Science.gov

Sample records for agricultural drainage systems

  1. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  2. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest.

  3. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization.

    PubMed

    Lin, Z Q; Cervinka, V; Pickering, I J; Zayed, A; Terry, N

    2002-07-01

    The Integrated on-Farm Drainage Management (IFDM) system was designed to dispose of selenium (Se)-contaminated agricultural irrigation drainage water through the sequential reuse of saline drainage water to grow crops having different salt tolerance. This study quantified the extent of biological volatilization in Se removal from the IFDM system located in the western San Joaquin Valley, California. Selenium volatilization from selected treatment areas, including pickleweed (Salicornia bigelovii Torr.), saltgrass (Distichlis spicata L.), bare soil, and the solar evaporator, was monitored biweekly using an open-flow sampling chamber system during the pickleweed growing season from February to September 1997, and monthly from September 1997 to January 1998. Biological volatilization from the pickleweed section removed 62.0 +/- 3.6 mg Se m(-2) y(-1) to the atmosphere, which was 5.5-fold greater than the Se accumulated in pickleweed tissues (i.e., phytoextraction). The total Se removed by volatilization from the bare soil, saltgrass, and the solar evaporator was 16.7 +/- 1.1, 4.8 +/- 0.3, and 4.3 +/- 0.9mg Se m(-2) y(-1), respectively. Selenium removal by volatilization accounted for 6.5% of the annual total Se input (957.7mg Sem(-2) y(-1)) in the pickleweed field, and about 1% of the total Se input (432.7 mg Se m(-2) y(-1)) in the solar evaporator. We concluded that Se volatilization under naturally occurring field conditions represented a relatively minor, but environmentally important pathway of Se removal from the IFDM system.

  4. Investigation of denitrifying microbe communities within an agricultural drainage system fitted with low-grade weirs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing wetland characteristics in agricultural drainage ditches with the use of low-grade weirs, has been identified as a potential best management practice (BMP) to mitigate nutrient runoff from agriculture landscapes. This study examined microbe community abundance and diversity involved in den...

  5. Baffled duck weed pond system for treatment of agricultural drainage water containing pharmaceuticals.

    PubMed

    Bassuney, Doaa; Tawfik, Ahmed

    2017-02-03

    The aim of the study is to assess the efficiency of a novel bioremediation system namely baffled duck weed pond (BDWP) system for treatment of agricultural drainage water containing pharmaceuticals at different hydraulic retention times (HRTs). The removal efficiencies of acetaminophen (ACT), amoxicillin (AMX) and ampicillin (AMP) increased from 69.3±8.6 to 87.3 ±3.5%, from 52.9±9.4 to 82.9±5.2% and from 55.3±7.9 to 90.6±2.8% at increasing the HRT from 6 to 8 d., respectively. However, ACT, AMX and AMP removal efficiencies were slightly improved at increasing the HRT from 8 to 12 d. Diclofenac (DFC) removal efficiencies amounted to 56.6 ±11.6, 55.7±11.9 and 28.3 ±12.9% at an HRTs of 12, 8 and 6d., respectively. The results showed no relationship between the uptake / absorption of pharmaceuticals fractions and BOD5/COD ratio except ACT where R(2) was 0.84. The effect of COD/ N ratio on the removal efficiency of pharmaceuticals fractions was slight. Additional removal of pharmaceuticals fractions and nitrification was occurred in carrier sponge media situated in the last compartment of the BDWP.

  6. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  7. Selenium stable isotope ratios in California agricultural drainage water management systems.

    PubMed

    Herbel, Mitchell J; Johnson, Thomas M; Tanji, Kenneth K; Gao, Suduan; Bullen, Thomas D

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  8. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  9. Nutrient mitigation efficiency in agricultural drainage ditches: An influence of landscape properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage systems are integral parts of the agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental conventional and controlled (with weirs) agricultural drainage ditche...

  10. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  11. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  12. Agricultural drainage pipe detection using ground penetrating radar: Effects of antenna orientation relative to drainage pipe directional trend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...

  13. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  14. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  15. Ecology and management of agricultural drainage ditches: a literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  16. Representing natural and manmade drainage systems in an earth system modeling framework

    SciTech Connect

    Li, Hongyi; Wu, Huan; Huang, Maoyi; Leung, Lai-Yung R.

    2012-08-27

    Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.

  17. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  18. Subsurface agricultural irrigation drainage: the need for regulation.

    PubMed

    Lemly, A D

    1993-04-01

    Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented.

  19. Hydrologic Impact Of Subsurface Drainage Of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Johannsen, C. J.; Bowling, L. C.

    2005-12-01

    Although subsurface drainage has benefited agricultural productions in many regions of the U.S., there are also concerns about the potential impacts of these systems on watershed hydrology and water quality. This study was focused on tile lines identification and hydrologic response of subsurface drainage systems for the Agronomy Center for Research and Education (ACRE), West Lafayette, Indiana and the Southeastern Purdue Agriculture Center (SEPAC) in southeastern, Indiana. The purpose of the study was to develop and evaluate a remote sensing methodology for automatic detection of tile lines from aerial photographs and to evaluate the Distributed Hydrology Soil-Vegetation Model (DHSVM) to analyze the hydrologic response of tile drained fields. A step-wise approach was developed to first use different image enhancement techniques to increase the visual distinction of tile lines from other details in the image. A new classification model was developed to identify locations of subsurface tiles using a decision tree classifier which compares the multiple data sets such as enhanced image data, land use class, soil drainage class, hydrologic group and surface slope. Accuracy assessment of the predicted tile map was done by comparing the locations of tile drains with existing historic maps and ground-truth data. The overall performance of decision tree classifier model coupled with other pre- and post- classification methods shows that this model can be a very effective tool in identifying tile lines from aerial photographs over large areas of land. Once the tile map was created, the DHSVM was applied to ACRE and SEPAC respectively to see the hydrological impact of the subsurface drainage network. Observed data for 3-years (1998-2000) at ACRE and for 6-years (1993-1998) at SEPAC were used to calibrate and validate the model. The model was simulated for three scenarios: 1) baseline scenario (no tiles), 2) with known tile lines and 3) with tile lines created through

  20. Condensed research overview of agricultural drainage pipe detection and assessment using ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural subsurface drainage practices are employed in many places throughout the world to remove excess water from soil, thereby improving crop production. In order to improve and evaluate the efficiency of these subsurface drainage systems, non-destructive methods are needed to not only locate...

  1. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  2. Determining potential for microbial atrazine degradation in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passage of agricultural runoff through vegetated drainage ditches has been shown to reduce the amount of pesticides, such as atrazine, exiting agricultural watersheds. Previous studies found that microbial communities in soil from fields treated with atrazine display enhanced rates of atrazine degr...

  3. Assessment of In-Stream Phosphorus Dynamics in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intensive row crop agricultural systems in the Midwestern United States can enrich surface waters with nutrients. This project was conducted to evaluate the in-stream processing of P in agricultural ditches. Phosphorus injection studies were conducted at seven sites along three drainage ditches ...

  4. The potential of wetlands for mitigating adverse effects of agricultural drainage

    SciTech Connect

    Silverman, G.S.

    1995-12-01

    Agricultural runoff has been clearly identified as a major contributor to the failure of much of the surface water in the United States to meet designated use objectives. Control of agricultural drainage is very problematic. The agriculture industry strongly resists mandated controls, and warns of potential catastrophic consequences in food shortages should production methods be altered. Yet concern grows over the long and short term impact of a variety of contaminants - particularly sediments, nutrients, and pesticides - released to our waters as part of normal agricultural practices. For quite some time, wetlands have been explored for their potential in treating sewage (from both municipal and private systems) and acid mine drainage. Much less work has been done looking at the potential for wetlands to treat agricultural drainage. yet, wetlands may offer tremendous potential for mitigating problems of agricultural runoff while offering farmers desirable (or at least acceptable) uses of marginal land. This paper has two objectives. First, the opportunities for wetlands to be used as agricultural drainage treatment facilities are described. Processes are identified which trap or degrade pollutants, with particular attention given to long-term environmental fate. Second, an experimental wetlands system recently developed in Northwest Ohio is used as an example of system implementation. Emphasis will be given to how the system was developed to optimize pollutant removal within the physical constraints of the site. Preliminary performance data with respect to water quality changes will also be presented.

  5. Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers and land improvement contractors, especially in the Midwest U.S., need methods to not only locate buried agricultural drainage pipe, but also to determine if the pipes are functioning properly with respect to water delivery. Previous investigations have already demonstrated the feasibility o...

  6. Influence of Physical Habitat and Agricultural Contaminants on Fishes within Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are used within agricultural watersheds for the removal of excess water from agricultural fields. These headwater streams have been constructed or modified so they possess an enlarged trapezoidal cross-section, straightened channels, and riparian zones lacking woody veg...

  7. Assessment of in-stream phosphorus dynamics in agricultural drainage ditches.

    PubMed

    Smith, D R

    2009-06-01

    The intensive agricultural systems in the Midwestern United States can enrich surface waters with nutrients. Agricultural drainage ditches serve as the first and second order streams throughout much of this region, as well as other highly productive agricultural areas in humid regions throughout the world. This project was conducted to evaluate in-stream processing of soluble P (SP) in agricultural drainage ditches. Soluble P injection studies were conducted at seven sites along three drainage ditches (298 to 4300 ha drainage area), and one site on a third-order stream that receives the discharge from the agricultural ditches (19,000 ha drainage area) by increasing the SP concentration in the ditch water by approximately 0.25 mg L(-1). Sediments collected from smaller watersheds contained greater amounts of Mehlich 3 and exchangeable P (ExP), silt and clay size particles, and organic matter. Phosphorus uptake lengths (S(net)) ranged from 40 to 1900 m, and SP uptake rates (U) ranged from 0.4 to 52 mg m(-2) h(-1). Phosphorus S(net) was correlated with ditch geomorphological (i.e. width) and sediment properties (i.e. organic matter, ExP, and equilibrium P concentration; r(2)=1.00, P<0.001), indirect drainage in the watershed (r(2)=0.92, P<0.001), and the amount of small grains, forest, urban area, alfalfa and corn (r(2)=1.00, P<0.0001). Agricultural drainage ditches actively process nutrients and could potentially be managed to optimize this processing to minimize SP export from these landscapes.

  8. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  9. Laboratory evaluation of zero valent iron and sulfur modified iron filter materials for agricultural drainage water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On site filter treatment systems have the potential to remove nutrients and pesticides from agricultural subsurface drainage waters. The effectiveness and efficiency of this type of drainage water treatment will depend on the actual filter materials utilized. Two promising filter materials that coul...

  10. Preliminary results from agricultural drainage water management CIG projects on Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field demonstrations were monitored to compare the crop yields, drainage discharge, and nutrient loadings to streams from managed and unmanaged subsurface drainage systems. Paired drainage systems within the same field, under similar soil, area, cropping, and management conditions, were identified. ...

  11. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation and storm water runoff from agricultural fields has the potential to cause impairment to downstream aquatic receiving systems. Over the last several years, scientists have discovered the benefit of using edge-of-field practices, such as vegetated agricultural drainage ditches, in the mit...

  12. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one section require drainage system crossover connections to join all sections of the home. The crossover design requirements are located in, and must be designed in accordance with, § 3280.610 of this chapter. (b)...

  13. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  14. Vertical distribution of phosphorus in agricultural drainage ditch soils.

    PubMed

    Vaughan, Robert E; Needelman, Brian A; Kleinman, Peter J A; Allen, Arthur L

    2007-01-01

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.

  15. A GPR agricultural drainage pipe detection case study: Effects of antenna orientation relative to drainage pipe directional trend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...

  16. Impact of dredging on dissolved phosphorus transport in agricultural drainage ditches of the Atlantic Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic coastal plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches...

  17. Redox Chemistry and Transformation of Arsenic and Selenium in Agricultural Drainage Disposal Ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation ponds are being used for disposal of agricultural drainage waters in the San Joaquin Valley (SJV) of California since there is no option for disposal outside of the valley. The drainage water contains elevated levels of salts and trace elements including arsenic (As) and selenium (Se). T...

  18. Laboratory Feasibility Evaluation of a New Modified Iron Product for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2010-12-01

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards through the soil profile to be intercepted by the buried drainage pipes and then discharged with drainage water into neighboring streams and lakes, oftentimes producing adverse environmental impacts on local, regional, and national scales. On-site drainage water filter treatment systems can potentially be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. A recently developed modified iron product may have promise as a filter material used within this type of drainage water treatment system. Therefore, a laboratory study was initiated to directly evaluate the feasibility of employing this new modified iron product as a filter material to treat drainage waters. Laboratory research included saturated falling-head hydraulic conductivity tests, contaminant (nutrient/pesticide) removal batch tests, and saturated solute transport column experiments. The saturated falling-head hydraulic conductivity tests indicate that the unaltered modified iron product by itself has a high enough hydraulic conductivity (> 1.0 x 10-3 cm/s) to normally allow sufficient water flow rates that are needed to make this material hydraulically practical for use in drainage water filter treatment systems. Modified iron hydraulic conductivity can be improved substantially (> 1 x 10-2 cm/s) by using only the portion of this material that is retained on a 100 mesh sieve (particle size > 0.15 mm). Batch test results carried out with spiked drainage water and either unaltered or 100 mesh sieved modified iron showed nitrate reductions of greater than 30% and 100% removal of the pesticide, atrazine. Saturated solute transport columns tests with spiked drainage water

  19. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  20. Systemic venous drainage: can we help Newton?

    PubMed

    Corno, Antonio F

    2007-06-01

    In recent years substantial progress occurred in the techniques of cardiopulmonary bypass, but the factor potentially limiting the flexibility of cardiopulmonary bypass remains the drainage of the systemic venous return. In the daily clinical practice of cardiac surgery, the amount of systemic venous return on cardiopulmonary bypass is directly correlated with the amount of the pump flow. As a consequence, the pump flow is limited by the amount of venous return that the pump is receiving. On cardiopulmonary bypass the amount of venous drainage depends upon the central venous pressure, the height differential between patient and inlet of the venous line into the venous reservoir, and the resistance in the venous cannula(s) and circuit. The factors determining the venous return to be taken into consideration in cardiac surgery are the following: (a) characteristics of the individual patient; (b) type of planned surgical procedure; (c) type of venous cannula(s); (d) type of circuit for cardiopulmonary bypass; (e) strategy of cardiopulmonary bypass; (f) use of accessory mechanical systems to increased the systemic venous return. The careful pre-operative evaluation of all the elements affecting the systemic venous drainage, including the characteristics of the individual patient and the type of required surgical procedure, the choice of the best strategy of cardiopulmonary bypass, and the use of the most advanced materials and tools, can provide a systemic venous drainage substantially better than what it would be allowed by the simple "Law of universal gravitation" by Isaac Newton.

  1. Late Pleistocene drainage systems beneath Delaware Bay

    USGS Publications Warehouse

    Knebel, H. J.; Circe, R.C.

    1988-01-01

    Analyses of an extensive grid of seismic-reflection profiles, along with previously published sedimentary data and geologic information from surrounding coastal areas, outline the ancestral drainage systems of the Delaware River beneath lower Delaware Bay. Major paleovalleys within these systems have southeast trends, relief of 10-35 m, widths of 1-8 km, and axial depths of 31-57 m below present sea level. The oldest drainage system was carved into Miocene sands, probably during the late Illinoian lowstand of sea level. It followed a course under the northern half of the bay, continued beneath the Cape May peninsula, and extended onto the present continental shelf. This system was buried by a transgressive sequence of fluvial, estuarine, and shallow-marine sediments during Sangamonian time. At the height of the Sangamonian sea-level transgression, littoral and nearshore processes built the Cape May peninsula southward over the northern drainage system and formed a contiguous submarine sedimentary ridge that extended partway across the present entrance to the bay. When sea level fell during late Wisconsinan time, a second drainage system was eroded beneath the southern half of the bay in response to the southerly shift of the bay mouth. This system, which continued across the shelf, was cut into Coastal Plain deposits of Miocene and younger age and included not only the trunk valley of the Delaware River but a large tributary valley formed by the convergence of secondary streams that drained the Delaware coastal area. During the Holocene rise of sea level, the southern drainage system was covered by a transgressive sequence of fluvial, estuarine, and paralic deposits that accumulated due to the passage of the estuarine circulation cell and to the landward and upward migration of coastal sedimentary environments. Some Holocene deposits have been scoured subsequently by strong tidal currents. The southward migration of the ancestral drainage systems beneath Delaware

  2. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  3. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate circulation of air in all piping with no danger of siphonage, aspiration, or forcing of trap seals under... equipped with a water-tight cap or plug matching the drain outlet. The cap or plug shall be...

  4. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate circulation of air in all piping with no danger of siphonage, aspiration, or forcing of trap seals under... equipped with a water-tight cap or plug matching the drain outlet. The cap or plug shall be...

  5. Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled drainage in agricultural ditches contributes to a drainage management strategy with potential environmental and production benefits. Innovative drainage strategies including spatially orientated low-grade weirs show promise to significantly improve nutrient (e.g. nitrate-N) reductions by...

  6. Chest drainage systems in use

    PubMed Central

    Zisis, Charalambos; Tsirgogianni, Katerina; Lazaridis, George; Lampaki, Sofia; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Karapantzos, Ilias; Karapantzou, Chrysanthi; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    A chest tube is a flexible plastic tube that is inserted through the chest wall and into the pleural space or mediastinum. It is used to remove air in the case of pneumothorax or fluid such as in the case of pleural effusion, blood, chyle, or pus when empyema occurs from the intrathoracic space. It is also known as a Bülau drain or an intercostal catheter. Insertion of chest tubes is widely performed by radiologists, pulmonary physicians and thoracic surgeons. Large catheters or small catheters are used based on each situation that the medical doctor encounters. In the current review we will focus on the chest drain systems that are in use. PMID:25815304

  7. Laboratory Evaluation of Sulfur Modified Iron for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2009-12-01

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. On-site water filter treatment systems can be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. Sulfur modified iron is a relatively unknown industrial product that may have promise for use as a filter material to remove contaminants from subsurface drainage waters. Sulfur modified iron (SMI) is a high surface area iron powder (zero valent iron) that has been altered via chemical reaction with pure sulfur to produce a sulfur/iron surface coating on the iron particles. A laboratory investigation was conducted with contaminant removal batch tests, saturated falling-head hydraulic conductivity tests, and saturated solute transport column experiments to evaluate the feasibility for using SMI to treat subsurface drainage waters. Contaminant removal batch tests showed that three SMI samples were much more effective removing nitrate (> 94% nitrate removed) than three zero valent iron samples (< 10% nitrate removed). Batch test results additionally showed that SMI removed greater that 94% of dissolved phosphate, but was not particularly effective removing the pesticide, atrazine (< 37% atrazine removed). Hydraulic conductivity tests indicated that all three SMI samples that were evaluated had sufficient hydraulic conductivity, much greater than the 1 x 10-3 cm/s standard used for stormwater sand filters. The saturated solute transport tests confirmed that SMI can be effective removing nitrate and phosphate from drainage waters. Analysis of column effluent also showed that the large majority of nitrate removed by SMI was converted to ammonium. Consequently, these laboratory findings support the use of SMI in

  8. Phosphorus transport in agricultural subsurface drainage: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be ...

  9. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  10. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remediation of excess nitrogen (N) in agricultural runoff can be enhanced by establishing wetland vegetation but the role of denitrification in N removal is not well understood in drainage ditches. We quantified differences in N retention during experimental runoff events followed by stagnant period...

  11. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    PubMed

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW.

  12. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Presser, T.S.; Davis, R.A.

    1996-01-01

    Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 ??g/l, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 ??g/l in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage. Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.

  13. Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage.

    PubMed

    Pronger, Jack; Schipper, Louis A; Hill, Reece B; Campbell, David I; McLeod, Malcolm

    2014-07-01

    The drainage and conversion of peatlands to productive agro-ecosystems leads to ongoing surface subsidence because of densification (shrinkage and consolidation) and oxidation of the peat substrate. Knowing the ra0te of this surface subsidence is important for future land-use planning, carbon accounting, and economic analysis of drainage and pumping costs. We measured subsidence rates over the past decade at 119 sites across three large, agriculturally managed peatlands in the Waikato region, New Zealand. The average contemporary (2000s-2012) subsidence rate for Waikato peatlands was 19 ± 2 mm yr (± SE) and was significantly less ( = 0.01) than the historic rate of 26 ± 1 mm yr between the 1920s and 2000s. A reduction in the rate of subsidence through time was attributed to the transition from rapid initial consolidation and shrinkage to slower, long-term, ongoing oxidation. These subsidence rates agree well with a literature synthesis of temperate zone subsidence rates reported for similar lengths of time since drainage. A strong nonlinear relationship was found between temperate zone subsidence rates and time since initial peatland drainage: Subsidence (mm yr) = 226 × (years since drained) ( = 0.88). This relationship suggests that time since drainage exerts strong control over the rate of peatland subsidence and that ongoing peatland subsidence rates can be predicted to gradually decline with time in the absence of major land disturbance.

  14. Multiobjective Statistical Method for Interior Drainage Systems

    NASA Astrophysics Data System (ADS)

    Haimes, Y. Y.; Loparo, K. A.; Olenik, S. C.; Nanda, S. K.

    1980-06-01

    In this paper the design of a levee drainage system is formulated as a multiobjective optimization problem in a probabilistic framework. The statistical nature of the problem is reflected by the probabilistic behavior of rainfall and river stage events in any given month. The multiobjective approach allows for the incorporation of noncommensurable objectives such as aesthetics, economics, and social issues into the optimization problem, providing a more realistic quantification of the impact of a flood or high water situation in an interior basin. A new method referred to as the multiobjective statistical method, which integrates statistical attributes with multiobjective optimization methodologies such as the surrogate worth trade-off method, is developed in this paper. A case study using data from the Moline area in Illinois suggests the use of the procedure.

  15. Evidence for the use of low-grade weirs in drainage ditches to improve nutrient reductions from agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential function of drainage ditches is to remove water from the agricultural landscape to avoid crop senescence through flooding and soil saturation. Commonly used slotted board risers provide drainage management strategies over the dormant season; however, by introducing innovative, low-gra...

  16. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  17. Selenium and nitrate removal from agricultural drainage using the AIWPS(R) technology

    SciTech Connect

    Green, F.B.; Lundquist, T.J.; Quinn, N.W.T.; Zarate, M.A.; Zubieta, I.X.; Oswald, W.J.

    2003-01-02

    Monthly Maximum Discharge Limits (MMDL) have been established for selenium in irrigation drainage by the State of California and the U.S. Environmental Protection Agency following observations of avian teratogenesis at the Kesterson Reservoir in the San Joaquin Valley of California. As a result of these and other adverse effects, farmers and drainage districts on the western side of the San Joaquin Valley must reduce selenium concentrations in irrigation, drainage discharged to the San Joaquin River. Drainage treatment will be required in the near future to meet existing MMDL and future Total Maximum Discharge Limits (TMDL) for the San Joaquin River. A 0.4-hectare Algal Bacterial Selenium Removal (ABSR) Facility was designed and constructed at the Panoche Drainage District in 1995 and 1996 using the Advanced Integrated Wastewater Pond Systems (R) or AIWPS (R) Technology. Each of two physically identical systems combined a Reduction Pond (RP) with a shallow, peripheral algal High Rate Pond (HRP). A Dissolved Air Flotation (DAF) unit and a slow sand filter were used to remove particulate selenium from the effluent of each system. The two systems were operated under different modes of operation and the bacterial substrate varied in each system. The rates of nitrate and selenium removal were compared. Microalgae were harvested using DAF and used as a carbon-rich substrate for nitrate- and selenate-reducing bacteria. Mass removals of total soluble selenium of 77 percent or greater were achieved over a three-year period. Nitrate and selenate were removed by assimilatory and dissimilatory bacterial reduction, and nitrate was also removed by algal assimilation. The final removal of particulate selenium is the focus of ongoing investigations. The removal of particulate selenium is expected to increase the overall removal of selenium to greater than 90 percent and would allow farmers and drainage districts to discharge irrigation drainage in compliance with regulatory

  18. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  19. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... siphonage, aspiration, or forcing of trap seals under conditions of ordinary use. (b) Materials—(1) Pipe... iron, or other listed or approved materials. (2) Fittings. Drainage fittings shall be recessed drainage pattern with smooth interior waterways of the same diameter as the piping and shall be of a...

  20. Modeling water flow in a tile drainage network in glacial clayey tills in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    De Schepper, G.; Therrien, R.; Refsgaard, J.

    2013-12-01

    Tile drainage is a widespread water management practice applied to poorly drained production fields to increase crop productivity and reduce flooding risks. A challenge associated with water resources management in agricultural catchments is to properly understand and quantify the role of tile drainage for the catchment water balance. Only a few studies have been presented where different numerical modeling approaches were tested to simulate tile drainage at the field or catchment scale. These studies suggest that challenges still remainto represent correctly subsurface drainage networks in numerical models while accounting for their influence on water flow and transport. To investigate the impact of tile drains, a variably-saturated flow model has been applied to the Lillebaek agricultural catchment, Denmark. The Lillebaek catchment covers 5 ha and is underlain by about 30 m of Quaternary deposits that consist of a local sandy aquifer with upper and lower clayey till units. A tile drainage network is located in the upper clay till. Water table elevations are recorded daily in a network of piezometers within the catchment, as well as drainage and stream discharge. The control volume finite element HydroGeoSphere model is used to simulate 3D variably-saturated flow in the catchment, coupled with 1D open-channel flow in tile drains and 2D overland flow. That approach requires that the tile drainage network be represented explicitly in the model with 1D elements. The 3D field-scale hydrogeological model was first generated from a national-scale geological model for Denmark combined with available local borehole data. A reference model was then generated for 3D variably-saturated subsurface flow coupled with 2D overland flow. That reference model also incorporates discrete 1D elements to represent the entire drainage network, with a critical depth boundary condition applied to the outlet of the drainage networks. A series of simulation were performed to test the

  1. Factors affecting removal of selenate in agricultural drainage water utilizing rice straw.

    PubMed

    Zhang, Yiqiang; Frankenberger, William T

    2003-04-15

    Microbial reduction of selenate [Se(VI)] to elemental selenium [Se(0)] is a useful technique for removing Se from agricultural drainage water. A series of batch experiments were conducted in the laboratory to determine the effects of pH (5-10), NO(3)(-) (100-500 mg/l), and SO(4)(2-) (0-5000 mg/l) on the removal of Se(VI) from drainage water with 1000 microg/l of Se(VI) and different amounts (1-4 g) of rice straw. Results showed that rice straw was very effective in creating a reducing environment (Eh=-205 to -355 mV) in the first 3 days of the pH-effect experiments. The optimum conditions for rapid Se(VI) removal from drainage water were a pH range of 6-9, high amounts of SO(4)(2-) (1000-5000 mg/l), low amounts of NO(3)(-) (100 mg/l) and high amounts of rice straw (3-4 g). Under these conditions, it took 5-7 days to reduce 93-95% of the added Se(VI) to Se(0). This study indicates that rice straw may be an inexpensive reducing agent to remediate Se(VI)-dominant San Joaquin Valley drainage water in the field.

  2. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  3. Phosphorus losses from drainage systems: breaking the surface tile riser connection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In freshwater ecosystems, phosphorus is generally the nutrient most limiting algal growth. Agricultural drainage systems in the upper Midwestern US are generally designed to drain water as quickly as possible, in order to ensure trafficability and minimize crop damage due to flooding. An unintended ...

  4. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  5. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors

    NASA Astrophysics Data System (ADS)

    Blowes, D. W.; Robertson, W. D.; Ptacek, C. J.; Merkley, C.

    1994-02-01

    Two 200-L fixed-bed bioreactors, containing porous-medium material of coarse sand and organic carbon (tree bark, wood chips and leaf compost), were used to treat NO 3 contamination from agricultural runoff. Flow from a farm-field drainage tile containing NO 3-N concentrations of 3-6 mg L -1 was successfully treated in the reactors (NO 3-N < 0.02 mg L -1) at a rate of 10-60 L day -1 over a 1-yr period. Treatment occurs by anaerobic denitrification promoted by the added solid-phase organic carbon. Because the reactor design is simple, economical to construct and maintenance free, it may provide a practical solution to the problem of treating redox-sensitive contaminants, such as NO 3, in agricultural runoff.

  6. Chemical status of selenium in evaporation basins for disposal of agricultural drainage.

    PubMed

    Gao, S; Tanji, K K; Dahlgren, R A; Ryu, J; Herbel, M J; Higashi, R M

    2007-09-01

    Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.

  7. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  8. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  9. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  10. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  11. VIEW OF DRAINAGE SYSTEM AND WALL OF WELL AT CLOSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF DRAINAGE SYSTEM AND WALL OF WELL AT CLOSER RANGE SHOWING VAULTED BRICK DRAIN AS IT ARCHED OUT FROM THE FOUNDATION (TO CENTER) - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  12. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  13. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  14. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  15. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  16. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  17. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%.

  18. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California: runoff toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to investigate the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas), and the amphipod, Hyalella azteca, was measured for ...

  19. Analysis and modeling of flooding in urban drainage systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Theo G.; Thomas, Martin; Ettrich, Norman

    2004-12-01

    The European research project in the EUREKA framework, RisUrSim (Σ!2255) is presented. The project consortium includes industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The overall objective has been the development of an integrated planning and management tool to allow cost effective management for urban drainage systems. The paper outlines the regulatory background of European Standard EN 752 defining flood frequency as the one hydraulic performance criterion. The phenomenon of urban flooding caused by surcharged sewer systems in urban drainage systems is analyzed leading to the necessity of dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow in order to most accurately compute water levels above ground as a basis for further assessment of possible damage costs. The model application is presented for small case study in terms of data needs, model verification and first simulation results.

  20. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    PubMed

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO₃-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO₃-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage.

  1. Quaternary Reorganization of North American Mid-continent Drainage Systems

    NASA Astrophysics Data System (ADS)

    Carson, E. C.; Rawling, J. E., III; Attig, J. W.; Bates, B. R.

    2013-12-01

    Identification of ancestral drainage systems in the North American mid-continent has been a topic of research and debate among geologists since the middle of the 19th Century. Over time our understanding of the significance of Quaternary glaciations in reshaping drainage patterns has grown. The ancestral Teays River, which drained large areas of the central Appalachians and flowed westward across Indiana and western Illinois, was dammed multiple times by Quaternary glaciers before finally being rerouted to the course of the modern central Ohio River. Similarly, the northward-flowing ancestral Pittsburgh River was dammed by pre-Illinoian glaciers; subsequent stream piracy converted this river system into the modern Allegheny, Monongahela and uppermost Ohio Rivers. Deposits and geomorphic features along the westward-flowing lower Wisconsin River indicate that the modern upper Mississippi River and Wisconsin River may have experienced a similar history of ice blockage, stream piracy, and radical rerouting. Coring into the Bridgeport strath terrace along the lower Wisconsin River reveals that the bedrock surface dips to the east, indicating the valley was cut by an eastward-flowing river. We believe the most likely scenario following this interpretation is that an ancestral river flowing along the modern upper Mississippi River valley made a sharp bend at Prairie du Chien, WI, and flowed eastward along the valley occupied by the modern lower Wisconsin River. This river, referred to here as the Wyalusing River, likely flowed northeastward into the Great Lakes (St. Lawrence) drainage until that path was blocked by ice advancing from the northwest. Subsequent stream piracy immediately south of the modern confluence of the Mississippi and Wisconsin Rivers rerouted these streams, converting them to the headwaters of the greater Mississippi drainage. The combined rerouting of these river systems into entirely different drainage basins necessitates significant fundamental

  2. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review.

    PubMed

    Vymazal, Jan; Březinová, Tereza

    2015-02-01

    Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong.

  3. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-05

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  4. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage

    NASA Astrophysics Data System (ADS)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90 °C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  5. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.

  6. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  7. Use of vegetated agricultural drainage ditches to decrease toxicity of irrigation runoff from tomato and alfalfa fields in California, USA.

    PubMed

    Werner, Inge; Deanovic, Linda A; Miller, Jeff; Denton, Debra L; Crane, David; Mekebri, Abdou; Moore, Matthew T; Wrysinski, Jeanette

    2010-12-01

    The current study investigated the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas),and the amphipod Hyalella azteca was measured for 12 h or less at the ditch inflow and outflow, using custom-built in situ exposure systems. In addition, water and sediment samples were subject to standard toxicity tests with Ceriodaphnia dubia and H. azteca, respectively. No acute toxicity to larval fathead minnow was observed; however, runoff was highly toxic to invertebrates. Passage through a 389- to 402-m section of vegetated ditch had a mitigating effect and reduced toxicity to some degree. However, runoff from an alfalfa field treated with chlorpyrifos remained highly toxic to both invertebrate species, and runoff from a tomato field treated with permethrin remained highly toxic to H. azteca after passage through the ditch. Predicted toxic units calculated from insecticide concentrations in runoff and 96-h median lethal concentration (LC50) values generally agreed with C. dubia toxicity measured in the laboratory but significantly underestimated in situ toxicity to H. azteca. Sediments collected near the ditch outflow were toxic to H. azteca. Results from the current study demonstrate that experimental vegetated ditches were unable to eliminate the risk of irrigation runoff to aquatic ecosystems. In addition, protective measures based on chemical concentrations or laboratory toxicity tests with C. dubia do not ensure adequate protection of aquatic ecosystems from pyrethroid-associated toxicity.

  8. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  9. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) BUT CLOSER RANGE SHOWING BRICK STRUCTURE WHICH CARRIED WATER FROM THE GUTTER DRAIN PIPE INTO THE BRICK DRAIN ALONG THE GROUND AND AWAY FROM THE FOUNDATION OF THE HOUSE - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD

  10. Approach for evaluating inundation risks in urban drainage systems.

    PubMed

    Zhu, Zhihua; Chen, Zhihe; Chen, Xiaohong; He, Peiying

    2016-05-15

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers. Hence, inundation evaluation is becoming increasingly important around the world. This comprehensive assessment involves numerous indices in urban catchments, but the high-dimensional and non-linear relationship between the indices and the risk presents an enormous challenge for accurate evaluation. Therefore, an approach is hereby proposed to qualitatively and quantitatively evaluate inundation risks in urban drainage systems based on a storm water management model, the projection pursuit method, the ordinary kriging method and the K-means clustering method. This approach is tested using a residential district in Guangzhou, China. Seven evaluation indices were selected and twenty rainfall-runoff events were used to calibrate and validate the parameters of the rainfall-runoff model. The inundation risks in the study area drainage system were evaluated under different rainfall scenarios. The following conclusions are reached. (1) The proposed approach, without subjective factors, can identify the main driving factors, i.e., inundation duration, largest water flow and total flood amount in this study area. (2) The inundation risk of each manhole can be qualitatively analyzed and quantitatively calculated. There are 1, 8, 11, 14, 21, and 21 manholes at risk under the return periods of 1-year, 5-years, 10-years, 20-years, 50-years and 100-years, respectively. (3) The areas of levels III, IV and V increase with increasing rainfall return period based on analyzing the inundation risks for a variety of characteristics. (4) The relationships between rainfall intensity and inundation-affected areas are revealed by a logarithmic model. This study proposes a novel and successful approach to assessing risk in urban drainage systems and provides guidance for improving urban drainage systems and inundation preparedness.

