimized sample pretreatment and solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry (SPE LC-MS/MS) using positive electrospray ionization. The linear dynamic range for the LC-MS/MS was assessed from 5 μg/L to 25 mg/L with a 15-point calibration curve displaying a coefficient of correlation r(2) = 0.9915. Agricultural drainage water spiked at a concentration of 25 ng/L gave recoveries between 63 and 98 % (relative standard deviation 15 %), while at 10 ng/L, it showed a lower recovery of 32 % (relative standard deviation 47 %). The final SPE LC-MS/MS method had a limit of detection (LOD)(Method) and a limit of quantification (LOQ)(Method) of 7.5 and 23 ng/L agricultural drainage water, respectively. Determination of SDZ, spiked at a realistic concentration of 50 μg/L, in artificial drainage water (ADW) containing common and high levels of phosphate (0.05, 0.5, and 5 mg/L) gave recoveries between 70 and 92 % (relative standard deviation 7.4-12.9 %). Analysis of the same realistic concentration of SDZ in ADW, spiked with common and high levels of dissolved organic carbon (2, 6, and 15 mg/L) confirmed the possible adaptation of a tandem solid-phase extraction (strong anion exchange (SAX)-hydrophilic-lipophilic balance (HLB)) followed by liquid chromatography-tandem mass spectrometry methodology. Recoveries obtained ranged from 104 to 109 % (relative standard deviation 2.8-5.2 %). The new methods enable determination of the veterinary antibiotic compound SDZ in agricultural drainage water from field experiments and monitoring schemes for phosphate- and dissolved organic carbon (DOC)-rich water samples in intensive farming areas.

  5. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    PubMed

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify

  6. Contaminant exposure of willets feeding in agricultural drainages of the lower Rio Grande valley of south Texas

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1991-01-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Laguna Madre of South Texas and at two other Texas coastal sites. Mean liver concentration of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in livers for all locations (means = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides.

  7. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  8. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark

    NASA Astrophysics Data System (ADS)

    Gachango, F. G.; Pedersen, S. M.; Kjaergaard, C.

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  9. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark.

    PubMed

    Gachango, F G; Pedersen, S M; Kjaergaard, C

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads. PMID:26239649

  10. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark.

    PubMed

    Gachango, F G; Pedersen, S M; Kjaergaard, C

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  11. Urban drainage system planning and design--challenges with climate change and urbanization: a review.

    PubMed

    Yazdanfar, Zeinab; Sharma, Ashok

    2015-01-01

    Urban drainage systems are in general failing in their functions mainly due to non-stationary climate and rapid urbanization. As these systems are becoming less efficient, issues such as sewer overflows and increase in urban flooding leading to surge in pollutant loads to receiving water bodies are becoming pervasive rapidly. A comprehensive investigation is required to understand these factors impacting the functioning of urban drainage, which vary spatially and temporally and are more complex when weaving together. It is necessary to establish a cost-effective, integrated planning and design framework for every local area by incorporating fit for purpose alternatives. Carefully selected adaptive measures are required for the provision of sustainable drainage systems to meet combined challenges of climate change and urbanization. This paper reviews challenges associated with urban drainage systems and explores limitations and potentials of different adaptation alternatives. It is hoped that the paper would provide drainage engineers, water planners, and decision makers with the state of the art information and technologies regarding adaptation options to increase drainage systems efficiency under changing climate and urbanization. PMID:26177398

  12. Urban drainage system planning and design--challenges with climate change and urbanization: a review.

    PubMed

    Yazdanfar, Zeinab; Sharma, Ashok

    2015-01-01

    Urban drainage systems are in general failing in their functions mainly due to non-stationary climate and rapid urbanization. As these systems are becoming less efficient, issues such as sewer overflows and increase in urban flooding leading to surge in pollutant loads to receiving water bodies are becoming pervasive rapidly. A comprehensive investigation is required to understand these factors impacting the functioning of urban drainage, which vary spatially and temporally and are more complex when weaving together. It is necessary to establish a cost-effective, integrated planning and design framework for every local area by incorporating fit for purpose alternatives. Carefully selected adaptive measures are required for the provision of sustainable drainage systems to meet combined challenges of climate change and urbanization. This paper reviews challenges associated with urban drainage systems and explores limitations and potentials of different adaptation alternatives. It is hoped that the paper would provide drainage engineers, water planners, and decision makers with the state of the art information and technologies regarding adaptation options to increase drainage systems efficiency under changing climate and urbanization.

  13. Analysis of the potential impacts on surface water quality resulting from the proposed use of the San Luis Drain to transport agricultural drainage through the northern Grasslands

    SciTech Connect

    Quinn, N.W.T.

    1992-05-01

    An Environmental Assessment and initial Study for the interim use of a portion of the San Luis Drain for conveyance water through the Grassland Water District and adjacent Grassland areas was conducted. The project proposes the use of 18 miles of the San Luis Drain for the conveyance of agricultural drainage water for a period of five years and the elimination of agricultural drainage discharges from 76 miles of existing channels in and adjacent to the Grassland Water District. A report was prepared to (a) quantify the potential project effects on surface water quality within Salt and Mud Sloughs and the San Joaquin River using currently available data, and (b) to improve the understanding of existing water supply and drainage operations within the Grassland area. After submission of the original report it was brought to the attention of one of the coauthors that the database on selenium and boron concentrations in drainage water did not include the water quality data collected by the Regional Water Quality Control Board (CRWQCB). In addition, the US Bureau of Reclamation (USBR) requested further examination of Grasslands hydrology to estimate the quantity of supplemental water that would be needed to restore the San Joaquin River to the same TDS and trace element concentrations prior to implementation of the project. This report addresses these issues.

  14. An analytical solution for predicting the transient seepage from a subsurface drainage system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling

    2016-05-01

    Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.

  15. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  16. Rapid field assessment of RO desalination of brackish agricultural drainage water.

    PubMed

    Thompson, John; Rahardianto, Anditya; Gu, Han; Uchymiak, Michal; Bartman, Alex; Hedrick, Marcos; Lara, David; Cooper, Jim; Faria, Jose; Christofides, Panagiotis D; Cohen, Yoram

    2013-05-15

    Rapid field evaluation of RO feed filtration requirements, selection of effective antiscalant type and dose, and estimation of suitable scale-free RO recovery level were demonstrated using a novel approach based on direct observation of mineral scaling and flux decline measurements, utilizing an automated Membrane Monitor (MeMo). The MeMo, operated in a stand-alone single-pass desalting mode, enabled rapid assessment of the adequacy of feed filtration by enabling direct observation of particulate deposition on the membrane surface. The diagnostic field study with RO feed water of high mineral scaling propensity revealed (via direct MeMo observation) that suspended particulates (even for feed water of turbidity <1 NTU) could serve as seeds for promoting surface crystal nucleation. With feed filtration optimized, a suitable maximum RO water recovery, with complete mineral scale suppression facilitated by an effective antiscalant dose, can be systematically and directly identified (via MeMo) in the field for a given feed water quality. Scale-free operating conditions, determined via standalone MeMo rapid diagnostic tests, were shown to be applicable to spiral-would RO system as validated via both flux decline measurements and ex-situ RO plant membrane scale monitoring. It was shown that the present approach is suitable for rapid field assessment of RO operability and it is particularly advantageous when evaluating water sources of composition that may vary both temporally and across the regions of interest. PMID:23538039

  17. Rapid field assessment of RO desalination of brackish agricultural drainage water.

    PubMed

    Thompson, John; Rahardianto, Anditya; Gu, Han; Uchymiak, Michal; Bartman, Alex; Hedrick, Marcos; Lara, David; Cooper, Jim; Faria, Jose; Christofides, Panagiotis D; Cohen, Yoram

    2013-05-15

    Rapid field evaluation of RO feed filtration requirements, selection of effective antiscalant type and dose, and estimation of suitable scale-free RO recovery level were demonstrated using a novel approach based on direct observation of mineral scaling and flux decline measurements, utilizing an automated Membrane Monitor (MeMo). The MeMo, operated in a stand-alone single-pass desalting mode, enabled rapid assessment of the adequacy of feed filtration by enabling direct observation of particulate deposition on the membrane surface. The diagnostic field study with RO feed water of high mineral scaling propensity revealed (via direct MeMo observation) that suspended particulates (even for feed water of turbidity <1 NTU) could serve as seeds for promoting surface crystal nucleation. With feed filtration optimized, a suitable maximum RO water recovery, with complete mineral scale suppression facilitated by an effective antiscalant dose, can be systematically and directly identified (via MeMo) in the field for a given feed water quality. Scale-free operating conditions, determined via standalone MeMo rapid diagnostic tests, were shown to be applicable to spiral-would RO system as validated via both flux decline measurements and ex-situ RO plant membrane scale monitoring. It was shown that the present approach is suitable for rapid field assessment of RO operability and it is particularly advantageous when evaluating water sources of composition that may vary both temporally and across the regions of interest.

  18. Impacts of climate change on rainfall extremes and urban drainage systems: a review.

    PubMed

    Arnbjerg-Nielsen, K; Willems, P; Olsson, J; Beecham, S; Pathirana, A; Bülow Gregersen, I; Madsen, H; Nguyen, V-T-V

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding of how to describe precipitation patterns in a changing climate in order to design and operate urban drainage infrastructure. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future.

  19. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  20. A Geographic Information System procedure to quantify drainage-basin characteristics

    USGS Publications Warehouse

    Eash, David A.

    1993-01-01

    The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.

  1. Fluvial drainage systems: Margaritifer Sinus and Agyre (NC, NE) quadrangles, Mars

    NASA Astrophysics Data System (ADS)

    Boothroyd, J. C.; Grant, J. A.

    1984-04-01

    Fluvial drainage systems, delineated by mapping on stereo pairs of Viking Orbiter images, have developed in various-sized basins in the Margaritifer Sinus (MC-19) and Agyre (MC-26) Quadrangles, Mars. The Ladon Valles system is the largest, draining into and through two multi-ringed impact basins. Smaller fluvial basins to the southeast of the Ladon structural basin appear to have internal drainage. An intermediate-scale fluvial basin containing Himera Vallis extends along a north-south axis at 22 W and opens northward toward outflow channels south of Margaritifer Chaos. Stereo-pair mapping was extended furhter to the east, in MC-19 Ne, Se, and MC-26 NE, to investigate sources of outflow to the Ares Vallis system. The direction of flow in the channel at the northeast quadrant of the Ladon Basin is unresolved at present because of the poor quality of images available to form stereo pairs. However, an easterly drainage basin boundary running north-south along longitude 9 W, and extending westward at latitude 32-35 S, encloses a series of longitudinal drainage systems. Both the Parana Valles-Loire Vallis system and the Samara Valles system appear to drain in a northwesterly direction. The Samara flows to the Himera drainage basin, and the Parana-Loire to the northeast Ladon channel area.

  2. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  3. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    El Bastawesy, M.; Ramadan Ali, R.; Faid, A.; El Osta, M.

    2013-04-01

    This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases), which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins) and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and seepage water can be

  4. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  5. Prophylaxis of indwelling urethral catheter infection: clinical experience with a modified Foley catheter and drainage system.

    PubMed

    Akiyama, H; Okamoto, S

    1979-01-01

    With the application of the oligodynamic bactericidal property of silver ions, modification of the urinary catheter and drainage system has been found effective in the prevention of urinary tract infections owing to prolonged bladder catheterization. The newly devised catheter and open drainage system were used in 102 patients for bladder catheterization postoperatively or in those with urinary retention for periods ranging from 4 to 77 days. During the period of indwelling catheterization usually no antibiotics were administered and no patient had overt bacteriuria (more than 10(5) bacteria per ml.) or symptoms of urethritis. In contrast, all 20 patients in the control group who had the conventional type of indwelling catheters had bacteriuria within 4 days of catheterization. The data obtained indicate that effective prevention of urinary tract infection, which frequently is associated with indwelling urethral catheterization, can be achieved by the use of the modified catheter and drainage system.

  6. Digital and smart chest drainage systems to monitor air leaks: the birth of a new era?

    PubMed

    Cerfolio, Robert J; Varela, Gonzalo; Brunelli, Alessandro

    2010-08-01

    Recently, several companies have manufactured and commercialized new pleural drainage units that incorporate electronic components for the digital quantification of air through chest tubes and, in some instances, pleural pressure assessment. The goal of these systems is to objectify this previously subjective bedside clinical parameter and allow for more objective, consistent measurement of air leaks. The belief is this will lead to quicker and more accurate chest tube management. In addition, some systems feature portable suction devices. These may afford earlier mobilization of patients because the pleural drainage chamber is attached to a battery-powered smart suction device. In this article we review the clinical experiences using these new devices. PMID:20619233

  7. Trans-African drainage system of the Sahara: Was it the Nile?

    NASA Astrophysics Data System (ADS)

    Burke, Kevin; Wells, Gordon L.

    1989-08-01

    An exciting result of the first spaceborne radar scans of the eastern Sahara has been the recognition of drainage channels buried at depths of several metres below the dry desert sand. We relate these observations to the megageomorphological evolution of Africa and conclude that the"radar river" valleys may have been parts of an old Nile River system rather than courses cut by a postulated westward-flowing trans-African drainage system (TADS) extending from the Red Sea Hills to the Niger Delta.

  8. Digital and smart chest drainage systems to monitor air leaks: the birth of a new era?

    PubMed

    Cerfolio, Robert J; Varela, Gonzalo; Brunelli, Alessandro

    2010-08-01

    Recently, several companies have manufactured and commercialized new pleural drainage units that incorporate electronic components for the digital quantification of air through chest tubes and, in some instances, pleural pressure assessment. The goal of these systems is to objectify this previously subjective bedside clinical parameter and allow for more objective, consistent measurement of air leaks. The belief is this will lead to quicker and more accurate chest tube management. In addition, some systems feature portable suction devices. These may afford earlier mobilization of patients because the pleural drainage chamber is attached to a battery-powered smart suction device. In this article we review the clinical experiences using these new devices.

  9. EFFECTS OF DRAIN ENVELOPE AND SLOPE ON PERFORMANCE OF A DRAINAGE-SUBIRRIGATION SYSTEM.

    USGS Publications Warehouse

    Davenport, Marjorie S.; Skaggs, R.W.

    1986-01-01

    A field study was conducted to determine the effect of fabric wrap envelope and drain slope on the performance of a combination drainage and subirrigation system. Data were analyzed by examining relationships between flow rate and midpoint water table elevations. An entry resistance was defined and its value for each pair of 9,100 data points for drain flow rate versus water table elevation midway between the drains. Analyses were conducted to determine if the entry resistance changed with time after the drainage system was installed. Results of the study showed that the effect of slope and envelope on drainage and subirrigation varied somewhat depending on field location. However, an analysis of the data led to conclusions that the paper discusses.

  10. Event mean concentration and first flush effect from different drainage systems and functional areas during storms.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Gao, Xue-Long; Ma, Lu-Ming

    2016-03-01

    This study aimed to investigate the characteristics of the event mean concentration (EMC) and first flush effect (FFE) during typical rainfall events in outfalls from different drainage systems and functional areas. Stormwater outfall quality data were collected from five outfalls throughout Fuzhou City (China) during 2011-2012. Samples were analyzed for water quality parameters, such as COD, NH3-N, TP, and SS. Analysis of values indicated that the order of the event mean concentrations (EMCs) in outfalls was intercepting combined system > direct emission combined system > separated system. Most of the rainfall events showed the FFE in all outfalls. The order of strength of the FFE was residential area of direct emission combined system > commercial area of separated system > residential area of intercepting combined system > office area of separated system > residential area of separated system. Results will serve as guide in managing water quality to reduce pollution from drainage systems. PMID:26564194

  11. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    PubMed

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed. PMID:10842788

  12. Changes in Information Systems in Czech Agriculture

    ERIC Educational Resources Information Center

    Slavik, Milan

    2004-01-01

    A study carried out in 1998 (reported in the Journal of Agricultural Education and Extension, 2003) of the information systems used by farmers in the Czech Republic to access information and advice was repeated in 2003. The research aim was to assess whether, and how, the systems had changed during these five years. The perceived importance of 10…

  13. INVESTIGATION OF INAPPROPRIATE POLLUTANT ENTRIES INTO STORM DRAINAGE SYSTEMS: A USER'S GUIDE

    EPA Science Inventory

    This User's Guide, summarized here, is the result of a series of research tasks (sponsored by the U.S. Environmental Protection Agency) to develop a procedure to investigate non-stormwater entries into storm drainage systems. Past projects have found that dry-weather flows disc...

  14. Mountain Plains Learning Experience Guide: Plumbing. Course: Drainage and Vent Systems.

    ERIC Educational Resources Information Center

    Bundy, T.

    One of three individualized courses included in a plumbing curriculum, this course focuses on planning, preparing, and assembling the rough-in portions of drainage, waste, and vent systems. The course is comprised of two units: (1) Pipe and Fittings Assembly and (2) Planning, Layout, and Assembly. Each unit begins with a Unit Learning Experience…

  15. Mearsurement and control system for agricultural robot

    NASA Astrophysics Data System (ADS)

    Sun, Tong; Zhang, Fangming; Ying, Yibin

    2006-10-01

    Automation of agricultural equipments in the near term appears both economically viable and technically feasible. This paper describes measurement and control system for agriculture robot. It consists of a computer, a pair of NIR cameras, one inclinometer, one potentionmeter and two encoders. Inclinometer, potentionmeter and encoders are used to measure obliquity of camera, turning angle of front-wheel and velocity of rear wheel, respectively. These sensor data are filtered before sending to PC. The test shows that the system can measure turning angle of front-wheel and velocity of rear wheel accurately whether robot is at stillness state or at motion state.

  16. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  17. A generalised Dynamic Overflow Risk Assessment (DORA) for Real Time Control of urban drainage systems

    NASA Astrophysics Data System (ADS)

    Vezzaro, Luca; Grum, Morten

    2014-07-01

    An innovative and generalised approach to the integrated Real Time Control of urban drainage systems is presented. The Dynamic Overflow Risk Assessment (DORA) strategy aims to minimise the expected Combined Sewer Overflow (CSO) risk by considering (i) the water volume presently stored in the drainage network, (ii) the expected runoff volume (calculated by radar-based nowcast models) and - most important - (iii) the estimated uncertainty of the runoff forecasts. The inclusion of uncertainty allows for a more confident use of Real Time Control (RTC). Overflow risk is calculated by a flexible function which allows for the prioritisation of the discharge points according to their sensitivity and intended use. DORA was tested on a hypothetical example inspired by the main catchment in the city of Aarhus (Denmark). An analysis of DORA’s performance over a range of events with different return periods, using a simple conceptual model, is presented. Compared to a traditional local control approach, DORA contributed to reduce CSO volumes from the most sensitive points while reducing total CSO volumes discharged from the catchment. Additionally, the results show that the inclusion of forecasts and their uncertainty contributed to further improving the performance of drainage systems. The results of this paper will contribute to the wider usage of global RTC methods in the management of urban drainage networks.

  18. Automatic Positioning System of Small Agricultural Robot

    NASA Astrophysics Data System (ADS)

    Momot, M. V.; Proskokov, A. V.; Natalchenko, A. S.; Biktimirov, A. S.

    2016-08-01

    The present article discusses automatic positioning systems of agricultural robots used in field works. The existing solutions in this area have been analyzed. The article proposes an original solution, which is easy to implement and is characterized by high- accuracy positioning.

  19. Carbon Sequestration Potential of Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through proper management, agricultural systems (cropland, pasture, and forest) have the ability to remove carbon dioxide from the atmosphere and sequester it in soils and wood products. The carbon thus sequestered can help slow the increase in atmospheric carbon dioxide currently occurring as a res...

  20. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The agricultural system of corn, soybeans, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of

  1. Performance assessment of a street-drainage bioretention system.

    PubMed

    Chapman, Cameron; Horner, Richard R

    2010-02-01

    Event-based, flow-paced composite sampling was carried out at the inlet and outlet of a street-side bioretention facility in Seattle, Washington, to assess its ability to reduce street runoff quantity and pollutants. Over 2.5 years, 48 to 74% of the incoming runoff was lost to infiltration and evaporation. Outlet pollutant concentrations were significantly lower than those at the inlet for nearly all monitored constituents. In terms of mass, the system retained most of the incoming pollutants. Besides soluble reactive phosphorus (the mass of which possibly increased), dissolved copper was the least effectively retained; at least 58% of dissolved copper (and potentially as much as 79%) was captured by the system. Motor oil was removed most effectively, with 92 to 96% of the incoming motor oil not leaving the system. The results indicate that bioretention systems can achieve a high level of runoff retention and treatment in real-weather conditions.

  2. A global analysis approach for investigating structural resilience in urban drainage systems.

    PubMed

    Mugume, Seith N; Gomez, Diego E; Fu, Guangtao; Farmani, Raziyeh; Butler, David

    2015-09-15

    Building resilience in urban drainage systems requires consideration of a wide range of threats that contribute to urban flooding. Existing hydraulic reliability based approaches have focused on quantifying functional failure caused by extreme rainfall or increase in dry weather flows that lead to hydraulic overloading of the system. Such approaches however, do not fully explore the full system failure scenario space due to exclusion of crucial threats such as equipment malfunction, pipe collapse and blockage that can also lead to urban flooding. In this research, a new analytical approach based on global resilience analysis is investigated and applied to systematically evaluate the performance of an urban drainage system when subjected to a wide range of structural failure scenarios resulting from random cumulative link failure. Link failure envelopes, which represent the resulting loss of system functionality (impacts) are determined by computing the upper and lower limits of the simulation results for total flood volume (failure magnitude) and average flood duration (failure duration) at each link failure level. A new resilience index that combines the failure magnitude and duration into a single metric is applied to quantify system residual functionality at each considered link failure level. With this approach, resilience has been tested and characterised for an existing urban drainage system in Kampala city, Uganda. In addition, the effectiveness of potential adaptation strategies in enhancing its resilience to cumulative link failure has been tested.

  3. The usefulness of Wi-Fi based digital chest drainage system in the post-operative care of pneumothorax

    PubMed Central

    Cho, Hyun Min; Hong, Yoon Joo; Byun, Chun Sung

    2016-01-01

    Background Chest drainage systems are usually composed of chest tube and underwater-seal bottle. But this conventional system may restrict patients doing exercise and give clinicians obscure data about when to remove tubes because there is no objective indicator. Recently developed digital chest drainage systems may facilitate interpretation of the grade of air leak and make it easy for clinicians to decide when to remove chest tubes. In addition, with combination of wireless internet devices, monitoring and managing of drainage system distant from the patient is possible. Methods Sixty patients of primary pneumothorax were included in a prospective randomized study and divided into two groups. Group I (study) consisted of digital chest drainage system while in group II (control), conventional underwater-seal chest bottle system was used. Data was collected from January, 2012 to September, 2013 in Eulji University Hospital, Daejeon, Korea. Results There was no difference in age, sex, smoking history and postoperative pain between two groups. But the average length of drainage was 2.2 days in group I and 3.1 days in group II (P<0.006). And more, about 90% of the patients in group I was satisfied with using new device for convenience. Conclusions Digital system was beneficial on reducing the length of tube drainage by real time monitoring. It also had advantage in portability, loudness and gave more satisfaction than conventional system. Moreover, internet based digital drainage system will be a good method in thoracic telemedicine area in the near future. PMID:27076934

  4. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses. PMID:26436280

  5. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses.

  6. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.; ,

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  7. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  8. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  9. Surface water drainage system. Environmental assessment and finding of no significant impact

    SciTech Connect

    1996-05-01

    This Environmental Assessment (EA) is written pursuant to the National Environmental Policy Act (NEPA). The document identifies and evaluates the action proposed to correct deficiencies in, and then to maintain, the surface water drainage system serving the Department of Energy`s Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. Many of the activities proposed would not normally be subject to this level of NEPA documentation. However, in many cases, maintenance of the system has been deferred to the point that wetlands vegetation has become established in some ditches and culverts, creating wetlands. The proposed activities would damage or remove some of these wetlands in order to return the drainage system to the point that it would be able to fully serve its intended function - stormwater control. The Department of Energy (DOE) regulations require that activities affecting environmentally sensitive areas like wetlands be the subject of an EA. Most portions of the surface water drainage system are presently inadequate to convey the runoff from a 100-year storm event. As a result, such an event would cause flooding across much of the Site and possibly threaten the integrity of the dams at the terminal ponds. Severe flooding would not only cause damage to facilities and equipment, but could also facilitate the transport of contaminants from individual hazardous substance sites (IHSSs). Uncontrolled flow through the A- and B-series ponds could cause contaminated sediments to become suspended and carried downstream. Additionally, high velocity flood flows significantly increase erosion losses.

  10. Investigation of inappropriate pollutant entries into storm drainage systems: A user's guide

    SciTech Connect

    Pitt, R.; Lalor, M.; Adrian, D.D.; Field, R.; Barbe, D.

    1993-01-01

    The User's Guide is the result of a series of EPA sponsored research projects to develop a procedure to investigate non-stormwater entries into storm drainage systems. A number of past projects have found that dry-weather flows discharging from storm drainage systems can contribute significant pollutant loadings to receiving waters. If these loadings are ignored (by only considering wet-weather stormwater runoff, for example), little improvement in receiving water conditions may occur with many stormwater control programs. These dry-weather flows may originate from many sources, the most important sources may include sanitary wastewater or industrial and commercial pollutant entries, failing septic tank systems, and vehicle maintenance activities. After the outfalls are identified that are affected by polluted dry-weather flows, additional survey activities are needed to locate and correct the non-stormwater entries into the storm drainage systems. The User's Guide contains information to allow the design and conduct of local investigations to identify the types and to estimate the magnitudes of these non-stormwater entries.

  11. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of this practice.

  12. The co-genetic evolution of metamorphic core complexes and drainage systems

    NASA Astrophysics Data System (ADS)

    Trost, Georg; Neubauer, Franz; Robl, Jörg

    2016-04-01

    Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi

  13. Permanent catheter drainage system for palliation of diuretic‐resistant cardiac ascites

    PubMed Central

    Penn, Lee‐Anne; Mitchell, Andrew R. J.

    2016-01-01

    Abstract We report the case of a 69‐year‐old man with dilated cardiomyopathy treated with a permanent catheter drainage system for diuretic resistant cardiac ascites. At 1 year follow‐up, the patient had no heart failure related hospitalisations, displayed improved quality of life measures and had incurred no complications related to the catheter. Permanent tunnelled catheters are widely used to treat malignant ascites but may also be considered for palliation of cardiac ascites.

  14. Effects of macro-pores on water flow in coastal subsurface drainage systems

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Yu, Xiayang; Lu, Chunhui; Li, Ling

    2016-01-01

    Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.

  15. Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium.

    PubMed

    Wu, Lin

    2004-03-01

    The consequences of elevated Se accumulation at the Kesterson Reservoir National Wildlife Refuge in the Central Valley of California created adverse effects on wildlife and led to extensive research on the behavior of Se in both the wetland and upland ecosystems. Selenium concentrations in water entering the Kesterson Reservoir averaged 300 microg L(-1). In pond waters 20-30% of the Se was selenate, while only 2% was selenite in the drainage water entering the reservoir. Submerged rooted aquatic plants fed on by water birds were found to contain 18-390 mg Se kg(-1) dry weight. Mosquitofish collected from the San Luis Drain contained 332 mg Se kg(-1), and those collected from the ponds ranged from 339 to 380 mg kg(-1). Livers of water birds had Se concentrations ranging from 19.9 to 127 mg kg(-1). The high concentrations of Se accumulation in the food chain of the wetland strongly suggest that Se bioaccumulation was the cause of death and deformity of embryos of the waterfowl nesting at the wetland habitat. In June 1986, the Kesterson Reservoir was closed to drain-water inputs, and the wetland was transformed to an upland grassland. New remedial plans were proposed. These new plans involved soil, water, and vegetation management to dissipate Se by bioaccumulation and volatilization through soil microorganisms and plants. The investigations of the potential transfer of Se from farm land into the crop and vegetables in the Central Valley indicated that plant tissue Se concentrations generally fall in a nonseleniferous category, except that the highest Se concentration of cotton was at a threshold where toxicity in animals could occur at a relatively low frequency. At the Kesterson upland grassland habitat, average total Se concentrations ranged from 500 to 8000 microg kg(-1) and water-extractable Se ranged from 10 to 700 microg kg(-1) in the top 15 cm of soil and varied greatly, by a factor greater than 100, among soil samples. Uptake of Se by the plants was

  16. Utilizing Indigenous Knowledge Systems in Agricultural Education to Promote Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Williams, David L.; Muchena, Olivia N.

    1991-01-01

    Understanding and appreciation of indigenous knowledge systems (IKS) are essential for promoting sustainable agriculture development. IKS provides a cultural basis for nonformal agricultural programs that is absent in technology transfer approaches. (SK)

  17. Intelligent real-time operation of a pumping station for an urban drainage system

    NASA Astrophysics Data System (ADS)

    Hsu, Nien-Sheng; Huang, Chien-Lin; Wei, Chih-Chiang

    2013-05-01

    SummaryIn this study, we apply artificial intelligence techniques to the development of two real-time pumping station operation models, namely, a historical and an optimized adaptive network-based fuzzy inference system (ANFIS-His and ANFIS-Opt, respectively). The functions of these two models are the determination of the real-time operation criteria of various pumping machines for controlling flood in an urban drainage system during periods when the drainage gate is closed. The ANFIS-His is constructed from an adaptive network-based fuzzy inference system (ANFIS) using historical operation records. The ANFIS-Opt is constructed from an ANFIS using the best operation series, which are optimized by a tabu search of historical flood events. We use the Chung-Kong drainage basin, New Taipei City, Taiwan, as the study area. The operational comparison variables are the highest water level (WL) and the absolute difference between the final WL and target WL of a pumping front-pool. The results show that the ANFIS-Opt is better than the ANFIS-His and historical operation models, based on the operation simulations of two flood events using the two operation models.

