Science.gov

Sample records for agricultural environment monitoring

  1. Effective monitoring of agriculture.

    PubMed

    Lindenmayer, David B; Likens, Gene E

    2011-06-01

    An opinion piece published in Nature proposed a global network for agricultural monitoring [J. Sachs, R. Remans, S. Smukler, L. Winowiecki, S. J. Andelman, K. G. Cassman, D. Castle, R. DeFries, G. Denning, J. Fanzo, L. E. Jackson, R. Leemans, J. Leemans, J. C. Milder, S. Naeem, G. Nziguheba, C. A. Palm, J. P. Reganold, D. D. Richter, S. J. Scherr, J. Sircely, C. Sullivan, T. P. Tomich and P. A. Sanchez, Nature, 2010, 466, 558-560.]. Whilst we agree with Sachs et al. that monitoring of agricultural systems is a critically important activity of global significance, especially given increasing problems with global food security and the potential impacts of agriculture on the environment [J. Cribb, The Coming Famine. The Global Food Crisis and What We Can Do to Avoid It, CSIRO Publishing and University of California Press, Melbourne and Oakland, 2010.], we argue in this paper that their generic, mandated monitoring framework has a high probability of failure or at best will be highly inefficient. We base this conclusion on our recently published examination of the factors influencing the success or failure of monitoring programs worldwide [D. B. Lindenmayer and G. E. Likens, Effective Ecological Monitoring, CSIRO Publishing and Earthscan, Melbourne and London, 2010.]. We briefly outline what we believe are three serious flaws in the monitoring framework proposed by Sachs et al. We then suggest an alternative approach that we argue would be more effective, more efficient, and have a greater chance of successfully addressing key issues in sustainable agriculture. PMID:21479312

  2. Stimulating innovation for global monitoring of agriculture and its impact on the environment in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Gobin, Anne

    2015-04-01

    There is an urgent need to ensure food supply for a growing global population. To enable a sustainable growth of agricultural production, effective and timely information is required to support decision making and to improve management of agricultural resources. This requires innovative ways and monitoring methods that will not only improve short-term crop production forecasts, but also allow to assess changes in cultivation practices, agricultural areas, agriculture in general and, its impact on the environment. The G20 launched in June 2011 the "GEO Global Agricultural Monitoring initiative (GEOGLAM), requesting the GEO (Group on Earth Observations) Agricultural Community of Practice to implement GEOGLAM with the main objective to improve crop yield forecasts as an input to the Agricultural Market Information System (AMIS), in order to foster stabilisation of markets and increase transparency on agricultural production. In response to this need, the European Commission decided in 2013 to fund an international partnership to contribute to GEOGLAM and its research agenda. The resulting SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), a partnership of 23 globally distributed expert organisations, focusses on developing datasets and innovative techniques in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterise cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, will be used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series will be explored to assess crop

  3. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  4. Monitoring the impacts of urbanization and industrialization on the agricultural land and environment of the Torbali, Izmir region, Turkey.

    PubMed

    Kurucu, Yusuf; Chiristina, Nilüfer Küçükyilmaz

    2008-01-01

    The aim of this research is to determine agricultural land loss and environmental pollution caused by industrialization and urban sprawl using the Geographical Information System (GIS) and Remote Sensing technique (RS). Remotely sensed data is the most powerful tool for monitoring land use changes and GIS is the best way to store and reproduce various kinds of integrated data. Considering the rapid increase of population the loss of fertile agricultural soils is a very dangerous situation for the future of the country. Thus, people are living in the cities in (with adverse) conditions of insufficient drinking water, infrastructure problems, inadequate landscape and many unsolved (extreme) environmental problems. During the last 36 years, unplanned urbanization and industrialization have led to the use of agricultural areas for non-agricultural purposes in the Torbali (Izmir) region, which has the most fertile soils of the Aegean Region. Within this study, a database was created on the parameters of land loss and environmental pollution by means of field observation, interpretation of satellite images (ASTER), aerial photos(1/25.000 scale), topographic map, soil map, and 1/5.000 scale cadastral map. Results of previous researches and the archives of Torbali municipality were used as ancillary data. In the research, urbanization and industrialization of the town was studied by (using) GIS and RS between 1965 and 2001. Since 1965, 4,742,357 m2 agricultural land, mostly of first and second land use capability classes, has been lost due to unplanned urban and industrial developments. Urbanization and industrialization involved an area of which 58% was being used as irrigated lands, 25 % rain feed (rain fed lands)and 17 % for olive growing. PMID:17370130

  5. Development of a PCR-based method for monitoring the status of Alcaligenes species in the agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2014-01-01

    To analyze the status of the genus Alcaligenes in the agricultural environment, we developed a PCR method for detection of these species from vegetables and farming soil. The selected PCR primers amplified a 107-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 1.06 pg of pure culture DNA, corresponding to DNA extracted from approximately 23 cells of Alcaligenes faecalis. Meanwhile, PCR primers generated a detectable amount of the amplicon from 2.2×10(2) CFU/ml cell suspensions from the soil. Analysis of vegetable phylloepiphytic and farming soil microbes showed that bacterial species belonging to the genus Alcaligenes were present in the range from 0.9×10(0) CFU per gram (or cm(2)) (Japanese radish: Raphanus sativus var. longipinnatus) to more than 1.1×10(4) CFU/g (broccoli flowers: Brassica oleracea var. italic), while 2.4×10(2) to 4.4×10(3) CFU/g were detected from all soil samples. These results indicated that Alcaligenes species are present in the phytosphere at levels 10-1000 times lower than those in soil. Our approach may be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment. PMID:24670615

  6. A Landsat Agricultural Monitoring Program

    NASA Technical Reports Server (NTRS)

    Aaronson, A. C.; Buchman, P. E.; Wescott, T.; Fries, R. E.

    1977-01-01

    The paper discusses the Landsat Agricultural Monitoring Program which was developed to identify, observe, and evaluate alarm conditions influencing Iowa corn production in 1976. Used in conjunction with climatic and field reports, studies were made of crop development, crop alarms (such as heavy rainfall, hail, tornadoes, and drought) and estimated crop yield.

  7. Agriculture & the Environment. Teacher's Guide.

    ERIC Educational Resources Information Center

    McMurry, Linda Maston

    This teacher's guide offers background information that teachers can use to incorporate topics related to agriculture and the environment into the curriculum. Classroom activities to bring these topics alive for students in grades 6-9 are suggested. Chapters include: (1) Pesticides and Integrated Pest Management; (2) Food Safety; (3) Water…

  8. Monitoring pathogens from irradiated agriculture products

    NASA Astrophysics Data System (ADS)

    Butterweck, Joseph S.

    The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. It, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. The common sources of monitoring data are as follows: 1) Host Monitoring a) Medical Diagnosis b) Autopsy c) Serology Surveys 2) Environmental Monitoring a) Sentinel b) Pest Surveys/Microbial Counts c) Sanitary Inspections 3) Food Industries Quality Assurance Monitoring a) End Product Inspection b) Complaints c) Continual Use of the Product

  9. Stronger management needed to protect agricultural environment

    SciTech Connect

    Cai Shikui

    1983-01-01

    This article examines environmental issues and management in developed agricultural areas of China. Agricultural environmental management is defined as the adoption of countermeasures by applying the theories and methods of environmental science and management science and abiding by economic laws and ecological laws to prevent pollution of the agricultural environment and destruction of the agro-ecology by man; to coordinate the relationship between the development of agricultural production and the protection of the agricultural environment and to satisfy increasing demands for agricultural by-products. Topics considered include the basis for developing agricultural environmental management, the present condition of the agricultural environment in China, and several management proposals.

  10. Effective monitoring of agriculture: a response.

    PubMed

    Sachs, Jeffrey D; Remans, Roseline; Smukler, Sean M; Winowiecki, Leigh; Andelman, Sandy J; Cassman, Kenneth G; Castle, David; DeFries, Ruth; Denning, Glenn; Fanzo, Jessica; Jackson, Louise E; Leemans, Rik; Lehmann, Johannes; Milder, Jeffrey C; Naeem, Shahid; Nziguheba, Generose; Palm, Cheryl A; Pingali, Prabhu L; Reganold, John P; Richter, Daniel D; Scherr, Sara J; Sircely, Jason; Sullivan, Clare; Tomich, Thomas P; Sanchez, Pedro A

    2012-03-01

    The development of effective agricultural monitoring networks is essential to track, anticipate and manage changes in the social, economic and environmental aspects of agriculture. We welcome the perspective of Lindenmayer and Likens (J. Environ. Monit., 2011, 13, 1559) as published in the Journal of Environmental Monitoring on our earlier paper, "Monitoring the World's Agriculture" (Sachs et al., Nature, 2010, 466, 558-560). In this response, we address their three main critiques labeled as 'the passive approach', 'the problem with uniform metrics' and 'the problem with composite metrics'. We expand on specific research questions at the core of the network design, on the distinction between key universal and site-specific metrics to detect change over time and across scales, and on the need for composite metrics in decision-making. We believe that simultaneously measuring indicators of the three pillars of sustainability (environmentally sound, social responsible and economically viable) in an effectively integrated monitoring system will ultimately allow scientists and land managers alike to find solutions to the most pressing problems facing global food security. PMID:22293996

  11. Agricultural Science Protects Our Environment.

    ERIC Educational Resources Information Center

    1967

    Included are a 49 frame filmstrip and a script for narrating a presentation. The presentation is aimed at the secondary school level with an emphasis on how agricultural scientists investigate problems in farmland erosion, stream pollution, road building erosion problems, air pollution, farm pollution, pesticides, and insect control by biological…

  12. Monitoring the agricultural landscape for insect resistance

    NASA Astrophysics Data System (ADS)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural

  13. Environment and chemicals in agriculture

    SciTech Connect

    Winteringham, F.W.P.

    1985-01-01

    The Commission of the European Communities and the Irish Government jointly organized a symposium in Dublin in October 1984, from which the papers in this book are presented. Environmental concerns related to intensive agriculture provided the impetus for the symposium. More than half of the papers deal with economic or extension aspects of environmental protection. It is stressed that uniform standards and regulations are not reasonable, since soils, climate, and farming systems vary. With respect to pesticide use, emphasis is placed on integrated pest management through improved pest forecasting, more specific targeting of pesticide applications, and farmer education. The development of pesticide resistance is a serious concern that will require research into new techniques for pest control. The primary environmental problem with fertilizers is the leaching of NO/sub 3/ into ground water, with many ears exceeding the acceptable level of 50 mg/L. The Netherlands, in particular, has the highest average rate of N fertilizer use in the world, 240 kg/ha, with about 400 kg/ha of N applied in areas with intensive dairy (Bos sp.) farming. Nevertheless, areas in the Netherlands where the NO/sub 3/ concentration in ground water exceeds 50 mg/L are associated with large amounts of manure produced in intensive pig and poultry farming, rather than with fertilizer applications. There is a need to balance nutrients added with those removed in intensive agricultural systems.

  14. Technology Of Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Bates, Maynard E.

    1995-01-01

    Report discusses controlled-environment agriculture (CEA) for commercial production of organisms, whether plants or animals. Practiced in greenhouses to produce food on nonarable lands. Describes conceptual regenerative system that incorporates biological, physical, and chemical processes to support humans in extraterrestrial environments.

  15. [The Environment: Agriculture and Health Perspectives.

    ERIC Educational Resources Information Center

    Johnson, Charles C.; Byerly, T. C.

    On January 1, 1970, President Nixon signed into law a bill establishing a national policy to maintain conditions of the environment under which man and nature can exist in productive harmony. In keeping with this, the 1970 National Agricultural Outlook Conference was held, at which the 2 speeches presented in this document were delivered. The…

  16. Environment surveys. [monitoring and protection of environment

    NASA Technical Reports Server (NTRS)

    Greenwood, L. R.

    1974-01-01

    Environment applications are concerned with the quality, protection, and improvement of water, land, and air resources and, in particular, with the pollution of these resources caused by man and his works, as well as changes to the resources due to natural phenomena (for example, drought and floods). The broad NASA objectives related to the environment are directed toward the development and demonstration of the capability to monitor remotely and assess environmental conditions related to water quality, land and vegetation quality, wildlife resources, and general environment. The contributions of ERTS-1 to these subdiscipline areas are broadly summarized.

  17. Monitoring the Environment

    ERIC Educational Resources Information Center

    Heins, Conrad F.; And Others

    1975-01-01

    New ways of obtaining environmental data are being developed to meet the demand for comprehensive, accurate, and timely information on the environment. This article examines four developments that are transforming the entire field of environmental measurement: spectroscopy; satellite transmission of environmental data; remote sensing; and…

  18. NASA Earth Resources Survey Symposium. Volume 1-A: Agriculture, environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers dealing with the practical application of imagery obtained from remote sensors on LANDSAT satellites, the Skylab Earth resources experiment package, and aircraft to problems in agriculture and the environment were presented. Some of the more important topics that were covered included: range management and resources, environmental monitoring and management, crop growth and inventory, land management, multispectral band scanners, forest management, mapping, marshlands, strip mining, water quality and pollution, ecology.

  19. Agricultural Productivity Forecasts for Improved Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  20. Sensor architecture and task classification for agricultural vehicles and environments.

    PubMed

    Rovira-Más, Francisco

    2010-01-01

    The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522

  1. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    PubMed Central

    Rovira-Más, Francisco

    2010-01-01

    The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522

  2. Monitoring of Agricultural Landscape in Norway

    NASA Astrophysics Data System (ADS)

    Wallin, H. G.; Engan, G.

    2012-07-01

    An overall societal aim is to ensure a sustainable use and management of agricultural landscapes. This requires continuous delivery of reliable and up-to-date information to decision-makers. To be able to deliver this information, a monitoring program for agricultural landscapes was initiated in Norway 13 years ago. The program documents and reports on land use / land cover changes from data captured through interpretation of true colour aerial photos using stereo instruments. The monitoring programme is based on a sample of 1000 squares of 1 × 1 km and the entire sample of squares is photographed over a five-year period. Each square is then mapped repeatedly every fifth year to record changes. Aerial photo interpretation is based on a custom classification system which is built up hierarchically, with three levels. The first level comprises seven land type classes: Agricultural land, Bare ground, Semi-natural open vegetation, Unforested wetland vegetation, Forest, Urban areas and Water. These land classes are further divided into 24 land types at level two, and approximately 100 land types at level 3. In addition to land type units we map both line elements like stone fences and point elements like buildings and solitary threes. By use of indicators that describe status and change focusing on themes of particular policy interest, we can report on whether policy aims are being fulfilled or not. Four indicator themes have been in focus hitherto: landscape spatial structure, biological diversity, cultural heritage and accessibility. Our data is stored in databases and most of the data quality check/structure process and analyses are now being made in open source software like PostGIS and PostSQL. To assess the accuracy of the photo-interpretation, ground truthing is carried out on 10 % of the squares. The results of this operation document the benefits of having access to photos of the same area from two different years. The program is designed first and foremost to

  3. Population, agriculture, and the environment in Africa.

    PubMed

    Cleaver, K; Schreiber, G

    1992-06-01

    An overview is provided of the World Bank study about the interaction between rapid population growth, poor agricultural performance, and environmental degradation. The links between these 3 phenomena are identified as traditional methods of crop and livestock production, land tenure systems, women's responsibilities, and methods of forest use. When land was abundant and capital limited, pastoralism, shifting cultivation, and setting aside fallow land was possible. Mobility and allowances for natural regeneration of vegetation could not continue with rapid population growth. Permanent settlements developed but cultivation methods remained the same; the result was deterioration of soil fertility, low yields, and erosion of soil as occurred in Rwanda, Burkina Faso, and parts of Nigeria. Technological innovation has been slow and poor roads have interfered with a market oriented economy. Inappropriate pricing, exchange rates, and fiscal policies also prevent productivity gains. A heavy demand is placed on women's time. Demand for children is high and is stimulated by environmental degradation, food insecurity, land tenure systems, and cultural traditions. Child labor is needed. The demand for contraception is 30-50% in North Africa, 36-55% in Asia, and 40-60% in South America. Land ownership problems have arisen under community ownership and between herders and settlers. Solutions have ranged from land nationalization and arbitrary designation of individual ownership. Open access situations have developed and lent themselves to exploitation. Fuelwood needs have exacerbated the destruction of forests. Commercial logging accounted for 10-20% of the forest loss. New approaches are needed to link cross-sectionally population, the environment, an agriculture. Emphasis should be on resource conservation, family planning, and environmentally benign intensive farming. Agricultural production needs to grow at 4%/year, fertility lowered by 50% over 30 years, and deforestation

  4. Development and testing of crop monitoring methods to improve global agricultural monitoring in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.

    2014-12-01

    The SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture) is funded through the EC FPY7 Research programme with the particular aim to contribute to the GEOGLAM Research Agenda. It is a partnership of globally distributed expert organizations, focusses on developing innovative techniques and datasets in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterize cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, are used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series are be explored to better assess crop yield gaps and shifts in cultivation. The third research topic entails the development of best practices for assessing the impact of crop land and cropping system change on the environment. In support of the GEO JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative, case studies in Ukraine, Russia, Europe, Africa, Latin America and China are carried out in order to explore possible methodological synergies and particularities according to different cropping systems. This presentation will report on the progress made with respect to the three topics above.

  5. [Agricultural environment quality of China and its improving countermeasures].

    PubMed

    Zeng, Xibai; Yang, Zhengli

    2006-01-01

    This paper analyzed the present status of China agricultural water and soil environment. It was indicated that the agricultural water environment in this country was more serious, with the affected area being approximately 20% of the total farmland, and 5% of it being severely affected. More attention should be paid to the pollution of agricultural chemicals in soil environment. The impacts of industrial wastes, urban sewage and garbage, agricultural chemicals, and soil erosion on agro-environment were discussed, with the impact degree of these factors analyzed. The major problems in China agricultural environment melioration were presented, related researches and major countermeasures in this country and developed countries were reviewed, and relevant measures and suggestions on improving the agricultural environment quality of China were put forward. PMID:16689249

  6. MEMOS - Mars Environment Monitoring Satellite

    NASA Astrophysics Data System (ADS)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass < 20 kg) will accommodate four scientific instruments: solar EUV/UV monitor (SEM), solar wind monitor (SWIM), magnetometer (MAG) and radiation environment monitor (REM). The payload monitors the solar conditions at Mars and characterizes the Mars environment to support other missions and science investigations. Monitoring of the solar wind parameters (velocity, density, and field) is the key for any aeronomy and solar wind interaction mission at Mars. The solar EUV / UV (HeII 30.4 nm and HII 121.6 nm) flux monitoring is required for upper atmosphere / ionosphere studies. The radiation environment monitoring is needed to study space weather effects on the near-Mars environment as well as for the preparations for man-flights. MEMOS follows the design philosophy of a detached and autonomously flying instrument for achieving the mentioned objectives. It is intended to be carried "piggy-back" to Mars on a suitable mission. Potential missions are: ESA Mars orbiters within the NEXT or Cosmic Vision programs, NASA Mars orbiters, national / bilateral Mars missions. At Mars MEMOS is separated from its carrier (parent satellite) via the release mechanism implemented in the dual formation flight mission PRISMA. The separation will take place during the orbit insertion scenario of the parent satellite at Mars thus placing MEMOS in a highly elliptical orbit guarantying sufficient observation time in the solar wind. In orbit MEMOS will autonomously detumble and spin-up to ~1 rpm for reasons of stabilization and to fulfill instrument requirements. Such a low spin-rate is sufficient for a required inertial pointing accuracy of 2.5° because of the small external disturbance torques (< 10-7 Nm) predominant at Mars responsible for nutation and precession of the spin-axis. The

  7. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  8. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  9. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  10. Bringing Environment into the Study of Agriculture: Observations and Suggestions Regarding the Sociology of Agriculture.

    ERIC Educational Resources Information Center

    Dunlap, Riley E.; Martin, Kenneth E.

    1983-01-01

    Analyzes two recent controversies in the sociology of agriculture--one dealing with the adoption of agricultural innovations and the other with the energy intensity of farming--from an environmental sociology perspective. Illustrates sociology's entrenched habit of ignoring the physical environment, and the pitfalls of doing so in research on…

  11. Developing Earth Observations Requirements for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Becker-Reshef, I.; Vermote, E.; Justice, C. O.

    2013-12-01

    Recognizing the dynamic nature of agricultural cultivation both within and between years and across the globe, the Group on Earth Observations (GEO) is developing an agricultural monitoring (GEO-GLAM) system with the goal of enhancing the availability and use of satellite and in situ Earth observations (EO) for the generation of timely and accurate information on national, regional, and global food supply. One of the key components of the GEO-GLAM system is the coordination of satellite observations so as to ensure sufficient and appropriate data volume and quality for agricultural monitoring. Therefore, it is essential that we develop EO requirements which articulate in a spatially explicit way where, when, how frequently, and at what spatial resolution satellite imagery must be acquired to meet the needs of a variety of agricultural monitoring applications. Accordingly, best-available cropland location information ('where?') in conjunction with ten years of MODIS surface reflectance data have been used to characterize the timing and duration of the agricultural growing season ('when?') in the form of agricultural growing season calendars (GSCs) for all major agricultural areas of the Earth. With respect to temporal resolution, we must first identify the frequency with which we require imagery inputs for monitoring applications such as crop condition, crop type, crop yield estimation, and planted and harvested area estimation. Members of the GEO Agriculture Monitoring Community of Practice - a group of international scientists - have combined their knowledge and expertise to articulate these general requirements. Second, we must determine how cloud cover impacts the ability of optical sensing systems to meet these established temporal resolution requirements. To this end, MODIS Terra (morning; 2000-2011) and Aqua (afternoon; 2002-2011) observations have been analyzed to derive probabilities of a cloud free clear view at different times of day throughout the

  12. Detection, Occurrence and Fate of Emerging Contaminants in Agricultural Environments.

    PubMed

    Snow, Daniel D; Cassada, David A; Bartelt-Hunt, Shannon L; Li, Xu; D'Alessio, Matteo; Zhang, Yun; Zhang, Yuping; Sallach, J Brett

    2016-10-01

    A total of 59 papers published in 2015 were reviewed ranging from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, steroids, antibiotic resistance genes in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Steroid Hormones, Pharmaceutical Contaminants, Transformation Products, and "Antibiotic Resistance, Drugs, Bugs and Genes". PMID:27620078

  13. Implementation of Wireless Sensor Networks Based Pig Farm Integrated Management System in Ubiquitous Agricultural Environments

    NASA Astrophysics Data System (ADS)

    Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun

    The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.

  14. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM: AGRICULTURAL PROGRAM REPORT 1993

    EPA Science Inventory

    This document provides a comprehensive report on the EMAP Agricultural Lands 1993 Pilot Field Program, which was conducted in Nebraska. esults of the pilot monitoring effort are presented on land use and cover, crop productivity, and soil quality (physical, chemical, and biologic...

  15. Application of terrestrial microwave remote sensing to agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Suc...

  16. MAGDAS for Geospace Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Yumoto, Kiyohumi; Kawano, Hideaki; Group, Magdas

    MAGnetic Data Acquisition System (MAGDAS) of the Circum-pan Pacific Magnetometer Network (CPMN) is introduced. MAGDAS/CPMN measures the ground magnetic field all around the world and sends the measured data to Space Environment Research Center (SERC), Fukuoka, Japan, via Internet, telephone line or satellite phone line. As examples of the phenomena observed by MAGDAS/CPMN, we present observations of the equatorial electrojet, Pi 2 waves near the dip equator, and SC-associated ionospheric electric field; Pi 2 is a transient ULF wave taking place at the beginning of a phenomenon called substorm, and SC (sudden commencement) is a phenomenon taking place as an interplanetary shock arrives at the Earth. We also compare ground-based estimations of the space plasma density with simultaneous direct observations by spacecraft.

  17. Perceptions of Agricultural College Students on the Relationship between Quality and Safety in Agricultural Work Environments.

    PubMed

    Ramaswamy, Sai K; Mosher, Gretchen A

    2015-01-01

    Agriculture is a high-hazard industry that employs a large number of young workers below the age of 25. Recent studies have documented a strong positive correlation between quality management in agriculture and occupational safety as perceived by agricultural workers. Younger workers have been found to be at higher risk for occupational injuries and fatalities in agriculture. Furthermore, college students in agriculture have minimal exposure to safety and quality management principles in their coursework and thus may not be aware that the two concepts are associated Little research has studied how young workers perceive the relationship between safety and quality and how these perceptions vary based on demographic characteristics. This study builds on prior research that measured the interactions between employee perceptions of safety and quality in an agricultural work environment. Data were collected using a survey instrument adapted from a previously validated instrument. Analysis of 1017 responses showed that students perceived a high impact of quality practices on the reduction of safety hazards and safety incidents. Students' perceptions of quality and safety in agricultural work environments varied by gender, with female students perceiving the relationship between the two at a higher level than males. No significant difference in perceptions was observed based on students' academic classification, age group, field of study, or childhood environment. This study demonstrates that despite limited academic training in safety and quality, pre-professionals perceive the implementation of quality management as a very important factor in mitigating safety hazards and safety incidents. In addition, this study suggests that current academic training in these disciplines must be modified, since no differences in students' perceptions were observed based on academic classification or field of study. PMID:26211353

  18. Nitrogen and phosphorus trend analysis in Latvia agricultural monitoring stations

    NASA Astrophysics Data System (ADS)

    Dimanta, Z.; Vircavs, V.; Veinbergs, A.; Lauva, D.; Ambramenko, K.; Gailuma, A.; VÄ«tola, I.

    2012-04-01

    Water quality depends on human activity. Intensive agriculture is one of the main sources, that cause water quality pollution and eutrophication. The use of fertilizers not only improves soil fertility, crop yield and quality, but also causes water pollution. Human activities, including the use of fertilizer, promote nutrient (nitrogen and phosphorus) concentrations in water. Compared to the 90th agricultural production in Latvia has progressed. Vulnerable zones have been specified in the country. It is situated in the region of Zemgale's south site, within the border Lithuania. There are defined requirements for water and soil protection from agricultural activity that cause nitrate pollution. The EU Nitrates Directive aim is to protect water from nitrate pollution. In Latvia defined nitrate values are: 50 mg/l NO3 or 11.2 mg/l N/NO3 and Ptot - 0.2 mg/l. As agriculture has became intensive and the use of fertilizers has grown, results indicate that the leaching potential and values of N and P has increased. Nutrients leaching in agricultural areas have observed all year in vulnerable zones, but it's values changes depending on season. The highest nutrient concentrations observe in winter and spring periods, particularly in snow and ice melting periods. The lowest values are in summer. Nutrient leaching potencial depends on precipitation, plant vegetation, season, fertilization type and soil cultivation process. N and P leaching can decrease, taking consideration the use time of fertilizers and good agricultural practices. Research objects are monitoring stations Bērze and Mellupīte with tree research scales: drainage fields, small catchments and observation wells. The research analyses N and P concentrations in groundwater (2006-2010) and drain field and small catchment runoff (1995-2010). The aim of the research is to analyze nitrate and phosphorus concentration fluctuations in a time period. To determine nutrient concentrations, water samples were collected

  19. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  20. Development and implementation of the Norwegian monitoring programme for agricultural landscapes.

    PubMed

    Dramstad, W E; Fjellstad, W J; Strand, G H; Mathiesen, H F; Engan, G; Stokland, J N

    2002-01-01

    This paper describes the development and implementation of the Norwegian monitoring programme for agricultural landscapes--the '3Q programme'. The main objective of the scheme is to indicate development trends in the agricultural landscape, and their consequences for spatial structure, biodiversity, cultural heritage and accessibility. The monitoring programme aims to give policy feedback and provide data to fulfill international reporting requirements. This paper describes the background to the programme and reasons behind the choice of methods. Results are presented to show the accuracy of the methods employed and the range of indicator values recorded in the programme. Strengths and limitations of the monitoring programme are discussed, and potential future improvements and developments are outlined. Although there remains a potential for methodological improvement, we stress the importance of establishing a baseline to enable the detection of development trends in a rapidly changing environment. PMID:11876074

  1. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  2. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  3. Monitoring and Modelling Lakes and Coastal Environments

    NASA Astrophysics Data System (ADS)

    Odada, Eric

    2009-01-01

    The monitoring and modeling of lakes and coastal environments is becoming ever more important, particularly because these environments bear heavy loads in terms of human population, and their resources are critical to the livelihoods and well-being of coastal inhabitants and ecosystems. Monitoring and Modelling Lakes and Coastal Environments is a collection of 18 papers arising from the Lake 2004 International Conference on Conservation, Restoration and Management of Lakes and Coastal Wetlands, held in Bhubaneswar, Orissa, India, 9-13 December 2004. Consequently, 15 of the papers are concerned with studies on the Indian subcontinent, and many of the papers focus on India's Lake Chilika, the site of a special session during the conference. Two papers concern Japan, and one focuses on North America's Great Lakes region. Although the book has a regional bias, the replication of best practices that can be drawn from these studies may be useful for an international audience.

  4. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  5. Pansharpening Landsat 8 Data For Improved Agricultural Field Monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Roy, D. P.

    2014-12-01

    Satellite data provide a synoptic view and have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment, and yield prediction. The ability of satellite data to monitor agriculture reliably is dependent on many factors but is fundamentally constrained by the satellite spatial resolution relative to the field spatial dimensions. The recently launched Landsat 8 satellite has improved calibration, radiometric resolution, geometry and global data acquisition frequency over previous Landsat sensors. Pansharpening is an established technique to integrate higher spatial resolution panchromatic information with lower spatial resolution multi-spectral information. A new pansharpening algorithm is presented that is specific to Landsat 8 and that models the sensor spectral response functions to provide a universal algorithm that is computationally efficient and applicable to large volume data. Experiments conducted using Landsat 8 data acquired over agricultural regions with markedly different field dimensions in South Dakota, China, and India, are presented to demonstrate and quantify the utility of the 15m pansharpened Landsat 8 data over conventional 30m data.

  6. Forecasting and Monitoring Agricultural Drought in the Philippines

    NASA Astrophysics Data System (ADS)

    Perez, G. J.; Macapagal, M.; Olivares, R.; Macapagal, E. M.; Comiso, J. C.

    2016-06-01

    A monitoring and forecasting sytem is developed to assess the extent and severity of agricultural droughts in the Philippines at various spacial scales and across different time periods. Using Earth observation satellite data, drought index, hazard and vulnerability maps are created. The drought index, called Standardized Vegetation-Temperature Ratio (SVTR), is derived using the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). SVTR is evaluated by correlating its values with existing agricultural drought index, particulary Evaporative Stress Index (ESI). Moreover, the performance of SVTR in detecting drought occurrences was assessed for the 2015-2016 drought event. This period is a strong El Niño year and a large portion of the country was affected by drought at varying degrees, making it a good case study for evaluating drought indices. Satellitederived SVTR was validated through several field visits and surveys across different major agricultural areas in the country, and was found to be 73% accurate. The drought hazard and vulnerability maps are produced by utilizing the evapotranspration product of MODIS, rainfall climatology from the Tropical Rainfall Microwave Mission (TRMM) and ancillary data, including irrigation, water holding capacity and land use. Finally, we used statistical techniques to determine trends in NDVI and LST and generate a sixmonth forecast of drought index. Outputs of this study are being assessed by the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) and the Department of Agriculture Bureau of Soils and Water Management (DABSWM) for future integration in their operations.

  7. The generic applications and monitors environment.

    NASA Astrophysics Data System (ADS)

    Teuber, D.

    Astrophysics from large, heterogeneous and distributed databases encounters the problems of homogenizing the input data and storing the results in a well defined way using a database system. The evaluation of millions of objects contained in the database requires the introduction of an expert system. To meet the requirements arising from both premises a support system named Generic Applications and Monitors Environment (GAME) was created. Its properties are parametrized and GAME itself is organized like a database system.

  8. Analysis agriculture's impact in a system of lakes on a karst environment with tropical climate.

    NASA Astrophysics Data System (ADS)

    Olea Olea, Selene; Escolero Fuentes, Oscar

    2015-04-01

    This paper has as main object to analyze the impact of agriculture in the water quality of the "Lagos de Montebello" area; which is located in the Southeast of Mexico. This area is prominent by its tropical climate and a karstic environment. The issue arises in a lake system affected by pollution in the later years, which has turned its former clear water into a highly sedimented muddy water in the topographically lower terrains while no polluted on the higher ones; therefore it is intended to determine if the rise in agricultural activity in the lower terrains has induced this phenomenon. The impact of agriculture has been historically studied in temperate climates with karstic environments; nevertheless it has not been very well studied in tropical climates; which are the reason of this proposal to perform a study to analyze the impact of the intensive agriculture running in the area. To develop this project we studied the area regarding to the types of crops that has being established in the zone, being mostly tomato, corn, and bean; and the fertilizers and pesticides applied to them. A groundwater monitoring plan was designed with a variety of phases such as: piezometers building, measurement of groundwater levels, measurement of field parameters, with a two months intervals (Ph, temperature, electric conductivity, total dissolved solids), and water samplings for laboratory analysis (major ions, nutrients, total organic carbon, pesticides) at twice a year, once during rainy season and then on drought. The rates of pollution agents infiltration depends on the type of soil retention and volume of water. The materials found in the soil by the piezometers are clay, silt, sand and variations between them. We determined that the geochemical qualities of the groundwater vary from calcic bicarbonate to calcic sulfated. The results reached with this monitoring provides a preliminary diagnosis on the possible causes and other implications that intensive agriculture in a

  9. Design of a solar controlled environment agriculture system (SCEAS)

    SciTech Connect

    Landstrom, D.K.; Stickford, G.H.; Talbert, S.G.; Wilkinson, W.H.

    1983-06-01

    The overall objective of the SCEAS project was to integrate advanced greenhouse agriculture technology with various energy sources and innovative cooling/ventilation concepts to demonstrate technical and economic feasibility of these facilities in several climatic regions where conventional greenhouse technology will not permit yearround growing of certain crops. The designed facility is capable of high yields of practically any crop, even temperaturesensitive vegetables such as lettuce, in extremely hostile external environments. The recirculation and ventilation system provides considerable flexibility in precise control of temperature and humidity throughout the year and in reducing water and energy consumption.

  10. SOLERAS solar-energy controlled-environment agriculture project

    SciTech Connect

    Luft, W.; Froechtenigt, J.; Falatah, A.

    1982-05-01

    Three commercial-size (5-ha), solar-powered, controlled-environment agriculture systems for hot, dry climates are described. The systems use brackish well water for cooling. The well water is desalinated for irrigation using reverse osmosis. Produce output ranges from 44 to 78 kg/m/sup 2/.yr with an overall water consumption of 8 to 139 L/kg produce and electric energy consumption of 111 to 790 Wh/kg produce. The levelized cost ranges from $1.14 to $8.07 per kg of produce.

  11. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  12. A Remote Sensing-based Global Agricultural Drought Monitoring and Forecasting System for Supporting GEOSS (Invited)

    NASA Astrophysics Data System (ADS)

    di, L.; Yu, G.; Han, W.; Deng, M.

    2010-12-01

    Group on Earth Observations (GEO) is a voluntary partnership of governments and international organizations. GEO is coordinating the implementation of the Global Earth Observation System of Systems (GEOSS), a worldwide effort to make Earth observation resources more useful to the society. As one of the important technical contributors to GEOSS, the Center for Spatial Information Science and Systems (CSISS), George Mason University, is implementing a remote sensing-based global agricultural drought monitoring and forecasting system (GADMFS) as a GEOSS societal benefit areas (agriculture and water) prototype. The goals of the project are 1) to establish a system as a component of GEOSS for providing global on-demand and systematic agriculture drought information to users worldwide, and 2) to support decision-making with improved monitoring, forecasting, and analyses of agriculture drought. GADMFS has adopted the service-oriented architecture and is based on standard-compliant interoperable geospatial Web services to provide online on-demand drought conditions and forecasting at ~1 km spatial and daily and weekly temporal resolutions for any part of the world to world-wide users through the Internet. Applicable GEOSS recommended open standards are followed in the system implementation. The system’s drought monitoring relies on drought-related parameters, such as surface and root-zone soil moisture and NDVI time series derived from remote sensing data, to provide the current conditions of agricultural drought. The system links to near real-time satellite remote sensing data sources from NASA and NOAA for the monitoring purpose. For drought forecasting, the system utilizes a neural-network based modeling algorithm. The algorithm is trained with inputs of current and historic vegetation-based and climate-based drought index data, biophysical characteristics of the environment, and time-series weather data. The trained algorithm will establish per-pixel model for

  13. Integrating NASA Satellite Data Into USDA World Agricultural Outlook Board Decision Making Environment To Improve Agricultural Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; deJeu, Richard; Kempler, Steve

    2012-01-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. The goal of the current project is to improve WAOB estimates by integrating NASA satellite precipitation and soil moisture observations into WAOB's decision making environment. Precipitation (Level 3 gridded) is from the TRMM Multi-satellite Precipitation Analysis (TMPA). Soil moisture (Level 2 swath and Level 3 gridded) is generated by the Land Parameter Retrieval Model (LPRM) and operationally produced by the NASA Goddard Earth Sciences Data and Information Services Center (GBS DISC). A root zone soil moisture (RZSM) product is also generated, via assimilation of the Level 3 LPRM data by a land surface model (part of a related project). Data services to be available for these products include GeoTIFF, GDS (GrADS Data Server), WMS (Web Map Service), WCS (Web Coverage Service), and NASA Giovanni. Project benchmarking is based on retrospective analyses of WAOB analog year comparisons. The latter are between a given year and historical years with similar weather patterns and estimated crop yields. An analog index (AI) was developed to introduce a more rigorous, statistical approach for identifying analog years. Results thus far show that crop yield estimates derived from TMPA precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include LPRM surface soil moisture data and model-assimilated RZSM.

  14. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  15. Monitoring Indicators for Mediterranean Wetland and Agricultural Area Using ALOS Data

    NASA Astrophysics Data System (ADS)

    Alexandridis, T. K.; Topaloglou, C. A.; Pardalis, I.; Tsakoumis, G.; Vogiatzis, M.; Andrianopoulos, A.; Takavakoglou, V.; Vougioukas, S.; Bochtis, D.; Zalidis, G. C.; Silleos, N. G.

    2008-11-01

    Agricultural and other human activities are a pressure to several Mediterranean wetland ecosystems. Monitoring the pressures and the state of the ecosystem is an important input to management activities. The aim of this work was to select and implement indicators for monitoring the natural and agricultural environment of a Mediterranean wetland using Earth Observation (EO), and specifically the recently launched ALOS satellite images. Multiple levels of data were collected and integrated: remote sensing data (ALOS AVNIR-2 and PALSAR), unmanned aerial vehicle (UAV) images, and observations during field surveys. EO and GIS methods used during monitoring of the study area involved preprocessing of the satellite images, enhancement of information, information extraction, and derivation of indicators. Geographic overlay comparison with results derived from the area in 2003 using a Terra/ASTER image was used to identify the changes that occurred during the last years. The methodology was applied in the wetland and surrounding agricultural area of Ramsar Convention site "lakes Koronia-Volvi" (Greece). Resulting thematic maps revealed and quantified the intensity of pressures in the vicinity of the protected wetland, the state of the wetland ecosystem, as well as the seasonal and long term temporal trends.

  16. Applications of CELSS technology to controlled environment agriculture

    NASA Technical Reports Server (NTRS)

    Bates, Maynard E.; Bubenheim, David L.

    1991-01-01

    Controlled environment agriculture (CEA) is defined as the use of environmental manipulation for the commercial production of organisms, whether plants or animals. While many of the technologies necessary for aquaculture systems in North America is nevertheless doubling approximately every five years. Economic, cultural, and environmental pressures all favor CEA over field production for many non-commodity agricultural crops. Many countries around the world are already dependent on CEA for much of their fresh food. Controlled ecological life support systems (CELSS), under development at ARC, KSC, and JSC expand the concept of CEA to the extent that all human requirements for food, oxygen, and water will be provided regenerated by processing of waste streams to supply plant inputs. The CELSS will likely contain plants, humans, possibly other animals, microorganisms and physically and chemical processors. In effect, NASA will create engineered ecosystems. In the process of developing the technology for CELSS, NASA will develop information and technology which will be applied to improving the efficiency, reliability, and cost effectiveness for CEA, improving its resources recycling capabilities, and lessening its environmental impact to negligible levels.

  17. Agricultural biomass monitoring on watersheds based on remotely sensed data.

    PubMed

    Tamás, János; Nagy, Attila; Fehér, János

    2015-01-01

    There is a close quality relationship between the harmful levels of all three drought indicator groups (meteorological, hydrological and agricultural). However, the numerical scale of the relationships between them is unclear and the conversion of indicators is unsolved. Different areas or an area with different forms of drought cannot be compared. For example, from the evaluation of meteorological drought using the standardized precipitation index (SPI) values of a river basin, it cannot be stated how many tonnes of maize will be lost during a given drought period. A reliable estimated rate of yield loss would be very important information for the planned interventions (i.e. by farmers or river basin management organisations) in terms of time and cost. The aim of our research project was to develop a process which could provide information for estimating relevant drought indexes and drought related yield losses more effectively from remotely sensed spectral data and to determine the congruency of data derived from spectral data and from field measurements. The paper discusses a new calculation method, which provides early information on physical implementation of drought risk levels. The elaborated method provides improvement in setting up a complex drought monitoring system, which could assist hydrologists, meteorologists and farmers to predict and more precisely quantify the yield loss and the role of vegetation in the hydrological cycle. The results also allow the conversion of different-purpose drought indices, such as meteorological, agricultural and hydrological ones, as well as allow more water-saving agricultural land use alternatives to be planned in the river basins. PMID:26676009

  18. Monitoring and modeling agricultural drought for famine early warning (Invited)

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Funk, C.; Budde, M. E.; Lietzow, R.; Senay, G. B.; Smith, R.; Pedreros, D.; Rowland, J.; Artan, G. A.; Husak, G. J.; Michaelsen, J.; Adoum, A.; Galu, G.; Magadzire, T.; Rodriguez, M.

    2009-12-01

    The Famine Early Warning Systems Network (FEWS NET) makes quantitative estimates of food insecure populations, and identifies the places and periods during which action must be taken to assist them. Subsistence agriculture and pastoralism are the predominant livelihood systems being monitored, and they are especially drought-sensitive. At the same time, conventional climate observation networks in developing countries are often sparse and late in reporting. Consequently, remote sensing has played a significant role since FEWS NET began in 1985. Initially there was heavy reliance on vegetation index imagery from AVHRR to identify anomalies in landscape greenness indicative of drought. In the latter part of the 1990s, satellite rainfall estimates added a second, independent basis for identification of drought. They are used to force crop water balance models for the principal rainfed staple crops in twenty FEWS NET countries. Such models reveal seasonal moisture deficits associated with yield reduction on a spatially continuous basis. In 2002, irrigated crops in southwest Asia became a concern, and prompted the implementation of a gridded energy balance model to simulate the seasonal mountain snow pack, the main source of irrigation water. MODIS land surface temperature data are also applied in these areas to directly estimate actual seasonal evapotranspiration on the irrigated lands. The approach reveals situations of reduced irrigation water supply and crop production due to drought. The availability of MODIS data after 2000 also brought renewed interest in vegetation index imagery. MODIS NDVI data have proven to be of high quality, thanks to significant spectral and spatial resolution improvements over AVHRR. They are vital to producing rapid harvest assessments for drought-impacted countries in Africa and Asia. The global food crisis that emerged in 2008 has led to expansion of FEWS NET monitoring to over 50 additional countries. Unlike previous practice, these

  19. Microbial monitoring of spacecraft and associated environments

    NASA Technical Reports Server (NTRS)

    La Duc, M. T.; Kern, R.; Venkateswaran, K.

    2004-01-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. Copyright 2004 Springer-Verlag.