  11. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  12. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  13. Numeric Modeling of Valley Networks and Drainage Systems on Mars

    NASA Astrophysics Data System (ADS)

    Vidal, A.

    2006-12-01

    Valley networks observed on Mars are often invoked to support the historical presence of water on the surface of Mars. There is a need for quantification of these networks and the drainage processes associated with them. Numerical modeling of these streams and drainage basins within a GIS environment allows for rapid assessment of hydrologic surface processes. In this study, several areas of valley networks which had been previously mapped visually using Viking, MOC, and MOLA datasets were re-examined using numeric processes and tools available in ArcGIS. Specifically, stream length and drainage density were quantified using the MOLA gridded DEM and ArcGIS tools. This process is significantly faster than the visual identification and delineation techniques used in the past. The project sought to test whether or not computer-assisted techniques were comparable in accuracy and precision to previous studies using visual techniques. To do this, two quadrangles previously visually mapped by Carr (1995) and Hynek and Phillips (2003) were analyzed. Total valley network length at the first site was found to be 18,300 km, compared to previous estimates of 1,308 km (Carr) and 11,100 km (Hynek and Phillips). Drainage density was calculated to be 0.0605/km, compared to previous estimates of 0.0076/km (Carr) and 0.065/km (Hynek and Phillips). The highest stream order found was 5th, compared to 3rd (Carr) and 6th (Hynek and Phillips). In the second quadrangle, total valley network length was measured at 4,010 km, compared to 453 km and 3,496 km. The drainage density was calculated to be 0.068/km, compared to 0.011/km and 0.082/km. The highest stream order found was 4th, compared to 2nd and 5th. Results were very similar to those using visual interpretation of MOC shaded relief by Hynek and Phillips. A difference in stream order, however, suggests that the computer-aided technique may not connect systems that visually have been connected. Still, automated results offer an

  14. Effects of agriculture, housing development, and industry on water quality in a small drainage basin, Bushkill Creek, Pennsylvania

    SciTech Connect

    Germanoski, D. . Geology Dept.); Braunwell, P. . Dept. of Environmental Science and Engineering); Coykendall, J.P. ); Kelsey, J. . Dept. of Environmental Chemistry)

    1993-03-01

    Beginning in 1989, three successive studies have focused on the effects of various land use activities on water quality in the Bushkill Creek. Bushkill Creek is located in Northampton County, Pennsylvania and is a tributary to the Delaware River. Bushkill Creek has a drainage area of 206 km[sup 2]. The watershed is underlain by slate and shale units of the Martinsburg Formation and Ordovician carbonate rocks including the Jacksonburg Formation, the Beeckmantown Group, and the Allentown Formations. The authors have been collecting water quality data in the Bushkill Creek drainage basin over a three-year period (1989--1992) in order to determine the general quality of the water and to assess the impact of various land use and industrial activities on water quality. The authors' initial investigation focused on the impact of several potential point sources of contamination in the lower, more heavily industrialized, portion of the Bushkill Creek. Water samples were analyzed for ammonia, chromium (at one site only), nitrate, nitrite, orthophosphate, sulfate, and gasoline (at one site only). The results of that research indicated that background concentrations of nitrates and sulfates were quite high. Therefore, subsequent investigations have focused on the potential impact of agricultural activity and housing development in the upper portion of the Bushkill drainage basin. In particular: (1) petroleum contamination was occurring as a point source in the lower Bushkill drainage, (2) nitrate concentrations in the creek have increased during the past twenty years, most likely as the result of agricultural activity and housing development, (3) sulfate loading into the Bushkill Creek occurs from the Little Bushkill Creek, and (4) the high sulfate concentration in the Little Bushkill Creek originates in the vicinity of a slate quarry.

  15. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.

    PubMed

    Sibrell, Philip L; Montgomery, Gary A; Ritenour, Kelsey L; Tucker, Travis W

    2009-05-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges -- hitherto thought of as undesirable wastes -- can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  16. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  17. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    SciTech Connect

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  18. Nitrate removal from agricultural drainage ditch sediments with amendments of organic carbon: Potential for an innovative best management practice

    USGS Publications Warehouse

    Faust, Derek R.; Kröger, Robert; Miranda, Leandro E.; Rush, Scott A.

    2016-01-01

    Agricultural fertilizer applications have resulted in loading of nutrients to agricultural drainage ditches in the Lower Mississippi Alluvial Valley. The purpose of this study was to determine effects of dissolved organic carbon (DOC) and particulate organic carbon (POC) amendments on nitrate-nitrogen (NO3−-N) removal from overlying water, pore water, and sediment of an agricultural drainage ditch. Two experiments were conducted. In experiment 1, control (i.e., no amendment), DOC, and POC treatments were applied in laboratory microcosms for time intervals of 3, 7, 14, and 28 days. In experiment 2, control, DOC, and POC treatments were applied in microcosms at C/N ratios of 5:1, 10:1, 15:1, and 20:1. There were statistically significant effects of organic carbon amendments in experiment 1 (F2,71 = 27.1, P < 0.001) and experiment 2 (F2,53 = 39.1, P < 0.001), time (F1,71 = 14.5, P < 0.001) in experiment 1, and C/N ratio (F1,53 = 36.5, P < 0.001) in experiment 2. NO3−-N removal varied from 60 to 100 % in overlying water among all treatments. The lowest NO3−-N removals in experiment 1 were observed in the control at 14 and 28 days, which were significantly less than in DOC and POC 14- and 28-day treatments. In experiment 2, significantly less NO3−-N was removed in overlying water of the control compared to DOC and POC treatments at all C/N ratios. Amendments of DOC and POC made to drainage ditch sediment: (1) increased NO3−-N removal, especially over longer time intervals (14 to 28 days); (2) increased NO3−-N removal, regardless of C/N ratio; and (3) NO3−-N removal was best at a 5:1 C/N ratio. This study provides support for continued investigation on the use of organic carbon amendments as a best management practice for NO3−-N removal in agricultural drainage ditches.

  19. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  20. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  1. Evaluation of management options for disposal of salt and trace element laden agricultural drainage water from the Fallon Indian Reservation, Fallon, Nevada

    SciTech Connect

    Tokunaga, Tetsu; Benson, S.

    1991-03-01

    This is the final report describing work performed on the Fallon Indian Reservation by the Earth Sciences Division at Lawrence Berkeley Laboratory during FY90. These investigations were initiated at the request of the United States Bureau of Reclamation in response to recent concerns regarding disposal of agriculture drainage water from the Reservation. The Reservation is transected by numerous irrigation and drainage canals, including the TJ Drain. Recent investigations by the US Fish and Wildlife Service have demonstrated that water in the TJ Drain is toxic to several aquatic indicator organisms, including bluegills, fathead minnows and daphnids. This information, coupled with recent die-offs of fish and birds, has lead to concern about continued discharge of TJ Drain water into local surface waters. In late 1990, plans for closing the TJ Drain and providing for alternative drainage were initiated. We aim to provide information for assessing options fro disposal of agricultural drainage water from the Reservation. In particular, our studies focuses on irrigation and drainage of lands currently serviced by the TJ Drain. Options for continued irrigation and drainage of the Reservation fall broadly into two categories: options that provide an alternative to drain water disposal into the SWMA; and options that include continuing the current practice of drain water disposal into the SWMA. Other options include elements of both of these alternatives. Additional discussion of specific options will follow a brief summary of the technical work supporting our assessment of drainage related issues at the Reservation. 67 refs., 57 figs., 15 tabs.

  2. Benthic invertebrates of benchmark streams in agricultural areas of eastern Wisconsin, Western Lake Michigan Drainages

    USGS Publications Warehouse

    Rheaume, S.J.; Lenz, B.N.; Scudder, B.C.

    1996-01-01

    Information gathered from these benchmark streams can be used as a regional reference for comparison with other streams in agricultural areas, based on communities of aquatic biota, habitat, and water quality.

  3. Nutrient removal of agricultural drainage water using algal turf scrubbers and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  4. Expert systems in agriculture and resource management

    SciTech Connect

    Plant, R.E.

    1993-05-01

    This paper gives a description of some representative examples of expert systems applied to problems in agriculture and biological resource management. The discussion of agricultural expert systems focuses on several decision support systems for crop management, describing the systems themselves and the implementation efforts surrounding them. The examples of the application of expert systems to biological resource management focus on the integration of expert systems with geographic information systems. A description of some of the more recent developments in agricultural expert systems, still in the prototype stage, is then given, followed by a summary discussion of possible environmental implications of the use of expert systems in agriculture and resource management. 63 refs.

  5. Laboratory Testing of Foundry Sands as Bulking Agents for Porous Media Filters Used to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2008-12-01

    Foundry sands are industrial byproducts that may have potential application as bulking agents that when mixed with small amounts of more chemically reactive materials (i.e. sulfur modified iron, fly ash, etc.) can be used to produce porous media filters capable of removing contaminants from agricultural drainage waters. Foundry sand bulking agents are attractive primarily as a low cost means to maintain the hydraulic efficiency of a filter. Secondarily, the foundry sands themselves may have some capacity for removal of agricultural nutrients and pesticides from water. Consequently, a laboratory study was initiated to quantify hydraulic efficiency and agricultural contaminant removal abilities of six foundry sands. Of the six foundry sands tested, all were obtained in central Ohio, three from iron casting foundries, two from steel casting foundries, and one from an aluminum casting foundry. Hydraulic efficiencies of the foundry sands were assessed by measuring hydraulic conductivity with twice replicated falling-head permeability tests. Batch tests were employed to evaluate foundry sand potential to treat water containing nitrate and phosphate nutrients, along with the pesticide, atrazine. Five of the six foundry sand samples had measured hydraulic conductivity values from 7.6 x 10-3 cm/s to 3.8 x 10-2 cm/s, which is in the range of hydraulic conductivity values found for clean sand. The one foundry sand that was an exception had much lower measured hydraulic conductivity values of 2.75 x 10-5 cm/s and 5.76 x 10-5 cm/s. For the batch tests conducted, none of the nitrate was removed by any of the six foundry sands; however, conversely, almost all of the phosphate was removed by each foundry sand. Batch test atrazine removal results were much more varied. Compared with baseline batch tests, one foundry sand removed two thirds of the atrazine, one foundry sand removed about one half of the atrazine, three foundry sands removed about a third of the atrazine, and one

  6. Use of Continuous Specific Conductance to Differentiate the Sources of Water to an Agricultural Stream With Subsurface Drainage Networks

    NASA Astrophysics Data System (ADS)

    Smith, E. A.; Thornburg, J.; Capel, P. D.

    2008-12-01

    The sources of water to natural streams include direct precipitation, overland flow, and ground-water inflow. In glaciated areas, the presence of artificial surface and subsurface drainage networks, a common practice for removing excess water from agricultural fields, provides additional pathways of water movement to the stream. The artificial drainage of agricultural fields allows rainfall to move quickly through the catchment to the stream transporting nutrients, pesticides and other agricultural-related constituents. A largely agricultural (about 90%), 31 km2 subcatchment of the South Fork of the Iowa River in north-central Iowa was studied for two years. Discharge and specific conductance (SC) were measured continuously and discreet water samples were obtained for analyses of nutrients and other constituents. SC is an electrical measurement of the total ion content in the water. The SC of the rain and ground-water is about 10 microS/cm and 800-1,200 microS/cm, respectively. The typical, base-flow SC of the stream is 700-800 microS/cm. Within minutes after a substantial rain event, the stream discharge increases and the SC decreases (often times below 200"nmicroS/cm). The rain water is processed through the catchment before it reaches the stream via direct overland flow, preferential flow to subsurface drains, vertical drains attached to subsurface drains in ponded areas, and/or soil infiltration to ground-water. Water moving through each of these pathways has different characteristic time scales and different degrees of interactions with the soil yielding different ionic content, thus different SC. Both the discharge and SC concurrently return to the typical base-flow values over the following days and weeks. This strong relation between rainfall, discharge and SC is used to calculate the relative importance and time scale of the various hydrologic pathways. In addition to the two-year stream record, complementary discharge and SC data were collected in two

  7. Long-Term Monitoring of Waterborne Pathogens and Microbial Source Tracking Markers in Paired Agricultural Watersheds under Controlled and Conventional Tile Drainage Management

    PubMed Central

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward

    2014-01-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274

  8. Feasibility study of a self-remediation system for mine drainage using its thermal energy

    NASA Astrophysics Data System (ADS)

    Oh, Chamteut; Cheong, Youngwook; Yim, Giljae; Ji, Sangwoo

    2016-04-01

    Mine drainage is defined as the water which is discharged to the ground surface through shafts and/or cracks formed by mining activities. Typically, mine drainage features high concentration of acidity and metals since it passes through the underground. Therefore, for the purpose of protecting the surrounding natural environment, mine drainage should be remediated before being discharged to nature. Mine drainage, due to its nature of being retained underground, shows constant temperature which is independent from the temperature of the atmosphere above ground. This condition allows mine drainage to become a promising renewable energy source since energy can be recovered from water with constant temperature. In this research, a self-remediation system is proposed which remediates the mine drainage through electrochemical reactions powered by the thermal energy of mine drainage. High energy efficiency is able to be achieved by shortening the distance between the energy source and consumption, and therefore, this system has a strong advantage to be actualized. A feasibility study for the system was conducted in this research where the thermal energy of mine drainage over time and depth was calculated as energy supply and the required electrical energy for remediating the mine drainage was measured as energy consumption. While the technology of converting thermal energy directly into electrical energy is yet to be developed, energy balance analysis results showed that the proposed self-remediation system is theoretically possible.

  9. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  10. Nutrient content at the sediment-water interface of tile-fed agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive network of tile drains present in the Midwest USA accelerate losses of nutrients to receiving ditches, rivers and eventually to the Gulf of Mexico. Nutrient inputs from agricultural watersheds and their role in affecting water quality have received increased attention recently; however, be...

  11. Comparative analysis of the outflow water quality of two sustainable linear drainage systems.

    PubMed

    Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J

    2014-01-01

    Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.

  12. INVESTIGATION OF DRY-WEATHER POLLUTANT ENTRIES INTO STORM-DRAINAGE SYSTEMS

    EPA Science Inventory

    This article describes the results of a series of research tasks to develop a procedure to investigate non-stormwater (dry-weather) entries into storm drainage systems. Dry-weather flows discharging from storm drainage systems can contribute significant pollutant loadings to rece...

  13. INVESTIGATION OF INAPPROPRIATE POLLUTANTS ENTRIES INTO STORM DRAINAGE SYSTEMS: A USER'S GUIDE

    EPA Science Inventory

    This User's Guide is the result of a series of EPA sponsored research tasks to develop a procedure to investigate non-stormwater entries into storm drainage systems. A number of past projects have found that dry-weather flows discharging from storm drainage systems can contribu...

  14. (226) RA AND (228) RA ACTIVITIES ASSOCIATED WITH AGRICULTURAL DRAINAGE PONDS AND WETLAND PONDS IN THE KANKAKEE WATERSHED, IL-IN, USA

    EPA Science Inventory

    Background radioactivity is elevated in many agricultural drainage ponds and also constructed wetland ponds in the Kankakee watershed. During 1995-1999, gross-a and -B activities were measured up to 455 and 1650 mBq L-1, respectively. 226Ra and 228Ra averaged 139 and 192 mBq L-01...

  15. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming

    2015-10-01

    In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.

  16. Discharge characteristics of four highway drainage systems in Ohio

    USGS Publications Warehouse

    Straub, D.E.

    1995-01-01

    Excessive water in the subbase of high-way combined with large traffic volumes and heavy loads is a major cause of road deterioration. Prompt removal of any excess water in a subbase will decrease the road deterioration and extend the effective life of a highway. This study presents discharge characteristics of four highway subbase drainage systems. These systems consisted of shallow, longitudal trenches with geocomposite drain materials (edge drains made from a polyethylene core surrounded by a geotextile filter fabric) that underline the joint between the shoulder and the traffic lane of State Route 16, approximately 1.0 mile southeast of Granville, Ohio. For selected rainfall-runoff events the maximum discharge, discharge characteristics from April 1991 through November 1993 were computed for three geocomposite products- a post type, an oblong-pipe type, and a cusp type-and a conventional perforated pipe edge drain. In general, the discharge characteristics of the conventional edge drain and that of the oblong-pipe edge drain were similar for most of the rainfall-runoff event characteristics. Both produced most of the highest maximum discharges and largest discharge volumes among the four longitudal edge drains. The post edge drain produced smaller maximum discharge and volumes than the conventional and oblong-pipe edge drains, but it had the shortest lag times for most of the event characteristics. The cusp edge drain produced small maximum discharges and small volumes similar to those from the post edge drain, but it had the longest lag times of all the edge drains for most of the event characteristics. The cusp edge drain may have also had some problems during installation which could have affected the discharge characteristics.

  17. Determination of sulfadiazine in phosphate- and DOC-rich agricultural drainage water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Bouyou, P A Léon; Weisser, Johan J; Strobel, Bjarne W

    2014-08-01

    Trace levels of the veterinary antibiotic compound sulfadiazine (SDZ) can be determined in agricultural drainage water samples with this new method. Optimized sample pretreatment and solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry (SPE LC-MS/MS) using positive electrospray ionization. The linear dynamic range for the LC-MS/MS was assessed from 5 μg/L to 25 mg/L with a 15-point calibration curve displaying a coefficient of correlation r(2) = 0.9915. Agricultural drainage water spiked at a concentration of 25 ng/L gave recoveries between 63 and 98 % (relative standard deviation 15 %), while at 10 ng/L, it showed a lower recovery of 32 % (relative standard deviation 47 %). The final SPE LC-MS/MS method had a limit of detection (LOD)(Method) and a limit of quantification (LOQ)(Method) of 7.5 and 23 ng/L agricultural drainage water, respectively. Determination of SDZ, spiked at a realistic concentration of 50 μg/L, in artificial drainage water (ADW) containing common and high levels of phosphate (0.05, 0.5, and 5 mg/L) gave recoveries between 70 and 92 % (relative standard deviation 7.4-12.9 %). Analysis of the same realistic concentration of SDZ in ADW, spiked with common and high levels of dissolved organic carbon (2, 6, and 15 mg/L) confirmed the possible adaptation of a tandem solid-phase extraction (strong anion exchange (SAX)-hydrophilic-lipophilic balance (HLB)) followed by liquid chromatography-tandem mass spectrometry methodology. Recoveries obtained ranged from 104 to 109 % (relative standard deviation 2.8-5.2 %). The new methods enable determination of the veterinary antibiotic compound SDZ in agricultural drainage water from field experiments and monitoring schemes for phosphate- and dissolved organic carbon (DOC)-rich water samples in intensive farming areas.

  18. Computed tomography-anatomy of the normal feline nasolacrimal drainage system.

    PubMed

    Nöller, Claudia; Henninger, Wolfgang; Grönemeyer, Dietrich H W; Hirschberg, Ruth M; Budras, Klaus D

    2006-01-01

    Computed tomography (CT) of the nasolacrimal drainage system with and without contrast medium (barium sulfate) was used to create an anatomic basis for clinical evaluation in domestic cats. To evaluate and compare the anatomical findings, three casts were carried out and were followed by CT examinations. These CT series were also used for a three-dimensional (3D) reconstruction of the nasolacrimal drainage system within surrounding structures. In noncontrast CT images, osseous structures limiting the nasolacrimal drainage system are easily recognizable. In most cats, this allows the identification of the nasolacrimal drainage system even without contrast enhancement. A distal part of the lacrimal sac adjoins directly to the respiratory mucosa of the nasal cavity without an osseous protection. Thus, this may represent a predilection site for infiltration of adjacent pathologic processes from the nasal cavity onto the lacrimal sac. The nasolacrimal duct begins on level with the maxillary third premolar tooth. The apex of the root of the canine tooth is situated very close to the nasolacrimal duct. This close topographic relation may lead to problems with the nasolacrimal drainage system. In domestic cats the nasolacrimal drainage system consists of a descending and a horizontal part, which form an angle of approximately 90 degrees for unhindered drainage of the lacrimal fluid.

  19. Contaminant exposure of willets feeding in agricultural drainages of the Lower Rio Grande Valley of South Texas.

    PubMed

    Custer, T W; Mitchell, C A

    1991-02-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Laguna Madre of South Texas and at two other Texas coastal sites. Mean liver concentration of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in livers for all locations (means = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides.

  20. Contaminant exposure of willets feeding in agricultural drainages of the lower Rio Grande valley of south Texas

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1991-01-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Laguna Madre of South Texas and at two other Texas coastal sites. Mean liver concentration of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in livers for all locations (means = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides.

  1. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  2. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  3. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark

    NASA Astrophysics Data System (ADS)

    Gachango, F. G.; Pedersen, S. M.; Kjaergaard, C.

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  4. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark.

    PubMed

    Gachango, F G; Pedersen, S M; Kjaergaard, C

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  5. Shallow Aquifer Connectivity and Early Season Water Supply of Seasonal Wetlands and Drainages Leading to Regional Drainage Systems

    NASA Astrophysics Data System (ADS)

    McCarten, N. F.; Harter, T.

    2009-12-01

    The Sacramento and San Joaquin Rivers in the Central Valley, California are recognized being seasonally supplied by early season direct surface water runoff and later season snow melt runoff from their tributaries. In addition, early season water supply to these rivers is derived from precipitation (PPT) that has infiltrated into soils underlain by a near surface aquitard, typically at less than 2 m depth. These shallow perched groundwater systems contribute a potentially substantial amount of water from more than 500,000 hectares of landforms associated with geomorphic terraces underlain by these aquitards. Early season water input to seasonal and perennial drainages is regulated by the hydraulic conductivity of the (clay-) loamy soils and by surface and aquitard slope of the local catchments associated with these old alluvial landforms. Research on these landforms and shallow aquifers has identified a complex PPT and evapotranspiration (ET) sensitive system that includes shallow depressions that seasonally produce water table derived wetlands (“vernal pools”). These wetlands have been recognized for a very high level of plant and invertebrate species diversity including endangered species. In addition, these seasonal wetlands provide migratory feeding areas of birds. Our work on these seasonal perched systems shows that as much as 80 percent of the soil column above the aquitard is saturated, during average to high rainfall years, for up to 90 to 120 days. Where the water table of this perched system intercepts the land surface, vernal pools develop. The perched groundwater drains into seasonal surface drainages that ultimately supply the Sacramento and San Joaquin rivers. At the end of the rainy season, both the vernal pools and the perched aquifer rapidly and synchronously disappear. Once the soil is unsaturated, water flow is vertically upward due to ET. Variably saturated modeling of this system was conducted using HYDRUS 2D/3D. Climate inputs were from

  6. Mitigation of Permethrin in Irrigation Runoff by Vegetated Agricultural Drainage Ditches in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As organophosphate use has decreased in California, a concomitant increase in their replacement insecticides (pyrethroids) has occurred. Although the probability of off-site movement of pyrethroids is less than its predecessors (organophosphates), transport of pyrethroids to aquatic receiving system...

  7. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  8. Numerical evaluation of the groundwater drainage system for underground storage caverns

    NASA Astrophysics Data System (ADS)

    Park, Eui Seob; Chae, Byung Gon

    2015-04-01

    A novel concept storing cryogenic liquefied natural gas in a hard rock lined cavern has been developed and tested for several years as an alternative. In this concept, groundwater in rock mass around cavern has to be fully drained until the early stage of construction and operation to avoid possible adverse effect of groundwater near cavern. And then rock mass should be re-saturated to form an ice ring, which is the zone around cavern including ice instead of water in several joints within the frozen rock mass. The drainage system is composed of the drainage tunnel excavated beneath the cavern and drain holes drilled on rock surface of the drainage tunnel. In order to de-saturate sufficiently rock mass around the cavern, the position and horizontal spacing of drain holes should be designed efficiently. In this paper, a series of numerical study results related to the drainage system of the full-scale cavern are presented. The rock type in the study area consists mainly of banded gneiss and mica schist. Gneiss is in slightly weathered state and contains a little joint and fractures. Schist contains several well-developed schistosities that mainly stand vertically, so that vertical joints are better developed than the horizontals in the area. Lugeon tests revealed that upper aquifer and bedrock are divided in the depth of 40-50m under the surface. Groundwater level was observed in twenty monitoring wells and interpolated in the whole area. Numerical study using Visual Modflow and Seep/W has been performed to evaluate the efficiency of drainage system for underground liquefied natural gas storage cavern in two hypothetically designed layouts and determine the design parameters. In Modflow analysis, groundwater flow change in an unconfined aquifer was simulated during excavation of cavern and operation of drainage system. In Seep/W analysis, amount of seepage and drainage was also estimated in a representative vertical section of each cavern. From the results

  9. Analysis of the potential impacts on surface water quality resulting from the proposed use of the San Luis Drain to transport agricultural drainage through the northern Grasslands

    SciTech Connect

    Quinn, N.W.T.

    1992-05-01

    An Environmental Assessment and initial Study for the interim use of a portion of the San Luis Drain for conveyance water through the Grassland Water District and adjacent Grassland areas was conducted. The project proposes the use of 18 miles of the San Luis Drain for the conveyance of agricultural drainage water for a period of five years and the elimination of agricultural drainage discharges from 76 miles of existing channels in and adjacent to the Grassland Water District. A report was prepared to (a) quantify the potential project effects on surface water quality within Salt and Mud Sloughs and the San Joaquin River using currently available data, and (b) to improve the understanding of existing water supply and drainage operations within the Grassland area. After submission of the original report it was brought to the attention of one of the coauthors that the database on selenium and boron concentrations in drainage water did not include the water quality data collected by the Regional Water Quality Control Board (CRWQCB). In addition, the US Bureau of Reclamation (USBR) requested further examination of Grasslands hydrology to estimate the quantity of supplemental water that would be needed to restore the San Joaquin River to the same TDS and trace element concentrations prior to implementation of the project. This report addresses these issues.

  10. Urban drainage system planning and design--challenges with climate change and urbanization: a review.

    PubMed

    Yazdanfar, Zeinab; Sharma, Ashok

    2015-01-01

    Urban drainage systems are in general failing in their functions mainly due to non-stationary climate and rapid urbanization. As these systems are becoming less efficient, issues such as sewer overflows and increase in urban flooding leading to surge in pollutant loads to receiving water bodies are becoming pervasive rapidly. A comprehensive investigation is required to understand these factors impacting the functioning of urban drainage, which vary spatially and temporally and are more complex when weaving together. It is necessary to establish a cost-effective, integrated planning and design framework for every local area by incorporating fit for purpose alternatives. Carefully selected adaptive measures are required for the provision of sustainable drainage systems to meet combined challenges of climate change and urbanization. This paper reviews challenges associated with urban drainage systems and explores limitations and potentials of different adaptation alternatives. It is hoped that the paper would provide drainage engineers, water planners, and decision makers with the state of the art information and technologies regarding adaptation options to increase drainage systems efficiency under changing climate and urbanization.

  11. Comparison of subgaleal and subdural closed drainage system in the surgical treatment of chronic subdural hematoma

    PubMed Central

    Oral, Sukru; Borklu, Resul Emin; Kucuk, Ahmet; Ulutabanca, Halil; Selcuklu, Ahmet

    2015-01-01

    OBJECTIVE: One or two burr-hole craniostomies with subgaleal or subdural drainage system and irrigation are the most common methods for surgical treatment of CSDH. The aim of this study is to compare the advantages or disadvantages of these techniques used for CSDH. METHODS: Seventy patients were treated by burr-hole subdural drainage or subgaleal drainage system with irrigation. Our patients were classified into two groups according to the operative procedure as follows: Group I, one or two burr-hole craniostomy with subgaleal closed system drainage and irrigation (n=36), Group II, one or two burr-hole craniostomies with subdural closed drainage system and irrigation (n=38). We compared male and female ratios, complication rates, and age distribution between groups. RESULTS: There was no remarkable difference between recurrence rates of the two groups. Recurrence rate was 6.25% in Group I and 7.8% in Group II. Subdural empyema occurred in one of the patients in Group II. Symptomatic pneumocephalus did not develop in patients. Four patients were reoperated for recurrence at an average of 12–20 days after the operation with the same methods. CONCLUSION: Both of the techniques have a higher cure rate and a lower risk of recurrence. However, subgaleal drainage system is relatively less invasive, safe, and technically easy. So it is applicable for aged and higher risk patients. PMID:28058351

  12. Rapid field assessment of RO desalination of brackish agricultural drainage water.

    PubMed

    Thompson, John; Rahardianto, Anditya; Gu, Han; Uchymiak, Michal; Bartman, Alex; Hedrick, Marcos; Lara, David; Cooper, Jim; Faria, Jose; Christofides, Panagiotis D; Cohen, Yoram

    2013-05-15

    Rapid field evaluation of RO feed filtration requirements, selection of effective antiscalant type and dose, and estimation of suitable scale-free RO recovery level were demonstrated using a novel approach based on direct observation of mineral scaling and flux decline measurements, utilizing an automated Membrane Monitor (MeMo). The MeMo, operated in a stand-alone single-pass desalting mode, enabled rapid assessment of the adequacy of feed filtration by enabling direct observation of particulate deposition on the membrane surface. The diagnostic field study with RO feed water of high mineral scaling propensity revealed (via direct MeMo observation) that suspended particulates (even for feed water of turbidity <1 NTU) could serve as seeds for promoting surface crystal nucleation. With feed filtration optimized, a suitable maximum RO water recovery, with complete mineral scale suppression facilitated by an effective antiscalant dose, can be systematically and directly identified (via MeMo) in the field for a given feed water quality. Scale-free operating conditions, determined via standalone MeMo rapid diagnostic tests, were shown to be applicable to spiral-would RO system as validated via both flux decline measurements and ex-situ RO plant membrane scale monitoring. It was shown that the present approach is suitable for rapid field assessment of RO operability and it is particularly advantageous when evaluating water sources of composition that may vary both temporally and across the regions of interest.

  13. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  14. A simulation-based suitability index of the quality and quantity of agricultural drainage water for reuse in irrigation.

    PubMed

    Allam, Ayman; Fleifle, Amr; Tawfik, Ahmed; Yoshimura, Chihiro; El-Saadi, Aiman

    2015-12-01

    The suitability of agricultural drainage water (ADW) for reuse in irrigation was indexed based on a simulation of quality and quantity. The ADW reuse index (DWRI) has two components; the first one indicates the suitability of water quality (QLT) for reuse in irrigation based on the mixing ratio of ADW to canal irrigation water without violating the standards of using mixed water in irrigation, while the second indicates the available water quantity (QNT) based on the ratio of the available ADW to the required reuse discharge to meet the irrigation requirements alongside the drain. The QLT and QNT values ranged from 0 to ≥3 and from 0 to ≥0.40, respectively. Correspondingly, five classes from excellent to poor and from high scarcity to no scarcity were proposed to classify the QLT and QNT values, respectively. This approach was then applied to the Gharbia drain in the Nile Delta, Egypt, combined with QUAL2Kw simulations in the summer and winter of 2012. The QLT values along the drain ranged from 1.11 to 2.91 and 0.68 to 1.73 for summer and winter, respectively. Correspondingly, the QLT classes ranged from good to very good and from fair to good, respectively. In regard to QNT, values ranged from 0.10 to 0.62 and from 0.10 to 0.88 for summer and winter, respectively. Correspondingly, the QNT classes ranged from medium scarcity to no scarcity for both seasons. The demonstration of DWRI in the Gharbia drain suggests that the proposed index presents a simple tool for spatially evaluating the suitability of ADW for reuse in irrigation.

  15. An analytical solution for predicting the transient seepage from a subsurface drainage system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling

    2016-05-01

    Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.

  16. Managing adaptively for multifunctionality in agricultural systems.

    PubMed

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  17. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  18. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  19. A novel high vacuum chest drainage system – a pilot study*

    PubMed Central

    Tille, Jean-Christophe; Khabiri, Ebrahim; Giliberto, Jean-Pierre; Courvoisier, Delphine S.; Kalangos, Afksendiyos; Walpoth, Beat H.

    2014-01-01

    Aim To assess the safety and feasibility of use of a novel high vacuum chest drainage system (HVCDS) and its influence on the cardiovascular system compared to a conventional system (CCDS). Material and methods Five anesthetized pigs underwent a median sternotomy. Three drains were placed in retrocardiac, retrosternal and left pleural positions. The animals received a HVCDS (22 Fr with 180 2-mm holes, n = 2) or a CCDS (n = 2). In the fifth animal off pump coronary artery bypass graft (OPCABG) stabilizers were tested. After chest closure animals had three 30 min runs of artificial bleeding (5 ml/min) under different negative aspiration pressures (–2, –20, –40 kPa) for both groups, followed by standardized surgical bleeding (–40 kPa – HVCDS, – 2 kPa – CCDS). Hemodynamic parameters and each drain's output were registered every 5 minutes and the residual blood was assessed. All catheters, the heart and left lung underwent macroscopic and histopathological examination. Results The application of the different pressures showed neither hemodynamic changes nor differences in blood drainage with both systems in two bleeding models. The HVCDS enabled drainage comparable to the CCDS but showed relevant clotting. Application of –20 kPa and –40 kPa caused macroscopic epicardial and pulmonary lesions in all tested devices including OPCABG stabilizers consisting of sub-epicardial or sub-pleural hemorrhage without myocyte or alveolar damage. Conclusions The novel and conventional chest drainage systems used at pressures up to 40 kPa induced no hemodynamic instability. Both systems showed adequate equal drainage, despite major HVCDS clotting. High negative pressure drainage with both systems showed focal sub-epicardial and subpleural hemorrhage. Thus, long-term assessment of high pressure drainage and potential interaction with fragile structures (coronary bypass graft) should be carried out. PMID:26336441

  20. A Geographic Information System procedure to quantify drainage-basin characteristics

    USGS Publications Warehouse

    Eash, David A.

    1993-01-01

    The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.

  1. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    El Bastawesy, M.; Ramadan Ali, R.; Faid, A.; El Osta, M.

    2013-04-01

    This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases), which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins) and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and seepage water can be

  2. The Effectiveness of the Methane Drainage of Rock-Mass with a U Ventilation System

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Swolkień, Justyna

    2016-09-01

    Methane drainage is used in Polish coal mines in order to reduce mine methane emission as well as to keep methane concentration in mine workings at safe levels. The article describes the method of methane drainage used in longwall D-2 in seam 410. In Poland, coal seams are frequently mined under difficult geological conditions in the roof and in the presence of very high methane hazard. In such situations, mines usually use a system with roof caving and a U ventilation system, which means that methane is drawn off from a tail entry behind the longwall front. In this system, boreholes are drilled from a tailgate and methane is drawn off from behind longwall face. The article shows the influence of a specific ventilation system on the drainage efficiency at longwall D-2 in seam 410. At this longwall, measurements of methane emission and the efficiency of methane capture were conducted. They consisted in gauging methane concentration, air velocity, absolute air pressure and the amount of methane captured by the drainage system. Experimental data were used to estimate the variations in absolute methane-bearing capacity and ventilation methane, and - most importantly - to gauge the efficiency of methane drainage.