  18. Controlled release bactericide: An innovative system to control acid mine drainage

    SciTech Connect

    Sobek, A.A.; Rastogi, V.

    1986-01-01

    Controlled release systems delivering the required concentration of an effective bactericide over an extended time period have been developed by the BF Goodrich Company's ProMac Systems group. The ProMac system is site-specific and includes a four-step approach to controlling acid mine drainage (AMD): (1) Diagnosing the problem, (2) Prescribing the treatment, (3) Supervising the application of controlled release bactericides, and (4) Monitoring the success of applied treatment. The success of the ProMac system is evidenced by improved water quality, healthy vegetation, a reduction in levels of acidophilic thiobacillus, and a corresponding increase in population of beneficial microorganisms.

  19. Plasma retinoid profile in bullfrogs, Rana catesbeiana, in relation to agricultural intensity of sub-watersheds in the Yamaska River drainage basin, Québec, Canada.

    PubMed

    Bérubé, Virginie E; Boily, Monique H; DeBlois, Chistian; Dassylva, Nathalie; Spear, Philip A

    2005-01-26

    Amphibian populations are decreasing globally and the causes are presently unclear. Retinoids have been extensively studied in other vertebrate classes where they are associated with pleiotropic effects such as susceptibility to disease (including cancer and parasitic infections), deformities and reproduction. To investigate the hypothesis that retinoid homeostasis is influenced by agricultural activities, blood samples were collected from adult bullfrogs, Rana catesbeiana, at each of six sub-watersheds chosen to represent a gradient of agricultural intensity within the Yamaska River drainage basin. Samples of surface water were collected at each of the study sites approximately 1 month after spraying and analyzed for 53 pesticides. Male body weight was significantly different (p<0.001) between study sites with the smallest bullfrogs captured from the Rivière à la Barbue sub-watershed associated with high agricultural intensity. A significant linear regression (p<0.001; R2=0.176) was obtained between plasma retinol and body weight. Plasma retinol concentrations were significantly different between study sites (p<0.001) being lowest at both Rivière Noire and Rivière à la Barbue. More than 60% of the land area in these sub-watersheds is under intensive corn-soya cultivation and surface water contained the highest concentrations of the herbicides atrazine, deethyl-atrazine, simazine, metolachlor, dimethenamide, chlopyralide, dicamba and bentazone. Plasma 13-cis-4-oxo-retinoic acid was significantly different (p<0.001) between sub-watersheds, however this effect was apparently unrelated to agricultural intensity. Plasma retinol was negatively correlated (p=0.026; r=-0.237) with plasma 13-cis-4-oxo-retinoic acid. These results suggest that retinoid homeostasis in bullfrogs may be influenced by agricultural practices.

  20. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds.

  1. Evaluation of simulated strategies for reducing nitrate-nitrogen losses through subsurface drainage systems.

    PubMed

    Ale, Srinivasulu; Bowling, Laura C; Youssef, Mohamed A; Brouder, Sylvie M

    2012-01-01

    The nitrates (NO(3)-N) lost through subsurface drainage in the Midwest often exceed concentrations that cause deleterious effects on the receiving streams and lead to hypoxic conditions in the northern Gulf of Mexico. The use of drainage and water quality models along with observed data analysis may provide new insight into the water and nutrient balance in drained agricultural lands and enable evaluation of appropriate measures for reducing NO(3)-N losses. DRAINMOD-NII, a carbon (C) and nitrogen (N) simulation model, was field tested for the high organic matter Drummer soil in Indiana and used to predict the effects of fertilizer application rate and drainage water management (DWM) on NO-N losses through subsurface drainage. The model was calibrated and validated for continuous corn (Zea mays L.) (CC) and corn-soybean [Glycine max (L.) Merr.] (CS) rotation treatments separately using 7 yr of drain flow and NO(3)-N concentration data. Among the treatments, the Nash-Sutcliffe efficiency of the monthly NO(3)-N loss predictions ranged from 0.30 to 0.86, and the percent error varied from -19 to 9%. The medians of the observed and predicted monthly NO(3)-N losses were not significantly different. When the fertilizer application rate was reduced ~20%, the predicted NO(3)-N losses in drain flow from the CC treatments was reduced 17% (95% confidence interval [CI], 11-25), while losses from the CS treatment were reduced by 10% (95% CI, 1-15). With DWM, the predicted average annual drain flow was reduced by about 56% (95% CI, 49-67), while the average annual NO(3)-N losses through drain flow were reduced by about 46% (95% CI, 32-57) for both tested crop rotations. However, the simulated NO(3)-N losses in surface runoff increased by about 3 to 4 kg ha(-1) with DWM. For the simulated conditions at the study site, implementing DWM along with reduced fertilizer application rates would be the best strategy to achieve the highest NO(3)-N loss reductions to surface water. The

  2. The status of the passive treatment systems for acid mine drainage in South Korea

    NASA Astrophysics Data System (ADS)

    Ji, Sangwoo; Kim, Sunjoon; Ko, Juin

    2008-09-01

    This study was performed to investigate the operating status, evaluate the problems, and discuss possible improvement methods of passive treatment systems for acid mine drainage (AMD) in South Korea. Thirty-five passive treatment systems in 29 mines have been constructed from 1996 to 2002 using successive alkalinity producing systems (SAPS) as the main treatment process. We investigated 29 systems (two for metal mines), 19 of which revealed various problems. Overflows of drainage from SAPS, wetland, or oxidation ponds were caused by the flow rate exceeding the capacities of the facilities or by the reduced permeability of the organic substance layer. Leakages occurred at various parts of the systems. In some cases, clogged and broken pipes at the mouths of the mine adits made the whole system unusable. Some systems showed very low efficiencies without apparent leakage or overflow. Even though the systems showed fairly good efficiencies in metal removal ratios (mainly iron) and pH control; sulfate removal rates were very poor except in three systems, which may indicate very poor sulfate reductions with sulfate reducing bacteria (SRB) as a means.

  3. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  4. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  5. Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2013-11-01

    Morphometric analysis of hierarchical arrangement of drainage networks allows to evaluate the effects of external controls especially tectonics on basin development. In this study, a quantitative method for calculation of stream's hierarchical anomaly number is introduced. Morphometric parameters such as hierarchal anomaly index (∆a), percent of asymmetry factor (PAF), basin Shape (Bs), basin length to mean width ratio (Bl/Bmw), stream's bifurcation ratio (Rb), bifurcation index (R), drainage density (Dd), drainage frequency (Df) and anticline's hinge spacing (Hs) of 15 basins in Zagros Mountains were examined. Results show that the strong correlations exist between pairs ∆a-PAF (r = 0.844), ∆a-Bs (r = 0.732), ∆a-Bl/Bmw (r = 0.775), ∆a-R (r = 0.517), PAF-Bl/Bmw (r = 0.519), Bs-R (r = 0.659), Bl/Bmw-R (r = 0.703), Hs-∆a (r = - 0.708), Hs-PAF (r = - 0.529) and Hs-Bs (r = - 0.516). The variations in trend of anticlines control the shape of basins so that where anticlines hinges become closer to each other in the downstream direction, basin become narrower downward and hence the ∆a increases. The more uplifted northeastern anticlines cause the trunk river of the basins to migrate toward the younger anticlines in southwest and hence ∆a increases because the trunk river receives a lot of first order streams. Data reveal that the rate of ∆a is higher in elongated synclinal basins. Due to the decrease in the intensity of deformation from northeast toward southwest of Zagros, the hinge spacing of anticlines increases southwestwards. Data reveal that the variation in hinge spacing of anticlines strongly controls the basin's shape and tilting as well as the hierarchical anomaly of drainage system. Since the elongation and tilting of basins are associated with the variations in rates of folding, uplift and hinge spacing of anticlines, it can be concluded that the hierarchical anomaly of drainages in studied basins is controlled by the intensity of Zagros

  6. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. PMID:25750056

  7. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness.

  8. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution. PMID:23784054

  9. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China

    NASA Astrophysics Data System (ADS)

    Gao, Hongshan; Li, Zongmeng; Pan, Baotian; Liu, Fenliang; Liu, Xiaopeng

    2016-04-01

    As a drainage system located in arid western China, the Shiyang River, combined with considerable fluvial strata and landform information, provides an environmental context within which to investigate fluvial responses to late Quaternary climate change. Sedimentological analysis and optically stimulated luminescence (OSL) dating enabled us to reconstruct the processes and fluvial styles of three sedimentary sequences of the Shagou and Hongshui rivers in the Shiyang drainage system. Our results present a variety of river behaviors during the late Quaternary in these areas. In the upstream Shiyang River, Zhangjiadazhuang (ZJDZ) profile of the Shagou was dominated by aggradation and a meandering channel pattern at 10.6-4.2 ka, while a noticeable channel incision occurred at ~ 4.2 ka followed by lateral channel migration. In the downstream Shiyang River, Datugou (DTG) profile of the Hongshui was an aggrading meandering river from 39.7 to 7.2 ka while channel incision occurred at 7.2 ka. Another downstream profile, Wudunwan (WDW) of the Hongshui was also characterized by aggradation from 22.4 to 4.8 ka; however, its channel pattern shifted from braided to meandering at ~ 13 ka. A discernable downcutting event occurred at ~ 4.8 ka, followed by three channel aggradation and incision episodes prior to 1.8 ka. The last 1.8 ka has been characterized by modern channel and floodplain development. The fluvial processes and styles investigated have a close correlation with late Quaternary climate change in the Shiyang River drainage. During cold phases, the WDW reach was dominated by aggradation with a braided channel pattern. During warm phases, the rivers that we investigated were also characterized by aggradation but with meandering channel patterns. Channel incision events and changes of fluvial style occurred mainly during climate transitions.

  10. Performance of stormwater detention tanks for urban drainage systems in northern Italy.

    PubMed

    Todeschini, Sara; Papiri, Sergio; Ciaponi, Carlo

    2012-06-30

    The performance of stormwater detention tanks with alternative design configurations (insertion in the storm sewer network; volume per impervious hectare) and operating conditions (continuous and intermittent emptying rules) have been evaluated according to an integrated approach. Various performance indices have been adopted to describe the mitigation of the pollution impact to the natural environment, the reduction of the management and maintenance charges for the urban drainage system, the preservation of the normal purification efficiency, and the limitation of the costs at the treatment plant. The US EPA Storm Water Management Model has been used to simulate the rainfall-runoff process and the pollutant dynamics on theoretical catchments and storm sewer networks for an individual event, as well as for a continuous run of events and inter event periods of one year recorded at the rain gauge of Cascina Scala (Pavia, northern Italy). Also the influence of the main characteristics of the urban catchment and the drainage system (area of the catchment and slope of the network) on the performance of alternative design and operating solutions has been examined. Stormwater detention tanks combined with flow regulators demonstrated good performance with respect to environmental pollution: satisfactory performance indicators can be obtained with fairly low flow rates of flow regulators (0.5-1 L/s per hectare of impervious area) and tank volumes of about 35-50 m(3) per impervious hectare. Continuous emptying guaranteed the lowest number and duration of overflows, while an intermittent operation minimised the volume sent for purification reducing the costs and the risks of impairment in the normal treatment efficiency of the plant. Overall, simulation outcomes revealed that the performance indexes are scarcely affected by the area of the catchment and the slope of the drainage network. The result of this study represents a key issue for the implementation of

  11. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system.

    PubMed

    Feng, Linglin; Zhang, Lei; Liu, Min; Yan, Zhiqiang; Wang, Chenyu; Gu, Bing; Liu, Yu; Wei, Gang; Zhong, Gaoren; Lu, Weiyue

    2010-04-01

    Our aim was to develop a novel liposomal drug delivery system containing dextrans to reduce undesirable retention of antineoplastic agents and thus alleviate local tissue damage. At the cell level, diethylaminoethyl-dextran (DEAE-Dx) showed the strongest inhibiting effect on liposome uptake by macrophages among tested dextrans. The distribution of radiolabeled liposomes mixed with dextrans in injection site and draining lymph node was investigated in rats after subcutaneous injection. DEAE-Dx substantially reduced the undesired local retention and promoted the draining of liposome into lymphatics, which was further confirmed by confocal microscopy images revealing the substantial prevention of rhodamine B-labelled liposome sequestration by macrophages in normal lymph node in rats. Pharmacokinetic data indicated the accelerated drainage of liposome through lymphatics back to systemic circulation by mixing with DEAE-Dx. In the toxicological study in rabbits, DEAE-Dx alleviated the local tissue damage caused by liposomal doxorubicin. In conclusion, dextrans, particularly DEAE-Dx, could efficiently enhanced liposomes drainage into lymphatics, which proves themselves as promising adjuvants for lymphatic-targeted liposomal drug delivery system.

  12. Geomorphological analysis of the drainage system on the active convergent system in Azerbaijan, NW Iran

    NASA Astrophysics Data System (ADS)

    Kaveh Firouz, Amaneh; Burg, Jean-Pierre; Giachetta, Emanuele

    2016-04-01

    Rivers are important landforms to reconstruct recent tectonic history because they are sensitive to surface movements, especially uplift and tilting. The most important drainage basins of NW Iran are, from north to south, the Arax River, the Urmia Lake and the Ghezel Ozan River catchment. The morphology of the two adjacent catchments draining into the Caspian Sea, the Arax and Ghezel Ozan were studied to better understand the active tectonics and the effect of fault activity on morphology and erosion rate of NW Iran. We performed a quantitative analysis of channel steepness and concavity, from slope-area plots calculated from digital elevation model. This information has been combined with GPS velocity vectors and seismicity. Both catchments developed under uniform climate conditions. Results show that the two rivers are in morphological disequilibrium; they exhibit profiles with prominent convexities and knickpoints. The Arax River shows higher channel steepness and concavity index in downstream part of the profile. Distribution of knickpoints show scattered elevation between 700m and 3000m. GPS rates display shortening 10 ± 2 mma‑1 and 14 ± 2 mma‑1 in upstream and downstream, respectively. The river profiles of Ghezel Ozan River and its tributaries reveal more disequilibrium downstream where channel steepness and concavity index are higher than upstream. Most knickpoints occur between 1000m and 2000m. The amount of shortening by GPS measurement changes from upstream 13 ± 2 mma‑1to downstream 14 ± 2 mma‑1. Recorded earthquakes, such as Rudbar earthquake (Mw=7.3, 1990), are more frequent downstream. The Urmia Lake is surrounded by many small and large catchments. Only major catchments were considered for the analysis. One of the most active faults, the north Tabriz fault, corresponds to a major knickpoints on the Talkhe rud River. Concordance between river profile analysis, GPS and seismotectonic records suggests that the characteristics of the river

  13. Geomorphological analysis of the drainage system on the active convergent system in Azerbaijan, NW Iran

    NASA Astrophysics Data System (ADS)

    Kaveh Firouz, Amaneh; Burg, Jean-Pierre; Giachetta, Emanuele

    2016-04-01

    Rivers are important landforms to reconstruct recent tectonic history because they are sensitive to surface movements, especially uplift and tilting. The most important drainage basins of NW Iran are, from north to south, the Arax River, the Urmia Lake and the Ghezel Ozan River catchment. The morphology of the two adjacent catchments draining into the Caspian Sea, the Arax and Ghezel Ozan were studied to better understand the active tectonics and the effect of fault activity on morphology and erosion rate of NW Iran. We performed a quantitative analysis of channel steepness and concavity, from slope-area plots calculated from digital elevation model. This information has been combined with GPS velocity vectors and seismicity. Both catchments developed under uniform climate conditions. Results show that the two rivers are in morphological disequilibrium; they exhibit profiles with prominent convexities and knickpoints. The Arax River shows higher channel steepness and concavity index in downstream part of the profile. Distribution of knickpoints show scattered elevation between 700m and 3000m. GPS rates display shortening 10 ± 2 mma-1 and 14 ± 2 mma-1 in upstream and downstream, respectively. The river profiles of Ghezel Ozan River and its tributaries reveal more disequilibrium downstream where channel steepness and concavity index are higher than upstream. Most knickpoints occur between 1000m and 2000m. The amount of shortening by GPS measurement changes from upstream 13 ± 2 mma-1to downstream 14 ± 2 mma-1. Recorded earthquakes, such as Rudbar earthquake (Mw=7.3, 1990), are more frequent downstream. The Urmia Lake is surrounded by many small and large catchments. Only major catchments were considered for the analysis. One of the most active faults, the north Tabriz fault, corresponds to a major knickpoints on the Talkhe rud River. Concordance between river profile analysis, GPS and seismotectonic records suggests that the characteristics of the river profiles

  14. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    NASA Astrophysics Data System (ADS)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  15. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    PubMed

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD.

  16. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    PubMed

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD. PMID:26247412

  17. [Evaluation index system of swamp degradation in Zoige Plateau of Sichuan, Southwest China under drainage stress].

    PubMed

    Yang, Yong-Xing; Li, Kei; Yang, Yang

    2013-07-01

    The evaluation index system of swamp degradation is one of the key scientific issues in the frontier field of international wetland science research. On the basis of long-term swamp field reconnaissance, and according to the fixed position ecological investigation of plant communities and the analysis of soil samples in 20 swamp plots in three belt transects of swamp degradation research under the stress of drainage in 2009, the swamps in the Zoige Plateau of Sichuan were classified into three groups with seven swamp communities, i. e., undisturbed (A type), disturbed by long-term and weak drainage (B-D type), and disturbed by short-term and strong drainage (E-G type), according to the species importance value and by Two-Way Indicator Species Analysis (TWINSPAN). The degradation degree of the swamps was graded by the method of Principal Components Analysis (PCA), and the swamp vegetation evaluation index (SVEI) and soil evaluation index (SSEI) were developed. Based on the SVEI, the swamps were classified as pristine swamp, lightly degraded swamp, moderately degraded swamp, and severely degraded swamp. Based on the SSEI, the swamps in Hongyuan County were divided into three grades, i. e. pristine swamp, lightly degraded swamp, and severely degraded swamp, while those in Ruoergai County were divided into lightly degraded swamp, moderately degraded swamp, and severely degraded swamp. The similarity of TWINSPAN classification results and SVEI/SSEI evaluation results was above 70%, indicating that both SVEI and SSEI were effective for the swamp degradation grading, and different classification methods should be combined to comprehensively evaluate the swamps in the Plateau.

  18. [Evaluation index system of swamp degradation in Zoige Plateau of Sichuan, Southwest China under drainage stress].

    PubMed

    Yang, Yong-Xing; Li, Kei; Yang, Yang

    2013-07-01

    The evaluation index system of swamp degradation is one of the key scientific issues in the frontier field of international wetland science research. On the basis of long-term swamp field reconnaissance, and according to the fixed position ecological investigation of plant communities and the analysis of soil samples in 20 swamp plots in three belt transects of swamp degradation research under the stress of drainage in 2009, the swamps in the Zoige Plateau of Sichuan were classified into three groups with seven swamp communities, i. e., undisturbed (A type), disturbed by long-term and weak drainage (B-D type), and disturbed by short-term and strong drainage (E-G type), according to the species importance value and by Two-Way Indicator Species Analysis (TWINSPAN). The degradation degree of the swamps was graded by the method of Principal Components Analysis (PCA), and the swamp vegetation evaluation index (SVEI) and soil evaluation index (SSEI) were developed. Based on the SVEI, the swamps were classified as pristine swamp, lightly degraded swamp, moderately degraded swamp, and severely degraded swamp. Based on the SSEI, the swamps in Hongyuan County were divided into three grades, i. e. pristine swamp, lightly degraded swamp, and severely degraded swamp, while those in Ruoergai County were divided into lightly degraded swamp, moderately degraded swamp, and severely degraded swamp. The similarity of TWINSPAN classification results and SVEI/SSEI evaluation results was above 70%, indicating that both SVEI and SSEI were effective for the swamp degradation grading, and different classification methods should be combined to comprehensively evaluate the swamps in the Plateau. PMID:24175510

  19. An Obstacle Alerting System for Agricultural Application

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    2003-01-01

    Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.

  20. Open top culverts as an alternative drainage system to minimize ecological effects in earth roads.

    NASA Astrophysics Data System (ADS)

    García, Jose L.; Elorrieta, Jose; Robredo, Jose C.; García, Ricardo; García, Fernando; Gimenez, Martin C.

    2013-04-01

    During the last fifteen years a research team from School of Forestry at the Technical University of Madrid (Spain) has developed several competitive research projects regarding forest roads and open top culverts. A first approach was established with a prototype of 7 meters length in a hydraulic channel at the laboratory determining main parameters of different open top culverts in relation to different sizes of gravels and the self washing properties relationship with different slopes up to 8 %. The curves obtained may help to properly install these drainage systems avoiding maintenance costs. In addition more targeted pilot studies were developed in different forest earth roads in center and north Spain. The construction of the stations under study was financed by the U.P.M and the R&D National Plan. The main outcomes relates the low variation of humidity in a 20 m. wide range at both sides of the open top culverts and several considerations relating the angle of installation, the spacing of such drainage systems and the benefits against rilling along the roads. Also the erosion produced downhill was established and some construction methods to avoid adverse ecological effects. The diffusion of results includes congresses and a small booklet with a great acceptance in forestry services. Also a patent (ES 2 262 437) of an advanced model has been registered.

  1. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  2. Predictive double-layer modeling of metal sorption in mine-drainage systems

    SciTech Connect

    Smith, K.S.; Plumlee, G.S.; Ranville, J.F.; Macalady, D.L.

    1996-10-01

    Previous comparison of predictive double-layer modeling and empirically derived metal-partitioning data has validated the use of the double-layer model to predict metal sorption reactions in iron-rich mine-drainage systems. The double-layer model subsequently has been used to model data collected from several mine-drainage sites in Colorado with diverse geochemistry and geology. This work demonstrates that metal partitioning between dissolved and sediment phases can be predictively modeled simply by knowing the water chemistry and the amount of suspended iron-rich particulates present in the system. Sorption on such iron-rich suspended sediments appears to control metal and arsenic partitioning between dissolved and sediment phases, with sorption on bed sediment playing a limited role. At pH > 5, Pb and As are largely sorbed by iron-rich suspended sediments and Cu is partially sorbed; Zn, Cd, and Ni usually remain dissolved throughout the pH range of 3 to 8.

  3. Secondary reconstruction of severe contracted eye socket using modified ocular conformer-drainage tube system.

    PubMed

    Li, Jin; Lin, Ming; Ge, Shengfang; Fan, Xianqun

    2012-07-01

    Eye socket reconstruction has been previously reported; however, few reports address reconstruction in cases of socket contracture after graft failure. This is a retrospective observational case study of 42 patients who had previously undergone eye socket reconstruction after posttraumatic enucleation owing to severe thermal or chemical injury, and each of whom presented with a severe contracted eye socket. Patients underwent free skin grafts and the placement of a modified ocular conformer-drainage tube system. Eye sockets of adequate size were created in the 42 patients. Three patients presented with gradual extrusion of the eye prosthesis due to recurrent contraction of the inferior fornix after treatment. These patients agreed to further operative procedures 6 months after secondary reconstruction surgery, which resulted in mild upward tilting of the eye prosthesis without extrusion. The prosthetic eyes fit well in all of the secondary reconstructed sockets using this technique. Our studies suggest that the modified ocular conformer-drainage tube system can efficiently control infection after secondary reconstruction of the posttraumatic contracted socket and may result in less shrinkage of skin grafts.

  4. Analysis of properties of synthetic mineral microparticles for retention and drainage system

    NASA Astrophysics Data System (ADS)

    Lee, Sa Yong

    Over the past 20 years there has been a revolution involving the use of nano- or macro-sized particles as a component of drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our own preliminary research showed that the SMM system has advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. To help understand the molecular mechanisms involved in SMM technology, streaming current and potentiometric titration were employed to characterize the charge behavior of SMM, depending on the synthetic conditions, which included variation of the Al/Si ratio, partial neutralization of Al species, salt addition and shear rate. Surface area of SMM and the distribution of SMM particle size were investigated with scanning electron microscopy in order to elucidate the relationship between the morphology and coagulation behavior of SMM, versus the pre-stated synthetic conditions, as well as to estimate the optimal conditions to produce SMM as a retention and drainage aid for use during papermaking. Through the streaming current titration experiments it was found that pH variation, caused by the change of Al/Si ratio and partial neutralization of aluminum's acidity, profoundly affects the charge properties of SMM. These effects can be attributed to the variation of Al-ion speciation and the influence ionizable groups on the Si-containing particle surfaces. The relationship between Al/Si ratio and isoelectric pH, measured by potentiometric

  5. The intelligent operation of an urban drainage system using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chang, F.; Chiang, Y.; Tsai, M.; Wang, Y.; Chang, L.

    2009-12-01

    The pumping stations are the major hydraulic facilities for the elimination of flood in metropolitan area and therefore play an important role in urban drainage systems. Nevertheless, the time of concentration in such highly developed cities is quite short and usually results in great damage due to the un-functional pumping station that caused by flash flood. Current operation strategy used in Taiwan during typhoon periods depends on the human experience, and thus is necessary for further investigation to increase the operating reliability of pumping station. In view of the characteristic of Adaptive Network-based Fuzzy Inference System (ANFIS), the model was applied in this study for extracting superior operations/rules from torrential rainfall events. Historical records contain information of rainfall amounts, inner water levels, and pump and gate operating records. The results indicate that the ANFIS has an efficient learning ability to construct an intelligent operating strategy and has the potential ability to automatically operate the flood control system.

  6. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Wang, Jun-Zhi; Yin, Bin-Xi; Fu, Wen-Xiang; Lin, Chang-Hong

    2014-04-01

    Groundwater flow systems and stagnant zones in drainage basins are critical to a series of geologic processes. Unfortunately, the difficulty of mapping flow system boundaries and no field example of detected stagnant zones restrict the application of the concept of nested flow systems. By assuming the variation in bulk resistivity of an aquifer with uniform porosity is mainly caused by groundwater salinity, the magnetotelluric technique is used to obtain the apparent resistivity of a profile across a groundwater-fed river in the Ordos Plateau, China. Based on the variations in apparent resistivity of the Cretaceous sandstone aquifer, the basin-bottom hydraulic trap below the river has been detected for the first time, and its size is found to be large enough for possible deposition of large ore bodies. The boundaries between local and regional flows have also been identified, which would be useful for groundwater exploration and calibration of large-scale groundwater models.

  7. Adaption to Extreme Rainfall with Open Urban Drainage System: An Integrated Hydrological Cost-Benefit Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten

    2013-03-01

    This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.

  8. Adaption to extreme rainfall with open urban drainage system: an integrated hydrological cost-benefit analysis.

    PubMed

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten

    2013-03-01

    This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.

  9. Review of operation of urban drainage systems in cold weather: water quality considerations.

    PubMed

    Marsalek, J; Oberts, G; Exall, K; Viklander, M

    2003-01-01

    Cold climate imposes special requirements on urban drainage systems, arising from extended storage of precipitation and pollutants in the catchment snowpack, processes occurring in the snowpack, and changes in catchment surface and transport network by snow and ice. Consequently, the resulting catchment response and runoff quantity differ from those experienced in snow- and ice-free seasons. Sources of pollutants entering urban snowpacks include airborne fallout, pavement and roadside deposits, and applications of de-icing and anti-skid agents. In the snowpack, snow, water and chemicals are subject to various processes, which affect their movement through the pack and eventual release during the melting process. Soluble constituents are flushed from the snowpack early during the melt; hydrophobic substances generally stay in the pack until the very end of melt and coarse solids with adsorbed pollutants stay on the ground after the melt is finished. The impacts of snowmelt on receiving waters have been measured mostly by the snowmelt chemical composition and inferences about its environmental significance. Recently, snowmelt has been tested by standard bioassays and often found toxic. Toxicity was attributed mostly to chloride and trace metals, and contributed to reduced diversity of benthic and plant communities. Thus, snowmelt and winter runoff discharged from urban drainage threaten aquatic ecosystems in many locations and require further studies with respect to advancing their understanding and development of best management practices. PMID:14703135

  10. Pathways and transit time of meltwater in the englacial drainage system of Rabots Glacier, Kebnekaise, Sweden

    NASA Astrophysics Data System (ADS)

    Coch, Caroline; Clason, Caroline; Rosqvist, Gunhild; Jarsjö, Jerker; Brugger, Keith

    2014-05-01

    Following the crash of a Norwegian Hercules plane in the Kebnekaise mountain range in March 2012, a field campaign was initiated in order to assess the fate of the hydrocarbon pollution in the glacial system. Monitoring of pollution was conducted in the snow pack of Rabots glacier, as well as in the proglacial stream, and the preferential pathways for transport of pollutants were assessed. Since it is likely that soluble components of the aircraft fuel are transported within the glacial meltwater, our study focuses on constraining the likely transit time and dispersion of these components. The hydrologic configuration of Rabots glacier was thus studied during the 2013 ablation season by means of dye tracing experiments and discharge monitoring in the proglacial stream. The analyses of the dye return curves and stream monitoring suggest different hydrological configurations on the north and south side of the glacier, perhaps influenced by shading and the ice thermal structure. The system on the north side seems to be distributed, with extensive interaction of meltwater with the bed, as typified in the turbid proglacial outlet. The distinct peaks of the return curves on the south side indicate efficient transport, perhaps largely through englacial channels, given the relatively clear nature of the proglacial outlet. The evaluation of transit speed along a longitudinal profile contributed to the understanding of drainage efficiency with distance upglacier. The higher up the injection location on the glacier, the more distributed and less efficient the system. The seasonal evolution of efficiency was also assessed, showing an increase inefficiency with time. Furthermore, we hypothesize a disconnect in the glacial hydrological systems on the north and south side of the glacier. Pollution that is transported with the meltwater down from the crash site on the southern side most likely does not reach the drainage system on the northern side. Besides revealing potential

  11. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system.

