Science.gov

Sample records for agricultural field sites

  1. Effects of topography and soil properties on recharge at two sites in an agricultural field

    USGS Publications Warehouse

    Delin, G.N.; Healy, R.W.; Landon, M.K.; Böhlke, J.K.

    2000-01-01

    Field experiments were conducted from 1992 to 1995 to estimate ground water recharge rates at two sites located within a 2.7-hectare agricultural field. The field lies in a sand plain setting in central Minnesota and is cropped continuously in field corn. The sites are located at a topographically high (upland) site and a topographically low (lowland) site in an effort to quantify the effects of depression focusing of recharge. Three site-specific methods were used to estimate recharge rates: well hydrograph analysis, chlorofluorocarbon age dating, and an unsaturated zone water balance. All three recharge methods indicated that recharge rates at the lowland site (annual average of all methods of 29 cm) exceeded those at the upland site (annual average of 18 cm). On an annual basis, estimates by the individual methods ranged from 12 to 44 percent of precipitation at the upland site and from 21 to 83 percent at the lowland site. The difference in recharge rates between the sites is primarily attributed to depression focusing of surface water runon at the lowland site. However, two other factors were also important: the presence of thin lamellae at the upland site, and coarser textured soils below a depth of 1.5 m at the lowland site.

  2. Application of ERTS-1 imagery in the fields of geology, agriculture, forestry, and hydrology to selected test sites in Iran

    NASA Technical Reports Server (NTRS)

    Ebtehadj, K.

    1973-01-01

    The preliminary study of the ERTS-1 imagery coverage of Iran, commenced on October 26, 1972. All of the images were carefully examined, and a photomosaic covering approximately ninety-five per cent of the country was prepared. A number of images of selected areas were studied in detail. In the field of geology, a number of large scale faults were identified, which do not figure on geological maps. Furthermore, a preliminary study was carried out on the recent sediments, their possible sources, and origin. A limited number of geological work maps were prepared as well. In the fields of agriculture and forestry, studies based on color composite prints of certain areas were undertaken, with a purpose of identifying potential arable areas. Investigations in the field of water resources resulted in the discovery of a number of small lakes, and streams. Furthermore, fluctuations of the water level in some lakes were observed.

  3. Agricultural fields, Khartoum, Sudan, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This herringbone pattern of irrigated agricultural fields near Khartoum, Sudan (14.5N, 33.5E) is very distinctive in both size and shape. The region contains thousands of these rectangular fields bounded by canals which carry water from both the White and Blue Nile Rivers. A crop rotation system is used so that some fields are in cotton, millit, sorghum or fallow to conserve moisture and control weeds and insects. See also STS049-96-003.

  4. 33 Internet Garden and Agriculture Sites.

    ERIC Educational Resources Information Center

    Weitkamp, Margery

    2000-01-01

    Describes Internet sites that are useful for educators planning a school garden. These sites offer information from copy-ready lessons to advice on every topic at all grade levels. Topics range from how-to's for basic gardening, to theme gardening, to discussions of agricultural crops and endangered plants. Many include links to other sites,…

  5. Tremont Field Site

    EPA Pesticide Factsheets

    Tremont Field Site is a 41.5-acre public park located northeast of the intersection of West 11th Street and Clark Avenue in Cleveland, Ohio. Through two deed transfers in 1948 and 1949, the City acquired the site from the United States Government.

  6. AmeriFlux US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site)

    SciTech Connect

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. The agricultural site has likely been farmed for more than 100 years, but the first documented instance of agricultural activity dates back to a picture taken in 1952.

  7. Site Description for the University of Nebraska's Sandhills Agricultural Laboratory

    NASA Technical Reports Server (NTRS)

    Gardner, B. R.; Blad, B. L.

    1985-01-01

    The Sandhills Agricultural Laboratory is operated by the University of Nebraska. The laboratory is located in the south-central part of the Nebraska Sandhills near Tryon, Nebraska (41 deg. 37' N; 100 deg. 50' W). The laboratory is surrounded on the west and south by native rangeland vegetation, on the south by a large field of corn irrigated by a center pivot, and on the east by wheat stubble. This site is appropriate for moisture stress studies since rainfall is almost always inadequate to meet evaporative demands of agricultural crops during most of the growing season and the sandy soils (Valentine fine sand) at the site do not store large quantities of water. Various levels of water stress are achieved through irrigation from solid set sprinklers.

  8. 7 CFR 3434.5 - Agriculture-related fields.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Agriculture-related fields. 3434.5 Section 3434.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS § 3434.5...

  9. 7 CFR 3434.5 - Agriculture-related fields.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Agriculture-related fields. 3434.5 Section 3434.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS § 3434.5...

  10. Tension on the Farm Fields: The Death of Traditional Agriculture?

    ERIC Educational Resources Information Center

    Oguamanam, Chidi

    2007-01-01

    Taking into account the historic transitions and progressions in agricultural science, this article examines the emergence of the phenomenon of agricultural biotechnology. It identifies pivotal sites of tension between agricultural biotechnology and alternative approaches to agriculture. The article identifies two distinct sources of contemporary…

  11. Leaching of bentazon from Danish agricultural fields

    NASA Astrophysics Data System (ADS)

    Rosenbom, Annette Elisabeth; Kjær, Jeanne; Brüsch, Walter; Olsen, Preben

    2013-04-01

    Bentazone (CAS No. 25057-89-0) is a broad-spectrum herbicide used for a variety of crops. Rapid photo degradation occurs in soil and water; however, bentazone is very mobile in soil and moderately persistent in the environment. Bentazone has been reported to occur in surface water, groundwater and drinking water at concentrations of a few micro g per L or less. With its high affinity for the water compartment in the soil media, it does not seem to accumulate in the subsurface. Results from 12 evaluations/applications on six intensive-monitored and agricultural fields (two sandy and four loamy soils) in the Danish Pesticide Leaching risk Assessment Programme (PLAP) verified these findings. Bentazone was applied in the timeframe May - beginning of June. It was detected in 1 m depth (suctions cups and drains) at all the PLAP-fields. In 4 out of 12 applications, the average concentration of the period after the first detection until July the following year, was found to exceed 0.1 micro g per L in 1 meters depth. At all of the fields groundwater level was dropping at the time of bentazon application. This seemed to result in detection in groundwater at the loamy but not the sandy fields, which indicate the prescence of rapid preferential transport in the macropore systems of the loamy fields and a piston-alike transport in the sandy fields. Even though detections in 1 m depth indicated a relative high mass of bentazon leaching as a puls through sandy soil, bentazon was not found below this depth. The degree of detections in the groundwater at the loamy fields seemed to be impacted by the hydraulic contact to deeper fracture systems in the soil. At the loamy fields with a good hydraulic contact, bentazon was detected in groundwater from both vertical and horisontal filters shortly after application - also in concentrations exceeding 0.1 micro g per L. By applying bentazon on different crops, results clearly showed that the leaf-area-index at application and the ability

  12. Zoning of agricultural field using a fuzzy indicators model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...

  13. AmeriFlux US-Br3 Brooks Field Site 11- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br3 Brooks Field Site 11- Ames. Site Description - The Brooks Field Site 11 - Ames Site is one of three sites (Brooks Field Site 10 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  14. AmeriFlux US-Br1 Brooks Field Site 10- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br1 Brooks Field Site 10- Ames. Site Description - The Brooks Field Site 10 - Ames Site is one of three sites (Brooks Field Site 11 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  15. Classification and soil moisture determination of agricultural fields

    NASA Technical Reports Server (NTRS)

    Vandenbroek, A. C.; Groot, J. S.

    1993-01-01

    During the Mac-Europe campaign of 1991 several SAR (Synthetic Aperature Radar) experiments were carried out in the Flevoland test area in the Netherlands. The test site consists of a forested and an agricultural area with more than 15 different crop types. The experiments took place in June and July (mid to late growing season). The area was monitored by the spaceborne C-band VV polarized ERS-1, the Dutch airborne PHARS with similar frequency and polarization and the three-frequency PP-, L-, and C-band) polarimetric AIRSAR system of NASA/JPL. The last system passed over on June 15, 3, 12, and 28. The last two dates coincided with the overpasses of the PHARS and the ERS-1. Comparison of the results showed that backscattering coefficients from the three systems agree quite well. In this paper we present the results of a study of crop type classification (section 2) and soil moisture determination in the agricultural area (section 3). For these studies we used field averaged Stokes matrices extracted from the AIRSAR data (processor version 3.55 or 3.56).

  16. Field potential soil variability index to identify precision agriculture opportunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture (PA) technologies used for identifying and managing within-field variability are not widely used despite decades of advancement. Technological innovations in agronomic tools, such as canopy reflectance or electrical conductivity sensors, have created opportunities to achieve a ...

  17. Fungal biology and agriculture: revisiting the field

    USGS Publications Warehouse

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  18. Wireless Site-specific Irrigation - The Future of Intelligent Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless site-specific irrigation system was developed with a distributed wireless sensor network. The system allows growers to remotely access field conditions and an irrigation operation at the home or office via wireless radio communication, directing individual sprinklers on how much water to ...

  19. A contemporary decennial examination of changing agricultural field sizes using Landsat time series data

    PubMed Central

    White, Emma V.

    2015-01-01

    Field size distributions and their changes have not been studied over large areas as field size change datasets are not available. This study quantifies agricultural field size changes in a consistent manner using Landsat satellite data that also provide geographic context for the observed decadal scale changes. Growing season cloud‐free Landsat 30 m resolution images acquired from 9 to 25 years apart were used to extract field object classifications at seven sites located by examination of a global agricultural yield map, agricultural production statistics, literature review, and analysis of the imagery in the US Landsat archive. High spatial resolution data were used to illustrate issues identifying small fields that are not reliably discernible at 30 m Landsat resolution. The predominant driver of field size change was attributed by literature review. Significant field size changes were driven by different factors, including technological advancements (Argentina and USA), government land use and agricultural policies (Malaysia, Brazil, France), and political changes (Albania and Zimbabwe). While observed local field size changes were complex, the reported results suggest that median field sizes are increasing due to technological advancements and changes to government policy, but may decrease where abrupt political changes affect the agricultural sector and where pastures are converted to arable land uses. In the limited sample considered, median field sizes increased from 45% (France) to 159% (Argentina) and decreased from 47% (Brazil) to 86% (Albania). These changes imply significant impacts on landscape spatial configuration and land use diversity with ecological and biogeochemical consequences. PMID:27669424

  20. A contemporary decennial examination of changing agricultural field sizes using Landsat time series data.

    PubMed

    White, Emma V; Roy, David P

    2015-01-01

    Field size distributions and their changes have not been studied over large areas as field size change datasets are not available. This study quantifies agricultural field size changes in a consistent manner using Landsat satellite data that also provide geographic context for the observed decadal scale changes. Growing season cloud-free Landsat 30 m resolution images acquired from 9 to 25 years apart were used to extract field object classifications at seven sites located by examination of a global agricultural yield map, agricultural production statistics, literature review, and analysis of the imagery in the US Landsat archive. High spatial resolution data were used to illustrate issues identifying small fields that are not reliably discernible at 30 m Landsat resolution. The predominant driver of field size change was attributed by literature review. Significant field size changes were driven by different factors, including technological advancements (Argentina and USA), government land use and agricultural policies (Malaysia, Brazil, France), and political changes (Albania and Zimbabwe). While observed local field size changes were complex, the reported results suggest that median field sizes are increasing due to technological advancements and changes to government policy, but may decrease where abrupt political changes affect the agricultural sector and where pastures are converted to arable land uses. In the limited sample considered, median field sizes increased from 45% (France) to 159% (Argentina) and decreased from 47% (Brazil) to 86% (Albania). These changes imply significant impacts on landscape spatial configuration and land use diversity with ecological and biogeochemical consequences.

  1. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  2. Mapping shallow underground features that influence site-specific agricultural production

    NASA Astrophysics Data System (ADS)

    Freeland, Robert S.; Yoder, Ronald E.; Ammons, John T.

    1998-10-01

    Modern agricultural production practices are rapidly evolving in the United States of America (USA). These new production practices present significant applications for nonintrusive subsurface imaging. One such imaging technology is GPR, and it is now being incorporated within site-specific agriculture in the detection of soil horizons, perched water (episaturation), fragipans, hydrological preferential flow paths, and soil compaction. These features traditionally have been mapped by soil scientists using intrusive measurements (e.g., soil augers, soil pits, coring tools). Rather than developing a tool for soil mapping, our studies are targeting the identification, dimensioning, and position of subsurface features that directly influence agricultural productivity. It is foreseen that this information will allow for an increase in agricultural efficiency through infield machinery automation, and it will also greatly enhance development of highly efficient crop production strategies. The field sensing methodologies that we have developed using existing geophysical technologies are highly dependent upon both the soil and site characteristics due to seasonal variations. The GPR applications presented herein were conducted primarily in a region of loess soil that extends east of the Mississippi River into western Tennessee. GPR studies were also conducted in central Tennessee on the Cumberland Plateau within a region of shallow, sandy loam soils. Additional studies were conducted on the karst area of central Kentucky. Although targeting site-specific agriculture, our results and procedures may benefit the traditional users of GPR technology. We suggest that large-scale agricultural applications of the technology would be enhanced by integrating global positioning (GPS) technology in future hardware and software products.

  3. Hydrologic Impact Of Subsurface Drainage Of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Johannsen, C. J.; Bowling, L. C.

    2005-12-01

    automatic detection techniques using meteorological data for 14-years (1990-2004) and 15-years (1985-2000) at both sites respectively. In general, hydrologic outputs predicted by the model were acceptable. In addition to hydrologic response of subsurface drainage network, the model simulation can also be helpful to determine the required accuracy of predicted tile location maps for analyzing hydrologic responses of agricultural fields.

  4. A contemporary decennial global sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  5. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    NASA Astrophysics Data System (ADS)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  6. Use of agricultural land evaluation and site assessment in Linn County, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Huddleston, J. Herbert; Pease, James R.; Forrest, William G.; Hickerson, Hugh J.; Langridge, Russell W.

    1987-07-01

    Oregon state law requires each county in the state to identify agricultural land and enact policies and regulations to protect agricultural land use. State guidelines encourage the preservation of large parcels of agricultural land and discourage partitioning of agricultural land and construction of nonfarm dwellings in agricultural areas. A land evaluation and site assessment (LESA) system was developed in Linn County to aid in the identification of agricultural land and provide assistance to decision makers concerning the relative merits of requests to partition existing parcels of ricultural land and introduce nonagricultural uses. Land evaluation was determined by calculating soil potential ratings for each agricultural soil in the county based on the soil potentials for winter wheat, annual ryegrass, permanent pasture, and irrigated sweet corn. Soil potential ratings were expressed on a scale of 0 to 150 points. The land evaluation score for a parcel consists of the weighted average soil potential rating for all of the soils in the parcel, weighted by the percentage of each soil present in the parcel. Site assessment was based on the size of a parcel and on the amount of existing conflict between agricultural and nonagricultural uses, particularly rural residential uses, both adjacent to and in the vicinity of a parcel. Parcel size refers to both size in relation to a typical field and size in relation to a typical farm unit. Conflict takes into account the number of nonfarm dwellings within 1/4 mile (0.4 km) of a parcel, the amount of the perimeter that adjoins conflicting land uses, and the residential density adjacent to the parcel. Empirical scales were derived for assigning points to each of the site assessment factors. Both parcel size and conflict were worth 75 points in the model. For parcel size, 45 points were allocated to field size and 30 points to farm-unit size. For conflict, 30 points were allocated to nonfarm dwellings within 1/4 mile and 45

  7. Lidar Based Particulate Flux Measurements of Agricultural Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-wavelength portable scanning lidar system was developed to derive information on particulate spatial aerosol distribution over remote distances. The lidar system and retrieval approach has been tested during several field campaigns measuring agricultural emissions from a swine feeding operat...

  8. Illinois Occupational Skill Standards: Agricultural Laboratory and Field Technician Cluster.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    These Illinois skill standards for the agricultural laboratory and field technician cluster are intended to serve as a guide to workforce preparation program providers as they define content for their programs and to employers as they establish the skills and standards necessary for job acquisition. They could also serve as a mechanism for…

  9. Nest-site selection and success of mottled ducks on agricultural lands in southwest Louisiana

    USGS Publications Warehouse

    Durham, R.S.; Afton, A.D.

    2003-01-01

    Listing of the mottled duck (Anas fulvigula maculosa) as a priority species in the Gulf Coast Joint Venture of the North American Waterfowl Management Plan, coupled with recent declines of rice (Oryza sativa) acreage, led us to investigate the nesting ecology of this species on agricultural lands in southwest Louisiana. We examined nest-site selection at macro- and microhabitat levels, nest success, causes of nest failures, and habitat features influencing nest success. We found that female mottled ducks preferred to nest in permanent pastures with knolls (53% of nests) and idle fields (22% of nests). Vegetation height was greater at nests than at random points within the same macrohabitat patch. Successful nests were associated with greater numbers of plant species, located farther from water, and associated with higher vegetation density values than were unsuccessful nests. We determined that mammalian predators caused most nest failures (77% of 52 unsuccessful nests). Our results suggest that nest success of mottled ducks on agricultural lands in southwest Louisiana could be improved by 1) locating large permanent pastures and idle fields near rice fields and other available wetlands, 2) managing plant communities in these upland areas to favor dense stands of perennial bunch grasses, tall composites, dewberry (Rubus trivialis), and other native grasses and forbs, and 3) managing cattle-stocking rates and the duration and timing of grazing to promote tall, dense stands of these plant taxa during the nesting season (March-June).

  10. Comparison of N2O Emissions from Soils at Three Temperate Agricultural Sites

    NASA Technical Reports Server (NTRS)

    Frolking, S. E.; Moiser, A. R.; Ojima, D. S.; Li, C.; Parton, W. J.; Potter, C. S.; Priesack, E.; Stenger, R.; Haberbosch, C.; Dorsch, P.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Nitrous oxide (N2O) flux simulations by four models were compared with year-round field measurements from five temperate agricultural sites in three countries. The field sites included an unfertilized, semi-arid rangeland with low N2O fluxes in eastern Colorado, USA; two fertilizer treatments (urea and nitrate) on a fertilized grass ley cut for silage in Scotland; and two fertilized, cultivated crop fields in Germany where N2O loss during the winter was quite high. The models used were daily trace gas versions of the CENTURY model, DNDC, ExpertN, and the NASA-Ames version of the CASA model. These models included similar components (soil physics, decomposition, plant growth, and nitrogen transformations), but in some cases used very different algorithms for these processes. All models generated similar results for the general cycling of nitrogen through the agro-ecosystems, but simulated nitrogen trace gas fluxes were quite different. In most cases the simulated N20 fluxes were within a factor of about 2 of the observed annual fluxes, but even when models produced similar N2O fluxes they often produced very different estimates of gaseous N loss as nitric oxide (NO), dinitrogen (N2), and ammonia (NH3). Accurate simulation of soil moisture appears to be a key requirement for reliable simulation of N2O emissions. All models simulated the general pattern of low background fluxes with high fluxes following fertilization at the Scottish sites, but they could not (or were not designed to) accurately capture the observed effects of different fertilizer types on N2O flux. None of the models were able to reliably generate large pulses of N2O during brief winter thaws that were observed at the two German sites. All models except DNDC simulated very low N2O fluxes for the dry site in Colorado. The US Trace Gas Network (TRAGNET) has provided a mechanism for this model and site intercomparison. Additional intercomparisons are needed with these and other models and additional data

  11. Site recycling: From Brownfield to football field

    SciTech Connect

    Lee, C.; Haas, W.L.

    1995-07-01

    The Carolina Panther`s new home, Carolinas Stadium, will be impressive. It will include a 75,000-seat stadium, about 2,000 parking spaces, and a practice facility equipped with three full-sized football fields, all located on 30 acres bordering the central business district of Charlotte, NC. Fans of the NFL expansion team may never know that, until recently, 13 of those 30 acres were a former state Superfund site contaminated by a commercial scrapyard that had operated from the early 1930s to 1983. The salvage of nonferrous metals from lead-acid batteries, copper from transformers and other electrical equipment, and ferrous metal scrap from junk automobiles at the Smith Metal and Iron (SMI) site had left a complex contamination legacy. The soil contained lead, polychlorinated biphenyls (PCBs), lesser amounts of semivolatiles (polyaromatic hydrocarbons, or PAHs), and volatile organic compounds and petroleum hydrocarbons. The site had remained dormant, like many former industrial sites that have come be called {open_quotes}brownfields,{close_quotes} for nearly a decade when in 1993, Charlotte was selected as the future home of the Carolina Panthers, a National Football League expansion team. The city was able to attract the team in part by offering to redevelop the site, a prime location adjacent to the downtown area. An eight-month-long site remediation effort by HDR Engineering Inc. was completed March 31, on schedule for a June 1996 unveiling of the team`s new facility.