  20. Microbial monitoring of spacecraft and associated environments.

    PubMed

    La Duc, M T; Kern, R; Venkateswaran, K

    2004-02-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. PMID:14749906

  1. Monitoring product safety in the postmarketing environment

    PubMed Central

    Dieck, Gretchen S

    2013-01-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries. PMID:25114782

  2. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  3. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  4. Coastal environment: historical and continuous monitoring

    NASA Astrophysics Data System (ADS)

    Ivaldi, Roberta; Surace, Luciano

    2010-05-01

    The monitoring is a tool providing essential data to study the process dynamic. The formation and transformation of coastal environment involve physical, chemical, geological and biological processes. The knowledge of the littoral systems and marine seafloor therefore requires a multidisciplinary approach. Since the phenomena observation occurs in a short period of time it requires the use of high quality data acquired with high accuracy and suitable processing procedures. This knowledge considerable increased during the past 50 years closely following significant progress in the methods of investigation at sea and laboratory. In addition seafloor exploration is deeply rooted in History. A sector actually subject to control results the coastal zone for its position as transition component between continental and marine environments with closely connected natural and human actions. Certainly these activities are important in the time to develop the technologies suited for the knowledge and to increase different protection, prevention, intervention and management tools. In this context the Istituto Idrografico della Marina (Hydrographic Institute of Italian Navy - I.I.M.) is a precursor because since its foundation (in 1872) it contributed to the monitoring activities related to charting and navigation, including hydrologic surveying, seafloor measurements and in consequence the landward limit, the shoreline. The coastal area is certainly the most changeable sector either natural or socio-economic causes. This is the most dynamic environment, subject both to marine (waves and currents) and continental (river and ice) actions, and continuously changing the intended use for the increase of industrial, commercial, recreation and the need for new structures to support. The coast has more recently taken on a growing value determined by some processes, including erosion and retreat are evidence of a transformation of which, however, undermine the system and impoverishing

  5. Resolving Conflicts between Agriculture and the Natural Environment

    PubMed Central

    Tanentzap, Andrew J.; Lamb, Anthony; Walker, Susan; Farmer, Andrew

    2015-01-01

    Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future. PMID:26351851

  6. From LACIE to GEOGLAM: Integrating Earth Observations into Operational Agricultural Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.

    2012-12-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted

  7. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  8. Biological and biochemical soil indicators: monitoring tools of different agricultural managements

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Sultana, Salma; Scelza, Rosalia; Marzaioli, Rossana; D'Ascoli, Rosaria; Rao, Maria A.

    2010-05-01

    The intensive agricultural managements, increased in the last twenty years, have resulted in a decrease in fertility of soils, representing a serious threat to agricultural productivity due to both the increase in production cost, mainly for intensive use of mineral fertilizers, and the loss of the quality of crops themselves. Organic matter content is closely related to the soil fertility and its progressive reduction in cultivates soils, without a satisfactory recovery, could make agriculture untenable, resulting in a high detrimental effect on environment. But an appropriate soil management practices can improve soil quality by utilizing organic amendments as alternative to mineral fertilizers to increase soil quality and plant growth. In this context, demand of suitable indicators, whose are able to assess the impact of different agricultural managements on soil quality, has increased. It has shown that soil biological and biochemical properties are able to respond to small changes in soil conditions, thus providing information on subtle alterations in soil quality. Aim of this study was to evaluate the use of soil biological and biochemical properties as fertility indicators in agricultural soils under different agricultural managements, sited in Campania Region (Southern Italy). After a preliminary monitoring phase of soil fertility on different farms sited in five agricultural areas of Campania Region, we have selected two farms in two different study areas to assess the effect on soil quality of different organic amendments. In particular, a compost from municipal solid waste and wood from scraps of poplars pruning were supplied in different doses and ratios. Soil samplings after one month from the amendment addition and then every 4 months until a year were carried out. All collected soil samples were characterized by main physical, chemical, biochemical and biological properties. In general, the use of different organic amendments showed a positive effect

  9. Distributed computing environment monitoring and user expectations

    SciTech Connect

    Cottrell, R.L.A.; Logg, C.A.

    1995-11-01

    This paper discusses the growing needs for distributed system monitoring and compares it to current practices. It then goes on to identify the components of distributed system monitoring and shows how they are implemented and successfully used at one site today to address the Local Area Network (LAN), network services and applications, the Wide Area Network (WAN), and host monitoring. It shows how this monitoring can be used to develop realistic service level expectations and also identifies the costs. Finally, the paper briefly discusses the future challenges in network monitoring.

  10. Monitoring and control of atmosphere in a closed environment

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Perry, J.

    1991-01-01

    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.

  11. Recognition of Sound Environment by a Bathroom Monitoring System

    NASA Astrophysics Data System (ADS)

    Komoguchi, Naoyuki; Yamane, Kenji; Tanaka, Shogo

    Developing a monitoring system for a bathroom is important to prevent aged persons from accidents. The authors previously developed a bathroom monitoring system using an acoustic sensor which measured the water level of a bathtub and the temperature and also recognized the sound environment. The sound environment was however occasionally mis-recognized with the system. The present paper proposes a new method which recognizes the sound environment in the bathroom more accurately. Experiments demonstrate the effectiveness of the method.

  12. Prime agricultural land monitoring and assessment component of the California Integrated Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Tinney, L. R. (Principal Investigator); Streich, T.

    1981-01-01

    The use of digital LANDSAT techniques for monitoring agricultural land use conversions was studied. Two study areas were investigated: one in Ventura County and the other in Fresno County (California). Ventura test site investigations included the use of three dates of LANDSAT data to improve classification performance beyond that previously obtained using single data techniques. The 9% improvement is considered highly significant. Also developed and demonstrated using Ventura County data is an automated cluster labeling procedure, considered a useful example of vertical data integration. Fresno County results for a single data LANDSAT classification paralleled those found in Ventura, demonstrating that the urban/rural fringe zone of most interest is a difficult environment to classify using LANDSAT data. A general raster to vector conversion program was developed to allow LANDSAT classification products to be transferred to an operational county level geographic information system in Fresno.

  13. Plant breeding for harmony between agriculture and the environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop improvements made since the 1950’s coupled with inexpensive agronomic inputs (fertilizers, herbicides, etc.) have resulted in agricultural production that has kept pace with population growth. Breeding programs primarily focus on improving a crop’s environmental adaptability and biotic stress t...

  14. Environment, agriculture, and settlement patterns in a marginal Polynesian landscape

    PubMed Central

    Kirch, P. V.; Hartshorn, A. S.; Chadwick, O. A.; Vitousek, P. M.; Sherrod, D. R.; Coil, J.; Holm, L.; Sharp, W. D.

    2004-01-01

    Beginning ca. A.D. 1400, Polynesian farmers established permanent settlements along the arid southern flank of Haleakala Volcano, Maui, Hawaiian Islands; peak population density (43-57 persons per km2) was achieved by A.D. 1700-1800, and it was followed by the devastating effects of European contact. This settlement, based on dryland agriculture with sweet potato as a main crop, is represented by >3,000 archaeological features investigated to date. Geological and environmental factors are the most important influence on Polynesian farming and settlement practices in an agriculturally marginal landscape. Interactions between lava flows, whose ages range from 3,000 to 226,000 years, and differences in rainfall create an environmental mosaic that constrained precontact Polynesian farming practices to a zone defined by aridity at low elevation and depleted soil nutrients at high elevation. Within this productive zone, however, large-scale agriculture was concentrated on older, tephra-blanketed lava flows; younger flows were reserved for residential sites, small ritual gardens, and agricultural temples. PMID:15210963

  15. Environment, agriculture, and settlement patterns in a marginal Polynesian landscape

    USGS Publications Warehouse

    Kirch, P.V.; Hartshorn, A.S.; Chadwick, O.A.; Vitousek, P.M.; Sherrod, D.R.; Coil, J.; Holm, L.; Sharp, W.D.

    2004-01-01

    Beginning ca. A.D. 1400, Polynesian farmers established permanent settlements along the arid southern flank of Haleakala Volcano, Maui, Hawaiian Islands; peak population density (43-57 persons per km2) was achieved by A.D. 1700-1800, and it was followed by the devastating effects of European contact. This settlement, based on dryland agriculture with sweet potato as a main crop, is represented by >3,000 archaeological features investigated to date. Geological and environmental factors are the most important influence on Polynesian farming and settlement practices in an agriculturally marginal landscape. Interactions between lava flows, whose ages range from 3,000 to 226,000 years, and differences in rainfall create an environmental mosaic that constrained precontact Polynesian farming practices to a zone defined by aridity at low elevation and depleted soil nutrients at high elevation. Within this productive zone, however, large-scale agriculture was concentrated on older, tephra-blanketed lava flows; younger flows were reserved for residential sites, small ritual gardens, and agricultural temples.

  16. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2016-04-01

    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  17. A proactive system for maritime environment monitoring.

    PubMed

    Moroni, Davide; Pieri, Gabriele; Tampucci, Marco; Salvetti, Ovidio

    2016-01-30

    The ability to remotely detect and monitor oil spills is becoming increasingly important due to the high demand of oil-based products. Indeed, shipping routes are becoming very crowded and the likelihood of oil slick occurrence is increasing. In this frame, a fully integrated remote sensing system can be a valuable monitoring tool. We propose an integrated and interoperable system able to monitor ship traffic and marine operators, using sensing capabilities from a variety of electronic sensors, along with geo-positioning tools, and through a communication infrastructure. Our system is capable of transferring heterogeneous data, freely and seamlessly, between different elements of the information system (and their users) in a consistent and usable form. The system also integrates a collection of decision support services providing proactive functionalities. Such services demonstrate the potentiality of the system in facilitating dynamic links among different data, models and actors, as indicated by the performed field tests. PMID:26233300

  18. Diagnostics for Dust Monitoring in Tokamak Environment

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Hong, S. H.; Worms, J.

    2008-03-12

    During ITER lifetime, dusts and flakes will be produced due to the interaction of plasmas with the in-vessel materials or due to maintenance. They will be made of carbon, beryllium and tungsten and will be activated, tritiated and chemically reactive and toxic. Safety limits have been set in order to reduce dust hazards. Thus dust diagnostics and removal methods need to be developed for ITER within the constraints linked to magnetic field, radiation, vacuum and temperature. This paper reviews potential diagnostics to monitor the dust content using techniques already used for erosion or deposition monitoring or techniques specially developed for measuring dust in suspension.

  19. Analytical Results for Agricultural Soils Samples from a Monitoring Program Near Deer Trail, Colorado (USA)

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.

    2009-01-01

    alpha and beta activity (Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division, 1997; Colorado Department of Public Health and Environment,1998; U.S. Environmental Protection Agency, 1993). Since these were the identified priority parameters for the biosolids, the soils have the same set of priority parameters. Although the composite soils' priority analytes have been reported earlier to Metro District, the remaining elemental datasets for both the composite soils samples and selected fields' individual subsamples' data are presented here for the first time. More information about the other monitoring components is presented elsewhere in the literature (http://co.water.usgs.gov/projects/CO406/CO406.html). In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, and(or) (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. The method chosen for sampling the soils proved to be an efficient and reliable representation of the average composition of each field. This was shown by analyzing individual subsamples, averaging the resulting values, and then comparing the values to the composited samples' values. The soil chemistry shows distinct differences between the two sites, most likely due to the different underlying parent material. Biosolids data were used to compile an inorganic-chemical biosolids signature that can be contrasted with the geochemical signature of the agricultural soils for this site. The biosolids signature and an understanding of the geology and hydrology of the site can be used to separate biosolids effects from natural geochemical effects. Elements of particular interest for a biosolids signature after application in the soils include bismuth, copper, silver, mercury, and phosphorus. This signat

  20. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  1. Restoring abandoned agricultural lands in arid environments: the tradeoffs between water availability and exotic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods On a global basis, the area of abandoned agricultural land is growing. Modification of the environment for agriculture often results in degradation of the original ecosystem processes and a loss of the biotic and abiotic legacies necessary for recovery of the ecosystem. ...

  2. IMPROVE (INTERAGENCY MONITORING OF PROTECTED VISUAL ENVIRONMENTS) SITES DATA

    EPA Science Inventory

    Since 1987, EPA has supported the IMPROVE (Interagency Monitoring of PROtected Visual Environments) network in cooperation with the National Park Service, Forest Service, Bureau of Land Management, Fish and Wildlife Service, and State organizations. One of the principal purposes ...

  3. Monitoring tropical environments with Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Lulla, Kamlesh P.

    1989-01-01

    Orbital photography from the Space Shuttle missions (1981-88) and earlier manned spaceflight programs (1962-1975) allows remote sensing time series to be constructed for observations of environmental change in selected portions of the global tropics. Particular topics and regions include deforestation, soil erosion, supersedimentation in streams, lacustrine, and estuarine environments, and desertification in the greater Amazon, tropical Africa and Madagascar, South and Southeast Asia, and the Indo-Pacific archipelagoes.

  4. Altered Breast Development in Young Girls from an Agricultural Environment

    PubMed Central

    Guillette, Elizabeth A.; Conard, Craig; Lares, Fernando; Aguilar, Maria Guadalupe; McLachlan, John; Guillette, Louis J.

    2006-01-01

    In several human populations, the age at which female breast development begins is reported to have declined over the last five decades. Much debate has occurred over whether this reported decline has actually occurred and what factors contribute to it. However, geographical patterns reflecting earlier developmental onset in some human populations suggest environmental factors influence this phenomenon. These factors include interactions between genetic makeup, nutrition, and possible cumulative exposure to estrogens, both endogenous as well as environmental beginning during in utero development. We examined the onset of breast development in a group of peripubertal girls from the Yaqui Valley of Sonora, Mexico. We observed that girls from valley towns, areas using modern agricultural practices, exhibited larger breast fields than those of girls living in the foothills who exhibited similar stature [e.g., weight, height, body mass index (BMI)], and genetic background. Further, girls from valley towns displayed a poorly defined relationship between breast size and mammary gland development, whereas girls from the Yaqui foothills, where traditional ranching occurs, show a robust positive relationship between breast size and mammary size. The differences noted were obtained by a medically based exam involving morphometric analysis and palpation of tissues, in contrast to visual staging alone. In fact, use of the Tanner scale, involving visual staging of breast development for puberty, detected no differences between the study populations. Mammary tissue, determined by palpation, was absent in 18.5% of the girls living in agricultural areas, although palpable breast adipose tissue was present. No relationship was seen between mammary diameter and weight or BMI in either population. These data suggest that future in-depth studies examining mammary tissue growth and fat deposition in breast tissue are required if we are to understand environmental influences on these

  5. Sensors for spacecraft cabin environment monitoring

    NASA Astrophysics Data System (ADS)

    Ramsden, J. J.; Sharkan, Y. P.; Zhitov, N. B.; Korposh, S. O.

    2007-10-01

    It is very necessary, in manned spaceflight, to ensure that essential variables, including concentrations of oxygen, carbon dioxide, water vapour and volatile organic contaminants, are maintained within acceptable limits. Furthermore, the purity of drinking water, etc. must at all times be assured. Moreover, for lengthy voyages, the proliferation of bacteria and other microorganisms may need to be monitored. Here we present a platform approach to these problems based on multiplexed optical fibres sensitized to the different analytes by coating them with thin-film capture layers of bionanomaterial composites. Both amplitude and interference measurement modes are described, as well as a photoactivated amplitude measurement mode offering further sensitivity enhancement. It is a great and novel advantage that the same technology, and hence the same data processing and diagnostics procedures, can be used over a vast range of analytes in both gaseous and liquid media.

  6. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  7. Use of treated wastewater in agriculture: effects on soil environment

    NASA Astrophysics Data System (ADS)

    Levy, Guy J.; Lado, Marcos

    2014-05-01

    Disposal of treated sewage, both from industrial and domestic origin (herein referred to as treated wastewater [TWW]), is often considered as an environmental hazard. However, in areas afflicted by water scarcity, especially in semi-arid and arid regions, where the future of irrigated agriculture (which produces approximately one third of crop yield and half the return from global crop production) is threatened by existing or expected shortage of fresh water, the use of TWW offers a highly effective and sustainable strategy to exploit a water resource. However, application of TWW to the soil is not free of risks both to organisms (e.g., crops, microbiota) and to the soil. Potential risks may include reduction in biological activity (including crop yield) due to elevated salinity and specific ion toxicity, migration of pollutants towards surface- and ground-water, and deterioration of soil structure. In recent years, new evidence about the possible negative impact of long-term irrigation with TWW on soil structure and physical and chemo-physical properties has emerged, thus putting the sustainability of irrigation with TWW in question. In this presentation, some aspects of the effects of long-term irrigation with TWW on soil properties are shown.

  8. Sole-Source Lighting for Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  9. Challenges and Opportunities for Developing Capacity in Earth Observations for Agricultural Monitoring: The GEOGLAM Experience

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Di Bella, C. M.; Becker Reshef, I.; Deshayes, M.; Justice, C. O.

    2015-12-01

    Since 2011, the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) Initiative has been working to strengthen the international community's capacity to use Earth observation (EO) data to derive timely, accurate, and transparent information on agriculture, with the goals of reducing market volatility and promoting food security. GEOGLAM aims to develop capacity for EO-based agricultural monitoring at multiple scales, from national to regional to global. This is accomplished through training workshops, developing and transferring of best-practices, establishing networks of broad and sustainable institutional support, and designing or adapting tools and methodologies to fit localized contexts. Over the past four years, capacity development activities in the context of GEOGLAM have spanned all agriculture-containing continents, with much more work to be done, particularly in the domains of promoting access to large, computationally-costly datasets. This talk will detail GEOGLAM's experiences, challenges, and opportunities surrounding building international collaboration, ensuring institutional buy-in, and developing sustainable programs.

  10. Monitoring Agricultural Production in Primary Export Countries within the framework of the GEOGLAM Initiative

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.

    2012-12-01

    Up to date, reliable, global, information on crop production prospects is indispensible for informing and regulating grain markets and for instituting effective agricultural policies. The recent price surges in the global grain markets were in large part triggered by extreme weather events in primary grain export countries. These events raise important questions about the accuracy of current production forecasts and their role in market fluctuations, and highlight the deficiencies in the state of global agricultural monitoring. Satellite-based earth observations are increasingly utilized as a tool for monitoring agricultural production as they offer cost-effective, daily, global information on crop growth and extent and their utility for crop production forecasting has long been demonstrated. Within this context, the Group on Earth Observations developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through the use of Earth observations. This talk will explore the potential contribution of EO-based methods for improving the accuracy of early production estimates of main export countries within the framework of GEOGLAM.

  11. Effects of Stratospheric Ozone Depletion the Environment and Agriculture

    NASA Astrophysics Data System (ADS)

    Ali, S. M.; Dash, Nutan Ku; Pradhan, Arjyadhara; Mishra, Sthita Prajna

    2012-09-01

    Ozone depletion results in greater amounts of UV-B radiation that had an impact on terrestrial and aquatic biogeochemical systems. Biogeochemical cycles were the complex interactions of physical, chemical, geological and biological processes that control the transport and transformation of substances in the natural environment and therefore the conditions that humans experience in Earth's system. The increased UV-B radiation impinging on terrestrial and aquatic systems, due to ozone depletion, results in changes in the trace gas exchange between the continents, oceans and the atmosphere. This had result in complex alterations to atmospheric chemistry, the global elemental cycles such as the carbon cycle, and had an impact on the survival and health of all organisms on Earth, including humans.

  12. NASA's Controlled Environment Agriculture Testing for Space Habitats

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    NASA and other space agencies have an interest in using plants for human life support in space. The plants could provide food and O2 for the humans, while removing CO2 and helping purify wastewater. Studies to date have shown that a wide range of crops can be grown in controlled environment conditions envisioned for space. Light is a critical factor both for crop productivity and system power costs, and recent improvements in LEDs make them a preferred lighting option for space. Because space systems would be tightly closed, issues such as ethylene build-up and management must be considered. Ultimately, the costs and reliability of biological life support options must be compared with more conventional life support approaches. Findings to date suggest that about 20-25 sq. meters of crops could supply the O2 for one human, while about 50 sq. meters would be required for food (dietary calories).

  13. Developing and implementing a data acquisition strategy for global agricultural monitoring: an inter-agency initiative

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Whitcraft, A. K.; Becker-Reshef, I.; Killough, B.

    2013-12-01

    In 2011, in response to global food crises, the G20 Agricultural Ministers launched a satellite-based global agricultural monitoring initiative to develop the Group on Earth Observations Global Agriculture Monitoring (GEOGLAM) system. The GEO is aimed at enhancing the availability and use of both satellite and in situ data for societal benefit. This initiative builds on the observation requirements developed by the GEO Agricultural Community of Practice, the understanding that no one satellite system can currently provide all the data needed for agricultural monitoring and the resulting recommendation for improved acquisition and availability of data by the World's space agencies. Implicit in this recommendation is the fact that certain regions of the Earth are imagery rich while others are imagery poor, leaving knowledge gaps about agricultural processes and food supply for certain areas of the World. In order to respond to these knowledge gaps and to strengthen national, regional, and global agricultural monitoring networks, GEOGLAM is working with the Committee on Earth Observations (CEOS), the space arm of GEO, to develop a coordinated global acquisition strategy. A key component of GEOGLAM is an effort to articulate the temporal and spatial Earth Observation (EO) requirements for monitoring; second, the identification of current and planned missions which are capable of fulfilling these EO requirements; and third, the development of a multi-agency, multi-mission image acquisition strategy for agricultural monitoring. CEOS engineers and GEOGLAM scientists have been collaborating on the EO requirements since 2012, and are now beginning the first implementation phase of the acquisition strategy. The goal is to put in place an operational system of systems using a virtual constellation of satellite-based sensors acquiring data to meet the needs for monitoring and early warning of shortfalls in agricultural production, a goal that was articulated in the 1970's

  14. Levels of hexachlorocyclohexanes in agricultural environment of Sacco river valley.

    PubMed

    Pompi, V; Donnarumma, L; Rosati, S; Conte, E

    2010-01-01

    Aim of this trial was to verify the occurrence and the distribution of hexachlorocyclohexanes (HCHs) in soil, sediment, straw, alfalfa, other animal feed grown in farms with contaminated soil. In the present study two years of monitoring activity in the province of Roma and Frosinone was reported. Experimental trial in two contaminated sites was carried out on uptake and translocation of HCHs in maize and alfalfa. In 19 sites soil, forage and weed has been collected for two years, soil samples consisted in cores of 40 cm to test the presence of HCHs at different deep. The analytical determinations in soil and plant samples were carried out by gas liquid chromatography with electron capture detector and confirmed by mass detector. In the first year (2005- 2006) 68% of soil samples were contaminated (HCHs > LOQ) and 3% of vegetable samples. In the second year (2006- 2007) 42% of soil samples resulted positive and 26% of vegetable matrix. In particular B hexacyclohexane was detected in wheat stem (0.037 mg/kg) with a soil contamination of 0.039 mg/kg and in alfalfa (0.012 mg/kg) with presence in soil of 0.004 mg/kg. Experimental trials on maize evidenced a translocation factor for this isomer stem/soil of 0.006 mg/kg ? and for grain of 0.005 mg/kg. On alfalfa translocation factor root/soil was 0.01 and shot/soil 0.009. A propose to calculate the threshold value of soil contamination to admit crop grown destined to animal feed, would be based on HCHs LOD values weighted with translocation factor. PMID:21542481

  15. Monitoring the global environment. An assessment of urban air quality

    SciTech Connect

    Not Available

    1989-10-01

    The Global Environment Monitoring System (GEMS) operates worldwide networks to monitor both air and water quality under the auspices of the World Health Organization (WHO) and the United Nations Environment Program (UNEP). In most cities, there are three GEMS/air monitoring stations: one located in an industrial zone, one in a commercial zone, and one in a residential area. The data obtained in these stations permit a reasonable evaluation of minimum and maximum emission levels and of long-term trends in average concentrations of pollutants. The body of the recent report is based on GEMS/Air data for sulfur dioxide nitrogen dioxide, carbon monoxide, lead and suspended particulate matter. The effects of these five major pollutants that are emitted in relatively large quantities and are common to virtually all outdoor and indoor environments are summarized.

  16. Agriculture and food availability -- remote sensing of agriculture for food security monitoring in the developing world

    USGS Publications Warehouse

    Budde, Michael E.; Rowland, James; Funk, Christopher C.

    2010-01-01

    For one-sixth of the world’s population - roughly 1 billion children, women and men - growing, buying or receiving adequate, affordable food to eat is a daily uncertainty. The World Monetary Fund reports that food prices worldwide increased 43 percent in 2007-2008, and unpredictable growing conditions make subsistence farming, on which many depend, a risky business. Scientists with the U.S. Geological Survey (USGS) are part of a network of both private and government institutions that monitor food security in many of the poorest nations in the world.

  17. Mallard recruitment in the agricultural environment of North Dakota

    USGS Publications Warehouse

    Cowardin, L.M.; Gilmer, D.S.; Shaiffer, C.W.

    1985-01-01

    Recruitment of a mallard (Anas platyrhynchos) population was assessed on a 10,041-km2 study area in central North Dakota during 1977-80. We equipped 338 hens with radio transmitters and monitored them during the breeding season. Two hundred thirty-five of these hens furnished data reported here. Habitat use, nest site selection, fate of nests, and the rate of renesting were measured. Survival of hens during April-September and survival of young were determined. There was a high negative correlation between nest initiation date and mean April or May temperature. Hens selected nest sites most frequently in grassland and least frequently in cropland, but habitat use compared to availability indicated preference for road right-of-way and odd areas of cover and rejection of cropland. Use of other habitats was in proportion to their availability. Nest success was only 8% during the study. Hen success, a function of nest success and renesting rate, averaged 15% and varied among years because of increased renesting in wet years. In all years, 2-year-old and older hens were twice as successful as first-year nesters. Nesting effort was correlated with water conditions as derived from aerial photographs. April-September survival of hens averaged 80% because predation was heavy when hens were on nests. Only 74% of the hens that hatched a clutch were observed later with at least 1 surviving duckling. On average, hens in the spring population recruited only 0.27 young females to the fall population. Based on this recruitment estimate, published survival estimates and a model previously developed for a closed population, we predict a 20% annual population decline. Nest success of 15% and a resulting hen success of 31% would be required for a stable population. The results suggest that the population on the study area is not maintaining itself but is being supplemented by pioneering birds. A serious recruitment problem has resulted from nest predation. Additional research is

  18. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2010-11-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  19. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2009-09-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  20. Monitoring agricultural drought with climate-based drought indices in China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, C., Sr.; Jeffery, R. C.

    2015-12-01

    Agricultural drought monitoring significantly influences food security in recent decades. Soil moisture shortages adversely affecting agriculture is one important indicator for agricultural drought monitoring. Because of limited soil moisture observations, characterizing soil moisture using climate-based drought indices has great practical meaning. The agricultural area in China was identified by crop identification from remotely sensed data. Drought indices of multiple timescale or from two-layer bucket model were analyzed. In most agricultural areas of China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer time scales. In general, multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0-5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90-100-cm depth than the Z index. Soil moisture-drought indices relationship was significantly affected by soil organic carbon density. Effective agriculture drought monitoring can be conducted with climate-based drought indices from widely available climatic data and crop area identification from remote sensing. Authors:Hongshuo wang1, Chao Zhang1, Jeffery C Rogers2 1 China agricultural university 2 Ohio state University Key words: Agricultural drought, SPI, SPEI, PDSI, Z index, crop identification

  1. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    SciTech Connect

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-09-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  2. Crack growth monitoring in harsh environments by electrical potential measurements

    SciTech Connect

    W. R. Lloyd; W. G. Reuter; D. M. Weinberg

    1999-09-19

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique is applicable to many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  3. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop.

    PubMed

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-01-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors-together with their interfaces in the transponder-are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546

  4. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    PubMed

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding. PMID:18618172

  5. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian ``Mountain-to-Sea'' Environments

    NASA Astrophysics Data System (ADS)

    Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  6. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  7. On the utility of land surface models for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely-sensed vegetation indices (VI) is examined from January 2000 until December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strateg...

  8. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  9. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  10. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  11. WESTERN ENERGY/ENVIRONMENT MONITORING STUDY: PLANNING AND COORDINATION SUMMARY

    EPA Science Inventory

    This report is a summary of the planning, coordination and implementation mechanisms which provide the framework for the Western Energy/Environment Monitoring Study. This Study involves participation by elements of EPA, NASA, NOAA, and USGS and is a segment of the Interagency Ene...

  12. Monitoring agricultural burning in the Mississippi River Valley region from the moderate resolution imaging spectroradiometer (MODIS).

    PubMed

    Korontzi, Stefania; McCarty, Jessica; Justice, Christopher

    2008-09-01

    The 2003 active fire observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), on board NASA's Terra and Aqua satellites, were analyzed to assess burning activity in the cropland areas of the Mississippi River Valley region. Agricultural burning was found to be an important contributor to fire activity in this region, accounting for approximately one-third of all burning. Agricultural fire activity showed two seasonal peaks: the first, smaller peak, occurring in June during the spring harvesting of wheat; and the second, bigger peak, in October during the fall harvesting of rice and soy. The seasonal signal in agricultural burning was predominantly evident in the early afternoon MODIS Aqua fire detections. A strong diurnal agricultural fire signal was prevalent during the fall harvesting months, as suggested by the substantially higher number (approximately 3.5 times) of fires detected by MODIS Aqua in the early afternoon, compared with those detected by MODIS Terra in the morning. No diurnal variations in agricultural fire activity were apparent during the springtime wheat-harvesting season. The seasonal and diurnal patterns in agricultural fire activity detected by MODIS are supported by known crop management practices in this region. MODIS data provide an important means to characterize and monitor agricultural fire dynamics and management practices. PMID:18817116

  13. A Whole-System Approach to Understanding Agricultural Chemicals in the Environment

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    The effects of the use of agricultural chemicals and other practices associated with agriculture on the quality of streams and groundwater is well known; however, less is known about how those effects may vary across different geographic regions of the Nation. Scientists at the U.S. Geological Survey (USGS) are conducting studies on the transport and fate of agricultural chemicals in diverse agricultural settings across the country using comparable and consistent methodology and study designs (fig. 1; Capel and others, 2004; Capel and others, 2008). Assessments in five study areas have been completed, and the results highlight how environmental processes and agricultural practices interact to affect the movement and transformation of agricultural chemicals in the environment. The studies address major environmental compartments, including surface water, groundwater, the unsaturated zone, the streambed, and the atmosphere, as well as the pathways that interconnect these compartments. The study areas represent major agricultural settings, such as irrigated diverse cropping in the West and corn and soybean row cropping in the Midwest and, therefore, findings are relevant throughout much of the Nation.

  14. A Survey for the Prevalence of Salmonella in the California Agricultural and Wildlife Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey for the prevalence of Salmonella enterica was done as part of an ongoing study to assess the prevalence of enteric foodborne pathogens in California agricultural and wildlife environments. A total of 2431 enrichment cultures derived from samples of soil, sediment, water, growing leafy prod...

  15. Second biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings

    SciTech Connect

    1995-01-01

    This volume provides the proceedings for the Second Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry which was held August 21-24, 1995. The volume contains copies of full papers as provided by the researchers. Individual papers were separately indexed and abstracted for the database.

  16. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The coming Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10-20...

  17. Assessing the Remotely Sensed Drought Severity Index for Agricultural Drought Monitoring in North China

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Huang, J.; Mu, Q.

    2014-12-01

    With a warming climate, the world has experienced frequent droughts during the past few decades. A remotely sensed Drought Severity Index (DSI), which integrates both vegetation growth condition and evapotranspiration, has been recently proposed for drought monitoring at the global scale. However, there has been little research on its utility for regional application, especially on agricultural drought. As an important winter wheat producing region, the North China has suffered from frequent droughts in recent years. In this study, the capability of the DSI for drought monitoring and impact analysis in five wheat producing provinces of North China was investigated. First, the DSI was compared with precipitation and soil moisture to show its ability for characterizing moisture status. Then specifically for agricultural drought, the DSI was evaluated against agricultural drought severity and the impacts of drought on crop yield during the growing season were also explored using the 8-day DSI data. The main conclusions are: (1) The DSI shows generally good ability for characterizing moisture conditions at the province level with varying ability during winter wheat main growing season (March-June), and the best relationship was found in April. (2) Despite varying capability, the DSI is quite effective in characterizing agricultural drought severity at the province level. (3) Drought shows generally increasing agricultural impacts during winter wheat main growing season (March-June), with little impacts in March (green-up stage), emerging impacts in April (jointing and booting stages) and significant drought impacts in May (heading and filling stages). (4) Based on the spatial pattern of agricultural drought impacts, densely winter wheat planted areas such as South Hebei, Central/West Shandong and North/East Henan are identified as drought vulnerable regions and comprehensive monitoring in these hotspots is highly recommended.

  18. Monitoring of toxic substances in the Hong Kong marine environment.

    PubMed

    Kueh, C S W; Lam, J Y C

    2008-01-01

    A long-term programme for monitoring toxic substances in the marine environment was established in Hong Kong in 2004, focusing on chemicals of potential ecological and health concern. The programme ran on 3-year cycles, with the first two years monitoring marine water, sediment, biota, and the third year monitoring pollution sources. Twenty-four priority chemicals were measured, including dioxins/furans, dioxin-like PCBs, total PCBs, PAHs, DDTs, HCHs, TBTs, phenol, nonylphenol (NP), NP ethoxylates, PBDEs and metals. Results from the first three years of monitoring indicate that toxic substances in the Hong Kong marine environment were within the range reported for the coastal waters in China and other regions, but generally lower than in the Pearl River Estuary. The levels met the standards for protecting aquatic life and human consumption. Sewage effluent, stormwater and river water were possible sources of phenolic compounds; whereas air deposition or regional pollution, rather than local discharges, may contribute to the dioxins/furans, PAHs and PCBs found in the marine environment. PMID:18358499

  19. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  20. [An improved method and its application for agricultural drought monitoring based on remote sensing].

    PubMed

    Zheng, You-Fei; Cheng, Jin-Xin; Wu, Rong-Jun; Guan, Fu-Lai; Yao, Shu-Ran

    2013-09-01

    From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content. Moreover, the performance of SESI was better in spring and autumn than in summer, and the SESI during different periods was more comparable than TVDI. It was feasible to apply the SESI to the continuous monitoring of a large area of agricultural drought. PMID:24417121

  1. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    PubMed

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes. PMID:27315128

  2. Noninvasive Brain Physiology Monitoring for Extreme Environments: A Critical Review.

    PubMed

    Hiles, Laura A; Donoviel, Dorit B; Bershad, Eric M

    2015-10-01

    Our ability to monitor the brain physiology is advancing; however, most of the technology is bulky, expensive, and designed for traditional clinical settings. With long-duration space exploration, there is a need for developing medical technologies that are reliable, low energy, portable, and semiautonomous. Our aim was to review the state of the art for noninvasive technologies capable of monitoring brain physiology in diverse settings. A literature review of PubMed and the Texas Medical Center library sites was performed using prespecified search criteria to identify portable technologies for monitoring physiological aspects of the brain physiology. Most brain-monitoring technologies require a moderate to high degree of operator skill. Some are low energy, but many require a constant external power supply. Most of the technologies lack the accuracy seen in gold standard measures, due to the need for calibration, but may be useful for screening or monitoring relative changes in a parameter. Most of the technologies use ultrasound or electromagnetic radiation as energy sources. There is an important need for further development of portable technologies that can be operated in a variety of extreme environments to monitor brain health. PMID:25811362

  3. Web based remote monitoring and controlling system for vulnerable environments

    NASA Astrophysics Data System (ADS)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  4. Design of the Resources and Environment Monitoring Website in Kashgar

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Lin, Q. Z.; Wang, Q. J.

    2014-03-01

    Despite the development of the web geographical information system (web GIS), many useful spatial analysis functions are ignored in the system implementation. As Kashgar is rich in natural resources, it is of great significance to monitor the ample natural resource and environment situation in the region. Therefore, with multiple uses of spatial analysis, resources and environment monitoring website of Kashgar was built. Functions of water, vegetation, ice and snow extraction, task management, change assessment as well as thematic mapping and reports based on TM remote sensing images were implemented in the website. The design of the website was presented based on database management tier, the business logic tier and the top-level presentation tier. The vital operations of the website were introduced and the general performance was evaluated.

  5. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    Development of satisfactory techniques for detecting change in coastal zone environments is required before operational monitoring procedures can be established. In an effort to meet this need a study was directed toward developing and evaluating different types of change detection techniques, based upon computer aided analysis of LANDSAT multispectral scanner (MSS) data, to monitor these environments. The Matagorda Bay estuarine system along the Texas coast was selected as the study area. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. Each of the four techniques was used to analyze a LANDSAT MSS temporal data set to detect areas of change of the Matagorda Bay region.

  6. Web-Based Image Viewer for Monitoring High-Definition Agricultural Images

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuki; Toda, Shohei; Kobayashi, Fumitoshi; Saito, Yasunori

    This paper describes a Web-based image viewer which was developed to monitor high-definition agricultural images. In the cultivation of crops, physiological data and environmental data are important to increase crop yields. However, it is a burden for farmers to collect such data. Against this backdrop, the authors developed a monitoring system to automatically collect high-definition crop images, which can be viewed on a specialized Web-based image viewer. Users can easily observe detailed crop images over the Internet and easily find differences among the images. The authors experimentally installed the monitoring system in an apple orchard and observed the apples growing there. The system has been operating since August 11, 2009. In this paper, we confirm the ability of the monitoring system to perform detailed observations, including tracing the progress of a disease that affects the growth of an apple.

  7. Interplay between environment, agriculture and infectious diseases of poverty: case studies in China.

    PubMed

    Yang, Guo-Jing; Utzinger, Jürg; Zhou, Xiao-Nong

    2015-01-01

    Changes in the natural environment and agricultural systems induced by economic and industrial development, including population dynamics (growth, urbanization, migration), are major causes resulting in the persistence, emergence and re-emergence of infectious diseases in developing countries. In the face of rapid demographic, economic and social transformations, the People's Republic of China (P.R. China) is undergoing unprecedented environmental and agricultural change. We review emerging and re-emerging diseases such as schistosomiasis, dengue, avian influenza, angiostrongyliasis and soil-transmitted helminthiasis that have occurred in P.R. China due to environmental and agricultural change. This commentary highlights the research priorities and the response strategies, namely mitigation and adaptation, undertaken to eliminate the resurgence of those infectious diseases. PMID:23906612

  8. An approach to integrate spatial and climatological data as support to drought monitoring and agricultural management problems in South Sudan

    NASA Astrophysics Data System (ADS)

    Bonetto, Sabrina; Facello, Anna; Camaro, Walther; Isotta Cristofori, Elena; Demarchi, Alessandro

    2016-04-01

    Drought is a natural hazard characterized by an abnormally dry event in the hydrological cycle caused by insufficient precipitation over an extended period of time, which affects more people than any other natural disaster and results in social, economic and environmental costs. In Africa, the economic system is based primarily on natural resources for example farming. For this reason, climate variability and events such as drought are phenomena that can represent significant disturbances and threats in the agricultural systems. In particular, this study concerns the monitoring of environmental changes in the south sector of South Sudan. The climate and environment in the South Sudan have shown localised changes during the course of this century and recurrent wars and droughts in the last years determined a large food-crisis. Actually, the security situation is stabilised with sporadic fighting concentrated in Jonglei, Unity and Upper Nile States. With the stabilisation of the conflict, many refugees have returned to their regions, trying to recover the economic structure based mainly on agriculture. For this reason, it is important to monitoring and analysis the vegetation and drought trend over the last years to support agricultural development and food security, in particular in post-conflict areas. This study focuses on the analysis of the relationship between the temporal variations of state of vegetation and the precipitation patterns. A historical analysis of the vegetation behaviour (NDVI) and the drought during the year is developed. In addition, with the aim to identify the wet and dry seasons, an analysis of precipitation is performed. Based on the vegetation and precipitation trends obtained, it is possible to characterize the best areas to start an agricultural system, giving priority to certain areas in order to plan the land use for agricultural purposes and programming crop (which and where). Consequently, with the aim to identify possible

  9. [Evaluating the utility of MODIS vegetation index for monitoring agricultural drought].

    PubMed

    Li, Hua-Peng; Zhang, Shu-Qing; Gao, Zi-Qiang; Sun, Yan

    2013-03-01

    The exclusive shortwave bands provided by MODIS sensors offer new opportunities for agricultural drought monitoring, since they are very sensitive to vegetation moisture. In the present work, we selected Songnen Plain in Northeast China as study area aiming at monitoring agricultural drought of dry farmland here. Four types of vegetation water indices and vegetation greenness indices were calculated from the 8-day composite MODIS product (MODO9A1) in vegetation growing season between 2001 and 2010, respectively. Multi-scale standardized precipitation index (SPI) derived from precipitation data of weather stations was used as reference data to estimate drought sensitivity of various vegetation indices, and a pixel-to-weather station paired correlation approach was used to calculate the Pearson correlation coefficient between vegetation index and SPIs. The result indicated that vegetation water indices established by near infrared and shortwave infrared bands outperformed vegetation greenness indices based on visible and near infrared bands. Of these indices, NDII7 performs the best with highest correlation coefficients across all SPIs. The authors' results demonstrated the potential of MODIS shortwave spectral bands in monitoring agricultural drought, and this provides new insights to future research. PMID:23705448

  10. Specific and sensitive detection of Alcaligenes species from an agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2013-03-01

    A quantitative real-time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 10(2)-10(4) times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment. PMID:23489084

  11. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    NASA Astrophysics Data System (ADS)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  12. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 1. Project summary

    SciTech Connect

    Not Available

    1985-12-30

    A summary of the Solar Controlled Environment Agriculture Project is presented. The design of the greenhouses include transparent double pane glass roof with channels for fluid between the panes, inner pane tinted and double pane extruded acrylic aluminized mylar shade and diffuser. Solar energy technologies provide power for water desalination, for pumping irrigation water, and for cooling and heating the controlled environment space so that crops can grow in arid lands. The project is a joint effort between the United States and Saudi Arabia. (BCS)

  13. Agricultural drought risk monitoring and yield loss forecast with remote sensing data

    NASA Astrophysics Data System (ADS)

    Nagy, Attila; Tamás, János; Fehér, János

    2015-04-01

    The World Meteorological Organization (WMO) and Global Water Partnership (GWP) have launched a joint Integrated Drought Management Programme (IDMP) to improve monitoring and prevention of droughts. In the frame of this project this study focuses on identification of agricultural drought characteristics and elaborates a monitoring method (with application of remote sensing data), which could result in appropriate early warning of droughts before irreversible yield loss and/or quality degradation occur. The spatial decision supporting system to be developed will help the farmers in reducing drought risk of the different regions by plant specific calibrated drought indexes. The study area was the Tisza River Basin, which is located in Central Europe within the Carpathian Basin. For the investigations normalized difference vegetation index (NDVI) was used calculated from 16 day moving average chlorophyll intensity and biomass quantity data. The results offer concrete identification of remote sensing and GIS data tools for agricultural drought monitoring and forecast, which eventually provides information on physical implementation of drought risk levels. In the first step, we statistically normalized the crop yield maps and the MODIS satellite data. Then the drought-induced crop yield loss values were classified. The crop yield loss data were validated against the regional meteorological drought index values (SPI), the water management and soil physical data. The objective of this method was to determine the congruency of data derived from spectral data and from field measurements. As a result, five drought risk levels were developed to identify the effect of drought on yields: Watch, Early Warning, Warning, Alert and Catastrophe. In the frame of this innovation such a data link and integration, missing from decision process of IDMP, are established, which can facilitate the rapid spatial and temporal monitoring of meteorological, agricultural drought phenomena and its

  14. The Node Monitoring Component of a Scalable Systems Software Environment

    SciTech Connect

    Samuel James Miller

    2006-08-09

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  15. NASA's NI-SAR Observing Strategy and Data Availability for Agricultural Monitoring and Assessment

    NASA Astrophysics Data System (ADS)

    Siqueira, P.; Dubayah, R.; Kellndorfer, J. M.; Saatchi, S. S.; Chapman, B. D.

    2014-12-01

    The monitoring and characterization of global crop development by remote sensing is a complex task, in part, because of the time varying nature of the target and the diversity of crop types and agricultural practices that vary worldwide. While some of these difficulties are overcome with the availability of national and market-derived resources (e.g. publication of crop statistics by the USDA and FAO), monitoring by remote sensing has the ability of augmenting those resources to better identify changes over time, and to provide timely assessments for the current year's production. Of the remote sensing techniques that are used for agricultural applications, optical observations of NDVI from Landsat, AVHRR, MODIS and similar sensors have historically provided the majority of data that is used by the community. In addition, radiometer and radar sensors, are often used for estimating soil moisture and structural information for these agricultural regions. The combination of these remote sensing datasets and national resources constitutes the state of the art for crop monitoring and yield forecasts. To help improve these crop monitoring efforts in the future, the joint NASA-ISRO SAR mission known as NI-SAR is being planned for launch in 2020, and will have L- and S-band fully polarimetric radar systems, a fourteen day repeat period, and a swath width on the order of several hundred kilometers. To address the needs of the science and applications communities that NI-SAR will support, the systems observing strategy is currently being planned such that data rate and the system configuration will address the needs of the community. In this presentation, a description of the NI-SAR system will be given along with the currently planned observing strategy and derived products that will be relevant to the overall GEOGLAM initiative.