    PubMed

    Choi, Hee-Jeong; Lee, Seung-Mok

    2015-09-01

    This study investigates the use of calcined eggshells and microalgae for the removal of heavy metals from acid mine drainage (AMD) and the simultaneous enhancement of biomass productivity. The experiment was conducted over a period of 6 days in a hybrid system containing calcined eggshells and the microalgae Chlorella vulgaris. The results show that the biomass productivity increased to ~8.04 times its initial concentration of 0.367 g/L as measured by an optical panel photobioreactor (OPPBR) and had a light transmittance of 95 % at a depth of 305 mm. On the other hand, the simultaneous percent removal of Fe, Cu, Zn, Mn, As, and Cd from the AMD effluent was found to be 99.47 to 100 %. These results indicate that the hybrid system with calcined eggshells and microalgae was highly effective for heavy metal removal in the AMD.

  12. Passive treatment of acid mine drainage in down-flow limestone systems

    SciTech Connect

    Watzlaf, G.R.

    1997-12-31

    Passive down-flow systems, consisting of compost and/or limestone layers, may be well suited for treatment of acidic mine drainage containing ferric iron and/or aluminum. Two columns were constructed and operated in the laboratory. The first column simulated a downward, vertical-flow anaerobic wetland, also referred to as successive alkalinity-producing systems (SAPS), and has received mine drainage for 97 weeks. The 0.16-m diameter column was vertically oriented and (from bottom to top) consisted of a 0.30-m thick layer of limestone, a 0.76-m thick layer of spent mushroom compost, and 0.91 m of free standing water. Water flowed vertically downward through the system. A second column, filled with only limestone, received water from the same source as the first column. This limestone column contained a 1.06-m thick layer of limestone and 0.91 m of free standing water and has received water for 55 weeks. Actual acid mine drainage (pH = 3.1, acidity = 200 mg/L (as CaCO{sub 3}), SO{sub 4}{sup 2-} = 600 mg/L, Total Fe = 10 mg/L, Mn = 14 mg/L, and Al = 18 mg/L) was collected every two weeks from a nearby abandoned deep mine and applied to these columns at a rate of 3.8 mL/min. For the compost/limestone column, effluent pH remained above 6.2 (6.2-7.9); however, pH at a depth of 0.38 m in the compost (halfway) dropped to < 4 after 28 weeks (net acidic). At the bottom of the compost pH remained > 4.5 for all 97 weeks. Alkalinity was generated by a combination of limestone dissolution and sulfate reduction. Over the 97 week period, the column generated an average of 330 mg/L of alkalinity, mostly due to limestone dissolution. Bacterial sulfate reduction displayed an ever decreasing trend, initially accounting for more than 200 mg/L of alkalinity and after 40 weeks only accounting for about 50 mg/L.

  13. Hydrodynamic model of cells for designing systems of urban groundwater drainage

    NASA Astrophysics Data System (ADS)

    Zimmermann, Eric; Riccardi, Gerardo

    2000-08-01

    An improved mathematical hydrodynamic quasi-two-dimensional model of cells, CELSUB3, is presented for simulating drainage systems that consist of pumping well fields or subsurface drains. The CELSUB3 model is composed of an assemblage of algorithms that have been developed and tested previously and that simulate saturated flow in porous media, closed conduit flow, and flow through pumping stations. A new type of link between aquifer cells and drainage conduits is proposed. This link is verified in simple problems with well known analytical solutions. The correlation between results from analytical and mathematical solutions was considered satisfactory in all cases. To simulate more complex situations, the new proposed version, CELSUB3, was applied in a project designed to control the water-table level within a sewer system in Chañar Ladeado Town, Santa Fe Province, Argentina. Alternative drainage designs, which were evaluated under conditions of dynamic recharge caused by rainfall in a critical year (wettest year for the period of record) and a typical year, are briefly described. After analyzing ten alternative designs, the best technical-economic solution is a subsurface drainage system of closed conduits with pumping stations and evacuation channels. Résumé. Un modèle hydrodynamique perfectionné de cellules en quasi 2D, CELSUB3, est présenté dans le but de simuler des systèmes de drainage qui consistent en des champs de puits de pompage ou de drains souterrains. Le modèle CELSUB3 est composé d'un assemblage d'algorithmes développés et testés précédemment et qui simulent des écoulements en milieu poreux saturé, en conduites et dans des stations de pompage. Un nouveau type de lien entre des cellules d'aquifères et des drains est proposé. Ce lien est vérifié dans des problèmes simples dont les solutions analytiques sont bien connues. La corrélation entre les résultats des solutions analytiques et des solutions mathématiques a été consid

  14. Hydrodynamic model of cells for designing systems of urban groundwater drainage

    NASA Astrophysics Data System (ADS)

    Zimmermann, Eric; Riccardi, Gerardo

    2000-08-01

    An improved mathematical hydrodynamic quasi-two-dimensional model of cells, CELSUB3, is presented for simulating drainage systems that consist of pumping well fields or subsurface drains. The CELSUB3 model is composed of an assemblage of algorithms that have been developed and tested previously and that simulate saturated flow in porous media, closed conduit flow, and flow through pumping stations. A new type of link between aquifer cells and drainage conduits is proposed. This link is verified in simple problems with well known analytical solutions. The correlation between results from analytical and mathematical solutions was considered satisfactory in all cases. To simulate more complex situations, the new proposed version, CELSUB3, was applied in a project designed to control the water-table level within a sewer system in Chañar Ladeado Town, Santa Fe Province, Argentina. Alternative drainage designs, which were evaluated under conditions of dynamic recharge caused by rainfall in a critical year (wettest year for the period of record) and a typical year, are briefly described. After analyzing ten alternative designs, the best technical-economic solution is a subsurface drainage system of closed conduits with pumping stations and evacuation channels. Résumé. Un modèle hydrodynamique perfectionné de cellules en quasi 2D, CELSUB3, est présenté dans le but de simuler des systèmes de drainage qui consistent en des champs de puits de pompage ou de drains souterrains. Le modèle CELSUB3 est composé d'un assemblage d'algorithmes développés et testés précédemment et qui simulent des écoulements en milieu poreux saturé, en conduites et dans des stations de pompage. Un nouveau type de lien entre des cellules d'aquifères et des drains est proposé. Ce lien est vérifié dans des problèmes simples dont les solutions analytiques sont bien connues. La corrélation entre les résultats des solutions analytiques et des solutions mathématiques a été consid

  15. Analysis of scenarios for wastewater and urban drainage systems in Brazil based on an integrated modeling approach.

    PubMed

    Soares, S R A; Parkinson, J; Bernardes, R S

    2005-01-01

    Brazil is currently facing widespread problems in the urban environment associated with inadequate wastewater and urban drainage systems, particularly for low-income communities. These problems are promoted by the rapid and often unplanned urbanization process in developing cities and are compounded by a lack of funding, absence of planning, ineffective institutional arrangements, and inappropriate policies to provide the framework for integrated wastewater and stormwater management. Because planning for the provision of wastewater and urban drainage systems is a complex task, an integrated-modeling approach is proposed to provide a practical methodology for sanitation and urban drainage planning in Brazilian cities. In the model development, as well as technical aspects, other aspects related to institutional, financial, socio-economic, environmental and public health issues were also taken into account.

  16. Evaluation of layered and mixed passive treatment systems for acid mine drainage.

    PubMed

    Jeen, Sung-Wook; Mattson, Bruce

    2016-11-01

    Laboratory column tests for passive treatment systems for mine drainage from a waste rock storage area were conducted to evaluate suitable reactive mixture, system configuration, effects of influent water chemistry, and required residence time. Five columns containing straw, chicken manure, mushroom compost, and limestone (LS), in either layered or mixed configurations, were set up to simulate the treatment system. The results showed that all of the five columns removed metals of concern (i.e. Al, Cd, Co, Cu, Fe, Ni, and Zn) with a residence time of 15 h and greater. Reaction mechanisms responsible for the removal of metals may include sulfate reduction and subsequent sulfide precipitation, precipitation of secondary carbonates and hydroxides, co-precipitation, and sorption on organic substrates and secondary precipitates. The results suggest that the mixed systems containing organic materials and LS perform better than the layered systems, sequentially treated by organic and LS layers, due to the enhanced pH adjustment, which is beneficial to bacterial activity and precipitation of secondary minerals. The column tests provide a basis for the design of a field-scale passive treatment system, such as a reducing and alkalinity producing system or a permeable reactive barrier. PMID:26998668

  17. Acid Mine Drainage Treatment by Perlite Nanomineral, Batch and Continuous Systems

    NASA Astrophysics Data System (ADS)

    Shabani, Kumars Seifpanahi; Ardejani, Faramarz Doulati; Badii, Khshayar; Olya, Mohammad Ebrahim

    2014-03-01

    In this paper the adsorption activity of perlite nanoparticles for removal of Cu2+, Fe2+ and Mn2+ ions at Iran Sarcheshmeh copper acid mine drainage was discussed. Thus, raw perlite that provided from internal resource was modified and prepared via particles size reduction to nano scale and characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, transmission electron microscopy, Fourier transforms infrared and BET specific surface area analysis. The results of acid mine drainage show that pH of acid mine drainage is 5.1 and Cu2+, Fe2+ and Mn2+ ions are 10.5, 4.1 and 8.3 ppm, respectively. Firstly in the batch system the influence of adsorbent dose and temperature parameters were considered and then isothermal and kinetic models were investigated. According to the results the Langmuir isotherm and pseudo-second order kinetic model showed better correlation with the experimental data than other isotherm and kinetic models. Obtained thermodynamic parameters such as ΔG°, ΔH° and ΔS° show that the Cu2+, Fe2+ and Mn2+ ions adsorption from acid mine drainage is spontaneous and endothermic. Finally, perlite nanoparticles adsorbent was packed inside a glass column and used for the removal of heavy metals in 1, 3, 5 ml/min acid mine drainage flow rates, the breakthrough curves show that the column was saturated at 180, 240 and 315 min for different flow rates, respectively. According to the obtained results, this abundant, locally available and cheap silicate mineral showed a great efficiency for the removal of heavy metal pollutants from acid mine drainage and can be utilized for much volume of acid mine drainage or industrial scale. W pracy omówiono zdolności adsorpcyjne nano-cząsteczek perlitu wykorzystywanych o usuwania jonów Cu2+, Fe2+ i Mn2+ z kwaśnych wód kopalniach w kopalni miedzi w Sarcheshmeh w Iranie. Surowy perlit pozyskiwany ze źródeł własnych został zmodyfikowany i odpowiednio spreparowany poprzez zre-dukowanie cz

  18. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W.; Jaynes, M.L.

    1994-01-01

    large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  19. Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields.

    PubMed

    Gottschall, N; Topp, E; Edwards, M; Russell, P; Payne, M; Kleywegt, S; Curnoe, W; Lapen, D R

    2010-01-15

    Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha(-1)) in late fall 2005 via surface spreading on un-tilled soil (SS(LMB)), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg d wha(-1)) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SS(DMB)). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L(-1) during application-induced tile flow. SS(LMB) application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p<0.05), but not A plots (p>0.05). PBDE mass loss via tile (0-2h post-application) as a percent of mass applied was approximately 0.04-0.1% and approximately 0.8-1.7% for A and SS(LMB), respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha(-1)yr(-1), respectively. Total PBDE concentration in soil (0-0.2m) after both applications was 115 ng g(-1)dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration=17 ng L(-1)) and PFOA (12 ng L(-1)) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (p<0.05) land application treatment effects (SS(LMB)>A>C for tile and SS(LMB) and A>C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were

  20. Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields.

    PubMed

    Gottschall, N; Topp, E; Edwards, M; Russell, P; Payne, M; Kleywegt, S; Curnoe, W; Lapen, D R

    2010-01-15

    Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha(-1)) in late fall 2005 via surface spreading on un-tilled soil (SS(LMB)), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg d wha(-1)) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SS(DMB)). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L(-1) during application-induced tile flow. SS(LMB) application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p<0.05), but not A plots (p>0.05). PBDE mass loss via tile (0-2h post-application) as a percent of mass applied was approximately 0.04-0.1% and approximately 0.8-1.7% for A and SS(LMB), respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha(-1)yr(-1), respectively. Total PBDE concentration in soil (0-0.2m) after both applications was 115 ng g(-1)dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration=17 ng L(-1)) and PFOA (12 ng L(-1)) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (p<0.05) land application treatment effects (SS(LMB)>A>C for tile and SS(LMB) and A>C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were

  1. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOEpatents

    Jin, Song; Fallgren, Paul H.; Morris, Jeffrey M.

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  2. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Goswami, Chandreyee; Mukhopadhyay, Dhruba; Poddar, Bikash Chandra

    2012-03-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River. Two distinct E-Wlineaments passing through this area had been identified by Nakata (1972, 1989) as active faults. The northern lineament manifested as Matiali scarp and the southern one manifested as Chalsa scarp represent the ramp anticlines over two blind faults, probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT), respectively. The fan surface is folded into two antiforms with a synform in between. These folds are interpreted as fault propagation folds over the two north dipping blind thrusts. Two lineaments trending NNE-SSW and nearly N-S, respectively, are identified, and parts of present day courses of the Murti and Neora Rivers follow them. These lineaments are named as Murti and Neora lineaments and are interpreted to represent a conjugate set of normal faults. The rivers have changed their courses by the influence of these normal faults along the Murti and Neora lineaments and their profiles show knick points where they cross E-W thrusts. The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults. The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults. Four major terraces and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers. The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above. But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  3. Review of habitat classification schemes appropriate to streams, rivers, and connecting channels in the Great Lakes drainage system

    USGS Publications Warehouse

    Hudson, Patrick L.; Griffiths, R.W.; Wheaton, T.J.

    1992-01-01

    Studies of lotic classification, zonation, and distribution carried out since the turn of the century were reviewed for their use in developing a habitat classification scheme for flowing water in the Great Lakes drainage basin. Seventy papers, dealing mainly with fish but including benthos, were organized into four somewhat distinct groups. A heirarchical scale of habitat measurements is suggested, and sources of data and inventory methods, including statistical treatment, are reviewed. An outline is also provided for developing a classification system for riverine habitat in the Great Lakes drainage basin.

  4. Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...

  5. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    PubMed Central

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  6. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  7. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-02-26

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.

  8. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  9. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.

  10. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants. PMID:24569267

  11. Visualization and simulation of immiscible displacement in fractured systems using micromodels: 1, Drainage

    SciTech Connect

    Haghighi, M.; Xu, B.; Yortsos, Y.C.

    1993-06-01

    We consider drainage processes in model geometries that represent a matrix block-fracture system. Flow visualization in etched glass micromodels was carried out for various pairs of fluids, injection rates (capillary numbers) and viscosity ratio values. The experiments were then modeled with the use of a pore network simulator based on meniscus displacement. It was found that displacement occurs only in the fracture as long as the flow rate is below a critical value. Invasion of the matrix block occurs after this critical value (capillary number threshold) is exceeded. Numerical and experimental results were compared and found in good agreement. A theory for the invasion process and the critical capillary number was then developed. Displacement efficiencies were evaluated as a function of the capillary number and the mobility ratio. The process is reminiscent of a capillary pressure-saturation curve, with the notable exception that the role of capillary pressure is here played by the capillary number, and that the process is dynamic rather than quasi-static. Finally, effective relative permeabilities for the matrix-fracture system were calculated. Contrary to homogeneous systems, these curves depend on the mobility ratio.

  12. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  13. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  14. Contributions of systematic tile drainage to watershed scale phosphorus transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) transport from agricultural fields continues be a focal point for addressing harmful algal blooms (HABs) and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. Research on th...

  15. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  16. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage.

    PubMed

    Ayora, Carlos; Macías, Francisco; Torres, Ester; Lozano, Alba; Carrero, Sergio; Nieto, José-Miguel; Pérez-López, Rafael; Fernández-Martínez, Alejandro; Castillo-Michel, Hiram

    2016-08-01

    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited. PMID:27351211

  17. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage.

    PubMed

    Ayora, Carlos; Macías, Francisco; Torres, Ester; Lozano, Alba; Carrero, Sergio; Nieto, José-Miguel; Pérez-López, Rafael; Fernández-Martínez, Alejandro; Castillo-Michel, Hiram

    2016-08-01

    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited.

  18. Foam drainage

    SciTech Connect

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  19. Acid mine drainage treatment with a combined wetland/anoxic limestone drain: Greenhouse and field systems

    SciTech Connect

    Skousen, J.; Sexstone, A.; Cliff, J.; Sterner, P.; Calabrese, J.; Ziemkiewicz, P.

    1999-07-01

    The most common methods for treating acid mine drainage (AMD) involve applying a strong base to neutralize the acidity and to precipitate metals. Limestone use in AMD treatment has been largely confined to anaerobic wetlands, anoxic limestone drains (ALDs) and open limestone channels. If Fe{sup 3+} and Al could be removed from AMD before introduction into limestone systems, then the use of limestone for AMD treatment could be greatly expanded. The authors developed and monitored a passive AMD system to determine if AMD containing Fe{sup 3+} as ferrous sulfides (FeS{sub x}) through sulfate reduction. Further, Fe and al may be adsorbed to organic matter in the wetland thereby eliminating the formation of metal hydroxides with subsequent plugging of limestone pores. A field scale wetland/anoxic limestone drain (WALD) system located at Douglas, WV exported net alkaline water (mean of 127 mg/L as CaCO{sub 3}) for one year. However, dissolved oxygen and Fe data suggest that poor hydraulic conductivity caused this system to act as an Fe-oxidizing system, rather than an Fe-reducing system. As such, the system's long term effectiveness for treating AMD was compromised. After five years of operation, the system still reduces the acidity of the water from about 500 mg/L as CaCO{sub 3} to about 150 mg/L. A small scale Greenhouse system performed more like an Fe-reducing system, decreasing acidity for seven months and exporting Fe{sup 2+}, although the water existing the wetland did not contain excess alkalinity. While complications arose in the authors systems due to high flows in the Douglas system and high acidity in the Greenhouse system, pre-treating AMD with organic material can improve the condition of the water for proper treatment by an ALD or underlying limestone. For low to moderate flows (<400 L/min) and low Fe concentrations (<50 mg/L), a passive system that pre-treats AMD with organic substrates and then directs the water into limestone may be effective for many

  20. Significance of the fine drainage pattern for submarine canyon evolution: The Foix Canyon System, Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Tubau, Xavier; Lastras, Galderic; Canals, Miquel; Micallef, Aaron; Amblas, David

    2013-02-01

    Submarine gullies are relatively small valleys that occur in a variety of submarine slopes. They are very common in continental slopes and in submarine canyon heads and flanks, where they often form tributary networks. Gullies are smaller than submarine canyons, though there is no standardised size criterion to distinguish between them. Gullies and gully networks have been often viewed as initial steps in the development of larger submarine canyons and more mature drainage networks. The shelf-incising submarine Foix Canyon System (FCS) is located in the northwestern Mediterranean Sea. Numerous, well-developed and morphologically diverse gullies carve its two heads and flanks. The objective of this study is to analyse the drainage network of the FCS and decipher the role of gullies in its evolution. Submarine gully and canyon networks were extracted from swath bathymetry data of 50 m grid size using Geographic Information Systems (GIS). A systematic morphometric analysis was carried out on drainage network of the FCS by using the Horton-Strahler method. Our results show that the FCS is formed by 1660 streams, 1000 km in total length, which can be classified to six stream orders. To detect relevant morphological changes along valley sections, the drainage density, the stream frequency and the drainage area relief parameters were applied. Furthermore, a branching index (Ib) was developed to characterise the geometry of the submarine drainage network. In the canyon heads Ib values are ~ 1.7, which correspond to a dendritic network, whereas Ib in the canyon branches displays values of ~ 2.2 corresponding to a pinnate one. At a finer scale, we have identified two types of canyon flank gullies, namely "rim gullies" and "toe gullies": (1) rim gullies form large, dendritic networks that extend from the canyon thalweg up to the canyon rim, and (2) toe gullies form smaller pinnate networks restricted to the lower part of the canyon flanks. The formation and development of rim

  1. Assessing the hydrologic impacts of drainage systems in Iowa using a physically based, coupled surface water/groundwater model

    NASA Astrophysics Data System (ADS)

    Acar, O.; Franz, K. J.; Simpkins, W. W.; Morrison, A.; Helmers, M. J.; Cruse, R.

    2012-12-01

    Recent large magnitude floods in Iowa have created a need for better understanding of the impacts of artificial drainage, especially tile drainage, on streamflow hydrology. This study aims to characterize the field to watershed behavior of a typical drained system in Iowa as well as represent all flow partitioning mechanisms present in these landscapes. The quantification of spatial and temporal heterogeneous water fluxes will be addressed through the application of a physically based, coupled surface water/ groundwater model. HydroGeoSphere simultaneously solves the flow and transport equations in surface, tile drain and groundwater flow pathways and the exchange fluxes between these continua. The model includes 2D overland flow, 3D groundwater flow components combined with 1D tile flow. The study area is the South Fork watershed located in north-central Iowa. Approximately 80% of the watershed is tile drained and stream discharge is highly dominated by drain flow. While previous studies have mainly focused on the subsurface drainage, we target an expanded scope to include the alterations that have been made to the surface drainage network through stream channelization and construction of ditches. By including the assessment of surface intake impacts, flow capacity of the subsurface drainage conveyance systems, and intensity of infield drainage systems, we seek to explore a thorough understanding of the effects of artificial drainage on variations in volume, rate and frequency of surface and subsurface flows as a function of the spatial scale (ranging from field to watershed extent) under a range of climatic events. Furthermore, by examining pre- and post-alteration scenarios, we will describe how land use changes have altered the hydrologic behavior of South Fork watershed. In order to enhance calibration and validation of the model, (in addition to existing data) selected field monitoring is planned. Hydraulic head distributions and nested discharge data (tile

  2. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    PubMed

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  3. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    PubMed

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  4. Characterization of Manganese Oxide Precipitates from Appalachian Coal Mine Mine Drainage Treatment Systems

    SciTech Connect

    Tan, H.; Zhang, G; Heaney, P; Webb, S; Burgos, W

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO{sub x}). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction ({+-}inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO{sub x} precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO{sub x} precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.

  5. Experimental and numerical investigation of interactions between above and below ground drainage systems.

    PubMed

    Djordjević, Slobodan; Saul, Adrian J; Tabor, Gavin R; Blanksby, John; Galambos, Istvan; Sabtu, Nuridah; Sailor, Gavin

    2013-01-01

    This paper presents the results of the experimental and numerical investigation of interactions between surface flood flow in urban areas and the flow in below ground drainage systems (sewer pipes and manholes). An experimental rig has been set up at the Water Engineering Laboratory at the University of Sheffield. It consists of a full scale gully structure with inlet grating, which connects the 8 m(2) surface area with the pipe underneath that can function as an outfall and is also further connected to a tank so that it can come under surcharging conditions and cause outflow from the gully. A three-dimensional CFD (Computational Fluid Dynamics) model has been set up to investigate the hydraulic performance of this type of gully inlet during the interactions between surface flood flow and surcharged pipe flow. Preliminary results show that the numerical model can replicate various complex 3D flow features observed in laboratory conditions. This agreement is overall better in the case of water entering the gully than for the outflow conditions. The influence of the surface transverse slope on flow characteristics has been demonstrated. It is shown that re-circulation zones can form downstream from the gully. The number and size of these zones is influenced by the transverse terrain slope.

  6. Spectral masking of goethite in abandoned mine drainage systems: implications for Mars

    USGS Publications Warehouse

    Cull, Selby; Cravotta, Charles A.; Klinges, Julia Grace; Weeks, Chloe

    2014-01-01

    Remote sensing studies of the surface of Mars use visible- to near-infrared (VNIR) spectroscopy to identify hydrated and hydroxylated minerals, which can be used to constrain past environmental conditions on the surface of Mars. However, due to differences in optical properties, some hydrated phases can mask others in VNIR spectra, complicating environmental interpretations. Here, we examine the role of masking in VNIR spectra of natural precipitates of ferrihydrite, schwertmannite, and goethite from abandoned mine drainage (AMD) systems in southeastern Pennsylvania. Mixtures of ferrihydrite, schwertmannite, and goethite were identified in four AMD sites by using X-ray diffractometry (XRD), and their XRD patterns compared to their VNIR spectra. We find that both ferrihydrite and schwertmannite can mask goethite in VNIR spectra of natural AMD precipitates. These findings suggest that care should be taken in interpreting environments on Mars where ferrihydrite, schwertmannite, or goethite are found, as the former two may be masking the latter. Additionally, our findings suggest that outcrops on Mars with both goethite and ferrihydrite/schwertmannite VNIR signatures may have high relative abundances of goethite, or the goethite may exist in a coarsely crystalline phase.

  7. Influence of biofilms on heavy metal immobilization in sustainable urban drainage systems (SuDS).

    PubMed

    Feder, Marnie; Phoenix, Vernon; Haig, Sarah; Sloan, William; Dorea, Caetano; Haynes, Heather

    2015-01-01

    This paper physically and numerically models the influence of biofilms on heavy metal removal in a gravel filter. Experimental flow columns were constructed to determine the removal of Cu, Pb and Zn by gabbro and dolomite gravel lithologies with and without natural biofilm from sustainable urban drainage systems (SuDS). Breakthrough experiments showed that, whilst abiotic gravel filters removed up to 51% of metals, those with biofilms enhanced heavy metal removal by up to a further 29%, with Cu removal illustrating the greatest response to biofilm growth. An advection-diffusion equation successfully modelled metal tracer transport within biofilm columns. This model yielded a permanent loss term (k) for metal tracers of between 0.01 and 1.05, correlating well with measured data from breakthrough experiments. Additional 16S rRNA clone library analysis of the biofilm indicated strong sensitivity of bacterial community composition to the lithology of the filter medium, with gabbro filters displaying Proteobacteria dominance (54%) and dolomite columns showing Cyanobacteria dominance (47%).

  8. Influence of biofilms on heavy metal immobilization in sustainable urban drainage systems (SuDS).

    PubMed

    Feder, Marnie; Phoenix, Vernon; Haig, Sarah; Sloan, William; Dorea, Caetano; Haynes, Heather

    2015-01-01

    This paper physically and numerically models the influence of biofilms on heavy metal removal in a gravel filter. Experimental flow columns were constructed to determine the removal of Cu, Pb and Zn by gabbro and dolomite gravel lithologies with and without natural biofilm from sustainable urban drainage systems (SuDS). Breakthrough experiments showed that, whilst abiotic gravel filters removed up to 51% of metals, those with biofilms enhanced heavy metal removal by up to a further 29%, with Cu removal illustrating the greatest response to biofilm growth. An advection-diffusion equation successfully modelled metal tracer transport within biofilm columns. This model yielded a permanent loss term (k) for metal tracers of between 0.01 and 1.05, correlating well with measured data from breakthrough experiments. Additional 16S rRNA clone library analysis of the biofilm indicated strong sensitivity of bacterial community composition to the lithology of the filter medium, with gabbro filters displaying Proteobacteria dominance (54%) and dolomite columns showing Cyanobacteria dominance (47%). PMID:25982923

  9. Anomalies of cardiac venous drainage associated with abnormalities of cardiac conduction system.

    PubMed

    Morgan, D R; Hanratty, C G; Dixon, L J; Trimble, M; O'Keeffe, D B

    2002-07-01

    The embryological development of the superior vena cava (SVC) is complex. If the left common cardinal vein fails to occlude it can, along with the left duct of Cuvier form a left SVC, which frequently drains into the coronary sinus. This may result in abnormalities in the anatomy of this structure. A persistent left SVC occurs in 0.5% of the normal population, and 3% to 4.3% of patients with congenital heart anomalies. The pacemaking tissue of the heart is derived from two sites near the progenitors of the superior vena cava. The right-sided site forms the sinoatrial node, the left-sided site is normally carried down to an area near the coronary sinus. Out of 300 patients with cardiac rhythm abnormalities, who have undergone electrophysiological studies (EPS), or permanent pacemaker insertion (PPI), we identified 12 patients with cardiac conduction abnormalities and anomalies of venous drainage. Anomalies of the coronary sinus may be associated with abnormalities of the conduction system of the heart. This may be due to the close proximity of the coronary sinus to the final position of the left-sided primitive pacemaking tissue. In our series of 300 patients, 4% had an associated left SVC, a similar incidence to that found in previous studies of congenital heart disease.

  10. Managing natural processes in drainage for non-point source nitrogen control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In watersheds dominated by agriculture, artificial drainage systems can efficiently and quickly transport excess water from agricultural soils. The application of more nitrogen (N) than a crop uses creates a surplus in the soil and increases the risk of N loss to the environment. We examine issues a...

  11. The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes

    NASA Astrophysics Data System (ADS)

    Dolezal, F.; Kvitek, T.