  12. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  13. Modeling of Movement of Field Gudgeon, Gnathopogon elongatus elongatus, in Agricultural Canals in Yatsu Paddy Fields

    NASA Astrophysics Data System (ADS)

    Takemura, Takeshi; Koizumi, Noriyuki; Mizutani, Masakazu; Mori, Atsushi; Watabe, Keiji

    It is important as quantitative information for making a decision of project sites for networking of water area, to predict reproductive process of fish population when consolidating fish-ways on points dividing fish habitat. To that end, it is necessary to predict the number of individuals migrating to new habitats. Hence, modeling of movement of individuals is necessary as a first step in population modeling. We constructed a mathematical model of movement of field gudgeon in agricultural canals, comparing with observed data obtained by our surveys. A unit time span of this model is 50 days. This model is able to consider existence of 2 types of movement, namely, individuals of sedentary type and individuals of ambulant type. Parameters of the model were decided based on observed data which correspond to 1 unit span. Next, moving distances of 6 individuals for 4 unit span were calculated using those parameters. A histogram of calculated values was similar to that of observed data which correspond to 4 unit span. The model is expected to provide an important immigration component to a population dynamics model which is currently under development. The population model is needed to predict population recovery processes where areas of paddy fields are joined in larger networks through construction of fish-ways.

  14. Natural succession impeded by smooth brome (Bromus inermis) and intermediate wheatgrass (Agropyron intermedium) in an abandoned agricultural field

    SciTech Connect

    Nelson, J.K.

    1997-11-01

    In 1975, an abandoned agricultural field at Rocky Flats Environmental Technology Site (Site) that had been cultivated for more than 38 years, was seeded with smooth brome (Bromus inermis) and intermediate wheatgrass (Agropyron intermedium). Although these species are commonly planted in reclamation and roadside seed mixtures, few studies have documented their impact on the re-establishment of native plant communities. In 1994, species richness, cover, and biomass were sampled in the agricultural field and compared to the surrounding mixed-grass prairie at the Site. The agricultural field contained only 61 plant species (62% native), compared to 143 species (81% native) in the surrounding mixed-grass prairie. Community similarity based on species presence/absence was 0.47 (Sorensen coefficient of similarity). Basal vegetative cover was 11.2% in the agricultural field and 29.1% in the mixed-grass prairie. Smooth brome and intermediate wheatgrass accounted for 93% of the relative foliar cover and 96% of the biomass in the agricultural field. The aggressive nature of these two planted species has impeded the natural succession of the agricultural field to a more native prairie community. Studies of natural succession on abandoned fields and roads in northeastern Colorado have indicated that if left alone, fields would return to their native climax state in approximately 50 years and would be approaching their native state after 20--25 years. Based on the results of this study, this agricultural field may take more than 100 years to return to a native mixed-grass prairie state and it may never achieve a native state without human intervention.

  15. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Madison, Allison M.; Ruark, Matthew D.; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Lara W.; Drummy, Nancy; Cooley, Eric T.

    2014-11-01

    Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn-soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66-96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L-1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.

  16. Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology.

    PubMed

    Lund, E D; Wolcott, M C; Hanson, G P

    2001-10-16

    Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower"s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  17. Comparison of some quality properties of soils around land-mined areas and adjacent agricultural fields.

    PubMed

    Ozturkmen, Ali Rıza; Kavdir, Yasemin

    2012-03-01

    When agricultural lands are no longer used for agriculture and allowed to recover its natural vegetation, soil organic carbon can accumulate in the soil. Measurements of soil organic carbon and aggregate stability changes under various forms of land use are needed for the development of sustainable systems. Therefore, comparison of soil samples taken from both agricultural and nearby area close to land-mined fields where no agricultural practices have been done since 1956 can be a good approach to evaluate the effects of tillage and agriculture on soil quality. The objective of this study was to compare tillage, cropping and no tillage effects on some soil-quality parameters. Four different locations along the Turkey-Syria border were selected to determine effects of tillage and cropping on soil quality. Each location was evaluated separately because of different soil type and treatments. Comparisons were made between non-tilled and non-cropped fallow since 1956 and adjacent restricted lands that were tilled about every 2 years but not planted (T) or adjacent lands tilled and planted with wheat and lentil (P). Three samples were taken from the depths of 0-20 and 20-40 cm each site. Soil organic carbon (SOC), pH ,electrical conductivity, water soluble Ca(++), Mg(++), CO₃⁻² and HCO₃⁻, extractable potassium (K(+)) and sodium (Na(+)), soil texture, ammonium (NH₄⁺-N) and nitrate (NO(3)-N), extractable phosphorous and soil aggregate stability were determined. While the SOC contents of continuous tillage without cropping and continuous tillage and cropping were 2.2 and 11.6 g kg(-1), respectively, it was 30 g kg(-1) in non-tilled and non-planted site. Tillage of soil without the input of any plant material resulted in loss of carbon from the soil in all sites. Soil extractable NO(3)-N contents of non-tilled and non-cropped sites were greatest among all treatments. Agricultural practices increased phosphorus and potassium contents in the soil profile. P(2)O(5

  18. Assessing the mitigation potential of agricultural systems by optimization of the agricultural management: A modeling study on 8 agricultural observation sites across Europe with the process based model LandscapeDNDC

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Haas, Edwin; Klatt, Steffen; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus

    2014-05-01

    The use of mineral nitrogen (N) fertilizers increase crop yields but cause the biggest anthropogenic source of nitrous oxide (N2O) emissions and strongly contribute to surface water eutrophication (e.g. nitrate leaching). The necessity to identify affordable strategies that improve crop production while improving ecosystem services are in continuous debate between policy decision makers and farmers. In this line, a lack commitment from farmers to enforce laws might result in the reduction of benefits. For this reason, farmers should aim to increase crop production and to reduce environmental harm by the adoption of precision climate smart agriculture tools applied to management practices for instance. In this study we present optimized strategies for 8 sites (agricultural and grassland ecosystems) with long term field observation across Europe to show the mitigation potential to reduce reactive nitrogen losses under the constrain of keeping yields at observed levels. LandscapeDNDC simulations of crop yields and associated nitrogen losses (N2O emissions and NO3 leaching) were evaluated against long term field measurements. The sites presented different management regimes including the main commodity crops (maize, wheat, barley, rape seeds, etc) and fertilization amendments (synthetic and organic fertilizers) in Europe. The simulations reproduced the observed yields, captured N2O emissions and NO3 leaching losses with high statistical presicion (r2), acurrency (ME) and agreement (RMSPEn). The mitigation potentials to reduce N losses while keeping yields at observed levels for all 8 sites were assesed by Monte Carlo optimizations of the individual underlying multi year agricultural management options (timings of planting and harvest, fertilization & manure applications and rates, residues management). In this study we present for all 8 agricultural observations sites their individual mitigation potentials to reduce N losses for multi year rotations. The conclusions

  19. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Priesack, Eckart; Schuh, Max

    2014-05-01

    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor (sceme.de GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  20. Evaluation of the Potential for Agricultural Development at the Hanford Site

    SciTech Connect

    Evans, Robert G.; Hattendorf, Mary J.; Kincaid, Charles T.

    2000-02-25

    By 2050, when cleanup of the Hanford Site is expected to be completed, large worldwide demands to increase the global production of animal and fish protein, food, and fiber are anticipated, despite advancements in crop breeding, genetic engineering, and other technologies. The most likely large areas for expanded irrigation in the Pacific Northwest are the undeveloped East High areas of the Columbia Basin Project and non-restricted areas within the Hanford Site in south-central Washington State. The area known as the Hanford Site has all the components that favor successful irrigated farming. Constraints to agricultural development of the Hanford Site are political and social, not economic or technical. Obtaining adequate water rights for any irrigated development will be a major issue. Numerous anticipated future advances in irrigation and resource conservation techniques such as precision agriculture techniques, improved irrigation systems, and irrigation system controls will greatly minimize the negative environmental impacts of agricultural activities.

  1. Seed deterioration in flooded agricultural fields during winter

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1996-01-01

    We determined rate of seed deterioration for 3 crops (corn, rice, and soybean) and 8 weeds commonly found in agricultural fields and moist-soil management units in the Mississippi Alluvial Valley (MAV). The weeds were broadleaf signalgrass (Brachiaria platyphylla), junglerice barnyardgrass (Echinochloa colonum), morningglory (Ipomoea sp.), panic grass (Panicum sp.), bull paspalum (Paspalum boscianum), red rice (Oryza sativa), hemp sesbania (Sesbania exaltata), and bristlegrass (Setaria sp.). Weed seeds, except morningglory, deteriorated slower than corn and soybean, whereas rice decomposed slower than all weed seeds except red rice and bull paspalum. For land managers desiring to provide plant food for wintering waterfowl, rice is clearly the most persistent small grain crop in the MAV. Persistence of weed seeds under flooded conditions throughout winter makes them a cost-effective alternative to traditional crops on land managed for waterfowl.

  2. Optimization of agricultural field workability predictions for improved risk management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Risks introduced by weather variability are key considerations in agricultural production. The sensitivity of agriculture to weather variability is of special concern in the face of climate change. In particular, the availability of workable days is an important consideration in agricultural practic...

  3. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  4. Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2013-12-01

    The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.

  5. Engineering and agronomy aspects of a long-term precision agriculture field experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much research has been conducted on specific precision agriculture tools and implementation strategies, but little has been reported on long-term evaluation of integrated precision agriculture field experiments. In 2004 our research team developed and initiated a multi-faceted “precision agriculture...

  6. BIOREMEDIATION FIELD INITIATIVE SITE PROFILE: ESCAMBIA WOOD PRESERVING SITE - BROOKHAVEN

    EPA Science Inventory

    The Escambia Wood Preserving Site—Brookhaven in Brookhaven, Mississippi, is a former wood preserving facility that used pentachlo- rophenol (PCP) and creosote to treat wooden poles. The site contains two pressure treatment cylinders, a wastewater treatment system, five bulk pr...

  7. Rural Housing Site Planning in North Carolina. Agricultural Extension Publication 105.

    ERIC Educational Resources Information Center

    Hester, Randolph T., Jr.; And Others

    Addressing the problems of rural housing site selection and development in North Carolina, this guide is designed for cooperative and coordinated use by: technical assistance personnel employed by the Farmers Home Administration; local lending institutions; Health Departments; the Agricultural Extension Service; the Soil Conservation Service; and…

  8. Embracing the Emerging Precision Agriculture Technologies for Site-Specific Management of Yield-Limiting Factors

    PubMed Central

    Melakeberhan, H.

    2002-01-01

    Precision agriculture (PA) is providing an information revolution using Global Positioning (GPS) and Geographic Information (GIS) systems and Remote Sensing (RS). These technologies allow better decision making in the management of crop yield-limiting biotic and abiotic factors and their interactions on a site-specific (SSM) basis in a wide range of production systems. Characterizing the nature of the problem(s) and public education are among the challenges that scientists, producers, and industry face when adapting PA technologies. To apply SSM, spatio-temporal characteristics of the problem(s) need to be determined and variations within a field demonstrated. Spatio-temporal characteristics of a given pathogen or pest problem may be known but may not be the only or primary cause of the problem. Hence, exact cause-and-effect relationships need to be established by incorporating GIS, GPS, and RS-generated data as well as possible interactions. Exploiting the potential of PA technologies in sustainable ways depends on whether or not we first ask ''Are we doing the right thing?'' (strategic) as opposed to ''Are we doing it right?'' (tactical). PMID:19265931

  9. Embracing the emerging precision agriculture technologies for site-specific management of yield-limiting factors.

    PubMed

    Melakeberhan, H

    2002-09-01

    Precision agriculture (PA) is providing an information revolution using Global Positioning (GPS) and Geographic Information (GIS) systems and Remote Sensing (RS). These technologies allow better decision making in the management of crop yield-limiting biotic and abiotic factors and their interactions on a site-specific (SSM) basis in a wide range of production systems. Characterizing the nature of the problem(s) and public education are among the challenges that scientists, producers, and industry face when adapting PA technologies. To apply SSM, spatio-temporal characteristics of the problem(s) need to be determined and variations within a field demonstrated. Spatio-temporal characteristics of a given pathogen or pest problem may be known but may not be the only or primary cause of the problem. Hence, exact cause-and-effect relationships need to be established by incorporating GIS, GPS, and RS-generated data as well as possible interactions. Exploiting the potential of PA technologies in sustainable ways depends on whether or not we first ask ''Are we doing the right thing?'' (strategic) as opposed to ''Are we doing it right?'' (tactical).

  10. Characteristics and alteration of pesticide residues in surface soils of agricultural fields and public parks

    NASA Astrophysics Data System (ADS)

    Al-Mutlaq, Khalid F.

    2006-12-01

    Organic contents of agricultural soils are major sources of organic compounds and pesticides into atmosphere. Therefore, surface soil samples from different locations in the city of Corvallis, USA were collected over a course of 1 year (2004/2005). The samples were subject to chemical extraction and analysis by gas chromatography-mass spectrometry (GC-MS). The results of the chemical analysis showed pesticide residues were present in soils and varied seasonally. For example, the highest total relative concentration of pesticide residues in Canola field was 0.16% in January 2005, and was 0.56% in Wheat Field in August 2005, and was 0.14% in the River Front Park in December 2004 and was 0.33 in Rose Garden. Sometimes in the year, these pesticide residues were not detected in the same sites.

  11. Three Dimensional Modeling of Agricultural Contamination of Groundwater: a Case Study in the Nebraska Management Systems Evaluation Area (MSEA) Site

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Snow, D. D.; Bartelt-Hunt, S.; Li, X.; Li, Y.

    2015-12-01

    Contamination of groundwater from nitrogen fertilizers and pesticides in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater, impacting future uses of this limited resource. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have been validated based on realistic three dimensional soil lithology, hydrological conditions, and historical changes in groundwater quality. In this work, contamination of groundwater in the Nebraska Management Systems Evaluation Area (MSEA) site was simulated based on extensive field data including (1) lithology from 69 wells and 11 test holes; (2) surface soil type, land use, and surface elevations; (3) 5-year groundwater level and flow velocity; (4) daily meteorological monitoring; (5) 5-year seasonal irrigation records; (6) 5-years of spatially intensive contaminant concentration in 40 multilevel monitoring wells; and (7) detailed cultivation records. Using this data, a three-dimensional vadose zone lithological framework was developed using a commercial software tool (RockworksTM). Based on the interpolated lithology, a hydrological model was developed using HYDRUS-3D to simulate water flow and contaminant transport. The model was validated through comparison of simulated atrazine and nitrate concentration with historical data from 40 wells and multilevel samplers. The validated model will be used to predict potential changes in ground water quality due to agricultural contamination under future climate scenarios in the High Plain Aquifer system.

  12. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re

  13. Strong soil source of carbonyl sulfide in an agricultural field

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Seibt, U.; Berry, J. A.; Billesbach, D. P.; Campbell, J.; Torn, M. S.

    2012-12-01

    A promising new approach to constrain biosphere-atmosphere carbon and water exchange is the use of carbonyl sulfide (COS). COS is taken up by leaves via the same pathway as CO2, leading to a close coupling of vegetation COS and CO2 fluxes during photosynthesis. Therefore it has been proposed that the gross fluxes of photosynthesis and respiration can be quantified through the concurrent measurements of COS and CO2. A necessary requirement for this approach at ecosystem and continental scales are estimates of soil COS fluxes. Soil is largely considered a sink for COS, but our knowledge of in situ soil COS fluxes remains very limited. We measured soil COS fluxes in a wheat field in Oklahoma from April to June 2012, using a novel combination of an automated soil chamber coupled to a COS laser analyzer. We provide the first continuous record of soil COS fluxes under natural conditions, and report on a phenomenon that has not been observed before. In contrast to the majority of published results, we found that the agricultural soil was a strong source of COS under most conditions during the campaign. The COS flux over the study period was highly correlated with soil temperature. Up to a soil temperature of around 15°C, the soil acted as a COS sink. Above 15°C, it acted a source of COS, with fluxes of up to 25 pmol m-2 s-1. To locate the source of the COS production, we investigated different soil components. Wheat roots were found to be emitting COS under all conditions. Root-free soil was a COS sink up to a soil temperature of around 25°C, but turned into a COS source at higher soil temperatures. We also observed COS production from the roots of several other species, indicating that this may be a widespread phenomenon. Using eddy covariance data of COS and CO2 that was collected concurrently with the soil measurements, we also demonstrate how the soil COS source can be taken into account when partitioning net ecosystem exchange into photosynthesis and respiration.

  14. Emergent insect production in post-harvest flooded agricultural fields used by waterbirds

    USGS Publications Warehouse

    Moss, Richard C.; Blumenshine, Steven C.; Yee, Julie; Fleskes, Joseph P.

    2009-01-01

    California’s Tulare Lake Basin (TLB) is one of the most important waterbird areas in North America even though most wetlands there have been converted to cropland. To guide management programs promoting waterbird beneficial agriculture, which includes flooding fields between growing periods, we measured emergence rates of insects, an important waterbird food, in three crop types (tomato, wheat, alfalfa) in the TLB relative to water depth and days flooded during August–October, 2003 and 2004. We used corrected Akaike’s Information Criterion values to compare a set of models that accounted for our repeated measured data. The best model included crop type and crop type interacting with days flooded and depth flooded. Emergence rates (mg m−2 day−1) were greater in tomato than wheat or alfalfa fields, increased with days flooded in alfalfa and tomato but not wheat fields, and increased with water depth in alfalfa and wheat but not tomato fields. To investigate the relationship between the range of diel water temperatures and insect emergence rates, we rearedChironomus dilutus larvae in environmental chambers under high (15–32°C) and low fluctuation (20–26°C) temperature regimes that were associated with shallow and deep (respectively) sampling sites in our fields. Larval survival (4×) and biomass (2×) were greater in the low thermal fluctuation treatment suggesting that deeply flooded areas would support greater insect production.

  15. MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification

    NASA Technical Reports Server (NTRS)

    Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.

    1993-01-01

    During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.

  16. Observed and modeled carbon and energy fluxes for agricultural sites under North American Carbon Program site-level interim synthesis

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E. Y.; Denning, A.

    2010-12-01

    Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.

  17. Field conditions at the Maricopa Agricultural Center, Maricopa County, Arizona, June 13, 1988

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1988-01-01

    Field conditions were documented during the Landsat satellite overpass of the Maricopa Agricultural Center, Maricopa County, Arizona, on June 13, 1988. Crop types were mapped and photographed for each demonstration farm field. Field conditions described include irrigation, cultivation, and orientation of rows. Field and photographic descriptions are presented in tabular form. (USGS)

  18. On-site cell field test support program

    NASA Astrophysics Data System (ADS)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  19. Agricultural "killing fields": the poisoning of Costa Rican banana workers.

    PubMed

    Sass, R

    2000-01-01

    The poisoning of Costa Rican banana workers by multinational corporations' excessive use of pesticides is not a local issue; it is embedded in a dominant ideology expressed by the phenomenon of globalization. This ideology seeps into every aspect of our social institutions--economic, political, and legal. The practice of this ideological perspective is evident in the industrialization of global agriculture and the shift from "developmentalism"--liberal welfarism, industrialization, and urbanization--to a dominant, undemocratic, global financial elite with "economism" and a neoliberal political agenda overriding the nation-state polis. A specific effect is to transform the agricultural workers of developing countries, such as Costa Rican banana workers, into politically superfluous flesh-and-blood human beings.

  20. Assessing and modelling ecohydrologic processes at the agricultural field scale

    NASA Astrophysics Data System (ADS)

    Basso, Bruno

    2015-04-01

    One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.

  1. Variability of surface temperature in agricultural fields of central California

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.

    1982-01-01

    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  2. Gully evolution in agricultural fields using ground-based LiDar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meeting the increasing demand for agricultural products is dependent on maintaining productive soils. Gully erosion in agricultural fields, has been shown in many regions to be as significant as sheet and rill erosion in delivering sediment to streams, rivers and lakes. Soil loss from all erosion ...

  3. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  4. Nevada Test Site field trip guidebook 1984

    SciTech Connect

    Dockery, H.A.; Byers, F.M. Jr.; Orkild, P.P.

    1985-04-01

    The Nevada Test Site (NTS), located in southern Nevada, was established in 1950 as an area for testing nuclear devices. Various geologic studies performed in conjunction with these activities as well as recent work on a proposed radioactive waste repository are reported in detail in this guidebook and include studies on the structure, stratigraphy, geochemistry, and physical properties of the rocks at NTS. The oldest sequence of rocks exposed in the NTS region is comprised of late Precambrian to Permian miogeoclinal rocks which were subsequently deformed during Jura-Cretaceous contraction, probably related to the Sevier orogeny. These rocks were then locally intruded by late Mesozoic (approx.93 m.y.BP) plutonic rocks related to the Sierra Nevada batholith. Voluminous calcalkaline ash-flow tuffs and associated volcanic rocks originating from the Timber Mountain-Oasis Valley caldera complex were extruded over much of NTS and adjacent areas from approx.16 to 10 m.y.BP. Peralkaline rocks intercalated in the volcanic sequence issued from both Silent Canyon (15 to 13 m.y.BP) and Black Mountain (9 to 7 m.y.BP) volcanic centers. The youngest igneous rocks at NTS are composed of basaltic rocks, primarily hawaiite, the older of which are associated with the evolving silicic volcanic centers and the younger associated with Cenozoic regional extension. Late Tertiary to Recent alluvium derived from the ranges form large, coalescing fans which fill the basins with sediments and reach thicknesses of over 1 km. 45 refs., 21 figs.