  3. Percutaneous Transhepatic Endobiliary Drainage of Hepatic Hydatid Cyst with Rupture into the Biliary System: An Unusual Route for Drainage

    SciTech Connect

    Inal, Mehmet; Soyupak, Suereyya; Akguel, Erol; Ezici, Hueseyin

    2002-10-15

    The most common and serious complication of hydatid cyst of the liver is rupture into the biliary tract causing obstructive jaundice, cholangitis and abscess. The traditional treatment of biliary-cystic fistula is surgery and recently endoscopic sphincterotomy. We report a case of complex heterogeneous cyst rupture into the biliary tract causing biliary obstruction in which the obstruction and cyst were treated successfully by percutaneous transhepatic endobiliary drainage. Our case is the second report of percutaneous transbiliary internal drainage of hydatid cyst with rupture into the biliary duct in which the puncture and drainage were not performed through the cyst cavity.

  4. Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland

    NASA Astrophysics Data System (ADS)

    Zwally, H. Jay; Giovinetto, Mario B.

    2001-12-01

    Estimates of balance mass flux and depth-averaged ice velocity through the cross section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. The estimates are based on a model equilibrium line fitted to field data and on a revised distribution of surface mass balance for the conterminous ice sheet. Ice drainage divides and six major drainage systems are delineated using surface topography from ERS radar altimeter data. Ice thicknesses at the equilibrium line and throughout each drainage system are based on the latest compilation of airborne radar sounding data described elsewhere. The net accumulation rate in the area bounded by the equilibrium line is 399 Gt a-1, and net ablation rate in the remaining area is 231 Gt a-1. Excluding an east central coastal ridge reduces the net accumulation rate to 397 Gt a-1, with a range from 42 to 121 Gt a-1 for the individual drainage systems. The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt km-2 a-1 and 0.111 km a-1, respectively, with little variation in these values from system to system. In contrast, the mean mass discharge per unit length along the equilibrium line ranges from one half to double the overall mean rate of 0.0468 Gt km-1 a-1. The ratio of the ice mass in the area bounded by the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6 ka for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  5. Identifying weak points of urban drainage systems by means of VulNetUD.

    PubMed

    Möderl, M; Kleidorfer, M; Sitzenfrei, R; Rauch, W

    2009-01-01

    This article presents the development and application of the software tool VulNetUD. VulNetUD is a tool for GIS-based identification of vulnerable sites of urban drainage systems (UDS) using hydrodynamic simulations undertaken using EPA SWMM. The benefit of the tool is the output of different vulnerability maps rating sewer surcharging, sewer flooding, combined sewer overflow (CSO) efficiency and CSO emissions. For this, seven predefined performance indicators are used to evaluate urban drainage systems under abnormal, critical and future conditions. The application on a case study highlights the capability of the tool to identify weak points of the urban drainage systems. Thereby it is possible to identify urban drainage system components which cause the highest performance decrease across the entire system. The application of the method on a real world case study shows for instance that a reduction of catchment areas which are located upstream of CSOs with relatively less capacity in the downstream sewers achieves the highest increases efficiency of the system. Finally, the application of VulNetUD is seen as a valuable tool for managers and operators of waste water utilities to improve the efficiency of their systems. Additionally vulnerability maps generated by VulNetUD support risk management e.g. decision making in urban development planning or the development of rehabilitation strategies.

  6. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The agricultural system of corn, soybeans, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of

  7. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    PubMed

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  8. Hydrologic and water-quality data in selected agricultural drainages in Beaufort and Hyde Counties, North Carolina, 1990-92

    USGS Publications Warehouse

    Treece, M.W.

    1993-01-01

    An investigation was begun in 1988 to: (1) quantify nutrient, sediment, and freshwater loadings in canals that collect drainage from cropland field ditches; (2) determine the effects of tide gates and flashboard risers on these loadings and on receiving water quality; and (3) characterize the effects of drainage on the salinity regime of a tidal creek. Data were collected in three canals in Hyde County, two canals in Beaufort County, and in Campbell Creek, which receives drainage directly from the Beaufort County canals. A tide gate was placed in one of the Hyde County canals near the beginning of the investigation. In August 1990 following more than 2 years of data collection, control structures were placed in the remaining two Hyde County canals. Flashboard risers were installed in the Beaufort County canals in April 1991. Hydrologic and water quality data are presented for each of the study sites for the period of October 1990 through May 1992. Following a description of the study sites and data collection methods, data are presented for the five drainage canals and Campbell Creek. The data collected included: (1) daily values of accumulated precipitation; (2) water level statistics; (3) daily mean values of discharge in the canals; (4) biweekly water quality measurements and sample analyses; (5) storm-event water quality measurements and sample analyses; (6) continuous records of specific conductance in the canals; (7) vertical profiles of salinity in Campbell Creek; and (8) daily mean values of salinity at five sites at Campbell Creek.

  9. Utility of 222Rn as a passive tracer of subglacial distributed system drainage

    NASA Astrophysics Data System (ADS)

    Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas

    2017-03-01

    Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.

  10. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.; ,

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  11. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  12. An initial experience with a digital drainage system during the postoperative period of pediatric thoracic surgery

    PubMed Central

    Costa, Altair da Silva; Bachichi, Thiago; Holanda, Caio; Rizzo, Luiz Augusto Lucas Martins De

    2016-01-01

    ABSTRACT Objective: To report an initial experience with a digital drainage system during the postoperative period of pediatric thoracic surgery. Methods: This was a prospective observational study involving consecutive patients, ≤ 14 years of age, treated at a pediatric thoracic surgery outpatient clinic, for whom pulmonary resection (lobectomy or segmentectomy via muscle-sparing thoracotomy) was indicated. The parameters evaluated were air leak (as quantified with the digital system), biosafety, duration of drainage, length of hospital stay, and complications. The digital system was used in 11 children (mean age, 5.9 ± 3.3 years). The mean length of hospital stay was 4.9 ± 2.6 days, the mean duration of drainage was 2.5 ± 0.7 days, and the mean drainage volume was 270.4 ± 166.7 mL. The mean maximum air leak flow was 92.78 ± 95.83 mL/min (range, 18-338 mL/min). Two patients developed postoperative complications (atelectasis and pneumonia, respectively). The use of this digital system facilitated the decision-making process during the postoperative period, reducing the risk of errors in the interpretation and management of air leaks. PMID:28117476

  13. INVESTIGATION OF INAPPROPRIATE POLLUTANT ENTRIES INTO STORM DRAINAGE SYSTEMS: A USER'S GUIDE

    EPA Science Inventory

    This User's Guide, summarized here, is the result of a series of research tasks (sponsored by the U.S. Environmental Protection Agency) to develop a procedure to investigate non-stormwater entries into storm drainage systems. Past projects have found that dry-weather flows disc...

  14. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of this practice.

  15. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  16. A generalised Dynamic Overflow Risk Assessment (DORA) for Real Time Control of urban drainage systems

    NASA Astrophysics Data System (ADS)

    Vezzaro, Luca; Grum, Morten

    2014-07-01

    An innovative and generalised approach to the integrated Real Time Control of urban drainage systems is presented. The Dynamic Overflow Risk Assessment (DORA) strategy aims to minimise the expected Combined Sewer Overflow (CSO) risk by considering (i) the water volume presently stored in the drainage network, (ii) the expected runoff volume (calculated by radar-based nowcast models) and - most important - (iii) the estimated uncertainty of the runoff forecasts. The inclusion of uncertainty allows for a more confident use of Real Time Control (RTC). Overflow risk is calculated by a flexible function which allows for the prioritisation of the discharge points according to their sensitivity and intended use. DORA was tested on a hypothetical example inspired by the main catchment in the city of Aarhus (Denmark). An analysis of DORA’s performance over a range of events with different return periods, using a simple conceptual model, is presented. Compared to a traditional local control approach, DORA contributed to reduce CSO volumes from the most sensitive points while reducing total CSO volumes discharged from the catchment. Additionally, the results show that the inclusion of forecasts and their uncertainty contributed to further improving the performance of drainage systems. The results of this paper will contribute to the wider usage of global RTC methods in the management of urban drainage networks.

  17. Rapid assessment system based on ecosystem services for retrofitting of sustainable drainage systems.

    PubMed

    Scholz, Miklas

    2014-01-01

    Sustainable drainage systems (SuDS) design and retrofitting is predominantly based on expert opinion supported by descriptive guidance documents. The aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of key SuDS techniques. This unique tool proposes the retrofitting of a SuDS technique that obtained the highest ecosystem service score for a specific urban site. This approach contrasts with methods based on traditional civil engineering judgement linked to standard variables based on community and environment studies. For a case study area (Greater Manchester), a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements, filter strips, swales, ponds, constructed wetlands and below-ground storage tanks are generally less preferred than infiltration trenches, soakaways and infiltration basins. However, permeable pavements and belowground storage tanks also received relatively high scores, because of their great potential impact in terms of water quality improvement and flood control, respectively. The application of the proposed methodology will lead to changes of the sustainable drainage infrastructure in the urban landscape.

  18. Hygienic drainage for healthcare.

    PubMed

    Jennings, Peter

    2012-08-01

    Peter Jennings, technical director for ACO Building Drainage, which specialises in the development of corrosion-resistant drainage systems and building products, looks at the key issues to consider when specifying and installing pipework and drainage for hygiene-critical environments such as hospitals and other healthcare facilities.

  19. Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan)

    NASA Astrophysics Data System (ADS)

    Shahzad, F.; Mahmood, S. A.; Gloaguen, R.

    2010-03-01

    We devise a procedure in order to characterize the relative vulnerability of the Earth's surface to tectonic deformation using the geometrical characteristics of drainage systems. The present study focuses on the nonlinear analysis of drainage networks extracted from Digital Elevation Models in order to localize areas strongly influenced by tectonics. We test this approach on the Potwar Plateau in northern Pakistan. This area is regularly affected by damaging earthquakes. Conventional studies cannot pinpoint the zones at risk, as the whole region is characterized by a sparse and diffuse seismicity. Our approach is based on the fact that rivers tend to linearize under tectonic forcing. Thus, the low fractal dimensions of the Swan, Indus and Jehlum Rivers are attributed to neotectonic activity. A detailed textural analysis is carried out to investigate the linearization, heterogeneity and connectivity of the drainage patterns. These textural aspects are quantified using the fractal dimension, as well as lacunarity and succolarity analysis. These three methods are complimentary in nature, i.e. objects with similar fractal dimensions can be distinguished further with lacunarity and/or succolarity analysis. We generate maps of fractal dimensions, lacunarity and succolarity values using a sliding window of 2.5 arc minutes by 2.5 arc minutes (2.5'×2.5'). These maps are then interpreted in terms of land surface vulnerability to tectonics. This approach allowed us to localize several zones where the drainage system is highly structurally controlled on the Potwar Plateau. The region located between Muree and Muzaffarabad is found to be prone to destructive events whereas the area westward from the Indus seems relatively unaffected. We conclude that a nonlinear analysis of the drainage system is an efficient additional tool to locate areas likely to be affected by massive destructing events affecting the Earth's surface and therefore threaten human activities.

  20. Performance assessment of a street-drainage bioretention system.

    PubMed

    Chapman, Cameron; Horner, Richard R

    2010-02-01

    Event-based, flow-paced composite sampling was carried out at the inlet and outlet of a street-side bioretention facility in Seattle, Washington, to assess its ability to reduce street runoff quantity and pollutants. Over 2.5 years, 48 to 74% of the incoming runoff was lost to infiltration and evaporation. Outlet pollutant concentrations were significantly lower than those at the inlet for nearly all monitored constituents. In terms of mass, the system retained most of the incoming pollutants. Besides soluble reactive phosphorus (the mass of which possibly increased), dissolved copper was the least effectively retained; at least 58% of dissolved copper (and potentially as much as 79%) was captured by the system. Motor oil was removed most effectively, with 92 to 96% of the incoming motor oil not leaving the system. The results indicate that bioretention systems can achieve a high level of runoff retention and treatment in real-weather conditions.

  1. Modeling and real-time control of urban drainage systems: A review

    NASA Astrophysics Data System (ADS)

    García, L.; Barreiro-Gomez, J.; Escobar, E.; Téllez, D.; Quijano, N.; Ocampo-Martinez, C.

    2015-11-01

    Urban drainage systems (UDS) may be considered large-scale systems given their large number of associated states and decision actions, making challenging their real-time control (RTC) design. Moreover, the complexity of the dynamics of the UDS makes necessary the development of strategies for the control design. This paper reviews and discusses several techniques and strategies commonly used for the control of UDS. Moreover, the models to describe, simulate, and control the transport of wastewater in UDS are also reviewed.

  2. The usefulness of Wi-Fi based digital chest drainage system in the post-operative care of pneumothorax

    PubMed Central

    Cho, Hyun Min; Hong, Yoon Joo; Byun, Chun Sung

    2016-01-01

    Background Chest drainage systems are usually composed of chest tube and underwater-seal bottle. But this conventional system may restrict patients doing exercise and give clinicians obscure data about when to remove tubes because there is no objective indicator. Recently developed digital chest drainage systems may facilitate interpretation of the grade of air leak and make it easy for clinicians to decide when to remove chest tubes. In addition, with combination of wireless internet devices, monitoring and managing of drainage system distant from the patient is possible. Methods Sixty patients of primary pneumothorax were included in a prospective randomized study and divided into two groups. Group I (study) consisted of digital chest drainage system while in group II (control), conventional underwater-seal chest bottle system was used. Data was collected from January, 2012 to September, 2013 in Eulji University Hospital, Daejeon, Korea. Results There was no difference in age, sex, smoking history and postoperative pain between two groups. But the average length of drainage was 2.2 days in group I and 3.1 days in group II (P<0.006). And more, about 90% of the patients in group I was satisfied with using new device for convenience. Conclusions Digital system was beneficial on reducing the length of tube drainage by real time monitoring. It also had advantage in portability, loudness and gave more satisfaction than conventional system. Moreover, internet based digital drainage system will be a good method in thoracic telemedicine area in the near future. PMID:27076934

  3. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses.

  4. 76 FR 29083 - Agriculture Priorities and Allocations System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... restoration (civilian): Programs to protect or restore the agriculture and food system from terrorist attacks...: Programs to protect or restore the agriculture and food system from terrorist attacks, major disasters,...

  5. An Automated, Gravity-driven CSF Drainage System Decreases Complications and Lowers Costs

    PubMed Central

    Lieberson, Robert E; Meyer, William; Trang, Tung

    2017-01-01

    Background: FlowSafeTM (BeckerSmith Medical, Irvine, CA, USA) is a novel, robotic, external lumbar drainage (ELD) system, which was designed to control cerebrospinal fluid (CSF) drainage, reduce complications, and decrease treatment costs. Methods: Forty-seven consecutive neurosurgical patients requiring ELD were treated using the FlowSafe system. Results: In 39 of 40 patients with traumatic and surgical dural openings, potential CSF leaks were avoided. In seven patients with suspected normal pressure hydrocephalus, post-infectious ventriculomegaly, or pseudotumor cerebrum, we were able to assess the likelihood of improvement with shunting. The system, therefore, produced what we considered to be the “desired result” in 46 of 47 patients (98%). Our one treatment failure (2%) involved a patient with unrecognized hydrocephalus who, following a Chiari repair with a dural patch graft, was drained for six days. A persistent CSF leak eventually required a reoperation. Two patients (4%) described low-pressure headaches during treatment. Both responded to temporarily suspending or reducing the drainage rate. We saw no complications. Required nursing interventions were minimal.  Conclusions: The FlowSafe system was safe and effective. In our experience, there were fewer complications compared to currently available ELD systems. The FlowSafe was well tolerated by our patients. The near elimination of nursing interventions should allow lumbar drainage to be delivered in less costly, non-intensive care unit settings. Larger trials will be needed. PMID:28331772

  6. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  7. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds.

  8. Surface water drainage system. Environmental assessment and finding of no significant impact

    SciTech Connect

    1996-05-01

    This Environmental Assessment (EA) is written pursuant to the National Environmental Policy Act (NEPA). The document identifies and evaluates the action proposed to correct deficiencies in, and then to maintain, the surface water drainage system serving the Department of Energy`s Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. Many of the activities proposed would not normally be subject to this level of NEPA documentation. However, in many cases, maintenance of the system has been deferred to the point that wetlands vegetation has become established in some ditches and culverts, creating wetlands. The proposed activities would damage or remove some of these wetlands in order to return the drainage system to the point that it would be able to fully serve its intended function - stormwater control. The Department of Energy (DOE) regulations require that activities affecting environmentally sensitive areas like wetlands be the subject of an EA. Most portions of the surface water drainage system are presently inadequate to convey the runoff from a 100-year storm event. As a result, such an event would cause flooding across much of the Site and possibly threaten the integrity of the dams at the terminal ponds. Severe flooding would not only cause damage to facilities and equipment, but could also facilitate the transport of contaminants from individual hazardous substance sites (IHSSs). Uncontrolled flow through the A- and B-series ponds could cause contaminated sediments to become suspended and carried downstream. Additionally, high velocity flood flows significantly increase erosion losses.

  9. The co-genetic evolution of metamorphic core complexes and drainage systems

    NASA Astrophysics Data System (ADS)

    Trost, Georg; Neubauer, Franz; Robl, Jörg

    2016-04-01

    Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi

  10. Effects of macro-pores on water flow in coastal subsurface drainage systems

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Yu, Xiayang; Lu, Chunhui; Li, Ling

    2016-01-01

    Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.

  11. Polymers and drugs suitable for the development of a drug delivery drainage system in glaucoma surgery.

    PubMed

    Löbler, Marian; Sternberg, Katrin; Stachs, Oliver; Allemann, Reto; Grabow, Niels; Roock, Anne; Kreiner, Christine F; Streufert, Detlef; Neffe, Axel T; Hanh, Bui Duc; Lendlein, Andreas; Schmitz, Klaus-Peter; Guthoff, Rudolf

    2011-05-01

    Implantation of a glaucoma drainage system is an appropriate therapeutic intervention in some glaucoma patients. However, one drawback with this approach is the fibrotic tissue response to the implant material, leading to reduced flow of aqueous liquid or complete blockage of the drainage system. As a basis for developing an aqueous shunt we report here investigations with poly(3-hydroxybutyrate) (P(3HB)) and poly(4-hydroxybutyrate) (P(4HB)) as polymer matrices and with paclitaxel (PTX) and triamcinolone acetonide (TA) as drugs that might, in combination, delay or prevent the process of fibrosis by reducing fibroblast activity. P(3HB) and P(4HB) were fabricated into test prototypes with 500 μm outer and 200 μm inner diameter and ∼1 cm length. The antiproliferative agent PTX and the anti-inflammatory agent TA were incorporated into the polymer matrices and were released by diffusion. In vitro cell assays demonstrated that the polymers have the potential to reduce fibroblast viability, while TA showed differential inhibition of Tenon fibroblasts, but not cornea keratocytes. Implantation of polymer disks and prototype devices into rabbit eyes confirmed the good biocompatibility of the materials. The combined use of a poly(hydroxybutyrate) polymer with PTX or TA has the potential to reduce the fibrosis associated with conventional glaucoma drainage systems.

  12. Intelligent real-time operation of a pumping station for an urban drainage system

    NASA Astrophysics Data System (ADS)

    Hsu, Nien-Sheng; Huang, Chien-Lin; Wei, Chih-Chiang

    2013-05-01

    SummaryIn this study, we apply artificial intelligence techniques to the development of two real-time pumping station operation models, namely, a historical and an optimized adaptive network-based fuzzy inference system (ANFIS-His and ANFIS-Opt, respectively). The functions of these two models are the determination of the real-time operation criteria of various pumping machines for controlling flood in an urban drainage system during periods when the drainage gate is closed. The ANFIS-His is constructed from an adaptive network-based fuzzy inference system (ANFIS) using historical operation records. The ANFIS-Opt is constructed from an ANFIS using the best operation series, which are optimized by a tabu search of historical flood events. We use the Chung-Kong drainage basin, New Taipei City, Taiwan, as the study area. The operational comparison variables are the highest water level (WL) and the absolute difference between the final WL and target WL of a pumping front-pool. The results show that the ANFIS-Opt is better than the ANFIS-His and historical operation models, based on the operation simulations of two flood events using the two operation models.

  13. Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage.

    PubMed

    Hossain, Zahed; López-Climent, María F; Arbona, Vicent; Pérez-Clemente, Rosa M; Gómez-Cadenas, Aurelio

    2009-09-01

    Soil flooding induces an impairment of the photosynthetic system that often leads to an accumulation of reactive oxygen species (ROS) in plant tissues. Moreover, flooding release by drainage can cause a sudden oxygen burst that exacerbates oxidative damage. To examine the influence of different anoxic and post-anoxic periods on citrus physiology, citrumelo CPB4475, a moderate flood-tolerant genotype, was subjected to three different periods of soil flooding followed by drainage. Plant performance in terms of visible damage, photosynthetic activity, malondialdehyde (MDA) and hydrogen peroxide accumulation was examined together with the plant antioxidant response. The results indicated that coordinated antioxidant activity, involving increased activities of superoxide dismutase (SOD) (EC 1.15.1.1) and catalase (CAT) (EC 1.11.1.6), together with a modulation of the ascorbate-glutathione cycle, allowed plants to cope with flooding-induced oxidative stress up to a certain point. Elevated ascorbate peroxidase (APX) (EC 1.11.1.11) activity or discrete increases in AsA or glutathione concentrations seemed inefficient in maintaining low levels of oxidative damage. Waterlogging stress release by soil drainage did not improve plant performance but, on the contrary, enhanced oxidative stress and even accelerated plant injury. This appears to be the result of sudden oxygen burst soon after release of water.

  14. External Economic Drivers and U.S. Agricultural Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S agriculture operates in a market driven economy. As with other businesses, agricultural producers respond to economic incentives and disincentives and make decisions to maximize their welfare. In this paper we examine external economic drivers that shape agricultural systems. Specifically, we c...

  15. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness.

  16. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  17. Performance of stormwater detention tanks for urban drainage systems in northern Italy.

    PubMed

    Todeschini, Sara; Papiri, Sergio; Ciaponi, Carlo

    2012-06-30

    The performance of stormwater detention tanks with alternative design configurations (insertion in the storm sewer network; volume per impervious hectare) and operating conditions (continuous and intermittent emptying rules) have been evaluated according to an integrated approach. Various performance indices have been adopted to describe the mitigation of the pollution impact to the natural environment, the reduction of the management and maintenance charges for the urban drainage system, the preservation of the normal purification efficiency, and the limitation of the costs at the treatment plant. The US EPA Storm Water Management Model has been used to simulate the rainfall-runoff process and the pollutant dynamics on theoretical catchments and storm sewer networks for an individual event, as well as for a continuous run of events and inter event periods of one year recorded at the rain gauge of Cascina Scala (Pavia, northern Italy). Also the influence of the main characteristics of the urban catchment and the drainage system (area of the catchment and slope of the network) on the performance of alternative design and operating solutions has been examined. Stormwater detention tanks combined with flow regulators demonstrated good performance with respect to environmental pollution: satisfactory performance indicators can be obtained with fairly low flow rates of flow regulators (0.5-1 L/s per hectare of impervious area) and tank volumes of about 35-50 m(3) per impervious hectare. Continuous emptying guaranteed the lowest number and duration of overflows, while an intermittent operation minimised the volume sent for purification reducing the costs and the risks of impairment in the normal treatment efficiency of the plant. Overall, simulation outcomes revealed that the performance indexes are scarcely affected by the area of the catchment and the slope of the drainage network. The result of this study represents a key issue for the implementation of

  18. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China

    NASA Astrophysics Data System (ADS)

    Gao, Hongshan; Li, Zongmeng; Pan, Baotian; Liu, Fenliang; Liu, Xiaopeng

    2016-04-01

    As a drainage system located in arid western China, the Shiyang River, combined with considerable fluvial strata and landform information, provides an environmental context within which to investigate fluvial responses to late Quaternary climate change. Sedimentological analysis and optically stimulated luminescence (OSL) dating enabled us to reconstruct the processes and fluvial styles of three sedimentary sequences of the Shagou and Hongshui rivers in the Shiyang drainage system. Our results present a variety of river behaviors during the late Quaternary in these areas. In the upstream Shiyang River, Zhangjiadazhuang (ZJDZ) profile of the Shagou was dominated by aggradation and a meandering channel pattern at 10.6-4.2 ka, while a noticeable channel incision occurred at ~ 4.2 ka followed by lateral channel migration. In the downstream Shiyang River, Datugou (DTG) profile of the Hongshui was an aggrading meandering river from 39.7 to 7.2 ka while channel incision occurred at 7.2 ka. Another downstream profile, Wudunwan (WDW) of the Hongshui was also characterized by aggradation from 22.4 to 4.8 ka; however, its channel pattern shifted from braided to meandering at ~ 13 ka. A discernable downcutting event occurred at ~ 4.8 ka, followed by three channel aggradation and incision episodes prior to 1.8 ka. The last 1.8 ka has been characterized by modern channel and floodplain development. The fluvial processes and styles investigated have a close correlation with late Quaternary climate change in the Shiyang River drainage. During cold phases, the WDW reach was dominated by aggradation with a braided channel pattern. During warm phases, the rivers that we investigated were also characterized by aggradation but with meandering channel patterns. Channel incision events and changes of fluvial style occurred mainly during climate transitions.

  19. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system.

    PubMed

    Feng, Linglin; Zhang, Lei; Liu, Min; Yan, Zhiqiang; Wang, Chenyu; Gu, Bing; Liu, Yu; Wei, Gang; Zhong, Gaoren; Lu, Weiyue

    2010-04-01

    Our aim was to develop a novel liposomal drug delivery system containing dextrans to reduce undesirable retention of antineoplastic agents and thus alleviate local tissue damage. At the cell level, diethylaminoethyl-dextran (DEAE-Dx) showed the strongest inhibiting effect on liposome uptake by macrophages among tested dextrans. The distribution of radiolabeled liposomes mixed with dextrans in injection site and draining lymph node was investigated in rats after subcutaneous injection. DEAE-Dx substantially reduced the undesired local retention and promoted the draining of liposome into lymphatics, which was further confirmed by confocal microscopy images revealing the substantial prevention of rhodamine B-labelled liposome sequestration by macrophages in normal lymph node in rats. Pharmacokinetic data indicated the accelerated drainage of liposome through lymphatics back to systemic circulation by mixing with DEAE-Dx. In the toxicological study in rabbits, DEAE-Dx alleviated the local tissue damage caused by liposomal doxorubicin. In conclusion, dextrans, particularly DEAE-Dx, could efficiently enhanced liposomes drainage into lymphatics, which proves themselves as promising adjuvants for lymphatic-targeted liposomal drug delivery system.

  20. WATER DRAINAGE MODEL

    SciTech Connect

    J.B. Case

    2000-05-30

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  1. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    NASA Astrophysics Data System (ADS)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  2. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    PubMed

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD.

  3. Geomorphological analysis of the drainage system on the active convergent system in Azerbaijan, NW Iran

    NASA Astrophysics Data System (ADS)

    Kaveh Firouz, Amaneh; Burg, Jean-Pierre; Giachetta, Emanuele

    2016-04-01

    Rivers are important landforms to reconstruct recent tectonic history because they are sensitive to surface movements, especially uplift and tilting. The most important drainage basins of NW Iran are, from north to south, the Arax River, the Urmia Lake and the Ghezel Ozan River catchment. The morphology of the two adjacent catchments draining into the Caspian Sea, the Arax and Ghezel Ozan were studied to better understand the active tectonics and the effect of fault activity on morphology and erosion rate of NW Iran. We performed a quantitative analysis of channel steepness and concavity, from slope-area plots calculated from digital elevation model. This information has been combined with GPS velocity vectors and seismicity. Both catchments developed under uniform climate conditions. Results show that the two rivers are in morphological disequilibrium; they exhibit profiles with prominent convexities and knickpoints. The Arax River shows higher channel steepness and concavity index in downstream part of the profile. Distribution of knickpoints show scattered elevation between 700m and 3000m. GPS rates display shortening 10 ± 2 mma-1 and 14 ± 2 mma-1 in upstream and downstream, respectively. The river profiles of Ghezel Ozan River and its tributaries reveal more disequilibrium downstream where channel steepness and concavity index are higher than upstream. Most knickpoints occur between 1000m and 2000m. The amount of shortening by GPS measurement changes from upstream 13 ± 2 mma-1to downstream 14 ± 2 mma-1. Recorded earthquakes, such as Rudbar earthquake (Mw=7.3, 1990), are more frequent downstream. The Urmia Lake is surrounded by many small and large catchments. Only major catchments were considered for the analysis. One of the most active faults, the north Tabriz fault, corresponds to a major knickpoints on the Talkhe rud River. Concordance between river profile analysis, GPS and seismotectonic records suggests that the characteristics of the river profiles

  4. Digital reconstruction of the Song Dynasty Ganzhou drainage system based on AR technology and its’ application in the new urban area planning and revision

    NASA Astrophysics Data System (ADS)

    Cao, H. L.; Chen, Y. L.; Tao, T. H.

    2017-02-01

    Water-logging problem is a common problem in modern city. The urban built-up area of Zhangjiang new district in Ganzhou has the same water-logging problem, however, the old urban area of Ganzhou was praised as “Millennium no flood”. The drainage system of the old urban area of Ganzhou—Fushougou, which is not flooded for hundreds years because of the perfect drainage system. It’s valuable to be referenced to the modern city drainage and waterproof comprehensive planning. In order to explore the mystery of “Millennium no flood” of old urban area of Ganzhou, at the same time to provide directive opinion to the sustainability of Zhangjiang new urban area drainage system, this paper attempts to digital reconstruct the drainage system in old urban area of Ganzhou by augmented reality(AR). It will provide a new technological means and ways to evaluate the sustainability of urban underground drainage system under the surface feature changes in the landscape. On the basis of digital reconstruction of the drainage system in the old urban area of Ganzhou, the sustainability evaluation index of drainage system is studied by analyzing and contrasting with Zhangjiang new urban area drainage system, to guide the revision of comprehensive planning about city drainage and water-logging in the new urban area of Zhangjiang.

  5. Analysing connectivity through landslide-channel geomorphic coupling in a large drainage system of Southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta

    2014-05-01

    Unlike creep, splash erosion and linear erosion which sometimes are called "continuous" slope processes, since they are perceived as causing relatively continuous erosion on slopes and a rather rapid transport towards river channels, mass movement processes, excepting flows, have a discontinuous behavior, manifesting stochastically on time intervals ranging from one year to tens of years, while the displaced material can remain suspended in different parts of the slope forming sediment stores. It is obviously why estimating the sediment delivered to the river network by landslides becomes a difficult task. Landslide control on channel dynamics is just one of the several forms of hillslope-channel coupling. Landslide-channel connectivity is relevant for understanding the way landslides are contributing to the sediment flux within catchments and how their study should be integrated in the estimation of sediment budgets. This paper explores the geomorphic coupling of landslides with river channels based on an extensive landslide inventory. The study area is a large drainage basin (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which contribute to supplying sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets, the first stage of which consists in studying sediment sources. High sediment transport is associated to flash floods, a fraction of which is due to the slope failures occurring in response to the undercutting of river channels. Nominal classification systems as well as quantitative measures available in the connectivity literature are adopted here to describe the landslides-channels contact zones. Characteristics of the geomorphic coupling interfaces are further linked to the resulting geomorphic effects of landslides on the drainage

  6. [Evaluation index system of swamp degradation in Zoige Plateau of Sichuan, Southwest China under drainage stress].

    PubMed

    Yang, Yong-Xing; Li, Kei; Yang, Yang

    2013-07-01

    The evaluation index system of swamp degradation is one of the key scientific issues in the frontier field of international wetland science research. On the basis of long-term swamp field reconnaissance, and according to the fixed position ecological investigation of plant communities and the analysis of soil samples in 20 swamp plots in three belt transects of swamp degradation research under the stress of drainage in 2009, the swamps in the Zoige Plateau of Sichuan were classified into three groups with seven swamp communities, i. e., undisturbed (A type), disturbed by long-term and weak drainage (B-D type), and disturbed by short-term and strong drainage (E-G type), according to the species importance value and by Two-Way Indicator Species Analysis (TWINSPAN). The degradation degree of the swamps was graded by the method of Principal Components Analysis (PCA), and the swamp vegetation evaluation index (SVEI) and soil evaluation index (SSEI) were developed. Based on the SVEI, the swamps were classified as pristine swamp, lightly degraded swamp, moderately degraded swamp, and severely degraded swamp. Based on the SSEI, the swamps in Hongyuan County were divided into three grades, i. e. pristine swamp, lightly degraded swamp, and severely degraded swamp, while those in Ruoergai County were divided into lightly degraded swamp, moderately degraded swamp, and severely degraded swamp. The similarity of TWINSPAN classification results and SVEI/SSEI evaluation results was above 70%, indicating that both SVEI and SSEI were effective for the swamp degradation grading, and different classification methods should be combined to comprehensively evaluate the swamps in the Plateau.

  7. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  8. Water balance: case study of a constructed wetland as part of the bio-ecological drainage system (BIOECODS).

    PubMed

    Ayub, Khairul Rahmah; Zakaria, Nor Azazi; Abdullah, Rozi; Ramli, Rosmaliza

    2010-01-01

    The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009.

  9. Final Environmental Assessment Airfield Storm Drainage System Repair Joint Base Andrews-Naval Air Facility Washington, MD

    DTIC Science & Technology

    2015-06-01

    heating -ventilating- cooling systems , lawn maintenance, and general maintenance of streets and sidewalks. Existing noise levels (Leq and DNL) were...effort to rehabilitate JBA facilities including runway demolition and reconstruction. Please consider using solar geothermal systems to utilize...Final Environmental Assessment Airfield Storm Drainage System Repair Joint Base Andrews–Naval Air Facility Washington, Maryland Prepared for

  10. Quality assurance of weather data for agricultural system model input

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  11. Review of operation of urban drainage systems in cold weather: water quality considerations.

    PubMed

    Marsalek, J; Oberts, G; Exall, K; Viklander, M

    2003-01-01

    Cold climate imposes special requirements on urban drainage systems, arising from extended storage of precipitation and pollutants in the catchment snowpack, processes occurring in the snowpack, and changes in catchment surface and transport network by snow and ice. Consequently, the resulting catchment response and runoff quantity differ from those experienced in snow- and ice-free seasons. Sources of pollutants entering urban snowpacks include airborne fallout, pavement and roadside deposits, and applications of de-icing and anti-skid agents. In the snowpack, snow, water and chemicals are subject to various processes, which affect their movement through the pack and eventual release during the melting process. Soluble constituents are flushed from the snowpack early during the melt; hydrophobic substances generally stay in the pack until the very end of melt and coarse solids with adsorbed pollutants stay on the ground after the melt is finished. The impacts of snowmelt on receiving waters have been measured mostly by the snowmelt chemical composition and inferences about its environmental significance. Recently, snowmelt has been tested by standard bioassays and often found toxic. Toxicity was attributed mostly to chloride and trace metals, and contributed to reduced diversity of benthic and plant communities. Thus, snowmelt and winter runoff discharged from urban drainage threaten aquatic ecosystems in many locations and require further studies with respect to advancing their understanding and development of best management practices.