  16. The use of PROBA-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Kempeneers, Pieter; Piccard, Isabelle; Deronde, Bart; Eerens, Herman; Gobin, Anne

    2015-04-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at an unprecedented rate and scale such that they have a strong economic and environmental impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many cases the temporal frequency of the information is a requirement to detect phenomena that can occur within a few days and at a certain geographic scale. For example frequent updates on crop condition and projected production are needed to stabilise agricultural markets. Large initiatives such as the GEOGLAM AMIS (Group on Earth Observations Global Agricultural Monitoring - Agricultural Market Information System) respond to this increased need. Observations over large areas are available through satellites, however, the following challenges remain: • obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales appropriate to detect land cover/use changes in a consistent manner. • the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with a historical reference is of the utmost importance. The PROBA-V mission is an important attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the consistency between the PROBA-V data and the 15 years historical archive of SPOT-VEGETATION. In this respect PROBA-V observations are comparable with the SPOT-VEGETATION historical baseline and will therefore ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, PROBA -V also provides an increase in spatial resolution from 1km to 300m and even 100m. The latter ensures a global

  17. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  18. An integrated Modelling framework to monitor and predict trends of agricultural management (iMSoil)

    NASA Astrophysics Data System (ADS)

    Keller, Armin; Della Peruta, Raneiro; Schaepman, Michael; Gomez, Marta; Mann, Stefan; Schulin, Rainer

    2014-05-01

    Agricultural systems lay at the interface between natural ecosystems and the anthroposphere. Various drivers induce pressures on the agricultural systems, leading to changes in farming practice. The limitation of available land and the socio-economic drivers are likely to result in further intensification of agricultural land management, with implications on fertilization practices, soil and pest management, as well as crop and livestock production. In order to steer the development into desired directions, tools are required by which the effects of these pressures on agricultural management and resulting impacts on soil functioning can be detected as early as possible, future scenarios predicted and suitable management options and policies defined. In this context, the use of integrated models can play a major role in providing long-term predictions of soil quality and assessing the sustainability of agricultural soil management. Significant progress has been made in this field over the last decades. Some of these integrated modelling frameworks include biophysical parameters, but often the inherent characteristics and detailed processes of the soil system have been very simplified. The development of such tools has been hampered in the past by a lack of spatially explicit soil and land management information at regional scale. The iMSoil project, funded by the Swiss National Science Foundation in the national research programme NRP68 "soil as a resource" (www.nrp68.ch) aims at developing and implementing an integrated modeling framework (IMF) which can overcome the limitations mentioned above, by combining socio-economic, agricultural land management, and biophysical models, in order to predict the long-term impacts of different socio-economic scenarios on the soil quality. In our presentation we briefly outline the approach that is based on an interdisciplinary modular framework that builds on already existing monitoring tools and model components that are

  19. New tools in monitoring East and Southeast Asian environments

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas W.; Shuchman, Robert A.

    1997-01-01

    By all economic measures East and Southeast Asia are major success stories and emerging powerhouses in the global economy. This region continues to outperform, by a wide margin, other regions of the developing world and the industrial countries as well. However, this economic growth has been at a cost to the environment that is increasingly evident and may threaten future growth. Losses of tropical forests, unsustainable agriculture, unsound energy production and use, urban and industrial pollution, and the depletion of coastal and marine resources all impact current and future growth. However, information obtained from Mission-To-Planet-Earth sensors and other remote sensing devices may provide a basis for policies that help reduce environmental damage and promote resource sustainability. Three examples using Landsat, AVHRR, and interferometric RADAR data illustrate remote sensing applications to Asian development and environmental sustainability.

  20. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  1. Extreme Events in GOES Space Environment Monitor Data 1974 - 2011

    NASA Astrophysics Data System (ADS)

    Wilkinson, D. C.; Sundaravel, A. S.

    2011-12-01

    The GOES satellite mission has monitored the space environment from geostationary orbit since the launch of SMS-1 in 1974. The data archive includes data from the X-ray Sensor, Energetic Particle Sensor and Magnetometer. These instruments remained relatively consistent from satellite to satellite making it possible to compare events separated by many years. In addition to graphical displays of extreme events, daily values will display long term trends in these data. This presentation will incorporate time-averages from 1974 - 1985 which were made available to the public for the first time this Fall.

  2. a Combined Approach with Smos and Modis to Monitor Agricultural Drought

    NASA Astrophysics Data System (ADS)

    Sánchez, N.; Martínez-Fernández, J.; González-Zamora, A.

    2016-06-01

    A synergistic fusion of the Soil Moisture and Ocean Salinity (SMOS) L2 soil moisture with the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land surface temperature (LST) and several water/vegetation indices for agricultural drought monitoring was tested. The rationale of the calculation is based on the inverse relationship between LST and vegetation condition, related in turn with the soil moisture content. All the products were time-integrated, including the lagged response of vegetation. The product aims to detect and characterize soil moisture drought conditions and, particularly, to identify potential short-term agricultural droughts among them. The new index, so-called the Soil Moisture Agricultural Drought Index (SMADI), was retrieved at 500 m spatial resolution at the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) area from 2010 to 2014 at 8-days temporal scale. SMADI was compared with other agricultural indices in REMEDHUS through statistical correlation, affording a good agreement with them, and depicting a suitable description of the drought conditions in this area during the study period.

  3. An Environment Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, M. Ralph; Clifton, Kenneth S.

    1998-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  4. An Induced Environment Contamination Monitor for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor); Decher, R. (Editor)

    1978-01-01

    The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.

  5. agINFRA: a research data hub for agriculture, food and the environment

    PubMed Central

    Drakos, Andreas; Protonotarios, Vassilis; Manouselis, Nikos

    2015-01-01

    The agINFRA project (www.aginfra.eu) was a European Commission funded project under the 7th Framework Programme that aimed to introduce agricultural scientific communities to the vision of open and participatory data-intensive science. agINFRA has now evolved into the European hub for data-powered research on agriculture, food and the environment, serving the research community through multiple roles. Working on enhancing the interoperability between heterogeneous data sources, the agINFRA project has left a set of grid- and cloud- based services that can be reused by future initiatives and adopted by existing ones, in order to facilitate the dissemination of agricultural research, educational and other types of data. On top of that, agINFRA provided a set of domain-specific recommendations for the publication of agri-food research outcomes. This paper discusses the concept of the agINFRA project and presents its major outcomes, as adopted by existing initiatives activated in the context of agricultural research and education. PMID:26339472

  6. Monitoring and APEX modeling of no-till and reduced-till in tile drained agricultural landscapes for water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evaluation of agricultural practices through monitoring and modeling is necessary for the development of more effective conservation programs and policies. No-till and reduced-till are both agricultural conservation practices widely promoted for their proven ability to conserve water and reduce ...

  7. Research priorities for the environment, agriculture and infectious diseases of poverty.

    PubMed

    2013-01-01

    This report reviews the connections between environmental change, modern agricultural practices and the occurrence of infectious diseases - especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies - spanning the environment, climate, agriculture, social-ecological, microbial and public-health sectors; as well as inter-disciplinary research and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. This is one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at www.who.int/tdr/capacity/global_report. PMID:23687800

  8. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    SciTech Connect

    Dwyer, Brian P.

    2013-03-01

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers' objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers' test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  9. Monitoring the marine environment using marine mammal tissue samples

    SciTech Connect

    Jones, P.D.; Hannah, D.J.; Day, P.J.

    1995-12-31

    Marine environments, both inshore and open ocean, receive numerous inputs of anthropogenic chemicals. Cetaceans provide a valuable resource for monitoring the low level contamination of marine environments with persistent organic contaminants. Comparative studies using inshore and offshore southern ocean cetaceans have revealed significant differences in the types of contamination in these two environments. The polychlorinated biphenyls (PCBs) deposited in the southern oceans are characterized by an abundance of lower chlorinated congeners. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) are not present at significant concentrations in cetaceans from the open southern ocean. In contrast significant concentrations of PCDD/F congeners are detected in the blubber of the inshore living Hector`s dolphin. This species lives close to the shore and has a very small home range (approximately 30 km) for a cetacean. Analysis of tissue PCDD/F and PCB profiles from different populations and their food sources will be presented. The data are being used to determine if there are local variations in the contamination of the New Zealand inshore marine environment.

  10. The Use of Proba-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.; Smets, B.; De Ronde, B.

    2014-12-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at scales which are unprecedented in history and at such a pace that they are not only subject of scientific studies but also have a strong economic impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many of these cases the temporal frequency of the information is a clear requirement to detect phenomena that can occur within a few days (related to crops, forests and other ecosystems) and at a certain geographic scale. For example frequent updates on crop condition and production is needed to stabilize agricultural markets. This is already being picked up by large initiatives like the GEOGLAM AMIS system. Observations over large areas are available through satellites, however challenges remain; on the one hand side obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales in which changes in land cover/use can be identified in a consistent manner. On the other hand side the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with the historical reference is of the utmost importance. The Proba-V mission is a first attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the integration of the Proba-V data with the 15 years historical archive of SPOT-VEGETATION. In this respect Proba-V observation will be intercomparable with the SPOT-VGT historical baseline which will ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, Proba-V also ensures an increase in spatial resolution of the data sets, from 1km to

  11. CropEx Web-Based Agricultural Monitoring and Decision Support

    NASA Technical Reports Server (NTRS)

    Harvey. Craig; Lawhead, Joel

    2011-01-01

    CropEx is a Web-based agricultural Decision Support System (DSS) that monitors changes in crop health over time. It is designed to be used by a wide range of both public and private organizations, including individual producers and regional government offices with a vested interest in tracking vegetation health. The database and data management system automatically retrieve and ingest data for the area of interest. Another stores results of the processing and supports the DSS. The processing engine will allow server-side analysis of imagery with support for image sub-setting and a set of core raster operations for image classification, creation of vegetation indices, and change detection. The system includes the Web-based (CropEx) interface, data ingestion system, server-side processing engine, and a database processing engine. It contains a Web-based interface that has multi-tiered security profiles for multiple users. The interface provides the ability to identify areas of interest to specific users, user profiles, and methods of processing and data types for selected or created areas of interest. A compilation of programs is used to ingest available data into the system, classify that data, profile that data for quality, and make data available for the processing engine immediately upon the data s availability to the system (near real time). The processing engine consists of methods and algorithms used to process the data in a real-time fashion without copying, storing, or moving the raw data. The engine makes results available to the database processing engine for storage and further manipulation. The database processing engine ingests data from the image processing engine, distills those results into numerical indices, and stores each index for an area of interest. This process happens each time new data is ingested and processed for the area of interest, and upon subsequent database entries, the database processing engine qualifies each value for each area of

  12. In-situ corrosivity monitoring of military hardware environments

    SciTech Connect

    Agarwala, V.S.

    1996-10-01

    A method to monitor corrosive conditions (environments) for military equipment was developed. The concept is based on the electrochemical principles of galvanic corrosion. It consisted of a novel thin film device (interdigitized bimetallic strips on a kapton polymer) which was galvanically coupled or short circuited through a zero resistance ammeter (ZRA) and interfaced to a custom design data acquisition system called Corrosion Monitoring System (CMS). The sensor`s unique design allowed the use of any metal as the active element or anode to form the galvanic couple, which enhanced sensor`s versatility and usefulness in almost any application. In most applications Cd-Au sensor was used. For in-situ corrosivity monitoring sensors were installed in the interior of the aircraft, hidden structures, avionics bays, and embedded under coatings and sealants. The test sites included: military bases, aircraft carrier flight decks, marine atmosphere and operational aircraft and weapons storage areas. The results show a significant correlation between the output of the sensors and the corrosive conditions present, and may become a basis for condition based maintenance of military hardware in the future.

  13. Occurrence and Distribution of Agricultural Pesticides and Transport Modeling in Surface and Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Chu, X.; Marino, M. A.

    2007-12-01

    The use of a variety of pesticides has increased dramatically during the past decades to improve agricultural efficiency and productivity. However, these agricultural chemicals are often washed to surface waters by runoff and leached through the vadose zone to ground water, thereby polluting waters and threatening human health as well as aquatic and terrestrial ecosystems. It is of particular importance to develop effective modeling tools to assess the induced nonpoint source pollution, to regulate the use of agricultural pesticides, and to circumvent further deterioration in water quality. Different physically-based pesticide transport models, ranging from simple analytical models to semidiscrete and more rigorous numerical models, are discussed. In particular, the effects of use of pesticides on their occurrence and distribution in surface and subsurface environments are examined in this study. A windows-based integrated pesticide transport model (IPTM) is used to simulate three-phase pesticide transport and transformation and quantify spatial and temporal distributions in a coupled canopy-soil system as well as pesticide loading potential to the adjacent surface water through surface runoff and erosion. Five different pesticides (diazinon, 2,4-D acid, DBCP, simazine, and lindane) are examined. It is found that occurrence and distribution of pesticides in the environment are closely related to their use and determined by a series of pesticide transport and transformation processes. The occurrence and use of pesticides follow extremely complex and dynamic patterns that are affected by numerous factors related to their use and properties, hydrology, and agricultural activities. It is also found that changes in pesticide use (application quantity, frequency, timing, and method) may result in distinct environmental fate of pesticides in terms of their occurrence extent as well as spatial and temporal distributions.

  14. A multimedia approach to environmental monitoring in a northern environment: The Slave River environmental quality monitoring program

    SciTech Connect

    Peddle, J.; Stephens, G.; Robertson, K.

    1995-12-31

    The Slave River Environmental Quality Monitoring Program is a multimedia sampling program that was established in 1990 to characterize baseline conditions of the aquatic ecosystem in the Slave River at Fort Smith, NWT, Canada. The comprehensive nature of the sampling program made it the first of its kind in the Northwest Territories. The Slave River watershed drains an area of approximately 600,000 km{sup 2}, including the Peace and Athabasca Rivers, with the territorial portion being the furthest downstream. Increase in developments in the upstream portion of the basin prompted concerns by northern residents. In order to answer the questions of ``Can one drink the water?`` and ``Can one eat the fish?``, the program had to take an ecosystem approach and analyze a variety of media including water, suspended sediment and fish. In addition, benthic surveys, stable isotope work and delta coring were carried out in conjunction with this study. Samples were collected under both winter ({minus}40 C, under ice) and summer conditions. Samples were analyzed for organic and inorganic parameters including mixed function oxygenases (MFOs), dioxins, furans and other organochlorines. There was an emphasis on those contaminants likely to result from anthropogenic developments upstream, namely pulp and paper mills, agricultural activities and hydrocarbon developments. A comprehensive and extensive database was created which can be used to address concerns, aid in transboundary negotiations and monitor future changes in the quality of the aquatic environment.

  15. Object Detection for Agricultural and Construction Environments Using an Ultrasonic Sensor.

    PubMed

    Dvorak, J S; Stone, M L; Self, K P

    2016-04-01

    This study tested an ultrasonic sensor's ability to detect several objects commonly encountered in outdoor agricultural or construction environments: a water jug, a sheet of oriented strand board (OSB), a metalfence post, a human model, a wooden fence post, a Dracaena plant, a juniper plant, and a dog model. Tests were performed with each target object at distances from 0.01 to 3 m. Five tests were performed with each object at each location, and the sensor's ability to detect the object during each test was categorized as "undetected," "intermittent," "incorrect distance," or "good." Rigid objects that presented a larger surface area to the sensor, such as the water jug and OSB, were better detected than objects with a softer surface texture, which were occasionally not detected as the distance approached 3 m. Objects with extremely soft surface texture, such as the dog model, could be undetected at almost any distance from the sensor. The results of this testing should help designers offuture systems for outdoor environments, as the target objects tested can be found in nearly any agricultural or construction environment. PMID:27373060

  16. CosmoBon for studying wood formation under exotic gravitational environment for future space agriculture

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Funada, Ryo; Nakamura, Teruko; Hashimoto, Hirofumi; Yamashita, Masamichi; Cosmobon, Jstwg

    We are proposing to raise woody plants in space for several applications and plant science. Japanese flowering cherry tree is one of a candidate for these studies. Mechanism behind sensing gravity and controlling shape of tree has been studied quite extensively. Even molecular mechanism for the response of plant against gravity has been investigated quite intensively for various species, woody plants are left behind. Morphology of woody branch growth is different from that of stem growth in herbs. Morphology in tree is strongly dominated by the secondary xylem formation. Nobody knows the tree shape grown under the space environment. If whole tree could be brought up to space as research materials, it might provide important scientific knowledge. Furthermore, trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. The serious problem would be their size. Bonsai is one of the Japanese traditional arts. We can study secondly xylem formation, wood formation, under exotic gravitational environment using Bonsai. "CosmoBon" is the small tree Bonsai for our space experiment. It has been recognized that the reaction wood in CosmoBon is formed similar to natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  17. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be

  18. AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities

    NASA Astrophysics Data System (ADS)

    Kogan, F.

    following web site http://orbit-net.nesdis.noaa.gov/crad/sat/surf/vci/. Drought assessments were compared with ground observations in twenty two countries around the world and showed good results in early drought detection and monitoring its development and impacts on the environment and socioeconomic activities, for assessment of biomass/crop production losses and fire risk. In addition, the AVHRR-based products showed potential in monitoring mosquito-born epidemics, amount of water required for irrigation, and predicting ENSO impacts on productivity of land ecosystems. These applications were used in agriculture, forestry, weather models, climatology. This presentation will be illustrated with many examples of data applications and also with explanations of data structure and use.

  19. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 6. Science Applications, Incorporated system analysis

    SciTech Connect

    Not Available

    1985-01-01

    This report summarizes the results of the systems analysis task for the conceptual design of a commercial size, solar powered, controlled environment agriculture system. The baseline greenhouse system consists of a 5-hectare growing facility utilizing an innovative fluid roof filter concept to provide temperature and humidity control. Fresh water for the system is produced by means of a reverse osmosis desalination unit and energy is provided by means of a solar photovoltaic array in conjunction with storage batteries and a power conditioning unit. The greenhouse environment is controlled via circulation of brackish groundwater in a closed system, which permits water recovery during dehumidification as well as CO/sub 2/ enrichment for increased crop productivity.

  20. Non-stationarity of "Nature's Limit" - Implications for Agriculture in Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Tozer, C.; Kiem, A.; Verdon-Kidd, D.

    2014-12-01

    "Rain follows the plow" was a theory that encouraged agricultural settlement in dryland areas in both the United States of America and Australia during the mid-1800s. Supporters of the theory believed that humans could master nature and alter the climate through cultivation of the soil. An opponent of this theory was George W. Goyder, who used vegetation in South Australia as an indicator to mark out the extent of the area's severe 1865 drought, effectively establishing "nature's limit" to reliable agriculture in South Australia. This limit became known as Goyder's Line and demarked the boundary between land suitable for agricultural pursuits (i.e. cropping) to the south and land only suitable for grazing in the State's arid north. Current cropping areas however extend north beyond this line, suggesting that either a) the line is not well defined, b) cropping is occurring on land considered 'non-viable' according to Goyder's Line or c) the line distinguishing where cropping is and is not viable varies on interannual to multidecadal timescales. In this study, the 220 mm growing season (April to October) rainfall isohyet is used as a proxy for Goyder's Line in order to assess its temporal and spatial variability. Using indices of the El Niño/Southern Oscillation, Indian Ocean variability, Southern Annular Mode and the Subtropical Ridge, it is shown that climate state significantly influences the location of the 220 mm growing season rainfall isohyet. This implies that the boundary between viable and non-viable cropping areas (i.e. Goyder's Line or "nature's limit") is non-stationary. These results also indicate the key influences on South Australia's climate and have important implications globally for agricultural practices operating in or bordering semi-arid environments.

  1. Monitoring drought occurrences using MODIS evapotranspiration data: Direct impacts on agricultural productivity in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson

    2014-05-01

    regional droughts (2005, 2010 and 2012) occurred in Southern Brazil, with similar wetting and drying patterns based on the Standardized Precipitation Index (SPI) and strong correlation with agricultural productivity. Overall, the MODIS remotely sensed drought indices reveal the efficacy and effectiveness for near-real time monitor land surface drought events. Furthermore, understanding and predicting the consequences of drought events on agricultural productivity is emerging as one of the greatest challenges currently due to the increasing global demand for food. Acknowledgements: This work was made possible through the support of the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

  2. Improving World Agricultural Supply and Demand Estimates by Integrating NASA Remote Sensing Soil Moisture Data into USDA World Agricultural Outlook Board Decision Making Environment

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; de Jeu, R. A.; Doraiswamy, P. C.; Kempler, S. J.; Shannon, H. D.

    2009-12-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by developing monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main objective of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE. Soil moisture is a primary data gap at WAOB. Soil moisture data, generated by the Land Parameter Retrieval Model (LPRM, developed by NASA GSFC and Vrije Universiteit Amsterdam) and customized to WAOB's requirements, will be directly integrated into GLADSE, as well as indirectly by first being integrated into USDA Agricultural Research Service (ARS)'s Environmental Policy Integrated Climate (EPIC) crop model. The LPRM-enhanced EPIC will be validated using three major agricultural regions important to WAOB and then integrated into GLADSE. Project benchmarking will be based on retrospective analyses of WAOB's analog year comparisons. The latter are between a given year and historical years with similar weather patterns. WAOB is the focal point for economic intelligence within the USDA. Thus, improving WAOB's agricultural estimates by integrating NASA satellite observations and model outputs will visibly demonstrate the value of NASA resources and maximize the societal benefits of NASA investments.

  3. An artificial reality environment for remote factory control and monitoring

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  4. Advanced monitoring systems for biological applications in marine environments

    NASA Astrophysics Data System (ADS)

    Cella, U.; Chiffings, T.; Gandelli, A.; Grimaccia, F.; Johnstone, R. W.; Zich, R. E.

    2007-12-01

    The increasing need to manage complex environmental problems demands a new approach and new technologies to provide the information required at a spatial and temporal resolution appropriate to the scales at which the biological processes occur. In particular sensor networks, now quite popular on land, still poses many difficult problems in underwater environments. In this context, it is necessary to develop an autonomous monitoring system that can be remotely interrogated and directed to address unforeseen or expected changes in such environmental conditions. This system, at the highest level, aims to provide a framework for combining observations from a wide range of different in-situ sensors and remote sensing instruments, with a long-term plan for how the network of sensing modalities will continue to evolve in terms of sensing modality, geographic location, and spatial and temporal density. The advances in sensor technology and digital electronics have made it possible to produce large amount of small tag-like sensors which integrate sensing, processing, and communication capabilities together and form an autonomous entity. To successfully use this kind of systems in under water environments, it becomes necessary to optimize the network lifetime and face the relative hindrances that such a field imposes, especially in terms of underwater information exchange.

  5. Monitoring of Sedimentary Fluxes in Cold Environments: The SEDIBUD (Sediment Budgets in Cold Environments) Programme

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2014-05-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists` (I.A.G. / A.I.G.) SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017) is addressing this existing key knowledge gap. The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at each of the ca. 50 defined SEDIBUD key test sites varies by program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the program. Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available

  6. Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland.

    PubMed

    Hughes, J; Sharp, E; Taylor, M J; Melton, L; Hartley, G

    2013-08-01

    Despite the documented risk of secondary poisoning to non-target species by anticoagulant rodenticides there is no statutory post-approval monitoring of their use in the UK. This paper presents results from two Scottish monitoring schemes for the period 2000-2010; recording rodenticide use on arable farms and the presence of residues in raptor carcasses. More than three quarters of arable farms used anticoagulant rodenticides; predominately the second generation compounds difenacoum and bromadiolone. There was widespread exposure to anticoagulant rodenticides in liver tissues of the raptor species tested and the residues encountered generally reflected agricultural use patterns. As found in other studies, Red Kites (Milvus milvus) appeared to be particularly vulnerable to rodenticide exposure, 70 % of those sampled (n = 114) contained residues and 10 % died as a result of rodenticide ingestion. More unexpectedly, sparrowhawks (Accipiter nisus), which prey almost exclusively on birds, had similar exposure rates to species which prey on rodents. Although, with the exception of kites, confirmed mortality from rodenticides was low, the widespread exposure recorded is concerning. Particularly when coupled with a lack of data about the sub-lethal effects of these compounds. This raises questions regarding whether statutory monitoring of use is needed; both to address whether there are deficiencies in compliance with approval conditions or whether the recommended risk management procedures are themselves adequate to protect non-target wildlife. PMID:23595554

  7. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  8. Downscaling Soil Moisture Product from SMOS for Monitoring Agricultural Droughts in South America

    NASA Astrophysics Data System (ADS)

    Nagarajan, K.; Fu, C.; Judge, J.; Fraisse, C.

    2012-12-01

    drought period of 2007-2008 were used to train the downscaling methodology. Observations obtained during the growing season of 2010, during which ESA-SMOS observations were available, was used to demonstrate the feasibility of the methodology for monitoring agricultural droughts.

  9. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    NASA Astrophysics Data System (ADS)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  10. A Collaborative Decision Environment to Support UAV Wildfire Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Frost, C. R.; Enomoto, F. Y.; D'Ortenzio, M. V.; Nguyen, Q. B.

    2006-12-01

    NASA developed the Collaborative Decision Environment (CDE), the ground-based component of its Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAVs). The CDE was used to support science mission planning and decision-making for a NASA- and U.S. Forest Service-sponsored mission to monitor wildfires in the western United States using a multi- spectral imager flown onboard the General Atomics Altair UAV in summer of 2006. The CDE is a ground-based system that provides the mission/science team with situational awareness, collaboration, and decision tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, large wildfire locations, satellite-derived fire detection data, temporarily restricted airspace, and satellite imagery. While a prototype CDE was developed as a Java-based client/server application in 2004-2005, the team investigated the use of Google Earth to take advantage of its 3-D visualization capabilities, friendly user interface, and enhanced graphics performance. External data is acquired via the Internet by leveraging established and emerging Open Geospatial Consortium (OGC) standards and is re-formatted into the Keyhole Markup Language (KML) specification used by Google Earth. Aircraft flight position and sensor data products are relayed from the instrument ground station to CDE servers where they are made available to users. An instant messaging chat server is used to facilitate real-time communication between remote users. This paper will present an overview of the CDE system architecture, and discuss how science user input was crucial to shaping and developing the system. Examples from the UAV mission will be used to illustrate the presentation. Plans for future development work to improve mission operations, such as integration with

  11. A Multi-Sensor Approach for Satellite Soil Moisture Monitoring for Agricultural Climate Risk Assessment

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Cherneski, P.; Hadwen, T. A.; Davidson, A.

    2014-12-01

    Satellite missions specifically dedicated to soil moisture retrieval have become a reality in the past few years, with the launch of SMOS in 2009 and SMAP in 2014. While much of the work on applications around these missions has focussed on data assimilation systems for numerical weather prediction, there is also potential to use the data to support agricultural applications such as drought and flood assessment and yield forecasting. Previous work has examined the potential for using SMOS soil moisture for detecting spatial and temporal patterns of agroclimate risk, such as drought and excess wetness. This research builds upon that work through the examination of a data set with a longer reference period to determine if the dataset can be used as a baseline for detecting anomalies from normal conditions. Surface satellite soil moisture from a multi-sensor climate reference data set (1993 to 2010) and the SMOS surface soil moisture data (2010 - 2014) set were examined in hindsight to detect relevant trends for monitoring the climate conditions in agricultural regions of Canada. Soil moisture and soil moisture anomalies were examined against precipitation and temperature records over the relevant time periods, and compared against agroclimatic drought risk indicators, including the Palmer Drought Severity Index, the Standardized Precipitation Index and the MODIS Normalized Difference Vegetation Condition anomalies. High impact events, including the 2002 drought in the Canadian Prairies, excess wetness in the southern Manitoba in 2009 and 2011 were evaluated in detail. The potential for using these data sets in near real time to support agricultural decision making will be discussed.

  12. Using continuous monitoring of physical parameters to better estimate phosphorus fluxes in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal

    2016-04-01

    Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for

  13. Improving Agricultural Drought Monitoring in East Africa with Unbiased Rainfall Fields and Detailed Land Surface Physics

    NASA Astrophysics Data System (ADS)

    McNally, A.; Yatheendradas, S.; Peters-Lidard, C. D.; Michaelsen, J.

    2010-12-01

    Monitoring drought is particularly challenging within rainfed agricultural and pastoral systems, where it can serve the greatest need. Such locations often have sparse or non-existent ground based measurements of precipitation, evapotranspiration (ET), and soil moisture. For more effective drought monitoring with limited hydroclimate observations, we simulate land surface states using the Community Noah Land Surface Model forced with different merged rainfall products inside a Land Information System (LIS). Using model outputs we will answer the questions: How sensitive are soil moisture and ET fields to differences in rainfall forcing and model physics? What are acceptable drought-specific tradeoffs between near-real time availability and skill of rainfall data? Preliminary results with the African Rainfall Estimation Algorithm Version 2 (RFE2.0) outperformed global products, suggesting that sub-global rainfall estimates are the way forward for regional drought monitoring. Specifically, the Noah model forced with RFE2.0 better resolved the heterogeneous patterns in crop stress than the Famine Early Warning System Network (FEWS NET) operational Water Requirement Satisfaction Index (WRSI) model. To further investigate the improvement in drought monitoring while maintaining timeliness, we unbias (using Africa specific climatology) the precipitation products from CPC Merged Analysis of Precipitation (CMAP), Tropical Rainfall Measurement Mission (TRMM), and RFE2.0. The skill (relative accuracy) and reliability (average agreement) of the unbiased rainfall are calculated against an unbiased precipitation product augmented with station data from Ethiopia and Kenya. Soil moisture and ET fields from Noah are compared to the operational FEWS NET WRSI, soil water anomaly index, and the World Food Program’s Crop and Food Security Assessment Mission reports. We anticipate that the unbiased rainfall fields will improve the accuracy, spatio-temporal resolution, and

  14. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment.

    PubMed

    Zhang, Ge; Wen, Yangping; Guo, Chaoqun; Xu, Jingkun; Lu, Baoyang; Duan, Xuemin; He, Haohua; Yang, Jun

    2013-12-17

    A highly selective and sensitive fluorescent chemosensor suitable for practical measurement of palladium ion (Pd(2+)) in agricultural crops and environment samples has been successfully fabricated using polybenzanthrone (PBA). PBA was facilely electrosynthesized in the mixed electrolyte of acetonitrile and boron trifluoride diethyl etherate. The fluorescence intensity of PBA showed a linear response to Pd(2+) in the concentration range of 5 nM-0.12 mM with a detection limit of 0.277 nM and quantification limit of 0.925 nM. Different compounds existing in agricultural crops and environment such as common metal ions, anions, natural amino acids, carbohydrates, and organic acids were used to examine the selectivity of the as-fabricated sensor, and no obvious fluorescence change could be observed in these interferents and their mixtures. A possible mechanism was proposed that the coordination of PBA and Pd(2+) enhance the aggregation of polymer chains, which led to a significant quenching of PBA emission, and this was further confirmed by absorption spectra monitoring and transmission electron microscopy. The excellent performance of the proposed sensor and satisfactory results of the Pd(2+) determination in practical samples suggested that the PBA-based fluorescent sensor for the determination of Pd(2+) will be a good candidate for application in agriculture and environment. PMID:24296147

  15. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  16. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  17. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  18. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  19. The UARS particle environment monitor. [Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Sharber, J. R.; Frahm, R. A.; Burch, J. L.; Eaker, N.; Black, R. K.; Blevins, V. A.; Andrews, J. P.; Rudzki, J.; Sablik, M. J.

    1993-01-01

    The overall objective of the particle environment monitor (PEM) is to provide comprehensive measurements of both local and global energy inputs into the earth's atmosphere by charged particles and Joule dissipation using a carefully integrated set of instruments. PEM consists of four instruments: the atmospheric X-ray imaging spectrometer (AXIS), the high-energy particle spectrometer (HEPS), the medium-energy particle spectrometer (MEPS), and the vector magnetometer (VMAG). AXIS provides global scale images and energy spectra of 3- to 100-keV bremsstrahlung X-rays produced by electron precipitation into the atmosphere. HEPS and MEPS provide in situ measurements of precipitating electrons in the energy range from 1 eV to 5 MeV and protons in the energy range from 1 eV to 150 MeV. Particles in this energy range deposit their energy in the atmosphere at altitudes extending from several hundred kilometers down to as low as about 30 km. VMAG provides the magnetic field direction needed to indicate and interpret the locations and intensities of ionospheric and field-aligned currents as well as providing a reference for the particle measurements. Examples of data acquired early in the Upper Atmosphere Research Satellite (UARS) mission are presented.

  20. Monitoring and identifying genetically-engineered microorganisms in the environment by time-resolved laser fluorometry

    SciTech Connect

    Basile, F.

    1992-01-01

    A large percentage of the applications of Genetically Engineered Microorganisms (GEMs) involve their release into the environment. At the present time there is no rapid analytical method that can accurately identify and quantify the number of microorganisms and their foreign genes. In the past several years the author's laboratory has used successfully laser-based enzymatic assays to identify and differentiate pathogens, microorganisms, and genetically modified microorganisms. This work focused on the use of the above technology to track and identify agricultural beneficially GEMs that have been released into the environment. The first stage of this work dealt with the detection of the marker gene, the lactose operon. It was successfully demonstrated that the laser-based enzymatic assay can detect enzymatic activity in E. coli after 5 minutes of induction. Moreover, the author has achieved quantitation of GEMs in the laboratory down to 10[sup 4] cells with only a 30 minute incubation time. The second stage of this work dealt with the characterization of the analytical blank present in environmental samples. Strategies were devised to circumvent this interference and new substrates were synthesized that improved the S/B of the analysis. The last stage of this research dealt with devising new instrumental methods to detect small number (single cell) of microorganisms. These included incorporation of time-resolved detection in flow cytometry, Capillary Electrophoresis of microorganisms, and two-photon spectroscopy of centrosymmetric probes. The results found here will complement the large array of techniques available for monitoring and identifying GEMs in the environment. Ultimately, the technique chosen will depend heavily on the type of gene being monitored, the sensitivity required, and the environmental conditions.

  1. Fluxes of carbon dioxide and methane from diverse aquatic environments in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Stanley, E. H.; Crawford, J. T.; Loken, L. C.; Casson, N. J.; Gubbins, N. J.; Oliver, S. K.

    2014-12-01

    The contribution of aquatic environments to landscape carbon cycling is particularly apparent in carbon- and water-rich regions. Such areas arguably represent an end member in terms of the relative significance of aquatic carbon cycling, while dry, carbon-poor zones are the likely opposing end member. Not surprisingly, most limnological attention has focused on these former regions, leaving open questions as to how aquatic systems in other locales influence larger-scale carbon dynamics. This includes human-dominated landscapes where agricultural and urban land uses can fundamentally alter carbon dynamics. Surveys of streams, ponds, and lakes in a southern Wisconsin landscape highlight three findings relevant to understanding the role of these aquatic systems in larger-scale carbon dynamics. First, streams and ponds had unexpectedly high summertime concentrations in and fluxes of CO2 and CH4. These values were approximately an order of magnitude greater than for less disturbed, forest and wetland-dominated landscapes in northern Wisconsin. Second, while mean C gas concentrations in lakes were lower than in streams and ponds, detailed spatial measurements demonstrate variability in surface water CO2 (43-1090 ppm pCO2) and CH4 (6-839 ppm pCH4) within a lake on a single day is similar to that observed among 25 streams included in our survey (260-6000 ppm pCO2; 50-600 ppm pCH4). This small-scale heterogeneity highlights a basic challenge for upscaling site-specific data collected at one or a few points to the whole lake and across lakes. Third, while agricultural and urban ecosystems are not necessarily carbon-rich environments, area-specific carbon storage in streams and ponds is substantial (up to 3000-5000 g C per m2). Further, carbon storage was strongly related to CH4 concentrations in streams, as C-rich sediments provided both an environment and substrate to fuel methanogenesis. The picture that emerges of C processing in aquatic environments throughout this human

  2. Evaluating the Performance of a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Han, E.; Crow, W. T.; Holmes, T. R.; Bolten, J. D.

    2013-12-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, we evaluates a soil moisture assimilation system for agricultural drought monitoring by benchmarking each component of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputs/output) as the full component. Lagged soil moisture/NDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities and/or complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system. First, the non-linear LPRM retrieval algorithm does not appear to add much additional predictive information for future NDVI compared to the simple linear benchmark model comprised of initial AMSR-E observations (horizontally and vertically polarized brightness temperatures and surface temperature). Second, the Palmer model performed worse than the purely linear prognostic model (Antecedent Precipitation Index model) in predicting future vegetation condition. This result points out that the saturation threshold of soil layers in the modern LSMs for runoff generation hinders maximum utilization of meteorological input information for agricultural drought monitoring. As to the assimilation algorithm, better performance of the

  3. Monitoring the environment in the 21st century

    SciTech Connect

    Auerbach, S.I.

    1988-01-01

    This document contains the text of a speech on monitoring in the future. The discussion is very general and non-technical in content; the paper contains no detailed information on monitoring techniques. 12 refs. (TEM)

  4. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  5. Improving agricultural drought monitoring in West Africa using root zone soil moisture estimates derived from NDVI

    NASA Astrophysics Data System (ADS)

    McNally, A.; Funk, C. C.; Yatheendradas, S.; Michaelsen, J.; Cappelarere, B.; Peters-Lidard, C. D.; Verdin, J. P.

    2012-12-01

    The Famine Early Warning Systems Network (FEWS NET) relies heavily on remotely sensed rainfall and vegetation data to monitor agricultural drought in Sub-Saharan Africa and other places around the world. Analysts use satellite rainfall to calculate rainy season statistics and force crop water accounting models that show how the magnitude and timing of rainfall might lead to above or below average harvest. The Normalized Difference Vegetation Index (NDVI) is also an important indicator of growing season progress and is given more weight over regions where, for example, lack of rain gauges increases error in satellite rainfall estimates. Currently, however, near-real time NDVI is not integrated into a modeling framework that informs growing season predictions. To meet this need for our drought monitoring system a land surface model (LSM) is a critical component. We are currently enhancing the FEWS NET monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System. Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following questions: What is the relationship between NDVI and in-situ soil moisture measurements over the West Africa Sahel? How can we use this relationship to improve modeled water and energy fluxes over the West Africa Sahel? We investigate soil moisture and NDVI cross-correlation in the time and frequency domain to develop a transfer function model to predict soil moisture from NDVI. This work compares sites in southwest Niger, Benin, Burkina Faso, and Mali to test the generality of the transfer function. For several sites with fallow and millet vegetation in the Wankama catchment in southwest Niger we developed a non-parametric frequency response model, using NDVI inputs and soil moisture outputs, that accurately estimates root zone soil moisture (40-70cm). We extend this analysis by developing a low order parametric transfer function

  6. Product amount and quality monitoring in agricultural fields with remote sensing satellite and radio-control helicopter

    NASA Astrophysics Data System (ADS)

    Arai, Kohei

    Product amount and quality monitoring in agricultural fields with remote sensing satellite and radio-control helicopter is proposed. In particular, tealeaves and rice crop quality and amoujnt monitorings are peoposed as examples. Nitrogen rich tealeaves tasts good. Therefore, quality of tealeaves can be estimated with nitrogen content which is related with near infrared reflectance of the tealeves in concern. Also, rice crop quality depends on protein content in rice grain which is related to near infrared reflectance of rice leaves. Therefore, product quality can be estimated with observation of near infrared reflectance of the leaves in concern. Near infared reflectance is provided by near infrared radiometers onboard remote sensing satellites and by near infrared cameras onboard radio-control helicopter. This monitoring system is applicable to the other agricultural plant products. Through monitoring near ingfrared reflectance, it is possible to estimate quality as well as product amount.

  7. Monitoring roadside ditches for antibiotic resistant E. coli in forest and agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Storrer, S.; Archibald, J. A.

    2009-12-01

    There is growing concern over the threat of antibiotic resistant bacteria and how they travel through natural environments. This study was developed to: (1) measure the quantities of antibiotic resistant Escherichia coli present in stormwater collected from roadside ditches, (2) examine the spatial and temporal distribution of antibiotic resistance and (3) explore the difference in antibiotic resistance between different land uses. Autosamplers were used to collect composite samples of stormwater flowing in roadside ditches located near manure fertilized fields or forested areas. Samples were filtered using standard membrane filtration methods and grown with and without antibiotics on EC medium containing MUG. Three antibiotics commonly used to treat infection in humans and dairy cows were used to measure antibiotic resistance: penicillin, ampicillin and tetracycline. Though antibiotic resistance was found at forested and farm sites, preliminary data suggest higher counts of antibiotic resistant E. coli near agricultural areas.

  8. A national scale monitoring network for nutrients in agriculture dominated headwaters in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Rozemeijer, J.; Klein, J.

    2012-04-01

    Although specific monitoring networks exist in the Netherlands which assess the leaching of nutrients to surface waters and groundwater, none of them was capable to quantify the effects of nutrient reduction schemes to agriculture dominated headwaters. Thus, an important link was missing which relates the nutrient concentrations measured in shallow groundwater at farm scale to nutrient concentrations measured at the scale of Water Framework Directive water bodies. A new network was composed using existing monitoring locations and water quality time series owned by the 24 water boards in the Netherlands. Only monitoring locations were selected where no other pollution sources , such as water sewage treatment plants were influencing water quality. Eventually, 168 monitoring locations were selected to assess compliance to environmental standards and 80 for trend analysis. Compliance was tested applying environmental quality standards (EQS) based on summer averaged concentrations, which are set by the water boards and which are water type and location dependent. Compliance was strongly weather dependent, and only 24% of the locations complied for N and P under all weather conditions. Trends were assessed using a combination of seasonal Mann-Kendall tests and Theil-Sen robust lines for individual time series, and aggregating those trends to acquire median and average trend slopes for the sand, clay and peat regions in the Netherlands. Significant downward trends were demonstrated for N and P over the whole period (slopes between -0,55 mgN/l and -0.015 and 0.02 mg P/l per 10 year). Slopes were even more pronounced for winter concentrations of N (-0.89 mg N/l per 10 year). The slopes were relevant and environmentally significant in relation to the height of the EQS and were attributed to the effective reduction of nutrient leaching as the result of adapted farming practices. The presentation will highlight and evaluate choices in the design of the newly composed network

  9. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  10. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  11. Contamination in Ontario farmstead domestic wells and its association with agriculture:. 2. Results from multilevel monitoring well installations

    NASA Astrophysics Data System (ADS)

    Rudolph, D. L.; Barry, D. A. J.; Goss, M. J.

    1998-08-01

    Multilevel monitoring wells (MLWs) were installed at 144 farms which were part of a province-wide survey of farm drinking water wells conducted in 1991-1992 in Ontario, Canada. The multilevel sites were selected in areas characterized by coarse-textured soils, on farms typifying local agricultural enterprises. The MLWs were installed in cultivated fields adjacent to the location of the drinking water wells on each farm (within 200 m). On 16 of these farms, MLWs were also installed in a woodlot adjacent to the field site. Water samples were collected on two occasions (winter and summer) and analyses were conducted for nitrate (NO 3-), typical bacteria and a selected suite of common pesticides. At 23% of the sites, concentrations in 50% or more of the monitored intervals exceeded the provincial drinking water standard (MAC) for NO 3--N during both sampling periods. Significantly higher frequencies of total coliform contamination were encountered in the winter (66%) than in the summer (36%). Very few pesticide detections were recorded. The average concentration of NO 3- with depth in multilevel wells decreased from approximately 10 mg N l -1 near the water table to 3 mg N l -1 at a depth of about 6.5 m. Bacteria concentrations remained more uniform with depth but decreased significantly in the summer. For most analytes, contaminant frequency was similar for both the drinking water wells and multilevel wells. The occurrence of elevated levels of contamination in the water wells appeared to be associated more with activities on the cultivated fields than with on-farm point sources of contamination. Groundwater quality determined using drinking water wells was consistent with conclusions drawn from multilevel monitoring wells, indicating the utility of water well survey data for assessing groundwater quality within the rural environment. No correlations were observed between the type of cropping practice and the frequency of groundwater contamination. Farms where manure

  12. Experimental learning projects address contemporary issues related to energy, environment, and sustainable agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The “Bio-Fuel, sustainability, and geospatial information technologies to enhance experiential learning paradigm for precision agriculture project”, recently funded by USDA extends the environmental stewardship archetype of the preceding project titled “Environmentally conscious precision agricultur...

  13. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  14. Midwest Climate and Agriculture - Monitoring Tillage Practices with NASA Remote Sensors

    NASA Astrophysics Data System (ADS)

    Makar, N. I.; Archer, S.; Rooks, K.; Sparks, K.; Trigg, C.; Lourie, J.; Wilkins, K.