  5. Multi-frequency and polarimetric radar backscatter signatures for discrimination between agricultural crops at the Flevoland experimental test site

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Villasenor, J.; Klein, J. D.

    1991-01-01

    We describe the calibration and analysis of multi-frequency, multi-polarization radar backscatter signatures over an agriculture test site in the Netherlands. The calibration procedure involved two stages: in the first stage, polarimetric and radiometric calibrations (ignoring noise) were carried out using square-base trihedral corner reflector signatures and some properties of the clutter background. In the second stage, a novel algorithm was used to estimate the noise level in the polarimetric data channels by using the measured signature of an idealized rough surface with Bragg scattering (the ocean in this case). This estimated noise level was then used to correct the measured backscatter signatures from the agriculture fields. We examine the significance of several key parameters extracted from the calibrated and noise-corrected backscatter signatures. The significance is assessed in terms of the ability to uniquely separate among classes from 13 different backscatter types selected from the test site data, including eleven different crops, one forest and one ocean area. Using the parameters with the highest separation for a given class, we use a hierarchical algorithm to classify the entire image. We find that many classes, including ocean, forest, potato, and beet, can be identified with high reliability, while the classes for which no single parameter exhibits sufficient separation have higher rates of misclassification. We expect that modified decision criteria involving simultaneous consideration of several parameters increase performance for these classes.

  6. Natural establishment of woody species on abandoned agricultural fields in the lower Mississippi Valley: first- and second-year results

    USGS Publications Warehouse

    Allen, J.A.; McCoy, J.W.; Keeland, B.D.

    1998-01-01

    The natural establishment of woody seedlings on abandoned agricultural fields was investigated at sites in Louisiana and Mississippi. Series of disked and undisked plots originating at forest edges and oriented in cardinal directions were established on fields at each site. During the firest 2 years, seedling recruitment was dominated by sweetgum, sugarberry, and elms at both sites. Seedling establishment was strongly affected by direction from mature forest and disking, and to a slightly lesser degree by distance from mature forest. Slightly under half of the variation in seedling numbers per plot was explained by the effects of direction, distance, and disking, indicating that other factors also may play an important role in seedling recruitment.

  7. Field conditions at the Maricopa Agricultural Center, Pinal County, Arizona, June 16, 1989

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1989-01-01

    Field conditions were documented during the SPOT satellite overpass of the Maricopa Agricultural Center, Pinal County, Arizona, on June 16, 1989. Crop types were mapped and photographed for each demonstration farm field, and irrigation, cultivation, and orientation of rows are described. Field and photographic descriptions are presented in tabular and graphic form. (USGS)

  8. Field conditions at the Maricopa Agricultural Center, Pinal County, Arizona, September 28, 1989

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1989-01-01

    Field conditions were documented during the Landsat and SPOT satellite overpasses of the Maricopa Agricultural Center, Pinal County, Arizona, on September 28, 1989. Crop types were mapped and photographed for each demonstration farm field, and irrigation, cultivation, and orientation of rows are described. Field and photographic descriptions are presented in tabular and graphic form. (USGS)

  9. Field conditions at the Maricopa Agricultural Center, Pinal County, Arizona, April 9, 1989

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1989-01-01

    Field conditions were documented during the SPOT satellite overpass of the Maricopa Agricultural Center, Pinal County, Arizona, on April 9, 1989. Crop types were mapped and photographed for each demonstration farm field, and irrigation, cultivation, and orientation of rows are described. Field and photographic descriptions are presented in tabular and graphic form. (USGS)

  10. Mapping Agricultural Fields in Sub-Saharan Africa with a Computer Vision Approach

    NASA Astrophysics Data System (ADS)

    Debats, S. R.; Luo, D.; Estes, L. D.; Fuchs, T.; Caylor, K. K.

    2014-12-01

    Sub-Saharan Africa is an important focus for food security research, because it is experiencing unprecedented population growth, agricultural activities are largely dominated by smallholder production, and the region is already home to 25% of the world's undernourished. One of the greatest challenges to monitoring and improving food security in this region is obtaining an accurate accounting of the spatial distribution of agriculture. Households are the primary units of agricultural production in smallholder communities and typically rely on small fields of less than 2 hectares. Field sizes are directly related to household crop productivity, management choices, and adoption of new technologies. As population and agriculture expand, it becomes increasingly important to understand both the distribution of field sizes as well as how agricultural communities are spatially embedded in the landscape. In addition, household surveys, a common tool for tracking agricultural productivity in Sub-Saharan Africa, would greatly benefit from spatially explicit accounting of fields. Current gridded land cover data sets do not provide information on individual agricultural fields or the distribution of field sizes. Therefore, we employ cutting edge approaches from the field of computer vision to map fields across Sub-Saharan Africa, including semantic segmentation, discriminative classifiers, and automatic feature selection. Our approach aims to not only improve the binary classification accuracy of cropland, but also to isolate distinct fields, thereby capturing crucial information on size and geometry. Our research focuses on the development of descriptive features across scales to increase the accuracy and geographic range of our computer vision algorithm. Relevant data sets include high-resolution remote sensing imagery and Landsat (30-m) multi-spectral imagery. Training data for field boundaries is derived from hand-digitized data sets as well as crowdsourcing.

  11. Soil compaction on an agricultural post-mining recultivation site in Eastern Germany

    NASA Astrophysics Data System (ADS)

    Krümmelbein, Julia; Raab, Thomas; Bens, Oliver; Hüttl, Reinhard F.

    2010-05-01

    Our study is concerned with the agricultural recultivation of post lignite mining areas in Lusatia, where Germany's largest lignite mining area is located. In this region mining leads to disturbances on a landscape level. Recultivation efforts attempt to regenerate post mining areas for various land use options. In this study, the agricultural recultivation is considered. The sandy to loamy substrate that is used for recultivation stems from depths of several meters and is free of soil organic matter. The substrate itself is unstructured when used to construct the sites. During site construction, the substrate is subject to strong mechanical stresses due to excavation, deposition and re-levelling. This practice leads to more or less serious soil compaction which can cause decreased yields of agricultural crops. Our experimental area has been heaped up and re-levelled in 2006/2007. On various subplots the extent of compaction, the effect of amelioration by deep loosening, differing organic soil additives and crop rotations which include deep rooting plants is studied. We compare results of the soil physical status-quo sampling (before the application of any recultivation measure, sample collection in 2007) with recent results (sample collection in 2010) to show the development of soil stability, soil structure and soil functions depending on the recultivation practice. The results of the first soil sampling (2007) revealed bulk density values between 1.3 and 1.9 g/cm³ but comparably low values of precompression stress. We found no correlation between bulk density, saturated hydraulic conductivity and air permeability and for one soil depths a negative correlation between bulk density and precompression stress. We show the degree of compaction on different subplots after site construction and the persistence of recultivation measures such as deep loosening, deep-rooting plants (e.g. alfalfa and sweet clover) by investigating their effects on bulk density

  12. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    PubMed Central

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  13. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    PubMed

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  14. In pursuit of a science of agriculture: the role of statistics in field experiments.

    PubMed

    Parolini, Giuditta

    2015-09-01

    Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.

  15. Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico

    USGS Publications Warehouse

    Castellanos, A.E.; Martinez, M.J.; Llano, J.M.; Halvorson, W.L.; Espiricueta, M.; Espejel, I.

    2005-01-01

    Excessive ground-water use and saline intrusion to the aquifer led, in less than three decades, to an increase in abandoned agricultural fields at La Costa de Hermosillo, within the Sonoran Desert. Using a chronosequence from years since abandonment, patterns of field succession were developed. Contrary to most desert literature, species replacement was found, both in fields with and without saline intrusion. Seasonal photosynthetic capacity as well as water and nitrogen use efficiencies were different in dominant early and late successional plant species. These ecological findings provided a framework for a general explanation of species dominance and replacement within abandoned agricultural fields in the Sonoran Desert. ?? 2004 Elsevier Ltd. All rights reserved.

  16. Incorporating Field Sites into Service-Learning as Collaborative Partners.

    ERIC Educational Resources Information Center

    Peacock, James R.; Bradley, Dana Burr; Shenk, Dena

    2001-01-01

    Interviews with field site supervisors of service learning projects resulted in three categories of suggestions for developing service learning collaborations with community organizations: (1) level of site involvement in projects development; (2) common understanding of the conceptual basis of the project; and (3) managerial aspects (supervision,…

  17. Designing a Marketing Course with Field Site Visits

    ERIC Educational Resources Information Center

    Van Doren, Doris; Corrigan, Hope Bober

    2008-01-01

    A key goal of including field site visits in marketing courses is to give business students increased interaction with industry professionals and community leaders. Site visits give students a concrete idea of how different marketing disciplines work in the business world. Business students gain greater insight into a career in marketing from this…

  18. Economical and environmental implications of solid waste compost applications to agricultural fields in Punjab, Pakistan.

    PubMed

    Qazi, M Akram; Akram, M; Ahmad, N; Artiola, Janick F; Tuller, M

    2009-09-01

    Application of municipal solid waste compost (MSWC) to agricultural soils is becoming an increasingly important global practice to enhance and sustain soil organic matter (SOM) and fertility levels. Potential risks associated with heavy metals and phosphorus accumulations in surface soils may be minimized with integrated nutrient management strategies that utilize MSWC together with mineral fertilizers. To explore the economic feasibility of MSWC applications, nutrient management plans were developed for rice-wheat and cotton-wheat cropping systems within the Punjab region of Pakistan. Three-year field trials were conducted to measure yields and to determine the economic benefits using three management strategies and two nutrient doses. Management strategies included the application of mineral fertilizers as the sole nutrient source and application of mineral fertilizers in combination with MSWC with and without pesticide/herbicide treatments. Fertilizer doses were either based on standard N, P and K recommendations or on measured site-specific soil plant available phosphorus (PAP) levels. It was found that combining MSWC and mineral fertilizer applications based on site-specific PAP levels with the use of pesticides and herbicides is an economically and environmentally viable management strategy. Results show that incorporation of MSWC improved soil physical properties such as bulk density and penetration resistance. The PAP levels in the surface layer increased by the end of the trials relative to the initial status. No potential risks of heavy metal (Zn, Cd, Cr, Pb and Ni) accumulation were observed. Treatments comprised of MSWC and mineral fertilizer adjusted to site-specific PAP levels and with common pest management showed highest cumulative yields. A basic economic analysis revealed a significantly higher cumulative net profit and value-to-cost ratio (VCR) for all site-specific doses.

  19. Topographic effects on denitrification in drained agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification is affected by soil moisture, while soil moisture can be affected by topography. Therefore, denitrification can be spatially correlated to topographic gradients. Three prior converted fields on the Delmarva Peninsula were sampled spatially for denitrification enzyme activity. The up...

  20. Extensive management of field margins enhances their potential for off-site soil erosion mitigation.

    PubMed

    Ali, Hamada E; Reineking, Björn

    2016-03-15

    Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion off-site by trapping eroded material. Here we analyse how local management affects the trapping capacity of field margins in a monsoon region of South Korea, contrasting intensively and extensively managed field margins on both steep and shallow slopes. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("intensive managed flat", "intensive managed steep", "extensive managed flat" and "extensive managed steep") with Astroturf mats. The mats (n = 15/site) were placed before, within and after the field margin. Sediment was collected after each rain event until the end of the monsoon season. The effect of management and slope on sediment trapping was analysed using linear mixed effects models, using as response variable either the sediment collected within the field margin or the difference in sediment collected after and before the field margin. There was no difference in the amount of sediment reaching the different field margin types. In contrast, extensively managed field margins showed a large reduction in collected sediment before and after the field margins. This effect was pronounced in steep field margins, and increased with the size of rainfall events. We conclude that a field margin management promoting a dense vegetation cover is a key to mitigating negative off-site effects of soil erosion in monsoon regions, particularly in field margins with steep slopes.

  1. Pesticide Leaching from Agricultural Fields with Ridges and Furrows.

    PubMed

    Leistra, Minze; Boesten, Jos J T I

    2010-11-01

    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge-furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil.

  2. Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    PubMed Central

    Boesten, Jos J. T. I.

    2010-01-01

    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil. PMID:21076668

  3. Argonne Terrestrial Carbon Cycle Data from Batavia Prairie and Agricultural Sites

    DOE Data Explorer

    Matamala, Roser [ANL; Jastrow, Julie D.; Lesht, Barry [ANL; Cook, David [ANL; Pekour, Mikhail [ANL; Gonzalez-Meler, Miquel A. [University of Illinois at Chicago

    Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

  4. Mapping agricultural fields with GPR and EMI to predict offsite movement of agrochemicals

    NASA Astrophysics Data System (ADS)

    Yoder, Ronald E.; Freeland, Robert S.; Ammons, J. T.; Leonard, L. L.

    2000-04-01

    Offsite movement of waterborne agrochemicals is increasingly targeted as a nonpoint source of water quality degradation. Our research has indicated that subsurface water movement is variable and site-specific, and that a small soil volume frequently conducts a large volume of flow. This concentrated flow is usually caused by soil morphology, and it often results in water moving rapidly offsite from certain areas of fields; little or no lateral subsurface flow may occur in other areas. Identifying these subsurface regions is difficult using conventional soil survey and vadose zone sampling techniques. In this study, traditional surveying is combined with electromagnetic induction (EMI) and ground penetrating radar (GPR) mapping to identify areas with high potential for subsurface offsite movement of agrochemicals, optimizing these identification techniques, and expanding the mapping procedures to make them useful at the field-scale for agricultural production practices. Conclusions from this research are: (1) EMI mapping provides rapid identification of areas of soil with a high potential for offsite movement of subsurface water, (2) GPR mapping of areas identified by EMI mapping provides a means to identify features that are known to conduct concentrated lateral flow of water, and (3) combining the capabilities of EMI and GPR instrumentation make possible the surveys of large areas that would otherwise be impossible or unfeasible to characterize.

  5. Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals1

    NASA Astrophysics Data System (ADS)

    Yoder, Ronald E.; Freeland, Robert S.; Ammons, John T.; Leonard, Leroy L.

    2001-07-01

    Offsite movement of waterborne agrochemicals is increasingly targeted as a non-point source of water quality degradation. Our research has indicated that subsurface water movement is variable and site-specific, and that a small soil volume frequently conducts a large volume of flow. This concentrated flow is usually caused by soil morphology, and it often results in water moving rapidly offsite from certain areas of fields; little or no lateral subsurface flow may occur in other areas. Identifying these subsurface regions is difficult using conventional soil survey and vadose zone sampling techniques. In this study, traditional surveying is combined with electromagnetic induction (EMI) and ground-penetrating radar (GPR) mapping to identify areas with high potential for subsurface offsite movement of agrochemicals, optimizing these identification techniques, and expanding the mapping procedures to make them useful at the field-scale for agricultural production practices. Conclusions from this research are: (1) EMI mapping provides rapid identification of areas of soil with a high electrical conductivity and presumably high potential for offsite movement of subsurface water, (2) GPR mapping of areas identified by EMI mapping provides a means to identify features that are known to conduct concentrated lateral flow of water, and (3) combining the capabilities of EMI and GPR instrumentation makes possible the surveys of large areas that would otherwise be impossible or unfeasible to characterize.

  6. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-06-15

    Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin.

  7. The Impact of Landscape Complexity on Invertebrate Diversity in Edges and Fields in an Agricultural Area

    PubMed Central

    Evans, Tracy R.; Mahoney, Meredith J.; Cashatt, Everett D.; Noordijk, Jinze; de Snoo, Geert; Musters, C. J. M.

    2016-01-01

    Invertebrate diversity is important for a multitude of ecosystem services and as a component of the larger ecological food web. A better understanding of the factors influencing invertebrate taxonomic richness and diversity at both local and landscape scales is important for conserving biodiversity within the agricultural landscape. The aim of this study was to determine if invertebrate richness and diversity in agricultural field interiors and edges in central Illinois, USA, were related to the complexity of the surrounding landscape. Our results show taxonomic richness and diversity in field edges is positively related to large scale landscape complexity, but the relationship is negative for field interiors. These unexpected results need further study. PMID:26848691

  8. Infrared-temperature variability in a large agricultural field

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. J.

    1981-01-01

    Dunnigan Agro-Meteorological Experiment airborne thermal scanner images of a large varying-terrain barley field are acquired and analyzed. Temperature variability that may occur within instantaneous fields of view (IFOV) is defined (coefficient of variation: standard deviation/mean temperature in degrees C), and the percentage of the area within various IFOV's within + or - 1, 2, 3, and 5 degrees of the mean is determined. With the exception of very rugged terrain, over 80% of the area within 4, 16, 65 and 258 ha cells was at temperatures within + or - 3 C of the mean cell temperature. Remote measurements of field temperature appeared to be slightly influenced by pixel size in the range 4 ha to 259 ha, and the area percentage within any pixel which contributes within + or - 1, 2, 3, and 5 degrees C of the mean, is nominally the same. In conclusion, no great advantage is found in utilizing a small IFOV instead of a large one for remote sensing of crop temperature.

  9. Site-specific profiles of estrogenic activity in agricultural areas of California's inland waters.

    PubMed

    Lavado, Ramon; Loyo-Rosales, Jorge E; Floyd, Emily; Kolodziej, Edward P; Snyder, Shane A; Sedlak, David L; Schlenk, Daniel

    2009-12-15

    To evaluate the occurrence and sources of compounds capable of feminizing fish in agriculturally impacted waterways of the Central Valley of California, water samples were extracted and subjected to chemical analyses as well as in vitro and in vivo measurements of vitellogenin in juvenile rainbow trout (Oncorhynchus mykiss). Among the 16 sites sampled, 6 locations frequently exhibited elevated concentrations of estrogenic substances with 17beta-estradiol equivalents up to 242 ng/L in vitro and 12 microg/kg in vivo. The patterns of activity varied among sites, with two sites showing elevated activity only in vitro, two showing elevated activity only in vivo, and two showing elevated activity in both assays. Sequential elution of solid-phase extraction (SPE) disks followed by bioassay-guided fractionation was used to characterize water samples from the two locations where activity was observed in both bioassays. The highest estrogenic activity was observed in the most nonpolar fractions (80-100% methanol eluent) from the Napa River, while most of the activity in the Sacramento River Delta eluted in the 60% methanol eluent. Quantitative analyses of SPE extracts and additional HPLC fractionation of the SPE extracts by GC-MS/MS and LC-MS/MS indicated concentrations of steroid hormones, alkylphenol polyethoxylates, and herbicides that were at least 1-3 orders of magnitude below bioassay 17beta-estradiol equivalent calculations. Given the different patterns of activity and chemical properties of the estrogenic compounds, it appears that estrogenic activity in these agriculturally impacted surface waters is attributable to multiple compounds. Further investigation is needed to identify the compounds causing the estrogenic activity and to determine the potential impacts of these compounds on feral fish.

  10. DDTs in rice frogs (Rana limnocharis) from an agricultural site, South China: tissue distribution, biomagnification, and potential toxic effects assessment.

    PubMed

    Wu, Jiang-Ping; Zhang, Ying; Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian

    2012-04-01

    Contamination with agricultural pesticides such as dichlorodiphenyltrichloroethane (DDT) and its metabolites, dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), is among several proposed stressors contributing to the global declines in amphibian populations and species biodiversity. These chemicals were examined in insects and in the muscle, liver, and eggs of rice frogs (Rana limnocharis) from the paddy fields of an agricultural site in South China. The ΣDDT (sum of DDT, DDE, and DDD) concentrations ranged from 154 to 915, 195 to 1,400, and 165 to 1,930 ng/g lipid weight in the muscle, liver, and eggs, respectively. All the DDTs (DDT, DDE, and DDD) showed higher affinity for the liver relative to muscle tissue and can be maternally transferred to eggs in female frogs. The average biomagnification factors for DDTs ranged from 1.6 to 1.9 and 1.5 to 2.9 in female and male frogs, respectively, providing clear evidence of their biomagnification from insects to frogs. Compared with the reported DDT levels demonstrated to have toxic effects on frogs, DDTs in the present frogs are unlikely to constitute an immediate health risk. However, the adverse impacts of high DDT residues in eggs on the hatching success and their potential toxicity to the newly metamorphosed larval frogs should be assessed further.