    2003-04-01

    Large areas of ploughed lands in old peneplains of Central Europe (such as the Bohemo-Moravian Highland) are located on flat tops of hills. Their soils, mostly Cambisols on weathered acid crystalline rocks (e.g., granite and gneiss) are permeable and shallow or medium-deep. These are the zones of groundwater recharge and it is through them that the local water-bearing formations (weathered rocks, colluvia and quaternary sediments in valleys) receive their portions of nitrate and other pollutants. The groundwater exfiltrates on the lower parts of slopes and in narrow valleys, creating dispersed springs and waterlogged areas. The latter were traditionally used, if at all, as forests or meadows. Since about 1960, many of the former meadows in foothill zones of Czech highlands have been drained by subsurface tile drainage systems and turned into arable lands. Field measurements in several small experimental catchments in this area proved that the water which is being discharged into the main stream either by small surface tributaries collecting water from subsurface drainage systems or by the subsurface drainage systems themselves reveals high concentrations of nitrate. Strong intraseasonal variation of water quality and the results of runoff separation suggest that the overall turnover of groundwater is fast. It is hypothesised that the redox status of the formerly waterlogged sites has been shifted toward the oxidation side due to drainage and tillage, rendering the removal of nitrogen from groundwater by denitrification less efficient. Hence, it is mainly the combination of diffuse pollution by nitrate in the recharge zones and the lack of opportunity for denitrification in the transitional and discharge zones which makes the stream water polluted. The ploughed lands in the recharge zones represent an established basis for local agriculture and cannot be set aside. Many of them have however been declared as vulnerable zones in terms of the nitrate pollution risk

  12. Use of microbial community to evaluate performance of a wetland system in treating Pb/Zn mine drainage.

    PubMed

    Yu, Yu H; Feng, Wei S; Shen, Yun F; Ye, Zhi H; Wong, Ming H

    2005-12-01

    The performance of a wetland system in treating lead (Pb)/zinc (Zn) mine drainage was evaluated by using the polyurethane foam unit (PFU) microbial community (method), which has been adopted by China as a standardized procedure for monitoring water quality. The wetland system consisted of four cells with three dominant plants: Typha latifolia, Phragmites australis and Paspalum distichum. Physicochemical characteristics [pH, EC, content of total suspended solid (TSS) and metals (Pb, Zn, Cd, and Cu)] and PFU microbial community in water samples had been investigated from seven sampling sites. The results indicated that the concentrations of Pb, Zn, Cd, Cu, and TSS in the mine drainage were gradually reduced from the inlet to the outlet of the wetland system and 99%, 98%, 75%, 83%, and 68% of these metals and TSS respectively, had been reduced in concentration after the drainage passed through the wetland system. A total of 105 protozoan species were identified, the number of protozoa species and the diversity index (DI) gradually increased, while the heterotrophic index (HI) gradually decreased from the inlet to the outlet of the wetland system. The results indicated that DI, HI, and total number species of protozoa could be used as biological indicators indicating the improvement of water quality.

  13. Systems in peril: Climate change, agriculture and biodiversity in Australia

    NASA Astrophysics Data System (ADS)

    Cocklin, Chris; Dibden, Jacqui

    2009-11-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  14. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  15. Passive treatment of acid mine drainage in systems containing compost and limestone: Laboratory and field results

    SciTech Connect

    Watzlaf, G.R.; Pappas, D.M.

    1996-12-31

    Passive, down-flow systems, consisting of compost and limestone layers, termed successive alkalinity producing systems (SAPS), may be well suited for treatment of mine drainage containing ferric iron and/or aluminum. A column, simulating a SAPS, has been operated in the laboratory for 52 weeks. The 0.16-m diameter column consisted of a 0.30-m thick layer of limestone, a 0.76-m thick layer of spent mushroom compost thick layer of limestone, a 0.76-m thick layer of spent mushroom compost and 0.91 m of free standing water. Actual AMD (pH = 3.02, acidity = 218 mg/L (as CaCO{sub 3}), SO{sub 4} = 600 mg/L, Fe = 16.0 mg/L, Mn = 12.1 mg/L, and Al = 17.1 mg/L) was applied to the column at a rate of 3.8 mL/min. Effluent pH has remained above 6.2 (6.2-7.9) in the column system. A SAPS located in Jefferson County, PA has been monitored for the past 4.5 years. The SAPS has an approximate area of 1000 m{sup 2} and contains a 0.4-m thick layer of limestone, a 0.2-m thick layer of spent mushroom compost, and 1.5 m of free standing water. Mine water (acidity = 335 mg/L (as CaCO{sub 3}), SO{sub 4} = 1270 mg/L, Fe = 246 mg/L, Mn = 38.4 mg/L, and Al = <0.2 mg/L) flowed into the SAPS at a rate of 140 L/min. Water samples from the field and laboratory systems have been collected at strategic locations on a regular basis and analyzed for pH, alkalinity, acidity, Fe{sup 2+}, total Fe, Mn, Al, SO{sub 4}, Ca, Mg, Na, Co, Ni, and Zn. Alkalinity has been generated in both field and laboratory systems by a combination of limestone dissolution and sulfate reduction. The column generated an average of 378 mg/L of alkalinity; 74% due to limestone dissolution and 26% due to bacterial reduction of sulfate. The field SAPS generated an average of 231 mg/L of alkalinity and exhibited seasonal trends.

  16. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    NASA Astrophysics Data System (ADS)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  17. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    PubMed

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. PMID:25602557

  18. Historical overview and future directions of the microbial role in the acidic coal mine drainage system

    SciTech Connect

    Robbins, E.I.

    1998-12-31

    Bacteria have been implicated and analyzed at every step in the production of acidic coal mine drainage (AMD). This review paper provides detailed information about microbial studies in mines, laboratory settings, waste piles, ground water, receiving streams, and downstream rivers and lakes. Research on AMD treatment, beneficial uses, and seasonal variability is also reviewed. 102 refs.

  19. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH INCORPORATING GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  20. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA

    USGS Publications Warehouse

    Cowie, Rory; Williams, Mark W.; Wireman, Mike; Runkel, Robert L.

    2014-01-01

    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  1. Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins

    NASA Astrophysics Data System (ADS)

    Darracq, AméLie; Lindgren, Georg; Destouni, Georgia

    2008-09-01

    We analyze and compare simulations and controlling processes of the past 60 years and possible future short- and long-term development of phosphorus and nitrogen loading from the Swedish Norrström drainage basin to the Baltic Sea under different inland source management scenarios. Results indicate that both point and agricultural source inputs may need to be decreased by at least 40% in order to reach a long-term sustainable 30% reduction of anthropogenic coastal nitrogen loading, as required by national environmental goals. A corresponding 20% anthropogenic phosphorus load reduction goal may be reached in the short term by analogous combined 40% source input reduction, but appears impossible to maintain as a long-term achievement by inland source abatement only. In general, realistic quantification of the slow subsurface nutrient transport and accumulation-release dynamics may be essential for accurately predicting and managing nutrient loading to surface and coastal waters.

  2. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    NASA Astrophysics Data System (ADS)

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  3. Drainage systems associated with mid-ocean channels and submarine Yazoos: Alternative to submarine fan depositional systems

    SciTech Connect

    Hesse, R. )

    1989-12-01

    Submarine drainage systems associated with mid-ocean channels and Yazoo River-type tributaries in small ocean basins represent a contrast to deep-sea fan depositional systems. Deep-sea fans are diverging sediment-dispersal systems of distributary fan valleys. Deep-sea channel-submarine-yazoo systems, on the other hand, form centripetally converging patterns of tributaries and yazoo-type satellite channels that join a major basin-draining (mid-ocean) channel. The facies model for such systems is characterized by randomly stacked fining-upward, gravelly, and sandy channel-fill and submarine point-bar sequences of the main channel encased in fine-grained overbank deposits. Second-order channels contain sandy proximal overbank deposits, whereas the levees of the main channel are predominantly composed of silt and clay. Second-order channels may be braided and may broaden into braid plains. Morphology and surficial sediment distribution have been studied within the Northwest Atlantic Mid-Ocean Channel of the Labrador Sea and its associated levees and yazoo-type (and other) tributaries.

  4. A novel technique for cardiopulmonary bypass using vacuum system for venous drainage with pressure relief valve: an experimental study.

    PubMed

    Taketani, S; Sawa, Y; Masai, T; Ichikawa, H; Kagisaki, K; Yamaguchi, T; Ohtake, S; Matsuda, H

    1998-04-01

    To decrease the circuit priming volume, develop safety, and simplify the equipment, a cardiopulmonary bypass (CPB) circuit using a vacuum suction venous drainage system with a pressure relief valve was developed. The efficacy of this vacuum system was compared to that of a conventional siphon system. The system contains a powerful vacuum generator and a pressure relief valve to keep the negative pressure constant when blood suction is used. Using 8 mongrel dogs, the feasibility and the efficacy of this CPB system was tested. The changes in the negative pressure in the reservoir were within 5 mm Hg whether the suction lines were switched on or off. In all animals the amount of blood in the venous reservoir was stable throughout bypass. The decrease of priming volume was from 725 ml (siphon system) to 250 ml (vacuum system). At the end of CPB, the levels of hemoglobin in the vacuum system were significantly higher than those in the siphon system. These results demonstrated that this vacuum drainage system can provide simplification and a miniaturization of the cardiopulmonary bypass circuit resulting in low hemodilution during CPB.

  5. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    PubMed

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    The compost bioreactor ("anaerobic cell") components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  6. Use of Water Fluxmeters to Measure Drainage

    SciTech Connect

    Gee, Glendon W.; Ward, Andy L.; Zhang, Z. F.; Anandacoomaraswamy, A.

    2004-03-24

    Water supplies throughout the world are rapidly diminishing in quantity and quality. Efforts over the next decade must focus on methods which use water more efficiently for agriculture, industry, and recreational purposes, and at the same time reduce the potential for groundwater pollution. To assist in this effort, we have developed an improved method to simultaneously measure drainage quantity and quality using a water fluxmeter. Our water fluxmeter is a wick-lysimeter fitted with a small tipping-spoon and a solution-collection system. The only moving part is the tipping spoon. We have tested our fluxmeters under a range of conditions, from non-vegetated desert settings in Washington State USA, to irrigated tea plantations in Sri Lanka. Conditions of over-irrigation have been documented with our fluxmeters. When 4200 mm of water was applied to sandy soil via drip irrigation, at the Washington State site, over 3100 mm of drainage occurred. In contrast, at the same site, in the absence of both irrigation and vegetation, drainage was found to range from 0 mm/yr for a 1-m-deep silt loam soil to more than 100 mm/yr for a coarse-gravel surface. Solute transport, related to nitrate leaching can also be analyzed using water fluxmeters. Water fluxmeters have provided a reliable and inexpensive method to assess both quantity and quality of drainage waters over a wide range of environmental conditions.

  7. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  8. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  9. Private Agricultural Extension System in Kenya: Practice and Policy Lessons

    ERIC Educational Resources Information Center

    Muyanga, Milu; Jayne, T. S.

    2008-01-01

    Private extension system has been at the centre of a debate triggered by inefficient public agricultural extension. The debate is anchored on the premise that the private sector is more efficient in extension service delivery. This study evaluates the private extension system in Kenya. It employs qualitative and quantitative methods. The results…

  10. Open drainage, intra-articular and systemic antibiotics in the treatment of septic arthritis/tenosynovitis in horses.

    PubMed

    Schneider, R K; Bramlage, L R; Mecklenburg, L M; Moore, R M; Gabel, A A

    1992-11-01

    Open drainage was used to treat 26 horses with persistent or severe septic arthritis/tenosynovitis. Infected synovial structures were drained through a small (3 cm) arthrotomy incision that was left open and protected by a sterile bandage. Joint lavage was performed in all 26 horses. In addition to systemic antibiotics, 23 of these horses were also treated with intra-articular antibiotics; amikacin (17 horses), gentamycin (2 horses), cefazolin (2 horses), and 2 horses were injected at different times with gentamycin and amikacin. The infection was eliminated from the involved synovial structures in 25 of 26 horses; 24 survived and were released from the hospital. The arthrotomy incisions healed by granulation in 16 horses; in 9 horses the arthrotomy incision was sutured closed once the infection was eliminated. Seventeen horses returned to soundness and resumed athletic function. Open drainage was an effective method of achieving chronic drainage from a joint or tendon sheath. It is indicated in horses that have established intra-synovial infections or in horses that do not respond to joint lavage through needles.

  11. Investigation of a ponding irrigation system to recycle agricultural wastewater.

    PubMed

    Chen, P H; Leung, K C; Wang, J T

    2000-08-01

    This article presents the results of natural carrying capacity of ponding irrigation system in Taoyuan agricultural zone, Taiwan. Both the systematic water quality and the ponding effects were examined. The ponding irrigation system included a flow channel and storage ponds. The data showed that most water characteristics deteriorated gradually from upper- to down-stream in the flow channel and the flow channel was not attributed to any self-purification in agricultural returning water practically. On the other hand, the results of storage ponds indicated that they can provide a natural treatment (i.e., the outlet water quality of the ponds is more desirable than that of the inlet). Consequently, the ponding irrigation system offers the natural self-purification in ponds to reuse and recycle the returning agricultural wastewater and to extend the irrigation capacity and efficiency.

  12. Feasibility study of a microwave radar system for agricultural inspection

    SciTech Connect

    Okelo-Odongo, S.

    1994-10-03

    The feasibility of an impulse radar system for agricultural inspection is investigated. This system would be able to quickly determine the quality of foodstuffs that are passed through the system. A prototype was designed at the Lawrence Livermore National Laboratory and this report discusses it`s evaluation. A variety of apples were used to test the system and preliminary data suggests that this technology holds promise for successful application on a large scale in food processing plants.

  13. Forced drainage in a 2D foam in a microfluidic system using thermocapillary stress

    NASA Astrophysics Data System (ADS)

    Jullien, Marie-Caroline; Miralles, Vincent; Selva, Bertrand; Marchalot, Julien; Cantat, Isabelle; Mmn-Espci/Cnrs Team; Lof Collaboration; Inl Collaboration; Ipr Collaboration

    2013-11-01

    We present an experimental configuration allowing the possibility to control the liquid fraction in a 2D microfoam located in a Hele-Shaw cell. A Marangoni stress at the air-water interface is generated by applying a constant temperature gradient in situ, and leads to the drainage of the liquid phase. First, in order to avoid gravity drainage, the cell is placed horizontally and we are able to drain up to 70 % of the liquid phase, for foams of initial liquid fraction ϕ0 ~ 15 % . Next, the cell is placed vertically and the Marangoni stress for temperature gradients above 3.1 K.mm-1 is strong enough to counterbalance gravity drainage. Finally, a mass conservation approach based on scaling arguments and numerical simulations giving access to the velocity profile in a pseudo-Plateau border happen to be in very good agreement with the experimental results, showing that we can accurately control the liquid fraction in a 2D microfoam.

  14. Insights into the ancient Mississippi drainage system from detrital zircons analyses of the modern Mississippi deep-sea fan

    NASA Astrophysics Data System (ADS)

    Fildani, A.; McKay, M. P.; Stockli, D. F.; Clark, J. D.; Weislogel, A. L.; Dykstra, M.; Hessler, A. M.

    2014-12-01

    The modern Mississippi deep-sea fan is a large-scale accumulation of Quaternary sediment deposited in the Gulf of Mexico by the modern Mississippi River via the Mississippi delta. The Mississippi River has a well-characterized drainage system extending across North America from the western Rocky Mountains to the Appalachians in the east. Deep-water sand samples of buried channel-fill and lobe deposits of the Mississippi fan from selected Sites of Leg 96 of the Deep Sea Drilling Project (DSDP) and were integrated with USGS piston core samples from the most recent lobe for detrital zircon U-Pb isotopic analysis. Since the modern Mississippi River has a well-known catchment, the detrital zircon age 'signal' observed in the deep-water sediments can therefore be used as an actualistic study of the detrital zircon provenance signatures resulting from modern drainage patterns. Based on this approach, we compare this dataset with published data and observe minor variability in the detrital zircon signature through time. Populations sourced from the Western North American Cordillera are consistent through time in terms of ages, however Paleocene sediments are slightly enriched in Yavapai-Mazatzal zircons sourced from southwestern continental U.S.. Grenville- and Appalachian-derived zircons reflect minor variation in sediment input from the Appalachian Mountains and related deposits in the eastern Mississippi River catchment. When compared to published Upper Jurassic Norphlet formation detrital zircon data, the Paleocene published dataset and the newly acquired modern sands are partly depleted of Appalachian-derived zircons. This paucity in Appalachian age zircon in Paleocene-to-modern sediments suggests a reconfiguration of the Mississippi River drainage prior to Tertiary time. Since this realignment, the Mississippi River drainage has remained relatively unchanged. Piston core samples from the most recent lobe yielded zircons indicating a recent influx of Appalachian

  15. Ecological constraints on the ability of precision agriculture to improve the environmental performance of agricultural production systems.

    PubMed

    Groffman, P M

    1997-01-01

    In this paper, I address three topics relevant to the ability of precision agriculture to improve the environmental performance of agricultural production systems. First, I describe the fundamental ecological factors that influence the environmental performance of these systems and address how precision agriculture practices can or cannot interact with these factors. Second, I review the magnitude of the ecological processes that we hope to manage with precision agriculture relative to agricultural inputs to determine whether managing these processes can significantly affect system environmental performance. Finally, I address scale incongruencies between ecological processes and precision agriculture techniques that could limit the ability of these techniques to manage variability in these processes. The analysis suggests that there are significant ecological constraints on the ability of precision agriculture techniques to improve the environmental performance of agricultural production systems. The primary constraint is that these techniques do not address many of the key factors that cause poor environmental performance in these systems. Further, the magnitude of the ecological processes that we hope to manage with precision agriculture are quite small relative to agricultural inputs and, finally, these processes vary on scales that are incongruent with precision management techniques.

  16. A geographic information system screening tool to tackle diffuse pollution through the use of sustainable drainage systems.

    PubMed

    Todorovic, Zorica; Breton, Neil P

    2014-01-01

    Sustainable drainage systems (SUDS) offer many benefits that traditional solutions do not. Traditional approaches are unable to offer a solution to problems of flood management and water quality. Holistic consideration of the wide range of benefits from SUDS can result in advantages such as improved flood resilience and water quality enhancement through consideration of diffuse pollution sources. Using a geographical information system (GIS) approach, diffuse pollutant sources and opportunities for SUDS are easily identified. Consideration of potential SUDS locations results in source, site and regional controls, leading to improved water quality (to meet Water Framework Directive targets). The paper will discuss two different applications of the tool, the first of which is where the pollutant of interest is known. In this case the outputs of the tool highlight and isolate the areas contributing the pollutants and suggest the adequate SUDS measures to meet the required criteria. The second application is where the tool identifies likely pollutants at a receiving location, and SUDS measures are proposed to reduce pollution with assessed efficiencies.

  17. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    PubMed

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  18. Geographic Information Systems Methods for Determining Drainage-Basin Areas, Stream-Buffered Areas, Stream Length, and Land Uses for the Neosho and Spring Rivers in Northeastern Oklahoma

    USGS Publications Warehouse

    Masoner, Jason R.; March, Ferrella

    2006-01-01

    Geographic Information Systems have many uses, one of which includes the reproducible computation of environmental characteristics that can be used to categorize hydrologic features. The Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality are investigating Geographic Information Systems techniques to determine partial drainage-basin areas, stream-buffer areas, stream length, and land uses (drainage basin and stream characteristics) in northeastern Oklahoma. The U.S Geological Survey, in cooperation with Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality, documented the methods used to determine drainage-basin and stream characteristics for the Neosho and Spring Rivers above Grand Lake Of the Cherokees in northeastern Oklahoma and calculated the characteristics. The drainage basin and stream characteristics can be used by the Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality to aid in natural-resource assessments.

  19. Ohio Agricultural Business and Production Systems. Technical Competency Profile (TCP).

    ERIC Educational Resources Information Center

    Ray, Gayl M.; Kershaw, Isaac; Mokma, Arnie

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in agricultural business and production systems. Following an introduction, the Ohio College Tech Prep standards and program, and relevant definitions are described. Next are the technical competency profiles for these…

  20. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  1. Transformation and Transport Processes of Nitrogen in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformation and transport processes of nitrogen (N) in agricultural systems are discussed and information is provided on overall reservoir sizes for N. Nitrogen is ubiquitous in the environment and is required for the survival of all living things. It is also one of the most important essen...

  2. Monitoring the future behaviour of urban drainage system under climate change: a case study from north-western England

    NASA Astrophysics Data System (ADS)

    Osman, Yassin Z.

    2014-11-01

    Catchments hydrological conditions and responses are anticipated to be affected by the changes in weather patterns, increasing in climate variability and extreme rainfall. Thus, engineers have no choice but to consider climate change in their practices in order to adapt and serve the public interests. This paper is an exploration of the impacts of climate change on the hydrology that underlies the hydraulic design of urban drainage system. Future rainfall has been downscaled from the Global Climate Model (GCM) employing a hybrid Generalised Linear Model (GLM) and Artificial Neural Network (ANN) downscaling techniques under different greenhouse emission scenarios. The output from this model is applied to a combined sewer system of an urban drainage catchment in the Northwest of England during the 21st Century to monitor its future behaviour in winter and summer seasons. Potential future changes in rainfall intensity are expected to alter the level of service of the system, causing more challenges in terms of surface flooding and increase in surcharge level in sewers. The results obtained demonstrate that there is a real chance for these effects to take place and therefore would require more attention from designers and catchment managers.

  3. Rapid assessment methods of resilience for natural and agricultural systems.

    PubMed

    Torrico, Juan C; Janssens, Marc J J

    2010-12-01

    The resilience, ecological function and quality of both agricultural and natural systems were evaluated in the mountainous region of the Atlantic Rain Forest of Rio de Janeiro through Rapid Assessment Methods. For this goal new indicators were proposed, such as eco-volume, eco-height, bio-volume, volume efficiency, and resilience index. The following agricultural and natural systems have been compared according: (i) vegetables (leaf, fruit and mixed); (ii) citrus; (iii) ecological system; (iv) cattle, (v) silvo-pastoral system, (vi) forest fragment and (vii) forest in regeneration stage (1, 2 and 3 years old). An alternative measure (index) of resilience was proposed by considering the actual bio-volume as a function of the potential eco-volume. The objectives and hypotheses were fulfilled; it is shown that there does exist a high positive correlation between resilience index, biomass, energy efficiency and biodiversity. Cattle and vegetable systems have lowest resilience, whilst ecological and silvo-pastoral systems have greatest resilience. This new approach offers a rapid, though valuable assessment tool for ecological studies, agricultural development and landscape planning, particularly in tropical countries.

  4. TMDL implementation in agricultural landscapes: a communicative and systemic approach.

    PubMed

    Jordan, Nicholas R; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J; Pitt, David G; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  5. A computational-grid based system for continental drainage network extraction using SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Curkendall, David W.; Fielding, Eric J.; Pohl, Josef M.; Cheng, Tsan-Huei

    2003-01-01

    We describe a new effort for the computation of elevation derivatives using the Shuttle Radar Topography Mission (SRTM) results. Jet Propulsion Laboratory's (JPL) SRTM has produced a near global database of highly accurate elevation data. The scope of this database enables computing precise stream drainage maps and other derivatives on Continental scales. We describe a computing architecture for this computationally very complex task based on NASA's Information Power Grid (IPG), a distributed high performance computing network based on the GLOBUS infrastructure. The SRTM data characteristics and unique problems they present are discussed. A new algorithm for organizing the conventional extraction algorithms [1] into a cooperating parallel grid is presented as an essential component to adapt to the IPG computing structure. Preliminary results are presented for a Southern California test area, established for comparing SRTM and its results against those produced using the USGS National Elevation Data (NED) model.

  6. Characterization of Microbial Communities in Coal Mine Drainage Treatment Systems With Elevated Manganese

    NASA Astrophysics Data System (ADS)

    Tan, H.; Zhang, G.; Burgos, W.

    2007-12-01

    Sediment samples were collected from two coal mine drainage treatment sites in western Pennsylvania. Both of the sites use constructed limestone beds to passively treat acidic coal mine drainage containing elevated manganese (Mn). Site #1 has influent manganese of 150 mg/L and effluent manganese between 40-100 mg/L. Site #2 has influent manganese of 20 mg/L and effluent manganese of less than 0.5 mg/L. Large quantities of black crusts were deposited throughout the beds at both sites. X-ray diffraction showed these crusts constituted of buserite, which is a layered structure manganese oxide mineral. Both culture-dependent and nucleic acid- based techniques were used to characterize the bacterial and fungal communities in these beds. 16S rRNA gene analysis showed that bacterial communities were very diverse and included Cyanobacter, Proteobacteria, Bacteroidete, Planctomyceta, Acidobacter, Actinobacter and Gemmatimonade taxa. The archaeal diversity was lower and most sequences were related to uncultivated species. Two Mn-oxidizing fungi strains were isolated from one of the sites. One of the fungi is capable of oxidizing Mn(II) at both low and netural pH (3-7) while the other fungi can only oxidze Mn(II) at circumneutral pH. 18S rRNA gene analysis showed the low pH Mn-oxidizing fungus was closely related to Menispora tortuosa, Chaetosphaeria curvispora and Kionochaeta spissa, and the circumneutral Mn-oxidizing fungus was closely related to Myrothecium verrucaria, Didymostilbe echinofibrosa and Myrothecium roridum.

  7. Effective Management of Persistent Pneumothorax Using a Thopaz® Digital Drainage System Combined with an Endobronchial Watanabe Spigot.

    PubMed

    Shiroyama, Takayuki; Okamoto, Norio; Tamiya, Motohiro; Hamaguchi, Masanari; Tanaka, Ayako; Nishida, Takuji; Hayama, Manabu; Nishihara, Takashi; Morishita, Naoko; Suzuki, Hidekazu; Hirashima, Tomonori

    2016-01-01

    A 72-year-old man with salivary gland cancer and multiple pulmonary metastases suffering from intractable pneumothorax was transferred to our institution; he was inoperable because of a low pulmonary function. A chest tube had been placed more than a month prior to this admission. A digital drainage system was used for 24-h monitoring of air leaks (Thopaz®). Using the Thopaz® system, we performed endoscopic bronchial occlusion using an endobronchial Watanabe spigot (EWS) to reduce air leaks. Finally, the air leaks ceased, and the chest tube was removed five days after EWS placement. We herein report a case of persistent pneumothorax that was successfully treated by endoscopic bronchial EWS placement with the aid of a Thopaz® system.

  8. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  9. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  10. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  11. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  12. Enumeration of sulphate-reducing bacteria for assessing potential for hydrogen sulphide production in urban drainage systems.

    PubMed

    Karunakaran, Esther; Vernon, Dejan; Biggs, Catherine A; Saul, Adrian; Crawford, David; Jensen, Henriette

    2016-01-01

    Urban drainage structures have increasing demands which can lead to increasing hydrogen sulphide related problems forming in places where they have not previously been prevalent. This puts pressure on the methods currently used to monitor and diagnose these problems and more sophisticated methods may be needed for identifying the origin of the problems. Molecular microbiological techniques, such as quantitative polymerase chain reaction, offer a potential alternative for identifying and quantifying bacteria likely to be causing the production of hydrogen sulphide, information that, when combined with an appropriate sampling programme, can then be used to identify the potentially most effective remediation technique. The application of these methods in urban drainage systems is, however, not always simple, but good results can be achieved. In this study bacteria producing hydrogen sulphide were quantified in three small combined sewer overflow storage tanks. Bacterial counts were compared between wastewater, biofilms and sediments. Similar numbers were found in the wastewater and biofilms, with the numbers in the sediments being lower. If remediation methods for hydrogen sulphide are deemed necessary in the tanks, methods that target both the wastewater and the biofilms should therefore be considered. PMID:27332857

  13. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    EPA Science Inventory

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  14. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  15. Acid Mine Drainage Research in Gauteng Highlighting Impacts on Infrastructure and Innovation of Concrete-Based Remedial Systems

    NASA Astrophysics Data System (ADS)

    Diop, S.; Ekolu, S.; Azene, F.

    2013-12-01

    Acid mine drainage (AMD) is presently one of the most important environmental problems in in the densely populated Gauteng Province, South Africa. The threat of acid mine drainage has demanded short-term interventions (some of which are being implemented by government) but more importantly sustainable long-term innovative solutions. There have been moments of public apprehension with some media reports dubbing the current scenario as a future 'nightmare of biblical proportions' and 'South Africa's own Chernobyl' that could cause dissolving of concrete foundations of buildings and reinforcement steel, leading to collapse of structures. In response to the needs of local and provincial authorities, this research was conducted to (1) generate scientific understanding of the effects of AMD on infrastructure materials and structures, and (2) propose innovative long-term remedial systems based on cementitious materials for potential AMD treatment applications of engineering scale. Two AMD solutions from the goldfields and two others from the coalfields were used to conduct corrosion immersion tests on mild steel, stainless steel, mortars, pastes and concretes. Results show that AMD water from the gold mines is more corrosive than that from the coal mines, the corrosion rate of the former being about twice that of the latter. The functionality of metal components of mild steel can be expected to fail within one month of exposure to the mine water. The investigation has also led to development of a pervious concrete filter system of water-cement ratio = 0.27 and cement content = 360 kg/m3, to be used as a permeable reactive barrier for AMD treatment. Early results show that the system was effective in removing heavy metal contaminants with removal levels of 30% SO4, 99% Fe, 50-83% Mn, 85% Ca, and 30% TDS. Further work is on-going to improve and optimise the system prior to field demonstration studies.

  16. Modeling the impacts of regulatory frameworks on self-organization in dryland agricultural systems

    NASA Astrophysics Data System (ADS)

    Gower, D.; Caylor, K. K.; McCord, P. F.; Evans, T. P.