  12. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    PubMed Central

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  13. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-02-26

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.

  14. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W.; Jaynes, M.L.

    1994-01-01

    large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  15. Passive treatment of acid mine drainage in down-flow limestone systems

    SciTech Connect

    Watzlaf, G.R.

    1997-12-31

    Passive down-flow systems, consisting of compost and/or limestone layers, may be well suited for treatment of acidic mine drainage containing ferric iron and/or aluminum. Two columns were constructed and operated in the laboratory. The first column simulated a downward, vertical-flow anaerobic wetland, also referred to as successive alkalinity-producing systems (SAPS), and has received mine drainage for 97 weeks. The 0.16-m diameter column was vertically oriented and (from bottom to top) consisted of a 0.30-m thick layer of limestone, a 0.76-m thick layer of spent mushroom compost, and 0.91 m of free standing water. Water flowed vertically downward through the system. A second column, filled with only limestone, received water from the same source as the first column. This limestone column contained a 1.06-m thick layer of limestone and 0.91 m of free standing water and has received water for 55 weeks. Actual acid mine drainage (pH = 3.1, acidity = 200 mg/L (as CaCO{sub 3}), SO{sub 4}{sup 2-} = 600 mg/L, Total Fe = 10 mg/L, Mn = 14 mg/L, and Al = 18 mg/L) was collected every two weeks from a nearby abandoned deep mine and applied to these columns at a rate of 3.8 mL/min. For the compost/limestone column, effluent pH remained above 6.2 (6.2-7.9); however, pH at a depth of 0.38 m in the compost (halfway) dropped to < 4 after 28 weeks (net acidic). At the bottom of the compost pH remained > 4.5 for all 97 weeks. Alkalinity was generated by a combination of limestone dissolution and sulfate reduction. Over the 97 week period, the column generated an average of 330 mg/L of alkalinity, mostly due to limestone dissolution. Bacterial sulfate reduction displayed an ever decreasing trend, initially accounting for more than 200 mg/L of alkalinity and after 40 weeks only accounting for about 50 mg/L.

  16. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system

    NASA Astrophysics Data System (ADS)

    Semadeni-Davies, Annette; Hernebring, Claes; Svensson, Gilbert; Gustafsson, Lars-Göran

    2008-02-01

    SummaryAssessment of the potential impact of climate change on water systems has been an essential part of hydrological research over the last couple of decades. However, the notion that such assessments should also include technological, demographic and land use changes is relatively recent. In this study, the potential impacts of climate change and continued urbanisation on waste and stormwater flows in the combined sewer of central Helsingborg, South Sweden, have been assessed using a series of DHI MOUSE simulations run with present conditions as well as two climate change scenarios and three progressive urbanisation storylines. At present, overflows of untreated wastewater following heavy rainfalls are a major source of pollution to the coastal receiving waters and there is a worry that increased rainfall could exacerbate the problem. Sewer flows resulting from different urbanisation storylines were simulated for two 10-year periods corresponding to present (1994-2003) and future climates (nominally 2081-2090). In all, 12 simulations were made. Climate change was simulated by altering a high-resolution rainfall record according to the climate-change signal derived from a regional climate model. Urbanisation was simulated by altering model parameters to reflect current trends in demographics and water management. It was found that city growth and projected increases in precipitation, both together and alone, are set to worsen the current drainage problems. Conversely, system renovation and installation of sustainable urban drainage systems (SUDS) has a positive effect on the urban environment in general and can largely allay the adverse impacts of both urbanisation and climate change.

  17. Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...

  18. Carbon dioxide insufflation for chronic subdural haematoma: a simple addition to burr-hole irrigation and closed-system drainage.

    PubMed

    Kubo, S; Takimoto, H; Nakata, H; Yoshimine, T

    2003-12-01

    Burr-hole irrigation with closed-system drainage is a common surgical method used for chronic subdural haematoma. However, the subdural space with air that entered during surgery sometimes remains for a prolonged period after surgery and may hamper uncomplicated healing of the subdural space. We combined a simple procedure, insufflation of carbon dioxide (CO2) into the subdural space through a drainage catheter, with conventional burr-hole irrigation and closed-system drainage. By this additional procedure, both the subdural space and the gas within the space decreased rapidly, and the subdural drain could be removed within 24 h. By promoting obliteration of the subdural space, this simple combined technique may contribute to early recovery and discharge of patients, and to a reduction in the recurrence rate of the disease.

  19. Hydrodynamic model of cells for designing systems of urban groundwater drainage

    NASA Astrophysics Data System (ADS)

    Zimmermann, Eric; Riccardi, Gerardo

    2000-08-01

    An improved mathematical hydrodynamic quasi-two-dimensional model of cells, CELSUB3, is presented for simulating drainage systems that consist of pumping well fields or subsurface drains. The CELSUB3 model is composed of an assemblage of algorithms that have been developed and tested previously and that simulate saturated flow in porous media, closed conduit flow, and flow through pumping stations. A new type of link between aquifer cells and drainage conduits is proposed. This link is verified in simple problems with well known analytical solutions. The correlation between results from analytical and mathematical solutions was considered satisfactory in all cases. To simulate more complex situations, the new proposed version, CELSUB3, was applied in a project designed to control the water-table level within a sewer system in Chañar Ladeado Town, Santa Fe Province, Argentina. Alternative drainage designs, which were evaluated under conditions of dynamic recharge caused by rainfall in a critical year (wettest year for the period of record) and a typical year, are briefly described. After analyzing ten alternative designs, the best technical-economic solution is a subsurface drainage system of closed conduits with pumping stations and evacuation channels. Résumé. Un modèle hydrodynamique perfectionné de cellules en quasi 2D, CELSUB3, est présenté dans le but de simuler des systèmes de drainage qui consistent en des champs de puits de pompage ou de drains souterrains. Le modèle CELSUB3 est composé d'un assemblage d'algorithmes développés et testés précédemment et qui simulent des écoulements en milieu poreux saturé, en conduites et dans des stations de pompage. Un nouveau type de lien entre des cellules d'aquifères et des drains est proposé. Ce lien est vérifié dans des problèmes simples dont les solutions analytiques sont bien connues. La corrélation entre les résultats des solutions analytiques et des solutions mathématiques a été consid

  20. Decision support for sustainable urban drainage system management: a case study of Jijel, Algeria.

    PubMed

    Benzerra, Abbas; Cherrared, Marzouk; Chocat, Bernard; Cherqui, Frédéric; Zekiouk, Tarik

    2012-06-30

    This paper aims to develop a methodology to support the sustainable management of Urban Drainage Systems (UDSs) in Algeria. This research is motivated by the various difficulties that the National Sanitation Office (ONA) has in managing this complex infrastructure. The method mainly consists of two approaches: the top-down approach and the bottom-up approach. The former facilitates the identification of factors related to a sustainable UDS, the development priorities and the criteria available to managers. The latter assesses UDS performance using the weighted sum method to aggregate indicators or criteria weighted using the Analytical Hierarchy Process (AHP). The method is demonstrated through its application to the UDS in the city of Jijel, Algeria.

  1. Basal drainage system response to increasing surface melt on the Greenland ice sheet.

    PubMed

    Meierbachtol, T; Harper, J; Humphrey, N

    2013-08-16

    Surface meltwater reaching the bed of the Greenland ice sheet imparts a fundamental control on basal motion. Sliding speed depends on ice/bed coupling, dictated by the configuration and pressure of the hydrologic drainage system. In situ observations in a four-site transect containing 23 boreholes drilled to Greenland's bed reveal basal water pressures unfavorable to water-draining conduit development extending inland beneath deep ice. This finding is supported by numerical analysis based on realistic ice sheet geometry. Slow meltback of ice walls limits conduit growth, inhibiting their capacity to transport increased discharge. Key aspects of current conceptual models for Greenland basal hydrology, derived primarily from the study of mountain glaciers, appear to be limited to a portion of the ablation zone near the ice sheet margin.

  2. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  3. Next Generation Agricultural System Data, Models and Knowledge Products: Introduction

    NASA Technical Reports Server (NTRS)

    Antle, John M.; Jones, James W.; Rosenzweig, Cynthia E.

    2016-01-01

    Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a 'NextGen' study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.

  4. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  5. Evaluation of layered and mixed passive treatment systems for acid mine drainage.

    PubMed

    Jeen, Sung-Wook; Mattson, Bruce

    2016-11-01

    Laboratory column tests for passive treatment systems for mine drainage from a waste rock storage area were conducted to evaluate suitable reactive mixture, system configuration, effects of influent water chemistry, and required residence time. Five columns containing straw, chicken manure, mushroom compost, and limestone (LS), in either layered or mixed configurations, were set up to simulate the treatment system. The results showed that all of the five columns removed metals of concern (i.e. Al, Cd, Co, Cu, Fe, Ni, and Zn) with a residence time of 15 h and greater. Reaction mechanisms responsible for the removal of metals may include sulfate reduction and subsequent sulfide precipitation, precipitation of secondary carbonates and hydroxides, co-precipitation, and sorption on organic substrates and secondary precipitates. The results suggest that the mixed systems containing organic materials and LS perform better than the layered systems, sequentially treated by organic and LS layers, due to the enhanced pH adjustment, which is beneficial to bacterial activity and precipitation of secondary minerals. The column tests provide a basis for the design of a field-scale passive treatment system, such as a reducing and alkalinity producing system or a permeable reactive barrier.

  6. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  7. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOEpatents

    Jin, Song [Fort Collins, CO; Fallgren, Paul H [Laramie, WY; Morris, Jeffrey M [Laramie, WY

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  8. Review of habitat classification schemes appropriate to streams, rivers, and connecting channels in the Great Lakes drainage system

    USGS Publications Warehouse

    Hudson, Patrick L.; Griffiths, R.W.; Wheaton, T.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    Studies of lotic classification, zonation, and distribution carried out since the turn of the century were reviewed for their use in developing a habitat classification scheme for flowing water in the Great Lakes drainage basin. Seventy papers, dealing mainly with fish but including benthos, were organized into four somewhat distinct groups. A heirarchical scale of habitat measurements is suggested, and sources of data and inventory methods, including statistical treatment, are reviewed. An outline is also provided for developing a classification system for riverine habitat in the Great Lakes drainage basin.

  9. Contributions of systematic tile drainage to watershed scale phosphorus transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) transport from agricultural fields continues be a focal point for addressing harmful algal blooms (HABs) and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. Research on th...

  10. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR.

    PubMed

    Han, J S; Kim, C G

    2009-01-01

    In general, acid mine drainage (AMD) causes low pH and high metal concentrations in mining areas and surroundings. The aim of this research was to achieve microbiological monitoring for AMD and to assess whether mine water outflows have any ecological effects on the aqueous ecosystem receiving effluents from different types of treatment system. The water quality of aquatic sample was analyzed and the molecular biological diversity of the samples was assessed using 16S rRNA methods, which were implemented to determine which bacteria existed throughout various unit processes for different AMD treatment systems and their receiving water environments. Acidiphilium cryptum, a heterotrophic acidophile, was found at the AMD sites, and Rhodoferax ferrireducens, which can reduce iron using insoluble Fe(III) as an electron acceptor, was detected at many AMD treatment facilities and downstream of the treatment processes. Subsequently, quantitative real-time PCR was conducted on specific genes of selected bacteria. Surprisingly, obvious trends were observed in the relative abundance of the various bacteria that corresponded to the water quality analytical results. The copy number of Desulfosporosinus orientus, a sulfate reducing bacteria, was also observed to decrease in response to decreases in metals according to the downstream flow of the AMD treatment system.

  11. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.

  12. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage.

    PubMed

    Riefler, R Guy; Krohn, Jeremy; Stuart, Ben; Socotch, Cheryl

    2008-05-15

    This report describes a twenty month case study of a successive alkalinity producing system (SAPS) treating a strong acid mine drainage (AMD) source in Coshocton County, Ohio. Prior to the commencement of the project, a large volume of black amorphous sludge had accumulated in several of the constructed wetlands. The sludge was found to be 43% organic, with very high concentrations of sulfur, iron, aluminum, and acidity. Based on several biological, physical, and chemical analyses, the sludge was determined to be an anaerobic biofilm with a large population of sulfur-reducing bacteria and a high mineral content due to the formation of iron sulfide and aluminum precipitates. On average the system performed well, generating 26 kg CaCO3/d of alkalinity and capturing 5.0 kg/d of iron and 1.7 kg/d of aluminum. Several simple performance analysis tools were presented in this work. By comparing the pollutant influent and effluent loading, it was determined that the SAPS was performing at capacity and over the past year increased effluent concentrations were due to increased influent loadings and not system deterioration. Further, by performing a detailed cell-by-cell loading analysis of multiple chemical components, the alkalinity generated by limestone dissolution and by sulfate reduction was determined. Interestingly, 61% of the alkalinity generation in the vertical flow wetlands was due to sulfur-reducing bacteria activity, indicating that sulfur-reducing bacteria may play a more significant role in SAPS than expected.

  13. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  14. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science

    NASA Technical Reports Server (NTRS)

    Jones, James W.; Antle, John M.; Basso, Bruno; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrero, Mario; Howitt, Richard E.; Janssen, Sander; Keating, Brian A.; Munoz-Carpena, Rafael; Porter, Cheryl H.; Rosenzweig, Cynthia; Wheeler, Tim R.

    2016-01-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  15. Paleotopographic Reconstruction of the Tharsis Magmatic Complex Reveals Potential Ancient Drainage Basin/Aquifer System

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Ferris, J.; Anderson, R. C.; Baker, V.; Hare, T.; Barlow, N. G.; Strom, R. G.; Tanaka, K. L.; Scott, D. H.

    2001-01-01

    Paleotopographic reconstructions reveal the potential existence of an enormous Noachian drainage basin in the eastern part of the Tharsis region of significant geologic and paleohydrologic implications. Additional information is contained in the original extended abstract.

  16. The Martain drainage system and the origin of valley networks and fretted channels

    NASA Astrophysics Data System (ADS)

    Carr, Michael H.

    1995-04-01

    Outflow channels provide strong evidence for abundant water near the Martian surface and an extensive groundwater system. Collapse of the surface into some channels suggests massive subsurface erosion and/or solution in addition to erosion by flow across the surface. Flat floors, steep walls, longitudinal striae and ridges, downstream deflection of striae from channel walls, and lack of river channels suggest that fretted channels form dominantly by mass wasting. A two-stage process is proposed. In the first stage, extension of valleys heads is favored by seepage of groundwater into debris shed from slopes. The debris moves downstream, aided by interstitial groundwater at the base of the debris, possibly with high pore pressures. In the second stage, because of climate change or a lower heat flow, groundwater can no longer seep into the debris flows in the valleys, their movement almost stops, and more viscous ice-lubricated debris aprons form. Almost all uplands at elevations greater than +1 km are dissected by valley networks, although the drainage densities are orders of magnitude less than is typical for the Earth. The valley networks resemble terrestrial river systems in planimetric shape, but U-shaped and rectangular-shaped cross sections, levee- like peripheral ridges, median ridges, patterns of branching and rejoining, and flat floors without river channels suggest that the networks may not be true analogs to terrestrial river valleys. It is proposed that they, like the fretted channels, formed mainly by mass wasting, aided by groundwater seepage into the mass-wasted debris. Movements of only millimeters to centimeters per year are needed to explain the channel lengths. Most valley formation ceased early at low latitudes because of progressive dehydration of the near surface, the result of sublimation of water and/or drainage of groundwater to regions of lower elevations. Valley formation persisted to later dates where aided by steep slopes, as on crater

  17. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  18. Foam drainage

    SciTech Connect

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  19. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    PubMed

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems.

  20. Traceability System For Agricultural Productsbased on Rfid and Mobile Technology

    NASA Astrophysics Data System (ADS)

    Sugahara, Koji

    In agriculture, it is required to establish and integrate food traceability systems and risk management systems in order to improve food safety in the entire food chain. The integrated traceability system for agricultural products was developed, based on innovative technology of RFID and mobile computing. In order to identify individual products on the distribution process efficiently,small RFID tags with unique ID and handy RFID readers were applied. On the distribution process, the RFID tags are checked by using the readers, and transit records of the products are stored to the database via wireless LAN.Regarding agricultural production, the recent issues of pesticides misuse affect consumer confidence in food safety. The Navigation System for Appropriate Pesticide Use (Nouyaku-navi) was developed, which is available in the fields by Internet cell-phones. Based on it, agricultural risk management systems have been developed. These systems collaborate with traceability systems and they can be applied for process control and risk management in agriculture.

  1. Airport Pavement Drainage

    DTIC Science & Technology

    1990-06-01

    drainage layer and trench drains can be found in Cedergren (10). 4.2 COMPONENTS OF SUBSURFACE DRAINAGE SYSTEM 4.2.1 Outflow Once the water has found...According to Cedergren (10) the open graded aggregate can replace the normally used dense graded materials on an inch-for-inch basis. A main problem in...the perforated pipe to prevent fines from entering, Figure 4.24 (11). Cedergren (10) suggests that collector pipes should be 42 laid with the

  2. The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes

    NASA Astrophysics Data System (ADS)

    Dolezal, F.; Kvitek, T.

    2003-04-01

    Large areas of ploughed lands in old peneplains of Central Europe (such as the Bohemo-Moravian Highland) are located on flat tops of hills. Their soils, mostly Cambisols on weathered acid crystalline rocks (e.g., granite and gneiss) are permeable and shallow or medium-deep. These are the zones of groundwater recharge and it is through them that the local water-bearing formations (weathered rocks, colluvia and quaternary sediments in valleys) receive their portions of nitrate and other pollutants. The groundwater exfiltrates on the lower parts of slopes and in narrow valleys, creating dispersed springs and waterlogged areas. The latter were traditionally used, if at all, as forests or meadows. Since about 1960, many of the former meadows in foothill zones of Czech highlands have been drained by subsurface tile drainage systems and turned into arable lands. Field measurements in several small experimental catchments in this area proved that the water which is being discharged into the main stream either by small surface tributaries collecting water from subsurface drainage systems or by the subsurface drainage systems themselves reveals high concentrations of nitrate. Strong intraseasonal variation of water quality and the results of runoff separation suggest that the overall turnover of groundwater is fast. It is hypothesised that the redox status of the formerly waterlogged sites has been shifted toward the oxidation side due to drainage and tillage, rendering the removal of nitrogen from groundwater by denitrification less efficient. Hence, it is mainly the combination of diffuse pollution by nitrate in the recharge zones and the lack of opportunity for denitrification in the transitional and discharge zones which makes the stream water polluted. The ploughed lands in the recharge zones represent an established basis for local agriculture and cannot be set aside. Many of them have however been declared as vulnerable zones in terms of the nitrate pollution risk

  3. Characterization of Manganese Oxide Precipitates from Appalachian Coal Mine Mine Drainage Treatment Systems

    SciTech Connect

    Tan, H.; Zhang, G; Heaney, P; Webb, S; Burgos, W

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO{sub x}). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction ({+-}inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO{sub x} precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO{sub x} precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.

  4. Spectral masking of goethite in abandoned mine drainage systems: implications for Mars

    USGS Publications Warehouse

    Cull, Selby; Cravotta, Charles A.; Klinges, Julia Grace; Weeks, Chloe

    2014-01-01

    Remote sensing studies of the surface of Mars use visible- to near-infrared (VNIR) spectroscopy to identify hydrated and hydroxylated minerals, which can be used to constrain past environmental conditions on the surface of Mars. However, due to differences in optical properties, some hydrated phases can mask others in VNIR spectra, complicating environmental interpretations. Here, we examine the role of masking in VNIR spectra of natural precipitates of ferrihydrite, schwertmannite, and goethite from abandoned mine drainage (AMD) systems in southeastern Pennsylvania. Mixtures of ferrihydrite, schwertmannite, and goethite were identified in four AMD sites by using X-ray diffractometry (XRD), and their XRD patterns compared to their VNIR spectra. We find that both ferrihydrite and schwertmannite can mask goethite in VNIR spectra of natural AMD precipitates. These findings suggest that care should be taken in interpreting environments on Mars where ferrihydrite, schwertmannite, or goethite are found, as the former two may be masking the latter. Additionally, our findings suggest that outcrops on Mars with both goethite and ferrihydrite/schwertmannite VNIR signatures may have high relative abundances of goethite, or the goethite may exist in a coarsely crystalline phase.

  5. Hydrochemical data for the Truckee River drainage system, California and Nevada

    SciTech Connect

    Benson, L.V.

    1984-01-01

    Surface-water samples were collected from the Truckee River drainage system during 1975, 1976, and 1981. Data resulting from chemical analyses of these samples, as well as certain other previously unpublished data, are tabulated in this report. The report contains the following hydrochemical data: (1) chemical composition of 21 tributaries to Lake Tahoe and the Truckee River upstream from Farad, California (May and October 1971, and June 1972); (2) chemical composition of the Truckee River at Tahoe City (January 1968 to January 1975) and at Farad, California (January 1968 to June 1980), and of the Little Truckee River upstream from Stampede Reservoir, California (January 1968 to April 1980); (3) chemical composition of the Truckee River at 11 sites from Tahoe City, California, to Nixon, Nevada (June 4 and September 3, 1975); (4) historical chemical analyses of water from Pyramid Lake, Nevada (1882 to 1973); (5) chemical composition (November 1975 to December 1976), water temperature (January 1976 to November 1977), and dissolved oxygen (January 1976 to November 1977) at various depths in Pyramid Lake, Nevada; (6) chemical composition of pore fluids from and carbonate mineralogy of sediment greater than 2 micrometers in five cores, Pyramid Lake, Nevada; (7) chemical composition of the Truckee River at Farad, California (January to July 1981); and (8) chemical composition of tufa from the Pyramid Lake basin. 9 references, 3 figures, 14 tables.

  6. Local effects of global climate change on the urban drainage system of Hamburg.

    PubMed

    Krieger, Klaus; Kuchenbecker, Andreas; Hüffmeyer, Nina; Verworn, Hans-Reinhard

    2013-01-01

    The Hamburg Water Group owns and operates a sewer network with a total length of more than 5,700 km. There has been increasing attention paid to the possible impacts of predicted changes in precipitation patterns on the sewer network infrastructure. The primary objective of the work presented in this paper is an estimation of the hydraulic impacts of climate change on the Hamburg drainage system. As a first step, simulated rainfalls based on the regional climate model REMO were compared and validated with long-term precipitation measurements. In the second step, the hydraulic effects on the sewer network of Hamburg have been analyzed based on simulated long-term rainfall series for the period of 2000-2100. Simulation results show a significant increase in combined sewer overflows by 50% as well as an increase in surcharges of storm sewer manholes. However, there is still a substantial amount of uncertainty resulting from model uncertainty and unknown development of future greenhouse gas emissions. So far, there seems to be no sound basis for the implementation of an overall climate factor for sewer dimensioning for the Hamburg region. Nevertheless, possible effects of climate change should be taken into account within the planning process for major sewer extensions or modifications.

  7. Influence of biofilms on heavy metal immobilization in sustainable urban drainage systems (SuDS).

    PubMed

    Feder, Marnie; Phoenix, Vernon; Haig, Sarah; Sloan, William; Dorea, Caetano; Haynes, Heather

    2015-01-01

    This paper physically and numerically models the influence of biofilms on heavy metal removal in a gravel filter. Experimental flow columns were constructed to determine the removal of Cu, Pb and Zn by gabbro and dolomite gravel lithologies with and without natural biofilm from sustainable urban drainage systems (SuDS). Breakthrough experiments showed that, whilst abiotic gravel filters removed up to 51% of metals, those with biofilms enhanced heavy metal removal by up to a further 29%, with Cu removal illustrating the greatest response to biofilm growth. An advection-diffusion equation successfully modelled metal tracer transport within biofilm columns. This model yielded a permanent loss term (k) for metal tracers of between 0.01 and 1.05, correlating well with measured data from breakthrough experiments. Additional 16S rRNA clone library analysis of the biofilm indicated strong sensitivity of bacterial community composition to the lithology of the filter medium, with gabbro filters displaying Proteobacteria dominance (54%) and dolomite columns showing Cyanobacteria dominance (47%).

  8. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    PubMed

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  9. An Investigation of Water Level Prediction in Urban Drainage System Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Chang, F.; Chiang, Y.; Chiu, Y.; Ho, Y.; Chang, L.; Wang, Y.

    2008-12-01

    The pumping stations are the major hydraulic facilities for the elimination of flood in highly developed cities and therefore play an important role in flood mitigation in metropolitan area. Accurate predictions of inner water level in urban drainage systems are necessary and important for successful operation of pumping stations. In view of the characteristics of artificial neural networks (ANNs), the model was introduced in this study for extracting rainfall-water level patterns from torrential rain events. The Yu-Cheng pumping station, Taipei city, is used as a case study, where historical records which contain information of rainfall amounts and inner water levels are used to train and verify the ANN's performance. First, we directly construct the ANN for multistep ahead water level predictions by using 11 storm events at gauging sites. The optimal structure and parameters are then tested via 3 different events. Second, the storm water management model (SWMM) was utilized for the purpose of generating data at un-gauged sites. Data generated from SWMM were further used to train the ANN. Finally, a comparison of water level prediction between SWMM and ANN are given. Our preliminary results show that the ANN is capable of constructing accurate and reliable water level prediction. The results also exemplify the need for a detailed investigation on SWMM-derived error that could propagate the input error into the ANN models.

  10. Comparison of short-term rainfall forecasts for model-based flow prediction in urban drainage systems.

    PubMed

    Thorndahl, Søren; Poulsen, Troels Sander; Bøvith, Thomas; Borup, Morten; Ahm, Malte; Nielsen, Jesper Ellerbæk; Grum, Morten; Rasmussen, Michael R; Gill, Rasphall; Mikkelsen, Peter Steen

    2013-01-01

    Forecast-based flow prediction in drainage systems can be used to implement real-time control of drainage systems. This study compares two different types of rainfall forecast - a radar rainfall extrapolation-based nowcast model and a numerical weather prediction model. The models are applied as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real-time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 h. The best performance of the system is found using the radar nowcast for the short lead times and the weather model for larger lead times.

  11. A Food Systems Approach To Healthy Food And Agriculture Policy.

    PubMed

    Neff, Roni A; Merrigan, Kathleen; Wallinga, David

    2015-11-01

    Food has become a prominent focus of US public health policy. The emphasis has been almost exclusively on what Americans eat, not what is grown or how it is grown. A field of research, policy, and practice activities addresses the food-health-agriculture nexus, yet the work is still often considered "alternative" to the mainstream. This article outlines the diverse ways in which agriculture affects public health. It then describes three policy issues: farm-to-school programming, sustainability recommendations in the Dietary Guidelines for Americans, and antibiotic use in animal agriculture. These issues illustrate the progress, challenges, and public health benefits of taking a food systems approach that brings together the food, agriculture, and public health fields.

  12. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  13. Private Agricultural Extension System in Kenya: Practice and Policy Lessons

    ERIC Educational Resources Information Center

    Muyanga, Milu; Jayne, T. S.

    2008-01-01

    Private extension system has been at the centre of a debate triggered by inefficient public agricultural extension. The debate is anchored on the premise that the private sector is more efficient in extension service delivery. This study evaluates the private extension system in Kenya. It employs qualitative and quantitative methods. The results…

  14. Ecosystem Services from Edible Insects in Agricultural Systems: A Review.

    PubMed

    Payne, Charlotte L R; Van Itterbeeck, Joost

    2017-02-17

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  15. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    PubMed Central

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems. PMID:28218635

  16. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  17. Multisensor monitoring system for assessment of locust hazard risk in the Lake Balkhash drainage basin.

    PubMed

    Propastin, Pavel

    2012-12-01

    Satellite and ground-based data were combined in a monitoring system to quantify the link between climate conditions and the risk of locust infestations in the southern part of Lake Balkhash's drainage basin in the Republic of Kazakhstan. In this monitoring system, the Normalized Difference Vegetation Index (NDVI), derived from the SPOT-VGT satellite, was used for mapping potential locust habitats and monitoring their area throughout 1998 to 2007. TOPEX/Poseidon and Jason 1 altimeter data were used to track the interannual dynamics of water level in Balkhash Lake. Climate conditions were represented by weather records for air temperature and precipitation during the same period. The classification procedure, based on an analysis of multitemporal dynamics of SPOT-VGT NDVI values observed by individual vegetation classes, generated annual areas of ten land-cover types, which were then categorized as areas with low, medium, and high risk for locust infestation. Statistical analyses showed significant influences of the climatic parameters and the Balkhash Lake hydrological regime on the spatial extend of annual areas of potential locust habitats. The results also indicate that the linkages between locust infestation risk and environmental factors are characterized by time lags. The expansion of locust risk areas are usually preceded by dry, hot years and lower water levels in Balkhash Lake when larger areas of reed grass are free from seasonal flooding. Years with such conditions are favourable for locust outbreaks due to expansion of the habitat areas suitable for locust oviposition and nymphal development. In contrast, years with higher water levels in Balkhash Lake and lower temperature decrease the potential locust habitat area.

  18. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  19. Evolution of closed urinary drainage systems use and associated factors in Spanish hospitals.

    PubMed

    Allepuz-Palau, A; Rosselló-Urgell, J; Vaqué-Rafart, J; Hermosilla-Pérez, E; Arribas-Llorente, J L; Sánchez-Payá, J; Lizán-García, M

    2004-08-01

    Although closed urinary drainage systems (CUDS) reduce the risk of catheter-associated urinary tract infection (CAUTI), open systems are still used in Spain. The object of this work was to describe the progress of CUDS use and factors associated with the drainage system type used in Spanish hospitals. The databases of the EPINE study (Study of Prevalence of Nosocomial Infections in Spain) from 1990 to 2000 were used. The EPINE study includes hospitalized patients of all ages in acute-care Spanish hospitals. Seventy-six thousand, seven hundred and eighty-eight catheterized patients were studied, and the whole database was used for the trend analysis of global hospital-acquired infection (HAI). The patient and the hospital were the two units of observation used in the analysis. Full implementation was defined as 90% CUDS use. A logistic regression model was applied to study factors influencing the use of CUDS and to determine prevalence trend. An odds ratio (OR) >1 indicates an incremental trend. The Pearson correlation coefficient between annual percentage of CUDS use and CAUTI prevalence was calculated. Variables for the year 2000 were compared using the Mann-Whitney U test between hospitals with and without full implementation. The prevalence of urinary catheterized patients in Spain increased from 12.4% in 1990 to 15.2% in 2000 (OR 1.019, 95% CI 1.016-1.021). The proportion of CUDS used increased from 50.6% in 1990 to 70% in 2000 (OR 1.1, 95% CI 1.095-1.104) and correlated with a significant decrease of UTIs (r = 0.65, P = 0.03). In 1990, 28.5% of hospitals had full implementation of CUDS and by 2000 this had risen to 40.3% (OR 1.093, 95% CI 1.06-1.127). Patients in medium (200-500 beds) and large (>500 beds) hospitals, as well as those with three of more diagnoses and two or more intrinsic risk factors had an increased probability of having a CUDS, whereas being hospitalized in areas other than intensive care, being male and less than 65 years old were

  20. Drainage beneath ice sheets: groundwater-channel coupling, and the origin of esker systems from former ice sheets

    NASA Astrophysics Data System (ADS)

    Boulton, G. S.; Hagdorn, M.; Maillot, P. B.; Zatsepin, S.

    2009-04-01

    The nature of the drainage system beneath ice sheets is crucial to their dynamic behaviour but remains problematic. An experimentally based theory of coupling between groundwater and major channel systems is applied to the esker systems in the area occupied the last ice sheet in Europe, which we regard as a fossil imprint of major longitudinal drainage channels. We conclude that the large-scale distribution and spacing of major eskers is consistent with the theory of groundwater control, in which esker spacing is partly controlled by the transmissivity of the bed. It is concluded that esker patterns reflect the large-scale organisation of the subglacial drainage pattern in which channel development is coupled to groundwater flow and to the ice sheet's dynamic regime. The theory is then used to deduce: basal meltwater recharge rates and their spatial variability from esker spacing in an area in which the ice sheet was actively streaming during its final retreat; patterns of palaeo-groundwater flow and head distribution; and the seasonally varying magnitude of discharge from stream tunnels at the retreating ice sheet margin. Major channel/esker systems appear to have been stable at least over several hundred of years during the retreat of the ice sheet, although major dynamic events are demonstrably associated with major shifts in the hydraulic regime. Modelling suggests: that glaciation can stimulate deep groundwater circulation cells that are spatially linked to channel locations, with groundwater flow predominantly transverse to ice flow; that the circulation pattern has the potential to create large-scale anomalies in groundwater chemistry; and that the spacing of channels will change through the glacial cycle, influencing water pressures in stream tunnels, subglacial hydraulic gradients and effective pressure. If the latter is reduced sufficiently, it could trigger enhanced bed deformation, thus coupling drainage to ice sheet movement. It suggests the

  1. Ecological constraints on the ability of precision agriculture to improve the environmental performance of agricultural production systems.

    PubMed

    Groffman, P M

    1997-01-01

    In this paper, I address three topics relevant to the ability of precision agriculture to improve the environmental performance of agricultural production systems. First, I describe the fundamental ecological factors that influence the environmental performance of these systems and address how precision agriculture practices can or cannot interact with these factors. Second, I review the magnitude of the ecological processes that we hope to manage with precision agriculture relative to agricultural inputs to determine whether managing these processes can significantly affect system environmental performance. Finally, I address scale incongruencies between ecological processes and precision agriculture techniques that could limit the ability of these techniques to manage variability in these processes. The analysis suggests that there are significant ecological constraints on the ability of precision agriculture techniques to improve the environmental performance of agricultural production systems. The primary constraint is that these techniques do not address many of the key factors that cause poor environmental performance in these systems. Further, the magnitude of the ecological processes that we hope to manage with precision agriculture are quite small relative to agricultural inputs and, finally, these processes vary on scales that are incongruent with precision management techniques.

  2. Passive treatment of acid mine drainage in systems containing compost and limestone: Laboratory and field results

    SciTech Connect

    Watzlaf, G.R.; Pappas, D.M.