  11. Superfund Record of Decision (EPA Region 4): T, H, Agriculture and Nutrition Site, Operable Unit 1, Albany, GA, May 1993

    SciTech Connect

    Not Available

    1993-05-21

    This decision document (Record of Decision), presents the selected remedial action for Operable Unit One for the T H Agriculture and Nutrition (THAN) Site, Albany, Georgia. This operable unit is the first of two that are planned for the Site. The first operable unit addresses the source of the contamination on the western parcel of the Site as well as the principle threat of groundwater contamination across the entire Site. While this remedy does address the principal threats at the Site, the second operable unit will involve continued study and remediation of a second source of contamination on the eastern parcel of the Site.

  12. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and

  13. Evaluation of the potential for agricultural development at the Hanford Site

    SciTech Connect

    RG Evans; MJ Hattendorf; CT Kincaid

    2000-02-25

    By 2050, when cleanup of the Hanford Site is expected to be completed, large worldwide demands to increase the global production of animalhlish protein, food, and fiber are anticipated, despite advancements in crop breeding, genetic engineering, and other technologies. World population is projected to double to more than 12 billion people, straining already stressed worldwide agricultural resources. The current world surpluses in many commodities will not last when faced with increasing population, decreasing ocean fisheries, and rapid loss of productive lands from soil salivation and erosion. The production of pharmaceuticals from bioengineered plants and animals will undoubtedly add more pressure on the already limited (and declining) arable land base. In addition there will be pressure to produce crops that can help reduce the world's dependence on petroleum and be used for chemical plant feedstock. These external, formidable pressures will necessitate increasing investments in irrigation infi-a-structures in many areas of the world to increase productivity. Intensive greenhouse culture and aqua-culture also will be greatly expanded. There will be large economic and social pressures to expand production in areas such as the Pacific Northwest. Agricultural exports will continue to be important The most likely large areas for expanded irrigation in the Pacific Northwest are the undeveloped East High areas of the Columbia Basin Project and non-restricted areas within the Hanford Site in south-central Washington State. Both of these are potentially highly productive area: for producing food and export capital. The environmental concerns will be large however, the favorable growing conditions, high-quality (low-salinity) abundant water supplies and minimal problems with salivation of soils make the Pacific Northwest a very desirable region for economically sustainable expansion from a world perspective.

  14. Re-writing the historical perceptions of semi-arid agriculture at the abandoned site of Engaruka, NE Tanzania

    NASA Astrophysics Data System (ADS)

    Lang, Carol; Stump, Daryl

    2016-04-01

    Archaeological excavations and surveys recognised as early as the 1960s that the extensive area of archaeological remains at Engaruka in northeast Tanzania were the remnants of former settlements overlooking c. 2000ha of agricultural fields and terraces served by a complex network of irrigation canals. Given that the area is now semi-arid and receives c. 400mm of rain per year, it was naturally assumed that this irrigation was necessary in order to undertake arable cultivation. However, recent and ongoing geoarchaeological research - including stratigraphy, micromorphology and geochemistry, complemented by archaeobotany and modelling of hydrology and sediment transport - demonstrates that the site was formerly much wetter. So much wetter, in fact, that farmers built fields containing soils with paddy-like characteristics, and constructed sediment traps that accumulated vast quantities of alluvium entrained within watercourses, resulting in deposits up to 60cm deep over an area of c. 900ha, and up to 2m deep (totally some 16,000 m3) within just one large terrace covering c. 0.6ha. This paper presents the stratigraphy, micromorphology and geochemistry of the site, discusses the importance of relating this wet phase (or phases) to broader palaeoclimatic signatures covering the period of the site's occupation between the 14th and mid- to late 18th century AD, and questions if and how data of this sort can inform assessments of systemic sustainability or resilience. Acknowledgements: European Research Council Starter Grand Scheme (FP/200702013/) ERC Grant Agreement No. ERC-StG-2012-337128-AAREA

  15. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    NASA Astrophysics Data System (ADS)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  16. Hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer at a site in Story County, Iowa, 1992-93

    USGS Publications Warehouse

    Buchmiller, R.C.

    1995-01-01

    A reconnaissance study was conducted during 1992-93 to collect background hydrogeologic and agricultural-chemical data for the South Skunk River alluvial aquifer near Ames, Iowa. Observation wells were drilled to characterize the surficial geologic materials of a field-scale study site and to provide locations for collecting waterlevel and agricultural-chemical data. Walnut Creek, a tributary to the South Skunk River, forms a lateral boundary on the northern edge of the field site. Water-level measurements showed a hydraulic-head gradient towards the South Skunk River under both wet and dry conditions at the study site. Walnut Creek appears to be losing water to the aquifer during most hydrologic conditions. More than 20 milligrams per liter of nitrate as nitrogen were present consistently in water from the southeastern part of the study site. Nitrate-as-nitrogen concentrations in water samples from other locations routinely did not exceed 10 milligrams per liter. The herbicide atrazine was detected most often, 36 of 38 times, in water samples collected from observation wells adjacent to Walnut Creek. Atrazine was not used on the study site during 1992-93 but was found frequently in water samples from Walnut Creek. Therefore, Walnut Creek appears to be a source of herbicide contamination to the alluvial aquifer.

  17. Use of Field Research Sites to Teach Field Techniques in Graduate Level Soil Physics.

    ERIC Educational Resources Information Center

    Cassel, D. K.

    1986-01-01

    Describes how a field research site provides grauduate soil physics students with practical field-oriented experiences. Explains the structure of the course and the nature of the course's investigations. Assesses the advantages and obstacles associated with the field research technique. (ML)

  18. Field Studies Show That In Situ Greenhouse Gas Emission Factors for East African Agriculture Are Less Than IPCC Values

    NASA Astrophysics Data System (ADS)

    Pelster, D.; Butterbach-Bahl, K.; Rufino, M.; Rosenstock, T. S.; Wanyama, G.

    2015-12-01

    Greenhouse gas (GHG) emissions from African agricultural systems are thought to comprise a large portion of total emissions from the continent, however these estimates have been calculated using emission factors (EF) from other regions due to the lack of field studies in Africa, which results in large uncertainties for these estimates. Field measurements from western Kenya calculating emissions over a year in 59 different sites found that GHG emissions from typical smallholder farms ranged from 2.8 to 15.0 Mg CO2-C ha-1, -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1, and were not affected by management intensity. The lack of a response in N2O emissions to N fertilization suggests that the EF currently used in national inventories overestimates N2O emissions from typical smallholder agriculture. Another study measuring N2O and CH4 emissions from manure deposited by grazing cattle found that the N2O EF ranged from 0.1 to 0.2%, while the CH4 EF ranged from 0.04 to 0.14 Kg CH4-C per 173 kg animal. These suggest that the current IPCC EF overestimate agricultural soil and manure GHG emissions for Kenya, and likely for much of East Africa.

  19. Reflections on Museums as Effective Field Sites for Teacher Candidates

    ERIC Educational Resources Information Center

    Clark, Megan; Ensminger, David; Incandela, Colleen; Moisan, Heidi

    2016-01-01

    A unique partnership among six museums and Loyola University Chicago's "Teaching Learning and Leading with Schools and Communities" teacher preparation program provided cross-disciplinary field sites for understanding and witnessing developmental and learning theories. Pre-service teacher candidates were able to identify constructs and…

  20. The impact of groundwater and agricultural expansion on the archaeological sites at Luxor, Egypt

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman A.; Fogg, Graham E.

    2014-07-01

    Pharaonic monuments represent the most valuable source of ancient Egypt, covering the period of approximately 3000-300 B.C. Karnak and Luxor temples represent the monuments of the east bank of Thebes, the old capital of Egypt. These monuments are currently threatened due to rising groundwater levels as a result of agricultural expansion after construction of the High Dam in the 1970s. Deterioration of archaeological sites at Luxor includes disintegration and exfoliation of stones, dissolution of building materials, loss of moral paintings, crystallization of salts in walls and columns, stone bleeding, destruction of wall paintings and texts, decreasing the durability of monumental stones, and discoloring. The hydrogeologic and climatic conditions combined with irrigation practices facilitated the weathering processes to take part in deterioration of archaeological sites at Luxor area. Many varieties of salt species are found in groundwater at the study area which react with country rocks including the archaeological foundations. These salts are not in equilibrium but in a dissolution and/or dissolution-precipitation phases which are responsible for the different types of deterioration features of Luxor and karnak temples including dissolution of the salts or minerals of the building stones and/or precipitation and crystallization of new salts.

  1. Radionuclide concentrations in agricultural products near the Hanford Site, 1982 through 1992

    SciTech Connect

    Antonio, E.J.

    1994-06-01

    The Pacific Northwest Laboratory reviewed monitoring data for agricultural products collected from 1982 through 1992 near the Hanford Site to determine radionuclide concentration trends. While samples were collected and analyzed, and results reported annual in Hanford Site environmental reports, an 11-year data set was reviewed for this report to increase the ability to assess trends and potential Hanford effects. Products reviewed included milk, chicken, eggs, beef, vegetables, fruit, wine, wheat, and alfalfa. To determine which radionuclides were detected sufficiently often to permit analysis for trends and effects, each radionuclide concentration and its associated uncertainty were ratioed. Radionuclides were considered routinely detectable if more than 50% of the ratios were between zero and one. Data for these radionuclides were then analyzed statistically, using analyses of variance. The statistical analyses indicated the following: for the most part, there were no measurable effects for Hanford operations; radionuclide concentrations in all products reviewed remained relatively low when compared to concentrations that would result in a 1-mrem effective dose equivalent to an individual; radionuclide concentrations are decreasing in general; however, {sup 90}Sr concentrations in all media and {sup 129}I in milk increased from 1982 to 1986, then decreased gradually for the remainder of the review period. The {sup 129}I concentrations may be correlated with processing of irradiated reactor fuel at the Plutonium-Uranium Extraction (PUREX) Plant.

  2. Bird use of agricultural fields under reduced and conventional tillage in the Texas Panhandle

    USGS Publications Warehouse

    Flickinger, Edward L.; Pendleton, G.W.

    1994-01-01

    We conducted bird surveys in reduced-tillage and conventional tillage fields in spring, summer, fall, and winter from 1987 to 1991 in the Texas Panhandle. Eastern meadowlarks, longspurs, and savannah sparrows were more common in reduced-tillage (sorghum and wheat stubble) fields than in conventionally tilled (plowed) fields in at least 1 season. Other species also had patterns suggestive of greater abundance in reduced-tillage fields. Hornedlarks, which prefer habitat with sparse vegetation, were more abundant in plowed fields in all seasons except summer. Bird diversity was greater in reduced-tillage fields than in conventionally tilled fields in summer. Cover density and height were greater in reduced tillage fields in all seasons except spring. Cover density and height rather than cover composition (e.g.,grain stubble or live plants) seemed to be the important factors affecting bird distribution. Patterns of bird abundance between sorghum and wheat stubble fields also were dependent on cover. Herbicide use was not greater in reduced-tillage fields than in conventionally tilled fields. Reduced-tillage agriculture for sorghum and wheat farming should be encouraged in the southern Great Plains as a means of improving the attractiveness of agricultural land to many bird species.

  3. Modelling site-specific N2O emission factors from Austrian agricultural soils for targeted mitigation measures (NitroAustria)

    NASA Astrophysics Data System (ADS)

    Amon, Barbara; Zechmeister-Boltenstern, Sophie; Kasper, Martina; Foldal, Cecilie; Schiefer, Jasmin; Kitzler, Barbara; Schwarzl, Bettina; Zethner, Gerhard; Anderl, Michael; Sedy, Katrin; Gaugitsch, Helmut; Dersch, Georg; Baumgarten, Andreas; Haas, Edwin; Kiese, Ralf

    2016-04-01

    Results from a previous project "FarmClim" highlight that the IPCC default emission factor is not able to reflect region specific N2O emissions from Austrian arable soils. The methodology is limited in identifying hot spots and hot moments of N2O emissions. When estimations are based on default emission factors no recommendations can be given on optimisation measures that would lead to a reduction of soil N2O emissions. The better the knowledge is about Nitrogen and Carbon budgets in Austrian agricultural managed soils the better the situation can be reflected in the Austrian GHG emission inventory calculations. Therefore national and regionally modelled emission factors should improve the evidence for national deviation from the IPCC default emission factors and reduce the uncertainties. The overall aim of NitroAustria is to identify the drivers for N2O emissions on a regional basis taking different soil types, climate, and agricultural management into account. We use the LandscapeDNDC model to update the N2O emission factors for N fertilizer and animal manure applied to soils. Key regions in Austria were selected and region specific N2O emissions calculated. The model runs at sub-daily time steps and uses data such as maximum and minimum air temperature, precipitation, radiation, and wind speed as meteorological drivers. Further input data are used to reflect agricultural management practices, e.g., planting/harvesting, tillage, fertilizer application, irrigation and information on soil and vegetation properties for site characterization and model initialization. While at site scale, arable management data (crop cultivation, rotations, timings etc.) is obtained by experimental data from field trials or observations, at regional scale such data need to be generated using region specific proxy data such as land use and management statistics, crop cultivations and yields, crop rotations, fertilizer sales, manure resulting from livestock units etc. The farming

  4. Simple, Low-Cost Data Collection Methods for Agricultural Field Studies.

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Winger, Marlon; Kitchen, Boyd

    2000-01-01

    Summarizes relatively simple and inexpensive methods for collecting data from agricultural field studies. Describes methods involving on-farm testing, crop yield measurement, quality evaluations, weed control effectiveness, plant nutrient status, and other measures. Contains 29 references illustrating how these methods were used to conduct…

  5. 140° view of two agricultural fields with traces of irrigation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140° view of two agricultural fields with traces of irrigation ditches south of the lower holding pond. This negative forms a 360° composite panoramic when joined with AZ-2-75 and AZ-2-76. See AZ-2-86 for color version. - Tassi Ranch, Tassi Springs, Littlefield, Mohave County, AZ

  6. Occurrence and movement of antibiotic resistant bacxteria, in tile-drained agricultural fields receiving swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of tylosin at subtherapeutic levels by the swine industry provides selective pressure for the development of antibiotic resistance in gastrointestinal bacteria. The land application of swine manure to drained agricultural fields might accelerate the transport of pathogen indicators such as e...

  7. Anthropogenic effects on soil quality in ancient terraced agricultural fields of Chihuahua, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soil quality was investigated in ancient field systems near Casas Grandes (also known as Paquimé), one of the largest and most complex prehistoric settlements in the North American Southwest. This research was completed as part of an interdisciplinary study of the anthropogenic ecology...

  8. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  9. Use of FGD gypsum to reduce p loss from agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling P loss from agricultural fields has become a major issue in recent years, especially in areas where manure is used as nutrient sources. It is believed that FGD gypsum can be used as a management practice to reduce soluble P loss. Thus, the objective of this study was to determine FGD gy...

  10. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  11. Status of Job Motivation and Job Performance of Field Level Extension Agents in Ogun State: Implications for Agricultural Development

    ERIC Educational Resources Information Center

    Fabusoro, E.; Awotunde, J. A.; Sodiya, C. I.; Alarima, C. I.

    2008-01-01

    The field level extension agents (FLEAs) are the lifeline of the agricultural extension system in Nigeria. Their motivation and job performance are therefore important to achieving faster agricultural development in Nigeria. The study identified the factors motivating the FLEAs working with Ogun State Agricultural development programme (OGADEP)…

  12. Evaluation of Soil Moisture Derived from Passive Microwave Remote Sensing Over Agricultural Sites in Canada

    NASA Astrophysics Data System (ADS)

    Champagne, C.; McNairn, H.; Berg, A.

    2008-12-01

    Spatial information on soil moisture conditions is a critical agri-environmental variable and can be used alone as a decision support tool for a number of land management decisions, including soil trafficability, seeding options and pesticide applications. Large-area estimations of soil moisture derived from passive microwave sensors are available over Canada from AMSR-E and SSM/I sensors, and in some instances are being used as decision-support tools (AAFC, 2008). These coarse spatial estimates can be used to assess overall conditions on a daily or weekly basis, and potentially be used as a monitoring tool to trigger assessment using higher spatial resolution active microwave sensors. Retrieval algorithms to derive soil moisture from passive microwave brightness temperature produce variable results depending on input frequency and the reliance on ancillary data to estimate vegetation water content and land surface temperature. There is a need to characterize regional errors in these data sets to contextualize their operational use and facilitate integration of these data sets into land surface models. Several soil moisture information products derived from passive microwave remote sensing were evaluated for their potential use in assessing moisture conditions over agricultural regions in Canada. Soil wetness maps derived from SSM/I (Basist et al., 2001), AMSR-E NASA soil moisture products (Njoku, 2008) and two AMSR-E soil moisture products derived using C and X band frequencies using an alternative retrieval algorithm (Owe et al., 2008) were evaluated over agricultural regions in Canada. Evaluations were based on in-situ measurements from sites in Saskatchewan, Manitoba and Ontario for spring and fall periods in 2007 and 2008. Differences in the satellite climatology relative to surface soil moisture observations in Canada will be discussed.

  13. Californian demonstration and validation of automated agricultural field extraction from multi-temporal Landsat data

    NASA Astrophysics Data System (ADS)

    Yan, L.; Roy, D. P.

    2013-12-01

    The spatial distribution of agricultural fields is a fundamental description of rural landscapes and the location and extent of fields is important to establish the area of land utilized for agricultural yield prediction, resource allocation, and for economic planning. To date, field objects have not been extracted from satellite data over large areas because of computational constraints and because consistently processed appropriate resolution data have not been available or affordable. We present a fully automated computational methodology to extract agricultural fields from 30m Web Enabled Landsat data (WELD) time series and results for approximately 250,000 square kilometers (eleven 150 x 150 km WELD tiles) encompassing all the major agricultural areas of California. The extracted fields, including rectangular, circular, and irregularly shaped fields, are evaluated by comparison with manually interpreted Landsat field objects. Validation results are presented in terms of standard confusion matrix accuracy measures and also the degree of field object over-segmentation, under-segmentation, fragmentation and shape distortion. The apparent success of the presented field extraction methodology is due to several factors. First, the use of multi-temporal Landsat data, as opposed to single Landsat acquisitions, that enables crop rotations and inter-annual variability in the state of the vegetation to be accommodated for and provides more opportunities for cloud-free, non-missing and atmospherically uncontaminated surface observations. Second, the adoption of an object based approach, namely the variational region-based geometric active contour method that enables robust segmentation with only a small number of parameters and that requires no training data collection. Third, the use of a watershed algorithm to decompose connected segments belonging to multiple fields into coherent isolated field segments and a geometry based algorithm to detect and associate parts of

  14. Field site selection: getting it right first time around.

    PubMed

    Malcolm, Colin A; El Sayed, Badria; Babiker, Ahmed; Girod, Romain; Fontenille, Didier; Knols, Bart G J; Nugud, Abdel Hameed; Benedict, Mark Q

    2009-11-16

    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract--just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT.

  15. Field site selection: getting it right first time around

    PubMed Central

    Malcolm, Colin A; El Sayed, Badria; Babiker, Ahmed; Girod, Romain; Fontenille, Didier; Knols, Bart GJ; Nugud, Abdel Hameed; Benedict, Mark Q

    2009-01-01

    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT. PMID:19917079

  16. Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands.

    PubMed

    Börstler, Boris; Thiéry, Odile; Sýkorová, Zuzana; Berner, Alfred; Redecker, Dirk

    2010-04-01

    Glomus intraradices, an arbuscular mycorrhizal fungus (AMF), is frequently found in a surprisingly wide range of ecosystems all over the world. It is used as model organism for AMF and its genome is being sequenced. Despite the ecological importance of AMF, little has been known about their population structure, because no adequate molecular markers have been available. In the present study we analyse for the first time the intraspecific genetic structure of an AMF directly from colonized roots in the field. A recently developed PCR-RFLP approach for the mitochondrial rRNA large subunit gene (mtLSU) of these obligate symbionts was used and complemented by sequencing and primers specific for a particularly frequent mtLSU haplotype. We analysed root samples from two agricultural field experiments in Switzerland and two semi-natural grasslands in France and Switzerland. RFLP type composition of G. intraradices (phylogroup GLOM A-1) differed strongly between agricultural and semi-natural sites and the G. intraradices populations of the two agricultural sites were significantly differentiated. RFLP type richness was higher in the agricultural sites compared with the grasslands. Detailed sequence analyses which resolved multiple sequence haplotypes within some RFLP types even revealed that there was no overlap of haplotypes among any of the study sites except between the two grasslands. Our results demonstrate a surprisingly high differentiation among semi-natural and agricultural field sites for G. intraradices. These findings will have major implications on our views of processes of adaptation and specialization in these plant/fungus associations.

  17. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1993

    SciTech Connect

    None, None

    1994-10-21

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonoradiological monitoring at SSFL.

  18. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Site, 1991

    SciTech Connect

    none,

    1992-12-03

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear fuel or nuclear reactors. i.e., the U.S. DOE and the California State Department of Health Services (DHS). Radiologic Health Branch (RHB). For that reason. information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  19. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1992

    SciTech Connect

    none,

    1993-12-14

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  20. Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.