    2015-12-01

    The climatological conditions that characterize dryland environments - high potential evapotranspiration combined with low and variable total rainfall - pose challenges for farmers deciding when and how much to irrigate. These challenges are greater in developing countries where the absence of sufficient storage infrastructure means that irrigation water is sometimes applied to agricultural fields directly from rivers. Because soil moisture and river flow both depend on recent rainfall, high irrigation demand often coincides with low river flow, limiting access to water when it is most needed. These feedbacks can constrain the yield increases expected from irrigation in such settings. Scaled up to the catchment level, irrigation water availability varies spatially as well as temporally. Irrigators in upstream areas of the catchment have first access to river water but rely on a smaller drainage network while those in downstream areas are affected by the opposite conditions. During periods of high rainfall, downstream users have the greatest access to water while upstream users are then favored during drought intervals. In the absence of rules governing water access, these flow dynamics will constrain the distribution of potential agricultural yields within the catchment. A simple numerical model simulating catchment and irrigation processes was constructed in order to better understand how climate and geomorphologic characteristics affect crop yield, economic returns and the spatial distribution of irrigated areas. By assuming a statistically representative river network structure, the model was first used to explore the effect of unregulated irrigation withdrawals on these variables. Multiple water management programs, including withdrawal limits, rotational systems and flow minima, were then simulated and the results compared to the unregulated case. This analysis shows the potential for simple models to provide insight into complex irrigation systems and to make

  17. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems

    PubMed Central

    Verbruggen, Erik; Toby Kiers, E

    2010-01-01

    The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit. PMID:25567946

  18. USGS develops a drainage-based system to track ANS introductions

    USGS Publications Warehouse

    Fuller, Pam L.

    1999-01-01

    The U.S. Geological Survey (USGS) Nonindigenous Aquatic Species (NAS) Program has tracked the distribution of introduced species for more than 20 years. This effort began with foreign fishes in Florida and later expanded to include aquatic nuisance species nationwide. The tracking database contains locational and temporal data for introductions and spread. This data is generally derived from literature, museum collections, state monitoring programs, and reports from professionals at state and federal agencies. Analysis of this data can be helpful in displaying any patterns that may be present in introductions of aquatic nuisance species and developing a management plan to prevent spread. To produce maps and perform analysis, all data are referenced geographically at the finest scale possible (state, county, drainage, waterbody, point). Data reported in the literature range from state or regional lists of introduced species to exact time, date, and location of collections or releases. Often, vague locality reports make it difficult to obtain accurate answers in fine-scale analysis.

  19. Revisiting the applications of drainage capillary pressure curves in water-wet hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Nemes, István

    2016-01-01

    The main focus of the paper is to introduce a new approach at studying and modelling the relationship of initial water saturation profile and capillarity in water-wet hydrocarbon reservoirs, and describe the available measurement methods and possible applications. As a side track it aims to highlight a set of derivable parameters of mercury capillary curves using the Thomeer-method. Since the widely used mercury capillary pressure curves themselves can lead to over-, or underestimations regarding in-place and technical volumes and misinterpreted reservoir behaviour, the need for a proper capillary curve is reasonable. Combining the results of mercury and centrifuge capillary curves could yield a capillary curve preserving the strengths of both methods, while overcoming their weaknesses. Mercury injection capillary curves were normalized by using the irreducible water saturations derived from centrifuge capillary pressure measurements of the same core plug, and this new, combined capillary curve was applied for engineering calculations in order to make comparisons with other approaches. The most significant benefit of this approach is, that all of the measured data needed for a valid drainage capillary pressure curve represents the very same sample piece.

  20. Effectiveness of highway drainage systems in preventing salt contamination of ground water, Route 25 from Wareham to the Cape Code Canal, Massachusetts

    USGS Publications Warehouse

    Pollock, S.J.

    1984-01-01

    A study to determine the relative effectiveness of specially designed highway drainage features in preventing salt contamination of ground water was designed to compare four different drainage designs along a new highway in Massachusetts. At the control site, no attempt will be made to prevent salt from entering the ground. At the other three sites, different combinations of drains and impermeable berms have been designed to prevent salt contamination of ground water. To evaluate the effectiveness of the drainage designs, a salt balance will be prepared at each site over 5 years of highway use. The amount of salt applied to the highway will be compared to the amounts in the ground water or diverted to the drainage systems. Salt loads in ground water will be determined from sodium and chloride concentrations in water from about 80 wells and from aquifer porosity estimated from geophysical logs and lithologic samples. Salt loads in the drainage systems will be estimated from flow and specific conductance with the use of stage-to-discharge and conductance-to-concentrations rating curves. (USGS)

  1. Regional slope stability of the Truckee River Canyon (drainage system) from Tahoe City, California to Reno, Nevada

    SciTech Connect

    Gates, W.C.B. )

    1993-04-01

    The Truckee River drainage system above Reno, Nevada presents unique examples of complex slope stability problems because of the varied and complex geologic terrane. Several factors control mass wasting and slope stability as the Truckee River flows from the Sierra Nevada to the Basin and Range Physiographic province. A distinct change in climatic conditions occurs. The river passes through Cenozoic jointed and faulted volcanic rocks of various lithologies and competency interspersed with clastics which lend to complex geological problems. The upper canyon is U-shaped and over-steepened by multiple Pleistocene glacial stages. The lower canyon has been incised deeply from periodic outburst flooding originating from glacial dammed lakes in the upper canyon. The area is seismically active which exacerbates the slope instability. These factors together have contributed to approximately five categories of mass wasting.

  2. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  3. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  4. Using RZWQM-DSSAT to Stimulate Drainage Water Management Across the United States Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased concentrations of nitrate-nitrogen in the surface water bodies of the Mississippi River basin have resulted from the widespread practice of subsurface drainage in agricultural systems throughout the region. Also, hypoxia in the Gulf of Mexico has been linked directly to the transport of ni...

  5. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory.

    PubMed

    Kumari, Rashmi; Singh, Priya; Schumann, Peter; Lal, Rup

    2016-04-01

    Strain RP1T, a Gram-stain-positive, non-motile, non-spore-forming, coccus-shaped bacterium, was isolated from drainage of India Pesticides Limited, a lindane-producing unit situated at Chinhat, Lucknow, India. 16S rRNA gene sequence analysis revealed that strain RP1T belongs to the family Propionibacteriaceae and was closely related to the members of the genus Tessaracoccus with a similarity range of 95.4-97.6%. Strain RP1T was facultatively anaerobic, oxidase-negative, catalase-positive and capable of nitrate reduction. Strain RP1T contained peptidoglycan type A3γ', with ll-diaminopimelic acid as the diagnostic diamino acid and glycine at position 1 of the peptide subunit. The major cellular fatty acid of strain RP1T was anteiso-C15 : 0 but a significant amount of iso-C14:0 was also detected. MK-9(H4) was the major respiratory quinone and polyamines detected were spermine and spermidine. The polar lipids included diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids and two unknown phospholipids. The G+C content of the DNA was 66.7 mol%. The levels of DNA-DNA relatedness between RP1T and Tessaracoccus lubricantis KSS-17SeT, Tessaracoccus oleiagri SL014B-20A1T and Tessaracoccus flavescens SST-39T were 49.8, 34.8 and 23.5%, respectively. Based on the phenotypic and phylogenetic data presented, strain RP1T can be differentiated from previously described species of the genus Tessaracoccus, and thus represents a novel species, for which the name Tessaracoccus flavus sp. nov. is proposed. The type strain is RP1T (=DSM 100159T=MCC 2769T=KCTC 39686T). PMID:26869509

  6. Design of a solar controlled environment agriculture system (SCEAS)

    SciTech Connect

    Landstrom, D.K.; Stickford, G.H.; Talbert, S.G.; Wilkinson, W.H.

    1983-06-01

    The overall objective of the SCEAS project was to integrate advanced greenhouse agriculture technology with various energy sources and innovative cooling/ventilation concepts to demonstrate technical and economic feasibility of these facilities in several climatic regions where conventional greenhouse technology will not permit yearround growing of certain crops. The designed facility is capable of high yields of practically any crop, even temperaturesensitive vegetables such as lettuce, in extremely hostile external environments. The recirculation and ventilation system provides considerable flexibility in precise control of temperature and humidity throughout the year and in reducing water and energy consumption.

  7. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  8. Quantity and quality of stormwater runoff recharged to the Floridan aquifer system through two drainage wells in the Orlando, Florida area

    SciTech Connect

    German, E.R.

    1989-01-01

    Quantity and quality of inflow to two drainage wells in the Orlando, Fla., area were determined for the period April 1982 through March 1983. The wells, located at Lake Midget and at Park Lake, are used to control the lake levels during rainy periods. The lakes receive stormwater runoff from mixed residential-commercial areas of about 64 acres (Lake Midget) and 96 acres (Park Lake) and would frequently flood adjacent areas if the wells did not drain the excess stormwater. These lakes and wells are typical of stormwater drainage systems in the area.

  9. Hydrological Modeling of Storm Water Drainage System due to Frequent and Intense Precipitation of Dhaka city using Storm Water Management Model (SWMM)

    NASA Astrophysics Data System (ADS)

    Hossain, S., Jr.

    2015-12-01

    Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA

  10. Development of a wireless intra-ocular pressure monitoring system for incorporation into a therapeutic glaucoma drainage implant

    NASA Astrophysics Data System (ADS)

    Kakaday, Tarun; Plunkett, Malcolm; McInnes, Steven; Li, Jim S. Jimmy; Voelcker, Nicolas H.; Craig, Jamie E.

    2008-12-01

    Glaucoma is a common cause of blindness. Wireless, continuous monitoring of intraocular pressure (IOP) is an important, unsolved goal in managing glaucoma. An IOP monitoring system incorporated into a glaucoma drainage implant (GDI) overcomes the design complexity associated with incorporating a similar system in a more confined space within the eye. The device consists of a micro-electro-mechanical systems (MEMS) based capacitive pressure sensor integrated with an inductor printed directly onto a polyimide printed circuit board (PCB). The device is designed to be incorporated onto the external plate of a therapeutic GDI. The resonance frequency changes as a function of IOP, and is tracked remotely using a spectrum analyzer. A theoretical model for the reader antenna was developed to enable maximal inductive coupling with the IOP sensor implant. Pressure chamber tests indicate that the sensor implant has adequate sensitivity in the IOP range with excellent reproducibility over time. Additionally, we show that sensor sensitivity does not change significantly after encapsulation with polydimethylsiloxane (PDMS) to protect the device from fluid environment. In vitro experiments showed that the signal measured wirelessly through sheep corneal and scleral tissue was adequate indicating potential for using the system in human subjects.

  11. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Astrophysics Data System (ADS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  12. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-01-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  13. Systems and methods for autonomously controlling agricultural machinery

    DOEpatents

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  14. Evaluation of the negative impacts of exposure to agricultural ditch water in fishes using streamside bioassays and field biomarkers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use in regions of the Midwest is dominated by crop agriculture that depends on ditch drainage systems for maximum productivity. Many drainage networks comprise headwater streams that have been degraded by alteration of habitat and by introduction of agrichemicals. Understanding the relative i...

  15. Urinary Drainage Procedures in Interventional Radiology.

    PubMed

    Thornton, Raymond H; Covey, Anne M

    2016-09-01

    Urinary drainage procedures are used to treat a wide range of clinical situations including pyonephrosis, preservation of renal function in patients with ureteral obstruction, as a means to access the collecting system for stone retrieval or lithotripsy and to divert urine from a distal leak or fistula. Several different drainage devices are available and include those that provide obligatory external drainage (nephrostomy), both internal and external drainage (nephroureteral stent) and internal drainage (double-J stent). Each device requires some maintenance and effort on the patient's part-from having to undergo routine exchange of double-J stents every 3-6 months to the daily management of an external catheter and drainage bag. Ideally, the desired outcome can be attained with minimal effect on patient lifestyle. In this article, we present our approach to patients who require urinary drainage, with a focus on choosing and placing the most appropriate device in a variety of clinical scenarios. PMID:27641451

  16. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  17. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  18. A TEM study of samples from acid mine drainage systems: metal-mineral association with implications for transport

    NASA Astrophysics Data System (ADS)

    Hochella, Michael F.; Moore, Johnnie N.; Golla, Ute; Putnis, Andrew

    1999-10-01

    Transmission electron microscopy (TEM), with energy dispersive X-ray (EDX) analysis and energy filtered transmission electron microscopy/electron energy loss spectroscopy (EFTEM/EELS), as well as powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), have been used to study bed sediments from two acid mine drainage (AMD) sites in western Montana, USA. TEM and associated techniques, including sample preparation via epoxy impregnation and ultramicrotome sectioning, afford the opportunity to better interpret and understand complex water-rock interactions in these types of samples. For the sample taken from the first site (Mike Horse mine), ferrihydrite is the dominant phase, Si and Zn are the most abundant elements sorbed to ferrihydrite surfaces, and Pb is notably absent from ferrihydrite association. Three additional important metal-containing phases (gahnite, hydrohetaerolite, and plumbojarosite), that were not apparent in the powder XRD pattern because of their relatively low concentration, were identified in the TEM. The presence of these phases is important, because, for example, gahnite and plumbojarosite act as sinks for Zn and Pb, respectively. Therefore, the mobility of Pb from this part of the drainage system depends on the stability of plumbojarosite and the ability of ferrihydrite to sorb the released Pb. From thermodynamic data in the literature, we predict that Pb will be released by the dissolution of plumbojarosite above a pH of 4 to 5, but it will then be recaptured by ferrihydrite if the pH continues to rise to 5.5 and higher, irrespective of competition effects from other metals. Therefore, only a relatively narrow pH window exists in which Pb can escape this portion of the system as an aqueous species. For the sample taken from the other site included in this study (the Carbonate mine), jarosite and quartz are the dominant phases. Interestingly, however, the jarosites are both Pb-poor and Pb-enriched. In addition, TEM reveals the

  19. Integrating crops and livestock in subtropical agricultural systems.

    PubMed

    Wright, Iain A; Tarawali, Shirley; Blümmel, Michael; Gerard, Bruno; Teufel, Nils; Herrero, Mario

    2012-03-30

    As the demand for livestock products increases, and is expected to continue to increase over the next few decades, especially in developing countries, smallholder mixed systems are becoming more intensive. However, with limited land and water resources and concern about the environmental impact of agricultural practices and climate change, the challenge is to find ways of increasing productivity that do not compromise household food security, but rather increase incomes equitably and sustain or enhance the natural resource base. In developed countries there has been increased specialisation of crop and livestock production. In contrast, the majority of livestock in developing countries is kept in mixed crop/livestock systems. Crops (cereal grains and pulses) and crop residues provide the basis of the diet for animals, e.g. cereal straw fed to dairy cattle or sweet potato vines fed to pigs. Animal manure can provide significant nutrient inputs to crops. Water productivity is higher in mixed crop/livestock systems compared with growing crops alone. Mixed systems allow for a more flexible and profitable use of family labour where employment opportunities are limited. They also spread risks across several enterprises, a consideration in smallholder systems that may become even more important under certain climate change scenarios. Integrated crop/livestock systems can play a significant role in improving global food security but will require appropriate technological developments, institutional arrangements and supportive policy environments if they are to fulfil that potential in the coming decades.

  20. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation

    PubMed Central

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-01-01

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d−1 in 1999 and 0.52 h d−1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers. PMID:25598557

  1. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  2. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    USGS Publications Warehouse

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  3. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  4. Drainage discharge impacts on hydrology and water quality of receiving streams in the wheatbelt of Western Australia.

    PubMed

    Ali, Riasat; Silberstein, Richard; Byrne, John; Hodgson, Geoff

    2013-11-01

    The use of surface and subsurface drainage to manage waterlogging and salinity in dryland (rainfed) and irrigated agricultural systems is common throughout the world. The drainage systems often discharge into natural streams. The same is true for the wheatbelt drainage systems in south-western Australia, where 11,000 km (ABS 2003) of artificial drains have been constructed within the last two decades. Prior to this study, the likely impacts of this discharge on the streambed chemistry and water quality of receiving streams were largely unknown. The study evaluated these impacts in creeks receiving the drainage discharge from engineering options in four river systems in south-western Australia. This study clearly showed elevated levels of metals ions, EC and pH in the stream water at treated sites relative to their levels at untreated sites. At most sites, impacts of drainage discharge were observed on the streambed electrical conductivity (EC) and pH (both in 1:5 extract) in the receiving streams; however, there was little evidence of impact on metal ion content in the streambed soil. The study found no clear differences in the dynamics of the watertable adjacent to streams whether they received drainage discharge or not, irrespective of the size of the artificial drainage systems.

  5. Market assessment of photovoltaic power systems for agricultural applications worldwide

    SciTech Connect

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    This report integrates and extrapolates worldwide the results of the agricultural sector PV market assessments conducted in the Philippines, Nigeria, Mexico, Morocco, and Colombia. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand-alone mode. The study focused on the needs of low- and middle-income countries. The major conclusions derived from the studies were as follows: PV will be competitive in applications requiring 2 - 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 - 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, significant agriculture sector market for PV exists; however the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market-related factors influencing the potential for US PV sales are: lack of awareness; high first costs; shortage of long-term capital; competition from German, French and Japanese companies who have their governments support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  6. A speech recognition system for data collection in precision agriculture

    NASA Astrophysics Data System (ADS)

    Dux, David Lee

    Agricultural producers have shown interest in collecting detailed, accurate, and meaningful field data through field scouting, but scouting is labor intensive. They use yield monitor attachments to collect weed and other field data while driving equipment. However, distractions from using a keyboard or buttons while driving can lead to driving errors or missed data points. At Purdue University, researchers have developed an ASR system to allow equipment operators to collect georeferenced data while keeping hands and eyes on the machine during harvesting and to ease georeferencing of data collected during scouting. A notebook computer retrieved locations from a GPS unit and displayed and stored data in Excel. A headset microphone with a single earphone collected spoken input while allowing the operator to hear outside sounds. One-, two-, or three-word commands activated appropriate VBA macros. Four speech recognition products were chosen based on hardware requirements and ability to add new terms. After training, speech recognition accuracy was 100% for Kurzweil VoicePlus and Verbex Listen for the 132 vocabulary words tested, during tests walking outdoors or driving an ATV. Scouting tests were performed by carrying the system in a backpack while walking in soybean fields. The system recorded a point or a series of points with each utterance. Boundaries of points showed problem areas in the field and single points marked rocks and field corners. Data were displayed as an Excel chart to show a real-time map as data were collected. The information was later displayed in a GIS over remote sensed field images. Field corners and areas of poor stand matched, with voice data explaining anomalies in the image. The system was tested during soybean harvest by using voice to locate weed patches. A harvester operator with little computer experience marked points by voice when the harvester entered and exited weed patches or areas with poor crop stand. The operator found the

  7. Seasonal evolution of subglacial drainage pathways within a soft bedded anastomosing system

    NASA Astrophysics Data System (ADS)

    Hart, Jane; Young, David; Martinez, Kirk

    2016-04-01

    We have studied the dynamic annual subglacial behavior associated with Skálafellsjökull, Iceland, a temperate glacier resting on a deformable sediment layer, using subglacial wireless probes to measure till water pressure and tilt, surface installations to measure glacier motion, and a camera to measure river discharge. We argue that the subglacial hydrology system changes throughout the year from a fast connected system in the spring and autumn (with balanced inputs and outputs), to a duel system in summer with fast channels and slow moving storage (with greater inputs than outputs). In winter there is an episodic fast system associated with high meltwater input accompanied by changes in till water pressure and ice velocity and releases of water from a heterogeneous storage sources to produce some of the largest annual discharges. We develop models to relate the observed summer and winter discharges to daily ice surface melt. We demonstrate that there is a subglacial anastomosing system, consisting of water sheets at the ice-bed interface, bedrock cavities, braided channels with associated back-water reservoir areas, which has the ability to rapidly change channel form depending on melt-water inputs, and easily access water stored within a series of linked subglacial reservoirs.

  8. Use Of The Gpr To Characterize Sedimentary Structures Of Lakes In Sub-Humid Drainage System, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Aranha, P. A.; Augustin, C. H.

    2012-12-01

    PAULO ROBERTO ANTUNES ARANHA IGC - UNIVERSIDADE FEDERAL DE MINAS GERAIS - AV ANTONIO CARLOS 6.627 - CEP: 31270901-BELO HORIZONTE- MG - BRAZIL CRISTINA ROCHA AUGUSTIN - IGC - UNIVERSIDADE FEDERAL DE MINAS GERAIS - AV ANTONIO CARLOS 6.627 - CEP: 31270901-BELO HORIZONTE- MG - BRAZIL System of lakes located in the sandstones domains of Supergrupo Urucuia, in the State Park Veredas do Peruaçu, north of the State of Minas Gerais, Brazil, are common features in ecosystems of the Veredas, a biome of the Cerrado (Savanna-Open pasture). The linearity of these lakes suggests that they could have, in the past, belonged to the same drainage system, that would have been disconnected throughout the evolution of the Vereda system. The objective of this research is with the help of the GPR and using 100 MHz antennaes to obtain radargram images that could assist in the interpretation of the structures occurring at the bottom of these lakes. It is possible do identify on the radargrams reflectors that can be correlated with depositional system. These reflectore have the concave form. The results of these radargrames indicate great conformity between the concave form of the sediments and that of the bottom of the lake, allowing to assume that this deposition has been occurring since a long time ago. Therefore, if there was a connection between the study lake and those located in its proximity it has occurred a long time, before the deposition of the sedimentary sequences had been deposited. The thickness of the sediments, that varies since 2m until 5m, indicates that or either this deposition was either a very rapid one so that could generate a fast deposition, or it has been taking place during a considerable geologic long time.; Data acquisitiont;

  9. Microbial Biomass and Community Structure of a Stromatolite from an Acid Mine Drainage System in Western Indiana

    NASA Astrophysics Data System (ADS)

    Fang, J.; Hasiotis, S. T.; Das Gupta, S.; Brake, S. S.; Bazylinski, D. A.

    2007-12-01

    Lipids extracted to determine the microbial biomass and community structure of an Fe-rich stromatolite from acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana correlate well with layers in the laminated stromatolite. The biomass of the top layer of the stromatolite was dominated by phototrophic organisms constituting 83% of the total biomass. Biomass of the lower layers was dominated by prokaryotic microorganisms. The presence of terminal methyl-branched fatty acids and mid methyl-branched fatty acids suggests the presence of Gram-positive and sulfate-reducing bacteria, respectively. Fungi appear to also be an important part of the AMD microbial communities as suggested by sterol profiles and the presence of polyunsaturated fatty acids. Hydroxy fatty acids and C19 cyclopropane fatty acids were also detected and likely originated from acid-producing, acidophilic bacteria. The presence of Archaea is indicated by abundant phospholipid ether-linked isoprenoid hydrocarbons (phytane and phytadienes). The AMD Fe-rich stromatolites at GVS, thus, appear to be formed by interactions of microbial communities composed of all three domains of life; Archaea, Bacteria, and Eukarya. Identification of microeukaryote-dominated stromatolites verifies the prominent role these organisms play in the formation and preservation of these structures. In addition, the production of oxygen through photosynthesis by these organisms in AMD systems may be important for retrodicting the interaction of microbial communities in Precambrian environments in the production of microbially mediated sedimentary structures and oxygenation of Earth's early atmosphere.

  10. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. PMID:22717063

  11. Promotion of Mn(II) Oxidation and Remediation of Coal Mine Drainage in Passive Treatment Systems by Diverse Fungal and Bacterial Communities ▿ †

    PubMed Central

    Santelli, Cara M.; Pfister, Donald H.; Lazarus, Dana; Sun, Lu; Burgos, William D.; Hansel, Colleen M.

    2010-01-01

    Biologically active, passive treatment systems are commonly employed for removing high concentrations of dissolved Mn(II) from coal mine drainage (CMD). Studies of microbial communities contributing to Mn attenuation through the oxidation of Mn(II) to sparingly soluble Mn(III/IV) oxide minerals, however, have been sparse to date. This study reveals a diverse community of Mn(II)-oxidizing fungi and bacteria existing in several CMD treatment systems. PMID:20495049

  12. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  13. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  14. Economic feasibility of agricultural alcohol production within a biomass system

    SciTech Connect

    Hertzmark, D.; Flaim, S.; Ray, D.; Parvin, G.

    1980-12-01

    The technical and economic feasibility of agricultural alcohol production in the United States is discussed. The beverage fermentation processes are compared and contrasted with the wet milling of corn, and alternative agricultural products for alcohol production are discussed. Alcohol costs for different fermentation methods and for various agricultural crops (corn, sugar cane, sugar beets, etc.) are presented, along with a brief discussion of US government policy implications. (JMT)

  15. Practical application of drainage system control by using MPC in Noorderzijlvest

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Schwanenberg, Dirk

    2013-04-01

    We discuss the implementation of a Model Predictive Control (MPC) approach for the control of the pump stations and tidal spilling sluices in the district of the regional water authority Noorderzijlvest in the north of the Netherlands. The RTC component is integrated in a Delft-FEWS application that connects to the SCADA system of the waterboard and also 17 aggregated structures including 127 individual pumps and gates The approach consists of a Nonlinear MPC in combination with a low-pass filter for state updating. The MPC runs hourly for a 5-day forecast horizon. One main objective of the control is flood mitigation during extreme taken into account by anticipating approaching rainfall events by flow forecasting. Another objective has is the reduction of pumping costs by taking advantage of gravity flow through gates during low tide conditions and the exploitation of cheaper electricity at night, both in combination with tactical usage of the available storage in the water system. Firstly the approach is tested in a closed-loop setting in combination with a detailed one-dimensional hydraulic model as the real-world replacement. A performance comparison of the approach against the existing feedback control shows pumping cost reductions in the range of 7-35% for different sub-systems or total annual cost savings in the order of 150-200 thousand Euros as well as significantly reduced peak water levels during flood events.

  16. Life cycle assessment of domestic and agricultural rainwater harvesting systems.

    PubMed

    Ghimire, Santosh R; Johnston, John M; Ingwersen, Wesley W; Hawkins, Troy R

    2014-04-01

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study.

  17. Zircon as a tracer of erosion processes in river drainage systems

    NASA Astrophysics Data System (ADS)

    Dhuime, Bruno; Hawkesworth, Chris; Storey, Craig; Cawood, Peter

    2010-05-01

    Detrital sediments provide average samples of the continental crust formed at different times and in different places. Some lithologies are more susceptible to erosion than others, and one issue is to understand how the compositions of a range of source rocks are then recorded in the sediments. The relative contributions of different source terrains are usually expressed through an erosion factor ‘K', or an equivalent erosion parameter. Studies based on existing draining systems have often considered K as a constant factor in both space and time, or more recently, have proposed that this might vary as a function of the uplift rates in response to tectonic forcing. The determination of K, and the extent to which it varies in different erosion systems, has fundamental implications for models of continental growth based on radiogenic isotopes in continental sediments. We report the first estimates of K from integrated Hf and U-Pb isotopes in detrital zircons, and Nd isotope ratios of bulk recent sediments along an active river system, the Frankland River in SW Australia. The Frankland River is one of a series of southward flowing rivers that developed along the southwest coast of Western Australia following the break-up of Australia and Antarctica at ~65 Ma. It has a length of ~320 km and the catchment area is 4630 km2. It offers an opportunity to link sediments to their source rocks, because it drains just two crustal blocks with distinctive age components, the Archean Yilgarn craton and the Proterozoic Albany-Fraser mobile belt. The distribution of Hf model ages in detrital zircons sampled along the river offers insight into the proportions of different source terranes that have contributed to the bulk sediment. We show that the erosion factor K is not constant and it increases by a factor of 2-3 downstream, and with the gradient of the river. It is concluded that values of K = 4-6 are representative of mature river systems that sample large source areas. These

  18. Drainage ditches facilitate frog movements in a hostile landscape

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    Ditches are common in landscapes influenced by agricultural, forestry, and peat mining activities, and their value as corridors remains unassessed. Pond-breeding amphibians can encounter hostile environments when moving between breeding, summering, or hibernation sites, and are likely to benefit from the presence of ditches in the landscape. Within a system consisting of ditch networks in bogs mined for peat in eastern New Brunswick, Canada, I quantified the breeding, survival, and movements of green frogs (Rana clamitans melanota) in drainage ditches and also surveyed peat fields. Frogs rarely ventured on peat fields and most individuals frequented drainage ditches containing water, particularly in late summer. Though frogs did not breed in ditches, their survival rate in ditches was high (88%). Ditches did not hinder frog movements, as frogs moved independently of the current. Results indicate that drainage ditches containing water enable some movements between habitats isolated by peat mining, in contrast to peat surfaces, and suggest they function as amphibian movement corridors. Thus, such drainage ditches may mitigate the effects of peat extraction on amphibian populations. At the very least, these structures provide an alternative to hostile peat surfaces. This study highlights that small-scale corridors are potentially valuable in population dynamics. ?? Springer 2005.

  19. Models Robustness for Simulating Drainage and NO3-N Fluxes

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  20. Phosphorus cycling in Montreal's food and urban agriculture systems.

    PubMed

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  1. [Ecological significance of arbuscular mycorrhiza biotechnology in modern agricultural system].