    1996-12-31

    Passive, down-flow systems, consisting of compost and limestone layers, termed successive alkalinity producing systems (SAPS), may be well suited for treatment of mine drainage containing ferric iron and/or aluminum. A column, simulating a SAPS, has been operated in the laboratory for 52 weeks. The 0.16-m diameter column consisted of a 0.30-m thick layer of limestone, a 0.76-m thick layer of spent mushroom compost thick layer of limestone, a 0.76-m thick layer of spent mushroom compost and 0.91 m of free standing water. Actual AMD (pH = 3.02, acidity = 218 mg/L (as CaCO{sub 3}), SO{sub 4} = 600 mg/L, Fe = 16.0 mg/L, Mn = 12.1 mg/L, and Al = 17.1 mg/L) was applied to the column at a rate of 3.8 mL/min. Effluent pH has remained above 6.2 (6.2-7.9) in the column system. A SAPS located in Jefferson County, PA has been monitored for the past 4.5 years. The SAPS has an approximate area of 1000 m{sup 2} and contains a 0.4-m thick layer of limestone, a 0.2-m thick layer of spent mushroom compost, and 1.5 m of free standing water. Mine water (acidity = 335 mg/L (as CaCO{sub 3}), SO{sub 4} = 1270 mg/L, Fe = 246 mg/L, Mn = 38.4 mg/L, and Al = <0.2 mg/L) flowed into the SAPS at a rate of 140 L/min. Water samples from the field and laboratory systems have been collected at strategic locations on a regular basis and analyzed for pH, alkalinity, acidity, Fe{sup 2+}, total Fe, Mn, Al, SO{sub 4}, Ca, Mg, Na, Co, Ni, and Zn. Alkalinity has been generated in both field and laboratory systems by a combination of limestone dissolution and sulfate reduction. The column generated an average of 378 mg/L of alkalinity; 74% due to limestone dissolution and 26% due to bacterial reduction of sulfate. The field SAPS generated an average of 231 mg/L of alkalinity and exhibited seasonal trends.

  3. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    NASA Astrophysics Data System (ADS)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  4. Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Senthil Kumar, P.; Goto, Kazuhisa; Sekine, Yasuhito; Giri, Chaitanya; Matsui, Takafumi

    2014-05-01

    Lonar, a 1.8-km-diameter impact crater in India, is a rare example of terrestrial impact craters formed in basaltic bedrock. The estimated age of the crater ranges widely from less than 12 ka to over 600 ka, but the crater preserves a relatively pristine morphology. We conducted a study of various drainage systems of Lonar Crater. The crater floor hosts a shallow 5-m-deep lake, which fluctuates seasonally. Our investigation reveals that the lake level is influenced by surface runoff that is active during the monsoon and groundwater input effective during both the rainy and the dry seasons. The groundwater discharge is observed as springs on the inner rim walls corresponding to weathered vesicular basalt and/or proximal ejecta, which are underlain by thick massive basalt layers. This observation indicates that groundwater movement is lithologically controlled: it passes preferentially through permeable vesicular basalt or proximal ejecta but is hindered in less permeable massive basalt. It is hypothesized that groundwater is also structurally controlled by dipping of basalt layers, interconnectivity of the permeable lithologic units through fractures, and preferential pathways such as fractures within the permeable lithologic units. Investigation on hydrological processes at Lonar Crater and its lake could provide useful insights into purported paleo-crater lakes presumably formed in the basaltic crust of Mars. The Lonar Crater interior shows signs of degradation in the forms of gullies and debris flows, and the Dhar valley incising in the rim leading to form a fan delta. The ejecta surface is characterized by the presence of channels, originating from the rim area and extending radially away from the crater center. The channels probably resulted from surface runoff, and its erosion contributes to the removal of the ejecta. Lonar Crater is a valuable analog site for studying degradation processes with potential application to impact craters occurring on

  5. Decision making for urban drainage systems under uncertainty caused by weather radar rainfall measurement

    NASA Astrophysics Data System (ADS)

    Dai, Qiang; Zhuo, Lu; Han, Dawei

    2015-04-01

    With the rapidly growth of urbanization and population, the decision making for managing urban flood risk has been a significant issue for most large cities in China. A high-quality measurement of rainfall at small temporal but large spatial scales is of great importance to urban flood risk management. Weather radar rainfall, with its advantage of short-term predictability and high spatial and temporal resolutions, has been widely applied in the urban drainage system modeling. It is recognized that weather radar is subjected to many uncertainties and many studies have been carried out to quantify these uncertainties in order to improve the quality of the rainfall and the corresponding outlet flow. However, considering the final action in urban flood risk management is the decision making such as flood warning and whether to build or how to operate a hydraulics structure, some uncertainties of weather radar may have little or significant influence to the final results. For this reason, in this study, we aim to investigate which characteristics of the radar rainfall are the significant ones for decision making in urban flood risk management. A radar probabilistic quantitative rainfall estimated scheme is integrated with an urban flood model (Storm Water Management Model, SWMM) to make a decision on whether to warn or not according to the decision criterions. A number of scenarios with different storm types, synoptic regime and spatial and temporal correlation are designed to analyze the relationship between these affected factors and the final decision. Based on this, parameterized radar probabilistic rainfall estimation model is established which reflects the most important elements in the decision making for urban flood risk management.

  6. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    PubMed

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  7. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH INCORPORATING GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  8. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA

    USGS Publications Warehouse

    Cowie, Rory; Williams, Mark W.; Wireman, Mike; Runkel, Robert L.

    2014-01-01

    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  9. Use of Water Fluxmeters to Measure Drainage

    SciTech Connect

    Gee, Glendon W.; Ward, Andy L.; Zhang, Z. F.; Anandacoomaraswamy, A.

    2004-03-24

    Water supplies throughout the world are rapidly diminishing in quantity and quality. Efforts over the next decade must focus on methods which use water more efficiently for agriculture, industry, and recreational purposes, and at the same time reduce the potential for groundwater pollution. To assist in this effort, we have developed an improved method to simultaneously measure drainage quantity and quality using a water fluxmeter. Our water fluxmeter is a wick-lysimeter fitted with a small tipping-spoon and a solution-collection system. The only moving part is the tipping spoon. We have tested our fluxmeters under a range of conditions, from non-vegetated desert settings in Washington State USA, to irrigated tea plantations in Sri Lanka. Conditions of over-irrigation have been documented with our fluxmeters. When 4200 mm of water was applied to sandy soil via drip irrigation, at the Washington State site, over 3100 mm of drainage occurred. In contrast, at the same site, in the absence of both irrigation and vegetation, drainage was found to range from 0 mm/yr for a 1-m-deep silt loam soil to more than 100 mm/yr for a coarse-gravel surface. Solute transport, related to nitrate leaching can also be analyzed using water fluxmeters. Water fluxmeters have provided a reliable and inexpensive method to assess both quantity and quality of drainage waters over a wide range of environmental conditions.

  10. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    NASA Astrophysics Data System (ADS)

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  11. Effects of drainage salinity evolution on irrigation management

    NASA Astrophysics Data System (ADS)

    Kan, Iddo

    2003-12-01

    A soil physics theory of solute movement through a drained saturated zone underlying agricultural land is introduced into a long-term economic analysis of farm-level irrigation management; this is an alternative to the immediate, homogeneous blending assumption employed in previous studies as a base for calculating changes in drainage salinity over time. Using data from California, the effect of drainage salinity evolution is analyzed through a year-by-year profit optimization under the requirement of on-farm drainage disposal. Paths of optimal land allocation among crop production with fresh surface water, saline drainage reuse and evaporation ponds appear to depend on the relative profitability of the first two; that of reuse is affected by the trend of drainage salinity. Tile spacing and environmental regulations associated with evaporation ponds affect the timing of evaporation pond construction. The system converges into a solution involving both drainage-disposal activities; this solution includes an outlet for salts and is therefore sustainable. Following this strategy, the system is asymptotically approaching a steady state that possesses both hydrological and salt balances. Economic implications associated with land retirement programs in California are discussed.

  12. Implementing the Metric System in Agricultural Occupations. Metric Implementation Guide.

    ERIC Educational Resources Information Center

    Gilmore, Hal M.; And Others

    Addressed to the agricultural education teacher, this guide is intended to provide appropriate information, viewpoints, and attitudes regarding the metric system and to make suggestions regarding presentation of the material in the classroom. An introductory section on teaching suggestions emphasizes the need for a "think metric" approach made up…

  13. Ohio Agricultural Business and Production Systems. Technical Competency Profile (TCP).

    ERIC Educational Resources Information Center

    Ray, Gayl M.; Kershaw, Isaac; Mokma, Arnie

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in agricultural business and production systems. Following an introduction, the Ohio College Tech Prep standards and program, and relevant definitions are described. Next are the technical competency profiles for these…

  14. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  15. Drainage systems associated with mid-ocean channels and submarine Yazoos: Alternative to submarine fan depositional systems

    SciTech Connect

    Hesse, R. )

    1989-12-01

    Submarine drainage systems associated with mid-ocean channels and Yazoo River-type tributaries in small ocean basins represent a contrast to deep-sea fan depositional systems. Deep-sea fans are diverging sediment-dispersal systems of distributary fan valleys. Deep-sea channel-submarine-yazoo systems, on the other hand, form centripetally converging patterns of tributaries and yazoo-type satellite channels that join a major basin-draining (mid-ocean) channel. The facies model for such systems is characterized by randomly stacked fining-upward, gravelly, and sandy channel-fill and submarine point-bar sequences of the main channel encased in fine-grained overbank deposits. Second-order channels contain sandy proximal overbank deposits, whereas the levees of the main channel are predominantly composed of silt and clay. Second-order channels may be braided and may broaden into braid plains. Morphology and surficial sediment distribution have been studied within the Northwest Atlantic Mid-Ocean Channel of the Labrador Sea and its associated levees and yazoo-type (and other) tributaries.

  16. The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour.

    PubMed

    Bradbury, M W; Cole, D F

    1980-02-01

    1. The jugular lymphatic trunks were cannulated in anaesthetized rabbits and cats. Over 6-8 hr, the mean lymph flow was 2.3 microliters min-1 in the rabbit (one side only) and 5.0 microliters min-1 in the cat (sum of both sides). 2. After a single injection of radio-iodinated albumin into a lateral cerebral ventricle without significant rise in pressure, a mean of 14.4% of the radioactivity was recovered in deep cervical lymph of one side in the rabbit and of 12.9% in that of both sides in the cat. 3. During slow infusion of [125I]albumin and fluorescent dextran of 150,000 mol. wt. into a lateral ventricle of the cat at 20 microliters min-1, radioactivity and fluorescence reached plateaus in deep cervical lymph at 47.4 and 50.0% of their concentrations in cisternal c.s.f. respectively. 4. No significant radioactivity, other than from blood, was detected in superficial cervical lymph after intraventricular injection of radio-iodinated albumin in the cat. 5. No significant radioactivity, other than from blood, was detected in deep cervical lymph of the rabbit or in deep and superficial cervical lymph of the cat within 6 hr after injection of radio-iodinated albumin into the aqueous humour or orbital fat. 6. Gradients of radioactivity in tissues within the orbit suggested that there is a small flow of c.s.f., 0.05-0.15 microliters min-1 in the rabbit, passing centrifugally along the subarachnoid space of the optic nerve, through the posterior part of the globe and into the orbital tissue. Also a small proportion of aqueous humour, 1-2% or more, drains through the anterior sclera into the surrounding tissue. 7. A substantial quantity of cerebrospinal fluid drains into the deep cervical lymphatic system of the rabbit, 30% or more, and of the cat, 10-15% or more. The small component of aqueous humour drainage passing through the wall of the glove does not enter cervical lymph within 6 hr, if at all.

  17. Insights into the ancient Mississippi drainage system from detrital zircons analyses of the modern Mississippi deep-sea fan

    NASA Astrophysics Data System (ADS)

    Fildani, A.; McKay, M. P.; Stockli, D. F.; Clark, J. D.; Weislogel, A. L.; Dykstra, M.; Hessler, A. M.

    2014-12-01

    The modern Mississippi deep-sea fan is a large-scale accumulation of Quaternary sediment deposited in the Gulf of Mexico by the modern Mississippi River via the Mississippi delta. The Mississippi River has a well-characterized drainage system extending across North America from the western Rocky Mountains to the Appalachians in the east. Deep-water sand samples of buried channel-fill and lobe deposits of the Mississippi fan from selected Sites of Leg 96 of the Deep Sea Drilling Project (DSDP) and were integrated with USGS piston core samples from the most recent lobe for detrital zircon U-Pb isotopic analysis. Since the modern Mississippi River has a well-known catchment, the detrital zircon age 'signal' observed in the deep-water sediments can therefore be used as an actualistic study of the detrital zircon provenance signatures resulting from modern drainage patterns. Based on this approach, we compare this dataset with published data and observe minor variability in the detrital zircon signature through time. Populations sourced from the Western North American Cordillera are consistent through time in terms of ages, however Paleocene sediments are slightly enriched in Yavapai-Mazatzal zircons sourced from southwestern continental U.S.. Grenville- and Appalachian-derived zircons reflect minor variation in sediment input from the Appalachian Mountains and related deposits in the eastern Mississippi River catchment. When compared to published Upper Jurassic Norphlet formation detrital zircon data, the Paleocene published dataset and the newly acquired modern sands are partly depleted of Appalachian-derived zircons. This paucity in Appalachian age zircon in Paleocene-to-modern sediments suggests a reconfiguration of the Mississippi River drainage prior to Tertiary time. Since this realignment, the Mississippi River drainage has remained relatively unchanged. Piston core samples from the most recent lobe yielded zircons indicating a recent influx of Appalachian

  18. TMDL implementation in agricultural landscapes: a communicative and systemic approach.

    PubMed

    Jordan, Nicholas R; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J; Pitt, David G; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  19. TMDL Implementation in Agricultural Landscapes: A Communicative and Systemic Approach

    NASA Astrophysics Data System (ADS)

    Jordan, Nicholas R.; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J.; Pitt, David G.; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  20. A geographic information system screening tool to tackle diffuse pollution through the use of sustainable drainage systems.

    PubMed

    Todorovic, Zorica; Breton, Neil P

    2014-01-01

    Sustainable drainage systems (SUDS) offer many benefits that traditional solutions do not. Traditional approaches are unable to offer a solution to problems of flood management and water quality. Holistic consideration of the wide range of benefits from SUDS can result in advantages such as improved flood resilience and water quality enhancement through consideration of diffuse pollution sources. Using a geographical information system (GIS) approach, diffuse pollutant sources and opportunities for SUDS are easily identified. Consideration of potential SUDS locations results in source, site and regional controls, leading to improved water quality (to meet Water Framework Directive targets). The paper will discuss two different applications of the tool, the first of which is where the pollutant of interest is known. In this case the outputs of the tool highlight and isolate the areas contributing the pollutants and suggest the adequate SUDS measures to meet the required criteria. The second application is where the tool identifies likely pollutants at a receiving location, and SUDS measures are proposed to reduce pollution with assessed efficiencies.

  1. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  2. Morphotectonic evolution of the Alhama de Murcia strike-slip fault overprinting drainage systems inherited from Late Miocene extension (Western Mediterranean-Eastern Betics)

    NASA Astrophysics Data System (ADS)

    Ferrater Gómez, Marta; Booth Rea, Guillermo; Azañón, José Miguel; Pérez Peña, José Vicente; Masana, Eulàlia

    2013-04-01

    The adaptation of drainage systems to the evolution of tectonic structures offers important clues to the tectonic regime present in an area and to the tectonic changes that have occurred. The development of new mountain fronts can produce the abandonment of earlier drainage networks by way of fluvial captures. He we analyse the response of a drainage network inherited from late Miocene extension to tectonic forcing associated to the growth and activity of the Alhama de Murcia sinistral strike-slip in a new transpressive tectonic setting. Rock uplift related to the Alhama de Murcia strike-slip fault and associated structures are conditioning the recent drainage network; overprinting the previous extensional related drainage. We carried out a structural and a qualitative and quantitative relief analysis to understand how the relief has evolved and which are the main active structures that currently control the drainage configuration. We identify river capture sites and we present a geomorphic index analysis using SLk anomalies, hypsometric curves, mountain front sinuosity, the comparison between longitudinal and projected river profiles with the SLk values and the position of active faults and folds, and a slope analysis of the area. The results show: 1) the reactivation of the ending part of the main basins by the current uplift of the Sierra de la Tercia, 2) progressive capture processes related to the growth of the Rambla de Lebor and Totana transverse drainages upon the previous drainage, evidenced by the presence of wind gaps, abrupt changes in flow direction, oblique relationship between current river direction and paleosurfaces maximum slope direction and changes in the lithologic composition of terraces, and 3) basin shapes controlled by the interference between an old NE-SW-directed drainage network controlled by extensional structures and another NW-SE one controlled by the sinistral Alhama de Murcia Fault.

  3. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  4. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-04-29

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  5. Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural runoff containing nitrogen fertilizer is a major contributor to eutrophication in aquatic systems. One method of lowering amounts of nitrogen entering rivers or lakes is the transport of runoff through vegetated drainage ditches. Drainage ditch vegetation can enhance the mitigation of...

  6. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems

    PubMed Central

    Verbruggen, Erik; Toby Kiers, E

    2010-01-01

    The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit. PMID:25567946

  7. Modeling the impacts of regulatory frameworks on self-organization in dryland agricultural systems

    NASA Astrophysics Data System (ADS)

    Gower, D.; Caylor, K. K.; McCord, P. F.; Evans, T. P.

    2015-12-01

    The climatological conditions that characterize dryland environments - high potential evapotranspiration combined with low and variable total rainfall - pose challenges for farmers deciding when and how much to irrigate. These challenges are greater in developing countries where the absence of sufficient storage infrastructure means that irrigation water is sometimes applied to agricultural fields directly from rivers. Because soil moisture and river flow both depend on recent rainfall, high irrigation demand often coincides with low river flow, limiting access to water when it is most needed. These feedbacks can constrain the yield increases expected from irrigation in such settings. Scaled up to the catchment level, irrigation water availability varies spatially as well as temporally. Irrigators in upstream areas of the catchment have first access to river water but rely on a smaller drainage network while those in downstream areas are affected by the opposite conditions. During periods of high rainfall, downstream users have the greatest access to water while upstream users are then favored during drought intervals. In the absence of rules governing water access, these flow dynamics will constrain the distribution of potential agricultural yields within the catchment. A simple numerical model simulating catchment and irrigation processes was constructed in order to better understand how climate and geomorphologic characteristics affect crop yield, economic returns and the spatial distribution of irrigated areas. By assuming a statistically representative river network structure, the model was first used to explore the effect of unregulated irrigation withdrawals on these variables. Multiple water management programs, including withdrawal limits, rotational systems and flow minima, were then simulated and the results compared to the unregulated case. This analysis shows the potential for simple models to provide insight into complex irrigation systems and to make

  8. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    EPA Science Inventory

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  9. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  10. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  11. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  12. A computational-grid based system for continental drainage network extraction using SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Curkendall, David W.; Fielding, Eric J.; Pohl, Josef M.; Cheng, Tsan-Huei

    2003-01-01

    We describe a new effort for the computation of elevation derivatives using the Shuttle Radar Topography Mission (SRTM) results. Jet Propulsion Laboratory's (JPL) SRTM has produced a near global database of highly accurate elevation data. The scope of this database enables computing precise stream drainage maps and other derivatives on Continental scales. We describe a computing architecture for this computationally very complex task based on NASA's Information Power Grid (IPG), a distributed high performance computing network based on the GLOBUS infrastructure. The SRTM data characteristics and unique problems they present are discussed. A new algorithm for organizing the conventional extraction algorithms [1] into a cooperating parallel grid is presented as an essential component to adapt to the IPG computing structure. Preliminary results are presented for a Southern California test area, established for comparing SRTM and its results against those produced using the USGS National Elevation Data (NED) model.

  13. Characterization of Microbial Communities in Coal Mine Drainage Treatment Systems With Elevated Manganese

    NASA Astrophysics Data System (ADS)

    Tan, H.; Zhang, G.; Burgos, W.

    2007-12-01

    Sediment samples were collected from two coal mine drainage treatment sites in western Pennsylvania. Both of the sites use constructed limestone beds to passively treat acidic coal mine drainage containing elevated manganese (Mn). Site #1 has influent manganese of 150 mg/L and effluent manganese between 40-100 mg/L. Site #2 has influent manganese of 20 mg/L and effluent manganese of less than 0.5 mg/L. Large quantities of black crusts were deposited throughout the beds at both sites. X-ray diffraction showed these crusts constituted of buserite, which is a layered structure manganese oxide mineral. Both culture-dependent and nucleic acid- based techniques were used to characterize the bacterial and fungal communities in these beds. 16S rRNA gene analysis showed that bacterial communities were very diverse and included Cyanobacter, Proteobacteria, Bacteroidete, Planctomyceta, Acidobacter, Actinobacter and Gemmatimonade taxa. The archaeal diversity was lower and most sequences were related to uncultivated species. Two Mn-oxidizing fungi strains were isolated from one of the sites. One of the fungi is capable of oxidizing Mn(II) at both low and netural pH (3-7) while the other fungi can only oxidze Mn(II) at circumneutral pH. 18S rRNA gene analysis showed the low pH Mn-oxidizing fungus was closely related to Menispora tortuosa, Chaetosphaeria curvispora and Kionochaeta spissa, and the circumneutral Mn-oxidizing fungus was closely related to Myrothecium verrucaria, Didymostilbe echinofibrosa and Myrothecium roridum.

  14. Design of a solar controlled environment agriculture system (SCEAS)

    SciTech Connect

    Landstrom, D.K.; Stickford, G.H.; Talbert, S.G.; Wilkinson, W.H.

    1983-06-01

    The overall objective of the SCEAS project was to integrate advanced greenhouse agriculture technology with various energy sources and innovative cooling/ventilation concepts to demonstrate technical and economic feasibility of these facilities in several climatic regions where conventional greenhouse technology will not permit yearround growing of certain crops. The designed facility is capable of high yields of practically any crop, even temperaturesensitive vegetables such as lettuce, in extremely hostile external environments. The recirculation and ventilation system provides considerable flexibility in precise control of temperature and humidity throughout the year and in reducing water and energy consumption.

  15. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  16. Acid Mine Drainage Research in Gauteng Highlighting Impacts on Infrastructure and Innovation of Concrete-Based Remedial Systems

    NASA Astrophysics Data System (ADS)

    Diop, S.; Ekolu, S.; Azene, F.

    2013-12-01

    Acid mine drainage (AMD) is presently one of the most important environmental problems in in the densely populated Gauteng Province, South Africa. The threat of acid mine drainage has demanded short-term interventions (some of which are being implemented by government) but more importantly sustainable long-term innovative solutions. There have been moments of public apprehension with some media reports dubbing the current scenario as a future 'nightmare of biblical proportions' and 'South Africa's own Chernobyl' that could cause dissolving of concrete foundations of buildings and reinforcement steel, leading to collapse of structures. In response to the needs of local and provincial authorities, this research was conducted to (1) generate scientific understanding of the effects of AMD on infrastructure materials and structures, and (2) propose innovative long-term remedial systems based on cementitious materials for potential AMD treatment applications of engineering scale. Two AMD solutions from the goldfields and two others from the coalfields were used to conduct corrosion immersion tests on mild steel, stainless steel, mortars, pastes and concretes. Results show that AMD water from the gold mines is more corrosive than that from the coal mines, the corrosion rate of the former being about twice that of the latter. The functionality of metal components of mild steel can be expected to fail within one month of exposure to the mine water. The investigation has also led to development of a pervious concrete filter system of water-cement ratio = 0.27 and cement content = 360 kg/m3, to be used as a permeable reactive barrier for AMD treatment. Early results show that the system was effective in removing heavy metal contaminants with removal levels of 30% SO4, 99% Fe, 50-83% Mn, 85% Ca, and 30% TDS. Further work is on-going to improve and optimise the system prior to field demonstration studies.

  17. Filter Fabrics for Airport Drainage.

    DTIC Science & Technology

    1979-09-01

    Systems for *r- field Pavements," Harry R. Cedergren . d. "Development of Guidelines for the Design of Subsurfac( Drainage Systems for Highway Pavement...Structural 4Sectic s," H. R. Cedergren , J. A. Arman, and K. H. O’Brien. e. Drainage of Highway and Airfield Pavements, Harry R. Cedergren .> Five...by Cedergren (974).5 Additionally, several references were used, particularly those describing experimental anu construction prolects using filter

  18. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Astrophysics Data System (ADS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  19. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-01-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  20. Systems and methods for autonomously controlling agricultural machinery

    DOEpatents

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  1. USGS develops a drainage-based system to track ANS introductions

    USGS Publications Warehouse

    Fuller, Pam L.

    1999-01-01

    The U.S. Geological Survey (USGS) Nonindigenous Aquatic Species (NAS) Program has tracked the distribution of introduced species for more than 20 years. This effort began with foreign fishes in Florida and later expanded to include aquatic nuisance species nationwide. The tracking database contains locational and temporal data for introductions and spread. This data is generally derived from literature, museum collections, state monitoring programs, and reports from professionals at state and federal agencies. Analysis of this data can be helpful in displaying any patterns that may be present in introductions of aquatic nuisance species and developing a management plan to prevent spread. To produce maps and perform analysis, all data are referenced geographically at the finest scale possible (state, county, drainage, waterbody, point). Data reported in the literature range from state or regional lists of introduced species to exact time, date, and location of collections or releases. Often, vague locality reports make it difficult to obtain accurate answers in fine-scale analysis.

  2. Evaluation of the negative impacts of exposure to agricultural ditch water in fishes using streamside bioassays and field biomarkers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use in regions of the Midwest is dominated by crop agriculture that depends on ditch drainage systems for maximum productivity. Many drainage networks comprise headwater streams that have been degraded by alteration of habitat and by introduction of agrichemicals. Understanding the relative i...

  3. The limitations of environmental management systems in Australian agriculture.

    PubMed

    Cary, John; Roberts, Anna

    2011-03-01

    The efficacy of government-supported programs to encourage improved management of land and water systems associated with agricultural land in Australia has been mixed. The broad approach of Australian governments is reviewed briefly. Evidence is presented from case assessments of a program to promote adoption of environmental management systems (EMSs) to improve environmental outcomes from agricultural practices. EMSs are systems implemented to manage the environmental impacts and ameliorate environmental risk associated with business activity. Data are presented on reported EMS activity and experience of four selected groups of farmers in Victoria, south-eastern Australia, representing broad-acre cropping, beef and dairy farming. The pro-environmental behaviours of farmers were mediated through voluntary adoption of government and industry sponsored EMSs, often with financial incentives and other support. Findings from the study were that adoption of EMS practices with sufficient public benefits is unlikely to occur at sufficient scale for significant environmental impact. Farmers more readily adopted practices which were financially beneficial than those which had a positive environmental impact. Although the focus on voluntary market-based instrument (MBI) type programs is popular in western countries, enforcing regulation is an important, but usually politically unpopular, component of land use policy. The comparative advantage of EMSs differed for the industries studied, but overall there were insufficient market drivers for widespread EMS adoption in Australia. Environmental outcomes could be more effectively achieved by directly funding land management practices which have highest public net benefits. Having a clear and unambiguous management objective for a particular land management policy is more likely to achieve outcomes than having multiple objectives as occurs in a number of international programs currently.

  4. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  5. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  6. Hydrological Modeling of Storm Water Drainage System due to Frequent and Intense Precipitation of Dhaka city using Storm Water Management Model (SWMM)

    NASA Astrophysics Data System (ADS)

    Hossain, S., Jr.

    2015-12-01

    Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA

  7. Fluid Flow along Venous Adventitia in Rabbits: Is It a Potential Drainage System Complementary to Vascular Circulations?

    PubMed Central

    Li, Hong-yi; Chen, Min; Yang, Jie-fu; Yang, Chong-qing; Xu, Liang; Wang, Fang; Tong, Jia-bin; Lv, You; Suonan, Caidan

    2012-01-01

    Background Our previous research and other studies with radiotracers showed evidence of a centripetal drainage pathway, separate from blood or lymphatic vessels, that can be visualized when a small amount of low molecular weight tracer is injected subcutaneously into a given region on skin of humans. In order to further characterize this interesting biological phenomenon, animal experiments are designed to elucidate histological and physiologic characteristics of these visualized pathways. Methods Multiple tracers are injected subcutaneously into an acupuncture point of KI3 to visualize centripetal pathways by magnetic resonance imaging or fluorescein photography in 85 healthy rabbits. The pathways are compared with venography and indirect lymphangiography. Fluid flow through the pathways is observed by methods of altering their hydrated state, hydrolyzing by different collagenases, and histology is elucidated by optical, fluorescein and electron microscopy. Results Histological and magnetic imaging examinations of these visualized pathways show they consist of perivenous loose connective tissues. As evidenced by examinations of tracers’ uptake, they appear to function as a draining pathway for free interstitial fluid. Fluorescein sodium from KI3 is found in the pathways of hind limbs and segments of the small intestines, partial pulmonary veins and results in pericardial effusion, suggesting systematical involvement of this perivenous pathway. The hydraulic conductivity of these pathways can be compromised by the collapse of their fiber-rich beds hydrolyzed by either of collagenase type I, III, IV or V. Conclusions The identification of pathways comprising perivenous loose connective tissues with a high hydraulic conductivity draining interstitial fluid in hind limbs of a mammal suggests a potential drainage system complementary to vascular circulations. These findings may provide new insights into a systematically distributed collagenous connective tissue with

  8. Subsurface recharge to the Tesuque aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico

    USGS Publications Warehouse

    Wasiolek, Maryann

    1995-01-01

    Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.

  9. Nanoscale study of As biomineralization in an acid mine drainage system

    NASA Astrophysics Data System (ADS)

    Benzerara, K.; Morin, G.; Yoon, T. H.; Miot, J.; Tyliszczak, T.; Casiot, C.; Bruneel, O.; Farges, F.; Brown, G. E.

    2008-08-01

    Spatial and seasonal variations of the oxidation of Fe(II) and As(III) have been previously documented in the Carnoulès (Gard, France) Acid Mine Drainage (AMD) by bulk analyses. These variations may be correlated with the variations in the activity of indigenous As(III)- and Fe(II)-oxidizing bacteria living in the As-rich Carnoulès water. The activity of these bacteria indeed plays an important role in the nature and composition of the solid phases that sequester arsenic at this site. In order to better understand the interactions of microbes with Fe and As in the Carnoulès AMD, we combined Transmission Electron Microscopy (TEM) and Scanning Transmission X-ray Microscopy (STXM) to collect near-edge X-ray absorption fine structure (NEXAFS) spectra at high spatial and energy resolution and to perform high spatial resolution imaging at the 30-50 nm scale. Spectromicroscopy was performed at the C K-edge, Fe L 2,3-edge, and As L 2,3-edge, which allowed us to locate living and/or mineralized bacterial cells and to characterize Fe and As oxidation states in the vicinity of those cells. TEM was used to image the same areas, providing higher resolution images and complementary crystallographic and compositional information through electron diffraction and EDXS analysis. This approach provides unique information on heterogeneous geochemical processes that occur in a complex microbial community in an AMD environment at the micrometer and submicrometer-scale. Bacterial cells in the Carnoulès AMD were frequently associated with mineral precipitates, and a variety of biomineralization patterns were observed. While many mineral precipitates were not associated with bacterial cells, they were associated with pervasive organic carbon. Finally, abundant biomineralized organic vesicles were observed in the Carnoulès AMD. Such vesicles may have been overlooked in highly mineralized extreme environments in the past and may represent an important component in a common

  10. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  11. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  12. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  13. Economic feasibility of agricultural alcohol production within a biomass system

    SciTech Connect

    Hertzmark, D.; Flaim, S.; Ray, D.; Parvin, G.

    1980-12-01

    The technical and economic feasibility of agricultural alcohol production in the United States is discussed. The beverage fermentation processes are compared and contrasted with the wet milling of corn, and alternative agricultural products for alcohol production are discussed. Alcohol costs for different fermentation methods and for various agricultural crops (corn, sugar cane, sugar beets, etc.) are presented, along with a brief discussion of US government policy implications. (JMT)

  14. Life cycle assessment of domestic and agricultural rainwater harvesting systems.

    PubMed

    Ghimire, Santosh R; Johnston, John M; Ingwersen, Wesley W; Hawkins, Troy R

    2014-04-01

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study.

  15. Role of ruminant livestock in sustainable agricultural systems.

    PubMed

    Oltjen, J W; Beckett, J L

    1996-06-01

    Ruminants have served and will continue to serve a valuable role in sustainable agricultural systems. They are particularly useful in converting vast renewable resources from rangeland, pasture, and crop residues or other by-products into food edible for humans. With ruminants, land that is too poor or too erodable to cultivate becomes productive. Also, nutrients in by-products are utilized and do not become a waste-disposal problem. The need to maintain ruminants to utilize these humanly inedible foodstuffs and convert them into high-quality foods for human consumption has been a characteristic of advanced societies for several thousand years. Further, ruminant livestock production is entirely consistent with proper agronomy practices in which forages are grown on 25% of arable land to minimize water and soil erosion. Questions have been asked, however, about the use of humanly edible foodstuffs (grains, protein sources, etc.) in ruminant diets. Does their use create a net loss of nutrients for human consumption? What level of their use is necessary or desirable? Does the use of some of these improve the nutrient (e.g. protein) quality or product value? Too often the opponents of animal agriculture evaluate the desirability of animal production on gross calorie or protein intake/output values. However, in many cases the feeds used in animal production are not consumable by humans, and in order to properly evaluate animal production, humanly consumable energy and protein intake should be used for efficiency comparisons. Analysis of the costs/returns of humanly edible energy and protein for a variety of dairy and beef cattle production systems shows that food value is increased with ruminant products, and that net returns of humanly edible nutrients are dependent on the production system used. The efficiency with which ruminants convert humanly edible energy and protein into meat or milk is highly dependent on diet, and hence, on regional production practices

  16. Numerical Investigation of the Spatiotemporal Contribution of Tile Drainage to Stream Flow

    NASA Astrophysics Data System (ADS)

    Thomas, N. W.; Schilling, K. E.; Weber, L. J.

    2015-12-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. The tile drainage contribution to stream flow (QT/Q) was derived from a tracer driven analysis of instream surface water. QT/Q varied instantaneously from 6% to 71 % at the basin outlet, with tile flow correlating linearly with total stream flow. In low precipitation periods 62 % of stream flow traveled through the tile system. In heavy precipitation periods a dilution effect shifted QT/Q to 27 %. Precipitation driven events produced a strong positive logarithmic correlation between QT/Q and drainage area. The addition of precipitation into the system saturated near surface soils, increased lateral soil water movement, and diluted the relatively stable instream tile flow. A negative logarithmic trend in QT/Q to drainage area persisted non-event durations. Larger groundwater (non-tile) contribution to stream flow at the outlet diluted instream tile flow at increased drainage areas. Logarithmic regression slopes were consistent for event and non-event periods, respectively. While, the intercept responded in a predicable manner to precipitation intensity. This study, indicates a strong systematic response of QT/Q to meteorological forcing, drainage area over a single year.

  17. Phosphorus cycling in Montreal's food and urban agriculture systems.

    PubMed

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  18. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  19. Drainage discharge impacts on hydrology and water quality of receiving streams in the wheatbelt of Western Australia.