    2011-12-01

    Concerns about climate change have driven efforts to reduce or offset greenhouse gas emissions. Agricultural activity has drawn considerable attention because it accounts for nearly twelve percent of total anthropogenic emissions. Depending on the type of tillage method utilized, farm land can be either a source or a sink of carbon. Conventional tillage disturbs the soil and can release greenhouse gases into the atmosphere. Conservational tillage practices have been advocated for their ability to sequester carbon, reduce soil erosion, maintain soil moisture, and increase long-term productivity. If carbon credit trading systems are implemented, a cost-effective, efficient tillage monitoring system is needed to enforce offset standards. Remote sensing technology can expedite the process and has shown promising results in distinguishing crop residue from soil. Agricultural indices such as the CAI, SINDRI, and LCA illuminate the unique reflectance spectra of crop residue and are thus able to classify fields based on percent crop cover. The CAI requires hyperspectral data, as it relies on narrow bands within the shortwave infrared portion of the electromagnetic spectrum. Although limited in availability, hyperspectral data has been shown to produce the most accurate results for detecting crop residue on the soil. A new approach to using the CAI was the focus of this study. Previously acquired field data was located in a region covered by a Hyperion swath and is thus the primary study area. In previous studies, ground-based data were needed for each satellite swath to correctly calibrate the linear relationship between the index values and the fraction of residue cover. We hypothesized that there should be a standard method which is able to convert index values into residue classifications without ground data analysis. To do this, end index values for a particular data set were assumed to be associated with end values of residue cover percentages. This method may prove

  15. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State.

    PubMed Central

    Loewenherz, C; Fenske, R A; Simcox, N J; Bellamy, G; Kalman, D

    1997-01-01

    Children up to 6 years of age who lived with pesticide applicators were monitored for increased risk of pesticide exposure: 48 pesticide applicator and 14 reference families were recruited from an agricultural region of Washington State in June 1995. A total of 160 spot urine samples were collected from 88 children, including repeated measures 3-7 days apart. Samples were assayed by gas chromatography flame photometric detector for dimethylphosphate metabolites. Dimethylthiophosphate (DMTP) was the dominant metabolite. DMTP levels were significantly higher in applicator children than in reference children (p = 0.015), with median concentrations of 0.021 and 0.005 microg/ml, respectively; maximum concentrations were 0.44 and 0.10 microg/ml, respectively. Percentages of detectable samples were 47% for applicator children and 27% for reference children. A marginally significant trend of increasing concentration was observed with decreasing age among applicator children (p = 0.060), and younger children within these families had significantly higher concentrations when compared to their older siblings (p = 0.040). Applicator children living less than 200 feet from an orchard were associated with higher frequency of detectable DMTP levels than nonproximal applicator children (p =0.036). These results indicate that applicator children experienced higher organophosphorus pesticide exposures than did reference children in the same community and that proximity to spraying is an important contributor to such exposures. Trends related to age suggest that child activity is an important variable for exposure. It is unlikely that any of the observed exposures posed a hazard of acute intoxication. This study points to the need for a more detailed understanding of pesticide exposure pathways for children of agricultural workers. Images Figure 1. Figure 2. Figure 3. PMID:9405329

  16. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models. PMID:26895037

  17. Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment

    NASA Astrophysics Data System (ADS)

    Lanier, Caroline; Richard, Estelle; Heutte, Natacha; Picquet, Rachel; Bouchart, Valérie; Garon, David

    2010-05-01

    In agricultural areas, the contamination of feedstuffs with molds and mycotoxins presents major environmental and health concerns. During cattle feeding, fungi and mycotoxins were monitored in corn silage, oilseed cakes and bioaerosols collected in Normandy. Most of the corn silages were found to be contaminated by deoxynivalenol (mean concentration: 1883 μg kg -1) while a few of oilseed cakes were contaminated by alternariol, fumonisin B 1 or gliotoxin. In ambient bioaerosols, the values for fungi per cubic meter of air varied from 4.3 × 10 2 to 6.2 × 10 5 cfu m -3. Seasonal variations were observed with some species like Aspergillus fumigatus which significantly decreased between the 2 seasons ( P = 0.0186) while the Penicillium roqueforti group significantly increased during the second season ( P = 0.0156). In the personal bioaerosols, the values for fungi per cubic meter of air varied from 3.3 10 3 to 1.7 10 6 cfu m -3 and the number of A. fumigatus spores significantly decreased between the 2 seasons ( P = 0.0488). Gliotoxin, an immunosuppressive mycotoxin, was quantified in 3 personal filters at 3.73 μg m -3, 1.09 μg m -3 and 2.97 μg m -3.

  18. The Effectiveness of Resistivity Imaging for Monitoring Infiltration in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Lampousis, A.; Kenyon, P. M.

    2009-12-01

    High resolution electrical resistivity imaging has been studied recently by several groups as a possible method for monitoring infiltration in agricultural soils (Michot, et al., 2003; Senechal, et al., 2005). To assess the usefulness of this approach for soils in the Northeastern US, imaging of vadose zone infiltration experiments was conducted on agricultural soils on Long Island by the City College and Graduate Center of CUNY, in cooperation with Cornell University’s Agricultural Stewardship Program and Long Island Horticultural Research and Extension Center (LIHREC) in Riverhead, New York. Measurements were made in active vineyards with a Syscal Kid resistivity imaging system, using a half-meter electrode spacing. The data was inverted using RES2DINV. Soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silty loam (BgA). The Riverhead and Haven soils are the most common types found on Eastern Long Island. The Bridgehampton is considered the most fertile. Changes in electrical resistivity from the baseline results were seen in the contoured sections during infiltration for all three sites. To assess the significance of these changes, multiple baseline images were acquired before infiltration at each site. The inverted output for these baseline sections was then averaged on a block-by-block basis to produce an average and standard deviation for each block in the inverted sections. These averages form a composite baseline. The difference between the RES2DINV output during infiltration and the composite baseline for the same site was then calculated and the ratios of this difference to the standard deviations of the composite for the same block were plotted in the form of a cross section using ARCGIS. The results show that the changes were most significant (over three standard deviations) for the sites where the initial resistivity was high. At sites where the initial resistivity was low, the changes, although consistent between

  19. AgriSense-STARS: Advancing Methods of Agricultural Monitoring for Food Security in Smallholder Regions - the Case for Tanzania

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Nakalembe, C. L.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ntikha, O.; Hansen, M.; Justice, C. J.; Adusei, B.; Kongo, V.

    2015-12-01

    In-season monitoring of crop conditions provides critical information for agricultural policy and decision making and most importantly for food security planning and management. Nationwide agricultural monitoring in countries dominated by smallholder farming systems, generally relies on extensive networks of field data collectors. In Tanzania, extension agents make up this network and report on conditions across the country, approaching a "near-census". Data is collected on paper which is resource and time intensive, as well as prone to errors. Data quality is ambiguous and there is a general lack of clear and functional feedback loops between farmers, extension agents, analysts and decision makers. Moreover, the data are not spatially explicit, limiting the usefulness for analysis and quality of policy outcomes. Despite significant advances in remote sensing and information communication technologies (ICT) for monitoring agriculture, the full potential of these new tools is yet to be realized in Tanzania. Their use is constrained by the lack of resources, skills and infrastructure to access and process these data. The use of ICT technologies for data collection, processing and analysis is equally limited. The AgriSense-STARS project is developing and testing a system for national-scale in-season monitoring of smallholder agriculture using a combination of three main tools, 1) GLAM-East Africa, an automated MODIS satellite image processing system, 2) field data collection using GeoODK and unmanned aerial vehicles (UAVs), and 3) the Tanzania Crop Monitor, a collaborative online portal for data management and reporting. These tools are developed and applied in Tanzania through the National Food Security Division of the Ministry of Agriculture, Food Security and Cooperatives (MAFC) within a statistically representative sampling framework (area frame) that ensures data quality, representability and resource efficiency.

  20. Radiation environment monitoring for manned missions to Mars.

    PubMed

    Benghin, V V; Petrov, V M

    2003-01-01

    In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given. PMID:12577916

  1. Adaptation of an ambient ion monitor for detection of amines in gas and particulate agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile amines are emitted from many sources including agricultural facilities. Recent work has shown that amines may be important players in secondary aerosol formation. Because amine emissions are significantly lower than ammonia, previous measurements and emission studies at agricultural facilit...

  2. The Design of Flower Ecological Environment Monitoring System Based on ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoqing; Xiang, Xinjian

    Ecological environment is the key point of improving the flower's quality and quantity. Due to China's flower production management at a lower level, there is no scientific method in real-time monitoring of the flower's ecological environment. In order to solve the problem such as high costs; poor monitoring point scalability, poor mobility and other issues in traditional flower basement's data acquisition system, this paper devises a wireless real-time system based on ZigBee technology for the monitoring of flower's ecological environment. By the analysis of ZigBee technology's characteristics, it focuses on the design of wireless gateway with S3C4510B; wireless sensor node control module AT89S51 and the communication module CC2430; analyses the Zigbee protocol stack network's formation and designs data acquisition and communication procedures. By monitoring every flower's ecological environment indicators in practice, this system can meet the needs of the real-time monitoring for flower's ecological environment.

  3. Environment and response monitoring on tension leg platforms: Decision support, risk reduction and design data gathering

    SciTech Connect

    Edwards, R.Y. Jr.; Leggelo, B. van; Rubin, S.; Ozakcay, L.

    1995-05-01

    The various roles which instrumentation/monitoring systems play in risk reduction, decision support, forensic engineering and enhancement of the engineering design tools are discussed. The environment and response monitoring systems on three recent Tension Leg Platforms are described. Emphasis is placed on tendon tension measuring systems. A discussion of alternate approaches to the measurement of tendon tension is offered. Suggestions for improved instrumentation are made and methods for efficiently mating performance and environment monitoring systems with the platforms` SCADA Systems are discussed.

  4. Operational 333m Biophysical Products of the Copernicus Global Land Service for Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Lacaze, R.; Smets, B.; Baret, F.; Weiss, M.; Ramon, D.; Montersleet, B.; Wandrebeck, L.; Calvet, J.-C.; Roujean, J.-L.; Camacho, F.

    2015-04-01

    The Copernicus Global Land service provides continuously a set of bio-geophysical variables describing, over the whole globe, the vegetation dynamic, the energy budget at the continental surface and some components of the water cycle. These generic products serve numerous applications including agriculture and food security monitoring. The portfolio of the Copernicus Global Land service contains Essential Climate Variables like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, the Land Surface Temperature, the soil moisture, the burnt areas, the areas of water bodies, and additional vegetation indices. They are generated every hour, every day or every 10 days on a reliable automatic basis from Earth Observation satellite data. Beside this timely production, the available historical archives have been processed, using the same innovative algorithms, to get consistent time series as long as possible. All products are accessible, free of charge after registration through FTP/HTTP (Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  5. The Method and Key Technology of Dynamic RS-GIS Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Xiang, Jie; Tarolli, Paolo; Lai, Zili

    2016-04-01

    Demographic growth, socio-economic development and urbanization have resulted in excessive exploitation and exerted increasing pressure on limited resources and the fragile ecological environment in China. There is an urgent need for theory and technology to achieve the comprehensive evaluation of environment. Remote sensing is one of the most important technology to monitor and evaluate environment. This study summed up dynamic RS (Remote Sensing)-GIS (Geographic Information System) environment monitoring theory, and established a dynamic monitoring system, adopting comprehensive methods of multi-source, multi-scale and multi-temporal remote sensing data acquisition. A software system is developed based on RS-GIS analysis method to support the whole dynamic monitoring and evaluation theory. The main work and results obtained are as follows: 1)Summarized the evaluation theory of dynamic RS-GIS environment monitoring, using remote sensing technology as the main method to monitor environment; 2) established an advanced space-air-ground digital terrain data acquisition and processing technology (advanced satellite constellations, airborne and terrestrial laser scanner, low-cost Structure from Motion (SfM), photogrammetry, Unmanned Aerial Vehicle (UAV) and ground camera surveys); 3) Deeply study the application of quantitative digital terrain analysis in the assessment of environment, which successfully position geological disaster information and automatically extracted information; 4) Developed the RESEE software to support the whole dynamic monitoring and evaluation theory based on 4D-GIS; 5) A demonstration study of the dynamic monitoring environment is carried out in Beijing Miyun Iron Mine. Results show that the space-air-ground integrated and dynamic RS-GIS environment monitoring method and key technology can realize the positioning and quantitative monitoring the environment problem, and realize the risk assessment of the geological hazard.

  6. Food and Beverage Environment Analysis and Monitoring System (FoodBEAMS™): A Reliability Study in the School Food and Beverage Environment

    PubMed Central

    Bullock, Sally Lawrence; Craypo, Lisa; Clark, Sarah E.; Barry, Jason; Samuels, Sarah E.

    2010-01-01

    States and school districts around the country are developing policies that set nutrition standards for competitive foods and beverages sold outside of the United States Department of Agriculture reimbursable school lunch program. However, few tools exist for monitoring the implementation of these new policies. The objective of this research was to develop a computerized assessment tool, the Food and Beverage Environment Analysis and Monitoring System (FoodBEAMS™), to collect data on the competitive school food environment and to test the inter-rater reliability of the tool among research and non-research professionals. FoodBEAMS was used to collect data in spring 2007, on the competitive foods and beverages sold in 21 California high schools. Adherence of the foods and beverages to California's competitive food and beverage nutrition policies for schools (Senate Bills 12 and 965) was determined using the data collected by both research and non-research professionals. The inter-rater reliability between the data collectors was assessed using the intraclass correlation coefficient (ICC). Researcher versus researcher and researcher versus non-researcher inter-rater reliability was high for both foods and beverages, with ICCs ranging from .972 to .987. The results of this study provide evidence that FoodBEAMS is a promising tool for assessing and monitoring adherence to nutrition standards for competitive foods sold on school campuses and can be used reliably by both research and non-research professionals. PMID:20630167

  7. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    SciTech Connect

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  8. Monitoring agricultural crops using a light-weight hyperspectral mapping system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Suomalainen, Juha; Franke, Jappe; Bartholomeus, Harm; Mücher, Sander; Becker, Rolf

    2014-05-01

    Remote sensing has been identified as a key technology to allow near real-time detection and diagnosis of crop status at the field level. Although satellite based remote sensing techniques have already proven to be relevant for many requirements of crop inventory and monitoring, they might lack flexibility to support anomaly detection at specific moments over the growing season. Imagery taken from unmanned aerial vehicles (UAV) are shown to be an effective alternative platform for crop monitoring, given their potential of high spatial and temporal resolution, and their high flexibility in image acquisition programming. In addition, several studies have shown that an increased spectral resolution as available from hyperspectral systems provide the opportunity to estimate biophysical properties like leaf-area-index (LAI), chlorophyll and leaf water content with improved accuracies. To investigate the opportunities of unmanned aerial vehicles (UAV) in operational crop monitoring, we have developed a light-weight hyperspectral mapping system (< 2 kg) suitable to be mounted on small UAVs. Its composed of an octocopter UAV-platform with a pushbroom spectrometer consisting of a spectrograph, an industrial camera functioning as frame grabber, storage device, and computer, a separate INS and finally a photogrammetric camera. The system is able to produce georeferenced and georectified hyperspectral data cubes in the 400-1000 nm spectral range at 10-50 cm resolution. The system is tested in a fertilization experiment for a potato crop on a 12 ha experimental field in the South of the Netherlands. In the experiment UAV-based hyperspectral images were acquired on a weekly basis together with field data on chlorophyll as indicator for the nitrogen situation of the crop and leaf area index (LAI) as indicator for biomass status. Initially, the quality aspects of the developed light-weight hyperspectral mapping system will presented with regard to its radiometric and geometric

  9. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  10. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  11. MICROBIOLOGICAL METHODS FOR MONITORING THE ENVIRONMENT. WATER AND WASTES

    EPA Science Inventory

    This first EPA manual contains uniform laboratory and field methods for microbiological analyses of waters and wastewaters, and is recommended in enforcement, monitoring and research activities. The procedures are prepared in detailed, stepwise form for the bench worker. The manu...

  12. A monitoring sensor management system for grid environments

    SciTech Connect

    Tierney, Brian; Crowley, Brian; Gunter, Dan; Lee, Jason; Thompson, Mary

    2001-06-01

    Large distributed systems, such as computational grids,require a large amount of monitoring data be collected for a variety oftasks, such as fault detection, performance analysis, performance tuning,performance prediction and scheduling. Ensuring that all necessarymonitoring is turned on and that the data is being collected can be avery tedious and error-prone task. We have developed an agent-basedsystem to automate the execution of monitoring sensors and the collectionof event data.

  13. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  14. School Projects for Monitoring the State of the Marine Environment.

    ERIC Educational Resources Information Center

    Benkendorff, Kirsten

    Australia's marine environment hosts a high level of diverse endemic species along with some of the highest biodiversity in the world. Two-thirds of the population of Australia are living in coastal areas and can be considered a threat to marine life which is very vulnerable to human impacts. Although marine environments conserve high economic…

  15. Virtual groups for patient WBAN monitoring in medical environments.

    PubMed

    Ivanov, Stepan; Foley, Christopher; Balasubramaniam, Sasitharan; Botvich, Dmitri

    2012-11-01

    Wireless body area networks (WBAN) provide a tremendous opportunity for remote health monitoring. However, engineering WBAN health monitoring systems encounters a number of challenges including efficient WBAN monitoring information extraction, dynamically fine tuning the monitoring process to suit the quality of data, and to allow the translation of high-level requirements of medical officers to low-level sensor reconfiguration. This paper addresses these challenges, by proposing an architecture that allows virtual groups to be formed between devices of patients, nurses, and doctors in order to enable remote analysis of WBAN data. Group formation and modification is performed with respect to patients' conditions and medical officers' requirements, which could be easily adjusted through high-level policies. We also propose, a new metric called the Quality of Health Monitoring, which allows medical officers to provide feedback on the quality of WBAN data received. The WBAN data gathered are transmitted to the virtual group members through an underlying environmental sensor network. The proposed approach is evaluated through a series of simulation. PMID:22801487

  16. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  17. Managing Our Environment, A Report on Ways Agricultural Research Fights Pollution.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    A report on the ways agricultural research attempts to fight pollution is presented in this series of articles covering some of the major challenges facing scientists and regulatory officials working in agricultural research. Improved resource management is stressed with the use of advanced technologies as the avenue to solving environmental…

  18. Thermal sharpening in agricultural environments and the utility of high resolution HyspIRI thermal data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural fields in Europe and developing countries are relatively small on the order of 1- 10 hectares, and even though in the U.S. agricultural fields tend to be larger, the resolution of thermal-infrared temperature (TIR) sensors from operational satellites are still generally too coarse...

  19. Agricultural Exports and the Environment: A Cross-National Study of Fertilizer and Pesticide Consumption

    ERIC Educational Resources Information Center

    Longo, Stefano; York, Richard

    2008-01-01

    The mass consumption of agrochemicals, including manufactured fertilizers and pesticides, by industrialized agricultural systems worldwide threatens human health and the health of ecosystems. The production of these agricultural inputs is a highly energy- and capital-intensive process, and their application contributes to a variety of direct and…

  1. Utility of a Two-source Energy Balance Approach for Daily Mapping of Landsat-scale Fluxes Over Irrigated Agriculture in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Houborg, R.; McCabe, M. F.; Rosas Aguilar, J.; Anderson, M. C.; Hain, C.

    2014-12-01

    The Middle East and North Africa (MENA) region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. Enhanced satellite-based monitoring systems are needed for aiding local water resource and agricultural management activities in these data poor arid environments. A multi-sensor and multi-scale land-surface flux monitoring capacity is being implemented over parts of MENA in order to provide meaningful decision support at relevant spatiotemporal scales. The integrated modeling system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (Landsat and MODIS; MODerate resolution Imaging Spectroradiometer) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of land surface fluxes down to sub-field scale (i.e. 30 m). Within this modeling system, thermal infrared satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and error-prone soil surface characterizations. In this study, the integrated ALEXI-DisALEXI-STARFM framework is applied over an irrigated agricultural region in Saudi Arabia, and the daily estimates of Landsat scale water, energy and carbon fluxes are evaluated against available flux tower observations and other independent in-situ and satellite-based records. The study addresses the challenges associated with time-continuous sub-field scale mapping of land-surface fluxes in a harsh desert environment, and looks into the optimization of model descriptions and parameterizations and meteorological forcing and vegetation inputs for application over these regions.

  2. Antimicrobial Resistance Profiles of Salmonella spp. from Agricultural Environments in Fruit Production Systems.

    PubMed

    Gomba, Annancietar; Chidamba, Lizyben; Korsten, Lise

    2016-09-01

    Foodborne disease outbreaks involving fresh produce have increased in recent years. The risk of infection from contaminated food is worsened by the increased prevalence of antibiotic-resistant strains. This study evaluated the prevalence of antibiotic resistance in Salmonella isolates (n = 263) from agricultural production systems through to the final packed product. Salmonella isolates were preliminarily identified by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and API 20E and identities confirmed by invA gene polymerase chain reaction. Antimicrobial susceptibility was performed with 15 antimicrobial agents using the Kirby-Bauer disk diffusion test. Of the 263 Salmonella isolates assessed, 59.3% were resistant to one or more antimicrobials. The most frequently detected resistance was against chloramphenicol and kanamycin (46.7%), trimethoprim-sulfamethoxazole (28%), and streptomycin (14%), and the less frequently detected resistance was toward ampicillin (1.14%), amikacin (0.76%), and amoxicillin-clavulanic acid (0.38%). Multiple antimicrobial resistance (MAR) (resistance to ≥3 antibiotics) was found in 48.7% (76/156) isolates. The most common MAR phenotype was to chloramphenicol and trimethoprim/sulfamethoxazole-kanamycin (43.6%). Resistance to chloramphenicol, kanamycin, or trimethoprim/sulfamethoxazole was only observed in MAR phenotypes. All isolates were susceptible to ceftiofur, cefoxitin, ceftriaxone, ciprofloxacin, nalidixic acid, gentamicin, and tetracycline. This study confirms the importance of fresh produce production environments as potential reservoirs and fresh produce as carriers of antibiotic-resistant Salmonella spp. with significant clinical importance. Further studies to evaluate the actual level of health risk from these pathogens should include characterization of the antibiotic resistance determinant genes among the isolates. PMID:27294335

  3. Agriculture In Uruguay: New Methods For Drought Monitoring and Crop Identification Using Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Lessel, J.; Ceccato, P.

    2014-12-01

    Agriculture is a vital resource in the country of Uruguay. Here we propose new methods using remotely sensed data for assisting ranchers, land managers, and policy makers in the country to better manage their crops. Firstly, we created a drought severity index based on the climatological anomalies of land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation data from the Tropical Rainfall Monitoring Mission (TRMM), and normalized difference water index (NDWI) data also using MODIS. The use of the climatological anomalies on the variables has improved the ability of the index to correlate with known drought indices versus previously published indices, which had not used them. We applied various coefficient schemes and vegetation indices in order to choose the model which best correlated with the drought indices across 10 sites throughout Uruguay's rangelands. The model was tested over summer months from 2009-2013. In years where drought had indeed been a problem in the country (such as 2009) the model showed intense signals of drought. Secondly, we used Landsat images to identify winter and summer crops in Uruguay. We first classified them using ENVI and then used the classifications in an ArcMap model to identify specific crop areas. We first created a polygon of the classifications for soils and vegetation for each month (omitting cloud covered images). We then used the crop growing cycle to identify the times during the year for which specific polygons should be soil and which should be vegetation. By intersecting the soil polygons with the vegetation polygons during their respective time periods during the crop growing cycle we were able to create an accurately identify crops. When compared to a shapefile of proposed crops for the year the model obtained a kappa value of 0.60 with a probability of detection of 0.79 and a false alarm ratio of 0.31 for the south-western study area over the 2013-2014 summer.

  4. Monitoring of the risk of farmland abandonment as an efficient tool to assess the environmental and socio-economic impact of the Common Agriculture Policy

    NASA Astrophysics Data System (ADS)

    Milenov, Pavel; Vassilev, Vassil; Vassileva, Anna; Radkov, Radko; Samoungi, Vessela; Dimitrov, Zlatomir; Vichev, Nikola

    2014-10-01

    Farmland abandonment (FLA) could be defined as the cessation of agricultural activities on a given surface of land (Pointereau et al., 2008). FLA, often associated with social and economic problems in rural areas, has significant environmental consequences. During the 1990s, millions of hectares of farmland in the new EU Member States, from Central and Eastern Europe, were abandoned as a result of the transition process from centralized and planned to market economy. The policy tools adopted gradually within the Common Agricultural Policy of the European Union (EU CAP), as well as the EU environmental and structural policies, aimed to prevent further expansion of this phenomenon and to facilitate the revival of the agriculture land, being abandoned (ComReg 1122/2009). The Agri-Environment (AGRI-ENV) component of the Core Information Service (CIS), developed within the scope of the FP7-funded project "geoland2" were designed to support the agricultural user community at pan-European and national levels by contributing to the improvement of more accurate and timely monitoring of the status of agricultural land use in Europe and its change. The purpose of the product ‘Farmland abandonment', as part of the AGRI-ENV package, is to detect potentially abandoned agriculture land, based on multi-annual SPOT data with several acquisitions per year. It provides essential independent information on the status of the agricultural land as recorded in the Land Parcel Identification System (LPIS), which is one of the core instruments of the implementation of CAP. The production line is based on object-based image analysis and benefits from the extensive availability of Biophysical parameters derived from the satellite data (geoland2). The method detects/tracks those land (or so-called reference) parcels in the LPIS, holding significant amount of land agriculture found as potentially abandoned. Reference parcels with such change are flagged and reported, enabling the National

  5. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  6. Introduction to Monitoring and Surveillance of the Environment.

    ERIC Educational Resources Information Center

    Champlin, Robert L.; And Others

    This text on monitoring and surveillance is intended for the undergraduate college student and the professional technician. The materials contained within the book are presented from both a practical and philosophical standpoint. The "reason for" and the "how to" are examined within each section, including problems at the end of each chapter which…

  7. Gene-environment interaction and biological monitoring of occupational exposures

    SciTech Connect

    Hirvonen, Ari . E-mail: Ari.Hirvonen@ttl.fi

    2005-09-01

    Biological monitoring methods and biological limit values applied in occupational and environmental medicine have been traditionally developed on the assumption that individuals do not differ significantly in their biotransformation capacities. It has become clear, however, that this is not the case, but wide inter-individual differences exist in the metabolism of chemicals. Integration of the data on individual metabolic capacity in biological monitoring studies is therefore anticipated to represent a significant refinement of the currently used methods. We have recently conducted several biological monitoring studies on occupationally exposed subjects, which have included the determination of the workers' genotypes for the metabolic genes of potential importance for a given chemical exposure. The exposure levels have been measured by urine metabolites, adducts in blood macromolecules, and cytogenetic alterations in lymphocytes. Our studies indicate that genetic polymorphisms in metabolic genes may indeed be important modifiers of individual biological monitoring results of, e.g., carbon disulphide and styrene. The information is anticipated to be useful in insuring that the workplace is safe for everyone, including the most sensitive individuals. This knowledge could also be useful to occupational physicians, industrial hygienists, and regulatory bodies in charge of defining acceptable exposure limits for environmental and/or occupational pollutants.

  8. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  9. Application for temperature and humidity monitoring of data center environment

    NASA Astrophysics Data System (ADS)

    Albert, Ş.; Truşcǎ, M. R. C.; Soran, M. L.

    2015-12-01

    The technology and computer science registered a large development in the last years. Most systems that use high technologies require special working conditions. The monitoring and the controlling are very important. The temperature and the humidity are important parameters in the operation of computer systems, industrial and research, maintaining it between certain values to ensure their proper functioning being important. Usually, the temperature is maintained in the established range using an air conditioning system, but the humidity is affected. In the present work we developed an application based on a board with own firmware called "AVR_NET_IO" using a microcontroller ATmega32 type for temperature and humidity monitoring in Data Center of INCDTIM. On this board, temperature sensors were connected to measure the temperature in different points of the Data Center and outside of this. Humidity monitoring is performed using data from integrated sensors of the air conditioning system, thus achieving a correlation between humidity and temperature variation. It was developed a software application (CM-1) together with the hardware, which allows temperature monitoring and register inside Data Center and trigger an alarm when variations are greater with 3°C than established limits of the temperature.

  10. Evaluating the Potential Use of Remotely-Sensed and Model-Simulated Soil Moisture for Agricultural Drought Risk Monitoring

    NASA Astrophysics Data System (ADS)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-04-01

    Current two datasets provide spatial and temporal resolution of soil moisture at large-scale: the remotely-sensed soil moisture retrievals and the model-simulated soil moisture products. Drought monitoring using remotely-sensed soil moisture is emerging, and the soil moisture simulated using land surface models (LSMs) have been used operationally to monitor agriculture drought in United States. Although these two datasets yield important drought information, their drought monitoring skill still needs further quantification. This study provides a comprehensive assessment of the potential of remotely-sensed and model-simulated soil moisture data in monitoring agricultural drought over the Columbia River Basin (CRB), Pacific Northwest. Two satellite soil moisture datasets were evaluated, the LPRM-AMSR-E (unscaled, 2002-2011) and ESA-CCI (scaled, 1979-2013). The USGS Precipitation Runoff Modeling System (PRMS) is used to simulate the soil moisture from 1979-2011. The drought monitoring skill is quantified with two indices: drought area coverage (the ability of drought detection) and drought severity (according to USDM categories). The effects of satellite sensors (active, passive), multi-satellite combined, length of climatology, climate change effect, and statistical methods are also examined in this study.

  11. Luobei graphite mines surrounding ecological environment monitoring based on high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Liu, Xiaosha; Wan, Huawei; Liu, Xiaoman

    2014-11-01

    Graphite is one of the important industrial mineral raw materials, but the high content of heavy metals in tailings may cause soil pollution and other regional ecological environmental problems. Luobei has already become the largest production base of graphite. To find out the ecological situation in the region, further ecological risk analysis has been carried out. Luobei graphite mine which is located in Yabdanhe basin has been selected as the study area, SVM classifiers method with the support of GF-1 Satellite remote sensing data has been used, which is the first high-resolution earth observation satellite in China. The surrounding ecological environment was monitored and its potential impact on the ecological environment was analyzed by GIS platform. The results showed that the Luobei graphite mine located Yadanhe basin covers an area of 499.65 km2, the main types of forest ecosystems ( 44.05% of the total basin area ), followed by agricultural area( 35.14% ), grass area( 15.52% ), residential area ( 4.34% ), mining area ( 0.64% ) and water area( 0.30% ). By confirming the classification results, the total accuracy is 91.61%, the Kappa coefficient is 0.8991. Overall, GF-1 Satellite data can obtain regional ecosystems quickly, and provide a better data support for regional ecological resource protection zone. For Luobei graphite mines area, farmland and residential areas within its watershed are most vulnerable to mining, the higher proportion of farmland in duck river basin. The regulatory tailings need to be strengthened in the process of graphite mining processing.

  12. Measurement of gas and particulate amines at agricultural facilities using an ambient ion monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural facilities are the source of particles and gases that can exhibit an influence on air quality. Particle mass concentration influences from agricultural sources can include both primary emissions and secondary particle formation through the emission of gaseous precursors. Reports showing...

  13. Monitoring the Effect of Wetland Conservation Practices in an Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the substantial effect of agriculture on the extent and ability of wetlands to function, the U.S. Department of Agriculture (USDA) serves a key role in wetland conservation and restoration. The USDA has implemented several different conservation programs (e.g., the Wetland Reserve Program) wi...

  14. STS-2, -3, -4 Induced Environment Contamination Monitor (ICEM)

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1983-01-01

    The second, third, and fourth space transportation system missions are described including the location of the IECM in the payload bay and the shuttle coordinate systems used. Measurement results from the three flights are given for each instrument with comparisons to original goals for preflight environment and induced environment contamination. These results include very low levels of molecular mass accumulation rates, absence of molecular films on optical samples, outgassing species above 50 amu undetectable generally low levels of on-orbit particulates, and decay rates for early mission water dump particulates. Results of exposure of several optical materials and coatings to atomic oxygen are also presented. From these results, it is concluded that the space shuttle met the established induced environment contamination goals.

  15. Measuring and monitoring linear woody features in agricultural landscapes through earth observation data as an indicator of habitat availability

    NASA Astrophysics Data System (ADS)

    Pasher, J.; McGovern, M.; Putinski, V.

    2016-02-01

    The loss of natural habitats and the loss of biological diversity is a global problem affecting all ecosystems including agricultural landscapes. Indicators of biodiversity can provide standardized measures that make it easier to compare and communicate changes to an ecosystem. In agricultural landscapes the amount and variety of available habitat is directly correlated with biodiversity levels. Linear woody features (LWF), including hedgerows, windbreaks, shelterbelts as well as woody shrubs along fields, roads and watercourses, play a vital role in supporting biodiversity as well as serving a wide variety of other purposes in the ecosystem. Earth observation can be used to quantify and monitor LWF across the landscape. While individual features can be manually mapped, this research focused on the development of methods using line intersect sampling (LIS) for estimating LWF as an indicator of habitat availability in agricultural landscapes. The methods are accurate, efficient, repeatable and provide robust results. Methods were tested over 9.5 Mha of agricultural landscape in the Canadian Mixedwood Plains ecozone. Approximately 97,000 km of LWF were estimated across this landscape with results useable both at a regional reporting scale, as well as mapped across space for use in wildlife habitat modelling or other landscape management research. The LIS approach developed here could be employed at a variety of scales in particular for large regions and could be adapted for use as a national scale indicator of habitat availability in heavily disturbed agricultural landscape.

  16. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity

  17. Problems of monitoring the environment of the shallow nearshore zone of the Volga mouth

    SciTech Connect

    Krasnozhon, G.F.; Konyushko, V.S.

    1987-11-01

    This article describes problems involved in monitoring the environment of the Volga River delta from the standpoints of drainage and flooding behavior, pollutant concentration and transport, eutrophication, water quality, water current regimes, and bioproductivity. It also discusses monitoring strategies ranging from chemical methods to satellite surveys and calls for a comprehensive water management and planning program for the area.

  18. Keeping Scores: Audited Self-Monitoring of High-Stakes Testing Environments

    ERIC Educational Resources Information Center

    Padilla, Raymond; Richards, Michael

    2006-01-01

    To address a public relations problem faced by a large urban public school district in Texas, we conducted action research that resulted in an audited self-monitoring system for high-stakes testing environments. The system monitors violations of testing protocols while identifying and disseminating best practices to improve the education of…

  19. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  20. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  1. Characterisation and quantification of phosphorus transfer in agricultural runoff through simultaneous monitoring at nested spatial scales

    NASA Astrophysics Data System (ADS)

    Deasy, Clare; Heathwaite, Louise; Brazier, Richard

    2010-05-01

    Current data available for understanding and characterising nutrient transfer are generally collected at the catchment scale, where stream measurements integrate signals from upstream flow pathways. However, predicting and managing nutrient transfer at this scale requires a detailed understanding of the smaller scale processes and pathways which influence catchment scale data. This paper presents an original dataset which characterises and quantifies phosphorus transfer through simultaneous measurements collected at nested spatial scales (c.0.01 to 30.6 ha) within a small catchment. Monitoring took place in a mixed land use agricultural catchment in the UK between 2004 and 2006. Discharge was continuously measured on a five minute timestep, at five catchment locations: a flume fed by surface runoff (1.9 ha); three drain outfalls (1.9 ha, 2.5 ha and 3.7 ha); and the stream catchment outlet (30.6 ha). Water samples collected through five storm events were analysed for total phosphorus and total dissolved phosphorus, and were used together with discharge data to calculate phosphorus loadings and area normalised yields for the various flow pathways and scales. Data from the smallest scale, the unbounded hillslope patch (c.0.01 ha), where flow only occurred over the field surface during storm events, was collected using timed flow measurements and grab samples. The results show that phosphorus transfer within the catchment is extremely complex both spatially and temporally. In particular, variations occurred in phosphorus concentrations, loads and yields, and in the proportion of total phosphorus transported as dissolved phosphorus, between runoff pathways and scales and between storm events. The highest phosphorus concentrations were recorded in data collected at the hillslope patch scale (max. 12 mg TP l-1), while concentrations at pathways representing larger scales were much lower; measured total P concentrations were below 5 mg TP l-1 in surface runoff at the field

  2. Alkylphenols in marine environments: distribution monitoring strategies and detection considerations.

    PubMed

    David, Arthur; Fenet, Hélène; Gomez, Elena

    2009-07-01

    The presence of alkylphenols (APs) in coastal and marine ecosystems is not as well-documented as it is in freshwater ecosystems. This paper reviews reported concentrations of alkylphenol ethoxylates (APEOs) and APs in seawater, sediments and organisms of marine environments such as estuaries, coastal lagoons, bights, harbours or deep sea in order to study their distribution. Overall contamination of marine aquatic compartments by APs and APEOs has been observed, while coastal areas in the vicinity of wastewater discharges are more impacted than deep sea environments, but to a lesser extent than freshwater sites. Sediments act as sinks for APs and APEOs, especially around wastewater discharge sites. Reported AP concentrations in marine organisms are higher in bivalves and gastropods than in fishes. As nonylphenols and octylphenols are estrogenomimetic, biological responses induced in marine organisms are discussed. Finally, we describe the cell bioassay approach for the biodetection of APs. PMID:19476957

  3. The SysMan monitoring service and its management environment

    NASA Astrophysics Data System (ADS)

    Debski, Andrzej; Janas, Ekkehard

    1996-06-01

    Management of modern information systems is becoming more and more complex. There is a growing need for powerful, flexible and affordable management tools to assist system managers in maintaining such systems. It is at the same time evident that effective management should integrate network management, system management and application management in a uniform way. Object oriented OSI management architecture with its four basic modelling concepts (information, organization, communication and functional models) together with widely accepted distribution platforms such as ANSA/CORBA, constitutes a reliable and modern framework for the implementation of a management toolset. This paper focuses on the presentation of concepts and implementation results of an object oriented management toolset developed and implemented within the framework of the ESPRIT project 7026 SysMan. An overview is given of the implemented SysMan management services including the System Management Service, Monitoring Service, Network Management Service, Knowledge Service, Domain and Policy Service, and the User Interface. Special attention is paid to the Monitoring Service which incorporates the architectural key entity responsible for event management. Its architecture and building components, especially filters, are emphasized and presented in detail.

  4. Laser Assisted Electric Field Monitoring in a Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Broering, Mark; Abney, Josh; Swank, Christopher; Filippone, Brad; Yao, Weijun; Korsch, Wolfgang; SNS-nEDM Collaboration

    2016-03-01

    The neutron EDM collaboration at the Spallation Neutron Source (ORNL) is using ultra-cold neutrons in liquid helium to improve the nEDM limit by two orders of magnitude. These neutrons will be stored in target cells located in a strong, stable electric field. Local radiation will generate charged particles which build up on the target cell walls reducing field strength and stability. The field fluctuations need to be kept below 1%, making it necessary to study this cell charging behavior, determine its effect on the experiment and find ways to mitigate this. A more compact test setup was designed to study this effect using smaller electrodes and cell. Charged particles are generated by ionizing the helium with a 137Cs source and the electric field is monitored via the electro-optic Kerr effect. Linearly polarized light is passed through the helium. The Kerr effect then introduces an ellipticity to the polarization that is proportional to the electric field squared. This allows an effective means of field monitoring. Nitrogen has a much stronger response to electric fields. This makes liquid nitrogen an ideal candidate for first tests. First results on the liquid nitrogen tests will be presented. This research is supported by DOE Grants: DE-FG02-99ER41101, DE-AC05-00OR22725.

  5. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  6. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  7. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  8. Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Ozelkan, Emre; Chen, Gang; Ustundag, Burak Berk

    2016-02-01

    Drought is a rapidly rising environmental issue that can cause hardly repaired or unrepaired damages to the nature and socio-economy. This is especially true for a region that features arid/semi-arid climate, including the Turkey's most important agricultural district - Southeast Anatolia. In this area, we examined the uncertainties of applying Landsat 8 Operational Land Imager (OLI) NDVI data to estimate meteorological drought - Standardized Precipitation Index (SPI) - measured from 31 in-situ agro-meteorological monitoring stations during spring and summer of 2013 and 2014. Our analysis was designed to address two important, yet under-examined questions: (i) how does the co-existence of rainfed and irrigated agriculture affect remote sensing drought monitoring in an arid/semi-arid region? (ii) What is the role of spatial scale in drought monitoring using a GEOBIA (geographic object-based image analysis) framework? Results show that spatial scale exerted a higher impact on drought monitoring especially in the drier year 2013, during which small scales were found to outperform large scales in general. In addition, consideration of irrigated and rainfed areas separately ensured a better performance in drought analysis. Compared to the positive correlations between SPI and NDVI over the rainfed areas, negative correlations were determined over the irrigated agricultural areas. Finally, the time lag effect was evident in the study, i.e., strong correlations between spring SPI and summer NDVI in both 2013 and 2014. This reflects the fact that spring watering is crucial for the growth and yield of the major crops (i.e., winter wheat, barley and lentil) cultivated in the region.

  9. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    PubMed

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits. PMID:26697861

  10. URBAN AIR POLLUTION WORLDWIDE: RESULTS OF THE GEMS (GLOBAL ENVIRONMENT MONITORING SYSTEM) AIR MONITORING PROJECT

    EPA Science Inventory

    Measurements of sulfur dioxide and suspended particulate matter in urban areas have been compiled in an international air quality monitoring project. Interpretative analyses of the 1973 to 1980 data have been completed, showing the general range of concentrations, intercity compa...

  11. Monitoring and Forecasting Space Weather in Geospace Environment

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters approximately equal to 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.

  12. Automated video screening for unattended background monitoring in dynamic environments.

    SciTech Connect

    Carlson, Jeffrey J.

    2004-03-01

    This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A threat of specific interest to this project is the covert placement and subsequent remote detonation of bombs (e.g., briefcase bombs) inside crowded public facilities. Different from existing video motion detection systems, the video-screening technology described in this report is capable of detecting changes in the static background of an otherwise, dynamic environment - environments where motion and human activities are persistent. Our goal was to quickly detect changes in the background - even under conditions when the background is visible to the camera less than 5% of the time. Instead of subtracting the background to detect movement or changes in a scene, we subtracted the dynamic scene variations to produce an estimate of the static background. Subsequent comparisons of static background estimates are used to detect changes in the background. Detected changes can be used to alert security forces of the presence and location of potential threats. The results of this research are summarized in two MS Power-point presentations included with this report.

  13. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-03-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening.

  14. MONITORING WASTE HEAT REJECTION TO THE ENVIRONMENT VIA REMOTE SENSING

    SciTech Connect

    Garrett, A

    2009-01-13

    Nuclear power plants typically use waste heat rejection systems such as cooling lakes and natural draft cooling towers. These systems are designed to reduce cooling water temperatures sufficiently to allow full power operation even during adverse meteorological conditions. After the power plant is operational, the performance of the cooling system is assessed. These assessments usually rely on measured temperatures of the cooling water after it has lost heat to the environment and is being pumped back into the power plant (cooling water inlet temperature). If the cooling system performance is not perceived to be optimal, the utility will collect additional data to determine why. This paper discusses the use of thermal imagery collected from aircraft and satellites combined with numerical simulation to better understand the dynamics and thermodynamics of nuclear power plant waste heat dissipation systems. The ANS meeting presentation will discuss analyses of several power plant cooling systems based on a combination of remote sensing data and hydrodynamic modeling.

  15. Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio).

    PubMed

    Klobucar, Göran I V; Stambuk, Anamaria; Pavlica, Mirjana; Sertić Perić, Mirela; Kutuzović Hackenberger, Branimir; Hylland, Ketil

    2010-01-01

    The present study deals with genotoxicity assessment of freshwaters using caged carp (Cyprinus carpio). Carps were transplanted from a fish-farm to three differently polluted sites in eastern Croatia. Two polluted sites were situated in the river Drava, downstream from the cities of Belisće and Osijek, while the reference site was in the Nature Park Kopacki rit, a preserved wetland area with limited anthropogenic influence. Exposure lasted for 3 weeks and was repeated for 3 years (2002-2004). DNA damage was assessed in erythrocytes of the exposed animals by the Comet assay and micronucleus test (MNT). In order to evaluate possible differences in stress responses to polluted water in situ and in aquaria a laboratory exposure was performed with water from the studied location in the second year of the study. Carp from the sites with high anthropogenic influence (Belisće and Osijek) had higher average DNA damage as expressed in both the MNT and Comet assay. Of the two, the Comet assay appeared to be more sensitive following both caging and aquaria exposures. The results from this study suggest that 3 weeks caging exposure of C. carpio may be a useful strategy to monitor for genotoxic agents in freshwater ecosystems. PMID:19626438

  16. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remediation of excess nitrogen (N) in agricultural runoff can be enhanced by establishing wetland vegetation but the role of denitrification in N removal is not well understood in drainage ditches. We quantified differences in N retention during experimental runoff events followed by stagnant period...