    1973-01-01

    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.

  1. Rapid assessment of ecosystem services provided by two mineral extraction sites restored for nature conservation in an agricultural landscape in eastern England.

    PubMed

    Blaen, Phillip J; Jia, Li; Peh, Kelvin S-H; Field, Rob H; Balmford, Andrew; MacDonald, Michael A; Bradbury, Richard B

    2015-01-01

    Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being.

  2. Rapid Assessment of Ecosystem Services Provided by Two Mineral Extraction Sites Restored for Nature Conservation in an Agricultural Landscape in Eastern England

    PubMed Central

    Blaen, Phillip J.; Jia, Li; Peh, Kelvin S.-H.; Field, Rob H.; Balmford, Andrew; MacDonald, Michael A.; Bradbury, Richard B.

    2015-01-01

    Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being. PMID:25894293

  3. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    PubMed

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  4. Net carbon balance of three full crop rotations at an agricultural site near Gebesee, Germany

    NASA Astrophysics Data System (ADS)

    Hurkuck, M.; Brümmer, C.; Kolle, O.; Kutsch, W. L.; Moffat, A. M.; Mukwashi, K.; Truckenbrodt, S. C.; Herbst, M.

    2015-12-01

    Continuous eddy-covariance (EC) measurements of biosphere-atmosphere CO2 and H2O exchange have been conducted since 2001 at an agricultural site near Gebesee, Germany, thus providing one of the longest EC time series of European croplands. During the experimental period, winter wheat and winter barley were alternately planted with potatoes, sugar beet, rape, and peppermint covering three full crop rotations (2001-2004, 2005-2009, and 2010-2014). In this study, data of 14 years of net ecosystem CO2 exchange (NEE) and evapotranspiration (E) were re-calculated. Based on these data, we present the net carbon (C) balance (net biome production, NBP) accounting for any additional C input by fertilization and C output by harvest. Further emphasis was placed on the sensitivity of water use efficiency (WUE) and E to climate and crop type. The main aim was to investigate the interannual variability in both NBP and WUE, thus disentangling the impacts of climatic conditions and land management on the net C balance as well as on WUE and E.

  5. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in

  6. Rocketdyne Division annual site environmental report Santa Susana Field Laboratory and Desoto sites 1995

    SciTech Connect

    1996-07-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the DeSoto site. The sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The DeSoto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warrants comprehensive monitoring to assure protection of the environment. SSFL consists of four administrative areas used for research, development, and test operations as well as a buffer zone. A portion of Area I and all of Area II are owned by the U.S. Government and assigned to the National Aeronautics and Space Administration (NASA). A portion of Area IV is under option for purchase by the Department of Energy (DOE).

  7. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1994

    SciTech Connect

    none,

    1995-09-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies. i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL. which is the only area where DOE activities have been performed. While the major focus of attention is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  8. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    PubMed

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  9. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

    PubMed

    Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris

    2014-03-15

    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers.

  10. Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation and storm water runoff from agricultural fields has the potential to cause impairment to downstream aquatic receiving systems. Over the last several years, scientists have discovered the benefit of using edge-of-field practices, such as vegetated agricultural drainage ditches, in the mit...

  11. Agricultural land contamination by heavy metals around the former mining site of Bechateur (northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Daldoul, G.; Soussi, R.; Soussi, F.; Boularbah, A.

    2012-04-01

    The activity of the former Pb-Zn mine of Jebel Ghozlen (Béchateur. extreme northern Tunisia) generated during the last century large quantities of tailings (extraction, flotation, gravimetry) deposited as three heap between the mine site and the shoreline located 700 m away. Areas surrounding the mine site are agricultural and are crossed by two rivers, one of which crosses the main heap. The minerals that make up these wastes are calcite, dolomite, quartz, gypsum, pyrite, barite, smithsonite, cerussite and galena. The amounts of Zn, Cd and Pb in the wastes vary between 1.3 and 9.3%, 1.1% and 5.7 and 185 and 410 mg kg-1, respectively. Soils in the study area are carbonated and are characterized by a silt-sand texture. The clay fraction is dominated by kaolinite. The chemical analysis of thirty samples collected over an area of 3 km2 shows that the amounts of total organic carbon (TOC) and total sulfur vary from 0.7 % to 2.5 % and 0.08 % to 0.96 %, respectively, while those of Zn, Pb and Cd range from 300 to 22 000 mg kg-1, 85 to 3000 mg kg-1 and 2 to 47 mg kg-1, respectively. The highest concentrations of metals were found in flood plains at 500 m downstream of the mine site. Extraction tests using deionized water and a 0.1 M CaCl2 solution were performed to assess the mobility of Zn, Pb and Cd in contaminated and reference soil samples collected within the study area. The results of extraction with deionized water showed that the leached amounts of Zn and Cd range between 0.2 and 4 mg kg-1 and 0.02 and 0.2 mg kg-1, respectively; while that of Pb is quite near the detection limit. During the extraction with CaCl2 the leached amounts of Zn, Pb and Cd range from 0.3 to 86 mg kg-1, 2 to 6 mg kg-1 and 0.05 to 0.9 mg kg-1, respectively. Thus, the mobility of Cd, Zn and Pb in CaCl2 solution (0.8 %, 0.4 % and 0.3 %, respectively) is higher compared with the extraction with deionized water (0.2%, 0.1% and 0.02 %, respectively). Toxicity tests were conducted on these soils

  12. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  13. Biodiversity in Organic Farmland - How Does Landscape Context Influence Species Diversity in Organic Vs. Conventional Agricultural Fields?

    NASA Astrophysics Data System (ADS)

    Seufert, V.; Wood, S.; Reid, A.; Gonzalez, A.; Rhemtulla, J.; Ramankutty, N.

    2014-12-01

    The most important current driver of biodiversity loss is the conversion of natural habitats for human land uses, mostly for the purpose of food production. However, by causing this biodiversity loss, food production is eroding the very same ecosystem services (e.g. pollination and soil fertility) that it depends on. We therefore need to adopt more wildlife-friendly agricultural practices that can contribute to preserving biodiversity. Organic farming has been shown to typically host higher biodiversity than conventional farming. But how is the biodiversity benefit of organic management dependent on the landscape context farms are situated in? To implement organic farming as an effective means for protecting biodiversity and enhancing ecosystem services we need to understand better under what conditions organic management is most beneficial for species. We conducted a meta-analysis of the literature to answer this question, compiling the most comprehensive database to date of studies that monitored biodiversity in organic vs. conventional fields. We also collected information about the landscape surrounding these fields from remote sensing products. Our database consists of 348 study sites across North America and Europe. Our analysis shows that organic management can improve biodiversity in agricultural fields substantially. It is especially effective at preserving biodiversity in homogeneous landscapes that are structurally simplified and dominated by either cropland or pasture. In heterogeneous landscapes conventional agriculture might instead already hold high biodiversity, and organic management does not appear to provide as much of a benefit for species richness as in simplified landscapes. Our results suggest that strategies to maintain biodiversity-dependent ecosystem services should include a combination of pristine natural habitats, wildlife-friendly farming systems like organic farming, and high-yielding conventional systems, interspersed in structurally

  14. A mobile app for delivering in-field soil data for precision agriculture

    NASA Astrophysics Data System (ADS)

    Isaacs, John P.; Stojanovic, Vladeta; Falconer, Ruth E.

    2015-04-01

    In the last decade precision agriculture has grown from a concept to an emerging technology, largely due to the maturing of GPS and mobile mapping. We investigated methods for reliable delivery and display of appropriate and context aware in-field farm data on mobile devices by developing a prototype android mobile app. The 3D app was developed using OpenGL ES 2.0 and written in Java, using the Android Development Tools (ADT) SDK. The app is able to obtain GPS coordinates and automatically synchronise the view and load relevant data based on the user's location. The intended audience of the mobile app is farmers and agronomists. Apps are becoming an essential tool in an agricultural professional's arsenal however most existing apps are limited to 2D display of data even though the modern chips in mobile devices can support the display of 3D graphics at interactive rates using technologies such as webGL. This project investigated the use of games techniques in the delivery and 3D display of field data, recognising that this may be a departure from the way the field data is currently delivered and displayed to farmers and agronomists. Different interactive 3D visualisation methods presenting spatial and temporal variation in yield values were developed and tested. It is expected that this app can be used by farmers and agronomists to support decision making in the field of precision agriculture and this is a growing market in UK and Europe.

  15. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry.

  16. In-situ field tests for site characterization and remediation

    SciTech Connect

    Vogel, C.M.

    1995-09-01

    An effort is under way at the Groundwater Remediation Field Laboratory National Test Site at Dover AFB to conduct a field demonstration of bioventing of a controlled release containing a mixture of JP-4 jet fuel and trichloroethylene (TCE). The main objective of the field experiment is to demonstrate that the fuel vapors will support the biological co-oxidation of TCE under the aerobic conditions provided by the bioventing system. Some highly chlorinated compounds, such as perchloroethylene (PCE), cannot be biodegraded under aerobic conditions. However, under the proper anaerobic conditions, PCE can be transformed to harmless degradation products via a series of sequential reductive dechlorination steps. A collaborative effort between the Air Force, Navy and EPA is taking place at Naval Air Station Fallon, Nevada, to determine if complete dechlorination of PCE can be efficiently stimulated in situ by the addition of suitable electron donors. Descriptions of these Air Force research demonstrations and results to date will be discussed in this presentation.

  17. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in

  18. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex.

    PubMed

    Benmansour, M; Mabit, L; Nouira, A; Moussadek, R; Bouksirate, H; Duchemin, M; Benkdad, A

    2013-01-01

    In Morocco land degradation - mainly caused by soil erosion - is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42' W, 33° 47' N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of (137)Cs, (210)Pb(ex) as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha(-1) yr(-1) and 12.1 ha(-1) yr(-1) for (137)Cs and (210)Pb(ex) respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the (137)Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion.

  19. Site Study Plan for Aesthetics, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    The Aesthetic Site Study Plan describes a field program consisting of identification of the visually affected area; determination of scenic quality, visual sensitivity, and visual management classes of the site and vicinity; and analysis of the level of visual contrast that would be created by the project. Field ratings of scenic quality, visual sensitivity, and visual contrast will be supplemented by a public perception survey designed to incorporate the views of the public. This plan describes the need for the study, the study design, data management and use, schedule for proposed activities, and quality assurance program. This study will provide data needed to satisfy requirements contained in, or derived from, SRPO Requirement Document (SRP-RD). 35 refs., 6 figs., 2 tabs.

  20. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  1. Site Study Plan for Acoustics, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    The Acoustics site study plan describes a field program which characterizes existing sound levels, determines the area's sound propagation characteristics, and monitors the project-related sound emissions. The plan describes for each study: the need for the study, study design, data management and use, schedule, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Requirements Document. 37 refs., 9 figs., 3 tabs.

  2. PISCES field chemical emissions monitoring project: Site 21 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 21. Site 21 is a pilot-scale electrostatic precipitator and wet flue gas desulfurization (FGD) system. The flue gas for the pilot unit is provided by an adjacent power plant boiler which bums a medium-sulfur bituminous, coal. The primary objective in the Site 21 sampling and analytical program was to quantify the various components of variance in the measurement of trace chemical species. In addition to the replicate sample trains typically conducted at previous PISCES field measurements, duplicate analyses and duplicate (simultaneous) sample trains were also conducted. This enabled the variance due to sampling, analytical, and process conditions to be estimated. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  3. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  4. Assessing field vulnerability to phosphorus loss in Beijing agricultural area using Revised Field Phosphorus Ranking Scheme.

    PubMed

    Li, Qi; Chen, Li-ding; Qi, Xin; Zhang, Xin-yu; Ma, Yan; Fu, Bo-jie

    2007-01-01

    Guanting Reservoir, one of the drinking water supply sources of Beijing, suffers from water eutrophication. It is mainly supplied by Guishui River. Thus, to investigate the reasons of phosphorus (P) loss and improve the P management strategies in Guishui River watershed are important for the safety of drinking water in this region. In this study, a Revised Field P Ranking Scheme (PRS) was developed to reflect the field vulnerability of P loss at the field scale based on the Field PRS. In this new scheme, six factors are included, and each one was assigned a relative weight and a determination method. The affecting factors were classified into transport factors and source factors, and, the standards of environmental quality on surface water and soil erosion classification and degradation of the China were used in this scheme. By the new scheme, thirty-four fields in the Guishui River were categorized as "low", "medium" or "high" potential for P loss into the runoff. The results showed that the P loss risks of orchard and vegetable fields were higher than that of corn and soybean fields. The source factors were the main factors to affect P loss from the study area. In the study area, controlling P input and improving P usage efficiency are critical to decrease P loss. Based on the results, it was suggested that more attention should be paid on the fields of vegetable and orchard since they have extremely high usage rate of P and high soil test of P. Compared with P surplus by field measurements, the Revised Field PRS was more suitable for reflecting the characteristics of fields, and had higher potential capacity to identify critical source areas of P loss than PRS.

  5. Cyanobiont diversity within and among cycads of one field site.

    PubMed

    Zimmerman, W J; Rosen, B H

    1992-12-01

    Limited diversity was found among cyanobionts from a cultivated population of cycads at a field site in Florida. All isolates were classified as Nostoc but were different from the one Nostoc species found in the soil. These cyanobacteria were root endophytes of several plants of Zamia integrifolia and one of Dioon. The isolates were similar morphologically and in their reactions to four fluorescein isothiocyanate conjugated lectins. Electrophoretic protein profiles and zymograms distinguished one cyanobiont and the soil Nostoc. A tenacious Anabaena epiphyte was also discovered inhabiting the surfaces of root nodules.

  6. Optimal Allocation of Maximum Allowable Discharged Total Nitrogen Load among Field Plots in Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Maeda, Shigeya; Yoshikawa, Kazuki; Takeuchi, Junichiro; Kawachi, Toshihiko; Chono, Shunsuke; Unami, Koichi

    A multiobjective optimization model is developed for controlling TN (Total Nitrogen) load discharged from field plots in an agricultural watershed. In optimization, maximizations of allowable TN discharge per unit area and total yield of rice are intended while complying with an effluent limitation standard prescribed for river water quality management. The discharge from a field plot is separated into two components, i.e., direct runoff and baseflow. As discharged TN from a plot travels with these components toward an outlet of the watershed, the amount of TN is assumed to decrease due to distance-related self-purification occurring in subsurface zone, drainage canal and river. Locations of field plots and traveling routes of TN are identified or predicted by a GIS (Geographic Information System) with a digital elevation model and by field surveys. The model developed is applied to an agricultural watershed bordering with Lake Biwa in Shiga Prefecture, Japan. The result demonstrates that the optimal allocation of maximum allowable discharged TN load among field plots is helpful in prioritizing plots where fertilization should be reduced.

  7. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  8. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC.

    PubMed

    Molina-Herrera, Saúl; Haas, Edwin; Klatt, Steffen; Kraus, David; Augustin, Jürgen; Magliulo, Vincenzo; Tallec, Tiphaine; Ceschia, Eric; Ammann, Christof; Loubet, Benjamin; Skiba, Ute; Jones, Stephanie; Brümmer, Christian; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-05-15

    The identification of site-specific agricultural management practices in order to maximize yield while minimizing environmental nitrogen losses remains in the center of environmental pollution research. Here, we used the biogeochemical model LandscapeDNDC to explore different agricultural practices with regard to their potential to reduce soil N2O emissions and NO3 leaching while maintaining yields. In a first step, the model was tested against observations of N2O emissions, NO3 leaching, soil micrometeorology as well as crop growth for eight European cropland and grassland sites. Across sites, LandscapeDNDC predicts very well mean N2O emissions (r(2)=0.99) and simulates the magnitude and general temporal dynamics of soil inorganic nitrogen pools. For the assessment of site-specific mitigation potentials of environmental nitrogen losses a Monte Carlo optimization technique considering different agricultural management options (i.e., timing of planting, harvest and fertilization, amount of applied fertilizer as well as residue management) was used. The identified optimized field management practices reduce N2O emissions and NO3 leaching from croplands on average by 21% and 31%, respectively. Likewise, average reductions of 55% for N2O emissions and 16% for NO3 leaching are estimated for grasslands. For mitigating environmental loss - while maintaining yield levels - it was most important to reduce fertilizer application rates by in average 10%. Our analyses indicate that yield scaled N2O emissions and NO3 leaching indicate possible improvements of nitrogen use efficiencies in European farming systems. Moreover, the applied optimization approach can be used also in a prognostic way to predict optimal timings and fertilization options (rates and splitting) upon accurate weather forecasts combined with the knowledge of modeled soil nutrient availability and plant nitrogen demand.

  9. Agricultural and science education: a socio-analysis of their intersection and positions within the educational field

    NASA Astrophysics Data System (ADS)

    Hains, Bryan J.; Hansen, Gary L.; Hustedde, Ronald J.

    2016-12-01

    It can be argued that agricultural science is one of the original forms of science education. However, over the past century, agricultural science education has habitually been perceived as an educational venue meant solely for production agriculturalists. When examining modern agricultural education we find it to be a minority within the broader field of science education, contradicting its historically stout scientific standing within the sciences. This educational shift leaves one to ponder the historic development of contemporary agricultural education. To gain deeper insight into these questions we reviewed the historical evolution of agricultural education within the United States. We then examined the professional habitus, or cultural nuances, associated with contemporary agricultural education. Next, we considered potential outcomes associated with the profession embracing post-modern perspectives within mainstream science and community-based education. Finally, we call for critical venues within agriculture education to question the status quo and challenge the acceptance of commonly held views.

  10. Agricultural and science education: a socio-analysis of their intersection and positions within the educational field

    NASA Astrophysics Data System (ADS)

    Hains, Bryan J.; Hansen, Gary L.; Hustedde, Ronald J.

    2017-03-01

    It can be argued that agricultural science is one of the original forms of science education. However, over the past century, agricultural science education has habitually been perceived as an educational venue meant solely for production agriculturalists. When examining modern agricultural education we find it to be a minority within the broader field of science education, contradicting its historically stout scientific standing within the sciences. This educational shift leaves one to ponder the historic development of contemporary agricultural education. To gain deeper insight into these questions we reviewed the historical evolution of agricultural education within the United States. We then examined the professional habitus, or cultural nuances, associated with contemporary agricultural education. Next, we considered potential outcomes associated with the profession embracing post-modern perspectives within mainstream science and community-based education. Finally, we call for critical venues within agriculture education to question the status quo and challenge the acceptance of commonly held views.

  11. Site Guidelines for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Sassani, D.; Kuhlman, K. L.; Freeze, G. A.; MacKinnon, R. J.; Perry, F.

    2015-12-01

    The US DOE Office of Nuclear Energy Used Nuclear Fuel Disposition Campaign (UFDC) is initiating a Deep Borehole Field Test (DBFT), without use of any radioactive waste, to evaluate the geoscience of the approach and technical capabilities for implementation. DOE has identified Sandia National Laboratories (SNL) as the Technical Lead for the UFDC DBFT Project, with the role of supporting DOE in (i) developing the overall DBFT Project Plan, (ii) management and integration of all DBFT Project activities, and (iii) providing Project technical guidance to DOE, other DOE National Laboratories, and university partners. The DBFT includes drilling one Characterization Borehole (CB-8.5" diameter), followed by an optional Field Test Borehole (FTB), to a depth of about 5,000 m (16,400 feet) into crystalline basement rock in a geologically stable continental location. The DBFT CB will be drilled and completed to facilitate downhole scientific testing and analyses. If site conditions are found to be favorable, DOE may drill the larger-diameter (17") FTB to facilitate proof-of-concept of handling, emplacement, and retrieval activities using surrogate waste containers. Guidelines for favorable DBFT site geohydrochemical and geomechanical conditions will be discussed and status of the DBFT Project will be provided. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6426A.

  12. A fuzzy logic approach to assess groundwater pollution levels below agricultural fields.

    PubMed

    Muhammetoglu, Ayse; Yardimci, Ahmet

    2006-07-01

    A fuzzy logic approach has been developed to assess the groundwater pollution levels below agricultural fields. The data collected for Kumluca Plain of Turkey have been utilized to develop the approach. The plain is known with its intensive agricultural activities, which imply excessive application of fertilizers. The characteristics of the soils and underlying groundwater for this plain were monitored during the years 1999 and 2000. Additionally, an extensive field survey related to the types and yields of crops, fertilizer application and irrigation water was carried out. Both the soil and groundwater have exhibited high levels of nitrogen, phosphorus and salinity with considerable spatial and temporal variations. The pollution level of groundwater at several established stations within the plain were assessed using Fuzzy Logic. Water Pollution Index (WPI) values are calculated by Fuzzy Logic utilizing the most significant groundwater pollutants in the area namely nitrite, nitrate and orthophosphate together with the groundwater vulnerability to pollution. The results of the calculated WPI and the monitoring study have yielded good agreement. WPI indicated high to moderate water pollution levels at Kumluca plain depending on factors such as agricultural age, depth to groundwater, soil characteristics and vulnerability of groundwater to pollution. Fuzzy Logic approach has shown to be a practical, simple and useful tool to assess groundwater pollution levels.