    PubMed

    Zhang, Yong; Zeng, Ming; Xiong, Bingquan; Yang, Xiaohong

    2003-04-01

    Mycorrhiza plays a key role in nutrient cycling in ecosystem, and protects host plant against environmental stress. Under natural condition, plant's mycorrhizal structure is a normal phenomenon, and arbuscular mycorrhiza (AM) association is the commonest mycorrhizal type. If well mycorrhizal structure can be formed during plant root system developing process, the quantity and quality of plant production will be improved in large. Because of its effects on plant growth and health, it is accepted that AM symbiosis can reduce chemical fertilizer and pesticide inputs. Consequently, this will lead to a reduction in harmful chemical substance impact on environment. The key effects of AM symbiosis can be summarized as follows: (1) improving rooting and plant establishment; (2) improving uptake of low mobile ions; (3) improving nutrient cycling; (4) enhancing plant tolerance to (biotic and abiotic) stress; (5) improving quality of soil structure; and (6) enhancing plant community diversity. In this paper, the ecological characteristic of arbuscular mycorrhiza fungi (AMF), effects of AM on host plant, and ecologic significance of AM biotechnology in agricultural system were reviewed.

  2. The influence of precipitation intensity growth on the urban drainage systems designing

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Bartosz; Kotowski, Andrzej

    2014-10-01

    For 50 years of long observation period (1960-2009), on a high level of statistical significance (95 %), a decreasing trend of annual precipitation amounts and an increasing trend of the number of rainy days during the year (64 %) were found. For the seasonal changes (V-X), similarly, there was found a statistically significant (94 %) decreasing precipitation amount trend and an increasing trend of the number of rainy days (50 %). As far as the intensity of maximum precipitation is concerned, a very statistically significant increasing trend (95 %) was found. Taking as the basis, the model for a trend, defined for the period of 1960-2009, the increase of weighted average interval values of maximum precipitation amounts ( h ≥ 0.75 t 0.5) in the year 2059 was estimated to be about 26 %, in comparison with the starting year 1960. An increasing trend of maximum precipitation frequency in Wrocław was also proved. To a safe sewerage systems designing in Wrocław according to current standards (EN 752 2008; DWA-A118 2006), the precipitation frequency to the simulations of excessive accumulation occurrences to the land level should be changed.

  3. Profiling microbial communities in manganese remediation systems treating coal mine drainage.

    PubMed

    Chaput, Dominique L; Hansel, Colleen M; Burgos, William D; Santelli, Cara M

    2015-03-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known. PMID:25595765

  4. Profiling Microbial Communities in Manganese Remediation Systems Treating Coal Mine Drainage

    PubMed Central

    Hansel, Colleen M.; Burgos, William D.

    2015-01-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known. PMID:25595765

  5. Profiling microbial communities in manganese remediation systems treating coal mine drainage.

    PubMed

    Chaput, Dominique L; Hansel, Colleen M; Burgos, William D; Santelli, Cara M

    2015-03-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known.

  6. Evaluation of a limestone channel and wetland system for treating acid mine drainage

    SciTech Connect

    Brenner, F.J.; Pruent, P.

    1999-07-01

    The Carpentertown Coal and Coke Company operated two drift mines on the site for 17 years closing in December 1987, but the company continued to operate a cleaning plant and coal refuse disposal site until the company declared bankruptcy in June 1989. In summer of 1993, eight acid seeps developed from the 2 ha coal refuse site with a combined flow of 36 1/min with iron and manganese loading rates of 419 and 576 gm/day. In 1995, a 212 m (700 ft) open limestone channel (OLC) and a 344 m{sup 2} (1,142 ft{sup 2}) and a 2,110 m{sup 2}(43,750 ft{sup 2}) aerobic wetland was constructed as a passive treatment system. over the 34-month monitoring period, the acid loading to the receiving stream was reduced by 88% with a corresponding increase of 111% in alkalinity. The iron and manganese loading to the receiving stream was reduced by 91% and 57%, respectively.

  7. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  8. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  9. Echocardiographic and color flow Doppler assessment of systemic and pulmonary venous connection and drainage in the neonate with congenital heart disease.

    PubMed

    Seliem, M A

    1991-07-01

    Systemic and pulmonary venous anomalies are frequently encountered either as isolated lesions or as a significant component of a more complex lesion in the newborn infant with congenital heart disease. Two-dimensional echocardiography and Doppler techniques (conventional and color flow) have become the primary diagnostic imaging modality in this setting. Precise pre-operative definition of these variable venous connection and drainage patterns is critical as the required surgical procedure may solely be based on exact understanding of the veins' anatomy and physiology. On the systemic venous site, anomalies of superior and inferior venae cavae, innominate vein, and coronary sinus can be equally well imaged with either echocardiography or angiography. However, on the pulmonary venous site, echocardiography and Doppler techniques including color flow mapping are superior to angiography for precise definition of the connection and drainage sites of the individual pulmonary veins.

  10. The use of a portable digital thoracic suction Thopaz drainage system for the management of a persistent spontaneous secondary pneumothorax in a patient with underlying interstitial lung disease.

    PubMed

    Jenkins, William S A; Hall, David P; Dhaliwal, Kev; Hill, Adam T; Hirani, Nik

    2012-01-01

    We present the case of a 68-year-old woman who presented in extremis with a secondary pneumothorax with a past history of severe idiopathic pulmonary fibrosis. Following insertion of a 32F intercostal drain, she developed a persistent broncho-pleural fistula and became dependent on negative-pressure wall-mounted suction to prevent respiratory compromise. She declined definitive surgical intervention and was therefore managed conservatively. After adhering to the wall-mounted suction method for 49 days, we obtained for use a portable digital thoracic drainage system previously used only in the cardiothoracic postoperative patient. This electronically delivered, negative-pressure drainage system induced radiographic improvement within 24 h, and allowed the patient to mobilise for the first time since admission. The patient was discharged home with the Thopaz drain in situ 8 weeks after placing it, and the drain was removed successfully with a resolved pneumothorax 20 weeks after her initial presentation. PMID:22684832

  11. Land drainage system detection using IR and visual imagery taken from autonomous mapping airship and evaluation of physical and spatial parameters of suggested method

    NASA Astrophysics Data System (ADS)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin; Pospíšil, Jiří; Jirka, Vladimír.

    2014-10-01

    An experimental approach to the land drainage system detection and its physical and spatial parameters evaluation by the form of pilot project is presented in this paper. The novelty of the approach is partly based on using of unique unmanned aerial vehicle - airship with some specific properties. The most important parameters are carrying capacity (15 kg) and long flight time (3 hours). A special instrumentation was installed for physical characteristic testing in the locality too. The most important is 30 meter high mast with 3 meter length bracket at the top with sensors recording absolute and comparative temperature, humidity and wind speed and direction in several heights of the mast. There were also installed several measuring units recording local condition in the area. Recorded data were compared with IR images taken from airship platform. The locality is situated around village Domanín in the Czech Republic and has size about 1.8 x 1.5 km. There was build a land drainage system during the 70-ties of the last century which is made from burnt ceramic blocks placed about 70 cm below surface. The project documentation of the land drainage system exists but real state surveying haveńt been never realized. The aim of the project was land surveying of land drainage system based on infrared, visual and its combination high resolution orthophotos (10 cm for VIS and 30 cm for IR) and spatial and physical parameters evaluation of the presented procedure. The orthophoto in VIS and IR spectrum and its combination seems to be suitable for the task.

  12. Hydrologic Impacts of Tile Drainage in Iowa: From Field to Catchment Scale

    NASA Astrophysics Data System (ADS)

    Sloan, B.; Basu, N. B.; Mantilla, R.

    2013-12-01

    Agricultural tile drainage is an integral part of Iowa's landscape, with nearly 30% of Iowa's cropland being drained (Schilling & Helmers, 2008). Tile drainage allows for efficient crop production in Iowa's nutrient rich soils by removing excess water from frequently inundated fields through subsurface pipe networks. These tile systems are suspected of altering the hydrologic regime of Iowa, but the extent of the problem remains unknown. Current research has concluded that the impacts of tile drainage on the hydrologic response entail a complex interaction of processes that is dependent upon landscape, climatic, and anthropogenic controls and that the effects of tile drainage vary with watershed scale. The deterministic field-scale model DRAINMOD is used in both a field and catchment scale analysis of the hydrologic impacts of tile drainage in conditions typical to Iowa. The field scale results indicate that soil permeability and rainfall event size are essential in determining the impact of tile drainage. The addition of drainage can decrease flows in less permeable soils and increase flows in more permeable soils because of the alteration to dominant pre-drainage flow mechanisms. However, for very large storm events, the tile has little impact because surface runoff dominates. The field scale DRAINMOD results are then used in conjunction with a simplified routing equation to analyze the impact of tile drains on the Clear Creek Watershed (CCW) in Iowa. According to the results, at the CCW scale (260 km2), tile drainage can reduce the peak flows at the outlet for certain storm events. It was found that adding drained fields to the densest portion of the CCW width function can decrease the peak at the outlet. However, for very large storm events, tiling may have no impact on the outlet hydrograph since all fields will have a similar hydrograph due to the similar surface runoff mechanism. According to the results, tile drainage is capable of reducing peak flows and

  13. Designing and Implementing a Computerized Information Management System for Employment Demand Data in Agriculture/Agribusiness.

    ERIC Educational Resources Information Center

    Berkey, Arthur L.; Cooper, Gloria S.

    Planning for educational programs in agriculture/agribusiness demands knowledge of future employment demand for various occupations. At present, a functional and comprehensive occupational information system for agriculture/agribusiness does not exist. Systems that do exist, such as the Occupational Information System (OIS) and the Dictionary of…

  14. Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-β-lactamase-producing Klebsiella oxytoca.

    PubMed

    Vergara-López, S; Domínguez, M C; Conejo, M C; Pascual, Á; Rodríguez-Baño, J

    2013-11-01

    We describe the epidemiology of a protracted nosocomial clonal outbreak due to multidrug-resistant IMP-8 producing Klebsiella oxytoca (MDRKO) that was finally eradicated by removing an environmental reservoir. The outbreak occurred in the ICU of a Spanish hospital from March 2009 to November 2011 and evolved over four waves. Forty-two patients were affected. First basic (active surveillance, contact precautions and reinforcement of surface cleaning) and later additional control measures (nurse cohorting and establishment of a minimum patient/nurse ratio) were implemented. Screening of ICU staff was repeatedly negative. Initial environmental cultures, including dry surfaces, were also negative. The above measures temporarily controlled cross-transmission but failed to eradicate the epidemic MDRKO strain that reappeared two weeks after the last colonized patients in waves 2 and 3 had been discharged. Therefore, an occult environmental reservoir was suspected. Samples from the drainpipes and traps of a sink were positive; removal of the sink reduced the rate number but did not stop new cases that clustered in a cubicle whose horizontal drainage system was connected with the eliminated sink. The elimination of the horizontal drainage system finally eradicated the outbreak. In conclusion, damp environmental reservoirs (mainly sink drains, traps and the horizontal drainage system) could explain why standard cross-transmission control measures failed to control the outbreak; such reservoirs should be considered even when environmental cultures of surfaces are negative. PMID:23829434

  15. [Effect of Zn(II) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source].

    PubMed

    Li, Shao-Jie; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo; Jin, Jiez; Liu, Chang

    2012-01-01

    In this study, with rape straw as carbon source, anaerobic batch experiments were executed to investigate the effect of Zn (II) on the activity of sulphate reducing bacteria (SRB) in the microbial treatment of simulative acid mine drainage (AMD). The results showed that during the 60 experimental days, when initial Zn2+ concentrations were in the range of 73.7 to 196.8 mg x L(-1), SRB had high culturalbility. At the end of these experiments, pH values rose from initial 5.0 to neutral, about 96% of sulphate was reduced and the concentrations of Zn2+ reduced to 0.05 mg x L(-1). The results of Tessier sequential extraction, field emission scanning electron microscope (FE-SEM) and X-ray diffraction(XRD) showed that Zn was found to be fixed through forming organic and sulphide (mainly sphalerite) compounds. For the experiment with high Zn2+ concentration (262.97 mg x L(-1)), at the end of experiments, pH values dropped from initial 5.0 to 4.0, only 27% of sulphate was only reduced and the concentrations of Zn2+ kept in high range (25 mg x L(-1)), the activity of SRB significantly inhibited. This study indicated that: (1) Rape straw can be used as slow-release carbon source for long-term anaerobic AMD treatment; (2) Rape straw can decrease the toxicity of Zn2+ to SRB through adsorption; (3) In anaerobic AMD treatment system, Zn can be fixed by sulphide minerals with mediation of SRB.

  16. [Effect of Zn(II) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source].

    PubMed

    Li, Shao-Jie; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo; Jin, Jiez; Liu, Chang

    2012-01-01

    In this study, with rape straw as carbon source, anaerobic batch experiments were executed to investigate the effect of Zn (II) on the activity of sulphate reducing bacteria (SRB) in the microbial treatment of simulative acid mine drainage (AMD). The results showed that during the 60 experimental days, when initial Zn2+ concentrations were in the range of 73.7 to 196.8 mg x L(-1), SRB had high culturalbility. At the end of these experiments, pH values rose from initial 5.0 to neutral, about 96% of sulphate was reduced and the concentrations of Zn2+ reduced to 0.05 mg x L(-1). The results of Tessier sequential extraction, field emission scanning electron microscope (FE-SEM) and X-ray diffraction(XRD) showed that Zn was found to be fixed through forming organic and sulphide (mainly sphalerite) compounds. For the experiment with high Zn2+ concentration (262.97 mg x L(-1)), at the end of experiments, pH values dropped from initial 5.0 to 4.0, only 27% of sulphate was only reduced and the concentrations of Zn2+ kept in high range (25 mg x L(-1)), the activity of SRB significantly inhibited. This study indicated that: (1) Rape straw can be used as slow-release carbon source for long-term anaerobic AMD treatment; (2) Rape straw can decrease the toxicity of Zn2+ to SRB through adsorption; (3) In anaerobic AMD treatment system, Zn can be fixed by sulphide minerals with mediation of SRB. PMID:22452225

  17. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  18. To establish pilot projects for agriculture renewable energy systems.

    THOMAS, 111th Congress

    Rep. Holden, Tim [D-PA-17

    2010-09-29

    11/16/2010 Referred to the Subcommittee on Rural Development, Biotechnology, Specialty Crops, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Energy efficiency of Pacific Northwest agriculture irrigation pumping systems

    SciTech Connect

    Wilfert, G.L.; Harrer, B.J.

    1987-03-01

    This document addresses the energy use and efficiency characteristics of pumping plants used to irrigate agricultural cropland in the Pacific Northwest. The principal focus of this document is on field information obtained from tests of irrigation pumping plants.

  20. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  1. Case Analysis of Farm Agriculture Machinery Informatization Management Network System

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Wang, Xi; Zhuang, Weidong

    In the process of China's agricultural modernization, especially agricultural machinery modernization, in terms of equipment, we've chose the way that foreign imports (and domestic research) with the combination of self-developed, in the software, it is difficult to fully apply this approach, the specific reasons are: the modernization of China's agriculture development model is diversified, it is difficult to find a unified management model, even in the scale of operations of the representative state-owned farms and the abroad farms are also very different management models. Due to various types of growth models of biological complexity, diverse climatic and geographical environment factors, coupled with the characteristics such as long cycle of agricultural production, high input, high-risk, and decentralized management, industrial management mode it is very difficult to apply. Moreover, the application of modern management tools is also difficult to quantify the benefits, leading to the current research and application are in a state of comparatively dropped behind.

  2. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  3. Helium and Carbon Isotope Systematics of Springs in the Separation Creek Drainage System, Three Sisters area, Central Oregon Cascades.

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Kennedy, B.; Evans, W. C.; Mariner, R. H.; Schmidt, M. E.

    2002-12-01

    In response to recent and on-going uplift in the Separation Creek drainage system, 5 km west of South Sister volcano in the central Oregon Cascades (e.g. Wicks et al., 2001), a hydrogeochemical monitoring project was initiated by the U.S. Geological Survey in the summer of 2001. When compared to existing literature data, we found no significant changes in the helium isotope composition of hot springs located in the vicinity of South Sister volcano, but outside the area of uplift. Nor were there significant changes in fluid chemistry or conductivity of cold springs within the area of uplift. For the latter group, there are no pre-uplift helium or carbon isotope data. Therefore, the implications of the strong magmatic helium and carbon isotope signals measured in two of these samples and their possible relationship to the recent uplift could not be evaluated (Van Soest et al., 2001; Evans et al., 2002). Within the scope of the hydrogeochemical monitoring project, a detailed survey of cold springs in the Separation Creek drainage area was planned for the spring, summer and fall of 2002. Preliminary results for spring 2002 samples suggest a relationship between helium isotope composition and distance from South Sister volcano, but not the center of uplift: 8.6RA at 3 km (from a sample nearest the youngest erupted volcanics), 7.4RA at 5 km (near the center of uplift), 7.0RA at 10 km, 6.8RA at 18 km, and 5.2RA at 25 km from South Sister volcano. The last value is from the hot spring closest to the area of uplift for which there is pre-uplift data and it suggests a constant helium isotope ratio over time (1982-present). The new carbon isotope results confirm the existence of a mixing relationship between deep abiogenic (magmatic) carbon and shallow biogenic carbon that was apparent in the 2001 samples. The carbon isotope results appear to correlate with the Cl and conductivity anomalies in the springs. At this time, whether a similar correlation exists for the helium

  4. Test of simultaneous synthetic DNA tracer injections for the estimation of the englacial and subglacial drainage system structure of Storglaciären, northern Sweden

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Leung, S.; Lyon, S. W.; Sharma, A. N.; Walter, M. T.; Williamson, A.

    2013-12-01

    Storglaciären glacier, located in the sub-arctic Tarfala catchment, in northern Sweden is one of the world's longest continuously monitored glaciers which provides a unique research platform for the long-term assessment of glacier and ice sheet processes. For example, small mountain glacier hydrological knowledge of the subglacial water distribution at the ice-bed interface has been applied to ice sheets to predict basal sliding processes. Basal sliding promoted by hydraulic jacking is an important glacial-velocity control that is dependent on the subglacial flow pathways' morphology. Thus, understanding subglacial water distribution and drainage system structure and morphology is crucial for modeling ice masses' flow. In order to estimate subglacial drainage system structure and morphology dye tracing experiments are widely employed. Tracer experiments provide quantitative parameters for any input location including tracer transit velocity, dispersivity, recovery and storage. However, spatial data coverage is limited by the finite number of tracers available for simultaneous tracing. In the presented study we test the use of synthetic DNA tracers for the assessment of the englacial and subglacial drainage system structure of Storglaciären. The synthetic DNA tracer is composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated (Sharma et al., 2012, Environmental Science & Technology). Because the DNA sequences can be randomly combined the synthetic DNA tracer provides an enormous number of unique tracers (approximately 1.61 x 1060). Thus, these synthetic tracers have the advantage that multiple (>10) experiments can be conducted simultaneously, allowing a greater information gain within a shorter measurement period. Quantities of a certain DNA strand can be detected using biotechnology tools such as polymerase chain reaction (PCR) and quantitative PCR (qPCR). During the 2013

  5. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    PubMed

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  6. Rural Knowledge and Information Systems for Non-Agricultural Rural Needs

    ERIC Educational Resources Information Center

    Rivera, William M.

    2006-01-01

    As developing countries gradually rely less upon agriculture for rural income, rural economies require new solutions to access knowledge and information systems for rural development. Non-agricultural rural knowledge and information systems can play a significant role in developing and disseminating successful strategies to escape rural poverty.…

  7. The roles and values of wild foods in agricultural systems

    PubMed Central

    Bharucha, Zareen; Pretty, Jules

    2010-01-01

    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase. PMID:20713393

  8. Martian drainage densities

    USGS Publications Warehouse

    Carr, M.H.; Chuang, F.C.

    1997-01-01

    Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.

  9. Ultimate drivers of native biodiversity change in agricultural systems

    PubMed Central

    Norton, David A; Reid, Nick; Young, Laura

    2013-01-01

    The ability to address land degradation and biodiversity loss while maintaining the production of plant and animal products is a key global challenge. Biodiversity decline as a result of vegetation clearance, cultivation, grazing, pesticide and herbicide application, and plantation establishment, amongst other factors, has been widely documented in agricultural ecosystems. In this paper we identify six ultimate drivers that underlie these proximate factors and hence determine what native biodiversity occurs in modern agricultural landscapes; (1) historical legacies; (2) environmental change; (3) economy; (4) social values and awareness; (5) technology and knowledge; and (6) policy and regulation. While historical legacies and environmental change affect native biodiversity directly, all six indirectly affect biodiversity by influencing the decisions that land managers make about the way they use their land and water resources. Understanding these drivers is essential in developing strategies for sustaining native biodiversity in agricultural landscapes into the future. PMID:26834971

  10. EFFECTIVENESS OF RESTORED WETLANDS FOR THE TREATMENT OF AGRICULTURAL RUNOFF

    EPA Science Inventory

    The integration of the tax ditches into a drainage management system provides obvious benefits, but can also present a source of significant nonpoint source pollution from agricultural runoff. Many of Delaware's tax ditches have been listed on Delaware's Clean
    Water Act 303(d)...

  11. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  12. Successes and challenges in a novel doctoral program in systems agriculture: a case example.

    PubMed

    Lust, D; Topliff, D; Deotte, R

    2010-01-01

    A doctoral program in Systems Agriculture was initiated at West Texas A&M University, Canyon, TX, in September, 2003. The stated objective of the program was "..to prepare leaders for the agricultural industry that are trained in a multidisciplinary, research-based curriculum that emphasizes a systems approach to problem solving". The program offers a single doctoral degree in Agriculture and accepts qualified students with a master's or professional degree in agricultural or related disciplines. Courses related to systems methodologies, leadership, agricultural economics, plant and soil science, and animal science are required. Additional program requirements include a systems research project and dissertation, leadership training, and written and oral exams. The program has exceeded enrollment and graduation targets, suggesting interest in this approach to a doctoral degree. Students have entered the program with M.S. backgrounds in education, traditional agricultural disciplines, veterinary medicine, business, and physics. Graduates have gained employment in industry, university teaching and research, government research/administration, and extension. Doctoral student projects in systems agriculture contributed to curriculum changes and to the conceptual framework adopted by a multi-state research group. Designing and teaching courses for students with diverse backgrounds has been challenging. Development of a common understanding of systems agriculture was identified by a third-party program review as an issue for faculty. Development and maintenance of program standards and administrative procedures posed additional challenges. Leadership, administrative support, and timely and continuing program assessment are suggested as necessary components for a nontraditional doctoral program.

  13. Design of System Scheme and Operationmechanism on Agricultural Science &Technology Information Service System `110'

    NASA Astrophysics Data System (ADS)

    Wu, Yongchang; Hu, Zhiquan; Xiao, Bilin; Li, Quanxin

    Agricultural science & technology information service system ‘110’ (ASTISS-110), connected through unitary telephone hotline as well as multipurpose service of the network, television and video etc, is one of the most characteristic content of the Chinese rural informatization. ASTISS-110 is a low cost and high efficiency way to make the agricultural science & technology achievements extension and achieve the combination of science & technology with farmers in the rural area. This paper would primary focus on the ASTISS-110 foundation and system principle. On basis of its main functions and system objectives, we put forward the combination of the ‘Sky- Land-People’ technical solution, and analyze the management operation mechanism from commonweal service, enterprise management and commercialization operation.

  14. The concept of development of the integrated agricultural land assessment system

    NASA Astrophysics Data System (ADS)

    Zatserkovniy, V. I.; Gebrin, L. V.; Kryvoberets, S. V.

    2014-12-01

    The article takes up some of the characteristics of Ukrainian soils current conditions. Here cartographically shown the matter of soils, heavy metals pollution of soils, soil loss tolerance and a radiation pollution of soils. The article also analyzes the functional diagram of the agricultural lands spatial data integration and the stages of implementation of the overall agricultural lands monitoring system. It describes the advantages of the integrated agricultural crops conditions assessment model and the advantages of crop yield forecasting based on remote sensing.

  15. Flow-band modeling of glacial erosion with a multi-morphology subglacial drainage system and process-based erosion laws

    NASA Astrophysics Data System (ADS)

    Beaud, F.; Flowers, G. E.

    2013-12-01

    Both field data and numerical modeling show that glaciations have the potential either to enhance relief or to dampen topography. While the processes by which glaciers erode have been recognized (i.e. abrasion, plucking, subglacial fluvial action), quantitative erosion models with predictive capability demand a better understanding of the processes themselves. We aim to model the effect of the subglacial hydraulic system on spatio-temporal patterns of glacial erosion, first on timescales commensurate with drainage system fluctuations (e.g. seasonal to interannual) and ultimately on timescales relevant to landscape evolution. We use a numerical model that incorporates a multi-morphology subglacial drainage system coupled to a higher-order ice-flow model and process-specific erosion laws for abrasion and quarrying. Ice flow is represented by a first-order approximation of the Stokes equations in two dimensions, while basal sliding is modeled using a Coulomb friction law. The subglacial drainage system allows for a dynamic transition between two morphologies: the distributed system characterized by an increase in basal water pressure with discharge, and the channelized system, which exhibits a decrease in equilibrium water pressure with increasing discharge. The resulting water pressure field is fed to the ice-flow model and both water pressure and sliding speed are used to calculate instantaneous erosion rates. Seasonal-scale simulations generally show that when subglacial hydrology is incorporated, modeled subglacial erosion rates peak where water input is significant, i.e. down-glacier from the equilibrium line. When both the distributed and channelized systems are integrated, the abrasion and sliding maxima migrate ~ 20% up-glacier compared to simulations with distributed drainage only. Once established, the channelized system evacuates water efficiently and reduces both water pressure and sliding rates across the lower reaches of the glacier; maximum rates of

  16. Interactions in Integrated Agricultural Systems: The Past, Present and Future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the 20th century, American agriculture underwent dramatic changes. At the beginning, farms were more diverse, dependent on animal traction, on-farm inputs and income, and after initial land grants nearly independent of government policy. Subsequently, social/political, economic, environmental...

  17. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  18. A decision support system for rainfed agricultural areas of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rural inhabitants of arid lands lack sufficient water to fulfill their agricultural and household needs. They do not have readily available technical information to support decisions regarding the course of action they should follow to handle the agro-climatic risk. In this paper, a computer model (...

  19. Drainage investment and wetland loss: an analysis of the national resources inventory data

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1994-01-01

    The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.

  20. Environmental Services from Agricultural Stormwater Detention Systems in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Knowles, J. M.

    2011-12-01

    Agricultural Stormwater Detention Areas (ADAs) commonly exist for the purpose of downstream flood protection in high water table regions of Florida. In addition to flood protection, they are also considered an important Best Management Practice due to their presumed effectiveness in reducing nitrogen (N) and phosphorus (P) loads to the Kissimmee-Lake Okeechobee-Everglades (KLE) ecosystem. The KLE ecosystem has been adversely impacted due to excessive P loads. Despite their presumed water quality effectiveness, limited data exist on actual N and P treatment efficiencies. A study was conducted at two ADAs (ADA 1 and ADA 2) located in two row crop farms to quantify the total N and P treatment efficiencies. Water, N, and P inflow and outflows at both ADAs were monitored for a year. Results from ADA 1 suggested that P treatment efficiency was below zero indicating that the ADA was a source of P rather than a sink. On the other hand, N treatment efficiency was found to be 20%. Mean inflow and outflow N concentrations for ADA 1 were 1.6 and 1.4 mg/l respectively, indicating a 9% reduction. Mean inflow and outflow P concentrations were 0.04 and 0.06 mg/l respectively, showing an increase of 67%. Although ADA 1 was effective in retaining N it was not for P. In contrast to ADA 1, the P treatment efficiency of ADA 2 was positive (20%). Nitrogen treatment efficiency of ADA 2 was 22%. Mean inflow and outflow N concentrations for ADA 2 were 4.0 and 2.0 mg/l respectively, indicating 50% reduction. A reduction of 32% was observed for P concentrations with mean inflow and outflow P concentrations of 0.5 and 0.3 mg/l respectively. No P retention at ADA 1 was mainly due to low P adsorption capacity of the soil. Analysis of surface (0-10 cm) and subsurface (10-20 cm) soil P retention characteristics suggested that ADA 1 had no remaining P storage capacity which resulted in it being a source of P. At ADA 2, a large fraction of the area still had P storage capacity which resulted in

  1. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  2. Impacts of drainage water management on subsurface drain flow, nitrate concentration, and nitrate loads in Indiana

    EPA Science Inventory

    Drainage water management is a conservation practice that has the potential to reduce drainage outflow and nitrate (NO3) loss from agricultural fields while maintaining or improving crop yields. The goal of this study was to quantify the impact of drainage water management on dra...

  3. 25 CFR 162.611 - Payment of fees and drainage and irrigation charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Payment of fees and drainage and irrigation charges. 162... AND PERMITS Non-Agricultural Leases § 162.611 Payment of fees and drainage and irrigation charges. (a) Any lease covering lands within an irrigation project or drainage district shall require the lessee...

  4. Application of the Doppler lidar system to agricultural burning and air-sea interactions

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.

    1980-01-01

    The Doppler lidar system is potentially a very powerful measurement system. Three areas concerning the system are discussed: (1) error analysis of the system to verify the results; (2) application of the system to agricultural burning in California central valley; and (3) oceanographic possibilities of the system.

  5. Building an Agricultural Extension Services System Supported by ICTs in Tanzania: Progress Made, Challenges Remain

    ERIC Educational Resources Information Center

    Sanga, C.; Kalungwizi, V. J.; Msuya, C. P.