  17. Application of the precision agricultural landscape modeling system in semiarid environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland croppin...

  18. Farming in an Urban Environment. Agriculture in Illinois: Alternative Futures for the 1980s.

    ERIC Educational Resources Information Center

    Fliegel, Frederick C.; And Others

    This report is concerned with the climate of opinion prevailing among Illinois farm, rural non-farm, and urban residents in 1978 and the implications of these opinions for agriculture and rural communities in the 1980's. A sample of more than 8,000 adult Illinois residents were questioned about land use, government regulatory programs, and local…

  19. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  20. AGRICULTURAL WATER CONSERVATION POLICY IN AN URBANIZING ENVIRONMENT: THE ARIZONA BMP PROGRAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arizona legislature authorized in 2002 an agricultural water conservation program based on best management practices. The program is voluntary and an alternative to one based on allotments that have been in operation since 1980. The program requires the farmers to adopt conservation practices f...

  1. MAPPING AND SCOUTING CORN PEST INFESTATIONS IN A PRODUCTION AGRICULTURE ENVIRONMENT USING REMOTE SENSING.

    EPA Science Inventory

    Hyperspectral imagery was acquired three times during the 2006 agricultural growing season (late July to mid-September) over 35 corn fields in east central Illinois. The imagery was processed with an emphasis on rapid image product development (turnabround time of less than 24 ho...

  2. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  3. Food and Environment. A Teachers' Resource Guide to California Valley Agriculture.

    ERIC Educational Resources Information Center

    Railton, Esther, Comp.

    Presented is a compilation of teaching resources prepared by teachers enrolled in a graduate-level environmental education course at California State University, Hayward. The emphasis of these materials is upon agriculture and related environmental practices in California's San Joaquin Valley. Following a description of course logistics are six…

  4. Risk characterisation and management of sewage sludge on agricultural land--implications for the environment and the food-chain.

    PubMed

    Ross, A D; Lawrie, R A; Keneally, J P; Whatmuff, M S

    1992-08-01

    The disposal of sewage wastes may cause severe environmental problems as was graphically demonstrated with pollution on Sydney's ocean beaches in recent years. Sewage sludges contain valuable plant nutrients and organic matter which can improve the fertility and structure of the soil. However, human parasites, pathogenic micro-organisms and chemicals capable of causing soil contamination, phytotoxicity and residues in animal products may also be present. Although sewage sludge is frequently spread on agricultural land overseas, it is not common in Australia and most states do not have specific regulations to minimise risk and promote good practice. A sludge-to-land program began in the Sydney region in 1990. It follows guidelines written by NSW Agriculture to encourage beneficial agricultural use of sludge by adoption of environmentally sustainable practices. This article describes the major risks to the food-chain and the environment, which may be associated with applying sewage sludge to agricultural land. It summarises how the risks are managed, and where further research data are required. PMID:1530551

  5. Joint use of soil moisture and vegetation growth condition by remote sensing on the agricultural drought monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yang, Siquan; Huang, He; He, Haixia; Li, Suju; Cui, Yan

    2015-12-01

    Remote sensing is one of important methods on the agricultural drought monitoring for its long-term and wide-area observations. The detection of soil moisture and vegetation growth condition are two widely used remote sensing methods on that. However, because of the time lag in the impact of water deficit on the crop growth, it is difficulty to indicate the severity of drought by once monitoring. It also cannot distinguish other negative impact on crop growth such as low temperature or solar radiation. In this paper, the joint use of soil moisture and vegetation growth condition detections was applied on the drought management during the summer of 2013 in Liaoning province, China, in which 84 counties were affected by agricultural drought. MODIS vegetation indices and land surface temperature (LST) were used to extract the drought index. Vegetation Condition Index (VCI), which only contain the change in vegetation index, and Vegetation Supply Water Index (VSWI), which combined the information of vegetation index and land surface temperature, were selected to compare the monitoring ability on drought during the drought period in Liaoning, China in 2014. It was found that VCI could be a good method on the loss assessment. VSWI has the information on the change in LST, which can indicate the spatial pattern of drought and can also be used as the early warning method in the study.

  6. Water Quality Signal of Animal Agriculture at USGS Monitoring Stations is Related to Animal Confinement and/or Farm Size

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2007-12-01

    US animal agriculture has undergone major structural changes over the past two decades, with the total number of livestock producers declining dramatically and the average size of the remaining operations increasing substantially. The result has been a pronounced trend towards greater spatial concentration and confinement of livestock. The change raises important questions about the water quality effects of animal agriculture in regions where livestock waste production has become more intensive but recovery, handling, and application of animal wastes to cropland more systematized. In previous research, we developed three separate national-level SPARROW models of surface water contaminants (total nitrogen, total phosphorus, and fecal coliform bacteria). Based on USGS monitoring and ancillary data from more than 400 US stream and river basins, the models include point and nonpoint sources of contaminants, land-to-water transport factors, and in-stream loss processes; parameter estimation is by non-linear regression. In this study we report on a pattern in the statistical results for the three models: The source coefficients (quantity of contaminant delivered to streams per unit of contaminant input) for unconfined animals are consistently larger and more statistically significant than those for confined animals. The implicit meaning is that something associated with waste management on large farms and/or animal confinement (e.g. retention period, recovery of manure for application to crops and subsequent crop uptake, and/or better waste treatment) reduces the average water quality signal of this scale of animal agriculture (per unit of manure input) to barely detectable at downstream monitoring stations, while the water quality signal from unconfined animal agriculture is more clear. The county-level data for confined and unconfined manure inputs (defined primarily by farm size) are from the USDA, and are spatially distributed in the model GIS by 1-km land use data

  7. Early-season agricultural drought: detection, assessment and monitoring using Shortwave Angle and Slope Index (SASI) data.

    PubMed

    Das, Prabir Kumar; Murthy, Srirama C; Seshasai, M V R

    2013-12-01

    Early season or crop-planting-period (ES/CPP) drought conditions have become a recurrent phenomenon in tropical countries like India, due to fluctuations in the time of onset and progression of monsoon rains. ES/CPP agricultural drought assessment is a major challenge because of the difficulties in the generation of operational products on soil moisture at larger scales. The present study analyzed the Shortwave Angle Slope Index (SASI) derived from Near Infrared and Shortwave Infrared data of Moderate Resolution Imaging Spectroradiometer, for tracking surface moisture changes and assessing the agricultural drought conditions during ES/CPP, over Andhra Pradesh state, India. It was found that in-season progression of SASI was well correlated with rainfall and crop planting patterns in different districts of the study area state in both drought and normal years. Rainfall occurrence, increase in crop planted area, and decrease in SASI were in chronological synchronization in the season. Change in SASI from positive to negative values is a unique indication of dryness to wetness shift in the season. Duration of positive SASI values indicated the persistence of agricultural drought in the crop planting period. Mean SASI values were able to discriminate an area which was planted in normal year and unplanted in drought year. SASI thresholds provide an approximate and rapid estimate of the crop planting favorable area in a region which is useful to assess the impact of drought. Thus, SASI is a potential index to strengthen the existing operational drought monitoring systems. Further work needs to be on the integration of multiple parameters-SASI, soil texture, soil depth, rainfall and cropping pattern, to evolve a geospatial product on crop planting favorable areas. Such products pave the way for quantification of drought impact on agriculture in the early part of the season, which is a major inadequacy in the current drought monitoring system. PMID:23793539

  8. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    PubMed Central

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-01-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening. PMID:27004604

  9. Volcanic Environments Monitoring by Drones Mud Volcano Case Study

    NASA Astrophysics Data System (ADS)

    Amici, S.; Turci, M.; Giulietti, F.; Giammanco, S.; Buongiorno, M. F.; La Spina, A.; Spampinato, L.

    2013-08-01

    Volcanic activity has often affected human life both at large and at small scale. For example, the 2010 Eyjafjallajokull eruption caused severe economic damage at continental scale due to its strong effect on air traffic. At a local scale, ash fall and lava flow emission can cause harm and disruption. Understanding precursory signals to volcanic eruptions is still an open and tricky challenge: seismic tremor and gas emissions, for example, are related to upcoming eruptive activity but the mechanisms are not yet completely understood. Furthermore, information related to gases emission mostly comes from the summit crater area of a volcano, which is usually hard to investigate with required accuracy. Although many regulation problems are still on the discussion table, an increasing interest in the application of cutting-edge technology like unmanned flying systems is growing up. In this sense, INGV (Istituto Nazionale di Geofisica e Vulcanologia) started to investigate the possibility to use unmanned air vehicles for volcanic environment application already in 2004. A flight both in visual- and radio-controlled mode was carried out on Stromboli volcano as feasibility test. In this work we present the preliminary results of a test performed by INGV in collaboration with the University of Bologna (aerospace division) by using a multi-rotor aircraft in a hexacopter configuration. Thermal camera observations and flying tests have been realised over a mud volcano located on its SW flank of Mt. Etna and whose activity proved to be related to early stages of magma accumulation within the volcano.

  10. Cellular biomarkers for monitoring estuarine environments: transplanted versus native mussels.

    PubMed

    Nigro, M; Falleni, A; Barga, I Del; Scarcelli, V; Lucchesi, P; Regoli, F; Frenzilli, G

    2006-05-25

    In developed countries, estuarine environments are often subjected to chemical pollution, whose biological impact is profitably evaluated by the use of multi-biomarker approaches on sentinel species. In this paper, we investigate genotoxicity and lysosomal alterations in the Mediterranean mussel (Mytilus galloprovincialis), from the estuary of the River Cecina (Tuscany, Italy), selected as "pilot basin" within the Water Frame Directive (2000/60 European Community). Both native and 1 month transplanted mussels were used in order to compare these two approaches in terms of sensitiveness of specific biomarker responses. Genotoxic effects were evaluated as strand breaks, by single cell gel electrophoresis (or Comet assay), and as chromosomal alterations, by the micronucleus test in gill cells. Lysosomal alterations were assessed by the neutral red retention time (in haemocytes), lipofuscin accumulation and ultrastructure (in digestive cells). Heavy metal bioaccumulation was also analysed. Mussels from the River Cecina showed a general alteration of all the biomarkers investigated, accompanied by an elevation of tissue metal levels. However, some differences in specific responses occurred between transplanted and native mussels. Early biomarkers, such as those based on DNA and lysosomal membrane integrity, were induced at similar degree in native and transplanted mussels; while alterations resulting from cumulative events, as the increase of micronuclei frequency were much more elevated in native specimens (23.1+/-7.6) than in transplanted (9.3+/-4.7) and reference ones (5.8+/-5.2). Similarly, the comparison between lipofuscin accumulation and mean lysosomal diameter in impacted and control sites, gave significant differences exclusively with transplanted mussels. These results suggest that the parallel use of caged and native mussels in environmental biomonitoring can improve the characterization of the study area. PMID:16480782

  11. Challenge of Using Passive Acoustic Monitoring in High-Energy Environments: UK Tidal Environments and Other Case Studies.

    PubMed

    Booth, Cormac G

    2016-01-01

    The use of passive acoustic monitoring (PAM) around marine developments is commonplace. A buffer-based PAM system (e.g., C-POD) is a cost-effective method for assessing cetacean acoustic presence. Devices have been deployed by Sea Mammal Research Unit (SMRU) Marine around the United Kingdom, allowing an examination of the performance of C-PODs with respect to background noise, tilt angle, and environmental factors. C-PODs were found to often only monitor for a few seconds of each minute, resulting in significant loss of monitoring time. Issues were likely driven by environmental and deployment factors. The practical limitations of buffer-based PAM systems in high-energy/noisy environments are indicated here. PMID:26610949

  12. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  13. Implementation and monitoring measures to reduce agricultural impacts on water quality: US experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  14. Implementation and monitoring to reduce agricultural impacts on water quality: US experiance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  15. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...

  16. Identifiying and evaluating a suitable index for agricultural drought monitoring in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a highly destructive natural phenomenon that affects portions of the United States almost every year. Severe water deficiencies can become catastrophic for agriculture and crop yields, especially in the Texas High Plains where generally inadequate rainfall is augmented by irrigation for c...

  17. QUANTIFYING SUBSURFACE HYDROLOGY WITH GROUND PENETRATING RADAR AND AGRICULTURAL MONITORING DATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrology, especially subsurface-water flow can influence crop growth patterns within a production field as well as the fate of surface-applied fertilizers and pesticides migrating thru agricultural land. Ground-penetrating radar (GPR) and digital elevation maps (DEM) were used to locate and quanti...

  18. Evaluating the performance of a soil moisture data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...

  19. SUMMARY OF BIOLOGICAL AND ENVIRONMENTAL MONITORING RESULTS FROM THE AGRICULTURAL HEALTH STUDY/PESTICIDE EXPOSURE STUDY

    EPA Science Inventory

    The Agricultural Health Study (AHS) is a prospective epidemiologic study of pesticide applicators and spouses in Iowa and North Carolina. Exposure to 2,4-D or chlorpyrifos was measured for a subset of applicators and their families in the AHS Pesticide Exposure Study to assess...

  20. Strategies to meet the challenges of monitoring greenhouse gas emissions in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  1. SURROGATE TISSUE ANALYSIS FOR MONITORING THE DEGREE AND IMPACT OF EXPOSURES IN AGRICULTURAL WORKERS

    EPA Science Inventory

    Key words: Surrogate Tissue Analysis; Toxicology; Toxicogenomics

    Abstract
    Agricultural workers may be at elevated risk of developing occupationally related diseases because of the chronic use of pesticides and other toxic chemicals in their workplace. However, in most ...

  2. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...

  3. Monitoring adherence to the international code of conduct: highly hazardous pesticides in central Andean agriculture and farmers' rights to health.

    PubMed

    Orozco, Fadya A; Cole, Donald C; Forbes, Greg; Kroschel, Jürgen; Wanigaratne, Susitha; Arica, Denis

    2009-01-01

    The WHO has advocated monitoring adherence to the Food and Agriculture Organization's Code of Conduct to reduce use of highly hazardous pesticides in lower and middle income countries. We re-framed Code articles in terms of farmers' rights and drew on survey data, farmer focus group results, and direct observations of agrochemical stores in Ecuador and Peru to construct indicators reflecting respect for such rights. Use of highly (Ia and Ib) and moderately (II) hazardous pesticides was common. Worse indicators were observed in places with lower education, greater poverty, and more use of indigenous languages. Limited government enforcement capacity, social irresponsibility of the pesticide industry, and lack of farmers' knowledge of the Code were all factors impeding respect for farmers' rights. Addressing the power imbalance among social actors requires informed farmer and farmworker participation in monitoring adherence and active involvement of non-governmental organizations and municipal governments. PMID:19650580

  4. Quality of Agricultural Products and Protection of the Environment: Training, Knowledge Dissemination and Certification. Synthesis Report of a Study in Five European Countries. CEDEFOP Reference Series.

    ERIC Educational Resources Information Center

    Papadaki-Klavdianou, A.; Menkisoglou-Spiroudi, O.; Tsakiridou, E.

    This book examines existing European environmental education and agricultural practices friendly to the environment. Focus is on studies conducted in five countries Germany, Greece, the Netherlands, Portugal, and Spain--that aimed to define new knowledge qualifications related to environmental issues in producing alternative agricultural products…

  5. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  6. An Intelligent System for Monitoring the Microgravity Environment Quality On-Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Lin, Paul P.; Jules, Kenol

    2002-01-01

    An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.

  7. New and Improved Remotely Sensed Products and Tools for Agricultural Monitoring Applications in Support of Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.

    2011-12-01

    The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop

  8. Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Kustas, William P.; Anderson, Martha C.; Li, Fuqin; Colaizzi, Paul D.

    2008-01-01

    The utility of a thermal image sharpening algorithm (TsHARP) in providing fine resolution land surface temperature data to a Two-Source-Model for mapping evapotranspiration (ET) was examined over two agricultural regions in the U.S. One site is in a rainfed corn and soybean production region in central Iowa. The other lies within the Texas High Plains, an irrigated agricultural area. It is concluded that in the absence of fine (sub-field scale) resolution thermal data, TsHARP provides an important tool for monitoring ET over rainfed agricultural areas. In contrast, over irrigated regions, TsHARP applied to kilometer-resolution thermal imagery is unable to provide accurate fine resolution land surface temperature due to significant sub-pixel moisture variations that are not captured in the sharpening procedure. Consequently, reliable estimation of ET and crop stress requires thermal imagery acquired at high spatial resolution, resolving the dominant length-scales of moisture variability present within the landscape.

  9. Mycotoxins in the environment: I. Production and emission from an agricultural test field.

    PubMed

    Schenzel, Judith; Forrer, Hans-Rudolf; Vogelgsang, Susanne; Hungerbühler, Konrad; Bucheli, Thomas D

    2012-12-18

    Mycotoxins are secondary metabolites that are naturally produced by fungi which infest and contaminate agricultural crops and commodities (e.g., small grain cereals, fruits, vegetables, and organic soil material). Although these compounds have extensively been studied in food and feed, only little is known about their environmental fate. Therefore, we investigated over nearly two years the occurrence of various mycotoxins in a field cropped with winter wheat of the variety Levis, which was artificially inoculated with Fusarium spp., as well as their emission via drainage water. Mycotoxins were regularly quantified in whole wheat plants (0.1-133 mg/kg(dry weight), for deoxynivalenol), and drainage water samples (0.8 ng/L to 1.14 μg/L, for deoxynivalenol). From the mycotoxins quantified in wheat (3-acetyl-deoxynivalenol, deoxynivalenol, fusarenone-X, nivalenol, HT-2 toxin, T-2 toxin, beauvericin, and zearalenone), only the more hydrophilic ones or those prevailing at high concentrations were detected in drainage water. Of the total amounts produced in wheat plants (min: 2.3; max: 292 g/ha/y), 0.5-354 mg/ha/y, i.e. 0.002-0.12%, were emitted via drainage water. Hence, these compounds add to the complex mixture of natural and anthropogenic micropollutants particularly in small rural water bodies, receiving mainly runoff from agricultural areas. PMID:23145781

  10. Environment.

    ERIC Educational Resources Information Center

    White, Gilbert F.

    1980-01-01

    Presented are perspectives on the emergence of environmental problems. Six major trends in scientific thinking are identified including: holistic approaches to examining environments, life support systems, resource management, risk assessment, streamlined methods for monitoring environmental change, and emphasis on the global framework. (Author/SA)

  11. Monitoring of horizontal gene transfer from agricultural microorganisms to soil bacteria and analysis of microbial community in soils.

    PubMed

    Kim, Sung Eun; Moon, Jae Sun; Choi, Won Sik; Lee, Sang Han; Kim, Sung Uk

    2012-04-01

    To investigate the possibility of horizontal gene transfer between agricultural microorganisms and soil microorganisms in the environment, Bacillus subtilis KB producing iturin and the PGPR recombinant strain Pseudomonas fluorescens MX1 were used as model microorganisms. The soil samples of cucumber or tomato plants cultivated in pots and the greenhouse for a six month period were investigated by PCR, real-time PCR, Southern hybridization, and terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Our data from Southern blotting and TRFLP patterns suggest that the model bacteria do not give significant impacts on the other bacteria in the pots and greenhouse during cultivation. PMID:22534306

  12. Dispersal strategies of phytophagous insects at a local scale: adaptive potential of aphids in an agricultural environment

    PubMed Central

    Lombaert, Eric; Boll, Roger; Lapchin, Laurent

    2006-01-01

    Background The spread of agriculture greatly modified the selective pressures exerted by plants on phytophagous insects, by providing these insects with a high-level resource, structured in time and space. The life history, behavioural and physiological traits of some insect species may have evolved in response to these changes, allowing them to crowd on crops and to become agricultural pests. Dispersal, which is one of these traits, is a key concept in evolutionary biology but has been over-simplified in most theoretical studies. We evaluated the impact of the local-scale dispersal strategy of phytophagous insects on their fitness, using an individual-based model to simulate population dynamics and dispersal between leaves and plants, by walking and flying, of the aphid Aphis gossypii, a major agricultural pest, in a melon field. We compared the optimal values for dispersal parameters in the model with the corresponding observed values in experimental trials. Results We show that the rates of walking and flying disperser production on leaves were the most important traits determining the fitness criteria, whereas dispersal distance and the clustering of flying dispersers on the target plant had no effect. We further show that the effect of dispersal parameters on aphid fitness depended strongly on plant characteristics. Conclusion Parameters defining the dispersal strategies of aphids at a local scale are key components of the fitness of these insects and may thus be essential in the adaptation to agricultural environments that are structured in space and time. Moreover, the fact that the effect of dispersal parameters on aphid fitness depends strongly on plant characteristics suggests that traits defining aphid dispersal strategies may be a cornerstone of host-plant specialization. PMID:17014710

  13. Temporal association of children's pesticide exposure and agricultural spraying: report of a longitudinal biological monitoring study.

    PubMed

    Koch, Denise; Lu, Chensheng; Fisker-Andersen, Jennifer; Jolley, Lance; Fenske, Richard A

    2002-08-01

    We measured organophosphorus (OP) pesticide exposures of young children living in an agricultural community over an entire year and evaluated the impact of agricultural spraying on exposure. We also examined the roles of age, sex, parental occupation, and residential proximity to fields. We recruited 44 children (2-5 years old) through a Women, Infants, and Children clinic. We collected urine samples on a biweekly basis over a 21-month period. Each child provided at least 16 urine samples, and most provided 26. We analyzed samples for the dialkylphosphate (DAP) metabolites common to the OP pesticides. DAP concentrations were elevated in months when OP pesticides were sprayed in the region's orchards. The geometric means of dimethyl and diethyl DAPs during spray months were higher than those during nonspray months (p = 0.009 for dimethyl; p = 0.018 for diethyl). Dimethyl DAP geometric means were 0.1 and 0.07 micro mol/L for spray months and nonspray months, respectively (57% difference); diethyl DAP geometric means were 0.49 and 0.35, respectively (40% difference). We also observed differences for sex of the child, with male levels higher than female levels (p = 0.005 for dimethyl; p = 0.046 for diethyl). We observed no differences due to age, parental occupation, or residential proximity to fields. This study reports for the first time the temporal pattern of pesticide exposures over the course of a full year and indicates that pesticide spraying in an agricultural region can increase children's exposure in the absence of parental work contact with pesticides or residential proximity to pesticide-treated farmland. PMID:12153767

  14. Monitoring the Impact of Anthropogenic and Natural Influences on the Environment of Mesoamerica

    NASA Astrophysics Data System (ADS)

    Hardin, D.; Graves, S.; Sever, T.; Irwin, D.

    2005-12-01

    Mesoamerica - composed of the seven Central American countries and the five southernmost states of Mexico - is one of the richest biological regions in the world. The region is home to approximately eight percent of the planet's biodiversity. There are 14 biosphere reserves, eight world heritage sites and 589 protected areas. The human population, of over 45 million people consists of more than 50 ethnic groups. This rich biological and cultural diversity is threatened by human influence and natural disasters. Illegal logging and slash and burn agriculture are major contributors to extensive deforestation. Earthquakes, volcanoes, drought, and severe storms threaten the region. Of particular note is the massive destruction and loss of life resulting from hurricane Mitch in 1998. An international effort is underway to preserve the remaining forested regions, with its biodiversity, and to promote sustained development throughout the region. In 2002 the National Aeronautics and Space Administration (NASA) joined with the World Bank and the United States Agency for International Development (USAID) to work with the Central American Commission for Environment and Development (CCAD), to develop an advanced decision support system for Mesoamerica known as SERVIR. (SERVIR is a Spanish acronym meaning to serve.) The partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system for use by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters, and better understand both natural and human induced effects. NASA/Marshall Space Flight Center and the University of Alabama in Huntsville (UAH) are concentrating on the preparation of data products and Information Technology applications that will integrate information from the entire region into a coherent information system that is easy to access and utilize. Already

  15. Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. C.; Crist, E. P.; Metzler, M.; Nuesch, D.

    1982-01-01

    Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory.

  16. Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.

    1982-01-01

    Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.

  17. Performance Monitoring: Evaluating a Wheat Straw PRB for Nitrate Removal at an Agricultural Operation

    EPA Science Inventory

    The U.S. EPA Office of Research and Development’s National Risk Management Research Laboratory (NRMRL) is conducting long-term monitoring of a wheat straw permeable reactive barrier (PRB) for remediation of ground water contaminated with nitrate from a now-closed swine concentrat...

  18. Environmental exposure modeling and monitoring of human pharmaceutical concentrations in the environment

    USGS Publications Warehouse

    Versteeg, D.J.; Alder, A. C.; Cunningham, V. L.; Kolpin, D.W.; Murray-Smith, R.; Ternes, T.

    2005-01-01

    Human pharmaceuticals are receiving increased attention as environmental contaminants. This is due to their biological activity and the number of monitoring programs focusing on analysis of these compounds in various environmental media and compartments. Risk assessments are needed to understand the implications of reported concentrations; a fundamental part of the risk assessment is an assessment of environmental exposures. The purpose of this chapter is to provide guidance on the use of predictive tools (e.g., models) and monitoring data in exposure assessments for pharmaceuticals in the environment. Methods to predict environmental concentrations from equations based on first principles are presented. These equations form the basis of existing GIS (geographic information systems)-based systems for understanding the spatial distribution of pharmaceuticals in the environment. The pharmaceutical assessment and transport (PhATE), georeferenced regional exposure assessment tool for European rivers (GREAT-ER), and geographical information system (GIS)-ROUT models are reviewed and recommendations are provided concerning the design and execution of monitoring studies. Model predictions and monitoring data are compared to evaluate the relative utility of each approach in environmental exposure assessments. In summary, both models and monitoring data can be used to define representative exposure concentrations of pharmaceuticals in the environment in support of environmental risk assessments.

  19. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    NASA Astrophysics Data System (ADS)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  20. IMAGE information monitoring and applied graphics software environment. Volume 2. Software description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent.

  1. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    EPA Science Inventory

    We reviewed compliance monitoring requirements in the European Union (EU), the United States(USA), and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic (OSPAR), and evaluated if these are met by passive sampling methods for nonpola...

  2. STS-2 Induced Environment Contamination Monitor (IECM): Quick-Look Report

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1982-01-01

    The STS-2/induced environment contamination monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-2. A short summary is presented.

  3. Monitoring Children's Growth in Early Literacy Skills: Effects of Feedback on Performance and Classroom Environments

    ERIC Educational Resources Information Center

    Ball, Carrie; Gettinger, Maribeth

    2009-01-01

    The study examined the benefits of providing kindergarten teachers with feedback about students' performance on early literacy progress-monitoring probes. Students were administered the "Dynamic Indicators of Basic Early Literacy Skills (DIBELS)" in fall, winter, and spring; classroom environment was evaluated using the "Early Language and…

  4. High Resolution Displacement Monitoring for Urban Environments in Seattle, Washington using Terrestrial Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.

    2015-12-01

    Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.

  5. Dragon in Support to Harmonizing European and Chinese Marine Monitoring for Environment and Security System

    NASA Astrophysics Data System (ADS)

    Johannessen, Johnny A.; He, Mingxia; Alpers, Werner; Chen, Ge; Piolle, Jean-Francois; Liu, Zhishen; Shao, Liqin; Dagestad, Knut-Frode; Chapron, Bertrand; Wan, Liying; Hu, Chuanmin; Guan, Lei

    2013-01-01

    Funded by EC under the Framework Programme (FP6), the 3-year duration DRAGONESS project is nearing its termination in August 2010. An inventory on procedures and systems for operational ocean monitoring and services including data accessibility and management approaches has been produced with particular relevance for the Global Monitoring for Environment and Security (GMES) Space Component program and the Group on Earth Observation (GEO) implemented system of systems (GEOSS). The DRAGONESS project has also been part of the Dragon 2 program. Monitoring of the marine environment is crucial to tracking pollution, forecasting and tracking extreme events, understanding climate change, and aiding operational oceanography. It requires common standards, protocols, and harmonized tools and methods for data integration and information portals and services. Bringing together in situ and satellite data and the sharing of this data, jointly with validated models, is a key to the success of such systems.

  6. Dragon In Support To Harmonizing European and Chinese Marine Monitoring for Environment and Security System

    NASA Astrophysics Data System (ADS)

    Johannessen, Johnny A.; He, Ming-Xia; Alpers, Werner; Chen, Ge; Piolle, Jean-Francois; Liu, Zhishen; Shao, Liqin; Dagstad, Knut-Frode; Chapron, Bertrand; Wan, Liying; Hu, Chuanmin; Guan, Lei

    2010-10-01

    Funded by EC under the Framework Programme (FP6), the 3-year duration DRAGONESS project is nearing its termination in August 2010. An inventory on procedures and systems for operational ocean monitoring and services including data accessibility and management approaches has been produced with particular relevance for the Global Monitoring for Environment and Security (GMES) Space Component program and the Group on Earth Observation (GEO) implemented system of systems (GEOSS). The DRAGONESS project has also been part of the Dragon 2 program. Monitoring of the marine environment is crucial to tracking pollution, forecasting and tracking extreme events, understanding climate change, and aiding operational oceanography. It requires common standards, protocols, and harmonized tools and methods for data integration and information portals and services. Bringing together in situ and satellite data and the sharing of this data, jointly with validated models, is a key to the success of such systems.

  7. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  8. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring.

    PubMed

    Petrie, Bruce; Barden, Ruth; Kasprzyk-Hordern, Barbara

    2015-04-01

    This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity

  9. Biological monitoring of pesticide exposures in residents living near agricultural land

    PubMed Central

    2011-01-01

    Background There is currently a lack of reliable information on the exposures of residents and bystanders to pesticides in the UK. Previous research has shown that the methods currently used for assessing pesticide exposure for regulatory purposes are appropriate for farm workers [1]. However, there were indications that the exposures of bystanders may sometimes be underestimated. The previous study did not collect data for residents. Therefore, this study aims to collect measurements to determine if the current methods and tools are appropriate for assessing pesticide exposure for residents living near agricultural fields. Methods/design The study will recruit owners of farms and orchards (hereafter both will be referred to as farms) that spray their agricultural crops with certain specified pesticides, and which have residential areas in close proximity to these fields. Recruited farms will be asked to provide details of their pesticide usage throughout the spray season. Informed consenting residents (adults (18 years and over) and children (aged 4-12 years)) will be asked to provide urine samples and accompanying activity diaries during the spraying season and in addition for a limited number of weeks before/after the spray season to allow background pesticide metabolite levels to be determined. Selected urine samples will be analysed for the pesticide metabolites of interest. Statistical analysis and mathematical modelling will use the laboratory results, along with the additional data collected from the farmers and residents, to determine systemic exposure levels amongst residents. Surveys will be carried out in selected areas of the United Kingdom over two years (2011 and 2012), covering two spraying seasons and the time between the spraying seasons. Discussion The described study protocol was implemented for the sample and data collection procedures carried out in 2011. Based on experience to date, no major changes to the protocol are anticipated for the

  10. Cosmo-SkyMed and RADARSAT2 image investigation for the monitoring of agricultural areas

    NASA Astrophysics Data System (ADS)

    Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Greifeneder, F.; Cuozzo, G.; Nicolini, I.; Demir, B.; Bruzzone, L.

    2015-10-01

    This research aims at investigating the backscatter sensitivity at C and X band to the characteristics of agricultural surfaces and analyzing the integration of these data collected from Radarsat2 (RS2) and COSMO-SkyMed (CSK) systems on tree agricultural test areas in Italy (San Pietro Capofiume, in Emilia Romagna, Sesto Fiorentino, in Tuscany, and Mazia Valley, in South Tyrol). A preliminary test of the sensitivity of SAR signal to the soil and vegetation characteristics was first carried out by also comparing data from previous experiments. From these results, it can be concluded that X-band data are mainly sensitive to vegetation structure and biomass, and to soil moisture of bare or slightly vegetate soils, whereas C-band images could provide valuable information for the retrieval of soil moisture, even in vegetation covered soils. Two retrieval algorithms were implemented for estimating the main geophysical parameters, namely soil moisture content (SMC) and vegetation biomass (PWC) from these sensors. Over Sesto Fiorentino area, an algorithm based on Artificial Neural Network (ANN) technique was implemented for estimating both SMC of bare or scarcely vegetated soil and vegetation biomass of wheat crops at X band. On the South-Tyrol area, a SMC retrieval approach based on the Support Vector Regression methodology, which was already tested in this area using C-band data from ENVISAT/ASAR data, was adopted. This algorithm integrated data at both X and C bands showing encouraging results, even though further investigations shall be carried out on a larger time-series and larger set of samples.

  11. Extended spectrum ß-lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment.

    PubMed

    Blaak, Hetty; van Hoek, Angela H A M; Veenman, Christiaan; Docters van Leeuwen, Arieke E; Lynch, Gretta; van Overbeek, Wendy M; de Roda Husman, Ana Maria

    2014-01-01

    The attribution of fresh produce to the overall community-associated exposure of humans to ESBL- or AmpC-producing bacteria is currently unknown. To address this issue, the prevalence of ESBL- and AmpC-producing Enterobacteriaceae on fresh produce produced in the Netherlands was determined. Seven vegetable types that are consumed raw were selected: blanched celery, bunched carrots, chicory, endive, iceberg lettuce, mushrooms, and radish. The vegetables were mostly obtained from supermarkets. To determine whether the agricultural environment is the source of ESBL-producing Enterobacteriaceae on fresh produce, iceberg lettuce was also obtained directly from three farms, in conjunction with soil and irrigation water. ESBL-producing Enterobacteriaceae isolated from vegetables and environment were all environmental species: Rahnella aquatilis (n = 119), Serratia fonticola (n = 45) and Pantoea agglomerans (n = 1). ESBL genes of R. aquatilis and S. fonticola were identified as blaRAHN-1 and blaRAHN-2 and blaFONA-1, blaFONA-2, blaFONA-3/6 and blaFONA-5, respectively. For R. aquatilis and S. fonticola, different prevalence numbers were observed using different isolation methods, which could at least partially be explained by an inverse correlation between the level of cefotaxime resistance of these species and incubation temperature. R. aquatilis was isolated from 0 to 46% of soil samples and 11 to 83% of vegetable samples, and S. fonticola from 2 to 60% of soil samples and 0 to 1.3% of vegetable samples. Third generation cephalosporin-resistant faecal Enterobacteriaceae were isolated from 2.7%, 1.3% and 1.1% of supermarket vegetables, iceberg lettuce from farms, and agricultural soil respectively. Faecal Enterobacteriaceae were all identified as Citrobacter and Enterobacter species and, with the exception of one Citrobacter koseri strain, all had phenotypes indicative of constitutive AmpC production. Comparison of fresh produce and its agricultural environment indicates

  12. Effective sensing approach for assessment and monitoring of in-situ biodegradation in a subsurface environment

    NASA Astrophysics Data System (ADS)

    Li, Dong X.

    1999-02-01

    Rapid assessment and monitoring of biological conditions in a subsurface environment is becoming more and more important as bioremediation approaches become widely used in environmental cleanup. Remediation monitoring is also more challenging for in-situ remedial approaches, such as bioventing, biosparging, or passive bioremediation, where conventional 'inlet' and 'outlet' monitoring can no longer be applied. A sensing approach using subsurface chemical sensors offers a cost- effective alternative for remediation monitoring. Additional benefits of deploying subsurface sensors include continuous and unattended measurement with minimum disturbance to the subsurface condition. In a series of field studies, an electrochemical oxygen sensor, a non-dispersive infrared (NDIR) carbon dioxide sensor, and two hydrocarbons sensors were employed for monitoring in-situ bioremediation of petroleum hydrocarbon contaminated soils. Biodegradation rates were effectively measured through an in-situ respiration measurement using subsurface oxygen and carbon dioxide sensors. The high sensitivity of the carbon dioxide sensor to small change in the concentration enables rapid respiration measurements. Subsurface hydrocarbon sensors offer a means to monitor the progress of remediation and the migration of contaminant vapors during the remediation. The chemical sensors tested are clearly cost effective for remediation monitoring. The strengths of oxygen and carbon dioxide sensors are complimentary to each other. Strengths and limitations of different hydrocarbon sensors were also noted. Balancing cost and performance of sensors is crucial for environmental remediation application.

  13. Data-Intensive Drought Monitoring, Forecasting, and Outlooks for Climate-Resilient Water Management in Western Agriculture

    NASA Astrophysics Data System (ADS)

    Ryu, J.

    2014-12-01

    Drought increasingly threatens the sustainability of regional water resources in many states in the United States. Drought has large economic impacts and significant environmental and societal effects. Although much research on drought at national, regional, and local scales has been conducted to mitigate drought impacts, still drought claims economic losses estimated at about $8.5 billion per year. One possible reason for such huge losses may be a lack of clear understanding of the characteristics of drought at local scales that the end user can relate to the particular water management constraints of their basin. Sustainable water management alternatives are explored and discussed to mitigate climate-induced drought impacts on western agriculture. Current drought monitoring, forecasting, and outlooks efforts are demonstrated along with visualization and research survey. Future direction for Big Drought research is also highlighted.

  14. Using GPR early-time amplitude analysis to monitor variations in soil water content at a clay-rich agricultural site in response to irrigation

    NASA Astrophysics Data System (ADS)

    Algeo, Jonathan; Van Dam, Remke; Slater, Lee

    2015-04-01

    Geophysical methods are increasingly used to analyze spatial variation in soil water content (SWC). Electrical resistivity (ER), ground-penetrating radar (GPR), and time-domain reflectometry (TDR) have all been applied to this problem. However, TDR is limited in terms of its ability to provide good spatial coverage over large areas, ER can be very time consuming depending on the survey, and GPR direct wave and reflection methods are ineffective in clay-rich environments. We employed a relatively new GPR methodology, early-time amplitude analysis, during an infiltration experiment conducted in a clay-rich agricultural field. The research took place at the Samford Ecological Research Facility, Queensland, Australia, with the goal of monitoring changes in SWC in response to irrigation. We hypothesize that early-time analysis can be used to detect and monitor infiltration in clay-rich soils where direct wave and reflection GPR fails, thus opening new avenues of hydrogeophysical research in the increasingly important field of water resource management. Initial field work showed that traditional methods of using GPR reflection surveys and ground wave velocity analysis were ineffective due to the excessive signal attenuation caused by the clay-rich soil at the site. GPR and TDR datasets were collected over a 20 meter by 15 meter section of the field. GPR datasets were collected once daily, at 10 am, and TDR measurements were collected once daily at 11 am from Thursday, August 28th, 2014 until Monday, September 1st, 2014. A sprinkler irrigation was carried out on the evening of Thursday, August 28th. The results suggest that the early-time GPR method is capable of monitoring the resulting changes in SWC due to infiltration in clayey soils despite the failure of reflection and ground wave velocity analysis. The early time GPR results are consistent with moisture content estimates from TDR and gravimetric analysis of soil cores taken in the field.

  15. Mental wellbeing of children engaged in agricultural work activities and quality of family environment.

    PubMed

    Lachowski, Stanisław; Lachowska, Bogusława

    2007-01-01

    A considerable percentage of Polish children from agricultural families are engaged by their parents in performing work activities on farms. The performance of these tasks arouses various emotional reactions in children, from the feeling of threat, fear and anxiety, to the feeling of satisfaction, being contented and proud. The subjective feeling of happiness and life satisfaction is an extremely important factor affecting the mental health and functioning of a human being. The objective of the study was to show to what extent the quality of communication between children and parents, and the level of family cohesion and adaptability according to the Circumplex Model by D. H. Olson et al., modifies children's emotional reactions associated with the tasks performed. The study covered 192 children aged 12-13, whose parents were running a family farm. Growing up in a healthy family characterised by a balanced level of cohesion, adaptability and good communication with the father and mother, favours the occurrence in children of pleasant emotions in reaction to work which they undertake on behalf of their parents on a farm. In such families, more often than in families with bad communication and dysfunctional families (disengaged, rigid), children experience satisfaction, have a feeling of deepening bonds with their parents, and the feeling of being more adult and preparing themselves well for adult life. Family characteristics which are evidence of disorders in its functioning (lack of good communication with the father, mother, lack of bonds between family members, rigid, chaos in a family) co-occur with the child experiencing unpleasant emotional states in associated with the work performed, there occur feelings of dissatisfaction, unhappiness, unpleasantness, the feeling that it would be better to learn than to work. PMID:17655188

  16. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks.

    PubMed

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  17. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    PubMed Central

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  18. Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species

    PubMed Central

    Hereward, J P; Walter, G H; DeBarro, P J; Lowe, A J; Riginos, C

    2013-01-01

    Creontiades dilutus (Stål), the green mirid, is a polyphagous herbivorous insect endemic to Australia. Although common in the arid interior of Australia and found on several native host plants that are spatially and temporally ephemeral, green mirids also reach pest levels on several crops in eastern Australia. These host-associated dynamics, distributed across a large geographic area, raise questions as to whether (1) seasonal fluctuations in population size result in genetic bottlenecks and drift, (2) arid and agricultural populations are genetically isolated, and (3) the use of different host plants results in genetic differentiation. We sequenced a mitochondrial COI fragment from individuals collected over 24 years and screened microsatellite variation from 32 populations across two seasons. The predominance of a single COI haplotype and negative Tajima D in samples from 2006/2007 fit with a population expansion model. In the older collections (1983 and 1993), a different haplotype is most prevalent, consistent with successive population contractions and expansions. Microsatellite data indicates recent migration between inland sites and coastal crops and admixture in several populations. Altogether, the data suggest that long-distance dispersal occurs between arid and agricultural regions, and this, together with fluctuations in population size, leads to temporally dynamic patterns of genetic differentiation. Host-associated differentiation is evident between mirids sampled from plants in the genus Cullen (Fabaceae), the primary host, and alternative host plant species growing nearby in arid regions. Our results highlight the importance of jointly assessing natural and agricultural environments in understanding the ecology of pest insects. PMID:23610626

  19. Monitoring Environment with GIS for Part of Thiruvallur Town Using Cartosat 1 Stereo, Pan & Resourcesat Liss 4 MSS Merged Data

    NASA Astrophysics Data System (ADS)

    Mohamed, G. S.; Venkatchalam, R. V.; Ramamurthhy, M.; Gummidipoondi, R. J.; Ramillah, M.

    2012-07-01

    of Thiruvallur Municipality Area between North Western Thiruvallur town from the Temple Tank of Sri Veeraragavasamy temple to junction of National Highways connecting Thiruvallur to Tirupathi and Thiruvallur- Poondi- Uthukottai at the West. These data are used to create environment monitoring GIS to understand the use of High resolution Indian satellite data for local urban environmental planning to manage the health and environmental issues. ARC GIS 10 and Lieca photogrammetry software are used with satellite data to create different layer for creating GIS on urban infrastructure like houses, public buildings, roads, municipal surface drainage net work, underground sewerage drainage net work, drinking water pipe lines net work, landfills, solid waste disposal yards, pumping stations, degraded areas, heath services infrastructure, wet lands , low lying areas with bushes, abandoned lakes which are the breeding grounds for mosquito's in rainy season, etc These layers are correlated with the municipal ward map of this segment of the town. The stereo data of Cartosat 1 is useful for mapping the households, roads, agricultural fields, bushy areas, slopes to map the natural drainage of the area and for delineation of micro watersheds. When the layer of municipal ward maps are integrated with the GIS the drainage, drinking water lines, street names and house numbers etc can be added to the attribute data to make this as a complete Environment management GIS. The use of PAN merged data of Cartosat 1 with LISS 4, MSS Resourcesat 1 in natural colour and it's cost effectiveness is studied to explain the usefulness of creation of Environment Health GIS. The non stereo Geo Eye latest data from Google Earth web site or Cartosat 2 can be used for upgrading the land use changes and identify current environmental as on 2011.The study will provide GIS to monitor environmental issues with multi date large scale data for Thiruvallur Town.

  20. A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments

    PubMed Central

    Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.