    PubMed

    Ali, Riasat; Silberstein, Richard; Byrne, John; Hodgson, Geoff

    2013-11-01

    The use of surface and subsurface drainage to manage waterlogging and salinity in dryland (rainfed) and irrigated agricultural systems is common throughout the world. The drainage systems often discharge into natural streams. The same is true for the wheatbelt drainage systems in south-western Australia, where 11,000 km (ABS 2003) of artificial drains have been constructed within the last two decades. Prior to this study, the likely impacts of this discharge on the streambed chemistry and water quality of receiving streams were largely unknown. The study evaluated these impacts in creeks receiving the drainage discharge from engineering options in four river systems in south-western Australia. This study clearly showed elevated levels of metals ions, EC and pH in the stream water at treated sites relative to their levels at untreated sites. At most sites, impacts of drainage discharge were observed on the streambed electrical conductivity (EC) and pH (both in 1:5 extract) in the receiving streams; however, there was little evidence of impact on metal ion content in the streambed soil. The study found no clear differences in the dynamics of the watertable adjacent to streams whether they received drainage discharge or not, irrespective of the size of the artificial drainage systems.

  20. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  1. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation.

    PubMed

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-07-26

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d(-1) in 1999 and 0.52 h d(-1) in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers.

  2. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation

    PubMed Central

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-01-01

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d−1 in 1999 and 0.52 h d−1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers. PMID:25598557

  3. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    USGS Publications Warehouse

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  4. Estimation of Agricultural Pesticide Use in Drainage Basins Using Land Cover Maps and County Pesticide Data. National Water-Quality Assessment Program

    DTIC Science & Technology

    2005-01-01

    2001, the NAWQA Program completed interdisciplinary assessments in 51 of the Nation’s major river basins and aquifer systems, referred to as Study Units...others, 1995). To meet these goals, water-quality investigations are conducted in major river basins and aquifers referred to as “study units.” The...Creek near Monetta, South Carolina 02174250 02174250 62 Cow Castle Creek near Bowman, South Carolina 02175000 02175000 7,077 Edisto River near Givhans

  5. An integrated vegetated ditch system reduces chlorpyrifos loading in agricultural runoff.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Cahn, Michael; Rego, Jessa L; Voorhees, Jennifer P; Siegler, Katie; Zhang, Xuyang; Budd, Robert; Goh, Kean; Tjeerdema, Ron S

    2017-03-01

    Agricultural runoff containing toxic concentrations of the organophosphate pesticide chlorpyrifos has led to impaired water body listings and total maximum daily load restrictions in California's central coast watersheds. Chlorpyrifos use is now tightly regulated by the Central Coast Regional Water Quality Control Board. This study evaluated treatments designed to reduce chlorpyrifos in agricultural runoff. Initial trials evaluated the efficacy of 3 different drainage ditch installations individually: compost filters, granulated activated carbon (GAC) filters, and native grasses in a vegetated ditch. Treatments were compared to bare ditch controls, and experiments were conducted with simulated runoff spiked with chlorpyrifos at a 1.9 L/s flow rate. Chlorpyrifos concentrations and toxicity to Ceriodaphnia dubia were measured at the input and output of the system. Input concentrations of chlorpyrifos ranged from 858 ng/L to 2840 ng/L. Carbon filters and vegetation provided the greatest load reduction of chlorpyrifos (99% and 90%, respectively). Toxicity was completely removed in only one of the carbon filter trials. A second set of trials evaluated an integrated approach combining all 3 treatments. Three trials were conducted each at 3.2 L/s and 6.3 L/s flow rates at input concentrations ranging from 282 ng/L to 973 ng/L. Chlorpyrifos loadings were reduced by an average of 98% at the low flow rate and 94% at the high flow rate. Final chlorpyrifos concentrations ranged from nondetect (<50 ng/L) to 82 ng/L. Toxicity to C. dubia was eliminated in 3 of 6 integrated trials. Modeling of the ditch and its components informed design alterations that are intended to eventually remove up to 100% of pesticides and sediment. Future work includes investigating the adsorption capacity of GAC, costs associated with GAC disposal, and real-world field trials to further reduce model uncertainties and confirm design optimization. Trials with more water-soluble pesticides

  6. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  7. Urine drainage bags

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000142.htm Urine drainage bags To use the sharing features on this page, please enable JavaScript. Urine drainage bags collect urine. Your bag will attach ...

  8. Submental Perforator Flap Design with a Near-Infrared Fluorescence Imaging System: The Relation between Number of Perforators, Flap Perfusion, and Venous Drainage

    PubMed Central

    Matsui, Aya; Lee, Bernard T.; Winer, Joshua H.; Laurence, Rita G.; Frangioni, John V.

    2009-01-01

    Background The submental flap is a reliable alternative to microsurgical reconstruction of facial deformities, providing an excellent cosmetic match with the contour and color of the face. In this study, we evaluated submental flap design by employing near-infrared (NIR) fluorescence angiography to identify perforator arteries (PAs). The impact of the number of preserved PAs on flap perfusion and venous drainage were quantified. Methods Indocyanine green was injected intravenously into n = 18 pigs. Three groups of 6 animals each had one, two, or three PAs preserved. The FLARE™ NIR fluorescence imaging system was employed for image acquisition. Images were recorded before and after flap creation, and every h, for 6 h. The time to maximum perfusion, the drainage ratio (an indicator of venous drainage), and the percentage of perfused flap area were analyzed statistically at each time point. Results Flaps with a single dominant PA had an initial mean perfused area of 80%, which improved to 97% at 6 h. For flaps with two and three preserved PAs, perfused area at 6 h was 99.8% and 100%, respectively. A significant increase was observed in all three metrics as more vessels were preserved. Regardless of the number of PAs preserved, though, all three metrics improved over 6 h. Conclusions NIR fluorescence angiography can reliably identify submental PAs for flap design, and can be used to assess flap perfusion and venous drainage in real-time. Flap metrics at 6 h were equivalent when either one, or multiple PAs, were preserved. PMID:19935293

  9. Drainage ditches facilitate frog movements in a hostile landscape

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    Ditches are common in landscapes influenced by agricultural, forestry, and peat mining activities, and their value as corridors remains unassessed. Pond-breeding amphibians can encounter hostile environments when moving between breeding, summering, or hibernation sites, and are likely to benefit from the presence of ditches in the landscape. Within a system consisting of ditch networks in bogs mined for peat in eastern New Brunswick, Canada, I quantified the breeding, survival, and movements of green frogs (Rana clamitans melanota) in drainage ditches and also surveyed peat fields. Frogs rarely ventured on peat fields and most individuals frequented drainage ditches containing water, particularly in late summer. Though frogs did not breed in ditches, their survival rate in ditches was high (88%). Ditches did not hinder frog movements, as frogs moved independently of the current. Results indicate that drainage ditches containing water enable some movements between habitats isolated by peat mining, in contrast to peat surfaces, and suggest they function as amphibian movement corridors. Thus, such drainage ditches may mitigate the effects of peat extraction on amphibian populations. At the very least, these structures provide an alternative to hostile peat surfaces. This study highlights that small-scale corridors are potentially valuable in population dynamics. ?? Springer 2005.

  10. Models Robustness for Simulating Drainage and NO3-N Fluxes

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  11. Use Of The Gpr To Characterize Sedimentary Structures Of Lakes In Sub-Humid Drainage System, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Aranha, P. A.; Augustin, C. H.

    2012-12-01

    PAULO ROBERTO ANTUNES ARANHA IGC - UNIVERSIDADE FEDERAL DE MINAS GERAIS - AV ANTONIO CARLOS 6.627 - CEP: 31270901-BELO HORIZONTE- MG - BRAZIL CRISTINA ROCHA AUGUSTIN - IGC - UNIVERSIDADE FEDERAL DE MINAS GERAIS - AV ANTONIO CARLOS 6.627 - CEP: 31270901-BELO HORIZONTE- MG - BRAZIL System of lakes located in the sandstones domains of Supergrupo Urucuia, in the State Park Veredas do Peruaçu, north of the State of Minas Gerais, Brazil, are common features in ecosystems of the Veredas, a biome of the Cerrado (Savanna-Open pasture). The linearity of these lakes suggests that they could have, in the past, belonged to the same drainage system, that would have been disconnected throughout the evolution of the Vereda system. The objective of this research is with the help of the GPR and using 100 MHz antennaes to obtain radargram images that could assist in the interpretation of the structures occurring at the bottom of these lakes. It is possible do identify on the radargrams reflectors that can be correlated with depositional system. These reflectore have the concave form. The results of these radargrames indicate great conformity between the concave form of the sediments and that of the bottom of the lake, allowing to assume that this deposition has been occurring since a long time ago. Therefore, if there was a connection between the study lake and those located in its proximity it has occurred a long time, before the deposition of the sedimentary sequences had been deposited. The thickness of the sediments, that varies since 2m until 5m, indicates that or either this deposition was either a very rapid one so that could generate a fast deposition, or it has been taking place during a considerable geologic long time.; Data acquisitiont;

  12. Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Belmont, Patrick; Finnegan, Noah

    2013-04-01

    than modern near-channel erosion rates. Notably, depositional records from a naturally-dammed lake downstream on the upper Mississippi River show a more dramatic 10-fold increase in deposition rates from pre-agricultural times to the present. Sediment fingerprinting shows that pre-agriculture sediment loads were dominated by near-channel sediment sources. As deposition rates rose in the late 1800s and early 1900s, the sources shifted increasingly to agricultural soil erosion. In the past few decades, deposition rates have remained high, but sediment fingerprinting indicates yet another significant shift back to near-channel sources. On-going changes in basin hydrology, from both installation of agricultural drainage systems and on-going climate change have put more water in the rivers, increasing rates of near-channel bank and bluff erosion. This most recent shift in sediment sources has significant implications for turbidity management in the Minnesota River basin.

  13. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  14. To establish pilot projects for agriculture renewable energy systems.

    THOMAS, 111th Congress

    Rep. Holden, Tim [D-PA-17

    2010-09-29

    11/16/2010 Referred to the Subcommittee on Rural Development, Biotechnology, Specialty Crops, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Energy efficiency of Pacific Northwest agriculture irrigation pumping systems

    SciTech Connect

    Wilfert, G.L.; Harrer, B.J.

    1987-03-01

    This document addresses the energy use and efficiency characteristics of pumping plants used to irrigate agricultural cropland in the Pacific Northwest. The principal focus of this document is on field information obtained from tests of irrigation pumping plants.

  16. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected.

  17. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  18. Olfactory route for cerebrospinal fluid drainage into the cervical lymphatic system in a rabbit experimental model☆

    PubMed Central

    Liu, Haisheng; Ni, Zhili; Chen, Yetao; Wang, Dong; Qi, Yan; Zhang, Qiuhang; Wang, Shijie

    2012-01-01

    The present study analyzed the anatomical association between intracranial subarachnoid space and the cervical lymphatic system. X-ray contrast medium and Microfil® (Microfil compounds fill and opacify microvascular and other spaces of non-surviving animals and post-mortem tissue under physiological injection pressure) were injected into the cisterna magna of the rabbit, and perineural routes of cerebrospinal fluid outflow into the lymphatic system were visualized. Under a surgical operating microscope, Microfil was found within the subarachnoid space and along the olfactory nerves. At the nasal mucosa, a lymphatic network was identified near the olfactory nerves, which crossed the nasopharyngeal region and finally emptied into the superficial and deep cervical lymph nodes. Under a light microscope, Microfil was visible around the olfactory nerves and within lymphatic vessels. These results suggested that cerebrospinal fluid drained from the subarachnoid space along the olfactory nerves to nasal lymphatic vessels, which in turn, emptied into the cervical lymph nodes. This anatomical route, therefore, allowed connection between the central nervous system and the lymphatic system. PMID:25737700

  19. Comparison of analogous terrestrial and Martian drainage systems: a remote sensing based study

    NASA Astrophysics Data System (ADS)

    Vaishali, R.; Sujita, G.; Sanjeevi, S.

    2014-11-01

    With more and more missions being launched to explore the Mars, the fact that water must have once flown it is no more a mere speculation. Keeping this is mind, this paper attempts to interpret Martian and terrestrial images and provides an insight into the conditions that must have prevailed on Mars when water flowed on it. This is achieved by comparing regions selected on Mars that have evidences of a fluvial past, with regions of the Earth having similar geologic, geomorphic and physiographic characteristics. The Martian images and DEM were obtained from HiRISE onboard MRO of NASA. For the terrestrial regions, LandSat 8 (OLI) images and SRTM DEMs were used. This study has brought out many similarities in the fluvial geomorphic regime of the two planets. The presence of lobate structures, mouth bars and bifurcated channels in the Eberswalde Delta system on Mars is an indication of the interaction of the fluvial system with a large standing body of water, similar to the Mississippi Delta system on Earth. Also, the presence of braided pattern, streamlined bars and palaeochannels observed in the channels to the south of Ascraeus Mons on Mars indicates a prominent flow of water through time, similar to the Yellowstone River system present on Earth. This study thus aids in better understanding of the Martian fluvial processes and landforms.

  20. Practical application of drainage system control by using MPC in Noorderzijlvest

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Schwanenberg, Dirk

    2013-04-01

    We discuss the implementation of a Model Predictive Control (MPC) approach for the control of the pump stations and tidal spilling sluices in the district of the regional water authority Noorderzijlvest in the north of the Netherlands. The RTC component is integrated in a Delft-FEWS application that connects to the SCADA system of the waterboard and also 17 aggregated structures including 127 individual pumps and gates The approach consists of a Nonlinear MPC in combination with a low-pass filter for state updating. The MPC runs hourly for a 5-day forecast horizon. One main objective of the control is flood mitigation during extreme taken into account by anticipating approaching rainfall events by flow forecasting. Another objective has is the reduction of pumping costs by taking advantage of gravity flow through gates during low tide conditions and the exploitation of cheaper electricity at night, both in combination with tactical usage of the available storage in the water system. Firstly the approach is tested in a closed-loop setting in combination with a detailed one-dimensional hydraulic model as the real-world replacement. A performance comparison of the approach against the existing feedback control shows pumping cost reductions in the range of 7-35% for different sub-systems or total annual cost savings in the order of 150-200 thousand Euros as well as significantly reduced peak water levels during flood events.

  1. Simulating semiarid dryland cropping systems using the precision agricultural landscape modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, and distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland cro...

  2. Principles of Dynamic Integrated Agricultural Systems: Lessons learned from an examination of Southeast Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, American agriculture was focused solely on its ability to produce sufficient food, fuel and fiber to meet national and global demands. While productivity will continue to be a major factor in food production systems, increased societal demands for environmentally sound management, the n...

  3. Phosphorus fate, management, and modeling in artificially drained systems.

    PubMed

    Kleinman, Peter J A; Smith, Douglas R; Bolster, Carl H; Easton, Zachary M

    2015-03-01

    Phosphorus (P) losses in agricultural drainage waters, both surface and subsurface, are among the most difficult form of nonpoint source pollution to mitigate. This special collection of papers on P in drainage waters documents the range of field conditions leading to P loss in drainage water, the potential for drainage and nutrient management practices to control drainage losses of P, and the ability of models to represent P loss to drainage systems. A review of P in tile drainage and case studies from North America, Europe, and New Zealand highlight the potential for artificial drainage to exacerbate watershed loads of dissolved and particulate P via rapid, bypass flow and shorter flow path distances. Trade-offs are identified in association with drainage intensification, tillage, cover crops, and manure management. While P in drainage waters tends to be tied to surface sources of P (soil, amendments or vegetation) that are in highest concentration, legacy sources of P may occur at deeper depths or other points along drainage flow paths. Most startling, none of the major fate-and-transport models used to predict management impacts on watershed P losses simulate the dominant processes of P loss to drainage waters. Because P losses to drainage waters can be so difficult to manage and to model, major investment are needed (i) in systems that can provide necessary drainage for agronomic production while detaining peak flows and promoting P retention and (ii) in models that can adequately describe P loss to drainage waters.

  4. Treatment of Acid Mine Drainage By A Semipassive Barrier System, The Kristineberg Mine Site, Northern Sweden.

    NASA Astrophysics Data System (ADS)

    Morales, T. A.; Herbert, R.; Hallberg, R.

    The production of acidic mine waters containing high concentrations of sulphate and metals are of great environmental concern. One method for removing metals from leachate waters is by stimulating sulphate reduction in a treatment system, thereby producing alkalinity and hydrogen sulphide. Dissolved metals and hydrogen sulphide may then precipitate as metal sulphides. Laboratory and field studies have been con- ducted for the evaluation of the removal processes in a groundwater treatment system, in which both inorganic and organic materials have been used to neutralize acidity and to promote the growth of sulphate reducing bacteria (SRB). Dissolution of olivine and dolomite was found to be successful in neutralizing acidity, since a continuous pH buffering was obtained from pH 2-3 to pH 5-6. Column studies with olivine indi- cate higher dissolution rates obtained with higher flow rates, where Mg is released at a higher rate than Si. The rate of dolomite dissolution also shows a correlation with acid- ity flux at lower fluxes. At higher acidity fluxes, the Ca release rate appears to reach a constant level, suggesting that there are factors limiting the removal of Ca from the dolomite surface. Electron microscopy studies suggest that gypsum has formed in the columns. Field sampling during two years and laboratory results indicate that at most a limited development of sulphate reducing bacteria is obtained in the organic leaf com- post. The SRB are probably present at near neutral pH that is measured in the system, but they are not very active. One main reason for this may be the complexity of the organic substrate used. In the column studies using unamended compost, sulphate and iron removal is obtained in the organic matter at a range of flow rates, initially due to adsorption and precipitation. After the addition of an easily degradable organic carbon source, a full development of SRB was obtained with an effective removal of both iron and sulphate. Iron sulphide

  5. The roles and values of wild foods in agricultural systems

    PubMed Central

    Bharucha, Zareen; Pretty, Jules

    2010-01-01

    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase. PMID:20713393

  6. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    PubMed

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  7. Clinical application of three-dimensional printing to the management of complex univentricular hearts with abnormal systemic or pulmonary venous drainage.

    PubMed

    McGovern, Eimear; Kelleher, Eoin; Snow, Aisling; Walsh, Kevin; Gadallah, Bassem; Kutty, Shelby; Redmond, John M; McMahon, Colin J

    2017-02-06

    In recent years, three-dimensional printing has demonstrated reliable reproducibility of several organs including hearts with complex congenital cardiac anomalies. This represents the next step in advanced image processing and can be used to plan surgical repair. In this study, we describe three children with complex univentricular hearts and abnormal systemic or pulmonary venous drainage, in whom three-dimensional printed models based on CT data assisted with preoperative planning. For two children, after group discussion and examination of the models, a decision was made not to proceed with surgery. We extend the current clinical experience with three-dimensional printed modelling and discuss the benefits of such models in the setting of managing complex surgical problems in children with univentricular circulation and abnormal systemic or pulmonary venous drainage.

  8. The use of a portable digital thoracic suction Thopaz drainage system for the management of a persistent spontaneous secondary pneumothorax in a patient with underlying interstitial lung disease.

    PubMed

    Jenkins, William S A; Hall, David P; Dhaliwal, Kev; Hill, Adam T; Hirani, Nik

    2012-06-08

    We present the case of a 68-year-old woman who presented in extremis with a secondary pneumothorax with a past history of severe idiopathic pulmonary fibrosis. Following insertion of a 32F intercostal drain, she developed a persistent broncho-pleural fistula and became dependent on negative-pressure wall-mounted suction to prevent respiratory compromise. She declined definitive surgical intervention and was therefore managed conservatively. After adhering to the wall-mounted suction method for 49 days, we obtained for use a portable digital thoracic drainage system previously used only in the cardiothoracic postoperative patient. This electronically delivered, negative-pressure drainage system induced radiographic improvement within 24 h, and allowed the patient to mobilise for the first time since admission. The patient was discharged home with the Thopaz drain in situ 8 weeks after placing it, and the drain was removed successfully with a resolved pneumothorax 20 weeks after her initial presentation.

  9. Profiling Microbial Communities in Manganese Remediation Systems Treating Coal Mine Drainage

    PubMed Central

    Hansel, Colleen M.; Burgos, William D.

    2015-01-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known. PMID:25595765

  10. Evidence of traffic-related pollutant control in soil-based sustainable urban drainage systems (SUDS).

    PubMed

    Napier, F; Jefferies, C; Heal, K V; Fogg, P; Arcy, B J D; Clarke, R

    2009-01-01

    SUDS are being increasingly employed to control highway runoff and have the potential to protect groundwater and surface water quality by minimising the risks of both point and diffuse sources of pollution. While these systems are effective at retaining polluted solids by filtration and sedimentation processes, less is known of the detail of pollutant behaviour within SUDS structures. This paper reports on investigations carried out as part of a co-ordinated programme of controlled studies and field measurements at soft-engineered SUDS undertaken in the UK, observing the accumulation and behaviour of traffic-related heavy metals, oil and PAHs. The field data presented were collected from two extended detention basins serving the M74 motorway in the south-west of Scotland. Additional data were supplied from an experimental lysimeter soil core leaching study. Results show that basin design influences pollutant accumulation and behaviour in the basins. Management and/or control strategies are discussed for reducing the impact of traffic-related pollutants on the aqueous environment.

  11. The influence of precipitation intensity growth on the urban drainage systems designing

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Bartosz; Kotowski, Andrzej

    2014-10-01

    For 50 years of long observation period (1960-2009), on a high level of statistical significance (95 %), a decreasing trend of annual precipitation amounts and an increasing trend of the number of rainy days during the year (64 %) were found. For the seasonal changes (V-X), similarly, there was found a statistically significant (94 %) decreasing precipitation amount trend and an increasing trend of the number of rainy days (50 %). As far as the intensity of maximum precipitation is concerned, a very statistically significant increasing trend (95 %) was found. Taking as the basis, the model for a trend, defined for the period of 1960-2009, the increase of weighted average interval values of maximum precipitation amounts ( h ≥ 0.75 t 0.5) in the year 2059 was estimated to be about 26 %, in comparison with the starting year 1960. An increasing trend of maximum precipitation frequency in Wrocław was also proved. To a safe sewerage systems designing in Wrocław according to current standards (EN 752 2008; DWA-A118 2006), the precipitation frequency to the simulations of excessive accumulation occurrences to the land level should be changed.

  12. Evaluation of a limestone channel and wetland system for treating acid mine drainage

    SciTech Connect

    Brenner, F.J.; Pruent, P.

    1999-07-01

    The Carpentertown Coal and Coke Company operated two drift mines on the site for 17 years closing in December 1987, but the company continued to operate a cleaning plant and coal refuse disposal site until the company declared bankruptcy in June 1989. In summer of 1993, eight acid seeps developed from the 2 ha coal refuse site with a combined flow of 36 1/min with iron and manganese loading rates of 419 and 576 gm/day. In 1995, a 212 m (700 ft) open limestone channel (OLC) and a 344 m{sup 2} (1,142 ft{sup 2}) and a 2,110 m{sup 2}(43,750 ft{sup 2}) aerobic wetland was constructed as a passive treatment system. over the 34-month monitoring period, the acid loading to the receiving stream was reduced by 88% with a corresponding increase of 111% in alkalinity. The iron and manganese loading to the receiving stream was reduced by 91% and 57%, respectively.

  13. Profiling microbial communities in manganese remediation systems treating coal mine drainage.

    PubMed

    Chaput, Dominique L; Hansel, Colleen M; Burgos, William D; Santelli, Cara M

    2015-03-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known.

  14. Ultimate drivers of native biodiversity change in agricultural systems

    PubMed Central

    Norton, David A; Reid, Nick; Young, Laura

    2013-01-01

    The ability to address land degradation and biodiversity loss while maintaining the production of plant and animal products is a key global challenge. Biodiversity decline as a result of vegetation clearance, cultivation, grazing, pesticide and herbicide application, and plantation establishment, amongst other factors, has been widely documented in agricultural ecosystems. In this paper we identify six ultimate drivers that underlie these proximate factors and hence determine what native biodiversity occurs in modern agricultural landscapes; (1) historical legacies; (2) environmental change; (3) economy; (4) social values and awareness; (5) technology and knowledge; and (6) policy and regulation. While historical legacies and environmental change affect native biodiversity directly, all six indirectly affect biodiversity by influencing the decisions that land managers make about the way they use their land and water resources. Understanding these drivers is essential in developing strategies for sustaining native biodiversity in agricultural landscapes into the future. PMID:26834971

  15. Land drainage system detection using IR and visual imagery taken from autonomous mapping airship and evaluation of physical and spatial parameters of suggested method

    NASA Astrophysics Data System (ADS)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin; Pospíšil, Jiří; Jirka, Vladimír.

    2014-10-01

    An experimental approach to the land drainage system detection and its physical and spatial parameters evaluation by the form of pilot project is presented in this paper. The novelty of the approach is partly based on using of unique unmanned aerial vehicle - airship with some specific properties. The most important parameters are carrying capacity (15 kg) and long flight time (3 hours). A special instrumentation was installed for physical characteristic testing in the locality too. The most important is 30 meter high mast with 3 meter length bracket at the top with sensors recording absolute and comparative temperature, humidity and wind speed and direction in several heights of the mast. There were also installed several measuring units recording local condition in the area. Recorded data were compared with IR images taken from airship platform. The locality is situated around village Domanín in the Czech Republic and has size about 1.8 x 1.5 km. There was build a land drainage system during the 70-ties of the last century which is made from burnt ceramic blocks placed about 70 cm below surface. The project documentation of the land drainage system exists but real state surveying haveńt been never realized. The aim of the project was land surveying of land drainage system based on infrared, visual and its combination high resolution orthophotos (10 cm for VIS and 30 cm for IR) and spatial and physical parameters evaluation of the presented procedure. The orthophoto in VIS and IR spectrum and its combination seems to be suitable for the task.

  16. EFFECTIVENESS OF RESTORED WETLANDS FOR THE TREATMENT OF AGRICULTURAL RUNOFF

    EPA Science Inventory

    The integration of the tax ditches into a drainage management system provides obvious benefits, but can also present a source of significant nonpoint source pollution from agricultural runoff. Many of Delaware's tax ditches have been listed on Delaware's Clean
    Water Act 303(d)...

  17. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  18. [Eye and lymph drainage].

    PubMed

    Grüntzig, J; Schicha, H; Huth, F

    1979-06-01

    Up to now lymphatics in the eye could not be pointed out. An ocular lymph drainage is denied. Földi succeeded in producing experimentally the syndrome of "lymphostatic encephalopathy and ophthalmopathy" by operative blockade of the cervical lymphatics in animals. In the first part of the present paper a historical view considering the subject "Eye and lymphatic system" is given. In the second part it is entered into the particulars of own experimental studies. As to our own investigations, rabbits have been injected 99mTc-sulfur-colloid, 99mTc-microcolloid, 99mTc-Albumin and 198Au-colloid into the retrobulbar space, anterior chamber, vitreous body and subconjuctival space of one eye. Measurements of the activity's distribution have been made in vivo with an Anger type camera (pho-Gamma-IV Hp, Searle Nuclear Chicago) and in vitro after section with a sodium iodine crystal well counter (Clinimat-200, Picker). In some animals the investigation has been combined with a bilateral dissection of the cervical lymph nodes. After injection in the retrobulbar space a significant concentration of the activity could be observed for the most part in the equilateral Lymphonodulus cervicalis profundus. By the cervical lymph blockade the removal of lymphoctopic substances from the retrobulbar space was largely inhibited. After injection in the anterior chamber a significant concentration could be observed for the most part in the equilateral Lymphonodulus cervicalis superficialis. After intravitreal injection a drainage to the bilateral deep cervical lymph nodes could be observed. After injection into the subconjunctival space a significant accumulation of activity could be registered in the equilateral Lymphonoduli mandibulares and cervicales superficiales. The data substantiate a segmental lymph drainage from the eye: vitreous body and retrobulbar space for the most part into the Lymphonoduli cervicales profundi, anterior chamber and subconjunctival space for the most part into

  19. A synthesis and comparative evaluation of drainage water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...

  20. Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-β-lactamase-producing Klebsiella oxytoca.

    PubMed

    Vergara-López, S; Domínguez, M C; Conejo, M C; Pascual, Á; Rodríguez-Baño, J

    2013-11-01

    We describe the epidemiology of a protracted nosocomial clonal outbreak due to multidrug-resistant IMP-8 producing Klebsiella oxytoca (MDRKO) that was finally eradicated by removing an environmental reservoir. The outbreak occurred in the ICU of a Spanish hospital from March 2009 to November 2011 and evolved over four waves. Forty-two patients were affected. First basic (active surveillance, contact precautions and reinforcement of surface cleaning) and later additional control measures (nurse cohorting and establishment of a minimum patient/nurse ratio) were implemented. Screening of ICU staff was repeatedly negative. Initial environmental cultures, including dry surfaces, were also negative. The above measures temporarily controlled cross-transmission but failed to eradicate the epidemic MDRKO strain that reappeared two weeks after the last colonized patients in waves 2 and 3 had been discharged. Therefore, an occult environmental reservoir was suspected. Samples from the drainpipes and traps of a sink were positive; removal of the sink reduced the rate number but did not stop new cases that clustered in a cubicle whose horizontal drainage system was connected with the eliminated sink. The elimination of the horizontal drainage system finally eradicated the outbreak. In conclusion, damp environmental reservoirs (mainly sink drains, traps and the horizontal drainage system) could explain why standard cross-transmission control measures failed to control the outbreak; such reservoirs should be considered even when environmental cultures of surfaces are negative.

  1. Design of System Scheme and Operationmechanism on Agricultural Science &Technology Information Service System `110'

    NASA Astrophysics Data System (ADS)

    Wu, Yongchang; Hu, Zhiquan; Xiao, Bilin; Li, Quanxin

    Agricultural science & technology information service system ‘110’ (ASTISS-110), connected through unitary telephone hotline as well as multipurpose service of the network, television and video etc, is one of the most characteristic content of the Chinese rural informatization. ASTISS-110 is a low cost and high efficiency way to make the agricultural science & technology achievements extension and achieve the combination of science & technology with farmers in the rural area. This paper would primary focus on the ASTISS-110 foundation and system principle. On basis of its main functions and system objectives, we put forward the combination of the ‘Sky- Land-People’ technical solution, and analyze the management operation mechanism from commonweal service, enterprise management and commercialization operation.

  2. A decision support system for rainfed agricultural areas of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rural inhabitants of arid lands lack sufficient water to fulfill their agricultural and household needs. They do not have readily available technical information to support decisions regarding the course of action they should follow to handle the agro-climatic risk. In this paper, a computer model (...

  3. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  4. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  5. Environmental Services from Agricultural Stormwater Detention Systems in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Knowles, J. M.

    2011-12-01

    Agricultural Stormwater Detention Areas (ADAs) commonly exist for the purpose of downstream flood protection in high water table regions of Florida. In addition to flood protection, they are also considered an important Best Management Practice due to their presumed effectiveness in reducing nitrogen (N) and phosphorus (P) loads to the Kissimmee-Lake Okeechobee-Everglades (KLE) ecosystem. The KLE ecosystem has been adversely impacted due to excessive P loads. Despite their presumed water quality effectiveness, limited data exist on actual N and P treatment efficiencies. A study was conducted at two ADAs (ADA 1 and ADA 2) located in two row crop farms to quantify the total N and P treatment efficiencies. Water, N, and P inflow and outflows at both ADAs were monitored for a year. Results from ADA 1 suggested that P treatment efficiency was below zero indicating that the ADA was a source of P rather than a sink. On the other hand, N treatment efficiency was found to be 20%. Mean inflow and outflow N concentrations for ADA 1 were 1.6 and 1.4 mg/l respectively, indicating a 9% reduction. Mean inflow and outflow P concentrations were 0.04 and 0.06 mg/l respectively, showing an increase of 67%. Although ADA 1 was effective in retaining N it was not for P. In contrast to ADA 1, the P treatment efficiency of ADA 2 was positive (20%). Nitrogen treatment efficiency of ADA 2 was 22%. Mean inflow and outflow N concentrations for ADA 2 were 4.0 and 2.0 mg/l respectively, indicating 50% reduction. A reduction of 32% was observed for P concentrations with mean inflow and outflow P concentrations of 0.5 and 0.3 mg/l respectively. No P retention at ADA 1 was mainly due to low P adsorption capacity of the soil. Analysis of surface (0-10 cm) and subsurface (10-20 cm) soil P retention characteristics suggested that ADA 1 had no remaining P storage capacity which resulted in it being a source of P. At ADA 2, a large fraction of the area still had P storage capacity which resulted in

  6. Heimlich valve for chest drainage.

    PubMed

    Heimlich, H J

    1983-01-01

    The Heimlich chest drainage valve was developed so that the process of draining the pleural cavity could be accomplished in a safe, relatively simple, and efficient manner. Replacing the cumbersome underwater drainage bottle system, the Heimlich valve connects to chest tubing and allows fluid and air to pass in one direction only. The valve, which functions in any position, need never be clamped, and regulated suction can be attached to it if necessary. The valve drains into a plastic bag that can be held at any level, allowing the patient undergoing chest drainage to be ambulatory simply by carrying the bag. The construction and function of the valve is easily understood by medical and nursing staffs. It is presterilized, stored in a sterile package, and readily utilized on emergency vehicles and in the operating room.

  7. Modeling coastal plain drainage ditches with SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the low-relief Eastern Shore region of Maryland, extensive land areas used for crop production require drainage systems either as tile drains or open ditches. The prevalence of drainage ditches in the region is being linked to increased nutrient loading of the Chesapeake Bay. Process-based water ...

  8. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  9. Research and Development of Laser-Beam Automatic Grade-Control System on High-Speed Subsurface Drainage Equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage methods and materials technologies were modernized more through innovative research and development between 1960 and 1975 than during the previous 100 years. By the mid-1970’s, slow, inefficient trench-installation of heavy rigid draintile materials (clay and concrete) gave way t...

  10. The course of chronic subdural hematomas after burr-hole craniostomy with and without closed-system drainage.

    PubMed

    Markwalder, T M

    2000-07-01

    The author provides a comprehensive review of the results of surgical treatment of chronic subdural hematomas (CSHs). The postoperative clinical course of CSH is studied with respect to the influence of neomembranous organization, cortical expansion, and subdural pressure. The importance of subdural drainage is emphasized.

  11. Agricultural Extension, Collective Action and Innovation Systems: Lessons on Network Brokering from Peru and Mexico

    ERIC Educational Resources Information Center

    Hellin, Jon

    2012-01-01

    Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…

  12. Building an Agricultural Extension Services System Supported by ICTs in Tanzania: Progress Made, Challenges Remain

    ERIC Educational Resources Information Center

    Sanga, C.; Kalungwizi, V. J.; Msuya, C. P.