    2013-01-01

    The conventional agricultural extension service in Tanzania is mainly provided by extension officers visiting farmers to provide agricultural advisory service. This system of extension service provision faces a number of challenges including the few number of extension officers and limited resources. This article assesses the effectiveness of an…

  6. Agricultural Extension, Collective Action and Innovation Systems: Lessons on Network Brokering from Peru and Mexico

    ERIC Educational Resources Information Center

    Hellin, Jon

    2012-01-01

    Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…

  7. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  8. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    ERIC Educational Resources Information Center

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  9. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world for food security appears to be at odds with the urgency to reduce agriculture’s negative environmental impacts. We suggest that a cause of this dichotomy is loss of diversity within agricultural systems at field, farm and landscape scales....

  10. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  11. Higher Agricultural Universities Serve for "Sannong" by Offering English Human Resources Support System

    ERIC Educational Resources Information Center

    Yuan, Youqin; Cheng, Baole

    2008-01-01

    This paper puts higher agricultural English education how to serve for "Sannong" construction as priority, combining the actual market demand, based on teaching reform in the past few years, tries to explore English nurturing model and curriculum system for real delivery the agriculture-related qualified foreign language professionals.…

  12. Factors controlling phosphorus export from agricultural/forest and residential systems to rivers in eastern China, 1980-2011

    NASA Astrophysics Data System (ADS)

    Chen, Dingjiang; Hu, Minpeng; Wang, Jiahui; Guo, Yi; Dahlgren, Randy A.

    2016-02-01

    This study quantified long-term response of riverine total phosphorus (TP) export to changes in land-use, climate, and net anthropogenic phosphorus inputs to agricultural/forest (NAPIAF) and residential (NAPIR) systems for the upper Jiaojiang watershed in eastern China. Annual NAPIAF rose by 73% in 1980-1999 followed by a 41% decline in 2000-2011, while NAPIR continuously increased by 122% over the 1980-2011 period. Land-use showed a 63% increase in developed land area (D%) and a 91% increase in use of efficient drainage systems on agricultural land area (AD%) over the study period. Although no significant trends were observed in annual river discharge or precipitation, the annual number of storm events rose by 90% along with a 34% increase in the coefficient of variation of daily rainfall. In response to changes of NAPIAF, NAPIR, land-use and precipitation patterns, riverine TP flux increased 16.0-fold over the 32-year record. Phosphorus export via erosion and leaching was the dominant pathway for P delivery to rivers. An empirical model incorporating annual NAPIAF, NAPIR, precipitation, D%, and AD% was developed (R2 = 0.96) for apportioning riverine TP sources and predicting annual riverine TP fluxes. The model estimated that NAPIAF, NAPIR and legacy P sources contributed 19-56%, 16-67% and 13-32% of annual riverine TP flux in 1980-2011, respectively. Compared to reduction of NAPIAF, reduction of NAPIR was predicted to have a greater immediate impact on decreasing riverine TP fluxes. Changes in anthropogenic P input sources (NAPIAF vs. NAPIR), land-use, and precipitation patterns as well as the legacy P source can amplify P export from landscapes to rivers and should be considered in developing P management strategies to reduce riverine P fluxes.

  13. Atrazine, alachlor, and cyanazine in a large agricultural river system

    USGS Publications Warehouse

    Schottler, S.P.; Eisenreich, Steven J.; Capel, P.D.

    1994-01-01

    Atrazine, alachlor, and cyanazine exhibited maximum concentrations of about 1000-6000 ng/L in the Minnesota River in 1990 and 1991, resulting from precipitation and runoff following the application period. Transport of these herbicides to the river occurs via overland flow or by infiltration to tile drainage networks. Suspended sediment, SO42-, and Cl- concentrations were used as indicators of transport mechanisms. The atrazine metabolite, DEA, was present in the river throughout the year. The ratio of DEA to atrazine concentration was used to calculate an apparent first-order soil conversion rate of atrazine to DEA. Half lives of 21-58 d were calculated for 1990 and 1991, respectively. The longer conversion rate in 1991 results from rapid flushing from the soil and minimum exposure to soil microorganisms. Total flux of herbicide to the river was 1-6.5 t, with over 60% of this loading occurring during the month of June. Loading to the river accounts for less than 1.5% of applied herbicide. ?? 1994 American Chemical Society.

  14. Against the Grain: The Influence of Changing Agricultural Management on the Earth System

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2007-12-01

    The rise of modern agriculture was one of the most transformative events in human history, and has forever changed our relationship to the natural world. By clearing tropical forests, practicing subsistence agriculture on marginal lands and intensifying industrialized farmland production, agricultural practices are changing the worldês landscapes in pervasive ways. In the past decade, we have made tremendous progress in monitoring agricultural expansion from satellites, and modeling associated environmental impacts. In the past decade, the Earth System Science research community has begun to recognize the importance of agricultural lands, particularly as they continue expanding at the expense of important natural ecosystems, potentially altering the planetês carbon cycle and climate. With the advent of new remote sensing and global modeling methods, several efforts have documented the expansion of agricultural lands, the corresponding loss of natural ecosystems, and how this may influence the earth system. But the geographic expansion of agricultural lands is not the whole story. While significant agricultural expansion (or extensification) has occurred in the past few decades, the intensification of agricultural practices Ð under the aegis of the -Green Revolution" Ð has dramatically altered the relationship between humans and environmental systems across the world. Simply put, many of the worldês existing agricultural lands are being used much more intensively as opportunities for agricultural expansion are being exhausted elsewhere. In the last 40 years, global agricultural production has more than doubled Ð although global cropland has increased by only 12% Ð mainly through the use of high yielding varieties of grain, increased reliance on irrigation, massive increases in chemical fertilization, and increased mechanization. Indeed, in the past 40 years there has been a 700% increase in global fertilizer use and a 70% increase in irrigated cropland area

  15. Market assessment of photovoltaic power systems for agricultural applications in Nigeria

    NASA Technical Reports Server (NTRS)

    Staples, D.; Steingass, H.; Nolfi, J.

    1981-01-01

    The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.

  16. Contralateral acute epidural haematoma following evacuation of a chronic subdural haematoma with burr-hole craniostomy and continuous closed system drainage: a rare complication.

    PubMed

    Panourias, Ioannis G; Skandalakis, Panajiotis N

    2006-06-01

    Chronic subdural haematoma (CSDH) is one of the most frequent causes for neurosurgical intervention. Although the prognosis is generally good and treatment modalities are well established, some devastating intracranial haematomas can complicate its evacuation. The authors report here a case of an acute epidural haematoma occurring after evacuation of a contralateral chronic subdural haematoma (CSDH) with burr-hole craniostomy and continuous closed system drainage without irrigation. Since this is a rare, but potentially life-threatening, complication, clinicians should suspect its occurrence when an unexpected postoperative course is demonstrated.

  17. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  18. Relative impacts of land-use, management intensity and fertilization on microbial community structure in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of agricultural land management practices on soil prokaryotic diversity have not been well described. Soil microbial communities under three agricultural management systems (conventionally tilled cropland, hayed pasture, and grazed pasture) and two fertilizer systems [inorganic fertilizer (I...

  19. Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes

    NASA Astrophysics Data System (ADS)

    Struth, Lucía; Babault, Julien; Teixell, Antonio

    2015-12-01

    The Eastern Cordillera of Colombia is a thick-skinned thrust-fold belt that is characterized by two topographic domains: (1) the axial zone, a high altitude plateau (the Sabana de Bogotá, 2500 masl) with low local relief and dominated by longitudinal rivers, and (2) the Cordillera flanks, where local relief exceeds 1000 m and transverse rivers dominate. On the basis of an analysis of digital topography and river parameters combined with a review of paleodrainage data, we show that the accumulation of shortening and crustal thickening during the Andean orogeny triggered a process of fluvial reorganization in the Cordillera. Owing to a progressive increase of the regional slope, the drainage network evolves from longitudinal to transverse-dominated, a process that is still active at present. This study provides the idea of progressive divide migration toward the inner part of the mountain belt, by which the area of the Sabana de Bogotá plateau is decreasing, the flanks increase in area, and ultimately transverse rivers will probably dominate the drainage of the Cordillera.

  20. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  1. Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...

  2. Application of aerobic composting system for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Yoshii, Takahiro; Moriya, Toshiyuki; Yamashita, Masamichi

    Composting is a classical technique to decompose organic wastes such as animal bodies, straw, paper, raw sludge, and so on. Compared with burning of wastes, the composting method has many advantages. It is an inexpensive and safer method because of its self-heating without spending extra energy resources. It does not emit toxic pollutants such as dioxin, NOx , and SOx . The composting products can be used as organic fertilizers for agricultural production. Composting is a promising way for digesting organic wastes safely on spaceships or manned exploration on extraterrestrial planets. We have developed a small scale high-temperature composter in order to examine its feasobility to operate food waste disposing facility and fertilizer production in space. This composter has a heated reaction vessel containing compost soil (seed bacteria) provided by a compost factory. To determine the optimal condition for its operation, we analyzed the effect of temperature on metabolic activity (CO2 production rate), and water content. The dynamics of microbial community was studied by polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Water content was maintained to a range between 27% and 40% by continuously adding water. The highest CO2 emission was observed at around 70° C. PCR-DGGE analysis shows that the bacterial community of the compost soil is dramatically changed by changing reaction temperature. We will discuss the application of the composter in space in order to establish the closed recycling loop of bio-elements in space agriculture.

  3. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  4. Farm Drainage in the United States. History, Status, and Prospects. Miscellaneous Publication Number 1455.

    ERIC Educational Resources Information Center

    Pavelis, George A., Ed.

    This publication covers the historical, technological, economic, and environmental aspects of agricultural drainage. It draws from the combined knowledge of academic and U.S. Department of Agriculture professionals in public policy, drainage theory, planning, engineering, environmental science, and economics. The main purpose is to review the…

  5. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  6. Urine drainage bags

    MedlinePlus

    ... catheter and urine drainage bag because you have urinary incontinence (leakage), urinary retention (not being able to urinate), ... wall repair Inflatable artificial sphincter Radical prostatectomy Stress urinary incontinence Urge incontinence Urinary incontinence Urinary incontinence - injectable implant ...

  7. Changes in Soil Chemistry and Agricultural Return Flow in an Integrated Seawater Agriculture System (ISAS) Demonstration in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Ning, Q.; Matiin, W. A.; Ahmad, F.

    2012-12-01

    Growing halophytes using Integrated Seawater Agriculture Systems (ISAS) offers a sustainable solution for the generation of biomass feedstock for carbon neutral biofuels - halophytes do not enter the foodchain and they do not compete with food-crops for natural resources. A field demonstration of ISAS in the coastal regions of Abu Dhabi, UAE, scheduled to start in 2013, will likely face a number of region-specific challenges not encountered in past demonstrations of ISAS at coastal locations in Mexico and Eritrea. The arid climate, unique soil chemistry (evaporite deposits, especially gypsum), and hypersaline coastal hydrogeology of Abu Dhabi will affect long-term halophyte agricultural productivity when Arabian Gulf seawater is applied to coastal soils as part of ISAS. Therefore, the changes in irrigation return flow quality and soil chemistry must be monitored closely over time to establish transient salt and water balances in order to assess the sustainability of ISAS in the region. As an initial phase of the ISAS demonstration project, numerical modeling of different seawater loadings onto coastal soils was conducted to estimate the chemical characteristics of soil and the irrigation return flow over time. These modeling results will be validated with field monitoring data upon completion of one year of ISAS operation. The results from this study could be used to (i) determine the optimal saline water loading that the soils at the ISAS site can tolerate, (ii) potential for sodicity of the soil with saline water application, (iii) impacts of land application of saline water on underlying coastal groundwater, and (iv) develop strategies to control soil water activities in favor of halophyte agricultural productivity.

  8. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  9. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2016-04-01

    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  10. Paleohydrology of meandering systems: a new approach for the reconstruction of ancient drainage areas and the quantification of the controlling factors

    NASA Astrophysics Data System (ADS)

    Held, A.; Cojan, I.

    2009-12-01

    In meandering system fluvial sedimentology, studying infill geometries and sedimentary structures of channelized sandstone bodies, gives information about the sedimentary dynamic and the depositional environment. Associated with such a sedimentary approach, paleohydrology enables the reconstruction of hydrological parameters such as discharge, drainage area or stream length. Although fluvial systems are known to be influenced by allogenic and/or autogenic processes, climate or structural evolution were not taken into account in previous paleohydrological studies. Therefore, the present study attempts to develop a new method of paleohydrological reconstitution, based on the geometry of fluvial sandstone bodies and constrained by the controlling factors (climate and tectonic). We selected two meandering systems of the same age, developed under different climatic setting: the first one is located in the Alpine Foreland Basin (SE France) and was associated to a subtropical humid realm; the second one is situated in the Loranca Basin (Central Spain) and was related to subtropical semi-arid conditions. Dealing with the uniformitarianism concept, we developed a new method to determine the paleohydrological parameters of the two different systems. For each of these two climatic setting we have constructed an equivalent modern rivers database taking into account their respective climatic conditions. By defining empirical relations, we translated the point-bar thickness (the only data available in the field) into paleohydrological parameters, such as channel geometry, water discharge and basin geometry. Because fluvial members studied are composed of several channelized sequences; each of them gives a specific drainage area depending on discharge value and climatic coefficient. But assuming a constant basin area all along the river evolution, we can quantify the spatiotemporal impact of the climate on the development of an alluvial system. Furthermore, granulometry

  11. The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes

    NASA Astrophysics Data System (ADS)

    Doležal, František; Kvítek, Tomáš

    as the likely second main polluter. The differences in water quality between a drainage outlet and a forest spring indicate the importance of a proper nitrogen management in the recharge zones. It is also concluded that the tile drainage and tillage of formerly waterlogged sites, mainly located in transient zones, reduce the opportunity for denitrification of both baseflow and interflow. The ploughed lands in the recharge zones represent an established basis for local agriculture and cannot be easily set aside. Many such lands have been declared as vulnerable to nitrate pollution in order to protect waters against impacts of risky agricultural practices. It is proposed that some waterlogged and drained sites in the transient and discharge zones are set aside rather than the flat ploughed lands on the hill tops. To increase the denitrification, tile drainage runoff from the transient and the discharge zones should be retarded.

  12. Data on quantity and quality of water flowing in drainage systems of dry docks at Puget Sound Naval Shipyard, Bremerton, Washington, 1994

    USGS Publications Warehouse

    Prych, E.A.

    1995-01-01

    Ground-water discharges into dry docks no. 1, 2, 3, 4, 5 and 6 of Puget Sound Naval Shipyard in Bremerton, Washington equalled 0.07, 0.30, 0.29, 0.61, 1.18 and 6.2 cubic feet per second during one set of measurements in the summer of 1994. Total drainage-water discharges from the dry docks equalled 0.07, 0.30, 0.33, 0.61, 1.36 and 11.7 cubic feet per second. Differences between the two sets of discharges were cofferdam and floodgate leakages into the dry docks, and in dry dock no. 6, cooling- water discharge from a ship in dry dock. Concen- trations of total copper and total lead at 36 sampling sites in the drainage systems ranged from less than 1 to 71 micrograms per liter and less than 1 to 44 micrograms per liter, respectively. Concen- trations of all 43 semi-volatile organic compounds analyzed for in samples from 19 sites were less than the laboratory minimum reporting level (5 or 10 micrograms per liter). Trichloroethene and at least three other volatile organic compounds were found at concentrations greater than 0.2 micrograms per liter in samples from all eight sites that were analyzed for 63 volatile organic compounds.

  13. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Nomura, Daiki; Granskog, Mats A.; Kristiansen, Svein; Martma, Tõnu; Nehrke, Gernot

    2015-04-01

    In order to investigate the effect of glacial water on the CO2 system in the fjord, we studied the variability of the total alkalinity (AT), total dissolved inorganic carbon (CT), dissolved inorganic nutrients, oxygen isotopic ratio (δ18O), and freshwater fractions from the glacier front to the outer Tempelfjorden on Spitsbergen in winter 2012 (January, March, and April) and 2013 (April) and summer/fall 2013 (September). The two contrasting years clearly showed that the influence of freshwater, mixing, and haline convection affected the chemical and physical characteristics of the fjord. The seasonal variability showed the lowest calcium carbonate saturation state (Ω) and pH values in March 2012 coinciding with the highest freshwater fractions. The highest Ω and pH were found in September 2013, mostly due to CO2 uptake during primary production. Overall, we found that increased freshwater supply decreased Ω, pH, and AT. On the other hand, we observed higher AT relative to salinity in the freshwater end-member in the mild and rainy winter of 2012 (1142 μmol kg-1) compared to AT in 2013 (526 μmol kg-1). Observations of calcite and dolomite crystals in the glacial ice suggested supply of carbonate-rich glacial drainage water to the fjord. This implies that winters with a large amount of glacial drainage water partly provide a lessening of further ocean acidification, which will also affect the air-sea CO2 exchange.

  14. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  15. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE PAGES

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; et al

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  16. Convergent Bacterial Microbiotas in the Fungal Agricultural Systems of Insects

    PubMed Central

    Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; Klepzig, Kier D.

    2014-01-01

    ABSTRACT The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. PMID:25406380

  17. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    SciTech Connect

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; Klepzig, Kier D.; Currie, Cameron R.

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.

  18. Chemical (polycyclic aromatic hydrocarbon and heavy metal) levels in contaminated stormwater and sediments from a motorway dry detention pond drainage system.

    PubMed

    Kamalakkannan, Ragunathan; Zettel, Vic; Goubatchev, Alex; Stead-Dexter, Karen; Ward, Neil I

    2004-03-01

    control evaluation using two certified reference materials. Typical detection limits were found to be below 0.1 [micro sign]g l(-1) for stormwater and 0.005 mg kg(-1) for acid digested sediments. Raised heavy metal levels were found throughout the dry detention pond facility and only decrease when the stormwater is diluted following discharge into the river Eden. Statistical analysis also confirms that some significant correlations exist between various heavy metals and PAHs. However, no overall conclusive trend is found indicating that a particular PAH is deposited in sediment relative to a specific heavy metal/s. These results raise some serious concerns about the dispersion and accumulation of chemicals in the sediments of motorway stormwater drainage systems and the need for maintenance and clean-up of contaminated material from such systems.

  19. Hydrologic budget of the late Oligocene Lake Creede and the evolution of the upper Rio Grande drainage system

    USGS Publications Warehouse

    Barton, Paul B.; Steven, Thomas A.; Hayba, Daniel O.

    2000-01-01

    drilling) formed in an euxinic environment. This argues against a persistent early playa, although evaporative accumulation of brine was inevitable. When the rate of resurgance was rapid relative to sedimentary infilling, the lake would have been deep (i.e., bordered by bedrock rather than sedimentary fans). The geomorphic evolution of the Creede caldera and its watershed tracks a two-phase topographic history, the first the Oligocene through Miocene, and the second for Pliocene to the recent. In Oligocene time, the San Juan volcanic field was a hydrologically immature, gently undulating, and outward sloping, constructional volcanic plateau straddling the ancient Continental Divide. West of the Creede caldera, a dendritic drainage discharged northeastward into ancestral Cebolla Creek (a tributary of the ancestral Gunnison River) through an early stage of the Clear Creek graben in the vicinity of Spring Creek Pass. Miocene basalt choked, but did not reconstruct, the drainage. By the end of Miocene time a mature topography of moderate relief developed, exposing some of the higher ores in the Creede district to weathering. In the late Miocene-early Pliocene time the San Juan Mountains were uplifted and titled eastward; the ancestral Rio Grande was revitalized and cut deeply into the older terrain, excavating much of the accessible sediment from the moat of the Creede caldera and exposing successively lowe levels in the Creede district to oxidation. Simultaneously, the southeast end of the Clear Creek graben was reactivated and breached the southwest wall of the Creede caldera. The rejuvenated Rio Grande captured the formerly northeast-directed headwaters of ancestral Cebolla Creek, shifting more than 1000 km2 from the Pacific-directed drainage to the Atlantic. The water budget for ancient Lake Creede was strictly limited by the early stages of the fist geomorphic cycle; the modern water budget is the product of the second cycle.

  20. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Broers, H. P.; Berendrecht, W. L.; Rozemeijer, J. C.; Osté, L. A.; Griffioen, J.

    2015-08-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling

  1. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  2. Multiphase transfer processes in waste rock piles producing acid mine drainage 1: Conceptual model and system characterization.

    PubMed

    Lefebvre, R; Hockley, D; Smolensky, J; Gélinas, P

    2001-11-01

    Acid mine drainage (AMD) results from the oxidation of sulfides, mainly pyrite, present in mine wastes, either mill tailings or waste rock. This is the first of two papers describing the coupled physical processes taking place in waste rock piles undergoing AMD production. Since the oxidation of pyrite involves the consumption of oxygen and the production of heat, the oxidation process initiates coupled processes of gas transfer by diffusion and convection as well as heat transfer. These processes influence the supply of oxygen that is required to sustain the oxidation process. This first paper describes a general conceptual model of the interaction of these coupled transfer processes. This general conceptual model is illustrated by the physicochemical conditions observed at two large sites where extensive characterization programs revealed widely different properties. The South Dump of the Doyon mine in Canada is permeable and has a high pyrite oxidation rate leading to high temperatures (over 65 degrees C), thus making temperature-driven air convection the main oxygen supply mechanism. The Nordhalde of the Ronnenberg mining district in Germany contains lower permeability material which is less reactive, thus leading to a more balanced contribution of gaseous diffusion and convection as oxygen supply mechanisms. The field characterization and monitoring data at these sites were thoroughly analyzed to yield two coherent sets of representative physical properties. These properties are used in the second paper as a basis for applications of numerical simulation in AMD-producing waste rock piles. PMID:11695739

  3. Analysis of effects of climate change on runoff in an urban drainage system: a case study from Seoul, Korea.

    PubMed

    Jung, M; Kim, H; Mallari, K J B; Pak, G; Yoon, J

    2015-01-01

    Both water quantity and quality are impacted by climate change. In addition, rapid urbanization has also brought an immeasurable loss of life and property resulting from floods. Hence, there is a need to predict changes in rainfall events to effectively design stormwater infrastructure to protect urban areas from disaster. This study develops a framework for predicting future short duration rainfall intensity and examining the effects of climate change on urban runoff in the Gunja Drainage Basin. Non-stationarities in rainfall records are first analysed using trend analysis to extrapolate future climate change scenarios. The US Environmental Protection Agency Storm Water Management Model (SWMM) was used for single event simulation of runoff quantity from the study area. For the 1-hour and 24-hour durations, statistically significant upward trends were observed. Although the 10-minute duration was only nearly significant at the 90% level, the steepest slope was observed for this short duration. Moreover, it was observed that the simulated peak discharge from SWMM increases as the short duration rainfall intensity increases. The proposed framework is thought to provide a means to review the current design of stormwater infrastructures to determine their capacity, along with consideration of climate change impact. PMID:25768210

  4. Analysis of effects of climate change on runoff in an urban drainage system: a case study from Seoul, Korea.

    PubMed

    Jung, M; Kim, H; Mallari, K J B; Pak, G; Yoon, J

    2015-01-01

    Both water quantity and quality are impacted by climate change. In addition, rapid urbanization has also brought an immeasurable loss of life and property resulting from floods. Hence, there is a need to predict changes in rainfall events to effectively design stormwater infrastructure to protect urban areas from disaster. This study develops a framework for predicting future short duration rainfall intensity and examining the effects of climate change on urban runoff in the Gunja Drainage Basin. Non-stationarities in rainfall records are first analysed using trend analysis to extrapolate future climate change scenarios. The US Environmental Protection Agency Storm Water Management Model (SWMM) was used for single event simulation of runoff quantity from the study area. For the 1-hour and 24-hour durations, statistically significant upward trends were observed. Although the 10-minute duration was only nearly significant at the 90% level, the steepest slope was observed for this short duration. Moreover, it was observed that the simulated peak discharge from SWMM increases as the short duration rainfall intensity increases. The proposed framework is thought to provide a means to review the current design of stormwater infrastructures to determine their capacity, along with consideration of climate change impact.

  5. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  6. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  7. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Technical Reports Server (NTRS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  8. Photovoltaic applications definition and photovoltaic system definition study in the agricultural sector. Volume II. Technical results

    SciTech Connect

    Mengel, R.W.; Nadolski, T.P.; Sparks, D.C.; Young, S.K.; Yingst, A.

    1980-05-01

    This volume describes the technical results of the study of potential photovoltaic (P/V) applications in US agriculture. The results presented address all technical aspects of the program and include a summary of agricultural energy consumption. The objectives of the technical effort reported have been to: (1) identify and characterize agricultural energy demands that can effectively use P/V power systems; (2) develop effective P/V system designs for the four most promising applications; (3) determine performance and cost-estimates for the designs; and (4) recommend systems for early test and demonstration and critical issues requiring further systems studies. The farms chosen for conceptual design include: (1) poultry layer farm, (2) hog production farm, (3) beef feedlot, and (4) year-round vegetable farm. (WHK)

  9. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Astrophysics Data System (ADS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  10. Phytopathogenic bacteria in the system of modern agriculture.

    PubMed

    Patyka, V P; Pasichnyk, L A

    2014-01-01

    The stages of studying bacterial diseases of crops and weeds at various farming systems have been characterized, biological properties have been investigated and pathogens identified using traditional and modern molecular genetic methods of research.

  11. A Comparison of "Ice-House" (Modern) and "Hot-House" (Maastrichtian) Drainage Systems: the Implications of Large-Scale Changes in the Surface Hydrological Scheme

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.; Crossley, R.; Valdes, P. J.

    2002-12-01

    A GIS analysis of modern and Maastrichtian (Late Cretaceous) drainage systems has been made in order to investigate the potential differences between the surface hydrology of "ice-house" and "hot-house" worlds and how this might be reflected in the geological record. Because of the importance of CO2 concentrations for generating "hot-house" climates this study also has implications for potential future changes in the climate system. For the modern system we have utilized global maps of observed river systems, the Hydro1K digital dataset, observations of freshwater and sediment fluxes from recording stations, and modern day climate models and observations. For the Maastrichtian we have compiled a detailed global paleogeographic map and geological database (based on earlier work by the Paleogeographic Atlas Project, University of Chicago) that has been used to generate a paleo-DEM using the suite of hydrological tools in ArcGIS, complete with reconstructed river systems and drainage basins. This forms the primary boundary condition for a coupled ocean-atmosphere experiment using the HadCM3 model, with atmospheric CO2 set at 4 x pre-industrial levels. The results indicate a Maastrichtian world dominated by high sea surface temperatures (as high as 30-35 C in the tropics), and a consequently greatly enhanced hydrological cycle when compared with the Present. Globally, modeled Maastrichtian precipitation and evaporation are 1.5x that for the Present, with a 2.5x increase in total runoff. These changes are not evenly distributed, either spatially or seasonally, and therefore a detailed consideration of the paleogeography and paleo-drainage is essential, as these changes have a major influence on the distribution of vegetation and freshwater and sediment fluxes. For example, the Maastrichtian Tethyan monsoon, though less intense than noted for other modeled Mesozoic intervals, nonetheless dominates the seasonal distribution of precipitation and runoff over Saharan and

  12. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  13. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  14. Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan), with a comparison of predicted and surveyed species richness.

    PubMed

    Miyazaki, Yusuke; Nakae, Masanori; Senou, Hiroshi

    2014-01-01

    The potential fish species pool of the Kubo, Tochikura, and Ichinono river systems (tributaries of the Iwai River, Kitakami River drainage), Iwate Prefecture, northern Japan, was compared with the observed ichthyofauna by using historical records and new field surveys. Based on the literature survey, the potential species pool comprised 24 species/subspecies but only 20, including 7 non-native taxa, were recorded during the fieldwork. The absence during the survey of 11 species/subspecies from the potential species pool suggested either that sampling effort was insufficient, or that accurate determination of the potential species pool was hindered by lack of biogeographic data and ecological data related to the habitat use of the species. With respect to freshwater fish conservation in the area, Lethenteronreissneri, Carassiusauratusbuergeri, Pseudorasborapumila, Tachysurustokiensis, Oryziaslatipes, and Cottusnozawae are regarded as priority species, and Cyprinusrubrofuscus, Pseudorasboraparva, and Micropterussalmoides as targets for removal. PMID:25425932

  15. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  16. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  17. Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of agricultural land management practices on soil prokaryotic diversity are not well described. We investigated three land usage systems (row cropped, ungrazed pasture, and cattle-grazed pasture) and two fertilizer systems (inorganic fertilizer or IF and poultry-litter or PL) and compare...

  18. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  19. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  20. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  1. The Novel Use of Ochre For The Removal and Recovery of Phosphate In Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Sweetman, R.; Batty, L.; Younger, P.

    If agriculture is taken to be an industry, then agricultural runoff can be seen as its waste product. As such we should seek to negate adverse agricultural losses of nutrients and sediments in a proactive way. This can be described as earth systems engineering. Sustainable nutrient loadings, buffer strips, wetlands and other buffering features are beneficial, however, practical agro-economic realities mean that 'intense' systems will still contribute substantial adverse losses. Here we show just one example, of many, that actively seek to negate phosphate losses whilst minimising the impact on farm economics. We will demonstrate that Ochre has between 70-90% phosphate stripping efficiency when carefully designed. Ochre is a by product of minewater treatment processes, and is now being used in low technology sewage treatment plants and reed beds. However, it is equally important to strip agricultural sources of phosphate. A series of experiments will be shown that discuss potential Ochre delivery and recovery systems relevant to agriculture. The basis of the design is to target nutrient rich flows in land drains, low order channels and to augment buffer strips and wetland systems.

  2. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.