    2012-01-01

    Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562

  1. Fiber optic spectrophotometry for monitoring dissolved oxygen in a tropical ornamental fish tank environment

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    Using Fiber Optic Spectro-Photometry (FOSP) methodology, a set of high sensitivity fiber optic oxygen monitoring system performing NDT is developed for fish farming environment. The working principle of the sensor is based on the detection signal at a particular wavelength due to the fluorescence and quenching of coated dye (ruthenium complex) in response to oxygen concentration at the tip of the probe. This paper looks into the application of fiber optics oxygen sensor in an aquatic environment. A comparison study of the optical probe was made with a conventional electrochemical oxygen sensor. Both sensors were setup to monitor the dissolved oxygen of an aquatic system for a period of time. This new methodology offers an alternative choice for monitoring dissolved oxygen. Apart from the possibility to miniaturize the monitoring equipment for aquatic environment, it is also feasible to 'bundle' other chemical sensors together into one single cable, thus achieving compactness, effectiveness and yet without forgoing whatever the traditional electrochemical sensors could offer.

  2. Techniques for monitoring the environmental impact of insecticides on aquatic ecosystems. Agricultural handbook, (final)

    SciTech Connect

    Not Available

    1984-01-01

    Aquatic sampling has evolved at an exceptional pace in recent years. The manual is designed primarily for the field technician rather than the experienced research ecologist. Its purpose is to describe the equipment, procedures, and hypotheses potentially applicable to or previously used for studies of the impact of spruce budworm pesticides. The manual focuses on the field study of fresh water macroinvertebrates and fish, and covers both lotic (flowing) and lentic (stagnant) environments.

  3. Exposure to sulfosulfuron in agricultural drainage ditches: field monitoring and scenario-based modelling.

    PubMed

    Brown, Colin D; Dubus, Igor G; Fogg, Paul; Spirlet, Marie; Gustin, Christophe

    2004-08-01

    Field monitoring and scenario-based modelling were used to assess exposure of small ditches in the UK to the herbicide sulfosulfuron following transport via field drains. A site in central England on a high pH, clay soil was treated with sulfosulfuron, and concentrations were monitored in the single drain outfall and in the receiving ditch 1 km downstream. Drainflow in the nine months following application totalled 283 mm. Pesticide lost in the first 12.5 mm of flow was 99% of the total loading to drains (0.5% of applied). Significant dilution was observed in the receiving ditch and quantifiable residues were only detected in one sample (0.06 microg litre(-1)). The MACRO model was evaluated against the field data with minimal calibration. The parameterisation over-estimated the importance of macropore flow at the site. As a consequence, the maximum concentration in drainflow (2.3 microg litre(-1)) and the total loading to drains (0.76 g) were over-estimated by factors of 2.4 and 5, respectively. MACRO was then used to simulate long-term fate of the herbicide for each of 20 environmental scenarios. Resulting estimates for concentrations of sulfosulfuron in a receiving ditch were weighted according to the prevalence of each scenario to produce a probability distribution of daily exposure. PMID:15307668

  4. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology

    PubMed Central

    2014-01-01

    Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified. PMID:24795848

  5. Development of a field worthy sensor system to monitor gaseous nitrogen transfer from agricultural cropland

    SciTech Connect

    Not Available

    1992-11-01

    Nitrogen fertilizer accounts for 25 to 33% of the energy requirements in modern crop agriculture in the world today. Energy input for the manufacture of these N fertilizers is in the range of 460 [times] 10[sup 12] Btu per year. Unfortunately, for some N sources up to 70% of this energy in the form of NK can be lost through improper application techniques and poor N management strategies. Anhydrous NH[sub 3] may be lost to the atmosphere during and after placement due to soil conditions placement. Measurement of volatile N is difficult, especially under field conditions. A precise and convenient method of measuring gaseous NH[sub 3] near and above the soil surface is prerequisite to the development and evaluation of altemative fertilizer management strategies and application techniques which can reduce the potential for significant loss. Recent advances in integrated-optic (IO) based sensing offers the potential of measuring low levels of NH[sub 3] loss from a cropping system in the range of 100 ppB. The integrated design of an IO system allows for a more durable device that can be mass produced at low cost. Under Phase I of this project, two IO devices were designed and tested: an absorption device using an oxazine dye as a waveguide coating and an interferometric device using an anilinium salt as a waveguide coating.

  6. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data

    NASA Astrophysics Data System (ADS)

    Lunetta, Ross S.; Shao, Yang; Ediriwickrema, Jayantha; Lyon, John G.

    2010-04-01

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). The crop area distributions and changes in crop rotations were characterized by comparing annual crop map products for 2005, 2006, and 2007. The total acreages for corn and soybeans were relatively balanced for calendar years 2005 (31,462 km 2 and 31,283 km 2, respectively) and 2006 (30,766 km 2 and 30,972 km 2, respectively). Conversely, corn acreage increased approximately 21% from 2006 to 2007, while soybean and wheat acreage decreased approximately 9% and 21%, respectively. Two-year crop rotational change analyses were conducted for the 2005-2006 and 2006-2007 time periods. The large increase in corn acreages for 2007 introduced crop rotation changes across the GLB. Compared to 2005-2006, crop rotation patterns for 2006-2007 resulted in increased corn-corn, soybean-corn, and wheat-corn rotations. The increased corn acreages could have potential negative impacts on nutrient loadings, pesticide exposures, and sediment-mediated habitat degradation. Increased in US corn acreages in 2007 were related to new biofuel mandates, while Canadian increases were attributed to higher world-wide corn prices. Additional study is needed to determine the potential impacts of increases in corn-based ethanol agricultural production on watershed ecosystems and receiving waters.

  7. Monitoring of polycyclic aromatic hydrocarbons on agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, J; Hashemi, S H; Khoshbakht, K; Deihimfard, R; Shahbazi, A; Momeni-Vesalian, R

    2015-07-01

    Soil samples at two depths were collected and analyzed to determine the concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), organic carbon, and soil pH. The Σ16PAHs were 0.13 to 3.92 mg kg(-1) at depth 1 and 0.21 to 50.32 mg kg(-1)at depth 2. The averages of the PAH compounds indicate that the area is contaminated with oil, and this pollution was greater at depth 2. Interpolation maps showed that the southern region, especially at depth 2, has been contaminated more by anthropogenic activity. The diagnostic ratios indicate several sources of pollution of the agricultural soil. A comparison of average PAHs and standard values revealed that higher molecular weight compounds in the topsoil (InP and BghiP) and subsoil (BaA, BkF, BaP, DBA, and BghiP) exceed standard values for farmland. The pH interpolation map for both depths showed that most of the area has alkaline soil from long-term irrigation with untreated urban wastewater. PMID:26092238

  8. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  9. Monitoring the fate of radionuclides released to the environment: May 1991 report

    SciTech Connect

    Bauer, L.R.

    1992-08-13

    A review of the radiological effluent and environmental monitoring practices in use at Mound has been conducted. The radionuclides under consideration were HT, Pu-239, U-233,234, U-238, Th-230, Th-232, Co-60, Cs-137, and Ac-227. It is concluded from this analysis that additional continuous monitoring programs are not warranted. Dose contributions from these radionuclides are negligible. Further, in many cases environmental surveillance would not be practical due to the extremely low concentrations encountered in the offsite environment. For these reasons, it is believed that no additional action is required in response to DOE Tiger Team Finding R/CF-1.

  10. Agricultural management and environment controls long-term soil nitrous oxide fluxes

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Shcherbak, I.; Robertson, G. P.

    2013-12-01

    Nitrous oxide (N2O) is an important greenhouse gas with a long atmospheric half-life. Understanding the controls on soil nitrous oxide fluxes is vital for the development of mitigation opportunities and for understanding their climatic impact. The spatial and temporal variability of soil nitrous oxide fluxes, however, makes it difficult to predict such fluxes. We examined the longest available dataset, 22 years of continues measurements, which contains biweekly measurements of soil nitrous oxide emissions together with measurements of an array of environmental and management parameters from eleven ecosystems, including four corn-soybean-wheat rotations under different management (conventional, no-till, biological, and reduced input), one perennial alfalfa system, two tree plantations, three successional systems, and one deciduous forest. This dataset was used to assess the effect of different agricultural and land management practices on soil N2O emissions. Using statistical and correlation analyses, we found that, in general, annual crops emitted 2-3 times more N2O annually than did perennial crops. Among the annual crops, there were no differences in the annual emissions among the cropping systems; the conventional, no-till, reduced input, and biologically managed systems emitted similar amounts of N2O with very different emission patterns. Among the perennial crops, alfalfa emitted 2 times more N2O than did poplar, approximately 1.6 times more than did the coniferous plantation, and ~3 times more than did the unmanaged successional communities and the deciduous forest, which emitted similar amounts. Within the annual crop rotation phases, the wheat phase of the conventionally and no-till-managed rotations emitted approximately twice as much N2O than did the reduced input- and biologically managed systems, largely due to the length of the bare soil fallow. The corn and soybean phases of the conventionally managed rotation emitted between 70 and 100% less N2O than

  11. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; hUallachain, D. O.

    2015-08-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well

  12. Identifying the controls of soil loss in agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; Ó'hUallacháin, D.

    2015-03-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required but can be expensive and technically challenging. Here, the performance of in situ turbidity-sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). Calibrated against storm-period depth-integrated SS data, both systems gave comparable results; using the ex situ and in situ methods respectively, total load at Grassland B was estimated at 128 ± 28 and 154 ± 35, and 225 ± 54 and 248 ± 52 t at Arable B. The absence of spurious turbidity peaks relating to bankside debris around the in situ sensor and its greater security, make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (FFD) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12% of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly-drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils

  13. Use of the Complex Conductivity Method to Monitor Hydrocarbon Degradation in Brackish Environments

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Beaver, C. L.; Kimak, C.; Slater, L. D.; Atekwana, E. A.; Rossbach, S.

    2015-12-01

    Hydrocarbon contamination of the subsurface is a global environmental problem. The size, location and recurrence rate of contamination very often inhibits active remediation strategies. When there is no direct threat to humans, and direct/invasive remediation methods are prohibited, monitored natural attenuation is often the remediation method of choice. Consequently, long-term monitoring of hydrocarbon degradation is needed to validate remediation. Geophysical methods, frequently utilized to characterize subsurface contamination, have the potential to be adopted for long term monitoring of contaminant degradation. Over the last decade, the complex conductivity method has shown promise as a method for monitoring hydrocarbon degradation processes in freshwater environments. We investigated the sensitivity of complex conductivity to natural attenuation of oil in a brackish setting, being more representative of the conditions where most oil spills occur such as in coastal environments. We performed a series of laboratory hydrocarbon biodegradation experiments whilst continuously monitoring complex conductivity. Sediments from a beach impacted by the Deepwater Horizon (DWH) spill were used to provide the hydrocarbon degraders, while fluids with three different salinities, ranging from fresh water to brackish water, were used as the supporting media. All experimental columns, including two abiotic controls, were run in duplicate. Early results show a dependence of the complex conductivity parameters (both electrolytic and interfacial) on biodegradation processes. Despite the small signals relative to freshwater conditions, the imaginary part of the complex conductivity appears to be sensitive to biodegradation processes. The columns with highest salinity fluids - similar to the salinites for the site where the sediments were collected - showed distinctive complex conductivity responses similar to microbial growth curves. Geochemical monitoring confirmed elevated rates

  14. Exploiting MODIS Observation Geometry To Identify Crop Specific Time Series For Regional Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Lopez-Lozano, Raul

    2013-12-01

    Due to its spatial resolution, the MODIS instrument offers much potential to monitor specific crops from space. However, only some time series fall adequately in the target crop specific fields while others straddle across different land uses, which consequently dilutes the signal. According to the daily change in orbit, the MODIS observation footprint changes considerably from one day to the next, sampling the vicinity of the grid cell. This study proposes a method to identify which time series are suitable based on the temporal signal-to-noise ratio (SNR) of such daily observations, which are acquired with different observation geometries. The approach is demonstrated over a 30 by 30 km study site in South Dakota (USA) where the time series with high SNR are classified in an unsupervised way into clusters almost exclusively composed of crop specific time series.

  15. Global Environmental Monitoring. A Report Submitted to the United Nations Conference on the Human Environment, Stockholm 1972.

    ERIC Educational Resources Information Center

    International Council of Scientific Unions, Paris (France).

    The Commission on Monitoring of the Scientific Committee on Problems of the Environment (SCOPE) of the International Council of Scientific Unions (ICSU) has submitted this report to the United Nations Conference on the Human Environment. It reviews: (1) the origin, objectives, and membership of SCOPE and the Monitoring Committee; (2) basic…

  16. Monitoring of soil moisture dynamics and spatial differences in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha; Baroni, Gabriele; Biro, Peter; Schrön, Martin

    2015-04-01

    A novel method to observe changes in soil moisture and other water pools at the land surface is non-invasive cosmic-ray neutron sensing. This approach by its physical principles is placed between in-soil measurements and remote sensing, and retrieves values for an intermediate spatial scale of several hectars, which can be used to quantify stored water at the land surface. It detects variations in the background of neutrons, induced initially from cosmic-rays hitting the atmosphere, and this can be related to interesting quantities at the land surface, such as soil moisture, but to some degree also snow water equivalent and changes in the biomass of vegetation. In a small catchment being used as a long-term landscape observatory of the TERENO initiative we retrieved cosmic-ray neutron measurements for several years, for up to four adjacent sites. The terrain was hilly with some slopes being partly used for agricultural fields, partly grassland. Here, after atmospheric corrections and a calibration procedure soil moisture dynamics could be observed for integral soil depths of several decimeters, clearly responding to precipitation events and offering a comparison to various local and non-local soil moisture measurements there. For winter periods with frost and snow, also the water mass stored in the snow cover can be retrieved. Furthermore, observed spatial differences can be related to vegetation, terrain and soil moisture state. Also, the relation to parameters representing crop biomass and growth will be discussed in respect to the retrieved cosmic-ray neutron signals, which have an influence on the interpretation as soil moisture.

  17. Shuttle/Payload Contamination Evaluation /SPACE/ Program verification with the Induced Environment Contamination Monitor

    NASA Astrophysics Data System (ADS)

    Bareiss, L. E.; Pugel, N. J.

    1980-01-01

    The ultimate test of the validity of the Shuttle/Payload Contamination Evaluation (SPACE) computer program, designed to analyze the induced optical environment of sensitive instruments and systems, will be the comparison of model predictions with acquired flight data. A prime opportunity for such verification will occur during the early Shuttle and Spacelab missions which will carry the Induced Environment Contamination Monitor (IECM) package. This paper presents the IECM instrument descriptions, assesses the IECM parametric measurements, and reviews the systematic approach to the verification of the computer model methodology and the significant influencing model parameters.

  18. On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    PubMed Central

    Bagula, Antoine B.; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks. PMID:22408557

  19. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  20. Groundwater Recharge Estimates under Agricultural Lands based on Deep Vadose Zone Sampling, Monitoring and Modeling, Mediterranean Climate, Israel

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Turkeltub, T.; Shapira, R.; Dahan, O.

    2011-12-01

    Models of unsaturated flow and chloride transport under different agricultural settings were calibrated to deep vadose-zone samples or monitoring systems' data. The land settings include irrigated citrus orchards in light and heavy soils, a rain-fed winter crop field, an irrigated summer crop field and a bare sand dune. Vadose zone monitoring system (VMS), which enables continuous measurements of the vadose zone water content and frequent sampling of pore water at selected points across the entire vadose zone were used in three sites. In other sites direct push rigs were used for obtaining continuous core to depths ~ 10 m, and all physical and chemical characterization were derived in the lab. Hydrus 1D code was used for calibrating the models, validation runs (only in monitored sites) and simulations. In orchards, large variability of rechrge rates within the same orchard was observed. On average, relatively low recharge rates were calculated (~10% of precipitation+ irrigation), and high masses of chloride accumulations are found in many profiles obtained under orchards. Recharge variability within the same crop-field was usually smaller than the variability found in orchards while average relative recharge rates are usually higher than in orchards. Calibrated models were used for simulation of long periods and some simple precipitation-recharge statistics for the different land uses were obtained. Scenarios of land-use and climate change where used to produce estimates of the effects of these changes on recharge (e.g. 25% drop in rainfall will lead to ~50% drop in recharge under rain-fed crop).

  1. The Combination of Uav Survey and Landsat Imagery for Monitoring of Crop Vigor in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Lukas, V.; Novák, J.; Neudert, L.; Svobodova, I.; Rodriguez-Moreno, F.; Edrees, M.; Kren, J.

    2016-06-01

    relationship to vegetation indices. Total amount of aboveground biomass was identified as the most important factor influencing the values of vegetation indices. Based on the results can be assumed that UAV and satellite monitoring provide reliable information about crop parameters for site specific crop management. The main difference of their utilization is coming from their specification and technical limits. Satellite survey can be used for periodic monitoring of crops as the indicator of their spatial heterogeneity within fields, but with low resolution (30 m per pixel for OLI). On the other hand UAV represents a special campaign aimed on the mapping of high-detailed spatial inputs for site specific crop management and variable rate application of fertilizers.

  2. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    PubMed

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices. PMID:24487985

  3. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described. PMID:19964802

  4. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  5. STS-3 Induced Environment Contamination Monitor (IECM): Quick-look report

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor); Fountain, J. A. (Editor)

    1982-01-01

    The STS-3/Induced Environment Contamination Monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-3. Finally, a short summary is presented and plans are discussed for future IECM flights, and opportunities for direct mapping of Orbiter effluents using the Remote manipulator System.

  6. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    NASA Astrophysics Data System (ADS)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  7. Space Environment Monitoring System in next generation Geostationary Meteorological Satellite of China

    NASA Astrophysics Data System (ADS)

    Xin, Zhang

    Feng Yun 4(FY-4) is a second-generation Meteorological Remote Sensing earth observation satellite of China. On board FY-4, Space Environment Monitoring System(SEMS) consist of seven payloads, including 3 High Energy Particle Detector(HEPD), 1 Magnetometer(MTM), 1 Charging Potential Probe(CPP) and 1 Radiation Dosimeter(RD). High energy particle , magnetic field and space environment effect compose of main goals of SEMS. The HEPD instrument will detect proton with 3 directions , electron with 9 directions. Magnetometer will monitor magnetic field intensity between -400nT and +400nT. CPP will monitor Relative Surface Voltage from -10KV to +1KV, Absolute Surface Voltage from -20KV to -100V ,+100V to +1KV, Deep Surface Voltage from -2.5KV to 0V. RD will monitor dose from 0 rad to 200,000 rad. The first FY-4 satellite is planned to be launched in Dec 2015,This next-generation system will continue to provide more information about space weather, and SEMS will be playing more important role in space weather.

  8. Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach

    EPA Science Inventory

    The accelerated growth in biofuels markets has both created and reinforced linkages between agricultural and energy markets. This study investigates the dynamics in agricultural and biofuel markets under alternative price scenarios for both crude oil and natural gas. Two energy ...

  9. Monitoring and Evaluation of African Women in Agricultural Research and Development (AWARD): An Exemplar of Managing for Impact in Development Evaluation

    ERIC Educational Resources Information Center

    Brandon, Paul R.; Smith, Nick L.; Ofir, Zenda; Noordeloos, Marco

    2014-01-01

    In this Exemplars case, the fifth and final under the direction of the current coeditors, the authors present a reflective account of an ongoing, complex, multiyear, multinational monitoring and evaluation (M&E) system conducted for African Women in Agricultural Research and Development (AWARD), an international development program. The…

  10. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    PubMed Central

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  11. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  12. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Broers, H. P.; Berendrecht, W. L.; Rozemeijer, J. C.; Osté, L. A.; Griffioen, J.

    2015-08-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling

  13. Identifying, monitoring and implementing "sustainable" agricultural practices for smallholder farmers over large geographic areas in India and Vietnam

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Ahuja, R.; Nair, D.; Esteves, T.; Rudek, J.; Thu Ha, T.

    2015-12-01

    Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small-holder farms (size <1 acre) in Asia and Africa. Along with our partners from non-governmental, corporate, academic and government sectors and tens of thousands of farming families, we have worked actively in five states in India and two provinces in Vietnam for the last five years to understand how sustainable and climate smart farming practices can be monitored at small-holder farms. Here, any approach to monitor farming must begin by accounting for the tremendous management variability from farm to farm and also the current inability to ground-truth remote sensing data due to lack of relaible basic parameters (e.g., yields, N use, farm boundaries) which are necessary for calibrating empirical/biogeochemical models. While we continue to learn from new research, we have found that it is crucial to follow some steps if sustainable farming programs are to succeed at small-holder farms Demographic data collection and GPS plot demarcation to establish farm size and ownership Baseline nutrient, water & energy use and crop yield determination via surveys and self-reporting which are verifiable through farmer networks given the importance of peer to peer learning in the dissemination of new techniques in such landscapes "Sustainable" practice determination in consultation with local universities/NGO experts Measurements on representative plots for 3-4 years to help calibrate biogeochemical models and/or empirical equations and establish which practices are truly "sustainable" (e.g., GHG emission reduction varies from 0-7 tCO2e/acre for different sustainable practices). Propagation of sustainable practices across the landscape via local NGOs/governments after analyzing the replicability of identified farming practices in the light of local financial, cultural or socio-political barriers. We will present results from representative plots (including soil and

  14. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.

    PubMed

    Luo, Yuzhou; Zhang, Minghua

    2009-01-01

    A geo-referenced modeling system was developed in this study to investigate the spatiotemporal variability of pesticide distributions and associated ecosystem risks. In the modeling system, pesticide fate and transport processes in soil-canopy system were simulated at field scale by the pesticide root zone model (PRZM). Edge-of-field mass fluxes were up-scaled with a spatially distributed flow-routing model to predict pesticide contaminations in surface water. The developed model was applied to the field conditions of the Orestimba Creek watershed, an agriculturally-dominated area in California's Central Valley during 1990 through 2006, with the organophosphate insecticides diazinon and chlorpyrifos as test agents. High concentrations of dissolved pesticides were predicted at the watershed outlet during the irrigation season of April through November, due to the intensive pesticide use and low stream flow. Concentration violations, according to the California aquatic life criteria, were observed for diazinon before 2001, and for chlorpyrifos during the entire simulation period. Predicted pesticide exposure levels showed potential adverse effects on certain genera of sensitive aquatic invertebrates in the ecosystem of the Orestimba Creek. Modeling assessments were conducted to identify the factors governing spatial patterns and seasonal trends on pesticide distribution and contamination potentials to the studied aquatic ecosystem. Areas with high pesticide yields to surface water were indicated for future research and additional studies focused on monitoring and mitigation efforts within the watershed. Improved irrigation techniques and management practices were also suggested to reduce the violations of pesticide concentrations during irrigation seasons. PMID:19244487

  15. Neurocognitive monitors: toward the prevention of cognitive performance decrements and catastrophic failures in the operational environment.

    PubMed

    Thomas, Maria L; Russo, Michael B

    2007-05-01

    Network-centric doctrine and the proposed C41SR (command, control, communications, computers, intelligence, surveillance and reconnaissance) distributions to the individual warfighter require that the cognitive performance, judgment, and decision making of warfighters must be sustained and effectively managed in the forward operating environment, where various physiological and psychological stressors abound, in order to reduce human errors and catastrophic failures. The U.S. Army Medical Research and Materiel Command (USAMRMC) established the Cognitive Performance, Judgment, and Decision-Making Research Program (CPJDRP) in 2004 to direct research to this issue. A Neurophysiological Measures and Cognition Focus Team (NMFCT) was formed to work with augmented cognition investigators and to specifically address the development of neurophysiological measures as potential monitors of alertness-cognitive state in warfighters. The USAM-RMC approach complemented the Defense Advanced Research Projects Agency (DARPA) Augmented Cognition approach, which focused on the detection of workload-related impaired cognitive state, and subsequent modification of information flow through automation. In this preface, the premise for neurophysiological measures as neurocognitive monitors is explained using an example of a neurophysiological index: the oculomotor measure, saccadic velocity. The progress of the NMFCT on the development of a neurocognitive monitor is described, as well as the recommendations of a 2005 USAMRMC/Telemedicine and Advanced Technology Research Center (TATRC)-sponsored workshop. Awareness of neurocognitive monitoring is discussed, as are future endeavors related to operational testing and fieldability. Four papers are summarized in this Neurophysiological Monitoring and Augmented Cognition section involving technologies to enhance cognitive performance in the operational environment: one on dynamic cortical electroencephalography, two on oculometrics, and one on a

  16. Lutte biologique pour l’agriculture et l’environnement américains Biological Control for American Agriculture and the Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The European Biological Control Laboratory (EBCL), located on the Agropolis Campus, is operated by the United States Department of Agriculture to conduct research on biological control of invasive arthropods and plants. Many of the target species originated in Europe, Asia or Africa, so we explore ...

  17. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  18. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    SciTech Connect

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  19. Feasibility of Mating Disruption for Agricultural Pest Eradication in an Urban Environment: Light Brown Apple Moth (Lepidoptera: Tortricidae) in Perth.

    PubMed

    Soopaya, Rajendra; Woods, Bill; Lacey, Ian; Virdi, Amandip; Mafra-Neto, Agenor; Suckling, David Maxwell

    2015-08-01

    Eradication technologies are needed for urban and suburban situations, but may require different technologies from pest management in agriculture. We investigated mating disruption of a model moth species recently targeted for eradication in Californian cities, by applying dollops of SPLAT releasing a two-component sex pheromone of the light brown apple moth in 2-ha plots in low-density residential Perth, Australia. The pheromone technology was applied manually at ∼1.5 m height to street and garden trees, scrubs, and walls at 500 dollops per hectare of 0.8 g containing ∼80 mg active two-component pheromone. Catches of male moths were similar among all plots before treatment, but in treated areas (six replicates) pheromone trap catches were substantially reduced for up to 29 wk posttreatment, compared with untreated control plot catches (three replicates). The treatment with pheromone reduced catch to virgin females by 86% (P < 0.001) and reduced the occurrence of mating by 93%, compared with three equivalent untreated control plot catches (P < 0.001). Eradication programs are following an upward trend with globalization and the spread of invasive arthropods, which are often first detected in urban areas. Eradication requires a major increase in the communication distance between individuals, but this can be achieved using sex pheromone-based mating disruption technology, which is very benign and suitable for sensitive environments. The need for new socially acceptable tools for eradication in urban environments is likely to increase because of increasing need for eradications. PMID:26470337

  20. High frequency monitoring of the coastal marine environment using the MAREL buoy.

    PubMed

    Blain, S; Guillou, J; Tréguer, P; Woerther, P; Delauney, L; Follenfant, E; Gontier, O; Hamon, M; Leilde, B; Masson, A; Tartu, C; Vuillemin, R

    2004-06-01

    The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system. PMID:15173911

  1. Urban ecological environment monitoring and evaluation based on remote sensing ecological index

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-gen; Tong, Cheng-zhuo; Chen, Xiao-yong; Nie, Yun-ju

    2015-12-01

    At present, the dynamic change monitoring of urban ecological environment has became an important guarantee measure for urban management, planning and construction. In this paper, taking Nanchang city as a case study, the remote sensing ecological index (RSEI) which is based on the natural factors is used to study the changes of the urban ecological environment. The Landsat images in the three different time periods of 1996, 2005, and 2013 in Nanchang were selected. To extract the four factors of green level, moisture, dryness and heat respectively as sub-indexs of the ecological assessment, in which the single window algorithm was used to calculate the heat. Based on the four factors, the RSEI in each year was finally calculated. The results show that the ecological environment in Nanchang deteriorated in the past 17 years, the value of the RSEI has decreased from 0.385 in 1996 to 0.267 in 2005, falling by 30.65%, but the ecological environment has improved in the later period, with the value of RSEI value rising to 0.413, increased by 54.68% compared with the results in 2005. It is indicates that the urban ecological environment of Nanchang has been significantly improved after some effective measures such as urban greening, pollution control, environmental protection were taken.

  2. Science of Agricultural Environment

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  3. Remote Environmental Monitoring of Hydrologic/ Biotic Interaction in a Mountain Environment

    NASA Astrophysics Data System (ADS)

    Hartsough, P. C.; Malazian, A.; Tuli, A.; Kamai, T.; Kizito, F.; Bales, R.; Broad, A.; Hopmans, J.

    2008-12-01

    Wireless sensor networks offer several advantages in monitoring of dynamic environmental variables in remote landscapes and offer a promising approach to realize the full potential of environmental monitoring. Wireless sensors also offer the advantage of real time data collection and sensor/network management and reduced long-term costs. Better understanding of surface water budgets in remote landscapes warrants close monitoring of moisture and temperature variability in near surfaces soils. This work describes field data demonstrating the functionality of four different wireless networks, at two field sites, both part of the Southern Sierra Critical Zone Observatory (CZO). Equipment used varied from traditional point to point radio communication to a wireless mote based, distributed network. Sensors measuring water potential, volumetric water content, and soil temperature were deployed at a variety of sites including, a remote alpine meadow, along a topographic gradient with a dense tree canopy and within the root structure of an individual tree. The sensors were reactive to moisture and temperature variations and the wireless systems met the goal of providing informative data on dynamic responses of soil moisture to precipitation, snow melt and changes in vegetative demand. The systems were dependable, with low power consumption and were robust enough to withstand harsh winter conditions at a high elevation site. The study highlights measurement accuracy, power consumption, and data transmission limitations of the three systems. We demonstrate that deployment, implementation and long-term field monitoring in remote and challenging environments is possible with a variety of wireless systems.

  4. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  5. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China.

    PubMed

    Yi, Qitao; Xie, Kai; Sun, Pengfei; Kim, Youngchul

    2014-02-15

    Extensive coal mining in the Huainan Coal Mines, Anhui China, in light of the local hydrology and geology, has resulted in extensive land subsidence and submergence around the mines. This has led to the formation of large (>100 km(2)) lakes. Three representative lakes were selected to study the mechanisms of phosphorus (P) unavailability for primary production from the perspective of sedimentary environments, which in turn owe their formation to permanently inundated agricultural soils. Two important issues were considered: (1) potential of P transport from the cultivated soil column toward surface sediments and (2) characterization of P behavior in view of regional ecological rehabilitation and conservation. Accordingly, we conducted field sediment analyses, combined with simulation experiments of soil column inundation/submergence lasting for four months. Enrichment of Fe-(hydr)oxides in surface sediments was verified to be the main reason for limitations in regional P availability in water bodies. Iron (Fe), but not its bound P, moved upward from the submerged soil column to the surface. However, an increasing upward gradient in the contents of organic matter (OM), total nitrogen (N), total phosphorus (TP), and different P fractions was caused by spatial heterogeneity in soil properties. Phosphorus was unable to migrate upward toward the surface sediments as envisioned, because of complex secondary reactions within soil minerals. Phosphorus bound to Fe and/or Al comprised over 50% of TP, which has important implications for local ecological rehabilitation and water conservation. PMID:24317161

  6. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 9. Science Applications, Incorporated Phase 2 - definition study

    SciTech Connect

    Not Available

    1985-01-01

    This report describes the effort required to implement the design of the Solar Controlled Environment Agriculture Engineering Test Facility, SCEA-ETF. This report is a basic blueprint for the Phase 2 activities which have as a goal the construction of the ETF. These activities have been broken down into five major tasks, namely Project Management; Engineering and Design; Procurement/Fabrication; Construction, Installation and Checkout; and Operation and Maintenance. The type of activities required under each of these tasks are described followed by a detailed work breakdown structure. The Phase 2 project organization is discussed. A 13 month schedule for the total project is also given. Lastly, two appendices discuss cost adjustment factors for an ETF located in the KSA, and an update of the commercial system cost estimate based on preliminary cost quotations for the ETF. The results show a 63% cost increase for the KSA ETF primarily due to higher construction costs and greater well depth. The commercial system cost required an adjustment upwards of 7.7%.

  7. The Sophia-Antipolis Conference: General presentation and basic documents. [remote sensing for agriculture, forestry, water resources, and environment management in France

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.

  8. Qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Corliss, Daniel; Groenendijk, Remco; Carpaij, Rene; van Niftrik, Ton; Landie, Guillaume; Tamura, Takao; Pepin, Thomas; Waddell, James; Woods, Jerry; Robinson, Chris; Tian, Kehan; Johnson, Richard; Halle, Scott; Kim, Ryoung-Han; Mclellan, Erin; Kato, Hirokazu; Scaduto, Anthony; Maier, Carl; Colburn, Matt

    2011-04-01

    This paper will describe the development, qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator for optical lithography. FlexRay TM, a programmable illuminator based on a MEMs multi-mirror array that was developed for TWINSCAN XT:19x0i and TWINSCAN NXT series ASML immersion scanners, was first installed in January 2010 at Albany Nanotech, with subsequent tools installed in IBM's East Fishkill Manufacturing facility. After a brief overview of the concept and benefits of FlexRay, this paper will provide a comprehensive assessment of its reliability and imaging performance. A CD-based pupil qualification (CDPQ) procedure will be introduced and shown to be an efficient and effective way to monitor pupil performance. Various CDPQ and in-resist measurement results will be described, offering convincing evidence that FlexRay reliably generates high-quality pupils and is well suited for high volume manufacturing at lithography's leading edge.

  9. Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments.

    PubMed

    Cook, Diane J; Holder, Lawrence B

    2011-07-01

    The data mining and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. One question that frequently arises, however, is how many smart home sensors are needed and where should they be placed in order to accurately recognize activities? We employ data mining techniques to look at the problem of sensor selection for activity recognition in smart homes. We analyze the results based on six data sets collected in five distinct smart home environments. PMID:21760755

  10. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  11. Monitoring rice cropping systems using China environment satellite data in Poyang Lake region

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming

    Threshold method was utilized to discriminate rice cropping systems based on the noticeable variation of Normalized Difference Vegetation Index (NDVI) during key growth stages in Poyang Lake Region, China. This area is dominated by double- and single rice cropping systems which tend to change due to the frequent ecosystem management policies. We used a new satellite data from the CCD camera sensor with 30 m spatial resolution onboard the China Environmental Satellite HJ-1A and B. The HJ -1A/B with a better temporal resolution of four days provides more data options for effective and timely agriculture monitoring. The result showed that there is evident difference of NDVI between single and late rice during mid October when they are in different growth stages. The areas of single and late rice in 2011 were 2988.6 km2 and 3105.9 km2, respectively. Paddy field distribution map and local paddy rice calendar are requisite to move the threshold method into other multiple rice cropping regions. The study suggests that the China Environmental Satellite HJ-1A/B have the potential to rice cropping system in the double to triple rice cropping systems area. With many advantages of HJ-1A/B, like, finer spatial and temporal resolution, bigger imaging swath, it may make rice cropping system monitoring more feasible and operational.

  12. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. PMID:26281966

  13. Monitoring the environment: sound localization equipment for deaf-blind people.

    PubMed

    Borg, E; Rönnberg, J; Neovius, L; Kjellander, M

    1999-03-01

    The problems that deaf-blind subjects have with monitoring the environment and the strategies they use were identified using structured interviews. The use of the vibratory sense did not appear to be highly developed, but some individuals indicated that it has great potential. We describe here the design of a computerized laboratory device for sound localization, based on a three-microphone system with a cross correlation algorithm. It was found to have reasonable precision and sufficient reliability to allow the detection and localization of a person approaching a deaf-blind subject in an ordinary room. The next step is to miniaturize the equipment and build a portable prototype. PMID:10320064

  14. IMAGE information monitoring and applied graphics software environment. Volume 1. Executive overview

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  15. IMAGE information monitoring and applied graphics software environment. Volume 4. Applications description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  16. IMAGE information monitoring and applied graphics software environment. Volume 3. User's guide

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  17. Biomedical real-time monitoring in restricted and safety-critical environments

    PubMed Central

    Astaras, A; Bamidis, P D; Kourtidou-Papadeli, C; Maglaveras, N

    2008-01-01

    Biomedical signal monitoring can counteract the risk of human operator error due to inattention or fatigue in safetycritical and restrictive environments, such as in aviation, space, automobile and heavy industrial machinery operation. Real-time biomedical data acquisition is changing through advances in microelectronics fabrication, bio-MEMS and power micro-generators. Such data acquisition and processing systems are becoming increasingly miniaturised, flexible and pervasive, while data is being collected from inside the human body as well as around it. In this paper we review two related research projects exploiting this technological convergence, discuss its implications and suggest future innovation prospects through further similar cross-disciplinary synergies. PMID:19048087

  18. Agricultural Waste.

    PubMed

    Shu, Huajie; Zhang, Panpan; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2015-10-01

    The management and disposal of agricultural waste are drawn more and more attention because of the increasing yields and negative effects on the environment. However, proper treatments such as converting abundant biomass wastes into biogas through anaerobic digestion technology, can not only avoid the negative impacts, but also convert waste into available resources. This review summarizes the studies of nearly two hundred scholars from the following four aspects: the characterization, reuse, treatment, and management of agricultural waste. PMID:26420088

  19. Monitoring the world's agriculture.

    PubMed

    Sachs, Jeffrey; Remans, Roseline; Smukler, Sean; Winowiecki, Leigh; Andelman, Sandy J; Cassman, Kenneth G; Castle, David; DeFries, Ruth; Denning, Glenn; Fanzo, Jessica; Jackson, Louise E; Leemans, Rik; Lehmann, Johannes; Milder, Jeffrey C; Naeem, Shahid; Nziguheba, Generose; Palm, Cheryl A; Pingali, Prabhu L; Reganold, John P; Richter, Daniel D; Scherr, Sara J; Sircely, Jason; Sullivan, Clare; Tomich, Thomas P; Sanchez, Pedro A

    2010-07-29

    To feed the world without further damaging the planet, Jeffrey Sachs and 24 foodsystem experts call for a global data collection and dissemination network to track the myriad impacts of different farming practices. PMID:20671691

  20. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products.

    PubMed

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon; Mah, Jae-Hyung

    2015-09-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  1. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products

    PubMed Central

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon

    2015-01-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  2. Ambient monitoring of airborne asbestos in non-occupational environments in Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Kakooei, Hossein; Meshkani, Mohsen; Azam, Kamal

    2013-12-01

    Airborne asbestos fiber concentrations were monitored in the urban areas of Tehran, Iran during the period of 23 August to 21 September 2012. The airborne fiber concentrations of 110 air samples collected from 15 different sites in five regions of Tehran. The monitoring sites were located 2.5 m above ground nearby the main street and heavy traffic jam. The ambient air samples were analyzed using scanning electron microscopy (SEM), with energy-dispersive X-ray analysis and phase-contrast optical microscopy (PCM). The geometric means of the airborne asbestos fiber concentrations in the outdoor living areas was 1.6 × 10-2 SEM f ml-1 (1.18 × 10-3 PCM f ml-1). This criteria is considerably higher than those reported for the levels of asbestos in outdoor living areas in the Europe and the non-occupational environment of the Korea. No clear correlation was found between asbestos fiber concentration and the relative humidity and temperature. The SEM and PLM analysis revealed that all samples examined contained only chrysotile asbestos. It can be concluded that several factor such as heavy traffic, cement sheet and pipe consumption of asbestos, and geographical conditions play an important role for the high airborne asbestos levels in the non-occupational environments.

  3. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment.

    PubMed

    Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined. PMID:26619247

  4. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  5. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented. PMID:24667385

  6. Issues of sustainable irrigated agriculture in the San Joaquin Valley of California in a changing regulatory environment concerning water quality and protection of wildlife

    SciTech Connect

    Quinn, N.W.T.; Delamore, M.L.

    1994-06-01

    Since the discovery of selenium toxicosis in the Kesterson Reservoir in the San Joaquin Valley, California, public perception of irrigated agriculture as a benign competitor for California`s developed water supply has been changed irrevocably. Subsurface return flows from irrigated agriculture were implicated as the source of selenium which led to incidents of reproductive failure in waterfowl and threatened survival of other fish and wildlife species. Stringent water quality objectives were promulgated to protect rivers, tributaries, sloughs and other water bodies receiving agricultural discharges from selenium contamination. Achieving these objectives was left to the agricultural water districts, federal and state agencies responsible for drainage and water quality enforcement in the San Joaquin Basin. This paper describes some of the strategies to improve management of water resources and water quality in response to these new environmental objectives. Similar environmental objectives will likely be adopted by other developed and developing countries with large regions of arid zone agriculture and susceptible wildlife resources. A series of simulation models have been developed over the past four years to evaluate regional drainage management strategies such as: irrigation source control; drainage recycling; selective retirement of agricultural land; regional shallow ground water pumping; coordination of agricultural drainage, wetland and reservoir releases; and short-term ponding of drainage water. A new generation of Geographic Information Service-based software is under development to bridge the gap between planning and program implementation. Use of the decision support system will allow water districts and regulators to continuously monitor drainage discharges to the San Joaquin River in real-time and to assess impacts of management strategies that have been implemented to take advantage of the River`s assimilative capacity for trace elements and salts.

  7. Geostationary Environment Monitoring Spectrometer (gems) Over the Korea Peninsula and Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Lasnik, J.; Stephens, M.; Baker, B.; Randall, C.; Ko, D. H.; Kim, S.; Kim, Y.; Lee, E. S.; Chang, S.; Park, J. M.; SEO, S. B.; Youk, Y.; Kong, J. P.; Lee, D.; Lee, S. H.; Kim, J.

    2014-12-01

    Introduction: The Geostationary Environment Monitoring Spectrometer (GEMS) is one of two instruments manifested aboard the South Korean Geostationary Earth Orbit KOrea Multi-Purpose SATellite-2B (GEO-KOMPSAT-2B or GK2B), which is scheduled to launch in 2018. Jointly developed/built by KARI and Ball Aerospace, GEMS is a geostationary UV-Vis hyperspectral imager designed to monitor trans-boundary tropospheric pollution events over the Korean peninsula and Asia-Pacific region. The spectrometer provides high temporal and spatial resolution (3.5 km N/S by 7.2 km E/W) measurements of ozone, its precursors, and aerosols. Over the short-term, hourly measurements by GEMS will improve early warnings for potentially dangerous pollution events and monitor population exposure. Over the 10-year mission-life, GEMS will serve to enhance our understanding of long-term climate change and broader air quality issues on both a regional and global scale. The GEMS sensor design and performance are discussed, which includes an overview of measurement capabilities and the on-orbit concept of operations. GEMS Sensor Overview: The GEMS hyperspectral imaging system consists of a telescope and Offner grating spectrometer that feeds a single CCD detector array. A spectral range of 300-500 nm and sampling of 0.2 nm enables NO2, SO2, HCHO, O3, and aerosol retrieval. The GEMS field of regard (FOR), which extends from 5°S to 45°N in latitude and 75°E to 145°E in longitude, is operationally achieved using an onboard two-axis scan mirror. On-orbit, the radiometric calibration is maintained using solar measurements, which are performed using two onboard diffusers: a working diffuser that is deployed routinely for the purpose of solar calibration, and a reference diffuser that is deployed sparingly for the purpose of monitoring working diffuser performance degradation.

  8. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  9. HotSense: a high temperature piezoelectric platform for sensing and monitoring in extreme environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stevenson, Tim; Wines, Thomas; Martin, David; Vickers, William; Laws, Michael

    2016-04-01

    Effective monitoring of asset integrity subject to corrosion and erosion while minimizing the exposure of personnel to difficult and hazardous working environments has always been a major problem in many industries. One solution of this problem is permanently installed ultrasonic monitoring equipment which can continuously provide information on the rate of corrosion or cracking, even in the most severe environments and at extreme temperatures to prevent the need for shutdown. Here, a permanently installed 5 MHz ultrasonic monitoring system based on our HotSense® technology is designed and investigated. The system applicability for wall thickness, crack monitoring and weld inspection in high temperature environments is demonstrated through experimental studies on a range of Schedule 40 pipes at temperatures up to 350 °C continuously. The applicability for this technology to be distributed to Aerospace and Nuclear sectors are also explored and preliminary results discussed.

  10. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings.