  13. Operation of agricultural test fields for study of stressed crops by remote sensing

    NASA Technical Reports Server (NTRS)

    Toler, R. W.

    1974-01-01

    A test site for the study of winter wheat development and collection of ERTS data was established in September of 1973. The test site is a 10 mile square area located 12.5 miles west of Amarillo, Texas on Interstate Hwy. 40, in Randall and Potter counties. The center of the area is the Southwestern Great Plains Research Center at Bushland, Texas. Within the test area all wheat fields were identified by ground truth and designated irrigated or dryland. The fields in the test area other than wheat were identified as to pasture or the crop that was grown. A ground truth area of hard red winter wheat was established west of Hale Center, Texas. Maps showing the location of winter wheat fields in excess of 40 acres in size within a 10 mile radius were supplied NASA. Satellite data was collected for this test site (ERTS-1).

  14. Temporal relationships between heavy-metal concentrations in water and food crops at a Zambian urban agriculture site.

    NASA Astrophysics Data System (ADS)

    Holden, Jennifer A.; Malamud, Bruce D.; Chishala, Benson H.; Kapungwe, Evaristo; Volk, John; Harpp, Karen S.

    2010-05-01

    In this paper, for a suite of 17 elements, we examine the temporal relationships between heavy-metal concentrations in water and food crops, and between different elements, at Chunga, Zambia, August 2004 to July 2005. In many locations in the developing world, the water source used for urban agriculture is often wastewater from industrial sources, and is potentially contaminated with heavy metals. In Zambia, the location of this study, the wastewater source for irrigation use in some urban areas has been called 'a sink for sewage, mining and industrial effluents' all of which potentially contain heavy metals. We present field research results examining relationships between heavy-metal concentrations in both the water and the foodcrops from an urban agriculture location in northwest Lusaka (Chunga), the capital of Zambia. Monthly monitoring of water and food crops irrigated by the water was carried out at the study site, August 2004 to July 2005, for n = 39 water samples and n = 17 food crop samples. Heavy-metal concentrations were examined for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, U (17 elements) using ICP-MS. We find that both water and food-crop samples have peak concentrations for many elements in the wet season (October to February). When examining temporal relationships, we find some positive and negative statistically significant correlations between elements for both [water]:[food crop] and [food crop]:[food crop]. For the concentrations of [water]:[food crop] we find particularly strong positive correlations for V:Se and (V, Cr, Co, Zn, Cd, Hg, Pb, U):Tl; strong negative correlations are observed for V:Zn, Ni:Cu, Cd:Cu. For [food crop]:[food crop] particularly strong positive relationships are observed for Al:V, Al:Cr, Cr:V, and Cd:U. Theoretically, concentrations of heavy-metals in plant samples normally should reflect the heavy-metal contamination in the water used to irrigate the plants throughout the growth cycle (typically six

  15. Multiple routes of pesticide exposure for honey bees living near agricultural fields.

    PubMed

    Krupke, Christian H; Hunt, Greg J; Eitzer, Brian D; Andino, Gladys; Given, Krispn

    2012-01-01

    Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.

  16. Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields

    PubMed Central

    Krupke, Christian H.; Hunt, Greg J.; Eitzer, Brian D.; Andino, Gladys; Given, Krispn

    2012-01-01

    Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments. PMID

  17. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    PubMed

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  18. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments

    PubMed Central

    Zhalnina, Kateryna; de Quadros, Patricia D.; Gano, Kelsey A.; Davis-Richardson, Austin; Fagen, Jennie R.; Brown, Christopher T.; Giongo, Adriana; Drew, Jennifer C.; Sayavedra-Soto, Luis A.; Arp, Dan J.; Camargo, Flavio A. O.; Daroub, Samira H.; Clark, Ian M.; McGrath, Steve P.; Hirsch, Penny R.; Triplett, Eric W.

    2013-01-01

    Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH3 concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use. PMID:23641242

  19. Site study plan for ecology, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary Draft

    SciTech Connect

    Not Available

    1987-06-01

    The Ecology Site Study Plan describes a field program consisting of studies which include surveys for endangered, threatened, and candidate species; vegetation characterization, including mapping and cover typing, plant succession, wetlands description, and preexisting stresses; and wildlife community characterization, including availability and quality of habitats and descriptions of mammal, bird, reptile, amphibian, and invertebrate populations. The plan for each study describes the need for the study, study design, data management and use, schedule and personnel requirements, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document (SRP-RD). 83 refs., 3 tabs.

  20. Geological Characterization of Remote Field Sites Using Visible and Infrared Spectroscopy: Results from the 1999 Marsokhod Field Test

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.

    2000-01-01

    The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.

  1. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...

  2. Preparing students for higher education and careers in agriculture and related fields: An ethnography of an urban charter school

    NASA Astrophysics Data System (ADS)

    Henry, Kesha Atasha

    This study explored the preparation of students for higher education and careers in agriculturally-related fields at an urban charter high school. The data were collected through interviews, observations, and field notes. The data were analyzed by qualitative methodology with phenomenology as the theoretical framework. Findings indicated that administrators thought it was important to incorporate agricultural science courses into urban school curricula. They stated that agricultural science courses gave urban students a different way of looking at science and helped to enhance the science and technology focus of the school. Further, agricultural science courses helped to break urban students' stereotypes about agriculture and helped to bring in more state funding for educational programs. However they thought that it was more challenging to teach agricultural science in urban versus rural schools and they focused more on Science, Technology, Engineering, and Mathematics (STEM) related careers. The students had mixed views about higher education and careers in agriculture. This was based on their limited knowledge and stereotypes about agricultural majors and career options. The students highlighted several key reasons why they chose to enroll in agricultural science courses. This included the benefits of dual science credits and the ability to earn an associate degree upon successful completion of their program. Students also loved science and appreciated the science intensive nature of the agricultural courses. Additionally, they thought that the agricultural science courses were better than the other optional courses. The results also showed that electronic media such as radio and TV had a negative impact on students' perceptions about higher education and careers in agriculturally-related fields. Conclusions and recommendations are presented.

  3. Hydrological and erosion processes in terraced agricultural fields: observations from a wet Mediterranean region in northern Portugal

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bernard-Jannin, Léonard; Rodriguez-Blanco, María Luz; Marisa Santos, Juliana; Oliveira Alves Coelho, Celeste; Keizer, Jan Jacob

    2015-04-01

    Traditional agriculture in the mountainous humid regions of the northwestern Iberian peninsula has relied on terraces for soil retention. In the last decades, a strong afforestation (in many cases with commercial species) has led to the appearance of large forest areas coexisting with traditional agricultural landscapes. Soil erosion research in this region has therefore focused on the impact of forest management practices and associated disturbances such as wildfires. However, there has been little research on the impacts of traditional terracing practices on erosion, and therefore it has been difficult to connect forest research with the wider issue of sediment connectivity in this complex agroforestry landscape. This work tried to address this research gap by monitoring an agricultural terrace in the Caramulo mountains, northern Portugal, during two years. The field site is located in a humid Mediterranean climate region, with c. 1500 mm/y rainfall, overlaying granite bedrock; agricultural practices are a traditional rotation between winter pasture and summer (irrigated) corn cultivation. During this period, the soil properties of the terrace were characterized, and there was a continuous monitoring of rainfall, soil moisture and surface runoff at the outlet, as well as 1 or 2-weekly collections of runoff to measure sediment yield. Occasional measurements of vegetation cover and erosion features (rills) within the plot were also made. Preliminary results indicate that runoff generation occurred mostly due to saturation-excess, possibly linked with the accumulation of groundwater in the lower layers of the soil. After one of the largest events, there was a clear inflow of runoff from outside the terrace, through either the irrigation network linking all terraces or by resurfacing of groundwater. Sediment yield was linked with runoff, but sediment concentration was linked with vegetation cover and was highest during the early stages of pasture growth. However

  4. Integrated analysis of root microbiomes of soybean and wheat from agricultural fields

    PubMed Central

    Rascovan, Nicolás; Carbonetto, Belén; Perrig, Diego; Díaz, Marisa; Canciani, Wilter; Abalo, Matías; Alloati, Julieta; González-Anta, Gustavo; Vazquez, Martín P.

    2016-01-01

    Root associated bacteria are critical for plant growth and health. Understanding the composition and role of root microbiota is crucial toward agricultural practices that are less dependent on chemical fertilization, which has known negative effects on the environment and human health. Here we analyzed the root-associated microbiomes of soybean and wheat under agricultural field conditions. We took samples from 11 different production fields across a large geographic area. We used 16S rRNA pyrosequencing to explore root microbial communities and also obtained 2,007 bacterial isolates from rhizospheres, which were tested for the presence of plant growth promoting (PGP) traits in-vitro. We observed that pH and nitrate content correlated with beta diversity variability of rhizospheric bacterial communities despite the variable field conditions. We described the dominant bacterial groups associated to roots from both crops at a large geographic scale and we found that a high proportion of them (60–70%) showed more than 97% similarity to bacteria from the isolated collection. Moreover, we observed that 55% of the screened isolates presented PGP activities in vitro. These results are a significant step forward in understanding crop-associated microbiomes and suggest that new directions can be taken to promote crop growth and health by modulating root microbiomes. PMID:27312589

  5. Integrated analysis of root microbiomes of soybean and wheat from agricultural fields.

    PubMed

    Rascovan, Nicolás; Carbonetto, Belén; Perrig, Diego; Díaz, Marisa; Canciani, Wilter; Abalo, Matías; Alloati, Julieta; González-Anta, Gustavo; Vazquez, Martín P

    2016-06-17

    Root associated bacteria are critical for plant growth and health. Understanding the composition and role of root microbiota is crucial toward agricultural practices that are less dependent on chemical fertilization, which has known negative effects on the environment and human health. Here we analyzed the root-associated microbiomes of soybean and wheat under agricultural field conditions. We took samples from 11 different production fields across a large geographic area. We used 16S rRNA pyrosequencing to explore root microbial communities and also obtained 2,007 bacterial isolates from rhizospheres, which were tested for the presence of plant growth promoting (PGP) traits in-vitro. We observed that pH and nitrate content correlated with beta diversity variability of rhizospheric bacterial communities despite the variable field conditions. We described the dominant bacterial groups associated to roots from both crops at a large geographic scale and we found that a high proportion of them (60-70%) showed more than 97% similarity to bacteria from the isolated collection. Moreover, we observed that 55% of the screened isolates presented PGP activities in vitro. These results are a significant step forward in understanding crop-associated microbiomes and suggest that new directions can be taken to promote crop growth and health by modulating root microbiomes.

  6. The Role Of Management Of The Field-Forest Boundary In Poland's Process Of Agricultural Restructuring

    NASA Astrophysics Data System (ADS)

    Woch, Franciszek; Borek, Robert

    2015-01-01

    The aim of the work described here has been to point to the relationships between the field-forest boundary and crop productivity as regards the present agrarian land-use structure in Poland, and to provide new opportunities for arranging the agrarian process and the spatial planning of the rural landscape in the context of the sustainable shaping of the field-forest boundary. Impacts of forests and woodlands on crop productivity have been assessed using available data from relevant Polish literature. An assessment of the plot-distribution pattern characterising farms in Poland was made on the basis of reference data from the Agency for the Restructuring and Modernisation of Agriculture. Finally, the possibility of afforestation of agricultural land has been evaluated within the existing legal framework, and on the basis of available data, with attention paid to the need to include organization of the field-forest boundary within the comprehensive management and planning of rural areas, and to preserve woody elements in patchy landscapes. This all creates an opportunity to test innovative approaches to integrated land use which combines the creation of public goods and local products based on participatory learning processes that bring in local stakeholders and decision-makers.

  7. Spectral properties of agricultural crops and soils measured from space, aerial, field and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1980-01-01

    It is pointed out that in order to develop the full potential of multispectral measurements acquired from satellite or aircraft sensors to monitor, map, and inventory agricultural resources, increased knowledge and understanding of the spectral properties of crops and soils are needed. The present state of knowledge is reviewed, emphasizing current investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems. The relationships of important biological and physical characteristics to their spectral properties of crops and soils are discussed. Future research needs are also indicated.

  8. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; hydrology of a small carbonate site near Ephrata, Pennsylvania, prior to implementation of nutrient management

    USGS Publications Warehouse

    Koerkle, E.H.; Hall, D.W.; Risser, D.W.; Lietman, P.L.; Chichester, D.C.

    1997-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture and Pennsylvania Department of Environmental Protection, investigated the effects of agricultural best-management practices on water quality in the Conestoga River headwaters watershed. This report describes environmental factors and the surface-water and ground-water quality of one 47.5-acre field site, Field-Site 2, from October 1984 through September 1986, prior to implementation of nutrient management. The site is partially terraced agricultural cropland underlain by carbonate rock. Twenty-seven acres are terraced, pipe-drained, and are under no-till cultivation. The remaining acreage is under minimum-till cultivation. Corn is the primary crop. The average annual rate of fertilization at the site was 480 pounds per acre of nitrogen and 110 pounds per acre of phosphorus. An unconfined limestone and dolomitic aquifer underlies the site, Depth to bedrock ranges from 5 to 30 feet below land surface. Estimated specific yields range from 0.05 to 0.10, specific capacities of wells range from less than 1 to about 20 gallons per minute per foot of drawdown, and estimates of transmissivities range from 10 to 10,000 square feet per day. Average ground-water recharge was estimated to be about 23 inches per year. The specific capacity and transmissivity data indicate that two aquifer regimes are present at the site. Wells drilled into dolomites in the eastern part of the site have larger specific capacities (averaging 20 gallons per minute per foot of drawdown) relative to specific capacities (averaging less than 1 gallon per minute per foot of drawdown) of wells drilled into limestones in the western part of the site. Median concentrations of soil-soluble nitrate and soluble phosphorus in the top 4 feet of silt- or silty-clay-loam soil ranged from 177 to 329 and 8.5 to 35 pounds per acre, respectively. Measured runoff from the pipe-drained terraces ranged from 10 to 48,000 cubic feet and was

  9. Soil dioxins levels at agriculture sites and natural preserve areas of Taiwan.

    PubMed

    Jou, Jin-juh; Lin, Kae-Long; Chung, Jen-Chir; Liaw, Shu-Liang

    2007-08-17

    In this study, agriculture soil in Taiwan has been sampled and analyzed to determine the background level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DF) in the agricultural and nature preserve areas. Another objective is to investigate relationship between soil characteristics and air deposition in Taiwan. The results indicate that in nature preserve areas the topsoil shows an extraordinary profile of PCDD/DF compared to that in the air deposition. The PCDD/DF levels of the low-contaminated agricultural soils are compatible with those of the nature preserves soils. However, in the highly-contaminated agricultural soils, there is an abrupt jump in their concentrations, 10-100 times higher. The overall I-TEQ values of the background topsoils range from 0.101 to 15.2 ng I-TEQ/kg. Near industrial/urban areas in Taiwan the PCDD/DF are slightly higher compared to those in the low concentration group. Typically, the PCDD/DF background values found in this survey fall in the 90% confidence interval and can thus, be deemed the background levels in Taiwan. Ninety-five percent of these data are below the European and American soil standard of 10 ng I-TEQ/kg d.w. The PCDD/DF profile with one neighborhood soil sample was shown no significant difference.

  10. Geotechnical field measurements: G-tunnel, Nevada test site

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. M.; Vollendorf, W. C.

    1982-05-01

    The FY81 geotechnical measurements focused on borehole measurements in the Grouse Canyon welded tuff in G-tunnel on the Nevada Test Site. These ambient temperature measures were taken to: (1) establish baseline reference field data, and (2) gain field testing experience in welded tuff. The in situ state of stress was obtained using the three-hole overcoring method with the US Bureau of Mines three-component borehole deformation gage. The orthogonal horizontal stresses were 5.5 and 0.3 MPa and the nominal vertical was 8.5. Biaxial tests were performed on recovered cores and the average modulus of deformation was 31 GPa. The modulus of deformation using the borehole jack (Goodman) had an average value of 12 GPa. This value is not corrected for effective bearing contact area. Two orthogonal boreholes were used to determine the range of hydraulic conductivities. The range was from 0.022 cm/s (22 Darcy's) to 1.923 cm/s (1988 Dracy's).

  11. Geotechnical field measurements: G-tunnel, Nevada Test Site

    SciTech Connect

    Zimmerman, R.M.; Vollendorf, W.C.

    1982-05-01

    The FY81 geotechnical measurements focused on borehole measurements in the Grouse Canyon welded tuff in G-tunnel on the Nevada Test Site. These ambient temperature measurements were taken to: (1) establish baseline reference field data, and (2) gain field testing experience in welded tuff. The in situ state of stress was obtained using the three-hole overcoring method with the US Bureau of Mines three-component borehole deformation gage. The orthogonal horizontal stresses were 5.5 and 0.3 MPa and the nominal vertical was 8.5. Biaxial tests were performed on recovered cores and the average modulus of deformation was 31 GPa. The modulus of deformation using the borehole jack (Goodman) had an average value of 12 GPa. This value is not corrected for effective bearing contact area. Two orthogonal boreholes were used to determine the range of hydraulic conductivities. The range was from 0.022 cm/s (22 Darcy`s) to 1.923 cm/s (1988 Darcy`s).

  12. Plot and Catchment Scale Hydrological Impacts of Agricultural Field Boundary Features

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2015-04-01

    Natural flood management aims to reduce downstream flow levels by delaying the movement of water through a catchment and increasing the amount of soil infiltration. Field boundary features such as hedgerows and dry stone walls are common features in the rural landscape. It is hypothesised that there presence could reduce runoff connectivity and change the soil moisture levels by altering the soil structure and porosity. The use of larger agricultural machinery has resulted in the removal of field boundaries and the subsequent increase in field sizes over the 20th Century. This change in the rural landscape is likely to have changed the partitioning of rainfall into runoff and the hydrological pathways throughout the catchment. However, the link between field boundaries and catchment scale flood risk has not yet been proven. We aim to address this need for evidence to support natural flood management by focussing on these widespread features in the rural landscape. Firstly, we quantify the change in the density of field boundaries over the past 120 years for the Skell catchment, Northern England using historical OS maps. The analysis has shown that field size has approximately doubled in the Skell catchment since 1892, due to the removal of field boundaries. Secondly, we assess the effect of field boundaries on local soil characteristics and hydrological processes through plot scale continuous monitoring of the hydrological processes along a 20m transect through the linear boundary features. For the summer period results show that soil moisture levels are lower immediately next to the hedgerow compared to distances greater than 1m from the hedgerow. Finally, we use this data to parameterise and validate a catchment scale hydrological model. The model is then applied to test the impact of a network of field boundaries on river flow extremes at the catchment scale.

  13. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  14. Superfund record of decision (EPA Region 4): T H Agriculture and Nutrition Site, Dougherty County, Albany, GA, April 26, 1996

    SciTech Connect

    1996-06-01

    This decision document (Record of Decision), presents the selected Remedial Action for the Operable Unit Two for the T H Agriculture & Nutrition (THAN) Site, Albany, Georgia. The second operable unit addresses the source of the contamination on the eastern parcel of the Site. The major components of the selected remedy for operable unit two include: the excavation of all soil contaminated with organics necessary to meet performance standards; the staging and preconditioning of soil for low temperature thermal desorption treatment; the treatment of excavated soil by low temperature thermal desorption; the placement of treated, decontaminated soil back to the site; periodic sampling of treated soil during the treatment process to verify the effectiveness of the remedy; air monitoring to ensure safety of nearby residents and workers; groundwater monitoring to ensure that metals contaminated remaining in the subsurface soil will not result in contaminated groundwater migrating offsite in concentrations which exceed groundwater protection standards; and deed restrictions to prevent residential use of the property.

  15. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species

    PubMed Central

    Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  16. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  17. Gully evolution in field crops on vertic soils under conventional agriculture

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Pérez, Rafael; Mora, Jose; Gómez, Jose A.

    2015-04-01

    Gully erosion is a major process contributing to soil degradation on cultivated areas. Its effects are especially intense in farms under conventional agriculture characterised by the use of heavy machinery for land levelling and herbicides leading to the depletion of natural vegetation in valley locations. When the soil (e.g. vertic soils) and parent material conditions (e.g. soft erodible marls) are favourable to incision, gully features may present large dimensions, producing the loss of significant proportions of productive land. This study evaluates the evolution of several gully networks located in Córdoba (Spain) within the Campiña area (a rolling landscape on Miocene marls) with conventional agriculture and gully filling operations as the predominant farm practices. The area of the catchments ranged from 10 to 100 ha, they were covered by field crops (mostly bean, sunflower and wheat) on vertic soils. Firstly, we carried out a historical analysis of the gully development during the last six decades by aerial image interpretation. Secondly, a number of field surveys were conducted to characterise the evolution of the gully morphology in a period of five years (2010-2014). For this purpose, a range of measurement techniques were used: pole and tape, differential GPS and 3D photo-reconstruction. Finally, the influence of topography (slope and drainage area) on gully dimensions along the longitudinal profile was assessed.