    PubMed

    Labrenz, M; Banfield, J F

    2004-04-01

    The microbial diversity of ZnS-forming biofilms in 8 degrees C, circumneutral-pH groundwater in tunnels within the abandoned Piquette Zn, Pb mine (Tennyson, Wisconsin, USA) has been investigated by molecular methods, fluorescence in situ hybridization (FISH), and cultivation techniques. These biofilms are growing on old mine timbers that generate locally anaerobic zones within the mine drainage system. Sulfate-reducing bacteria (SRB) exclusively of the family Desulfobacteriaceae comprise a significant fraction of the active microbiota. Desulfosporosinus strains were isolated, but could not be detected by molecular methods. Other important microbial clusters belonged to the beta-, gamma-, and epsilon-Proteobacteria, the Cytophaga/Flexibacter/Bacteroides-group (CFB), Planctomycetales, Spirochaetales, Clostridia, and green nonsulfur bacteria. Our investigations indicated a growth dependence of SRB on fermentative, cellulolytic, and organic acid-producing Clostridia. A few clones related to sulfur-oxidizing bacteria were detected, suggesting a sulfur cycle related to redox gradients within the biofilm. Sulfur oxidation prevents sulfide accumulation that would lead to precipitation of other sulfide phases. FISH analyses indicated that Desulfobacteriaceae populations were not early colonizers in freshly grown and ZnS-poor biofilms, whereas they were abundant in older, naturally established, and ZnS-rich biofilms. Gram-negative SRB have been detected in situ over a period of 6 months, supporting the important role of these organisms in selective ZnS precipitation in Tennyson mine. Results demonstrate the complex nature of biofilms responsible for in situ bioremediation of toxic metals in a subsurface mine drainage system. PMID:14994175

  3. Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.

    ERIC Educational Resources Information Center

    Vukasin, Helen L., Ed.

    Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…

  4. Public Sector Agricultural Extension System Reform and the Challenges Ahead

    ERIC Educational Resources Information Center

    Rivera, William M.

    2011-01-01

    This paper is organized into two main sections. The first section examines extension as an engine for innovation and reviews the numerous priorities confronting extension systems. Section two highlights the current knowledge imperative and the critical connection of extension to post-secondary higher education and training, organizational…

  5. Integrating Digital Response Systems within a Diversity of Agricultural Audiences

    ERIC Educational Resources Information Center

    Sciarappa, William; Quinn, Vivian

    2014-01-01

    Extension educators have new computer-assisted tools as audience response systems (clickers) for increasing educational effectiveness and improving assessment by facilitating client input. From 2010-2012, 26 sessions involving 1093 participants in six diverse client categories demonstrated wide audience acceptance and suitability of clickers in…

  6. The Philippine System of Education: Some Implications to Agricultural Education.

    ERIC Educational Resources Information Center

    Mancebo, Samuel T.

    The Philippine educational system views education as a human development resource conversion process that can maximize the realization of the national developmental goals. Students comprise the principal input of this manpower resource conversion process. The output is individuals who can find useful and productive employment. Two broad strategies…

  7. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included.

  8. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  9. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  10. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  11. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  12. Beyond climate-smart agriculture: toward safe operating spaces for global food systems

    SciTech Connect

    Gulledge, Jay; Neufeldt, Heinrich; Jahn, Margaret M; Lezaks, David P; Meinke, Jan H; Scholes, Robert J

    2013-01-01

    Agriculture is considered to be climate-smart when it contributes to increasing food security, adaptation and mitigation in a sustainable way. This new concept now dominates current discussions in agricultural development because of its capacity to unite the agendas of the agriculture, development and climate change communities under one brand. In this opinion piece authored by scientists from a variety of international agricultural and climate research communities, we argue that the concept needs to be evaluated critically because the relationship between the three dimensions is poorly understood, such that practically any improved agricultural practice can be considered climate-smart. This lack of clarity may have contributed to the broad appeal of the concept. From the understanding that we must hold ourselves accountable to demonstrably better meet human needs in the short and long term within foreseeable local and planetary limits, we develop a conceptualization of climate-smart agriculture as agriculture that can be shown to bring us closer to safe operating spaces for agricultural and food systems across spatial and temporal scales. Improvements in the management of agricultural systems that bring us significantly closer to safe operating spaces will require transformations in governance and use of our natural resources, underpinned by enabling political, social and economic conditions beyond incremental changes. Establishing scientifically credible indicators and metrics of long-term safe operating spaces in the context of a changing climate and growing social-ecological challenges is critical to creating the societal demand and political will required to motivate deep transformations. Answering questions on how the needed transformational change can be achieved will require actively setting and testing hypotheses to refine and characterize our concepts of safer spaces for social-ecological systems across scales. This effort will demand prioritizing key

  13. Nitrate exported in drainage waters of two sprinkler-irrigated watersheds.

    PubMed

    Cavero, J; Beltrán, A; Aragüés, R

    2003-01-01

    Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows. PMID:12809292

  14. Development of a Global Agricultural Hotspot Detection and Early Warning System

    NASA Astrophysics Data System (ADS)

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  15. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  16. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system

    NASA Astrophysics Data System (ADS)

    Maza, Santiago N.; Collo, Gilda; Astini, Ricardo A.; Nieto, Fernando; Nieto, José Miguel

    2014-07-01

    A 44 m-thick lacustrine succession of silty-clay banded ochres and subordinated sandstones, and conglomerates (known as the Corral Amarillo Formation) is superbly exposed within the Famatina Belt (Central Andes of Argentina) after deep entrenchment by the present-day Amarillo river due to strong recent uplifting and consequent relative drop in base level. The unusual ochreous-rich succession was produced by natural damming (3.48-3.54 14C kyr BP) of an acid drainage system linked to the alteration cap of polymetallic deposits. Facies of silty-clay ochre (wet season) and banded ochre (dry season) from the paleolacustrine setting are composed of jarosite + goethite and goethite respectively. Geochemically, these layers record high concentrations of Fe2O3 (25-55 wt. %) and trace elements (Cu, Zn, Co, As, and Mo with mean concentrations of 2759; 2467; 109; 375 and 116 ppm, respectively). Their origin is inferred from a comparative analysis with the present-day Amarillo river, which has a pH of ˜3, (SO4)2- concentrations of ˜5000 mg/l, and jarosite as the dominant phase, in the upper catchments. Waters downstream have pH values of 3-4.5, (SO4)2- concentrations of ˜3000-480 mg/l, and schwertmannite as the dominant phase. Thus goethite in the paleolake facies is likely related to schwertmannite transformation by an aging process, whereas jarosite is probably transported from the river but could also be associated with post-depositional formation regulated by variations in grain size and the pore fluid chemistry. The Corral Amarillo Formation offers a Natural model, which may be employed to infer the effect on nature of acid drainage of mineralized areas.

  17. Psychiatric agriculture: systemic nutritional modification and mental health in the developing world.

    PubMed

    London, Douglas S; Stoll, Andrew L; Manning, Bruce B

    2006-01-01

    Modernization of agricultural systems to increase output causes changes to the nutritional content of food entire populations consume. Human nutritional needs differ from their "food", thus producing healthy agricultural products is not equivalent to providing agricultural products that are healthy for humans. Inclusion of the food production system as a factor in the increase of neuropsychiatric disorders and other chronic diseases helps explain negative trends in modern chronic diseases that remain unchecked despite stunning advances in modern medicine. Diseases in which our own technology plays a significant role include obesity and resulting disorders, such as diabetes, heart disease, hypertension, stroke and arthritis. Modernization's lure leads to importation of modern agricultural practices into a nutritionally vulnerable, malnourished and sometimes starving developing world. Wealthier nations hedge their food portfolio by having access to a wider variety of foods. The developing world's reliance on staple foods means even a minor widespread nutritional modification of one key food can have profound effects. New agricultural techniques may improve or exacerbate neuropsychiatric disorders through nutritional modification in regions where populations walk a nutritional tightrope with little margin for error. In most of the developing world western psychiatric interventions have failed to make inroads. People's consumption of fish has a demonstrated beneficial effect on their mental health and the omega-3 fatty acid content is a significant factor. Epidemiological, biological and agricultural studies implicate a lack of dietary omega-3s as a factor in certain mental disorders. Replenishing omega-3s has improved mental illnesses in controlled clinical trials. This article's detailed tilapia fish-farming model demonstrates how aquaculture/agriculture techniques can function as a public health intervention by increasing dietary omega-3s through creation of

  18. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    PubMed

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  19. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    PubMed Central

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems. PMID:22163479

  20. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  1. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGES

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; Nair, Sujithkumar Surendran

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  2. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A Text Size What's in ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  3. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  4. The Impacts of Agricultural Land Use on Dissolved Organic Matter in a Dryland River System

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Bergamaschi, B. A.; Van Horn, D. J.; Diefendorf, A. F.

    2015-12-01

    Globally, expanding agriculture is significantly impacting aquatic nutrient cycles. In mesic systems, agriculture is a source of nitrogen and phosphorus and increases concentrations of structurally simple dissolved organic carbon (DOC). In contrast, recent studies suggest in dryland systems, where wastewater effluent is a primary nutrient source, agriculture is a nutrient sink—retaining nitrogen and phosphorous. Importantly, very little, is known about the influence of agriculture on DOC dynamics in dryland systems. To address this gap we used synoptic sampling, UV-absorbance, and fluorescence spectroscopy to elucidate source, character, and concentration of riverine and runoff DOC in a dryland agricultural system. Samples were collected along a 25 km stretch of the Rio Grande River in New Mexico (USA). The Rio Grande is an impoundment/irrigation-withdrawal controlled river that receives water from snowmelt, monsoonal storms, and wastewater effluent. During irrigation approximately 80% of the river's water is diverted into a manmade network where it waters crops and percolates through the soil before it enters a series of drains that return water to the river. Our preliminary characterization of the DOC reentering the river (DOCmean=3.23 mg/L, sd=0.81; SUVAmean=4.05, sd=1.37) indicates the agricultural pool is similar in concentration and aromaticity to riverine DOC (DOCmean= 3.10 mg/L, sd=1.17; SUVAmean= 4.64, sd=1.12). However, riverine organic matter is more terrestrially derived (FImean=1.68, sd=0.17) than organic matter in the drains (FImean=1.9, sd=0.24). Additionally, drains directly adjacent to actively irrigated fields show high concentrations (DOCmean=58.35; sd=0.91) of low aromaticity organic matter (SUVAmean=0.33; sd=0.11). We are continuing analysis throughout the irrigation season to further explore organic matter quality (traits such as bioavailability and freshness) and identify locations and processes of DOC transformation within the system

  5. Paleogeography, Paleo-drainage Systems, and Tectonic Reconstructions of Eocene Northern South America Constrained by U-Pb Detrital Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Xie, X.; Mann, P.; Escalona, A.

    2008-12-01

    Thick, Eocene to Miocene clastic sedimentary basins are widespread across on- and offshore northern South America and have been identified using seismic reflection data in offshore basins of the Leeward Antilles, the Lesser Antilles arc and forearc, and the Barbados accretionary prism. Several 3 to12-km-thick Paleogene depocenters occur in shelf to deep basinal settings along the offshore margins of Venezuela, Trinidad and Tobago, and Barbados. Previous studies proposed that the proto-Orinoco River has been the single fluvial source for these distal, continentally-derived sandstone units along northern Venezuela as part of the early Eocene to Miocene, proto-Maracaibo fluvial-deltaic system that emanated from the northern Andes of western Venezuela and Colombia. Those distal sandstones were displaced eastward with the movement of the Caribbean plate by several hundred kilometers and are now found in basins and islands of the southeastern Caribbean region. We collected nine Eocene age sandstone samples from well cores and outcrops along the northern South America margin, including Lake Maracaibo, Trinidad and Tobago, and Barbados Island. In total, 945 single detrital zircon grains were analyzed using LA-ICP-MS. The objective is to reconstruct the paleogeography, paleo-drainage system, and tectonic history during Eocene time. New data show that the Eocene Misoa Formation of Lake Maracaibo was characterized by a mixture of Precambrian, Paleozoic, and Mesozoic ages matching age provinces from eastern Cordillera and the Guayana Shield, which is consistent with previous proto-Orinoco River model flowing from the western Amazonian region of Colombia and Brazil through the Maracaibo basin into the area of western Falcon basin. However, coeval Eocene samples from Barbados and Trinidad show a much different age population dominated by Precambrian matching the eastern part of the Guyana shield to the south, which suggests that the western onland system and eastern offshore

  6. Structural influence on the evolution of the pre-Eonile drainage system of southern Egypt: Insights from magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Roden, Jeff; Abdelsalam, Mohamed G.; Atekwana, Estella; El-Qady, Gad; Tarabees, Elhamy Aly

    2011-12-01

    The Wadi Kubbaniya in the Western Desert of Egypt north of the City of Aswan has been interpreted as the downstream continuation of the Wadi Abu Subeira, comprising an ancient W- and NW-flowing river system originating from the Precambrian crystalline rocks of the Red Sea Hills which were uplifted during the Miocene in association with the opening of the Red Sea. This drainage system is thought to have been active before the onset of the N-flowing Egyptian Nile which started ˜6 Ma with the Eonile phase; an event that resulted in carving of ˜1000 km long canyon (the Eonile canyon) extending from the Mediterranean Sea in the north to Aswan in the south due to the Messinian Salinity Crisis. This study utilizes geophysical data to examine the role of regional tectonics and local structures in controlling the evolution of the pre-Eonile drainage system. Magnetotelluric (MT) and gravity surveys were conducted along two ˜5 km-long profiles across the NW-trending Wadi Kubbaniya. Two-dimensional (2D) inversion of MT data and gravity models indicate the Wadi Kubbaniya is filled with loosely-consolidated sandstone and conglomerate that extend to a depth of ˜150-200 m into Cretaceous sandstone formations which overlie Precambrian crystalline rocks. These results were evaluated in terms of two end-member models; an incision model in which the 150-200 m thick sedimentary rocks were considered as being deposited within an incised valley that was carved into bedrock, or a structural model in which the sedimentary rocks are considered as filling a NW-trending graben controlled by normal faults that deform the Cretaceous sandstone formations and the underlying Precambrian crystalline rocks. Geological observations as well as supporting seismic data favor the interpretation that the Wadi Kubbaniya is a NW-trending graben similar to other extensional structures found 400 km northwest along-strike of Wadi Kubbaniya. These structures are impressively parallel to the western

  7. GASOLINE TRACTOR ENGINE SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 14.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF THE OPERATION, COMPONENTS, AND FUNCTIONS OF VARIOUS GASOLINE TRACTOR ENGINE SYSTEMS. IT WAS DEVELOPED BY A…

  8. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  9. AGDEX: A System for Classifying, Indexing, and Filing Agricultural Publications. Revised Edition.

    ERIC Educational Resources Information Center

    Miller, Howard L.; Woodin, Ralph J.

    This document provides an introduction to and instructions for the use of AGDEX, a comprehensive numeric filing system to classify and organize a wide variety of agricultural publications. The index is subdivided and color coded according to the following categories: (1) field crops; (2) horticulture; (3) forestry; (4) animal science; (5) soils;…

  10. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  11. From Cutlass to Agribusiness: Caribbean Food and Agriculture in Transition within a Global System.

    ERIC Educational Resources Information Center

    Moran, Michael J.

    This examination of the future role of food and agriculture in world peace and prosperity presents a regional cross-country view of the Caribbean countries with emphasis on the Caricom English speaking countries within a global food system environment. Following an introductory section, the second of six sections focuses on two broad agricultural…

  12. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  13. Sustaining the earth's watersheds-agricultural research data system: Overview of development and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data for watershed systems across diverse locations are essential for interdisciplinary hydrologic and ecosystem analysis and model development, calibration and validation. The USDA and Agricultural Research Service (ARS) have supported watershed research since the 1930’s w...

  14. Using Agricultural Knowledge Systems: From an Institutional Approach to a Functional Extension Model.

    ERIC Educational Resources Information Center

    Brunold, S.; Scheuermeier, U.

    1996-01-01

    Uses of the agricultural knowledge systems concept of information flow are described in Holland, Bhutan, Switzerland, and India. Application of the model for gaining an overview of institutions must be combined with a functional approach for designing appropriate extension programs. (SK)

  15. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  16. Photovoltaic applications definition and photovoltaic system definition study in the agricultural sector. Volume I. Executive summary

    SciTech Connect

    Mengel, R.W.; Nadolski, T.P.; Sparks, D.C.; Young, S.K.; Yingst, A.

    1980-05-01

    Study results of identification and characterization of agricultural energy demands that can effectively use photovoltaic power systems, conceptual designs and performance analysis for selected applications, and conclusions and recommendations are presented. This volume presents an overview of the project results, the technical work accomplished, and the approach taken to achieve the project objectives. (WHK)

  17. ECOLOGICAL AND ECONOMIC DYNAMICS OF THE SHUNDE AGRICULTURAL SYSTEM UNDER CHINA'S SMALL CITY DEVELOPMENT STRATEGY

    EPA Science Inventory

    The development of small cities has been adopted as the main strategy to make full use of extra labor in the rural areas of China. The ecological and economic consequences of this development will affect over 100 million people and change the organization of agricultural systems ...

  18. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  19. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  20. Agricultural Innovation Systems (AIS): A Study of Stakeholders and Their Relations in System of Rice Intensification (SRI)

    ERIC Educational Resources Information Center

    Suchiradipta, Bhattacharjee; Raj, Saravanan

    2015-01-01

    Purpose: This paper identifies the stakeholders of System of Rice Intensification (SRI), their roles and actions and the supporting and enabling environment of innovation in the state as the elements of the Agricultural Innovation Systems (AIS) in SRI in Tripura state of India and studies the relationship matrix among the stakeholders.…

  1. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    ERIC Educational Resources Information Center

    Hermans, Frans; Klerkx, Laurens; Roep, Dirk

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the main barriers and enablers eight countries…

  2. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  3. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McNally, A.; Husak, G.; Funk, C.

    2014-03-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993-2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is

  4. The Development of a Web-service-based On-demand Global Agriculture Drought Information System

    NASA Astrophysics Data System (ADS)

    Deng, M.; Di, L.; Han, W.; Yagci, A.; Peng, C.

    2011-12-01

    The growing demand on detailed and accurate assessments of agriculture drought from local to global scales has made drought monitoring and forecasting a hot research topic in recent years. However, many challenges in this area still remain. One of such challenges is to how to let world-wide decision makers obtain accurate and timely drought information. Current agriculture drought information systems in the world are limited in many aspects, such as only regional or country level coverage, very coarse spatial and temporal resolutions, no on-demand drought information product generation and download services, no online analysis tools, no interoperability with other systems, and ineffective agriculture drought monitoring and forecasting. Leveraging the latest advances in geospatial Web service, interoperability and cyber-infrastructure technologies and the availability of near real-time global remote sensing data, we aims at providing a solution to those problems by building an open, interoperable, standard-compliant, and Web-service-based global agriculture drought monitoring and forecasting system (GADMFS) (http://gis.csiss.gmu.edu/GADMFS/). GADMFS will provide world-wide users with timely, on-demand, and ready-to-use agricultural drought data and information products as well as improved global agriculture drought monitoring, prediction and analysis services. For the monitoring purpose, the system lively links to near real-time satellite remote sensing data sources from NASA and NOAA and relies on drought related remotely sensed physical and biophysical parameters, such as soil moisture and drought-related vegetation indices (VIs, e.g., NDVI) to provide the current conditions of global agricultural drought at high resolutions (up to 500m spatial and daily temporal) to world-wide users on demand. For drought prediction, the system utilizes a neural network based modeling algorithm, trained with current and historic vegetation-based and climate-based drought index

  5. Minerals and mine drainage

    SciTech Connect

    Liang, H.C.; Thomson, B.M.

    2009-09-15

    A review of literature published in 2008 and early 2009 on research related to the production of acid mine drainage and/or in the dissolution of minerals as a result of mining, with special emphasis on the effects of these phenomena on the water quality in the surrounding environment, is presented. This review is divided into six sections: 1) Site Characterization and Assessment, 2) Protection, Prevention, and Restoration, 3) Toxicity Assessment, 4) Environmental Fate and Transport, 5) Biological Characterization, and 6) Treatment Technologies. Because there is much overlap in research areas associated with minerals and mine drainage, many papers presented in this review can be classified into more than one category, and the six sections should not be regarded as being mutually-exclusive, nor should they be thought of as being all-inclusive.

  6. An iron-age cultural hiatus enigma: mega-flooding and human settlement abandonment over the last millennium in the Lanyang Drainage System, northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Wei, Kuo-Yen; Löwemark, Ludvig; Song, Sheng-Rong; Huh, Chih-An; Chuang, Chih-Kai; Yang, Tien-Nan; Lee, Meng-Yang; Chen, Yu-Be; Lee, Teh-Quei

    2015-04-01

    Active tectonic activities and frequent typhoon landfalls make Taiwan unique in having very high rates of uplift, precipitation, denudation and sedimentation. Particularly, intense rainfall associated with typhoons often causes flooding, large-scale landslides, and debris flows in river systems. Such natural disasters have affected human societies both at present and in the past; the Typhoon Morakot in 2009 may serve as a modern example of such events. Kiwulan is a newly discovered archaeological site from the Iron Age situated on the Lanyang Plain in NE Taiwan. In the deposits from this society, a cultural hiatus centered around 1200-1500 cal. yr AD is found, suggesting that the settlement was abandoned for a period of a few hundred years before being recolonized. Until now it has remained a mystery what caused this cultural hiatus. This study assembles radiocarbon dates of upland river terraces, organic proxies in flood plain lake sediments, and content of wood shreds in nearby marine sediments from the continental slope off NE Taiwan. These records are synthesized to infer the frequency and magnitude of ancient flood events over the past 1250 years in the Lanyang Drainage System in northeastern Taiwan. Alluvial fan terraces distributed along the banks of the upper Lanyang River are considered to be the results of ancient debris flow events, and their radiocarbon dates fall in two time ranges: 850-1100 and 1400-1600 cal. yr AD. Organic proxies which representing terrestrial organic input were measured from bulk sediments of Lake Dahu and Lake Meihua in the Lanyang Plain. Peak values of TOC, C/N ratio and organic indicator (inc/coh) from Itrax-XRF core scanner measurements are conspicuous during 900-950, and 1400-1500 cal. yr AD, implying frequent flood events. Moreover, abundance peaks of wood shreds and peaks in the C/N ratio in marine box core ORI-801-7A from the continental slope SE of the Lanyang Plain are dated to about 950-1050 and 1450-1550 cal. yr AD

  7. Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?

    PubMed

    van Kessel, Chris; Clough, Tim; van Groenigen, Jan Willem

    2009-01-01

    Conventional wisdom postulates that leaching losses of N from agriculture systems are dominated by NO(3)(-). Although the export of dissolved organic nitrogen (DON) into the groundwater has been recognized for more than 100 yr, it is often ignored when total N budgets are constructed. Leaching of DON into stream and drinking water reservoirs leads to eutrophication and acidification, and can pose a potential risk to human health. The main objective of this review was to determine whether DON losses from agricultural systems are significant, and to what extent they pose a risk to human health and the environment. Dissolved organic N losses across agricultural systems varied widely with minimum losses of 0.3 kg DON ha(-1)yr(-1) in a pasture to a maximum loss of 127 kg DON ha(-1)yr(-1) in a grassland following the application of urine. The mean and median values for DON leaching losses were found to be 12.7 and 4.0 kg N ha(-1)yr(-1), respectively. On average, DON losses accounted for 26% of the total soluble N (NO(3)(-) plus DON) losses, with a median value of 19%. With a few exceptions, DON concentrations exceeded the criteria recommendations for drinking water quality. The extent of DON losses increased with increasing precipitation/irrigation, higher total inputs of N, and increasing sand content. It is concluded that DON leaching can be an important N loss pathway from agricultural systems. Models used to simulate and predict N losses from agricultural systems should include DON losses.

  8. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  9. Drainage in a rising foam.

    PubMed

    Yazhgur, Pavel; Rio, Emmanuelle; Rouyer, Florence; Pigeonneau, Franck; Salonen, Anniina

    2016-01-21

    Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different. PMID:26554500

  10. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    NASA Astrophysics Data System (ADS)

    Dow, C. F.; Kulessa, B.; Rutt, I. C.; Tsai, V. C.; Pimentel, S.; Doyle, S. H.; As, D.; Lindbäck, K.; Pettersson, R.; Jones, G. A.; Hubbard, A.

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections.

  11. PROCAMS - A second generation multispectral-multitemporal data processing system for agricultural mensuration

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Nalepka, R. F.

    1976-01-01

    PROCAMS (Prototype Classification and Mensuration System) has been designed for the classification and mensuration of agricultural crops (specifically small grains including wheat, rye, oats, and barley) through the use of data provided by Landsat. The system includes signature extension as a major feature and incorporates multitemporal as well as early season unitemporal approaches for using multiple training sites. Also addressed are partial cloud cover and cloud shadows, bad data points and lines, as well as changing sun angle and atmospheric state variations.

  12. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin

    2015-06-01

    The Wandashan Orogen of NE China is a typical accretionary orogen related to Paleo-Pacific subduction. The Raohe Complex, as a major part of the orogen, consists of mid-Triassic to mid-Jurassic radiolarian chert and intraoceanic igneous rocks in an accretionary prism overlain by weakly sheared terrestrial-sourced clastic trench slope sediments. Sensitive high-resolution ion microprobe U-Pb dating and LA-MC-ICPMS Hf isotopic analysis of detrital zircons from the terrestrial-sourced Yongfuqiao Formation sandstone show that most zircons are Phanerozoic (90%): 140-150 Ma (10%), 180-220 Ma (25%), 240-270 Ma (15%), 300-360 Ma (15%), 391-395 Ma (3%), and 450-540 Ma (20%), whereas 10% are Precambrian in age. About 90% of the zircons have ɛHf(t) values ranging from +11.1 to -12.8. This suggests that the major provenance of the trench slope sediments was from the adjacent eastern segment of the Central Asian Orogenic Belt and the Jiamusi Block. The age of the Yongfuqiao Formation is constrained to the earliest Cretaceous, which represents the accretion time of the mid-Triassic to mid-Jurassic oceanic complexes. When compared with the Mino Complex in Japan and the Tananao Complex in Taiwan, three different provenances are identified suggesting three ancient drainage systems which transported sediments from NE China, North China, and South China to the Paleo-Pacific subduction-accretion system.

  13. Effect of Two Novel Sustained-Release Drug Delivery Systems on Bleb Fibrosis: An In Vivo Glaucoma Drainage Device Study in a Rabbit Model

    PubMed Central

    Schoenberg, Evan D.; Blake, Diane A.; Swann, F. Beau; Parlin, Andrew W.; Zurakowski, David; Margo, Curtis E.; Ponnusamy, Thiruselvam; John, Vijay T.; Ayyala, Ramesh S.

    2015-01-01

    Purpose: To evaluate two drug delivery systems, a nonbiodegradable poly(2-hydroxyethyl methacrylate) (P[HEMA]) system with mitomycin C (MMC) and a biodegradable poly(lactic-co-glycolic acid) (PLGA) system with 5-fluorouracil (5-FU) with and without MMC for their ability to reduce fibrosis when attached to an Ahmed glaucoma valve (AGV) and implanted in a rabbit model. Methods: New Zealand albino rabbits (48) were divided into six equal groups, and AGVs, modified as described below, were implanted in the right eye of each rabbit. The groups included (1) PLGA alone; (2) P(HEMA) plus MMC (6.5 μg); (3) PLGA plus 5-FU (0.45 mg); (4) PLGA plus 5-FU (1.35 mg); (5) PLGA plus 5-FU and MMC (0.45 mg and 0.65 μg, respectively); (6) PLGA plus 5-FU and MMC (1.35 mg and 0.65 μg, respectively). The rabbits were followed for 3 months prior to euthanasia. Results: The bleb wall thickness was significantly less in groups 2, 5, and 6 compared to the rest. At 3 months, the PLGA polymer had completely disappeared, while the P(HEMA) polymer remained intact. There were no statistical differences in the degree of clinically graded conjunctival injection, histologic inflammation, or histologic fibrosis among the six groups. Conclusions: We successfully created a sustained-release drug delivery system that decreased the postoperative fibrosis using both a nonbiodegradable P(HEMA) polymer and a biodegradable (PLGA) polymer. Both systems appear to work equally well with no side effects. Translational Relevance: These results are supportive of the antifibrotic effect of the slow-release drug delivery system following glaucoma drainage device implantation, thus paving the way for human pilot studies. PMID:26046006

  14. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Heuberger, P. S. C.; Van Drecht, G.; Van Der Hoek, K. W.

    Here we present an uncertainty analysis of NH 3 emissions from agricultural production systems based on a global NH 3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH 3 emission from agricultural systems is 27-38 (with a mean of 32) Tg NH 3-N yr -1, N fertilizer use contributing 10-12 (11) Tg yr -1 and livestock production 16-27 (21) Tg yr -1. Most of the emissions from livestock production come from animal houses and storage systems (31-55%); smaller contributions come from the spreading of animal manure (23-38%) and grazing animals (17-37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH 3 emission comprise four parameters (N excretion rates, NH 3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH 3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.

  15. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  16. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  17. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  18. Incorporating Indigenous Knowledge Systems into Agricultural and Extension Education Programs: A Study of the Perceptions of Extension Professionals.

    ERIC Educational Resources Information Center

    Rajasekaran, B.; Martin, Robert A.

    Dissemination of technologies to increase agricultural production using the conventional transfer of technology system has often failed to consider the natural environment, indigenous knowledge systems, and resource endowments around which resource-poor farmers normally operate. A sample of 96 agricultural extension professionals in 2 districts in…

  19. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    ERIC Educational Resources Information Center

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  20. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...