    PubMed

    Hong, Pei-Ying; Li, Xiangzhen; Yang, Xufei; Shinkai, Takumi; Zhang, Yuanhui; Wang, Xinlei; Mackie, Roderick I

    2012-06-01

    Given the growing concerns over human and animal health issues related to confined animal feeding operations, an in-depth examination is required to monitor for airborne bacteria and associated antibiotic resistance genes. Our 16S rRNA-based pyrosequencing revealed that the airborne microbial community skewed towards a higher abundance of Firmicutes (> 59.2%) and Bacteroidetes (4.2-31.4%) within the confinement buildings, while the office environment was predominated by Proteobacteria (55.2%). Furthermore, bioaerosols in the confinement buildings were sporadically associated with genera of potential pathogens, and these genera were more frequently observed in the bioaerosols of pig and layer hen confinement than the turkey confinement buildings and office environment. High abundances of tetracycline resistance genes (9.55 × 10(2) to 1.69 × 10(6) copies ng(-1) DNA) were also detected in the bioaerosols sampled from confinement buildings. Bacterial lineages present in the poultry bioaerosols clustered apart from those present in the pig bioaerosols and among the different phases of pig production, suggesting that different livestock as well as production phase were associated with a distinct airborne microbial community. By understanding the diversity of biotic contaminants associated with the different confinement buildings, this study facilitates the implementation of better management strategies to minimize potential health impacts on both livestock and humans working in this environment. PMID:22414212

  11. CMEMS (Copernicus Marine Environment Monitoring Service) In Situ Thematic Assembly Centre: A service for operational Oceanography

    NASA Astrophysics Data System (ADS)

    Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles

    2016-04-01

    Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the

  12. The use of body condition and haematology to detect widespread threatening processes in sleepy lizards (Tiliqua rugosa) in two agricultural environments

    PubMed Central

    Smyth, Anita K.; Smee, Elizabeth; Godfrey, Stephanie S.; Crowther, Mathew; Phalen, David

    2014-01-01

    Agricultural practices, including habitat alteration and application of agricultural chemicals, can impact wildlife resulting in their decline. Determining which of these practices are contributing to declines is essential if the declines are to be reversed. In this study, the health of two geographically separated sleepy lizard (Tiliqua rugosa) populations was compared between a rangeland environment and cropping environment using linear body size index (LBSI) and haematology. Animals in the cropping site were smaller, suggesting genetic differences as the result of geographical isolation. The animals in the cropping site had a lower LBSI and many were experiencing a regenerative anaemia. The anaemia was postulated to be the cause of the low LBSI. The anaemia appeared to be the result of haemolysis and was likely to be caused by exposure to agricultural chemicals applied in the cropping site but not the rangeland site. Elevated white blood cell counts in lizards in the rangeland site suggested that they were experiencing an inflammatory disease of possible ecological significance. Together, these results demonstrate the value of combining physical and haematological parameters when studying the impact of agricultural practices on wildlife. They also show that reptiles may be useful as sentinel species for livestock and humans. PMID:26064571

  13. Leakage and Seepage in the Near-Surface Environment: An Integrated Approach to Monitoring and Detection

    SciTech Connect

    Oldenburg, Curtis M.; Lewicki, Jennifer L.

    2003-12-18

    Monitoring and detection of leakage and seepage of carbon dioxide (CO{sub 2}) in the near-surface environment is needed to ensure the safety and effectiveness of geologic carbon sequestration. Large leakage fluxes, e.g., through leaking wells, will be easier to detect and monitor than slow and diffuse leakage and seepage. The challenge of detecting slow leakage and seepage is discerning a leakage or seepage signal from within the natural background variations in CO{sub 2} concentration and flux that are controlled by a variety of coupled processes in soil. Although there are no direct examples of leaking geologic carbon sequestration sites on which to base a proposed verification approach, we have been guided by our prior simulation studies of CO{sub 2} leakage and seepage, which showed that large CO{sub 2} concentrations can develop in the shallow subsurface even for relatively small CO{sub 2} leakage fluxes. A variety of monitoring technologies exists for measuring CO{sub 2} concentration and flux, but there is a gap between instrument performance and the detection of a leakage or seepage signal from within large natural background variability. We propose an integrated approach to monitoring and verification. The first part of our proposed approach is to characterize and understand the natural ecosystem before CO{sub 2} injection occurs so that future anomalies can be recognized. Measurements of natural CO{sub 2} fluxes using accumulation chamber (AC) and eddy correlation (EC) approaches, soil CO{sub 2} concentration profiles with depth, and carbon isotope compositions of CO{sub 2} are needed to characterize the natural state of the system prior to CO{sub 2} injection. From this information, modeling needs to be carried out to enhance understanding of carbon sources and sinks so that anomalies can be recognized and subject to closer scrutiny as potential leakage or seepage signals. Long-term monitoring using AC, EC, and soil-gas analyses along with ecosystem and

  14. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve

  15. A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.

    PubMed

    Luke, Chung Sze; Selimkhanov, Jangir; Baumgart, Leo; Cohen, Susan E; Golden, Susan S; Cookson, Natalie A; Hasty, Jeff

    2016-01-15

    Culturing cells in microfluidic "lab-on-a-chip" devices for time lapse microscopy has become a valuable tool for studying the dynamics of biological systems. Although microfluidic technology has been applied to culturing and monitoring a diverse range of bacterial and eukaryotic species, cyanobacteria and eukaryotic microalgae present several challenges that have made them difficult to culture in a microfluidic setting. Here, we present a customizable device for the long-term culturing and imaging of three well characterized strains of cyanobacteria and microalgae. This platform has several advantages over agarose pads and demonstrates great potential for obtaining high quality, single-cell gene expression data of cyanobacteria and algae in precisely controlled, dynamic environments over long time periods. PMID:26332284

  16. Extraction, enumeration and identification methods for monitoring microplastics in the environment

    NASA Astrophysics Data System (ADS)

    Qiu, Qiongxuan; Tan, Zhi; Wang, Jundong; Peng, Jinping; Li, Meimin; Zhan, Zhiwei

    2016-07-01

    There is much research on the occurrence, pollution characteristics and impacts of microplastics in the marine environment but this omits factors which play important roles in the analysis of microplastics. This review summarizes the methods and techniques in the extraction from sediment, seawater and organisms, and assesses their advantages and limitations according to different experimental conditions, such as salt solution and reagents added to remove organic matter. Similarly, this overview includes the enumeration methods of microplastics by many kinds of microscopes (e.g. stereomicroscope, fluorescent microscope, scanning electron microscope). Advantages and challenges of using micro-FTIR, ART-FTIR, FPA-FTIR, Pry-GC/MS, and Raman spectroscopy in the identification methods are also discussed. This review suggests that monitoring microplastics needs standardized protocols for extraction, identification and quantification and that further research on the effects of microplastics to human health is needed.

  17. Glacial and periglacial environment monitoring in Aosta Valley - Northwestern Italian Alps

    NASA Astrophysics Data System (ADS)

    Motta, Elena; Cremonese, Edoardo; Morra di Cella, Umberto; Pogliotti, Paolo; Vagliasindi, Marco

    2010-05-01

    Aosta Valley is a small alpine region of about 3.300 km2 located in the NW Italy, on the southern side of the Alps and surrounded by the highest Alpine peaks such as Mont Blanc (4810m), Mont Rose (4634m) and Cervino (4478m), More than 50% of the territory has an elevation above 2000 metres asl. High mountain, glacial and periglacial environments cover a significant part of the territory. As the cryosphere is strongly sensitive to climate change, global warming effects are particularly evident in this alpine region, and they often affect environment and social and economic life, thus representing a key issue for politicians and people working and living in the valley. Among these effects, some of the most important are the decrease of water storage due to glaciers retreat and the increasing natural hazards as a consequence of rapid environmental dynamics. Hence the importance of monitoring glacial and periglacial environment, in order to quantify effects of climate change, to detect new dynamics and to manage consequences on the environment and the social life. In Aosta Valley the understanding of these phenomena is carried out by means of several actions, both at a regional scale and on specific representative sites. A multi-temporal analysis of aerial photographs, orthophotos and satellite imagery allows to detect glaciers evolution trend at a regional scale. All this information is collected in a Regional Glacier inventory, according to the World Glaciers Inventory standard and recommendations. Analysis of the information collected in the Inventory show that the total area presently covered by glaciers is about 135 km2; area changes occurred in the past has been about -44.3 km2, and -17 km2. between 1975 and 2005. Glacier inventory also gathers - for each of the about 200 glaciers - morphological data, information about events and photos both historical and present. Glacier mass balance (the difference resulting from the mass gained by the glacier through the

  18. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.

    PubMed

    Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin

    2016-02-15

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments. PMID:26779957

  19. RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing

    NASA Astrophysics Data System (ADS)

    Alexander, Frank A., Jr.

    This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.

  20. Monitoring the Environment using High-Spatial Resolution Remote Sensing: Contribution to Health Information Systems

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.; Lacaux, J.

    2007-12-01

    Presence (density) of mosquitoes linked to Rift Valley Fever (RVF) epidemics in the Ferlo (Senegal) is evaluated by monitoring the environment from space. Using five SPOT-5 high-resolution images (~10m spatial resolution, on August 17th, 2006) a meridional transect of 290 x 60 km2 is analyzed for the first time. Four major ecozones are thus identified: Senegal River valley; sandy Ferlo; sandy-clayey Ferlo; and steppe/cultivated areas, from north to south, respectively. An integrated/multidisciplinary approach using remote-sensing leads to a composited Zones Potentially Occupied by Mosquitoes (or ZPOMs, with extrema). It is found that at the peak of the rainy season, the area occupied by ponds is of 12,817 ha ± 10% (i.e., ~ 0.8 % of the transect) with a mean ZPOM 17 times larger i.e.: 212,813 ha ± 10 % (or ~14 % of the transect). ZPOMs characteristics (minimum and maximum) at the ecozones levels with different hydrological mechanisms, are presented. Ponds and ZPOMs inter-annual variabilities and RVF risks, are subsequently highlighted by comparing statistics in the so-called Barkedji zone (sandy-clayey Ferlo with a hydrofossil riverbed), for the very humid year of 2003, and the near normal rainfall year of 2006. It is shown that at the end of August 2003/2006, ponds (ZPOMs) areas, were already ~22 (~5) times larger. The key roles played by isolated ponds for animals' exposure to RVF risks are thus identified. These results highlight the importance of monitoring the changing environment when linkages with public health exist. The ZPOM approach is to be adapted for other vector-borne diseases such as malaria, dengue fever, in different places of the world. Results are meant to be included into Health Information Systems (HIS) on an operational basis, in order to minimize socio-economical impacts from epidemics.

  1. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  2. Textile technology for the vital signs monitoring in telemedicine and extreme environments.

    PubMed

    Di Rienzo, Marco; Meriggi, Paolo; Rizzo, Francesco; Castiglioni, Paolo; Lombardi, Carolina; Ferratini, Maurizio; Parati, Gianfranco

    2010-05-01

    This paper illustrates two extensive applications of a smart garment we previously developed for the monitoring of ECG, respiration, and movement. In the first application, the device, named Maglietta Interattiva Computerizzata (MagIC), was used for the home monitoring of cardiac patients. The used platform included MagIC for signals collection, a touchscreen computer with a dedicated software for data handling, and a universal mobile telecommunications system (UMTS) dongle for data transmission, via email, to three cardiologists. Three patients daily-performed 3-min telemonitoring sessions for 30 days by using the platform. The whole system behaved correctly in 85 out of 90 sessions. In five instances, a second session was required due to UMTS traffic congestion. Only in three sessions, cardiologists asked the patient to repeat the acquisition because of poor signal quality. In the second application, MagIC was used to evaluate the effects of high-altitude hypoxia on sleep and 24 h daily life in 30 healthy subjects at 3500 and 5400 m above sea level on Mount Everest slopes. The use of MagIC garment was reported to be simple and requiring short instrumentation time even in the demanding expedition environment. The signal quality was adequate in 111 out of 115 recordings and 90% of the subjects found the vest comfortable. PMID:20421189

  3. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  4. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    PubMed Central

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  5. [Differential Reflectance Spectroscopy for In-Situ Monitoring of Organic Thin Films Growth in Vacuum Environment].

    PubMed

    Yao, Yao; Hu, Chun-guang; Xu, Zhen-yuan; Zhang, Lei; Fu, Xing; Hu, Xiao-tang

    2015-05-01

    For realizing the real-time monitoring of organic thin film preparation process in vacuum environment, the present paper proposes a high precision measurement approach based on differential reflectance spectroscopy (DRS). An optical system was constructed with off the shelf optical components, such as off-axis parabolic mirror, optical flat and optical fiber. A differential algorithm was employed to analyze the spectral signals. Based on the homebuilt setup, instability induced by variation of temperature was investigated. It was concluded that with the good control of temperature and air flow, the measurement repeatability of this system is better than 2 per thousand for a long-term period. Furthermore, an initial stage of organic thin film growth of pentacene molecules on the surface of Au was studied. As compared with the data of film thickness gauge and atomic force microscope, DR spectra accurately recorded the fine optical evolution with sub-monolayer resolution, which is related to the growth of the thin film. As a result, the DR optical system exhibits characteristics of broad spectrum (range from 300 to 820 nm), high stability (repeatability better than 2X 10(-3)), and high precision (sub-monolayer resolution) after efforts were done to decrease the influences on the spectral quality produced by misalignments of the optical components, the defects of the optics, and the disturbances of the environmental conditions. It is indicated that the proposed DR method is suitable for real-time online monitoring of thin film growth with high precision. PMID:26415453

  6. Sensor-based soil water monitoring to more effectively manage agricultural water resources in coastal plain soils

    NASA Astrophysics Data System (ADS)

    Bellamy, Christopher A.

    Cotton (Gossypium hirsutum L.) is widely grown in the United States with 5.7 million ha grown nationally and 1.2 million ha grown in the humid southeastern states in 2005. From 1969 to 2003, agricultural irrigated farmland acreage and total water applied increased by over 40% and 11% respectively to include a total of 55.3 million acres in 2002. Combined with recent and more frequent drought periods and legal water conflicts between states, there has been an increased interest in more effective southeastern water management, thus making the need to develop improved irrigation scheduling methods and enhanced water use efficiency of cotton cultivars. Several irrigation scheduling methods (soil moisture monitoring, pan evaporation, and climate based) tested at Clemson and elsewhere have shown that sensor-based irrigation significantly increased cotton yields and provided a monetary savings compared to other methods. There is however limited information on capacitance based soil moisture analysis techniques in the southeastern coastal plain soils and also limited locally developed crop coefficients used in scheduling the ET based treatments. The first objective of this study was to determine and improve the feasibility of utilizing sensor-based soil water monitoring techniques in Southeastern Coastal Plain soils to more effectively manage irrigation and increase water use efficiency of several cotton cultivars. The second objective was to develop two weighing lysimeters equipped with wireless data acquisition system to determine a crop coefficient for cotton under southeastern humid conditions. Two multi-sensor capacitance probes, AquaSpy(TM) and Sentek EnviroSCAN RTM, were calibrated in this study. It was found that positive linear calibrations can be used to describe the relationship between the soil volumetric moisture content (VMC) and sensor readings found for both probes and that multi-sensor capacitance probes can be used to accurately measure volumetric soil

  7. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and

  8. Exploring the potential of the permanganate oxidation method as a tool to monitor soil quality in agricultural upland systems of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hepp, Catherine M.; Bruun, Thilde Bech; de Neergaard, Andreas

    2014-05-01

    The transition to more intensified upland systems is having an impact on the soil quality, defined as the ability of a soil to both provide and maintain essential services to an ecosystem. As many tropical upland soils are inherently low in quality, it is essential that impacts be monitored. Soil quality is assessed by using a combination of parameters that serve as indicators and cover the soil chemical, biological and physical properties. An ideal indicator should be sensitive to changes in the environment and management practices and should be widely accessible, meaning low resource requirement (i.e. time and equipment). Total organic carbon (TOC) content is a commonly used indicator of soil quality as it is linked to many soil functions and processes; however analysis is costly and requires access to advanced instrumental facilities, rendering it unsuited for many developing countries. An alternative indicator is the soil fraction dominated by easily decomposable carbon; this may be measured by treating soil samples with 0.2M potassium permanganate (KMnO4), an oxidizing agent which is thought to mimic the enzymes released by the soil microbial community. The advantage of this method is that it is accessible: it is fast, requires little resource input and is field appropriate. There is no consensus however as to which soil carbon fraction the method targets. Furthermore Skjemstad et al. (2006) has indicated that KMnO4 may oxidise charcoal, a component of the non-labile carbon pool; this has implications for the suitability of the method when used for soils of shifting cultivation systems. The purpose of this study was to investigate the potential of permanganate oxidizable carbon (Pox C) as a reliable indicator of soil quality in agricultural upland systems in Northern Lao PDR. Focus was placed on the relations between Pox C and other soil quality parameters (bulk density, pH, CEC, TOC, total N, exchangeable K, plant available P) and upland rice yields. The

  9. A Framework for Long-term Monitoring and Research for Agricultural Sustainability in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Locke, M. A.

    2014-12-01

    The Lower Mississippi River Basin (LMRB) is one of the most productive agricultural regions in the United States and has recently become a member of the USDA-ARS Long-term Agricultural Research (LTAR) Network. As the hydrologic gateway to the Gulf of Mexico, the LMRB links agricultural practices and associated runoff and nutrient loads from the Upper Mississippi, Missouri, and Ohio basins with the ecology of the Gulf of Mexico. We review the major challenges for agricultural sustainability in the region and outline a long-term research program within the LTAR Network to address these challenges. Despite the humid climate of the region, water quantity and quality issues are integral to the sustainability of the region. The geography of water-use in the region, current research at plot- to watershed-scales, and knowledge gaps that must be addressed to meet growing production demand will be displayed.

  10. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  11. Understanding The GLAST Burst Monitor Detector Calibration: A Detailed Simulation Of The Calibration Including The Environment

    SciTech Connect

    Steinle, Helmut; Kienlin, Andreas von; Bissaldi, Elisabetta; Lichti, Giselher; Diehl, Roland; Greiner, Jochen; Meegan, Charles A.; Fishman, Gerald J.; Kouveliotou, Chryssa; Wilson-Hodge, Colleen A.; Kippen, R. Marc; Hoover, Andrew S.

    2007-07-12

    The GLAST Burst Monitor (GBM) is the secondary instrument on NASA's next Gamma-ray mission GLAST. It will enhance the capabilities of GLAST by locating and detecting cosmic gamma-ray bursts at lower energies by the use of 12 NaI detectors (energy range 10 keV to 1 MeV) and 2 BGO-detectors (energy range 150 keV to 30 MeV). GBM was built in a close collaboration between the MPE and the Marshall Space Flight Center (MSFC). The angular and energy response of each GBM detector has been calibrated using various radioactive sources at different incidence angles relative to the detector in a laboratory environment at the MPE in 2005. To facilitate the understanding of the reconstruction of the detector response, a detailed simulation of the whole laboratory environment and the setup of the calibration source were performed. A modified version of the CERN GEANT 4 simulation software (provided by collaborators at the Los Alamos National Laboratory) was used.

  12. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  13. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  14. Cannabis (Cannabis sativa or C. indica) agriculture and the environment: a systematic, spatially-explicit survey and potential impacts

    NASA Astrophysics Data System (ADS)

    Butsic, Van; Brenner, Jacob C.

    2016-04-01

    Cannabis agriculture is a multi-billion dollar industry in the United States that is changing rapidly with policy liberalization. Anecdotal observations fuel speculation about associated environmental impacts, and there is an urgent need for systematic empirical research. An example from Humboldt County California, a principal cannabis-producing region, involved digitizing 4428 grow sites in 60 watersheds with Google Earth imagery. Grows were clustered, suggesting disproportionate impacts in ecologically important locales. Sixty-eight percent of grows were >500 m from developed roads, suggesting risk of landscape fragmentation. Twenty-two percent were on steep slopes, suggesting risk of erosion, sedimentation, and landslides. Five percent were <100 m from threatened fish habitat, and the estimated 297 954 plants would consume an estimated 700 000 m3 of water, suggesting risk of stream impacts. The extent and magnitude of cannabis agriculture documented in our study demands that it be regulated and researched on par with conventional agriculture.

  15. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal damping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  16. Fast fiber Bragg grating interrogation system with scalability to support monitoring of large structures in harsh environments

    NASA Astrophysics Data System (ADS)

    Moslehi, Behzad; Black, Richard J.; Costa, Joannes M.; Edwards, Elizabeth H.; Faridian, Fereydoun; Sotoudeh, Vahid

    2014-04-01

    Fiber optic sensor systems can alleviate certain challenges faced by electronics sensors faced when monitoring structures subject to marine and other harsh environments. Challenges in implementation of such systems include scalability, interconnection and cabling. We describe a fiber Bragg grating (FBG) sensor system architecture based that is scalable to support over 1000 electromagnetic interference immune sensors at high sampling rates for harsh environment applications. A key enabler is a high performance FBG interrogator supporting subsection sampling rates ranging from kHz to MHz. Results are presented for fast dynamic switching between multiple structural sections and the use of this sensing system for dynamic load monitoring as well as the potential for acoustic emission and ultrasonic monitoring on materials ranging from aluminum and composites to concrete subject to severe environments.

  17. Analyzing the Food-Fuel-Environment Tri-Lemma Facing World Agriculture: Global Land Use in the Coming Century

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.

    2011-12-01

    The number of people which the world must feed is expected to increase by another 3 billion people by 2100. When coupled with significant nutritional improvements for the 2.1 billion people currently living on less than $2/day, this translates into a very substantial rise in the demand for agricultural production. At the same time, the growing use of biomass for energy generation has introduced an important new source of industrial demand in agricultural markets. To compound matters, water, a key input into agricultural production, is rapidly diminishing in availability in large parts of the world and many soils are degrading. In addition, agriculture and forestry are increasingly envisioned as key sectors for climate change mitigation policy. Any serious attempt to reduce land-based emissions will involve changes in the way farming is conducted, as well as placing limits on the expansion of farming - particularly in the tropics, where most of the agricultural land conversion has come at the expense of forests, either directly, or indirectly via a cascading of land use requirements with crops moving into pasture and pasture into forest. Finally, agriculture and forestry are likely to be the economic sectors whose productivity is most sharply affected by climate change. In light of these challenges facing the global farm and food system, this paper will review the main sources of supply and demand for the world's cropland, and then provide a quantitative assessment of the impact of these forces on global land use over the coming century. The model incorporates forward looking behavior and examines competition between land used for ecosystem services, forestry, food and fuel. Explicit account is taken of emissions associated with both the intensive and extensive margins of agricultural expansion, as well as carbon sequestration and energy combustion. Key findings include: (a) energy prices and environmental policies will be increasingly important drivers of land use

  18. Dust storm monitoring: effects on the environment, human health, and potential security conflicts

    NASA Astrophysics Data System (ADS)

    Davara, Fernando; de la Cruz, Antonio

    2004-10-01

    Monitoring dust storms with recently available medium and moderate resolution satellites (Meris, Modis and SeaWiFS) is providing new global information regarding the sources, transportation tracks and affected areas. Saharan dust plumes reach the SE region of the United States and the Caribbean region in summer and the Amazon basin in winter. Generally these Saharan plumes branch off in dust tracks along the North Atlantic reaching Western Europe as far north as the Scandinavian countries. Furthermore, dust storms originating in the Eastern Sahara and Northern African deserts form dust plumes propagated by the Sirocco winds that, after crossing the Mediterranean Sea, affect Southern and Central Europe particularly during spring and summer. Dust storms originating in the Gobi and Taklamakan deserts blow in an easterly direction propagating dust plumes affecting Korea, Japan and reach the United States after crossing the Pacific Ocean. The large amount of cyclic deposition generated by dust storms produces an environmental impact that causes the decay of coral reefs in the Caribbean, the origin and distribution of red tides and the disappearance of sea grasses. The relationship of dust plumes with the increasing number of asthma and allergy cases in the Caribbean correlates well with the appearance of similar cases in Europe and elsewhere during the mid 1980s. The recurrence presence of insecticides in regions where these products were banned long ago, or where they were never used, may be partly due to Saharan dust plumes. The loss of agricultural soil, literally blown away by dust storms in the source areas, creates hardship, hunger and forced-migration. Dust storms should be considered as an important security issue.

  19. Protection of quantum information and optimal singlet conversion through higher-dimensional quantum systems and environment monitoring

    SciTech Connect

    Mascarenhas, E.; Marques, B.; Santos, M. Franca; Cavalcanti, D.; Cunha, M. Terra

    2010-03-15

    We study how to protect quantum information in quantum systems subjected to local dissipation. We show that combining the use of three-level systems, environment monitoring, and local feedback can fully and deterministically protect any available quantum information, including entanglement initially shared by different parties. These results can represent a gain in resources and/or distances in quantum communication protocols such as quantum repeaters and teleportation as well as time for quantum memories. Finally, we show that monitoring local environments physically implements the optimum singlet conversion protocol, which is essential for classical entanglement percolation.

  20. Effect of tubing material on conventional and thin FBG sensor for embedded environment impact monitoring of CFRP composites

    NASA Astrophysics Data System (ADS)

    Park, Yurim; Shrestha, Pratik; Kwon, Hyunseok; Kim, Jin-Hyuk; Kwon, Heejung; Kim, Chun-Gon

    2016-04-01

    Applications of composite materials in aerospace structures is increasing due to the outstanding properties, however, monitoring such composite structures exposed to harsh environments is still a posing issue. Low Earth orbit space structures are exposed to property degradation and damage from high-degree vacuum, ultraviolet radiation, thermal cycling, and atomic oxygen attack which are detrimental to composite materials. In this study, FBG sensors for embedding in CFRP composite plates in different thickness locations to provide health and damage monitoring of the material exposed to such environments regarding the overall health of the material with a focus on the exposed surface are explored in comparison to conventional FBG sensors.

  1. Applied manure research—looking forward to the benign roles of animal manure in agriculture and the environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By definition, animal manure is discarded animal excreta and bedding materials usually applied to soils as a fertilizer for agricultural production. However, the impact of manure generation and disposal is far more than the role of organic fertilizers, even though the fertilizer function of animal m...

  2. Monitoring the condition of the Canadian forest environment: The relevance of the concept of 'ecological indicators'.

    PubMed

    Kimmins, J P

    1990-11-01

    The Canadian forest environment is characterized by high spatial and temporal variability, especially in the west. Our forests vary according to climate, landform, and surficial geology, and according to the type, intensity, extent of, and the time since the last disturbance. Most Canadian forests have had a history of repeated acute, episodic disturbance from fire, insects, wind, diseases and/or logging, with a frequency of disturbance varying from a few decades to many centuries. These sources of variability have resulted in a complex and continually changing mosaic of forest conditions and stages of successional development.Monitoring the 'quality' of this dynamic forested landscape mosaic is extremely difficult, and in most cases the concept of a relatively simple index of forest ecosystem quality or condition (i.e. an 'ecological indicator') is probably inappropriate. Such ecological indicators are better suited for monitoring chronic anthropogenically induced disturbances that are continuous in their effect (e.g. 'acid rain', heavy metal pollution, air pollution, and the 'greenhouse effect') in ecosystems that, in the absence of such chronic disturbance, exhibit very slow directional change (e.g. lakes, higher order streams and rivers). Monitoring the effects of a chronic anthropogenic disturbance to forest ecosystems to determine if it is resulting in a sustained, directional alteration of environmental 'quality' will require a definition of the expected pattern of episodic disturbance and recovery therefrom (i.e. patterns of secondary succession in the absence of the chronic disturbance). Only when we have such a 'temporal fingerprint' of forest ecosystem condition for 'normal' patterns of disturbance and recovery can we determine if the ecosystem condition is being degraded by chronic human-induced alteration of the environment. Thus, degradation is assessed in terms of deviations from the expected temporal pattern of conditions rather than in terms of an

  3. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  4. Monitoring Ephemeral Streams Using Airborne Very High Resolution Multispectral Remote Sensing in Arid Environments

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; O'Connor, B. L.

    2012-12-01

    Development in arid environments often results in the loss and degradation of the ephemeral streams that provide habitat and critical ecosystem functions such as water delivery, sediment transport, and groundwater recharge. Quantification of these ecosystem functions is challenging because of the episodic nature of runoff events in desert landscapes and the large spatial scale of watersheds that potentially can be impacted by large-scale development. Low-impact development guidelines and regulatory protection of ephemeral streams are often lacking due to the difficulty of accurately mapping and quantifying the critical functions of ephemeral streams at scales larger than individual reaches. Renewable energy development in arid regions has the potential to disturb ephemeral streams at the watershed scale, and it is necessary to develop environmental monitoring applications for ephemeral streams to help inform land management and regulatory actions aimed at protecting and mitigating for impacts related to large-scale land disturbances. This study focuses on developing remote sensing methodologies to identify and monitor impacts on ephemeral streams resulting from the land disturbance associated with utility-scale solar energy development in the desert southwest of the United States. Airborne very high resolution (VHR) multispectral imagery is used to produce stereoscopic, three-dimensional landscape models that can be used to (1) identify and map ephemeral stream channel networks, and (2) support analyses and models of hydrologic and sediment transport processes that pertain to the critical functionality of ephemeral streams. Spectral and statistical analyses are being developed to extract information about ephemeral channel location and extent, micro-topography, riparian vegetation, and soil moisture characteristics. This presentation will demonstrate initial results and provide a framework for future work associated with this project, for developing the necessary

  5. Snow process monitoring in mountain forest environments with a digital camera network

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu; Menzel, Lucas

    2016-04-01

    Snow processes are important components of the hydrologic cycle in mountainous areas and at high latitudes. Sparse observations in remote regions, in combination with complex topography, local climate specifics and the impact of heterogeneous vegetation cover complicate a detailed investigation of snow related processes. In this study, a camera network is applied to monitor the complex snow processes with high temporal resolution in montane forest environments (800-1200 m a.s.l.) in southwestern Germany. A typical feature of this region is the high temporal variability of weather conditions, with frequent snow accumulation and ablation processes and recurrent snow interception on conifers. We developed a semi-automatic procedure to interpret snow depths from the digital images, which shows high consistency with manual readings and station-based measurements. To extract the snow canopy interception dynamics from the pictures, six binary classification methods are compared. MaxEntropy classifier shows obviously better performance than the others in various illumination conditions, and it is thus selected to execute the snow interception quantification. The snow accumulation and ablation processes on the ground as well as the snow loading and unloading in forest canopies are investigated based on the snow parameters derived from the time-lapse photography monitoring. Besides, the influences of meteorological conditions, forest cover and elevation on snow processes are considered. Further, our investigations serve to improve the snow and interception modules of a hydrological model. We found that time-lapse photography proves to be an effective and low-cost approach to collect useful snow-related information which supports our understanding of snow processes and the further development of hydrological models. We will present selected results from our investigations over two consecutive winters.

  6. The AMSAT-OSCAR-40 High Elliptical Orbit Radiation Environment Monitoring Payload - First Flight Results

    NASA Astrophysics Data System (ADS)

    Sweeting, Martin, , Sir

    Over the last decade, Surrey's micro-satellites have provided continuous monitoring of the proton and heavy-ion environment encountered in low-Earth orbit (LEO), through the use of a series of silicon PIN-diode-based particle detectors, starting with the UK Defence Evaluation Research Agency's (DERA's) Cosmic-Radiation Environment and Dosimetry (CREDO) payload, flown on-board UoSAT-3 in 1990, followed in 1992 by the Cosmic-Ray Experiment (CRE), developed at the Surrey Space Centre under a micro-satellite Technology Transfer (TT) programme operated between Surrey Satellite Technology Ltd. (SSTL) and the Korea Advanced Institute of Science and Technology (KAIST), and flown on the resulting KITSAT-1 micro-satellite. The CRE was flown again in 1993 on-board the PoSAT- 1 micro-satellite, developed under a similar TT programme operated between SSTL and Portugal. The results from all of these instruments have given a great deal of information on the nature of the low-Earth orbit (LEO) ionising radiation environment, and in the case of the PoSAT-1 CRE, continue to do so. However, to obtain a more complete "picture" of the magnetosphere, it is necessary to orbit instruments much further out in space An opportunity to do this arose in 1994 when amateur radio satellite groups (AMSAT) proposed launching a small (600 kg) communications satellite into highly elliptical orbit. This satellite, called AMSAT-OSCAR-40 (AO-40), was launched by Ariane 5 rocket on 16th November 2000, initially into a geostationary transfer orbit (GTO). The satellite has subsequently been manoeuvred into a highly elliptical, 1070 km x 58,700 km, 6.8o inclination orbit, and thus it affords the opportunity to observe the proton and heavy-ion environment through a large cross-section of Earth's magnetosphere. AO-40 carries a version of the CRE, which has been slightly modified in terms of interfaces and packaging to fit that particular satellite bus. However the particle detecting element is essentially

  7. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight.

    PubMed

    Manzey, D; Lorenz, B; Poljakov, V

    1998-04-01

    During their stay in a space habitat, astronauts are exposed to many different stressors that may entail detrimental effects on mood and performance. In order to monitor the effects of the space environment on different human information processing functions during an extraordinary long-term space mission, the cognitive. visuo-motor and time-sharing performance of one Russian cosmonaut was repeatedly assessed (29 times) during his 438-day stay in space. The performance tasks used were chosen from the AGARD-STRES battery and included grammatical reasoning, Sternberg memory-search, unstable tracking, and a dual-tasks consisting of unstable tracking with concurrent memory-search. In addition to performance assessment, several subjective ratings concerning mood and workload were collected. Comparisons of pre-flight, in-flight, post-flight and two follow-up assessments 6 months after the mission revealed, (1) no impairments of basic cognitive functions during the flight, (2) clear impairments of mood, feelings of raised workload, and disturbances of tracking performance and time-sharing during the first 3 weeks in space and the first 2 weeks after return to Earth, (3) an impressive stability of mood and performance during the second to fourteenth month in space, where mood and performance had returned to pre-flight baseline level, and (4) no long-lasting performance deficits at follow-up assessments. From these results it is concluded that the first 3 weeks of long-term spaceflights and the first 2 weeks back on Earth represent critical periods where adverse effects on attentional processes are to be expected, induced by the demands to adjust to the extreme environmental changes. The stability of mood and performance observed after successful adaptation to the space environment indicates that mental efficiency and emotional state can be maintained on a level as high as on Earth even during extraordinary long-term space missions. PMID:9557591

  8. Utility of Thermal Image Sharpening for Monitoring Field-Scale Evapotranspiration over Rainfed and Irrigated Agricultural Regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of a thermal image sharpening algorithm (TsHARP) in providing fine resolution land surface temperature (LST) data to a Two-Source-Model (TSM) for mapping evapotranspiration (ET) was examined over two agricultural regions in the U.S. One site is in a rainfed corn and soybean production r...

  9. Field performance in an agricultural setting of a wireless temperature monitoring system based on a low-cost infrared sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous measurement of plant canopy temperature is useful in both research and production agriculture settings. Industrial-quality infrared thermometers which are often used for measurement of canopy temperatures, while reliable, are not always cost effective. For this study a relatively low-cost...

  10. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone.

    PubMed

    Sekine, Yoshika; Katori, Risa; Tsuda, Yuko; Kitahara, Takio

    2016-01-01

    A simple monitoring system of indoor air pollution is proposed by integrating a novel colorimetric detector of formaldehyde (HCHO) and a function of a built-in camera on mobile phone. The colorimetric detector employs a solid phase colorimetric reagent made from 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, ZnO, KIO4 and agar, and changes colour from white to purple by exposure to HCHO gas. The degree of colour changes expressed in Red, Green and Blue model model responded to the HCHO concentration levels both in air and from building materials. Limit of quantitation of the detector with 24 h-exposure resulted in 0.011 mg/m(3) of air concentration which meets a requirement of methodology to detect indoor air quality guideline level of HCHO set by World Health Organization. The detector is also applicable to classify HCHO-emitting materials at least into Type 1, whose emission flux is greater than 120 μg/m(2)/h, and others. Then, variation of the acquired photo images was investigated by using various mobile phones and changing conditions of photography. As a result, the calibration of the measured colour intensity with a colour standard reduced the variation of the results and gave a significant output when the auto-focused images were taken under the condition of common indoor environment. PMID:26616679

  11. Monitoring of Terrestrial Gamma-Ray Flashes: relevance for climate studies and aircraft environment

    NASA Astrophysics Data System (ADS)

    Tavani, Marco

    Terrestrial gamma-ray flashes (TGFs) are sudden (typically lasting a few millisecond) bursts of energy originating in tropical thunderstorms. TGFs are very energetic (typicall 10-20 kJ) and are characterized by a high-energy spectrum reaching many tens of megaelectronvolts. We summarize the satellite observations of the AGILE satellite, a high-energy astrophysics mis-sion operating in an equatorial orbit since mid-2007. AGILE is ideally suited to detect TGFs because of an on-board dedicated millisecond trigger logic, and a wide energy range extending up to 100 MeV. AGILE has been detecting hundreds of high-quality TGFs in about 2 years of data acquisition, and substantially improved the high-energy detection of these impulsive phenomena. AGILE is detecting an emission spectrum up and above 40 MeV, and establishes that the particle accelerating TGF potential difference can reach hundreds of MegaVolt. We will discuss the relevance of our observations for climate studies and especially for the possible implications for aircraft traveling in equatorial regions. Both the radiative and electromagnetic environment related to TGFs will be considered for a possible influence on aircraft naviga-tion. High-energy satellite data are of crucial importance for the study and monitoring of this important atmospheric phenomenon that deserves the highest level of attention in the future.

  12. THE LOCAL ENVIRONMENT OF ULTRALUMINOUS X-RAY SOURCES VIEWED BY XMM-NEWTON's OPTICAL MONITOR

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Tincher, J.; Winter, L. M. E-mail: rachel.dudik@usno.navy.mil

    2013-10-20

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 ultraluminous X-ray sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition, the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for SFRs located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense superclusters, but some of these SFRs are massive enough to contain such clusters. Only three ULXs have no associated SFRs younger than ∼50 Myr. The age and mass estimates for clusters were used to test runaway scenarios. The data are, in general, compatible with stellar-mass binaries accreting at super-Eddington rates and ejected by natal kicks. We also tested the hypothesis that ULXs are sub-Eddington accreting intermediate mass black holes ejected by three-body interactions; however, this is not supported well by the data.

  13. Light scattering from sea-salt aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.

    PubMed

    Lowenthal, Douglas; Kumar, Naresh

    2006-05-01

    A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant. PMID:16739800

  14. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  15. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment

    PubMed Central

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term. PMID:26070156

  16. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  17. Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes.

    PubMed

    Roche, Yann; Klymchenko, Andrey S; Gerbeau-Pissot, Patricia; Gervais, Patrick; Mély, Yves; Simon-Plas, Françoise; Perrier-Cornet, Jean-Marie

    2010-08-01

    We monitored the behavior of plasma membrane (PM) isolated from tobacco cells (BY-2) under hydrostatic pressures up to 3.5kbar at 30 degrees C, by steady-state fluorescence spectroscopy using the newly introduced environment-sensitive probe F2N12S and also Laurdan and di-4-ANEPPDHQ. The consequences of sterol depletion by methyl-beta-cyclodextrin were also studied. We found that application of hydrostatic pressure led to a marked decrease of hydration as probed by F2N12S and to an increase of the generalized polarization excitation (GPex) of Laurdan. We observed that the hydration effect of sterol depletion was maximal between 1 and 1.5 kbar but was much less important at higher pressures (above 2 kbar) where both parameters reached a plateau value. The presence of a highly dehydrated gel state, insensitive to the sterol content, was thus proposed above 2.5 kbar. However, the F2N12S polarity parameter and the di-4-ANEPPDHQ intensity ratio showed strong effect on sterol depletion, even at very high pressures (2.5-3.5 kbar), and supported the ability of sterols to modify the electrostatic properties of membrane, notably its dipole potential, in a highly dehydrated gel phase. We thus suggested that BY-2 PM undergoes a complex phase behavior in response to the hydrostatic pressure and we also emphasized the role of phytosterols to regulate the effects of high hydrostatic pressure on plant PM. PMID:20381451

  18. Monitoring Atmospheric Deposition of Nitrogen in Alpine Environments in Rocky Mountain and Yosemite National Parks, USA

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Clow, D. W.; Mills, J.; Fenn, M. E.

    2011-12-01

    Recent increases in atmospheric deposition of nitrogen (N) in the western U.S. have adversely impacted surface water quality and changed the composition of aquatic biota in high-elevation lakes. Existing N deposition data are generally not spatially diverse; representation of remote wilderness areas and high-elevation watersheds is often lacking, making it difficult to assess the importance of variations in N deposition on water quality impacts. This study aims to better understand N deposition in remote environments, particularly in alpine environments, where both the quantity and environmental impact of atmospheric N deposition are poorly understood. Understanding the impacts of N deposition on these environments is important for National Park resource and water-quality managers. Using ion-exchange resin (IER) collectors, seasonal through-fall of nitrogen was measured at 29 sites in the Rocky Mountains and 21 sites in the Sierra Nevada from 2006-2011. The IER collectors, deployed in pairs, represent geographically diverse transects aimed to quantify the spatial distribution of nitrogen deposition. Placed on talus slopes or in areas of exposed bedrock, the IER collectors were installed immediately following snowmelt (June/July) and replaced with new collectors prior to the first snowfall (September). Following spring melt, the collectors deployed over the winter were exchanged with new collectors. These seasonal swaps capture winter/spring and summer/fall deposition. A majority of the sites were paired with seasonal surface-water quality samples, allowing for comparison with nitrate levels in surface waters. In the lab, N compounds are eluted from the resins, then diluted and analyzed on an ion- chromatograph. Preliminary data from 2006, representing 16 sites with uncontaminated samples in Rocky Mountain National Park, suggest higher nitrogen deposition on the east side of the park. Average summer N deposition for an 85-day exposure period at the eastern slope

  19. Comparison of X-Band, L-Band and C-Band Radar Images in Monitoring Subsidence in Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Motagh, Mahdi; Haghshenas Haghighi, Mahmud; Shamshiri, Roghaye; Esmaeili, Mustapha

    2015-05-01

    The ongoing pattern of groundwater induced land subsidence in major valleys and agricultural regions of Iran has been recently documented by several studies (e.g. [1-4]) using C-band Interferometric Synthetic Aperture Radar (InSAR) observations. In this article we present the results of our research in which we evaluated the performance of C-band, L-band and X-band SAR data, using time-series method of small baseline subset (SBAS), to retrieve long time series of ground subsidence in agricultural regions in the country. Two major groundwater basins have been selected for this purpose: (1) Rafsanjan Valley in the Kerman province of central Iran and (2) Tehran Plain (capital of Iran). We also report on our experience using dualpolarimetry (HH/VV) X-band SAR data for Persistent Scatterer (PS) deformation analysis in natural terrains subject to high rate of deformation.

  20. The use of embedded sensors for the monitoring of adhesive joints in marine environments

    NASA Astrophysics Data System (ADS)

    McGovern, Scott T.; Spinks, Geoffrey M.; Wallace, Gordon G.

    2005-05-01

    A copolymer incorporating polyaniline was used as a sensing medium in the construction of a resistance based humidity sensor. Aniline monomer was polymerised in the presence of poly (butyl acrylate / vinyl acetate) and a copolymer containing polyaniline emeraldine salt was obtained. The sensing medium was then developed by redissolving 1-2 w/w% of the resulting polymer residue in dichloromethane to produce a processable polymer blend solution. Some of this polymer residue was also de-doped in a solution of ammonia, and then washed with distilled water until the waste water had a neutral pH. This residue was then redissolved at 1-2 w/w% in dichloromethane to produce a second processable polymer blend this time containing polyaniline emeraldine base. The final sensor design utilised 125μm polyester insulated platinum wire as conducting electrodes that were dip coated in the emeraldine salt copolymer solution and allowed to dry in a desiccator. The sensor was then dip-coated in a protective barrier layer of the emeraldine base copolymer to prevent over-oxidation and/or de-protonation of the emeraldine salt sensing medium under this coating. The sensors had an overall final thickness of less than 150μm and showed high sensitivity to humidity, low resistance, and good reversibility without hysteresis. Sensors were monitored for 2-probe resistance changes when in contact with water. Calibration curves for each sensor were produced to convert the resistance reading to mass uptake of water. Individual sensors were embedded within Aluminium 5083 / Araldite 2015 adhesive joints to monitor mass uptake of water when exposed to marine environments. Correlations between mass uptake of water and joint strength were made. There are various advantages of such a sensor design. Polymer based thin film humidity sensors have the advantage that the high processability of the material allows for simple fabrication of a range of geometries including smaller sensor designs. The ease of

  1. Monitoring of the Environment at the Transplant Unit—Hemato-Oncology Clinic

    PubMed Central

    Matoušková, Ivanka; Holy, Ondřej

    2014-01-01

    Aims: Aim of this study was to monitor the environment at the Transplant Unit—Hemato-Oncology Clinic, University Hospital Olomouc (Olomouc, Czech Republic) and identify risks for the patients. Methods and Results: Microorganisms were cultivated under standard aerobic conditions. Strains were biochemically identified using the BD Phoenix™ PID Panel (USA). Legionella pneumophila was identified by DNA sequencing. From the air, the most frequently isolated strains were coagulase-negative staphylococci (94.3%), Micrococcus spp. and Bacillus spp. No Gram-negative strains were isolated from the air. From the surfaces, the most frequently isolated Gram-positive strains were coagulase-negative staphylococci (67.4%), Bacillus spp., enterococci (5.5%), Staphylococcus aureus (2.3%) and Micrococcus spp. (1.7%). From the surfaces, the most frequently isolated Gram-negative strains were from genera Pseudomonas (28%), Enterobacter (28%), E. coli (6%), and Klebsiella spp. (5%). From the personnel, the most frequently isolated Gram-positive strains were coagulase-negative staphylococci (59.6%), Bacillus spp. (24.1%) and Staphylococcus aureus (9.8%). From the personnel, the most frequently isolated Gram-negative strains were Enterobacter spp. (61%), Klebsiella oxytoca (18%), and E. coli (11%). Microscopic filamentous fungi were isolated in 13 cases (2.71%). Isolated strains were Aspergillus spp. (4), Trichoderma spp. (2), Penicillium spp. (2), one case of the strains Paecilomyces spp., Eurotium spp., Monilia spp. Conclusions: The study found no significant deviations in the microbial contamination of the cleanroom air. The personnel entrance of the Transplant Unit represent a high risk area, an extreme value (7270 CFU/m3) was recorded. Regime measures are fully effective, no other deficiencies were found. Significance and Impact of the Study: This epidemiological study, which was held for the duration of one year at the Transplant Unit—Hemato-Oncology Clinic, University

  2. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk

    2016-07-01

    Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.