    2013-01-01

    The conventional agricultural extension service in Tanzania is mainly provided by extension officers visiting farmers to provide agricultural advisory service. This system of extension service provision faces a number of challenges including the few number of extension officers and limited resources. This article assesses the effectiveness of an…

  13. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  14. An Exploration of the Formal Agricultural Education System in Trinidad and Tobago

    ERIC Educational Resources Information Center

    Hurst, Sara D.; Conner, Nathan W.; Stripling, Christopher T.; Blythe, Jessica; Giorgi, Aaron; Rubenstein, Eric D.; Futrell, Angel; Jenkins, Jenny; Roberts, T. Grady

    2015-01-01

    A team of nine researchers from the United States spent 10 days exploring the formal agricultural education system in Trinidad and Tobago from primary education through postgraduate education. Data were collected from interviews and observations from students, teachers/instructors, and agricultural producers. The team concluded that (a) the people…

  15. 29 CFR 780.408 - Facilities of system must be used exclusively for agricultural purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Overtime Pay Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.408 Facilities of system must be used exclusively for agricultural purposes. Section 13(b)(12) requires for exemption of... exclusively “for agricultural purposes” within the meaning of the irrigation exemption in section...

  16. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world for food security appears to be at odds with the urgency to reduce agriculture’s negative environmental impacts. We suggest that a cause of this dichotomy is loss of diversity within agricultural systems at field, farm and landscape scales....

  17. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    ERIC Educational Resources Information Center

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  18. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  19. Market assessment of photovoltaic power systems for agricultural applications in Nigeria

    NASA Technical Reports Server (NTRS)

    Staples, D.; Steingass, H.; Nolfi, J.

    1981-01-01

    The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.

  20. Atrazine, alachlor, and cyanazine in a large agricultural river system

    USGS Publications Warehouse

    Schottler, S.P.; Eisenreich, Steven J.; Capel, P.D.

    1994-01-01

    Atrazine, alachlor, and cyanazine exhibited maximum concentrations of about 1000-6000 ng/L in the Minnesota River in 1990 and 1991, resulting from precipitation and runoff following the application period. Transport of these herbicides to the river occurs via overland flow or by infiltration to tile drainage networks. Suspended sediment, SO42-, and Cl- concentrations were used as indicators of transport mechanisms. The atrazine metabolite, DEA, was present in the river throughout the year. The ratio of DEA to atrazine concentration was used to calculate an apparent first-order soil conversion rate of atrazine to DEA. Half lives of 21-58 d were calculated for 1990 and 1991, respectively. The longer conversion rate in 1991 results from rapid flushing from the soil and minimum exposure to soil microorganisms. Total flux of herbicide to the river was 1-6.5 t, with over 60% of this loading occurring during the month of June. Loading to the river accounts for less than 1.5% of applied herbicide. ?? 1994 American Chemical Society.

  1. Martian drainage densities

    USGS Publications Warehouse

    Carr, M.H.; Chuang, F.C.

    1997-01-01

    Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.

  2. Drainage investment and wetland loss: an analysis of the national resources inventory data

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1994-01-01

    The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.

  3. Sustainable agriculture: how to sustain a production system in a changing environment.

    PubMed

    Wagner, W C

    1999-01-01

    During the past 10-15 years, sustainable agriculture has progressed from a focus primarily on a low-input, organic farming approach with a major emphasis on small fruit or vegetable production farms, often described as Low Input Sustainable Agriculture, to the current situation where sustainability is an important part of mainstream animal and plant production units. The US Department of Agriculture programmes cover a broad range of activities, including conserving the natural resource base, enhancing environmental quality, and sustaining productivity of the nation's farms. The use of Geographic Information Systems technology to direct application of fertilisers, pesticides, and herbicides is one example of a rapidly emerging technology that can reduce use of external inputs, protect the agricultural environment, and improve economic returns. This Geographic Information Systems technology also is being used to localise animal pest and disease problems, assist in regulatory or control measures, and identify high risk areas that might need different management systems or should be avoided as sites for animal production. Use of intensive grazing systems also has increased markedly over the past 5-6 years. These systems will allow longer grazing seasons in southern parts of the USA, provide more efficient use of the forages being produced and reduce labour costs in the typical dairy operation. Major animal and plant production agriculture-oriented programmes at the US Department of Agriculture focus on integrated production systems, use of Integrated Pest Management techniques, and development of alternative methods to manage pests and diseases that reduce or avoid the use of drugs and chemicals. The US Department of Agriculture has a programme for sustainable agriculture, the Sustainable Agriculture Research and Education programme, which emphasises alternative approaches for animal and plant production systems.

  4. Climate change induced transformations of agricultural systems: insights from a global model

    NASA Astrophysics Data System (ADS)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  5. Impacts of drainage water management on subsurface drain flow, nitrate concentration, and nitrate loads in Indiana

    EPA Science Inventory

    Drainage water management is a conservation practice that has the potential to reduce drainage outflow and nitrate (NO3) loss from agricultural fields while maintaining or improving crop yields. The goal of this study was to quantify the impact of drainage water management on dra...

  6. Flow-band modeling of glacial erosion with a multi-morphology subglacial drainage system and process-based erosion laws

    NASA Astrophysics Data System (ADS)

    Beaud, F.; Flowers, G. E.

    2013-12-01

    Both field data and numerical modeling show that glaciations have the potential either to enhance relief or to dampen topography. While the processes by which glaciers erode have been recognized (i.e. abrasion, plucking, subglacial fluvial action), quantitative erosion models with predictive capability demand a better understanding of the processes themselves. We aim to model the effect of the subglacial hydraulic system on spatio-temporal patterns of glacial erosion, first on timescales commensurate with drainage system fluctuations (e.g. seasonal to interannual) and ultimately on timescales relevant to landscape evolution. We use a numerical model that incorporates a multi-morphology subglacial drainage system coupled to a higher-order ice-flow model and process-specific erosion laws for abrasion and quarrying. Ice flow is represented by a first-order approximation of the Stokes equations in two dimensions, while basal sliding is modeled using a Coulomb friction law. The subglacial drainage system allows for a dynamic transition between two morphologies: the distributed system characterized by an increase in basal water pressure with discharge, and the channelized system, which exhibits a decrease in equilibrium water pressure with increasing discharge. The resulting water pressure field is fed to the ice-flow model and both water pressure and sliding speed are used to calculate instantaneous erosion rates. Seasonal-scale simulations generally show that when subglacial hydrology is incorporated, modeled subglacial erosion rates peak where water input is significant, i.e. down-glacier from the equilibrium line. When both the distributed and channelized systems are integrated, the abrasion and sliding maxima migrate ~ 20% up-glacier compared to simulations with distributed drainage only. Once established, the channelized system evacuates water efficiently and reduces both water pressure and sliding rates across the lower reaches of the glacier; maximum rates of

  7. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  8. Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...

  9. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  10. Application of aerobic composting system for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Yoshii, Takahiro; Moriya, Toshiyuki; Yamashita, Masamichi

    Composting is a classical technique to decompose organic wastes such as animal bodies, straw, paper, raw sludge, and so on. Compared with burning of wastes, the composting method has many advantages. It is an inexpensive and safer method because of its self-heating without spending extra energy resources. It does not emit toxic pollutants such as dioxin, NOx , and SOx . The composting products can be used as organic fertilizers for agricultural production. Composting is a promising way for digesting organic wastes safely on spaceships or manned exploration on extraterrestrial planets. We have developed a small scale high-temperature composter in order to examine its feasobility to operate food waste disposing facility and fertilizer production in space. This composter has a heated reaction vessel containing compost soil (seed bacteria) provided by a compost factory. To determine the optimal condition for its operation, we analyzed the effect of temperature on metabolic activity (CO2 production rate), and water content. The dynamics of microbial community was studied by polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Water content was maintained to a range between 27% and 40% by continuously adding water. The highest CO2 emission was observed at around 70° C. PCR-DGGE analysis shows that the bacterial community of the compost soil is dramatically changed by changing reaction temperature. We will discuss the application of the composter in space in order to establish the closed recycling loop of bio-elements in space agriculture.

  11. Changes in Soil Chemistry and Agricultural Return Flow in an Integrated Seawater Agriculture System (ISAS) Demonstration in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Ning, Q.; Matiin, W. A.; Ahmad, F.

    2012-12-01

    Growing halophytes using Integrated Seawater Agriculture Systems (ISAS) offers a sustainable solution for the generation of biomass feedstock for carbon neutral biofuels - halophytes do not enter the foodchain and they do not compete with food-crops for natural resources. A field demonstration of ISAS in the coastal regions of Abu Dhabi, UAE, scheduled to start in 2013, will likely face a number of region-specific challenges not encountered in past demonstrations of ISAS at coastal locations in Mexico and Eritrea. The arid climate, unique soil chemistry (evaporite deposits, especially gypsum), and hypersaline coastal hydrogeology of Abu Dhabi will affect long-term halophyte agricultural productivity when Arabian Gulf seawater is applied to coastal soils as part of ISAS. Therefore, the changes in irrigation return flow quality and soil chemistry must be monitored closely over time to establish transient salt and water balances in order to assess the sustainability of ISAS in the region. As an initial phase of the ISAS demonstration project, numerical modeling of different seawater loadings onto coastal soils was conducted to estimate the chemical characteristics of soil and the irrigation return flow over time. These modeling results will be validated with field monitoring data upon completion of one year of ISAS operation. The results from this study could be used to (i) determine the optimal saline water loading that the soils at the ISAS site can tolerate, (ii) potential for sodicity of the soil with saline water application, (iii) impacts of land application of saline water on underlying coastal groundwater, and (iv) develop strategies to control soil water activities in favor of halophyte agricultural productivity.

  12. Drainage water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  13. Percutaneous Abscess Drainage

    MedlinePlus

    ... the local anesthetic is injected. Most of the sensation is at the skin incision site which is numbed using local anesthetic. ... open surgical drainage. Risks Any procedure where the skin is penetrated ... organ may be damaged by percutaneous abscess drainage. Occasionally ...

  14. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  15. Satellite Mapping of Agricultural Water Requirements in California with the Terrestrial Observation and Prediction System

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Rosevelt, C.; Brandt, W. T.; Votava, P.; Nemani, R. R.

    2012-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The system utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations to map crop canopy development, basal crop coefficients (Kcb), and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We discuss the potential for integration of ET from energy balance models to support near real-time mapping of consumptive water use and crop water stress.

  16. Foam consolidation and drainage.

    PubMed

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  17. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2016-04-01

    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  18. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  19. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  20. Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen-Gottesacker, Alps

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Goldscheider, Nico

    2014-06-01

    Karst aquifers are important for freshwater supply, but difficult to manage, due to highly variable water levels and spring discharge rates. Conduits are crucial for groundwater flow in karst aquifers, but their location is often unknown, thus limiting the applicability and validity of numerical models. We have applied a conduit model (SWMM) to simulate highly variable flow in a folded alpine karst aquifer system, where the underground drainage pattern is comparatively well-known from previous tracer studies. The conduit model was coupled with a reservoir model representing recharge, storage and transfer of water in the epikarst and unsaturated zone. The global optimization approach (GA) was applied to achieve an efficient model calibration. It was possible to simultaneously simulate the highly variable discharge characteristics of an estavelle, and overflow spring and a permanent spring draining the conduit system. The model allowed for the collection of spatially differentiated information on recharge, rapid flow and slow flow in four individual sub-catchments. The formation of backwater upgradient from conduit restrictions turned out to be a key process in activating overflow springs. The proposed modeling approach appears to be transferrable to other karst systems with predominant conduit drainage, but requires previous knowledge of the configuration of the conduit system.

  1. 12 CFR 617.7620 - What should the System institution do when it decides to sell acquired agricultural real estate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... decides to sell acquired agricultural real estate at a public auction? 617.7620 Section 617.7620 Banks and... What should the System institution do when it decides to sell acquired agricultural real estate at a public auction? System institutions electing to sell or lease acquired agricultural real estate or...

  2. Migratory bird habitat in relation to tile drainage and poorly drained hydrologic soil groups

    USGS Publications Warehouse

    Kastner, Brandi; Christensen, Victoria G.; Williamson, Tanja N.; Sanocki, Chris A.

    2016-01-01

    The Prairie Pothole Region (PPR) is home to more than 50% of the migratory waterfowl in North America. Although the PPR provides an abundance of temporary and permanent wetlands for nesting and feeding, increases in commodity prices and agricultural drainage practices have led to a trend of wetland drainage. The Northern Shoveler is a migratory dabbling duck species that uses wetland habitats and cultivated croplands in the PPR. Richland County in North Dakota and Roberts County in South Dakota have an abundance of wetlands and croplands and were chosen as the study areas for this research to assess the wetland size and cultivated cropland in relation to hydrologic soil groups for the Northern Shoveler habitat. This study used geographic information system data to analyze Northern Shoveler habitats in association with Natural Resource Conservation Service soil data. Habitats, which are spatially associated with certain hydrologic soil groups, may be at risk of artificial drainage installations because of their proximity to cultivated croplands and soil lacking in natural drainage that may become wet or inundated. Findings indicate that most wetlands that are part of Northern Shoveler habitats were within or adjacent to cultivated croplands. The results also revealed soil hydrologic groups with high runoff potential and low water transmission rates account for most of the soil within the Northern Shoveler‘s wetland and cropland habitats. Habitats near agriculture with high runoff potential are likely to be drained and this has the potential of reducing Northern Shoveler habitat.

  3. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  4. Sedimentary record of a Scandinavian Ice Sheet drainage system and till deposition over subglacial obstacles promoting basal sliding (an example from southern Poland)

    NASA Astrophysics Data System (ADS)

    Salamon, Tomasz

    2015-12-01

    Subglacial obstacles occurring in the path of advancing ice sheets generally generate higher longitudinal compression and higher frictional drag than a flat substrate. However, in the case of a soft sediment substratum, they can have a very different effect on ice sheet behaviour. This study concerns a substrate composed of very fine-grained sediments with low permeability. The relationship between subglacial obstacles and the overriding Scandinavian Ice Sheet was studied in an area of southern Poland where a small intervalley Neogene clay ridge (40 m high) was present. Based on sedimentological and structural analysis of subglacial till and gravelly-sandy sediments, the basal depositional processes and subglacial conditions and their influence on ice sheet behaviour were analysed. The till and related deposits within the ridge reflecting high water pressure conditions and lack of glacitectonic deformations indicate that the clay ridge did not generate much resistance against the advancing ice sheet, but instead favoured basal slip: the impermeable substratum weakened the ice/bed coupling and promoted ice detachment from the substratum. Gravelly sandy inclusions at the till/clay contact indicate that during the first stage of ice sheet overriding, a canal drainage system developed at the ice/substrate interface. Varied geometry, size and location of inclusions of sorted sediments suggest periodic instability of the canal system, which could lead to its transformation from initially uniform to being composed of conduits of different sizes. During later stages of ice sheet overriding, a traction till was deposited and occasional drainage through a water film was sufficient to evacuate basal meltwater. The resulting change in the character of subglacial drainage was probably related to variations in water pressure gradient during progressive ice sheet advance.

  5. Farm Drainage in the United States. History, Status, and Prospects. Miscellaneous Publication Number 1455.

    ERIC Educational Resources Information Center

    Pavelis, George A., Ed.

    This publication covers the historical, technological, economic, and environmental aspects of agricultural drainage. It draws from the combined knowledge of academic and U.S. Department of Agriculture professionals in public policy, drainage theory, planning, engineering, environmental science, and economics. The main purpose is to review the…

  6. Agricultural Education from a Knowledge Systems Perspective: From Teaching to Facilitating Joint Inquiry and Learning.

    ERIC Educational Resources Information Center

    Engel, Paul G. H.; van den Bor, Wout

    1995-01-01

    Application of a knowledge and information systems perspective shows how agricultural innovation can be enhanced through networking. In the Netherlands, a number of alternative systems of inquiry and learning are infused with this perspective: participatory technology development, participatory rural appraisal, soft systems methodology, and rapid…

  7. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE PAGES

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; ...

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  8. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    SciTech Connect

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; Klepzig, Kier D.; Currie, Cameron R.

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.

  9. Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes

    NASA Astrophysics Data System (ADS)

    Struth, Lucía; Babault, Julien; Teixell, Antonio

    2015-12-01

    The Eastern Cordillera of Colombia is a thick-skinned thrust-fold belt that is characterized by two topographic domains: (1) the axial zone, a high altitude plateau (the Sabana de Bogotá, 2500 masl) with low local relief and dominated by longitudinal rivers, and (2) the Cordillera flanks, where local relief exceeds 1000 m and transverse rivers dominate. On the basis of an analysis of digital topography and river parameters combined with a review of paleodrainage data, we show that the accumulation of shortening and crustal thickening during the Andean orogeny triggered a process of fluvial reorganization in the Cordillera. Owing to a progressive increase of the regional slope, the drainage network evolves from longitudinal to transverse-dominated, a process that is still active at present. This study provides the idea of progressive divide migration toward the inner part of the mountain belt, by which the area of the Sabana de Bogotá plateau is decreasing, the flanks increase in area, and ultimately transverse rivers will probably dominate the drainage of the Cordillera.

  10. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  11. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  12. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  13. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  14. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  15. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Broers, H. P.; Berendrecht, W. L.; Rozemeijer, J. C.; Osté, L. A.; Griffioen, J.

    2015-08-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling

  16. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  17. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Astrophysics Data System (ADS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  18. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Technical Reports Server (NTRS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  19. Phytopathogenic bacteria in the system of modern agriculture.

    PubMed

    Patyka, V P; Pasichnyk, L A

    2014-01-01

    The stages of studying bacterial diseases of crops and weeds at various farming systems have been characterized, biological properties have been investigated and pathogens identified using traditional and modern molecular genetic methods of research.

  20. Stakeholder Definition for Indonesian Integrated Agriculture Information System (IAIS)

    NASA Astrophysics Data System (ADS)

    Budi Santoso, Halim; Delima, Rosa

    2017-03-01

    Stakeholders plays an important roles to determine the system requirements. Stakeholders are people or organizations that has an interest to the enterprise. Timely and effective consultation of relevant stakeholders is a paramount importance in the requirements engineering process. From the research and analysis of system stakeholder finds that there are four stakeholder groups in IAIS. Stakeholder analysis is being implemented by identifying stakeholder, stakeholder category, and analysis interaction between stakeholders.

  1. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...

  2. Soil physical properties of agricultural systems in a large-scale study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large-scale field study was performed to determine the effects of agricultural management systems on soil physical properties, including their spatial and temporal variations. Replicates were established in 1998 at the Center for Environmental Farming Systems, Goldsboro, North Carolina; replicates...

  3. Environmental & Agricultural Systems Career Cluster ITAC for Career-Focused Education. Integrated Technical & Academic Competencies.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Designed for Ohio educators responsible for planning programs to prepare high school students for careers in environmental and agricultural systems, this document presents an overview of Ohio's Integrated Technical and Academic Competencies (ITAC) system of career-focused education and specific information about the environmental and agricultural…

  4. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  5. Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  6. Toward agricultural sustainability through integrated crop–livestock systems. III. Social aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  7. Toward agricultural sustainability through integrated crop-livestock systems: Environmental outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  8. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  9. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  10. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  11. Paleohydrology of meandering systems: a new approach for the reconstruction of ancient drainage areas and the quantification of the controlling factors

    NASA Astrophysics Data System (ADS)

    Held, A.; Cojan, I.

    2009-12-01

    In meandering system fluvial sedimentology, studying infill geometries and sedimentary structures of channelized sandstone bodies, gives information about the sedimentary dynamic and the depositional environment. Associated with such a sedimentary approach, paleohydrology enables the reconstruction of hydrological parameters such as discharge, drainage area or stream length. Although fluvial systems are known to be influenced by allogenic and/or autogenic processes, climate or structural evolution were not taken into account in previous paleohydrological studies. Therefore, the present study attempts to develop a new method of paleohydrological reconstitution, based on the geometry of fluvial sandstone bodies and constrained by the controlling factors (climate and tectonic). We selected two meandering systems of the same age, developed under different climatic setting: the first one is located in the Alpine Foreland Basin (SE France) and was associated to a subtropical humid realm; the second one is situated in the Loranca Basin (Central Spain) and was related to subtropical semi-arid conditions. Dealing with the uniformitarianism concept, we developed a new method to determine the paleohydrological parameters of the two different systems. For each of these two climatic setting we have constructed an equivalent modern rivers database taking into account their respective climatic conditions. By defining empirical relations, we translated the point-bar thickness (the only data available in the field) into paleohydrological parameters, such as channel geometry, water discharge and basin geometry. Because fluvial members studied are composed of several channelized sequences; each of them gives a specific drainage area depending on discharge value and climatic coefficient. But assuming a constant basin area all along the river evolution, we can quantify the spatiotemporal impact of the climate on the development of an alluvial system. Furthermore, granulometry

  12. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  13. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  14. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina).

    PubMed

    Lecomte, K L; Maza, S N; Collo, G; Sarmiento, A M; Depetris, P J

    2017-01-01

    The Amarillo River (Famatina range, Argentina, ~29° S and ~67° W) is unusual because acid mine drainage (AMD) is superimposed on the previously existing acid rock drainage (ARD) scenario, as a Holocene paleolake sedimentary sequence shows. In a markedly oxidizing environment, its water is currently ferrous and of the sulfate-magnesium type with high electrical conductivity (>10 mS cm(-1) in uppermost catchments). At the time of sampling, the interaction of the mineralized zone with the remnants of mining labors determined an increase in some elements (e.g., Cu ~3 to ~45 mg L(-1); As ~0.2 to ~0.5 mg L(-1)). Dissolved concentrations were controlled by pH, decreasing significantly by precipitation of neoformed minerals (jarosite and schwertmannite) and subsequent metal sorption (~700 mg kg(-1) As, 320 mg kg(-1) Zn). Dilution also played a significant role (i.e., by the mixing with circumneutral waters which reduces the dissolved concentration and also enhances mineral precipitation). Downstream, most metals exhibited a significant attenuation (As 100 %, Fe 100 %, Zn 99 %). PHREEQC-calculated saturation indices (SI) indicated that Fe-bearing minerals, especially schwertmannite, were supersaturated throughout the basin. All positive SI increased through the input of circumneutral water. PHREEQC inverse geochemical models showed throughout the upper and middle basin, that about 1.5 mmol L(-1) of Fe-bearing minerals were precipitated. The modeling exercise of mixing different waters yielded results with a >99 % of correlation between observed and modeled data.

  15. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  16. The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes

    NASA Astrophysics Data System (ADS)

    Doležal, František; Kvítek, Tomáš

    as the likely second main polluter. The differences in water quality between a drainage outlet and a forest spring indicate the importance of a proper nitrogen management in the recharge zones. It is also concluded that the tile drainage and tillage of formerly waterlogged sites, mainly located in transient zones, reduce the opportunity for denitrification of both baseflow and interflow. The ploughed lands in the recharge zones represent an established basis for local agriculture and cannot be easily set aside. Many such lands have been declared as vulnerable to nitrate pollution in order to protect waters against impacts of risky agricultural practices. It is proposed that some waterlogged and drained sites in the transient and discharge zones are set aside rather than the flat ploughed lands on the hill tops. To increase the denitrification, tile drainage runoff from the transient and the discharge zones should be retarded.

  17. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  18. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  19. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  20. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  1. Public Sector Agricultural Extension System Reform and the Challenges Ahead

    ERIC Educational Resources Information Center

    Rivera, William M.

    2011-01-01

    This paper is organized into two main sections. The first section examines extension as an engine for innovation and reviews the numerous priorities confronting extension systems. Section two highlights the current knowledge imperative and the critical connection of extension to post-secondary higher education and training, organizational…

  2. Integrating Digital Response Systems within a Diversity of Agricultural Audiences

    ERIC Educational Resources Information Center

    Sciarappa, William; Quinn, Vivian

    2014-01-01

    Extension educators have new computer-assisted tools as audience response systems (clickers) for increasing educational effectiveness and improving assessment by facilitating client input. From 2010-2012, 26 sessions involving 1093 participants in six diverse client categories demonstrated wide audience acceptance and suitability of clickers in…

  3. Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.

    ERIC Educational Resources Information Center

    Vukasin, Helen L., Ed.

    Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…

  4. Data on quantity and quality of water flowing in drainage systems of dry docks at Puget Sound Naval Shipyard, Bremerton, Washington, 1994

    USGS Publications Warehouse

    Prych, E.A.

    1995-01-01

    Ground-water discharges into dry docks no. 1, 2, 3, 4, 5 and 6 of Puget Sound Naval Shipyard in Bremerton, Washington equalled 0.07, 0.30, 0.29, 0.61, 1.18 and 6.2 cubic feet per second during one set of measurements in the summer of 1994. Total drainage-water discharges from the dry docks equalled 0.07, 0.30, 0.33, 0.61, 1.36 and 11.7 cubic feet per second. Differences between the two sets of discharges were cofferdam and floodgate leakages into the dry docks, and in dry dock no. 6, cooling- water discharge from a ship in dry dock. Concen- trations of total copper and total lead at 36 sampling sites in the drainage systems ranged from less than 1 to 71 micrograms per liter and less than 1 to 44 micrograms per liter, respectively. Concen- trations of all 43 semi-volatile organic compounds analyzed for in samples from 19 sites were less than the laboratory minimum reporting level (5 or 10 micrograms per liter). Trichloroethene and at least three other volatile organic compounds were found at concentrations greater than 0.2 micrograms per liter in samples from all eight sites that were analyzed for 63 volatile organic compounds.

  5. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Nomura, Daiki; Granskog, Mats A.; Kristiansen, Svein; Martma, Tõnu; Nehrke, Gernot

    2015-04-01

    In order to investigate the effect of glacial water on the CO2 system in the fjord, we studied the variability of the total alkalinity (AT), total dissolved inorganic carbon (CT), dissolved inorganic nutrients, oxygen isotopic ratio (δ18O), and freshwater fractions from the glacier front to the outer Tempelfjorden on Spitsbergen in winter 2012 (January, March, and April) and 2013 (April) and summer/fall 2013 (September). The two contrasting years clearly showed that the influence of freshwater, mixing, and haline convection affected the chemical and physical characteristics of the fjord. The seasonal variability showed the lowest calcium carbonate saturation state (Ω) and pH values in March 2012 coinciding with the highest freshwater fractions. The highest Ω and pH were found in September 2013, mostly due to CO2 uptake during primary production. Overall, we found that increased freshwater supply decreased Ω, pH, and AT. On the other hand, we observed higher AT relative to salinity in the freshwater end-member in the mild and rainy winter of 2012 (1142 μmol kg-1) compared to AT in 2013 (526 μmol kg-1). Observations of calcite and dolomite crystals in the glacial ice suggested supply of carbonate-rich glacial drainage water to the fjord. This implies that winters with a large amount of glacial drainage water partly provide a lessening of further ocean acidification, which will also affect the air-sea CO2 exchange.

  6. [Agricultural eco-economic system coupling in Zhifanggou watershed in hilly-gully region of Loess Plateau].

    PubMed

    Wang, Ji-Jun

    2009-11-01

    Agricultural eco-economic system coupling is an organic unit formed by the inherent interaction between agricultural ecosystem and economic system, and regulated and controlled by mankind moderate interference. Its status can be expressed by the circular chain-net structure of agricultural resources and agricultural industry. The agricultural eco-economic system in Zhifanggou watershed has gone through the process of system coupling, system conflict, system coupling, and partial conflict in high leverage, which is caused by the farmers' requirement and the state's macro-policy, economic means, and administrative means. To cope with the problems of agricultural eco-economics system coupling in Zhifanggou watershed, the optimal coupling model should be established, with tree-grass resources and related industries as the core.

  7. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included.

  8. Impact of agricultural management practices on soil organic carbon: simulation of Australian wheat systems.

    PubMed

    Zhao, Gang; Bryan, Brett A; King, Darran; Luo, Zhongkui; Wang, Enli; Song, Xiaodong; Yu, Qiang

    2013-05-01

    Quantifying soil organic carbon (SOC) dynamics at a high spatial and temporal resolution in response to different agricultural management practices and environmental conditions can help identify practices that both sequester carbon in the soil and sustain agricultural productivity. Using an agricultural systems model (the Agricultural Production Systems sIMulator), we conducted a high spatial resolution and long-term (122 years) simulation study to identify the key management practices and environmental variables influencing SOC dynamics in a continuous wheat cropping system in Australia's 96 million ha cereal-growing regions. Agricultural practices included five nitrogen application rates (0-200 kg N ha(-1) in 50 kg N ha(-1) increments), five residue removal rates (0-100% in 25% increments), and five residue incorporation rates (0-100% in 25% increments). We found that the change in SOC during the 122-year simulation was influenced by the management practices of residue removal (linearly negative) and fertilization (nonlinearly positive) - and the environmental variables of initial SOC content (linearly negative) and temperature (nonlinearly negative). The effects of fertilization were strongest at rates up to 50 kg N ha(-1) , and the effects of temperature were strongest where mean annual temperatures exceeded 19 °C. Reducing residue removal and increasing fertilization increased SOC in most areas except Queensland where high rates of SOC decomposition caused by high temperature and soil moisture negated these benefits. Management practices were particularly effective in increasing SOC in south-west Western Australia - an area with low initial SOC. The results can help target agricultural management practices for increasing SOC in the context of local environmental conditions, enabling farmers to contribute to climate change mitigation and sustaining agricultural production.

  9. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  10. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  11. Beyond climate-smart agriculture: toward safe operating spaces for global food systems

    SciTech Connect

    Gulledge, Jay; Neufeldt, Heinrich; Jahn, Margaret M; Lezaks, David P; Meinke, Jan H; Scholes, Robert J

    2013-01-01

    Agriculture is considered to be climate-smart when it contributes to increasing food security, adaptation and mitigation in a sustainable way. This new concept now dominates current discussions in agricultural development because of its capacity to unite the agendas of the agriculture, development and climate change communities under one brand. In this opinion piece authored by scientists from a variety of international agricultural and climate research communities, we argue that the concept needs to be evaluated critically because the relationship between the three dimensions is poorly understood, such that practically any improved agricultural practice can be considered climate-smart. This lack of clarity may have contributed to the broad appeal of the concept. From the understanding that we must hold ourselves accountable to demonstrably better meet human needs in the short and long term within foreseeable local and planetary limits, we develop a conceptualization of climate-smart agriculture as agriculture that can be shown to bring us closer to safe operating spaces for agricultural and food systems across spatial and temporal scales. Improvements in the management of agricultural systems that bring us significantly closer to safe operating spaces will require transformations in governance and use of our natural resources, underpinned by enabling political, social and economic conditions beyond incremental changes. Establishing scientifically credible indicators and metrics of long-term safe operating spaces in the context of a changing climate and growing social-ecological challenges is critical to creating the societal demand and political will required to motivate deep transformations. Answering questions on how the needed transformational change can be achieved will require actively setting and testing hypotheses to refine and characterize our concepts of safer spaces for social-ecological systems across scales. This effort will demand prioritizing key

  12. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  13. Development of a Global Agricultural Hotspot Detection and Early Warning System

    NASA Astrophysics Data System (ADS)

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  14. Hydrologic budget of the late Oligocene Lake Creede and the evolution of the upper Rio Grande drainage system

    USGS Publications Warehouse

    Barton, Paul B.; Steven, Thomas A.; Hayba, Daniel O.

    2000-01-01

    drilling) formed in an euxinic environment. This argues against a persistent early playa, although evaporative accumulation of brine was inevitable. When the rate of resurgance was rapid relative to sedimentary infilling, the lake would have been deep (i.e., bordered by bedrock rather than sedimentary fans). The geomorphic evolution of the Creede caldera and its watershed tracks a two-phase topographic history, the first the Oligocene through Miocene, and the second for Pliocene to the recent. In Oligocene time, the San Juan volcanic field was a hydrologically immature, gently undulating, and outward sloping, constructional volcanic plateau straddling the ancient Continental Divide. West of the Creede caldera, a dendritic drainage discharged northeastward into ancestral Cebolla Creek (a tributary of the ancestral Gunnison River) through an early stage of the Clear Creek graben in the vicinity of Spring Creek Pass. Miocene basalt choked, but did not reconstruct, the drainage. By the end of Miocene time a mature topography of moderate relief developed, exposing some of the higher ores in the Creede district to weathering. In the late Miocene-early Pliocene time the San Juan Mountains were uplifted and titled eastward; the ancestral Rio Grande was revitalized and cut deeply into the older terrain, excavating much of the accessible sediment from the moat of the Creede caldera and exposing successively lowe levels in the Creede district to oxidation. Simultaneously, the southeast end of the Clear Creek graben was reactivated and breached the southwest wall of the Creede caldera. The rejuvenated Rio Grande captured the formerly northeast-directed headwaters of ancestral Cebolla Creek, shifting more than 1000 km2 from the Pacific-directed drainage to the Atlantic. The water budget for ancient Lake Creede was strictly limited by the early stages of the fist geomorphic cycle; the modern water budget is the product of the second cycle.

  15. Psychiatric agriculture: systemic nutritional modification and mental health in the developing world.

    PubMed

    London, Douglas S; Stoll, Andrew L; Manning, Bruce B

    2006-01-01

    Modernization of agricultural systems to increase output causes changes to the nutritional content of food entire populations consume. Human nutritional needs differ from their "food", thus producing healthy agricultural products is not equivalent to providing agricultural products that are healthy for humans. Inclusion of the food production system as a factor in the increase of neuropsychiatric disorders and other chronic diseases helps explain negative trends in modern chronic diseases that remain unchecked despite stunning advances in modern medicine. Diseases in which our own technology plays a significant role include obesity and resulting disorders, such as diabetes, heart disease, hypertension, stroke and arthritis. Modernization's lure leads to importation of modern agricultural practices into a nutritionally vulnerable, malnourished and sometimes starving developing world. Wealthier nations hedge their food portfolio by having access to a wider variety of foods. The developing world's reliance on staple foods means even a minor widespread nutritional modification of one key food can have profound effects. New agricultural techniques may improve or exacerbate neuropsychiatric disorders through nutritional modification in regions where populations walk a nutritional tightrope with little margin for error. In most of the developing world western psychiatric interventions have failed to make inroads. People's consumption of fish has a demonstrated beneficial effect on their mental health and the omega-3 fatty acid content is a significant factor. Epidemiological, biological and agricultural studies implicate a lack of dietary omega-3s as a factor in certain mental disorders. Replenishing omega-3s has improved mental illnesses in controlled clinical trials. This article's detailed tilapia fish-farming model demonstrates how aquaculture/agriculture techniques can function as a public health intervention by increasing dietary omega-3s through creation of

  16. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    PubMed Central

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems. PMID:22163479

  17. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    PubMed

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  18. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  19. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGES

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; ...

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  20. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    SciTech Connect

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; Nair, Sujithkumar Surendran

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance in regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.

  1. A Remote Sensing-based Global Agricultural Drought Monitoring and Forecasting System for Supporting GEOSS (Invited)

    NASA Astrophysics Data System (ADS)

    di, L.; Yu, G.; Han, W.; Deng, M.