  18. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  19. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    NASA Astrophysics Data System (ADS)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  20. Meteorological and associated data collected over agricultural fields in Pinal County, Arizona, 1989 and 1990

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Brown, Paul W.

    1995-01-01

    Data were collected at temporary meteorological stations installed in agricultural fields in Pinal County, Arizona, to evaluate the spatial and temporal variability of point data and to examine how station location affects ground-based meteorological data and the resulting values of evapotranspiration calculated using remotely sensed multispectral data from satellites. Time-specific data were collected to correspond with satellite overpasses from April to October 1989, and June 27-28, 1990. Meteorological data consisting of air temperature, relative humidity, wind speed, solar radiation, and net radiation were collected at each station during all periods of the project. Supplementary measurements of soil temperature, soil heat flux density, and surface or canopy temperature were obtained at some locations during certain periods of the project. Additional data include information on data-collection periods, station positions, instrumentation, sensor heights, and field dimensions. Other data, which correspond to the extensive field measurements made in con- junction with satellite overpasses in 1989 and 1990, include crop type, canopy cover, canopy height, irrigation, cultivation, and orientation of rows. Field boundaries and crop types were mapped in a 2- to 3-square-kilometer area surrounding each meteorological station. Field data are presented in tabular and graphic form. Meteorological and supplementary data are available, upon request, in digital form.

  1. Scaling preferential flow processes in agricultural soils affected by tillage and trafficking at the field scale

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves

    2016-04-01

    There is an accumulation of experimental evidences that agricultural soils, at least the top horizons affected by tillage practices, are not homogeneous and present a structure that is strongly dependent on farming practices like tillage and trafficking. Soil tillage and trafficking can create compacted zones in the soil with hydraulic properties and porosity which are different from those of the non-compacted zones. This spatial variability can strongly influence transport processes and initiate preferential flow. Two or three dimensional models can be used to account for spatial variability created by agricultural practices, but such models need a detailed assessment of spatial heterogeneity which can be rather impractical to provide. This logically raises the question whether and how one dimensional model may be designed and used to account for the within-field spatial variability in soil structure created by agricultural practices. Preferential flow (dual-permeability) modelling performed with HYDRUS-1D will be confronted to classical modelling based on the Richards and convection-dispersion equations using HYDRUS-2D taking into account the various soil heterogeneities created by agricultural practices. Our goal is to derive one set of equivalent 1D soil hydraulic parameters from 2D simulations which accounts for soil heterogeneities created by agricultural operations. A field experiment was carried out in two phases: infiltration and redistribution on a plot by uniform sprinkle irrigation with water or bromide solution. Prior to the field experiment the soil structure of the tilled layer was determined along the face of a large trench perpendicular to the tillage direction (0.7 m depth and 3.1 m wide). Thirty TDR probes and tensiometers were installed in different soil structural zones (Δ compacted soil and Γ macroporous soil) which ensured soil water monitoring throughout the experiment. A map of bromide was constructed from small core samples (4 cm diam

  2. Site Study Plan for soils, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    The Soils Site Study Plan describes a field program consisting of a soil characterization survey, impact monitoring of soils, predisturbance soil salinity survey, and a reclamation suitability study. This information will be used to plan for soil stripping, stockpiling, and replacement; reclamation of soils; determining predisturbance chemical and physical characteristics of the soils; including salinity levels; and monitoring for changes in chemical and physical characteristics of the soil. The SSP describes for each study the need for the study, the study design, data management and use, schedule of proposed activities, and the quality assurance program. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. 75 refs., 10 figs., 5 tabs.

  3. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  4. Field and laboratory tests for assessing the feasibility on the use of municipal treated wastewater for agricultural irrigation

    NASA Astrophysics Data System (ADS)

    Gallardo, Helena; Lovera, Raúl; Himi, Mahjoub; Sendrós, Alexandre; Marguí, Eva; Tapias, Josefina C.; Queralt, Ignasi; Casas, Albert

    2014-05-01

    he scarcity of water resources in many regions of the planet in the XXIst century is a challenge which concerns the current societies. Water use has been growing during the last decades. Therefore, different strategies of water management in many water-deficient regions are being carried out, especially in densely populated areas, in coastal zones or in regions under arid or semi-arid climate. During the last years, there has been a growing interest in the use of the subsurface for water storage though shallow percolating ponds. Moreover, on a best-practices basis, the use of reclaimed wastewater for different purposes is becoming more usual. The irrigation with municipal treated wastewater (MTWW) is an interesting strategy especially in the agricultural sector, which represents the main water user in contrast with other socioeconomic activities. The study area is located near Castellbisbal, on the lower stretches of the Llobregat River close to the Metropolitan area of Barcelona (Catalonia, Spain). The site consists on a percolating pond and agricultural fields around. In order to assess the feasibility of using reclaimed wastewater for different uses in this site, several experiments both on field and at the laboratory were carried out. First of all, a detailed non-destructive geophysical survey was conducted using electrical resistivity tomography (ERT) technique. Geophysical data were constrained by geological and hydrogeological properties from boreholes and water wells. On the other hand, laboratory experiments were carried out through batch and column assays, focused on the detailed water-mineral particles interrelationships that can occur at the vadose zone. Soil samples from the crop fields around and water samples from the nearest well, as from the municipal wastewater treatment plant were used. Chemical and mineralogical composition of the soils were determined by using non-destructive spectroscopic techniques as x-ray fluorescence (XRF) and x-ray powder

  5. Investigation of greenhouse gas emissions from a landfill site and agriculture in the UK by deployment of an in-situ FTIR

    NASA Astrophysics Data System (ADS)

    Sonderfeld, Hannah; Humpage, Neil; Jeanjean, Antoine; Leigh, Roland; Allen, Grant; Boesch, Hartmut

    2016-04-01

    The main greenhouse gases (GHG) emitted by human activities in the UK are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Understanding and quantifying their emissions is essential to monitor and guide emission reduction measures. The GAUGE (Greenhouse gAs Uk and Global Emissions) project funded by NERC aims to improve the knowledge of the UK GHG budget by an extensive measurement program. In this presentation, we focus on two important sources of these GHG: Waste and agricultural sector. We are presenting data from the deployment of an in-situ FTIR (Ecotech) for continuous and simultaneous sampling of CO2, CH4, N2O and CO with a high time resolution in the order of minutes. During a two week field campaign at a landfill site near Ipswich in August 2014, measurements were taken within a radius of 320 m of the uncovered and active area of the landfill, which was still filled with new incoming waste. The data are analysed in detail for emission ratios of CH4 to CO2. Thereby a consistent ratio in favour of CO2 is found for these emissions. We have applied a computation fluid dynamics (CFD) model, constrained with local wind measurements and a detailed topographic map of the landfill site, to the in-situ concentration data to calculate emission fluxes of the active site. Since October 2014 the FTIR has been sampling from a church tower in Glatton as part of a near surface sampling network in East Anglia focusing on regional GHG emissions from agriculture. The site is mainly influenced by south westerly winds. A clear diurnal cycle is observed in summer for CO2, CH4 and N2O, which is less pronounced in the winter months. A simulation of the methane and nitrous oxide concentrations through application of the NAME model to the EDGAR and NAEI emission inventories illustrates some shortcomings in the available emission inventories for the probed region.

  6. Technical procedures for implementation of aesthetics site studies, Deaf Smith County site, Texas: Environmental Field Program

    SciTech Connect

    Not Available

    1987-06-01

    This chapter introduces the purpose and scope of the visually affected areas determination, as well as definitions, interfaces, and concurrent data needs. This procedure provides a method for determining the extent of visibility of the project. This area is identified as the visually affected area, and becomes the area within which all visual analysis is conducted. The visually affected area analysis of the Deaf Smith County site will involve identifying and mapping the visibility of all major proposed project features. Baseline analysis will be conducted within the overall visually affected area; impact assessment will be conducted within the visually affected area of each major project feature. This procedure presents the guidelines for determining the visually affected area will be in computer data base construction; viewshed modeling, and site visit and verification of results. Computer data base construction will involve digitizing topographic and project facility data from available data source. The extent of the visible area from each major project feature will then be plotted. Finally, these computer-generated visibility plots will be verified in the field.

  7. 7 CFR Appendix A to Part 3434 - List of Agriculture-Related Fields

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Food Technology and Processing 01.1099, Food Science and Technology, Other 01.1101, Plant Sciences... FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS Pt... and Wholesaling 01.0106, Agricultural Business Technology 01.0199, Agricultural Business...

  8. 7 CFR Appendix A to Part 3434 - List of Agriculture-Related Fields

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Food Technology and Processing 01.1099, Food Science and Technology, Other 01.1101, Plant Sciences... FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS... and Wholesaling 01.0106, Agricultural Business Technology 01.0199, Agricultural Business...

  9. Long-term comparison of energy flux calculation methods over an agricultural field

    NASA Astrophysics Data System (ADS)

    Kolle, O.

    1996-05-01

    Since March 1990 micrometeorological measurements were carried out over an agricultural field with varying land use (wheat, barley, sunflowers, mustard) using a profile mast and an energy balance mast with an eddy correlation system for the sensible heat flux. Soil temperature, soil heat flux, soil moisture and precipitation were measured as well. Long-term measurements allow statistical analysis of the energy fluxes and comparisons of different methods for their calculation (eddy correlation, flux profile, Bowen ratio and the residual method). For the sensible heat flux a good agreement was found using these different methods after applying all necessary corrections. The latent heat flux shows greater deviations in the daily cycle between the flux profile method and the residual method due to the shape of the humidity profiles which often and especially at night show a maximum at heights between 1 m and 4 m, even if the soil is free of vegetation. This could be a consequence of the patchiness of the agricultural area, the position of the station on top of a hillock or high water absorption of the soil, respectively. The residual method seems to give more reliable results for the actual evapotranspiration than the flux profile method or the Bowen ratio method if an eddy correlation system is used to determine the sensible heat flux. Differences in the soil heat flux measured with heat flux plates and determined using the profiles of soil temperature and soil moisture can be explained by the heat flux plates being a disturbance to the soil matrix.

  10. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production.

  11. Assessing Pesticide Contamination to Fresh Water in Some Agricultural Sites, Close to Oaxaca City, Mexico

    NASA Astrophysics Data System (ADS)

    Tomas, G.

    2002-12-01

    This study presents the results of a survey on pesticides in fresh water in shallow aquifers, rivers and dams in Zaachila, Tlacolula and Etla and agricultural valleys close to Oaxaca City, SW of Mexico. In the study zones, there are generalized uses of pesticides and the impact on the water resources by inadequate use of agricultural activities. Water is used for irrigation and drinking. Surveying criteria was to sample the aquifer (production wells), its water table (dig wells) and a regional water collector (Plan Benito Juarez Yuayapan dam). A total of 14 samples were analyzed for the identification and quantification of organochlorine and organophosphorous pesticides. Method was 508-EPA. Gas chromatographer was a 5890 series II Hewlett Packard, calibrated with several patterns. Results: 10 samples are contaminated with some pesticide of the used patterns; Dieldrin, Chlordano, Malathion, Mirex were not found; Traces of organophosphorus compounds were found in 8 samples, mainly Merphos, Parathion Ethylic and Disulfoton ; There was detected traces of world-forbidden insecticides as Metoxychlor, Parathion Ethylic and Disulfoton; and In one sample (Cuilapam well #1) DDT exceeds, the Mexican maximum limit for potable water (1 mg/l),

  12. Long-term field-scale experiment on using lime filters in an agricultural catchment.

    PubMed

    Kirkkala, Teija; Ventelä, Anne-Mari; Tarvainen, Marjo

    2012-01-01

    The River Yläneenjoki catchment in southwest Finland is an area with a high agricultural nutrient load. We report here on the nutrient removal performance of three on-site lime-sand filters (F1, F2, and F3), established within or on the edge of the buffer zones. The filters contain burnt lime (CaO) or spent lime [CaO, Ca(OH), and CaCO]. Easily soluble lime results in a high pH level (>11) and leads to an efficient precipitation of soluble phosphorus (P) from the runoff. Water samples were taken from the inflow and outflow of each site in different hydrological situations. The length of the monitoring period was 4 yr for F1, 6 yr for F2, and 1.5 yr for F3. F1 and F2 significantly reduced the suspended solids (SS), total P (PTOT), and dissolved reactive P (DRP) in the treated water. The proportional reduction (%) varied but was usually clearly positive. Filter F3 was divided into two equal parts, one containing burnt lime and the other spent lime. Both filter parts removed PTOT and SS efficiently from the water; the burnt-lime part also removed DRP. The mixed-lime part removed DRP for a year, but then the efficiency decreased. The effect of filters on nitrogen compounds varied. We conclude that sand filters incorporating lime can be used together with buffer zones to reduce both P and SS load to watercourses.

  13. Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability

    SciTech Connect

    Boehme, F.; Welsch-Pausch, K.; McLachlan, M.S.

    1999-06-01

    The accumulation of semivolatile organic compounds (SOCs) in plants is important because plants are the major vector of these compounds into terrestrial food chains and because plants play an important role in scavenging SOCs from the atmosphere and transferring them to the soil. Agricultural plants are of particular interest because they are a key link in the atmosphere-fodder-milk/beef food chain that accounts for much of background human exposure to persistent lipophilic organic pollutants such as PCBs and PCDD/Fs. In this study the accumulation of PCBs, PCDD/Fs, PAHs, and some chlorobenzenes was determined in eight grassland species as well as maize and sunflower leaves collected simultaneously at a semirural site in Central Europe. Air samples were collected at the same site during the growth of these plants, and the particle-bound and gaseous concentrations were determined. A newly developed interpretive framework was employed to analyze the data, and it was established whether the accumulation of a given compound was due primarily to equilibrium partitioning, kinetically limited gaseous deposition, or particle-bound deposition. The interspecies variability in uptake was then examined, and it was found that for those compounds which had accumulated primarily via kinetically limited gaseous deposition and particle-bound deposition the variation among the 10 species was generally a factor of <4.

  14. On dealing with the pollution costs in agriculture: A case study of paddy fields.

    PubMed

    Yaqubi, Morteza; Shahraki, Javad; Sabouhi Sabouni, Mahmood

    2016-06-15

    The main purpose of this study is to evaluate marginal abatement cost of the main agricultural pollutants. In this sense, we construct three indices including Net Global Warming Potential (NGWP) and Nitrogen Surplus (NS), simulated by a biogeochemistry model, and also an Environmental Impact Quotient (EQI) for paddy fields. Then, using a Data Envelopment Analysis (DEA) model, we evaluate environmental inefficiencies and shadow values of these indices. The results show that there is still room for improvement at no extra cost just through a better input management. Besides, enormous potential for pollution reduction in the region is feasible. Moreover, in paddy cultivation, marginal abatement cost of pesticides and herbicides are much bigger than nitrogen surplus and greenhouse gasses. In addition, in the status quo, the mitigation costs are irrelevant to production decisions. Finally, to deal with the private pollution costs, market-based instruments are proved to be better than command-and-control regulation.

  15. Export of radioactive cesium from agricultural fields under simulated rainfall in Fukushima.

    PubMed

    Thai, Phong K; Suka, Yuma; Sakai, Masaru; Nanko, Kazuki; Yen, Jui-Hung; Watanabe, Hirozumi

    2015-06-01

    In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h(-1)) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of (134)Cs and (137)Cs) in the runoff sediments was ∼3500 Bq kg(-1) dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the (137)Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.

  16. Green house gas emissions from open field burning of agricultural residues in India.

    PubMed

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  17. Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields

    USGS Publications Warehouse

    Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  18. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    PubMed Central

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  19. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    NASA Astrophysics Data System (ADS)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2016-09-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  20. Field Evaluation of Preferential Flow in Agricultural Soil of the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Perkins, K. S.; Nimmo, J. R.; Rose, C. E.; Coupe, R.

    2009-12-01

    In the Bogue Phalia basin in the Delta region of northwestern Mississippi, as in many farmed areas, intensive use of agricultural chemicals raises water quality concerns. The soils are fine textured and often exhibit surface ponding and runoff after irrigation and rainfall. There is extensive surface cracking during extended dry periods. Fields are typically land-formed to promote surface flow into irrigation ditches and streams that feed into larger river ecosystems. Deep percolation below the root zone has been considered to be minimal in this area; however, unsaturated zone processes, including the effects of a declining water table, are not well understood, and there are few measured unsaturated zone data relevant to deep percolation. In this study we assessed solute transport mechanisms within and below the root zone of a fallow soybean field by performing a 2-m ring infiltration experiment. Ponding continued for 67 hours using bromide and rhodamine tracers and subsurface instruments for measuring soil-water content, matric pressure, and solution sampling. Water percolated rapidly below the pond reaching 1 m depth in as little as 30 minutes, indicating preferential flow through the root zone, possibly related to shrink/swell features. Extensive lateral flow of water at shallow depths was apparent as the surface wetted outward to several meters from the pond in all directions with some evidence of preferentiality along slope toward the drainage ditch. Deeper lateral flow was detected at solution samplers 3 m from the pond edge at 5 m depth within a few weeks. Tracer was not detected in the unsaturated zone below 5 m however; the tracer was detected at the water table 12 m below land surface within 10 weeks of the experiment with concentrations increasing over a period of 10 months. A tracer mass balance also suggests the possibility for deep preferential transport of agricultural chemicals within the Bogue Phalia basin.

  1. Curiosity's field site in Gale Crater, Mars, in context

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Malin, M. C.

    2011-12-01

    addition, Gale occurs southwest of a region of volcanic flows and small edifices that have the youngest crater retention ages (< 100 Ma; doi:10.1016/j.icarus.2009.06.032) for high strength igneous rock on Mars. Nearby terrain includes yardang-forming materials in which were buried ancient streams, some of them now inverted. Gale is down-slope from Herschel and the Terra Cimmeria highlands; some of its secondary craters superpose neighboring craters Lasswitz and Wien. The field site on the floor of Gale is at an elevation (-4.5 km) lower than almost anywhere outside Hellas and the northern plains. Because water runs downhill, the low elevation and sedimentary record make Gale attractive to those seeking evidence of habitable ancient Mars environments. With a record of fluvial erosion in the lower part of the mound, and a lack of fluvial features higher on the mound, the strata in Gale might also record the transition of Mars itself from early, wet conditions to the hyper-arid setting of today.

  2. Near-field modeling in Frenchman Flat, Nevada Test Site

    SciTech Connect

    Pohlmann, K.; Shirley, C.; Andricevic, R.

    1996-12-01

    The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program.

  3. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-08-11

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  4. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-11-10

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  5. Instantaneous and daily values of the surface energy balance over agricultural fields using remote sensing and a reference field in an arid environment

    USGS Publications Warehouse

    Kustas, W.P.; Moran, M.S.; Jackson, R. D.; Gay, L.W.; Duell, L.F.W.; Kunkel, K.E.; Matthias, A.D.

    1990-01-01

    Remotely sensed surface temperature and reflectance in the visible and near infrared wavebands along with ancilliary meteorological data provide the capability of computing three of the four surface energy balance components (i.e., net radiation, soil heat flux, and sensible heat flux) at different spatial and temporal scales. As a result, under nonadvective conditions, this enables the estimation of the remaining term (i.e., the latent heat flux). One of the practical applications with this approach is to produce evapotranspiration (ET) maps for agricultural regions which consist of an array of fields containing different crops at varying stages of growth and soil moisture conditions. Such a situation exists in the semiarid southwest at the University of Arizona Maricopa Agricultural Center, south of Phoenix. For one day (14 June 1987), surface temperature and reflectance measurements from an aircraft 150 m above ground level (agl) were acquired over fields from zero to nearly full cover at four times between 1000 MST and 1130 MST. The diurnal pattern of the surface energy balance was measured over four fields, which included alfalfa at 60% cover, furrowed cotton at 20% and 30% cover, and partially plowed what stubble. Instantaneous and daily values of ET were estimated for a representative area around each flux site with an energy balance model that relies on a reference ET. This reference value was determined with remotely sensed data and several meteorological inputs. The reference ET was adjusted to account for the different surface conditions in the other fields using only remotely sensed variables. A comparison with the flux measurements suggests the model has difficulties with partial canopy conditions, especially related to the estimation of the sensible heat flux. The resulting errors for instantaneous ET were on the order of 100 W m-2 and for daily values of order 2 mm day-1. These findings suggest future research should involve development of methods to

  6. Far-Field Rock Size-Frequency Distribution at the Mars Pathfinder Landing Site and Comparison to the Near Field

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Forsberg, N. K.; Golombek, M. P.; Bridges, N. T.

    2000-01-01

    Detailed measurements of rocks in the far field at the Mars Pathfinder landing site are consistent with the near field exponential drop off in the cumulative number or area covered by large diameter rocks (and with similar behavior at the Viking sites).