  3. Environment

    NASA Technical Reports Server (NTRS)

    Myles, R. L.

    1975-01-01

    Applications of remote sensing technology to wildlife preservation, pest control, strip mining, water quality monitoring, and wetlands mapping were discussed. Economic, political and social factors were also considered.

  4. In situ application of stir bar sorptive extraction as a passive sampling technique for the monitoring of agricultural pesticides in surface waters.

    PubMed

    Assoumani, Azziz; Lissalde, Sophie; Margoum, Christelle; Mazzella, Nicolas; Coquery, Marina

    2013-10-01

    Grab sampling and automated sampling are not suitable or logistically too constraining for the monitoring of pesticides in dynamic streams located in agricultural watersheds. In this work, we applied stir bar sorptive extraction (SBSE) Twisters® directly in two small rivers of a French vineyard (herein referred to as "passive SBSE"), for periods of one or two weeks during a month, for the passive sampling of 19 agricultural pesticides. We performed qualitative and semi-quantitative comparisons of the performances of passive SBSE firstly to automated sampling coupled to analytical SBSE, and secondly to the polar organic chemical integrative sampler (POCIS), a well-known passive sampler for hydrophilic micropollutants. Applying passive SBSE in river waters allowed the quantification of more pesticides and in greater amounts than analytical SBSE as shown for samples collected concurrently. Also, passive SBSE and POCIS proved to be complementary techniques in terms of detected molecules; but only passive SBSE was able to integrate a concentration peak triggered by a quick flood event that lasted 5 h. Passive SBSE could be an interesting tool for the monitoring of moderately hydrophobic to hydrophobic organic micropollutants in changing hydrosystems. In this purpose, further studies will focus on the accumulation kinetics of target pesticides and the determination of their sampling rates. PMID:23856404

  5. A national system for monitoring the population of agricultural pests using an integrated approach of remote sensing data from in situ automated traps and satellite images

    NASA Astrophysics Data System (ADS)

    Diofantos, Hadjimitsis G.; Panayiotis, Philimis; Elias, Psimolophitis; Georgiou, George K.; Kyriacos, Themistocleous

    2010-10-01

    A national system for monitoring the population increase of agricultural pest "Lobesia Botrana" (vine moth/fly that attacks grapes) in Cyprus has been developed. The system comprises of automated delta traps with GPS that use wireless(Wi-Fi) camera, automated image analysis for identification of the specific fly species, Wi-Fi technology for transferring the data using mobile telephony network to a central station for result presentation and analysis. A GIS database was developed and included details of the pilot vineyards, environmental conditions and daily data of the number of captured flies from each automated trap. The results were compared with MODIS and LANDSAT satellite thermal images since the appearance of the vine fly is greatly dependent on the microclimate temperatures (degree days). Results showed that satellite data can estimate accurately the appearance of the vine fly. The proposed system can be an important tool for the improvement of a national Integrated Pest Management (IPM) system and it can also be used for monitoring other agricultural pests and insects.

  6. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    NASA Astrophysics Data System (ADS)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  7. Modeling groundwater quality in an arid agricultural environment in the face of an uncertain climate: the case of Mewat District, India

    NASA Astrophysics Data System (ADS)

    Weber, M. C.; Ward, A. S.; Muste, M.

    2014-12-01

    The salinization of groundwater resources is a widespread problem in arid agricultural environments. In Mewat District (Haryana, India), groundwater salinity has rendered much of the accessible supply unfit for human consumption or agriculture. Historically, this closed basin retained fresh pockets of water at the foothills of the Aravalli Hills, where monsoonal precipitation runoff from the mountains was recharged through infiltration or facilitated by man-made structures. To date, an increasing number of pumps supply the region with fresh water for consumption and agriculture leading to shrinking the freshwater zone at an accelerated pace. The potential for increased human consumption corroborated with the effects of climate change bring uncertainty about the future of water security for the Mewat communities, most of them critically bound to the existence of local water. This study addresses the sustainability of the freshwater supply under a range of land interventions and climate scenarios, using a 2-D groundwater flow and transport model. Our results quantify potential futures for this arid, groundwater-dependent location, using numerical groundwater modeling to quantify interactions between human water use, infrastructure, and climate. Outcomes of this modeling study will inform an NGO active in the area on sustainable management of groundwater resources.

  8. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  9. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  10. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification.

    PubMed

    Jepson, P C; Guzy, M; Blaustein, K; Sow, M; Sarr, M; Mineau, P; Kegley, S

    2014-04-01

    We outline an approach to pesticide risk assessment that is based upon surveys of pesticide use throughout West Africa. We have developed and used new risk assessment models to provide, to our knowledge, the first detailed, geographically extensive, scientifically based analysis of pesticide risks for this region. Human health risks from dermal exposure to adults and children are severe enough in many crops to require long periods of up to three weeks when entry to fields should be restricted. This is impractical in terms of crop management, and regulatory action is needed to remove these pesticides from the marketplace. We also found widespread risks to terrestrial and aquatic wildlife throughout the region, and if these results were extrapolated to all similar irrigated perimeters in the Senegal and Niger River Basins, they suggest that pesticides could pose a significant threat to regional biodiversity. Our analyses are presented at the regional, national and village levels to promote regulatory advances but also local risk communication and management. Without progress in pesticide risk management, supported by participatory farmer education, West African agriculture provides a weak context for the sustainable intensification of agricultural production or for the adoption of new crop technologies. PMID:24535399

  11. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification

    PubMed Central

    Jepson, P. C.; Guzy, M.; Blaustein, K.; Sow, M.; Sarr, M.; Mineau, P.; Kegley, S.

    2014-01-01

    We outline an approach to pesticide risk assessment that is based upon surveys of pesticide use throughout West Africa. We have developed and used new risk assessment models to provide, to our knowledge, the first detailed, geographically extensive, scientifically based analysis of pesticide risks for this region. Human health risks from dermal exposure to adults and children are severe enough in many crops to require long periods of up to three weeks when entry to fields should be restricted. This is impractical in terms of crop management, and regulatory action is needed to remove these pesticides from the marketplace. We also found widespread risks to terrestrial and aquatic wildlife throughout the region, and if these results were extrapolated to all similar irrigated perimeters in the Senegal and Niger River Basins, they suggest that pesticides could pose a significant threat to regional biodiversity. Our analyses are presented at the regional, national and village levels to promote regulatory advances but also local risk communication and management. Without progress in pesticide risk management, supported by participatory farmer education, West African agriculture provides a weak context for the sustainable intensification of agricultural production or for the adoption of new crop technologies. PMID:24535399

  12. Arctic Observing Experiment - An Assessment of Instruments Used to Monitor the Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Johnson, J.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Valentic, T. A.; Henderson, G. R.; Marshall, C.; Gallage, C.; Zook, J.; Davis, Z.

    2014-12-01

    To understand and predict weather and climate require an accurate observing network that measures the fundamental meteorological parameters: temperature, air pressure, and wind. Measuring these parameters autonomously in the polar regions is especially challenging. To assess the accuracy of polar measurement networks, we established the Arctic Observing Experiment (AOX) test site in March 2013 at the Department of Energy (DOE) Atmospheric Radiation and Meteorology (ARM) site in Barrow, Alaska. We deployed a myriad of data loggers and autonomous buoys, which represent most of the instruments that are commonly deployed by the International Arctic Buoy Programme (IABP) to measure temperature, air pressure and wind. Estimates of temperature over this area have also been analyzed from satellites (e.g., using the Moderate-resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST)) product, and can complement data from in-situ sensors and provide consistent measurements under clear-sky conditions. Preliminary results reveal that some of the buoys are susceptible to solar heating, icing can block barometers for short periods, and frosting may insulate air temperature sensors and freeze-lock anemometers. Some of these issues may be addressed by simply painting the buoys white to reduce solar heating of the buoys, and using better temperature shields and barometer ports. Nevertheless, frosting of ultrasonic and mechanical anemometers remains a significant challenge. These results will be useful to initiate a protocol to obtain accurate and consistent measurements from the IABP, the Arctic Observing Network (AON), the International Program for Antarctic Buoys, and the Southern Ocean Observing System to monitor polar environments.

  13. Meteorological Circulations at Gale Environment Through Rover Environmental Monitoring Station (REMS) Observations and Mesoscale Modeling (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, J.; Rafkin, S.

    2015-10-01

    Gale Crater, in which the Mars Science Laboratory (MSL) landed in August 2012, is the most topographically complex area visited to date on Mars. The meteorology within the crater may also be one of the most dynamically complex meteorological environments, because topography is thought to strongly drive the near-surface atmospheric circulations. The Rover Environmental Monitoring Station (REMS) [5] has provided some clues on the nature of the local meteorology strongly influenced by the complex topography, as predicted by numerous previous studies. The types of perturbations of pressure, air and ground temperature and wind measured by REMS have never been observed at other locations and these data provide a great opportunity to test the models at the most meteorological interesting area measured to date. In an effort to better understand the atmospheric circulations of the Gale Crater, the Mars Regional Atmospheric Modeling System (MRAMS)[6]was applied to the landing site region using nested grids with a spacing of 330 meters on the innermost grid that is centered over the landing site. We provide a comparison of MRAMS predictions for pressure, air temperature, winds and ground temperature,to the REMS data available at the location of the Rover for sols 51-55 (Ls=180), sols 195-199 (Ls=270), sols 348-352 (Ls=0) and sols 541-545 (Ls=90), in order to provide a baseline of model performance.Pressure and ground temperature provide the most robust parameters with which to test the model predictions(Figures 2 and 3).

  14. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: implications for monitoring and biomarker responses.

    PubMed

    Abdel-Halim, K Y; Salama, A K; El-Khateeb, E N; Bakry, N M

    2006-06-01

    The study was carried out from spring 1999 to spring 2001 to monitor the residue levels of organophosphorus pollutants (OPP) in aquatic environment of the drainage canal surrounding a pesticide factory at Damietta Governorate. Water, sediment, and fish samples were collected at six different seasonal periods. OPPs were analyzed by GLC and confirmed using GC-MS. Chlorpyrifos, chlorpyrifos-methyl, malathion, diazinon, pirimiphos-methyl and profenofos were detected in most samples. Chlorpyrifos was dominant in all water and sediment samples. It was ranged from 24.5 to 303.8 and 0.9 to 303.8 ppb in water and sediment samples, respectively. Diazinon level was slightly similar to chlorpyrifos in fish samples. Data based on the grand total concentration of OPP showed that the most polluted samples were collected either at spring 1999 or autumn 2000. They were 675.5 and 303.8 ppb in water samples and 43.0 and 52.2 ppb in fish collected at spring 1999 and autumn 2000, respectively. The obtained results are in parallel to that found in case of cholinesterase activity where the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was declined at these seasonal period. The activity levels of AChE and BuChE were found to be 77.18% and 59.67% of control at spring 1999 and 78.62% and 85.80% of control, at autumn 2000, respectively. Thus, AChE and BuChE could be used as biomarkers for tracing and biomonitoring OPP pollution. PMID:16289700

  15. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  16. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    NASA Astrophysics Data System (ADS)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  17. Ultrafine particles in four European urban environments: Results from a new continuous long-term monitoring network

    NASA Astrophysics Data System (ADS)

    Hofman, J.; Staelens, J.; Cordell, R.; Stroobants, C.; Zikova, N.; Hama, S. M. L.; Wyche, K. P.; Kos, G. P. A.; Van Der Zee, S.; Smallbone, K. L.; Weijers, E. P.; Monks, P. S.; Roekens, E.

    2016-07-01

    To gain a better understanding on the spatiotemporal variation of ultrafine particles (UFPs) in urban environments, this study reports on the first results of a long-term UFP monitoring network, set up in Amsterdam (NL), Antwerp (BE), Leicester (UK) and London (UK). Total number concentrations and size distributions were assessed during 1-2 years at four fixed urban background sites, supplemented with mobile trailer measurements for co-location monitoring and additional short-term monitoring sites. Intra- and interurban spatiotemporal UFP variation, associations with commonly-monitored pollutants (PM, NOx and BC) and impacts of wind fields were evaluated. Although comparable size distributions were observed between the four cities, source-related differences were demonstrated within specific particle size classes. Total and size-resolved particle number concentrations showed clear traffic-related temporal variation, confirming road traffic as the major UFP contributor in urban environments. New particle formation events were observed in all cities. Correlations with typical traffic-related pollutants (BC and NOx) were obtained for all monitoring stations, except for Amsterdam, which might be attributable to UFP emissions from Schiphol airport. The temporal variation in particle number concentration correlated fairly weakly between the four cities (rs = 0.28-0.50, COD = 0.28-0.37), yet improved significantly inside individual cities (rs = 0.59-0.77). Nevertheless, considerable differences were still obtained in terms of particle numbers (20-38% for total particle numbers and up to 49% for size-resolved particle numbers), confirming the importance of local source contributions and the need for careful consideration when allocating UFP monitoring stations in heterogeneous urban environments.

  18. The participatory design of a performance oriented monitoring and evaluation system in an international development environment.

    PubMed

    Guerra-López, Ingrid; Hicks, Karen

    2015-02-01

    This article illustrates the application of the impact monitoring and evaluation process for the design and development of a performance monitoring and evaluation framework in the context of human and institutional capacity development. This participative process facilitated stakeholder ownership in several areas including the design, development, and use of a new monitoring and evaluation system, as well their targeted results and accomplishments through the use of timely performance data gathered through ongoing monitoring and evaluation. The process produced a performance indicator map, a comprehensive monitoring and evaluation framework, and data collection templates to promote the development, implementation, and sustainability of the monitoring and evaluation system of a farmer's trade union in an African country. PMID:25279997

  19. Spatial variation of soil salinity in the Mexicali Valley, Mexico: application of a practical method for agricultural monitoring.

    PubMed

    Judkins, Gabriel; Myint, Soe

    2012-09-01

    The degradation of irrigated lands through the process of soil salinization, or the buildup of salts in the soil, has hampered recent increases in agricultural productivity and threatens the sustainability of large-scale cultivation in critical agricultural regions of the world. Rapid detection of soil salinity on a regional basis has been identified as key for effective mitigation of such land degradation. The ability to detect regional patterns of soil salinity at an accuracy sufficient for regional-scale resource management is demonstrated using Landsat 5 Thematic Mapper (TM) imagery. A case study of the Mexicali Valley of Baja California, Mexico was selected due to the region's agricultural significance and concern for future soil salinity increases. Surface soil salinity was mapped using georeferenced field measurements of electrical conductivity (EC), collected concurrently with Landsat 5 TM imagery. Correlations between EC measurements and common indices derived from the satellite imagery were used to produce a model of soil salinity through regression analysis. Landsat band 7, TNDVI, PCA 1, Tasseled Cap 3 and Tasseled Cap 5 were found to offer the most promising correlations with surface soil salinity. Generally low levels of soil salinity were detected, however, distinct areas of elevated surface salinity were detected at levels potentially impacting sensitive crops cultivated within the region. The difficulty detecting low levels of salinity and the mid-range spatial resolution of Landsat 5 TM imagery restrict the applicability of this methodology to the study of broad regional patterns of degradation most appropriate for use by regional resource managers. PMID:22744157

  20. Use of real-time and continuous water quality monitoring in Iowa streams to inform conservation strategy in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jones, C. S.; Kim, S. W.; Davis, C. A.

    2015-12-01

    Agricultural watersheds in the Midwestern U.S. are major contributors of nutrients to the Mississippi River Basin and the Gulf of Mexico. Many states within the Upper Mississippi River Basin, including Iowa, are developing nutrient reduction strategies to reduce non-point and point source loads of nitrogen and phosphorous in an effort to reverse degradation of streams and lakes. Quantifying nutrient loads in Iowa and assessing loads transported within Iowa rivers are important components of Iowa's strategy. Nutrient loads estimated with data collected using traditional methods of grab sampling are expensive and have met with limited usefulness to the agricultural community when assessing the effectiveness of implemented conservation practices. New sensor technology is allowing for real-time measurement of nutrient loads in many Iowa rivers. IIHR Hydroscience and Engineering has deployed 22 nitrate-nitrogen sensors in several Iowa rivers to provide accurate measure of nutrient loads. Combined with 17 sensors operated by the USGS, the sensor network captures nutrient transport and loading patterns in rivers across the state. A new Iowa Water Quality Information System (IWQIS) is being developed to display and share the continuous, real-time data. The data reported here will compare and contrast load calculations obtained using continuous monitors with those from a more traditional grab samples. We also will demonstrate how continuous nitrate monitoring informs watershed hydrology and the assessment of conservation practices designed to reduce nutrient loss from farmed fields. Finally, we will establish that the costs of real time continuous monitoring are modest when compared to grab sampling strategies and the costs of implementing conservation on productive lands in the Western Corn Belt of Iowa.

  1. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.

    PubMed

    Khan, A J; Semkow, T M; Beach, S E; Haines, D K; Bradt, C J; Bari, A; Syed, U-F; Torres, M; Marrantino, J; Kitto, M E; Menia, T; Fielman, E

    2014-08-01

    The results are described of an upgrade of the low-background gamma-ray spectrometry laboratory at New York State Department of Health by acquiring sensitivity to low-energy gamma rays. Tuning of the spectrometer and its low-energy response characteristics are described. The spectrometer has been applied to monitor the environment by measuring aerosols and water in New York State contaminated by the 2011 Fukushima accident plume. In addition, the spectrometer has been used to monitor radioactivity in food by performing a study of cesium in Florida milk. PMID:24836905

  2. Agriculture Education. Agriculture Structures.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…

  3. Improving food and agriculture productivity and the environment: Canadian initiatives in methyl bromide alternatives and emission control technologies. Revised edition

    SciTech Connect

    Marcotte, M.; Tibelius, C.

    1998-12-31

    Methyl bromide, a fumigant used in the agricultural sector, was listed as an ozone-depleting substance under the Montreal Protocol and is scheduled for phasing out in Canada. This report begins with a review of the joint industry/government approach being taken to plan and manage this phase-out. It then reviews alternative solutions that have been formulated and tested as replacements for the use of methyl bromide in greenhouse cultivation, soil fumigation, strawberry transplant production, tobacco production, grain production, and food processing facilities. Contact names and addresses are provided for those seeking further information. The final sections describe activities in methyl bromide recovery and recycling and list industry and government organizations that have expertise in methyl bromide alternatives.

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  5. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  6. A regional monitoring network to investigate the occurrence of agricultural chemicals in near-surface aquifers of the midcontinental USA

    USGS Publications Warehouse

    Kolpin, D.W.; Goolsby, D.A.

    1995-01-01

    Previous state and national surveys conducted in the mid-continental USA have produced a wide range in results regarding the occurrence of agricultural chemicals in groundwater. At least some of these differences can be attributed to inconsistencies between the surveys, such as different analytical reporting limits. The US Geological Survey has designed a sampling network that is geographically and hydrogeologically representative of near-surface aquifers in the corn- and soybean-producing region of the midcontinental USA. More than 800 water quality samples have been collected from the network since 1991. Six of the seven most frequently detected compounds from this study were herbicide metabolites. A direct relation was determined between tritium content to herbicide and nitrate contamination. The unconsolidated aquifers sampled were found to be more susceptible to herbicide and nitrate contamination than the bedrock aquifers. Knowledge of the regional occurrence and distribution of agricultural chemicals acquired through the study of data collected at network sites will assist policy makers and planners with decisions regarding the protection of drinking-water supplies.

  7. Agricultural nitrate monitoring in a lake basin in Central Italy: a further step ahead towards an integrated nutrient management aimed at controlling water pollution.

    PubMed

    Garnier, Monica; Recanatesi, Fabio; Ripa, Maria Nicoletta; Leone, Antonio

    2010-11-01

    Water pollution from point sources has been considerably reduced over the last few decades. Nevertheless, some water quality problems remain, which can be attributed to non-point pollution sources, and in particular to agriculture. In this paper the results of a study intended to assess the consequences, in terms of NO3 water pollution, of growing a crop, whose impact in terms of P pollution is already well known, are presented. The potential consequences, in terms of water pollution from nitrates of a BMP expressly applied to reduce P pollution are also discussed. The study site is the Lake Vico basin, Central Italy, which has suffered a shift in trophic state since the mid 1990s, caused by P compounds used for intensive cultivation of hazelnut trees. The results of the monitoring campaign described in this paper allow to assert that hazelnut tree cropping has probably caused a considerable increase in nitrate concentration in the groundwater, although not in the lake water, because of the specific hydrogeological characteristics of the basin. The main conclusion is that monitoring is essential to single out environmental characteristics peculiar of a specific area, which even the most sophisticated model would not have been able to highlight. This is why monitoring and model simulations should be integrated. PMID:19911291

  8. LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments.

    PubMed

    López, Gregorio; Custodio, Víctor; Moreno, José Ignacio

    2010-11-01

    This paper describes a novel healthcare IT platform developed under the LOBIN project, which allows monitoring several physiological parameters, such as ECG, heart rate, body temperature, etc., and tracking the location of a group of patients within hospital environments. The combination of e-textile and wireless sensor networks provides an efficient way to support noninvasive and pervasive services demanded by future healthcare environments. This paper presents the architecture, system deployment as well as validation results from both laboratory tests and a pilot scheme developed with real users in collaboration with the Cardiology Unit at La Paz Hospital, Madrid, Spain. PMID:20643610

  9. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as

  10. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Pettit, D. R.; Hartman, W. A.

    2012-12-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data in support of a variety of ISS engineering and operations activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS from 2006 to the present time to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to the combined effects of electrostatic current collection processes from the plasma environment and inductive (vxB) effects due to the motion of the vehicle across the Earth's magnetic field. An ongoing effort to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and document ISS frame charging as the vehicle passes through regions of precipitating auroral electrons is challenged by restrictions on the available FPMU operation time. The instruments can only be operated during campaign periods limited to about a third of a year in accumulated operation time and FPMU data is down linked through the ISS Ku band telemetry system, a shared resource. As a result, FPMU campaign periods of a few days to weeks have typically been scheduled for periods of a week or two in advance. Capturing geomagnetic storm data under these conditions depended on the fortuitous event of a storm starting during a previously planned FPMU campaign period, an unlikely event at a time when Solar Cycle 24 was ending and a protracted solar minimum gave little in the way of geoeffective solar disturbances. However, with the start of Solar Cycle 24 the number of solar disturbances and associated geomagnetic storms started to increase and we modified our strategy to improve the chances of capturing geomagnetic storm data. We now monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times

  11. An analysis of selected elements of the environment in the outflow model compared with measurements of agricultural basin in central Poland.

    NASA Astrophysics Data System (ADS)

    Tyszkowski, S.; Bartczak, A.; Glazik, R.

    2012-04-01

    Due to the supra-regional importance of areas of intensive agriculture, it is important to identify factors, that are affecting the size of the drainage basin. One of the methods that will allow to determine relations is the spatial valorization of environmental elements, that affect the circulation of water. Such analysis was performed for highly agricultural region in the central part of Poland (52° 30'N, 18° 50'E). The study area was Zglowiaczka basin, which covers an area of 1.495,6 km2.With the help of GIS methods and tools, there have been designated from thematic maps these factors of natural environment elements, that influence the size of the outflow. Basing on topographic maps at 1:25000 scale, river network, river length has been calculated, hydrographic objects such as lakes, swamps, marshes have been inventoried and the land use has been partly assessed. For the evaluation of the terrain there has been used a DTM in the form of a raster, that was created on the base of analyzing photogrametric materials. Its accuracy is similar to topographic maps at 1:10000 scale, with 1m vertical resolution. It was mainly used to determine the slopes, and watersheds deletion. It was also required to determine the length of some contours of the catchment's - the material needed for the expected value of runoff in the model. To determine the land use - mainly for agricultural use of crop type, Corine Land Cover 2000 was used. To determine the lithology and as a result - the infiltration, there were used both geological and soil maps. These elements formed the background, on which the spatial variation of river streamflow was marked and compared. Zglowiaczka basin was divided into several sub-basins. The analysis was performed for the entire basin in general and using the same methods for sub-basins as well. Each time model data was compared with the actual values gained from the field work (flow measurements and from recorders. The poster presents the comparison of

  12. Geophysical mapping of soil static characteristics and monitoring of soil dynamic states: an example on agricultural land.

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Ursino, N.; Deiana, R.; Vignoli, G.; Boaga, J.; Rossi, M.; Perri, M. T.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.

    2012-04-01

    In this contribution we the results of nearly three years of non invasive monitoring of the soil conditions in an experimental farm in a region of semi-arid climate in Southern Sardinia. The main of the study is to understand the effects of soil types and soil-vegetation interactions on soil water balance. The adopted technique is a combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements, with the general aim of achieving quantitative field-scale estimates of moisture content of the first meter of topsoil. Mapping of natural gamma-ray emission, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. Unlike remote sensing techniques, non invasive geophysics penetrates the soil subsurface and can effectively image moisture content in the soil active layer. We observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system.

  13. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    NASA Astrophysics Data System (ADS)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and

  14. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    NASA Technical Reports Server (NTRS)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  15. Targeting allergenic fungi in agricultural environments aids the identification of major sources and potential risks for human health.

    PubMed

    Weikl, F; Radl, V; Munch, J C; Pritsch, K

    2015-10-01

    Fungi are, after pollen, the second most important producers of outdoor airborne allergens. To identify sources of airborne fungal allergens, a workflow for qPCR quantification from environmental samples was developed, thoroughly tested, and finally applied. We concentrated on determining the levels of allergenic fungi belonging to Alternaria, Cladosporium, Fusarium, and Trichoderma in plant and soil samples from agricultural fields in which cereals were grown. Our aims were to identify the major sources of allergenic fungi and factors potentially influencing their occurrence. Plant materials were the main source of the tested fungi at and after harvest. Amounts of A. alternata and C. cladosporioides varied significantly in fields under different management conditions, but absolute levels were very high in all cases. This finding suggests that high numbers of allergenic fungi may be an inevitable side effect of farming in several crops. Applied in large-scale studies, the concept described here may help to explain the high number of sensitization to airborne fungal allergens. PMID:26022406

  16. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  17. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is

  18. [MONITORING OF THE CONTENT OF HEAVY METALS AND ELEMENTS IN THE SNOW COVER IN AGRICULTURAL SOILS AT THE TERRITORY OF THE MOSCOW REGION].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2015-01-01

    The monitoring of snow cover pollution by heavy metals and elements (zinc, copper, lead, cadmium, arsenic, nickel, chromium, strontium, manganese, fluorine, lithium) was performed in 20 districts of the Moscow region in 2009, 2012 and 2013. The assessment of the levels of contamination by heavy metals and elements was given by means of comparison of them with the average values in the snow cover near Moscow in the end of the last century and in some areas of the world, that no exposed to technological environmental impact. 7 districts of Moscow region were characterized by a high content of lead and cadmium in the snow water. It requires the control of water, soil and agricultural products pollution. PMID:26625612

  19. The current California drought through EDDI's eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index.

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.

    2015-12-01

    We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major

  20. Person × Environment Interactions on Adolescent Delinquency: Sensation Seeking, Peer Deviance and Parental Monitoring

    PubMed Central

    Mann, Frank D.; Kretsch, Natalie; Tackett, Jennifer L.; Harden, K. Paige; Tucker-Drob, Elliot M.

    2015-01-01

    Sensation seeking is a personality trait that is robustly correlated with delinquent behavior in adolescence. The current study tested specific contextual factors hypothesized to facilitate, exacerbate or attenuate this risk factor for adolescent delinquency. Individual differences in sensation seeking, peer deviance, parental monitoring and self-reported delinquent behavior were assessed in a sample of 470 adolescents. Peer deviance partially mediated the effects of sensation seeking and parental monitoring on adolescent delinquency. We also found evidence for a three-way interaction between sensation seeking, peer deviance and parental monitoring, such that the highest rates of delinquency occurred from the concurrence of high sensation seeking, high peer deviance, and low levels of parental monitoring. Results highlight the importance of considering peer- and family-level processes when evaluating personality risk and problematic adolescent behavior. PMID:25908885

  1. Integration of cosmic-ray neutron probes into production agriculture: Lessons from the Platte River cosmic-ray neutron probe monitoring network

    NASA Astrophysics Data System (ADS)

    Avery, W. A.; Finkenbiner, C. E.; Franz, T. E.; Nguy-Robertson, A. L.; Munoz-Arriola, F.; Suyker, A.; Arkebauer, T. J.

    2015-12-01

    Projected increases in global population will put enormous pressure on fresh water resources in the coming decades. Approximately 70 percent of human water use is allocated to agriculture with 40 percent of global food production originating from irrigated lands. Growing demand for food will only worsen the strain placed on many irrigated agricultural systems resulting in an unsustainable reliance on groundwater. This work presents an overview of the Platte River Cosmic-ray Neutron Probe Monitoring Network, which consists of 10 fixed probes and 3 mobile probes located across the Platte River Basin. The network was installed in 2014 and is part of the larger US COSMOS (70+ probes) and global COSMOS networks (200+ probes). Here we will present an overview of the network, comparison of fixed neutron probe results across the basin, spatial mapping results of the mobile sensors at various sites and spatial scales, and lessons learned by working with various producers and water stakeholder groups. With the continued development of this technique, its incorporation for soil moisture management in large producer operations has the potential to increase irrigation water use efficiency in the Platte River Basin and beyond.

  2. Monitoring in situ stress changes in a mining environment with coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Grêt, Alexandre; Snieder, Roel; Özbay, Uḡur

    2006-11-01

    Coda waves are highly sensitive to changes in the subsurface; we use this sensitivity to monitor small stress changes in an underground mine. We apply coda wave interferometry to seismic data excited by a hammer source, collected at an experimental hard rock mine in Idaho Springs, CO. We carried out a controlled stress-change experiment in a mine pillar and we show how coda wave interferometry can be used to monitor the in situ stress change with modest hardware requirements.

  3. A Dynamic Approach to Monitoring Particle Fallout in a Cleanroom Environment

    NASA Technical Reports Server (NTRS)

    Perry, Radford L., III

    2010-01-01

    This slide presentation discusses a mathematical model to monitor particle fallout in a cleanroom. "Cleanliness levels" do not lead to increases with regards to cleanroom type or time because the levels are not linear. Activity level, impacts the cleanroom class. The numerical method presented leads to a simple Class-hour formulation, that allows for dynamic monitoring of the particle using a standard air particle counter.

  4. A New HLA-Based Distributed Control Architecture for Agricultural Teams of Robots in Hybrid Applications with Real and Simulated Devices or Environments

    PubMed Central

    Nebot, Patricio; Torres-Sospedra, Joaquín; Martínez, Rafael J.

    2011-01-01

    The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications. PMID:22163853

  5. Development of a field worthy sensor system to monitor gaseous nitrogen transfer from agricultural cropland. Phase 1, Final report

    SciTech Connect

    Not Available

    1992-11-01

    Nitrogen fertilizer accounts for 25 to 33% of the energy requirements in modern crop agriculture in the world today. Energy input for the manufacture of these N fertilizers is in the range of 460 {times} 10{sup 12} Btu per year. Unfortunately, for some N sources up to 70% of this energy in the form of NK can be lost through improper application techniques and poor N management strategies. Anhydrous NH{sub 3} may be lost to the atmosphere during and after placement due to soil conditions placement. Measurement of volatile N is difficult, especially under field conditions. A precise and convenient method of measuring gaseous NH{sub 3} near and above the soil surface is prerequisite to the development and evaluation of altemative fertilizer management strategies and application techniques which can reduce the potential for significant loss. Recent advances in integrated-optic (IO) based sensing offers the potential of measuring low levels of NH{sub 3} loss from a cropping system in the range of 100 ppB. The integrated design of an IO system allows for a more durable device that can be mass produced at low cost. Under Phase I of this project, two IO devices were designed and tested: an absorption device using an oxazine dye as a waveguide coating and an interferometric device using an anilinium salt as a waveguide coating.

  6. Phosphorus Transport at the Field Scale by Monitoring Groundwater and Interflow Discharge in Hydrologically Sensitive Areas in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Geohring, L.; Steenhuis, T.

    2004-05-01

    Quantification of nonpoint source of phosphorus losses through agricultural land is important because hydrologically active areas can significantly affect water quality. In this study we examined phosphorus concentration and phosphorus losses from hydrologically sensitive areas and upland areas located in valley soils in the Cannosville basin in Catskill Mountains. Phosphorus concentrations as low as 0.01 - 0.02 mg/L in water increase the algael bloom in lakes and reservoirs and the Cannosville basin is currently restricted to 0.02mg/L. We measured grab surface water samples taken along the creeks to study the phosphorus concentration in the sub-superficial runoff that drains water from the surrounding hills. Also we installed two different transects of piezometers, one line upstream and one line downstream, to study the role of the groundwater component and its effect in the hydrologically sensitive areas. We generally found low phosphorus concentration in the grab surface water samples and the groundwater samples taken in the piezometers. Sampling during the highest creek flow has resulted in the highest concentrations, generally near 0.05 mg/L of dissolved reactive phosphorus. These concentrations were slightly higher than the concentrations in most of the wells, which were around 0.03 mg/L. Sampling is ongoing to determine the effects snow melt contributions. Results will be presented to show the seasonal effects of phosphorus in the hydrologically sensitive areas.

  7. Space Environment Forecasting with Neutron Monitors: Establishing a novel service for the ESA SSA Program

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios; Mavromichalaki, Helen; Souvatzoglou, George; Paschalis, Pavlos; Sarlanis, Christos; Dimitroulakos, John; Gerontidou, Maria

    2013-04-01

    High-energy particles released at the Sun during a solar flare or a very energetic coronal mass ejection, result to a significant intensity increase at neutron monitor measurements known as Ground Level Enhancements (GLEs). Due to their space weather impact (i.e. risks and failures at communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations) it is crucial to establish a real-time operational system that would be in place to issue reliable and timely GLE Alerts. Currently, the Cosmic Ray group of the National and Kapodistrian University of Athens is working towards the establishment of a Neutron Monitor Service that will be made available via the Space Weather Portal operated by the European Space Agency (ESA), under the Space Situational Awareness (SSA) Program. To this end, a web interface providing data from multiple Neutron Monitor stations as well as an upgraded GLE Alert will be provided. Both services are now under testing and validation and they will probably enter to an operational phase next year. The core of this Neutron Monitor Service is the GLE Alert software, and therefore, the main goal of this research effort is to upgrade the existing GLE Alert software, to minimize the probability of a false alarm and to enhance the usability of the corresponding results. The ESA Neutron Monitor Service is building upon the infrastructure made available with the implementation of the High-Resolution Neutron Monitor Database (NMDB). In this work the structure of the Neutron Monitor Service for ESA SSA Program and the impact of the novel GLE Alert Service that will be made available to future users via ESA SSA web portal will be presented and further discussed.

  8. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 7. Science Applications, Incorporated field test facility preliminary design

    SciTech Connect

    Not Available

    1985-01-01

    This report contains the preliminary design of an SCEAS Engineering Test Facility (ETF). The ETF is a 3600 m/sup 2/ fluid roof greenhouse with an inflated plastic film roof to maintain a clean environment for the fluid roof and to protect the inner glazing from hail and other small missiles. The objective of the design was the faithful scaling of the commercial facility to ensure that the ETF results could be extrapolated to a commercial facility of any size. Therefore, all major features, including the photovoltaic power system, an integral water desalination system and even the basic structural module have been retained. The design is described in substantial detail in the body of this report, with appendices giving the drawings and specifications.

  9. SoundProof: A Smartphone Platform for Wireless Monitoring of Wildlife and Environment

    NASA Astrophysics Data System (ADS)

    Lukac, M.; Monibi, M.; Lane, M. L.; Howell, L.; Ramanathan, N.; Borker, A.; McKown, M.; Croll, D.; Terschy, B.

    2011-12-01

    We are developing an open-source, low-cost wildlife and environmental monitoring solution based on Android smartphones. Using a smartphone instead of a traditional microcontroller or single board computer has several advantages: smartphones are single integrated devices with multiple radios and a battery; they have a robust software interface which enables customization; and are field-tested by millions of users daily. Consequently, smartphones can improve the cost, configurability, and real-time access to data for environmental monitoring, ultimately replacing existing monitoring solutions which are proprietary, difficult to customize, expensive, and require labor-intensive maintenance. While smartphones can radically change environmental and wildlife monitoring, there are a number of technical challenges to address. We present our smartphone-based platform, SoundProof, discuss the challenges of building an autonomous system based on Android phones, and our ongoing efforts to enable environmental monitoring. Our system is built using robust off-the-shelf hardware and mature open-source software where available, to increase scalability and ease of installation. Key features include: * High-quality acoustic signal collection from external microphones to monitor wildlife populations. * Real-time data access, remote programming, and configuration of the field sensor via wireless cellular or WiFi channels, accessible from a website. * Waterproof packaging and solar charger setup for long-term field deployments. * Rich instrumentation of the end-to-end system to quickly identify and debug problems. * Supplementary mesh networking system with long-range wireless antennae to provide coverage when no cell network is available. We have deployed this system to monitor Rufous Crowned Sparrows on Anacapa Island, Chinese Crested Turns on the Matsu Islands in Taiwan, and Ashy Storm Petrels on South East Farallon Island. We have testbeds at two UC Natural Reserves to field

  10. Wearable monitoring systems for psychological and physiological state assessment in a naturalistic environment.

    PubMed

    Paradiso, R; Faetti, T; Werner, S

    2011-01-01

    Wearable monitoring systems based on Smart Fibers and Interactive Textile (SFIT) platforms combine imperceptible sensing and computing functions with an interactive communication network. The integration into clothes of bio-potential sensors for health monitoring provides daily physiological parameters through a continuous, personalized, self-made detection of vital signs and the tracking of behavioral indicators of the subject. SFIT platforms can be used unobtrusively into the routinely daily activity to perform remote monitoring of persons in different circumstances and situations: during controlled exercises and diagnostic procedures as a biofeedback tool, during the usual daily life, during sleep or even to monitor behavioral indexes and mood disorders. Treatment of stress may include also training in cognitive-behavioral skills. Moreover, physiological signs and behavioral monitoring based on a multivariable approach leads to an enhanced sensitivity and specificity of these systems for the prediction of critical events. This paper presents two applications: a platform used in the frame of PSYCHE project, based on textile platforms and portable sensing devices for the long term and short term acquisition of data from patients affected by mood disorders and a platform addressing healthy subjects, based on biofeedback methodology, designed for the training of professional drivers named Mental Bio. PMID:22254788

  11. COSMOS Sensors in Agricultural Ecosystems: Accounting for Rapid Changes in Biomass in Order to Monitor Root Zone Water

    NASA Astrophysics Data System (ADS)

    Hornbuckle, B. K.; Irvin, S.; Franz, T. E.

    2013-12-01

    Cosmic rays from outer space produce neutrons in the atmosphere which are scattered and absorbed by hydrogen in the atmosphere, soil, and vegetation. The intensity of neutrons just above Earth's surface is inversely related to the hydrogen (and therefore water content) of the soil. Neutron detectors situated 2 m above the ground are sensitive to the soil water content of the top 30 cm. Daily estimates of soil water with an uncertainty of < 1% are possible. An individual neutron detector observes an area nearly 700 m in diameter. This spatial scale closely matches the scale of agricultural fields in the Midwest United States. We claim that future weather and climate models will need to resolve soil moisture at this field scale in order to best represent land-atmosphere interactions and subsequently improve forecasts of the soil moisture reservoir in this region. Using neutron detectors to observe soil moisture circumvents the problem of 'scaling up' point observations of soil moisture made with in-situ sensors like TDR or simple gravimetric sampling. The COSMOS (COsmic-ray Soil Moisture Observing System) is a network of nearly 60 neutron detectors deployed in a variety of ecosystems across the United States. Each detector is connected to the network through a satellite communication link and data is available in real-time via the web. The goal of the network is to eventually deploy 500 detectors and provide continental-scale observations of plant-available water. Recently it has been recognized that all hydrogen sources must be considered when interpreting neutron measurements. These sources include static pools of hydrogen (soil chemical composition, bound soil water, and soil organic matter), quasi-static pools (the water stored in vegetation, as well as vegetation dry matter), and transient pools (soil pore water, water vapor in the atmosphere, ponded water, snow, and possibly dew and intercepted precipitation). In the agricultural ecosystems of the Midwest, both

  12. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  13. Opportunities provided by UAVs to monitor erosion processes in agricultural catchments: a case study from Northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; De Wit, Bart; De Wulf, Alain; Salvador, Pierre-Gil; Nyssen, Jan

    2014-05-01

    In erosion studies, accurate spatio-temporal data are required to fully understand the processes involved and their relationship with environmental controls. With cameras being mounted on Unmanned Aerial Vehicles (UAVs), the latter allow to collect low-altitude aerial photographs over small catchments in a cost-effective and rapid way. From large data sets of overlapping aerial photographs, Structure from Motion - Multi View Stereo workflows, integrated in various software such as PhotoScan used here, allow to produced detailed Digital Surface Models (DSMs) and ortho-mosaics. In this study we present the results from a survey carried out in a small agricultural catchment near Hallines, in Northern France. A DSM and ortho-mosaic was produced of the catchment using photographs taken from a low-cost radio-controlled microdrone (DroneFlyer Hexacopter). Photographs were taken with a Sony Nex 5 (16.1 M pixels) camera having a fixed normal lens of 50 mm. In the field, Ground Control Points were materialized by unambiguously determinable targets, measured with a 1'' total station (Leica TS15i). Cross-sections of rills and ephemeral gullies were also quantified from total station measurements and from terrestrial image-based 3D modelling. These data allowed to define the accuracy of the DSM and the representation of the erosion features in it. The feasibility of UAVs photographic surveys to improve our understanding on water-erosion processes such as sheet, rill and gully erosion is discussed. Keywords: Ephemeral gully, Erosion study, Image-based 3D modelling, Microdrone, Rill, UAVs.

  14. Identifying crop specific signals for global agricultural monitoring based on the stability of daily multi-angular MODIS reflectance time series

    NASA Astrophysics Data System (ADS)

    Duveiller, G.; Lopez-Lozano, R.

    2013-12-01

    Global agricultural monitoring requires satellite Earth Observation systems that maximize the observation revisit frequency over the largest possible geographical coverage. Such compromise has thus far resulted in using a spatial resolution that is often coarser than desired. As a consequence, for many agricultural landscapes across the world, crop status can only be inferred from a mixed signal of the landscape (with a pixel size typically close to 1 km), composed of reflectance from neighbouring fields with potentially different crops, variable phenological behaviours and distinct management practices. MODIS has been providing, since 2000, a higher spatial resolution (~250m) that is closer to the size of individual fields in many agro-ecological landscapes. However, the challenge for operational crop specific monitoring remains to identify in time where a given crop has been sown during the current growing season. An innovative use of MODIS daily data is proposed for crop identification based on the stability of the multi-angular signal. MODIS is a whiskbroom sensor with a large swath. For any given place, consecutive MODIS observations are made with considerably different viewing angles according to the daily change in orbit. Consequently, the footprint of the observation varies considerably, thereby sampling the vicinity around the centre of the grid cell in which the time series is ultimately recorded in. If the consecutive observations that have sampled the vicinity provide similar NDVI values (for which BRDF effects are reduced), the resulting temporal signal is relatively stable. This stability indicated that the signal comes from a spatially homogeneous surface, such as a single large field covered by the same crop with similar agro-management practices. If the resulting temporal signal is noisy, it is probable that the consecutive daily observations have sampled different land uses, thus contaminating the signal. Such time series can therefore be