    2010-12-01

    Group on Earth Observations (GEO) is a voluntary partnership of governments and international organizations. GEO is coordinating the implementation of the Global Earth Observation System of Systems (GEOSS), a worldwide effort to make Earth observation resources more useful to the society. As one of the important technical contributors to GEOSS, the Center for Spatial Information Science and Systems (CSISS), George Mason University, is implementing a remote sensing-based global agricultural drought monitoring and forecasting system (GADMFS) as a GEOSS societal benefit areas (agriculture and water) prototype. The goals of the project are 1) to establish a system as a component of GEOSS for providing global on-demand and systematic agriculture drought information to users worldwide, and 2) to support decision-making with improved monitoring, forecasting, and analyses of agriculture drought. GADMFS has adopted the service-oriented architecture and is based on standard-compliant interoperable geospatial Web services to provide online on-demand drought conditions and forecasting at ~1 km spatial and daily and weekly temporal resolutions for any part of the world to world-wide users through the Internet. Applicable GEOSS recommended open standards are followed in the system implementation. The system’s drought monitoring relies on drought-related parameters, such as surface and root-zone soil moisture and NDVI time series derived from remote sensing data, to provide the current conditions of agricultural drought. The system links to near real-time satellite remote sensing data sources from NASA and NOAA for the monitoring purpose. For drought forecasting, the system utilizes a neural-network based modeling algorithm. The algorithm is trained with inputs of current and historic vegetation-based and climate-based drought index data, biophysical characteristics of the environment, and time-series weather data. The trained algorithm will establish per-pixel model for

  2. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  3. Predators exert top-down control of soybean aphid across a gradient of agricultural management systems.

    PubMed

    Costamagna, Alejandro C; Landis, Douglas A

    2006-08-01

    The discovery of soybean aphid, Aphis glycines Matusumura, in North America in 2000 provided the opportunity to investigate the relative strength of top-down and bottom-up forces in regulating populations of this new invasive herbivore. At the Kellogg Biological Station Long Term Ecological Research site in agroecology, we contrasted A. glycines establishment and population growth under three agricultural production systems that differed markedly in disturbance and fertility regimes. Agricultural treatments consisted of a conventional-tillage high-input system, a no-tillage high-input system, and a zero-chemical-input system under conventional tillage. By selectively restricting or allowing predator access we simultaneously determined aphid response to top-down and bottom-up influences. Irrespective of predator exclusion, our agricultural manipulations did not result in bottom-up control of A. glycines intrinsic rate of increase or realized population growth. In contrast, we observed strong evidence for top-down control of A. glycines establishment and overall population growth in all production systems. Abundant predators, including Harmonia axyridis, Coccinella septempunctata, Orius insidiosus, and various predaceous fly larvae, significantly reduced A. glycines establishment and population increase in all trials. In contrast to other systems in which bottom-up forces control herbivore populations, we conclude that A. glycines is primarily controlled via top-down influences of generalist predators under a wide range of agricultural management systems. Understanding the role of top-down and bottom-up forces in this context allows agricultural managers to focus on effective strategies for control of this invasive pest.

  4. Analysis of effects of climate change on runoff in an urban drainage system: a case study from Seoul, Korea.

    PubMed

    Jung, M; Kim, H; Mallari, K J B; Pak, G; Yoon, J

    2015-01-01

    Both water quantity and quality are impacted by climate change. In addition, rapid urbanization has also brought an immeasurable loss of life and property resulting from floods. Hence, there is a need to predict changes in rainfall events to effectively design stormwater infrastructure to protect urban areas from disaster. This study develops a framework for predicting future short duration rainfall intensity and examining the effects of climate change on urban runoff in the Gunja Drainage Basin. Non-stationarities in rainfall records are first analysed using trend analysis to extrapolate future climate change scenarios. The US Environmental Protection Agency Storm Water Management Model (SWMM) was used for single event simulation of runoff quantity from the study area. For the 1-hour and 24-hour durations, statistically significant upward trends were observed. Although the 10-minute duration was only nearly significant at the 90% level, the steepest slope was observed for this short duration. Moreover, it was observed that the simulated peak discharge from SWMM increases as the short duration rainfall intensity increases. The proposed framework is thought to provide a means to review the current design of stormwater infrastructures to determine their capacity, along with consideration of climate change impact.

  5. A Comparison of "Ice-House" (Modern) and "Hot-House" (Maastrichtian) Drainage Systems: the Implications of Large-Scale Changes in the Surface Hydrological Scheme

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.; Crossley, R.; Valdes, P. J.

    2002-12-01

    A GIS analysis of modern and Maastrichtian (Late Cretaceous) drainage systems has been made in order to investigate the potential differences between the surface hydrology of "ice-house" and "hot-house" worlds and how this might be reflected in the geological record. Because of the importance of CO2 concentrations for generating "hot-house" climates this study also has implications for potential future changes in the climate system. For the modern system we have utilized global maps of observed river systems, the Hydro1K digital dataset, observations of freshwater and sediment fluxes from recording stations, and modern day climate models and observations. For the Maastrichtian we have compiled a detailed global paleogeographic map and geological database (based on earlier work by the Paleogeographic Atlas Project, University of Chicago) that has been used to generate a paleo-DEM using the suite of hydrological tools in ArcGIS, complete with reconstructed river systems and drainage basins. This forms the primary boundary condition for a coupled ocean-atmosphere experiment using the HadCM3 model, with atmospheric CO2 set at 4 x pre-industrial levels. The results indicate a Maastrichtian world dominated by high sea surface temperatures (as high as 30-35 C in the tropics), and a consequently greatly enhanced hydrological cycle when compared with the Present. Globally, modeled Maastrichtian precipitation and evaporation are 1.5x that for the Present, with a 2.5x increase in total runoff. These changes are not evenly distributed, either spatially or seasonally, and therefore a detailed consideration of the paleogeography and paleo-drainage is essential, as these changes have a major influence on the distribution of vegetation and freshwater and sediment fluxes. For example, the Maastrichtian Tethyan monsoon, though less intense than noted for other modeled Mesozoic intervals, nonetheless dominates the seasonal distribution of precipitation and runoff over Saharan and

  6. The Impacts of Agricultural Land Use on Dissolved Organic Matter in a Dryland River System

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Bergamaschi, B. A.; Van Horn, D. J.; Diefendorf, A. F.

    2015-12-01

    Globally, expanding agriculture is significantly impacting aquatic nutrient cycles. In mesic systems, agriculture is a source of nitrogen and phosphorus and increases concentrations of structurally simple dissolved organic carbon (DOC). In contrast, recent studies suggest in dryland systems, where wastewater effluent is a primary nutrient source, agriculture is a nutrient sink—retaining nitrogen and phosphorous. Importantly, very little, is known about the influence of agriculture on DOC dynamics in dryland systems. To address this gap we used synoptic sampling, UV-absorbance, and fluorescence spectroscopy to elucidate source, character, and concentration of riverine and runoff DOC in a dryland agricultural system. Samples were collected along a 25 km stretch of the Rio Grande River in New Mexico (USA). The Rio Grande is an impoundment/irrigation-withdrawal controlled river that receives water from snowmelt, monsoonal storms, and wastewater effluent. During irrigation approximately 80% of the river's water is diverted into a manmade network where it waters crops and percolates through the soil before it enters a series of drains that return water to the river. Our preliminary characterization of the DOC reentering the river (DOCmean=3.23 mg/L, sd=0.81; SUVAmean=4.05, sd=1.37) indicates the agricultural pool is similar in concentration and aromaticity to riverine DOC (DOCmean= 3.10 mg/L, sd=1.17; SUVAmean= 4.64, sd=1.12). However, riverine organic matter is more terrestrially derived (FImean=1.68, sd=0.17) than organic matter in the drains (FImean=1.9, sd=0.24). Additionally, drains directly adjacent to actively irrigated fields show high concentrations (DOCmean=58.35; sd=0.91) of low aromaticity organic matter (SUVAmean=0.33; sd=0.11). We are continuing analysis throughout the irrigation season to further explore organic matter quality (traits such as bioavailability and freshness) and identify locations and processes of DOC transformation within the system

  7. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  8. Expanding soil health assessment methods for agricultural systems of the southern great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil health (also referred as soil quality) is critical for sustainable production and ecosystem services. Soil health analyses dependent upon singular parameters fail to account for the host of interactions occurring within the soil ecosystem. Soil health is in flux with m...

  9. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  10. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  11. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...

  12. Object-Oriented Agricultural System Modeling: Component-Driven Nutrient Dynamics and Crop Yield Simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to sim...

  13. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  14. From Cutlass to Agribusiness: Caribbean Food and Agriculture in Transition within a Global System.

    ERIC Educational Resources Information Center

    Moran, Michael J.

    This examination of the future role of food and agriculture in world peace and prosperity presents a regional cross-country view of the Caribbean countries with emphasis on the Caricom English speaking countries within a global food system environment. Following an introductory section, the second of six sections focuses on two broad agricultural…

  15. Sustaining the earth's watersheds-agricultural research data system: Overview of development and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data for watershed systems across diverse locations are essential for interdisciplinary hydrologic and ecosystem analysis and model development, calibration and validation. The USDA and Agricultural Research Service (ARS) have supported watershed research since the 1930’s w...

  16. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  17. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  18. GASOLINE TRACTOR ENGINE SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 14.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF THE OPERATION, COMPONENTS, AND FUNCTIONS OF VARIOUS GASOLINE TRACTOR ENGINE SYSTEMS. IT WAS DEVELOPED BY A…

  19. Application of the precision agricultural landscape modeling system in semiarid environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland croppin...

  20. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  1. ECOLOGICAL AND ECONOMIC DYNAMICS OF THE SHUNDE AGRICULTURAL SYSTEM UNDER CHINA'S SMALL CITY DEVELOPMENT STRATEGY

    EPA Science Inventory

    The development of small cities has been adopted as the main strategy to make full use of extra labor in the rural areas of China. The ecological and economic consequences of this development will affect over 100 million people and change the organization of agricultural systems ...

  2. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  3. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McNally, A.; Husak, G.; Funk, C.

    2014-03-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993-2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is

  4. The Development of a Web-service-based On-demand Global Agriculture Drought Information System

    NASA Astrophysics Data System (ADS)

    Deng, M.; Di, L.; Han, W.; Yagci, A.; Peng, C.

    2011-12-01

    The growing demand on detailed and accurate assessments of agriculture drought from local to global scales has made drought monitoring and forecasting a hot research topic in recent years. However, many challenges in this area still remain. One of such challenges is to how to let world-wide decision makers obtain accurate and timely drought information. Current agriculture drought information systems in the world are limited in many aspects, such as only regional or country level coverage, very coarse spatial and temporal resolutions, no on-demand drought information product generation and download services, no online analysis tools, no interoperability with other systems, and ineffective agriculture drought monitoring and forecasting. Leveraging the latest advances in geospatial Web service, interoperability and cyber-infrastructure technologies and the availability of near real-time global remote sensing data, we aims at providing a solution to those problems by building an open, interoperable, standard-compliant, and Web-service-based global agriculture drought monitoring and forecasting system (GADMFS) (http://gis.csiss.gmu.edu/GADMFS/). GADMFS will provide world-wide users with timely, on-demand, and ready-to-use agricultural drought data and information products as well as improved global agriculture drought monitoring, prediction and analysis services. For the monitoring purpose, the system lively links to near real-time satellite remote sensing data sources from NASA and NOAA and relies on drought related remotely sensed physical and biophysical parameters, such as soil moisture and drought-related vegetation indices (VIs, e.g., NDVI) to provide the current conditions of global agricultural drought at high resolutions (up to 500m spatial and daily temporal) to world-wide users on demand. For drought prediction, the system utilizes a neural network based modeling algorithm, trained with current and historic vegetation-based and climate-based drought index

  5. Potential hydrologic effects of a drainage system in McMillan delta and water impoundment in Brantley Reservoir, Eddy County, New Mexico

    USGS Publications Warehouse

    Crouch, T.M.; Welder, G.E.

    1988-01-01

    Construction of a proposed drainage system could result in a moderate flow increase in the Pecos River downstream from the McMillan delta. The potential effect of a new line channel of the Pecos River in McMillan delta in southeastern New Mexico would be an increase of less than 11,000 acre-ft/year. This increase includes overflow of 300 acre-ft from the present Pecos River channel, seepage losses of 3,600 acre-ft from the river bed and tributary inflow of 7,100 acre-ft. The potential effects of drains at the north end of the study area would be additional water of about 6,100 acre-ft within the first few years. In order to drain this much water, the drains would have to be dredged to a lower depth 6 to 8 mi to the south. Impoundment in Brantley Reservoir will cause increases in groundwater storage. The quantity of increased storage will depend on average reservoir pool levels. Major Johnson Springs probably will cease to flow at the conservation-pool level, and southward groundwater leakage from the Major Johnson Springs aquifer could increase. Large quantities of water may move in and out of storage in the Major Johnson Springs aquifer as the Brantley Reservoir pool changes between minimum pool and conservation pool levels. A ground--and surface-water monitoring network is needed to determine changes in groundwater storage caused by Brantley Reservoir. Water levels in selected wells need to be measured periodically during operation of the reservoir. Additional streamflow-gaging stations need to be established and surface-water samples analyzed to determine changes caused by a drainage system and Brantley Reservoir. (USGS)

  6. Agricultural Innovation Systems (AIS): A Study of Stakeholders and Their Relations in System of Rice Intensification (SRI)

    ERIC Educational Resources Information Center

    Suchiradipta, Bhattacharjee; Raj, Saravanan

    2015-01-01

    Purpose: This paper identifies the stakeholders of System of Rice Intensification (SRI), their roles and actions and the supporting and enabling environment of innovation in the state as the elements of the Agricultural Innovation Systems (AIS) in SRI in Tripura state of India and studies the relationship matrix among the stakeholders.…

  7. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    ERIC Educational Resources Information Center

    Hermans, Frans; Klerkx, Laurens; Roep, Dirk

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the main barriers and enablers eight countries…

  8. Nitrate exported in drainage waters of two sprinkler-irrigated watersheds.

    PubMed

    Cavero, J; Beltrán, A; Aragüés, R

    2003-01-01

    Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.

  9. [Population dynamics, the development of agricultural systems, and agricultural production in the densely populated rural areas of Cameroon].

    PubMed

    Kelodjoue, S

    1989-06-01

    traditional economy into the cash system. But by 1960 in the Bamileke plateau and Mont Mandaras and after 1970 in the Lekie country population no longer appeared as a consequence but as the main cause of rural structural changes. Containing the demographic pressure on the land and maintaining food self-sufficiency will require combatting poverty in general, through a series of actions aimed at both the agricultural and nonagricultural sectors.

  10. Agricultural policy and childhood obesity: a food systems and public health commentary.

    PubMed

    Wallinga, David

    2010-01-01

    For thirty-five years, U.S. agriculture has operated under a "cheap food" policy that spurred production of a few commodity crops, not fruit or vegetables, and thus of the calories from them. A key driver of childhood obesity is the consumption of excess calories, many from inexpensive, nutrient-poor snacks, sweets, and sweetened beverages made with fats and sugars derived from these policy-supported crops. Limiting or eliminating farm subsidies to commodity farmers is wrongly perceived as a quick fix to a complex agricultural system, evolved over decades, that promotes obesity. Yet this paper does set forth a series of policy recommendations that could help, including managing commodity crop oversupply and supporting farmers who produce more fruit and vegetables to build a healthier, more balanced agricultural policy.

  11. Reducing environmental risk by improving N management in intensive Chinese agricultural systems.

    PubMed

    Ju, Xiao-Tang; Xing, Guang-Xi; Chen, Xin-Ping; Zhang, Shao-Lin; Zhang, Li-Juan; Liu, Xue-Jun; Cui, Zhen-Ling; Yin, Bin; Christie, Peter; Zhu, Zhao-Liang; Zhang, Fu-Suo

    2009-03-03

    Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30-60% N savings, we found that current agricultural N practices with 550-600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service.

  12. A statistical approach for the assessment and redesign of the Nile Delta drainage system water-quality-monitoring locations.

    PubMed

    Khalil, B; Ouarda, T B M J; St-Hilaire, A

    2011-08-01

    There are several deficiencies in the statistical approaches proposed in the literature for the assessment and redesign of surface water-quality-monitoring locations. These deficiencies vary from one approach to another, but generally include: (i) ignoring the attributes of the basin being monitored; (ii) handling multivariate water quality data sequentially rather than simultaneously; (iii) focusing mainly on locations to be discontinued; and (iv) ignoring the reconstitution of information at discontinued locations. In this paper, a methodology that overcomes these deficiencies is proposed. In the proposed methodology, the basin being monitored is divided into sub-basins, and a hybrid-cluster analysis is employed to identify groups of sub-basins with similar attributes. A stratified optimum sampling strategy is then employed to identify the optimum number of monitoring locations at each of the sub-basin groups. An aggregate information index is employed to identify the optimal combination of locations to be discontinued. The proposed approach is applied for the assessment and redesign of the Nile Delta drainage water quality monitoring locations in Egypt. Results indicate that the proposed methodology allows the identification of (i) the optimal combination of locations to be discontinued, (ii) the locations to be continuously measured and (iii) the sub-basins where monitoring locations should be added. To reconstitute information about the water quality variables at discontinued locations, regression, artificial neural network (ANN) and maintenance of variance extension (MOVE) techniques are employed. The MOVE record extension technique is shown to result in a better performance than regression or ANN for the estimation of information about water quality variables at discontinued locations.

  13. PROCAMS - A second generation multispectral-multitemporal data processing system for agricultural mensuration

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Nalepka, R. F.

    1976-01-01

    PROCAMS (Prototype Classification and Mensuration System) has been designed for the classification and mensuration of agricultural crops (specifically small grains including wheat, rye, oats, and barley) through the use of data provided by Landsat. The system includes signature extension as a major feature and incorporates multitemporal as well as early season unitemporal approaches for using multiple training sites. Also addressed are partial cloud cover and cloud shadows, bad data points and lines, as well as changing sun angle and atmospheric state variations.

  14. [Drainage in thyroid surgery].

    PubMed

    Ardito, G; Revelli, L; Guidi, M L; Murazio, M; Lucci, C; Modugno, P; Di Giovanni, V

    1999-01-01

    Bleeding represents a rare complication of thyroid surgery but when it occurs it may be life-threatening. To prevent this complication drainage is widely used. However no study has demonstrated the drains' value and recent reports have questioned its benefits. Therefore we have analyzed our experience of a 10 year-period in which 1.217 thyroidectomies were performed by the same surgical team and prophylactic routine drainage was always adopted. In 13 patients (1.06%) a benign hematoma occurred with spontaneous remission. In 6 patients the bleeding was severe and compressive hematoma occurred; it required surgical re-exploration. Such a complication is unusual in the neck surgery (0.49% in the authors' series) performed by experienced surgeons and when life-threatening hematomas do occur they depend on various uncontrolled factors and drainage is often not helpful. Otherwise a meticulous haemostatic technique is necessary and patients should be observed very closely during the few first hours following surgery on the thyroid gland. Therefore on the basis of the analysis of their series, although it is not always possible to prove the benefit of the drainage, the authors suggest its indication in the neck surgery, as in other fields with dead space, to remove blood and secretions reducing postoperative complications. They have never observed wound infections and patients were discharged within 72 hours.

  15. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  16. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system

    NASA Astrophysics Data System (ADS)

    Maza, Santiago N.; Collo, Gilda; Astini, Ricardo A.; Nieto, Fernando; Nieto, José Miguel

    2014-07-01

    A 44 m-thick lacustrine succession of silty-clay banded ochres and subordinated sandstones, and conglomerates (known as the Corral Amarillo Formation) is superbly exposed within the Famatina Belt (Central Andes of Argentina) after deep entrenchment by the present-day Amarillo river due to strong recent uplifting and consequent relative drop in base level. The unusual ochreous-rich succession was produced by natural damming (3.48-3.54 14C kyr BP) of an acid drainage system linked to the alteration cap of polymetallic deposits. Facies of silty-clay ochre (wet season) and banded ochre (dry season) from the paleolacustrine setting are composed of jarosite + goethite and goethite respectively. Geochemically, these layers record high concentrations of Fe2O3 (25-55 wt. %) and trace elements (Cu, Zn, Co, As, and Mo with mean concentrations of 2759; 2467; 109; 375 and 116 ppm, respectively). Their origin is inferred from a comparative analysis with the present-day Amarillo river, which has a pH of ˜3, (SO4)2- concentrations of ˜5000 mg/l, and jarosite as the dominant phase, in the upper catchments. Waters downstream have pH values of 3-4.5, (SO4)2- concentrations of ˜3000-480 mg/l, and schwertmannite as the dominant phase. Thus goethite in the paleolake facies is likely related to schwertmannite transformation by an aging process, whereas jarosite is probably transported from the river but could also be associated with post-depositional formation regulated by variations in grain size and the pore fluid chemistry. The Corral Amarillo Formation offers a Natural model, which may be employed to infer the effect on nature of acid drainage of mineralized areas.

  17. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  18. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Heuberger, P. S. C.; Van Drecht, G.; Van Der Hoek, K. W.

    Here we present an uncertainty analysis of NH 3 emissions from agricultural production systems based on a global NH 3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH 3 emission from agricultural systems is 27-38 (with a mean of 32) Tg NH 3-N yr -1, N fertilizer use contributing 10-12 (11) Tg yr -1 and livestock production 16-27 (21) Tg yr -1. Most of the emissions from livestock production come from animal houses and storage systems (31-55%); smaller contributions come from the spreading of animal manure (23-38%) and grazing animals (17-37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH 3 emission comprise four parameters (N excretion rates, NH 3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH 3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.

  19. Biotechnology research in Nigeria: A socio-economic analysis of the organication of agricultural research system's response to biotechnology

    SciTech Connect

    Duru, G.C.

    1988-01-01

    Many agricultural development experts and social scientists argue that a lack of appropriate technology was a limiting factor in the efforts by developing countries to expand their agricultural productivity. Biotechnology is now advanced as a technology that could meet these needs. Agricultural and social scientists maintain that the new biotechnology, if realistically applied, could assist a developing nation such as Nigeria to solve its agricultural problems. But one concern is the private character of biotechnology which limits its transferability to the LDCs. This situation will impose unusual constraints on national agricultural development programs and increase dependence if national research capability is weak. The basic finding of this field research was that the Nigerian national agricultural research system was weak, which meant that the potentials and promises of biotechnology will elude the country's desire to improve its agriculture in the immediate future. The primary weakness rested in inadequate funding and infrastructural deficiencies.

  20. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  1. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false What should the System institution do when it... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  2. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    ERIC Educational Resources Information Center

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  3. Incorporating Indigenous Knowledge Systems into Agricultural and Extension Education Programs: A Study of the Perceptions of Extension Professionals.

    ERIC Educational Resources Information Center

    Rajasekaran, B.; Martin, Robert A.

    Dissemination of technologies to increase agricultural production using the conventional transfer of technology system has often failed to consider the natural environment, indigenous knowledge systems, and resource endowments around which resource-poor farmers normally operate. A sample of 96 agricultural extension professionals in 2 districts in…

  4. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  5. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico.

    PubMed

    McCullough, Ellen B; Matson, Pamela A

    2016-04-26

    Knowledge systems-networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action-have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research-decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives.

  6. Urban Drainage Modeling and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Schmitt, Theo G.; Thomas, Martin

    The European research project in the EUREKA framework, RisUrSim (Σ!2255) has been worked out by a project consortium including industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The overall objective has been the development of a simulation to allow flood risk analysis and cost-effective management for urban drainage systems. In view of the regulatory background of European Standard EN 752, the phenomenon of urban flooding caused by surcharged sewer systems in urban drainage systems is analyzed, leading to the necessity of dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow in order to most accurately compute water levels above ground as a basis for further assessment of possible damage costs. The model application is presented for small case study in terms of data needs, model verification, and first simulation results.

  7. A coupled human-natural systems analysis of irrigated agriculture under changing climate

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.

    2016-09-01

    Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.

  8. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A What's in this article? ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  9. Efficient mapping of agricultural soils using a novel electromagnetic measurement system

    NASA Astrophysics Data System (ADS)

    Trinks, Immo; Pregesbauer, Michael

    2016-04-01

    "Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m

  10. Paleogeography, Paleo-drainage Systems, and Tectonic Reconstructions of Eocene Northern South America Constrained by U-Pb Detrital Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Xie, X.; Mann, P.; Escalona, A.

    2008-12-01

    Thick, Eocene to Miocene clastic sedimentary basins are widespread across on- and offshore northern South America and have been identified using seismic reflection data in offshore basins of the Leeward Antilles, the Lesser Antilles arc and forearc, and the Barbados accretionary prism. Several 3 to12-km-thick Paleogene depocenters occur in shelf to deep basinal settings along the offshore margins of Venezuela, Trinidad and Tobago, and Barbados. Previous studies proposed that the proto-Orinoco River has been the single fluvial source for these distal, continentally-derived sandstone units along northern Venezuela as part of the early Eocene to Miocene, proto-Maracaibo fluvial-deltaic system that emanated from the northern Andes of western Venezuela and Colombia. Those distal sandstones were displaced eastward with the movement of the Caribbean plate by several hundred kilometers and are now found in basins and islands of the southeastern Caribbean region. We collected nine Eocene age sandstone samples from well cores and outcrops along the northern South America margin, including Lake Maracaibo, Trinidad and Tobago, and Barbados Island. In total, 945 single detrital zircon grains were analyzed using LA-ICP-MS. The objective is to reconstruct the paleogeography, paleo-drainage system, and tectonic history during Eocene time. New data show that the Eocene Misoa Formation of Lake Maracaibo was characterized by a mixture of Precambrian, Paleozoic, and Mesozoic ages matching age provinces from eastern Cordillera and the Guayana Shield, which is consistent with previous proto-Orinoco River model flowing from the western Amazonian region of Colombia and Brazil through the Maracaibo basin into the area of western Falcon basin. However, coeval Eocene samples from Barbados and Trinidad show a much different age population dominated by Precambrian matching the eastern part of the Guyana shield to the south, which suggests that the western onland system and eastern offshore

  11. Structural influence on the evolution of the pre-Eonile drainage system of southern Egypt: Insights from magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Roden, Jeff; Abdelsalam, Mohamed G.; Atekwana, Estella; El-Qady, Gad; Tarabees, Elhamy Aly

    2011-12-01

    The Wadi Kubbaniya in the Western Desert of Egypt north of the City of Aswan has been interpreted as the downstream continuation of the Wadi Abu Subeira, comprising an ancient W- and NW-flowing river system originating from the Precambrian crystalline rocks of the Red Sea Hills which were uplifted during the Miocene in association with the opening of the Red Sea. This drainage system is thought to have been active before the onset of the N-flowing Egyptian Nile which started ˜6 Ma with the Eonile phase; an event that resulted in carving of ˜1000 km long canyon (the Eonile canyon) extending from the Mediterranean Sea in the north to Aswan in the south due to the Messinian Salinity Crisis. This study utilizes geophysical data to examine the role of regional tectonics and local structures in controlling the evolution of the pre-Eonile drainage system. Magnetotelluric (MT) and gravity surveys were conducted along two ˜5 km-long profiles across the NW-trending Wadi Kubbaniya. Two-dimensional (2D) inversion of MT data and gravity models indicate the Wadi Kubbaniya is filled with loosely-consolidated sandstone and conglomerate that extend to a depth of ˜150-200 m into Cretaceous sandstone formations which overlie Precambrian crystalline rocks. These results were evaluated in terms of two end-member models; an incision model in which the 150-200 m thick sedimentary rocks were considered as being deposited within an incised valley that was carved into bedrock, or a structural model in which the sedimentary rocks are considered as filling a NW-trending graben controlled by normal faults that deform the Cretaceous sandstone formations and the underlying Precambrian crystalline rocks. Geological observations as well as supporting seismic data favor the interpretation that the Wadi Kubbaniya is a NW-trending graben similar to other extensional structures found 400 km northwest along-strike of Wadi Kubbaniya. These structures are impressively parallel to the western

  12. Analysis agriculture's impact in a system of lakes on a karst environment with tropical climate.

    NASA Astrophysics Data System (ADS)

    Olea Olea, Selene; Escolero Fuentes, Oscar

    2015-04-01

    This paper has as main object to analyze the impact of agriculture in the water quality of the "Lagos de Montebello" area; which is located in the Southeast of Mexico. This area is prominent by its tropical climate and a karstic environment. The issue arises in a lake system affected by pollution in the later years, which has turned its former clear water into a highly sedimented muddy water in the topographically lower terrains while no polluted on the higher ones; therefore it is intended to determine if the rise in agricultural activity in the lower terrains has induced this phenomenon. The impact of agriculture has been historically studied in temperate climates with karstic environments; nevertheless it has not been very well studied in tropical climates; which are the reason of this proposal to perform a study to analyze the impact of the intensive agriculture running in the area. To develop this project we studied the area regarding to the types of crops that has being established in the zone, being mostly tomato, corn, and bean; and the fertilizers and pesticides applied to them. A groundwater monitoring plan was designed with a variety of phases such as: piezometers building, measurement of groundwater levels, measurement of field parameters, with a two months intervals (Ph, temperature, electric conductivity, total dissolved solids), and water samplings for laboratory analysis (major ions, nutrients, total organic carbon, pesticides) at twice a year, once during rainy season and then on drought. The rates of pollution agents infiltration depends on the type of soil retention and volume of water. The materials found in the soil by the piezometers are clay, silt, sand and variations between them. We determined that the geochemical qualities of the groundwater vary from calcic bicarbonate to calcic sulfated. The results reached with this monitoring provides a preliminary diagnosis on the possible causes and other implications that intensive agriculture in a

  13. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture

    SciTech Connect

    Binder, Claudia R.; Feola, Giuseppe; Steinberger, Julia K.

    2010-02-15

    This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making - a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multi-functionality of agriculture and the applicability of the results. In response to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottom-up, integrated participatory or transdisciplinary methods are the most suitable ones.

  14. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico

    PubMed Central

    McCullough, Ellen B.; Matson, Pamela A.

    2016-01-01

    Knowledge systems—networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action—have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research–decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives. PMID:21606365

  15. Agriculture and food systems in sub-Saharan Africa in a 4°C+ world.

    PubMed

    Thornton, Philip K; Jones, Peter G; Ericksen, Polly J; Challinor, Andrew J

    2011-01-13

    Agricultural development in sub-Saharan Africa faces daunting challenges, which climate change and increasing climate variability will compound in vulnerable areas. The impacts of a changing climate on agricultural production in a world that warms by 4°C or more are likely to be severe in places. The livelihoods of many croppers and livestock keepers in Africa are associated with diversity of options. The changes in crop and livestock production that are likely to result in a 4°C+ world will diminish the options available to most smallholders. In such a world, current crop and livestock varieties and agricultural practices will often be inadequate, and food security will be more difficult to achieve because of commodity price increases and local production shortfalls. While adaptation strategies exist, considerable institutional and policy support will be needed to implement them successfully on the scale required. Even in the 2°C+ world that appears inevitable, planning for and implementing successful adaptation strategies are critical if agricultural growth in the region is to occur, food security be achieved and household livelihoods be enhanced. As part of this effort, better understanding of the critical thresholds in global and African food systems requires urgent research.

  16. Sampling: the weak link in the sanitary quality control system of agricultural products.

    PubMed

    Blanc, Michel

    2006-05-01

    To ensure a high level of consumer protection, the European Union has in the past years published several regulations setting very low limits for a given number of food contaminants (pesticides, mycotoxins, heavy metals) in many agricultural products (cereals, oilseeds, dry fruits, coffee, spices, etc). These new regulations regarding the sanitary quality of agricultural products, compel both economic operators and officials of different EU member states to set up sampling plans and rigorous analyses aimed at checking whether a product lot complies with the required standards prior to its release on the market. While the laboratory analysis management today is outstanding thanks to the validated and efficient detection methods and procedures available for quality assurance in laboratories (accreditation), this is not necessarily true of the sampling operation, which seems to be the weak link in the sanitary control system for agricultural products. The sampling operation is often the main source of error when assessing the sanitary quality of a lot of agricultural commodities, with both commercial (downgrading of the product) and sanitary (marketing of a product which poses a health risk for the consumer) consequences. Therefore, it is essential for the operators involved to be aware of the significance and difficulties of the sampling operation, which requires important equipment and human resources. Furthermore, drawing up specific standards and guidelines, as well as setting up quality assurance procedures, at the level in charge of carrying out this delicate and important operation, are necessary.

  17. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a Geographic Information System

    USGS Publications Warehouse

    Ward, M.H.; Nuckols, J.R.; Weigel, S. J.; Cantor, K.P.; Miller, Roger S.

    2000-01-01

    Pesticides used in agriculture may cause adverse health effects among the population living near agricultural areas. However, identifying the populations most likely to be exposed is difficult. We conducted a feasibility study to determine whether satellite imagery could be used to reconstruct historical crop patterns. We used historical Farm Service Agency records as a source of ground reference data to classify a late summer 1984 satellite image into crop species in a three-county area in south central Nebraska. Residences from a population-based epidemiologic study of non-Hodgkin lymphoma were located on the crop maps using a geographic information system (GIS). Corn, soybeans, sorghum, and alfalfa were the major crops grown in the study area. Eighty-five percent of residences could be located, and of these 22% had one of the four major crops within 500 m of the residence, an intermediate distance for the range of drift effects from pesticides applied in agriculture. We determined the proximity of residences to specific crop species and calculated crop-specific probabilities of pesticide use based on available data. This feasibility study demonstrated that remote sensing data and historical records on crop location can be used to create historical crop maps. The crop pesticides that were likely to have been applied can be estimated when information about crop-specific pesticide use is available. Using a GIS, zones of potential exposure to agricultural pesticides and proximity measures can be determined for residences in a study.

  18. Energy integrated farm system: North Dakota State University Agricultural Experiment Station

    SciTech Connect

    Not Available

    1984-01-01

    North Dakota State University Agricultural Experiment Station, a dairy farm with wheat, barley, sugar beet, and soybean crops, is designed to conserve energy through energy integrated concepts including wind break and solar energy for heating buildings, methane digestion, and energy conservation crop practices. The integrated energy concepts to be demonstrated are: generation of methane from manure; use of a milk-to-water heat exchanger and rock-bed heat storage in dairy operations; use of a solar collector energy system for space heat in the dairy barn (calf warming); efficient solid-liquid separation in manure collection system; use of digester effluent as bedding and fertilizer; and energy conservation by improved agriculture practices, such as conservation tillage, pest management, and soil testing for efficient use of fertilizer.

  19. Drivers Impacting the Adoption of Sustainable Agricultural Management Practices and Production Systems of the Northeast and Southeast U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production responds to economic, social, environmental, and technological drivers operating both internal and external to the production system. These drivers influence producers’ decision making processes, and act to shape the individual production systems through modification of produ...

  20. System for analysis of LANDSAT agricultural data: Automatic computer-assisted proportion estimation of local areas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Kauth, R. J.; Thomas, G. S.

    1976-01-01

    The author has identified the following significant results. A conceptual man machine system framework was created for a large scale agricultural remote sensing system. The system is based on and can grow out of the local recognition mode of LACIE, through a gradual transition wherein computer support functions supplement and replace AI functions. Local proportion estimation functions are broken into two broad classes: (1) organization of the data within the sample segment; and (2) identification of the fields or groups of fields in the sample segment.