  7. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  8. The full GHG balance over two crop rotations at an agricultural site near Gebesee, Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Kutsch, Werner Leo; Brümmer, Christian; Don, Catharina; Dechow, Rene; Fuß, Roland; Freibauer, Annette; Schulze, Ernst-Detlef; Kolle, Olaf; Ziegler, Waldemar

    2013-04-01

    Gebesee in Thuringia is the eldest cropland eddy covariance (EC) site in Europe. The site has been part of CarboEurope, NitroEurope and IMECC and has been selected to be one of the German Level 1 sites within the European research infrastructure ICOS. Continuous measurements of NEE by EC, NPP by regular harvesting, lateral in- and outputs of carbon and nitrogen as well as climatic parameters have been conducted since 2001. Automated chamber measurements of N2O and CH4 were conducted since 2007. Fluxes of these greenhouse gases (GHG) for the years 2001 - 2006 were calculated based on a Fuzzy Logic model calibrated by means of the chamber measurements. In this study we present NEE, NBP and full GHG balances of over two rotation periods (2001 - 2004 and 2005 - 2009, respectively) comprising four times winter wheat, two times potatoes and one cropping period of oil seed rape, sugar beet and barley each. The GHG balance is dominated by moderate losses of soil organic matter (~120 +/- 50 g C m-2 y-1) and by N2O emissions of about 0.17 g N2O-N m-2 y-1 (50 g C-eq m-2 y-1). The on-site emissions of GHG balance about 43 % of the harvested carbon.

  9. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  10. Dynamics of soil carbon, nitrogen and soil respiration in farmer’s field with conservation agriculture Siem Reap, Cambodia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The years of intensive tillage in many countries, including Cambodia, have caused significant decline in agriculture’s natural resources that could threaten the future of agricultural production and sustainability worldwide. Long-term tillage system and site-specific crop management can affect chang...

  11. Sensitivity of water balance and water use efficiency to climate and crop type at an agricultural site

    NASA Astrophysics Data System (ADS)

    Brümmer, C.; Kutsch, W. L.

    2012-04-01

    The effects of climatic factors and crop type on evapotranspiration (E) and water use efficiency (WUE) were analyzed using tower-based eddy-covariance data for an agricultural site in Thuringia, Germany. During ten years of observation, winter wheat (five times) and winter barley (once) were alternately planted with potato (twice), rapeseed (once) and sugar beet (once). The seasonal pattern of E was closely linked to growing-season length and rainfall distribution. Although annual precipitation (P) was highly variable (380-700 mm), minimum annual E was not less than 250 mm and was limited to 380 mm. However, a positive correlation between annual P and annual E with E plateauing at high P as was usually found at forest, grassland and peatland sites could not be observed. Winter wheat tended to limit annual E and was found to be relatively insensitive with changing annual P and solar irradiance. A hysteretic relationship between monthly mean values of E and net radiation (Rn) indicated that E lagged behind the typical seasonal progression of Rn. Annual means of daytime dry-foliage Priestley-Taylor α much less than the theoretical maximum of 1.26 for extensive well-watered vegetation showed that E on an annual basis was either water limited and/or stomatal control of transpiration must have been prevalent. In all years, a strong linear correlation between monthly mean values of gross primary production and E resulted in WUE being relatively constant between 2.5 and 3.5 g C kg-1 H2O. Our study shows that crop selection has a major impact on the water balance of an agricultural site with the influence of climatic factors being significantly different than usually found for natural ecosystems.

  12. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  13. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  14. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  15. N-C isotopic investigation of a zeolite-amended agricultural field

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Natali, Claudio; Faccini, Barbara; Di Giuseppe, Dario; Bianchini, Gianluca; Coltorti, Massimo

    2016-04-01

    In this study, a C and N isotopic investigation in the soil-plant system of the ZeoLIFE project experimental field have been carried out. Since many years, natural and NH4-enriched zeolites have been used as soil amendant in agricultural context in order to reduce N losses, increase NUE (Nitrogen Use Efficiency) and crop yield. Nevertheless up to now there are no studies that, using the stable isotopes approach, highlighted the interaction between zeolites and plants in agricultural systems. The main aims of this study is to verify if natural zeolites amendment can enhance chemical fertilization efficiency and if N transfer from NH4-enriched zeolites to plants really occurs. Plants grown following traditional cultivation methods (with no zeolite addition) and plants grown on soils amended with natural and NH4-enriched zeolites (the latter obtained after mixing with pig-slurry with a very high 15N) were compared for two cultivation cycles (maize and wheat). As widely known, plants grown under conventional farming systems (use of chemical fertilizers as urea) and plants grown under organic farming can be discriminated by the isotopic signatures of plant tissues. For both years the main results of the study reveals that plants grown on plots amended with natural zeolites generally have their nitrogen isotopic signature more similar to that of the chemical fertilizers employed during the cultivation with respect to the plants cultivated in the non-amended plot. This suggests an enhanced N uptake by the plant from this specific N source with respect to the non-amended plot. On the other hand, plants grown on NH4-enriched zeolites registered a higher 15N, approaching the pig-slurry isotopic signature, confirming that this material can constitute an N pool for plants at least for two cultivation cycles. The distinct agricultural practices seem to be reflected in the plant physiology as recorded by the carbon discrimination factor (13C) which generally increases

  16. Field and wind tunnel comparison of four aerosol samplers using agricultural dusts.

    PubMed

    Reynolds, Stephen J; Nakatsu, Jason; Tillery, Marvin; Keefe, Thomas; Mehaffy, John; Thorne, Peter S; Donham, Kelley; Nonnenmann, Matthew; Golla, Vijay; O'shaughnessy, Patrick

    2009-08-01

    Occupational lung disease is a significant problem among agricultural workers exposed to organic dusts. Measurements of exposure in agricultural environments in the USA have traditionally been conducted using 37-mm closed-face cassettes (CFCs) and respirable Cyclones. Inhalable aerosol samplers offer significant improvement for dose estimation studies to reduce respiratory disease. The goals of this study were to determine correction factors between the inhalable samplers (IOM and Button) and the CFC and Cyclone for dusts sampled in livestock buildings and to determine whether these factors vary among livestock types. Determination of these correction factors will allow comparison between inhalable measurements and historical measurements. Ten sets of samples were collected in swine, chicken, turkey, and dairy facilities in both Colorado and Iowa. Pairs of each sampling device were attached to the front and back of a rotating mannequin. Laboratory studies using a still-air chamber and a wind tunnel provided information regarding the effect of wind speed on sampler performance. Overall, the IOM had the lowest coefficient of variation (best precision) and was least affected by changes in wind speed. The performance of the Button was negatively impacted in poultry environments where larger (feather) particulates clogged the holes in the initial screen. The CFC/IOM ratios are important for comparisons between newer and older studies. Wind speed and dust type were both important factors affecting ratios. Based on the field studies (Table 6), a ratio of 0.56 is suggested as a conversion factor for the CFC/IOM (average for all environments because of no statistical difference). Suggested conversion factors for the Button/IOM are swine (0.57), chicken (0.80), turkey (0.53), and dairy (0.67). Any attempt to apply a conversion factor between the Cyclone and inhalable samplers is not recommended.

  17. Field and Wind Tunnel Comparison of Four Aerosol Samplers Using Agricultural Dusts

    PubMed Central

    Reynolds, Stephen J.; Nakatsu, Jason; Tillery, Marvin; Keefe, Thomas; Mehaffy, John; Thorne, Peter S.; Donham, Kelley; Nonnenmann, Matthew; Golla, Vijay; O'shaughnessy, Patrick

    2009-01-01

    Occupational lung disease is a significant problem among agricultural workers exposed to organic dusts. Measurements of exposure in agricultural environments in the USA have traditionally been conducted using 37-mm closed-face cassettes (CFCs) and respirable Cyclones. Inhalable aerosol samplers offer significant improvement for dose estimation studies to reduce respiratory disease. The goals of this study were to determine correction factors between the inhalable samplers (IOM and Button) and the CFC and Cyclone for dusts sampled in livestock buildings and to determine whether these factors vary among livestock types. Determination of these correction factors will allow comparison between inhalable measurements and historical measurements. Ten sets of samples were collected in swine, chicken, turkey, and dairy facilities in both Colorado and Iowa. Pairs of each sampling device were attached to the front and back of a rotating mannequin. Laboratory studies using a still-air chamber and a wind tunnel provided information regarding the effect of wind speed on sampler performance. Overall, the IOM had the lowest coefficient of variation (best precision) and was least affected by changes in wind speed. The performance of the Button was negatively impacted in poultry environments where larger (feather) particulates clogged the holes in the initial screen. The CFC/IOM ratios are important for comparisons between newer and older studies. Wind speed and dust type were both important factors affecting ratios. Based on the field studies (Table 6), a ratio of 0.56 is suggested as a conversion factor for the CFC/IOM (average for all environments because of no statistical difference). Suggested conversion factors for the Button/IOM are swine (0.57), chicken (0.80), turkey (0.53), and dairy (0.67). Any attempt to apply a conversion factor between the Cyclone and inhalable samplers is not recommended. PMID:19443852

  18. SIGNAL : Water vapour flux variability and local wind field investigations within five differently managed agroforestry sites across Germany

    NASA Astrophysics Data System (ADS)

    Markwitz, Christian; Siebicke, Lukas; Knohl, Alexander

    2016-04-01

    Optimising soil water uptake and ground water consumption in mono-specific agricultural systems plays an important role for sustainable land management. By including tree alleys into the agricultural landscape, called agroforestry (AF), the wind flow is modified leading to a presumably favourable microclimate behind the tree alleys. We expect that this zone is characterized by increased air temperature and atmospheric water vapour content, compared to mono-specific fields. This would extend the growing season and increase the yield production behind the tree alleys. Within the SIGNAL (Sustainable Intensification of Agriculture through Agroforestry) project the evapotranspiration (ET) variability and the local wind field of agroforestry sites compared to mono-specific agricultural systems is investigated. Our study is based on the comparison of five differently managed agroforestry sites across Germany. All site feature one agroforestry plot and one reference plot, which represents a mono-specific cropped system. Each plot is equipped with an eddy-covariance tower, including a high frequency 3D SONIC anemometer and instruments gathering standard meteorological parameter as pressure, temperature, relative humidity, precipitation, ground heat flux, net- and global radiation. The Surface Energy Budget (SEB) method will be used to calculate evapotranspiration QE as QE = - QN - QH - QG - Res by measuring the sensible heat flux, QH, with the eddy covariance method, the radiation balance, QN and the ground heat flux, QG. QH and QN will be measured continuously long-term. We will quantify site specific energy balance non-closure, Res, by temporarily measuring QE, using eddy covariance and a roving tower and then solving the SEB equation for Res. The short term Res will be used to then continuously derive QE from the SEB method. We will compare measured evapotranspiration rates from the SEB method to modelled evapotranspiration of the agroforestry systems through upscaling

  19. Automatic Training Site Selection for Agricultural Crop Classification: a Case Study on Karacabey Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdarici Ok, A.; Akyurek, Z.

    2011-09-01

    This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m) and multispectral (4m) Kompsat-2 images (July 2008) of Karacabey Plain (~100km2), located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m) image and multispectral (4m) image are orthorectified. Next, the fused image (1m) is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i) spatial domain (hs), (ii) range domain (hr), and (iii) minimum region (MR). In this study, in total, 176 parameter combinations (hs, hr, and MR) are tested on a small part of the area (~10km2) to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000) is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m) to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  20. Kd Values for Agricultural and Surface Soils for Use in Hanford Site Farm, Residential, and River Shoreline Scenarios

    SciTech Connect

    Serne, R. Jeffrey

    2007-08-01

    This report provides best estimate Kd values and a minimum and maximum range of Kd values to be used for agricultural soils and Columbia River bank sediments that exist today or would exist in the future when portions of the Hanford Site are released for farming, residential, and recreational use after the U. S. Department of Energy (DOE) completes clean up of defense waste on the site. The Kd values should be used to determine the fate and transport rates of contaminants and their availability for plant and animal uptake in selected non-groundwater scenarios included in Hanford Site environmental impact statements, risk assessments and specific facility performance assessments. This report describes scenarios such as a small farm where drilling of a well inadvertently goes through buried waste and brings waste to the surface, allowing the tailings to become available for direct human exposure or incorporation into garden crops and farm animals used for food by the farm family. The Kd values recommended in this report can also be used to calculate sediment-water partitioning factors used to predict plant and animal uptake from interaction with the contaminated soil.

  1. Agricultural terraces montoring and modeling: a field survey in Chianti region, Firenze, Italy - First part

    NASA Astrophysics Data System (ADS)

    Preti, Federico; Caruso, Marco; Dani, Andrea; Errico, Alessandro; Guastini, Enrico; Trucchi, Paolo

    2015-04-01

    The two abstracts present the design and set-up of an experimental field plant whose aim is the study and modeling of water circulation in a terraced slope together with its influence on the stability of the retaining dry stone walls. The pilot plant is located at "Fattoria di Lamole" (Greve in Chianti, Firenze, Italy) where both ancient and recently restored or rebuilt dry stone retaining walls are present. The intense vineyards cultivation makes it very representative in terms of range of external stresses that affect both hillslopes and walls. The research is developed within a bigger framework of landscape preservation as a way to prevent hydrogeological instabilities and landslide risks. First Part A first/preliminary field survey was carried out in order to estimate the hydraulic and mechanical soil characteristics. Field saturated hydraulic conductivity measurements with the Simplified Falling Head (SFH) method on a terrace along an alignment were performed. Infiltrometer tests with a double ring device and soil texture determinations with both fine particle-size and skeleton fraction distributions were also performed. The Direct shear test on undisturbed and reconstituted soil samples will offer an estimation of the Mohr-Coulomb failure envelope parameters (friction angle and cohesion). A reference portion of a dry stone wall will be also monitored. Lateral earth pressure at backfill-retaining wall interface (compared to temperature and air pressure measured values), backfill volumetric water content (both in saturated and unsaturated states) and ground-water level are measured. Acknowledgements Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area

  2. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGES

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  3. Nonpotential magnetic fields at sites of gamma-ray flares

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Venkatakrishnan, P.; Smith, J. B., Jr.

    1990-01-01

    The relation between the degree of nonpotentiality of photospheric magnetic fields and the occurrence of gama-ray flares is examined to determine whether there are special signatures of the stressed fields for this type of flare. Observations of the flares in the active region of April 1984 (AR 4474) are analyzed, showing that the big flare initiated at the location on the magnetic neutral line where the field deviated the most from a potential field. The nonpotential signatures of AR 4474 are compared with those of four other regions. The results suggest that gamma-ray flares are associated with strongly nonpotential fields that extend over relatively larger lengths of the magnetic neutral line that the fields associated with flares that do not produce gamma-ray events.

  4. Toward linking maize chemistry to archaeological agricultural sites in the North American Southwest

    USGS Publications Warehouse

    Cordell, L.S.; Durand, S.R.; Antweiler, R.C.; Taylor, H.E.

    2001-01-01

    Maize (Zea mays L.) was the staple domestic food crop for Ancestral Pueblo people throughout the northern American Southwest. It is thought to have been the basic food of the inhabitants of Chaco Canyon. New Mexico, a location that was a major centre of Ancestral Pueblo building and population during the 11th and early 12th centuries AD. Modern heirloom varieties of Native American corn have been difficult to grow in experimental fields in Chaco Canyon. Given an abundance of apparent storage structures in Chacoan buildings, it is possible that some corn recovered from archaeological contexts, was imported from surrounding areas. The ultimate goal of this research is to determine whether the corn in Chaco Canyon was grown locally or imported. This paper establishes the feasibility of a method to accomplish this goal. This study reports the results of using inductively coupled plasma-mass spectrometric (ICP-MS) instrumentation to determine chemical constituents of experimental fields and modern heirloom varieties of Native American corn. Analysis of 19 elements is adequate to differentiate soil and corn from three field areas. These results are promising: however, a number of problems, including post-depositional alterations in maize, remain to be solved. ?? 2001 Academic Press.

  5. Maize production and land degradation: a Portuguese agriculture field case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  6. Noncrop flowering plants restore top-down herbivore control in agricultural fields

    PubMed Central

    Balmer, Oliver; Pfiffner, Lukas; Schied, Johannes; Willareth, Martin; Leimgruber, Andrea; Luka, Henryk; Traugott, Michael

    2013-01-01

    Abstract Herbivore populations are regulated by bottom-up control through food availability and quality and by top-down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top-down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as “companion plants” inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant–herbivore–parasitoid–predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids’ mobility. These findings demonstrate that habitat manipulation can restore top-down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both

  7. Noncrop flowering plants restore top-down herbivore control in agricultural fields.

    PubMed

    Balmer, Oliver; Pfiffner, Lukas; Schied, Johannes; Willareth, Martin; Leimgruber, Andrea; Luka, Henryk; Traugott, Michael

    2013-08-01

    Herbivore populations are regulated by bottom-up control through food availability and quality and by top-down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top-down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as "companion plants" inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant-herbivore-parasitoid-predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids' mobility. These findings demonstrate that habitat manipulation can restore top-down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both directly, by introducing

  8. Nitrous oxide emission from an agricultural field fertilized with liquid lagoonal swine effluent

    NASA Astrophysics Data System (ADS)

    Whalen, S. C.; Phillips, R. L.; Fischer, E. N.

    2000-06-01

    Contemporary agriculture is characterized by the intensive production of livestock in confined facilities and land application of stored waste as an organic fertilizer. Emission of nitrous oxide (N2O) from receiving soils is an important but poorly constrained term in the atmospheric N2O budget. In particular, there are few data for N2O emissions from spray fields associated with industrial scale swine production facilities that have rapidly expanded in the southeastern United States. In an intensive, 24-day investigation over three spray cycles, we followed the time course for changes in N2O emission and soil physicochemical variables in an agricultural field irrigated with liquid lagoonal swine effluent. The total N (535 mg L-1) of the liquid waste was almost entirely NH4+-N (>90%) and thus had a low mineralization potential. Soil profiles for nitrification and denitrification indicated that >90% of potential activity was localized in the surface 20 cm. Application of this liquid fertilizer to warm (19° to 28°C) soils in a form that is both readily volatilized and immediately utilizable by the endogenous N-cycling microbial community resulted in a sharp decline in soil NH4+-N and supported a rapid but short-lived (i.e., days) burst of nitrification, denitrification, and N2O emission. Nitrous oxide fluxes as high as 9200 μg N2O-N m-2 h-1 were observed shortly after fertilization, but emissions decreased to prefertilization levels within a few days. Poor correlations between N2O efflux and soil physicochemical variables (temperature, moisture, NO3--N, NH4+-N) and fertilizer loading rate point to the complexity of interacting factors affecting N2O production and emission. Total fertilizer N applied and N2O-N emitted were 29.7 g m-2 (297 kg N ha-1) and 395 mg m-2, respectively. The fractional loss of applied N to N2O (corrected for background emission) was 1.4%, in agreement with the mean of 1.25% reported for mineral fertilizers. The direct effects of fertilizer

  9. Precision agriculture and food security.

    PubMed

    Gebbers, Robin; Adamchuk, Viacheslav I

    2010-02-12

    Precision agriculture comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management to optimize production by accounting for variability and uncertainties within agricultural systems. Adapting production inputs site-specifically within a field and individually for each animal allows better use of resources to maintain the quality of the environment while improving the sustainability of the food supply. Precision agriculture provides a means to monitor the food production chain and manage both the quantity and quality of agricultural produce.

  10. PISCES field chemical emissions monitoring project: Site 112 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 112. Site 112 is a tangentially fired boiler firing residual oil. Site 112 employs electrostatic precipitators and a flue gas desulfurization system for particulate and SO{sub 2} control. Sampling at Site 112 was performed in July and August of 1992 for volatile organic compounds (VOCs) and mercury. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  11. Nanotechnologies in agriculture and food - an overview of different fields of application, risk assessment and public perception.

    PubMed

    Grobe, Antje; Rissanen, Mikko E

    2012-12-01

    Nanomaterials in agriculture and food are key issues of public and regulatory interest. Over the past ten years, patents for nanotechnological applications in the field of food and agriculture have become abundant. Uncertainty prevails however regarding their current development status and presence in the consumer market. Thus, the discussion on nanotechnologies in the food sector with its specific public perception of benefits and risks and the patterns of communication are becoming similar to the debate on genetically modified organisms. The food industry's silence in communication increased mistrust of consumer organisations and policy makers. The article discusses the background of the current regulatory debates, starting with the EU recommendation for defining nanomaterials, provides an overview of possible fields of application in agriculture and food industries and discusses risk assessment and the public debate on benefits and risks. Communicative recommendations are directed at researchers, the food industry and regulators in order to increase trust both in stakeholders, risk management and regulatory processes.

  12. Field evaluation of hazardous waste site bioassessment protocols

    SciTech Connect

    Thomas, J.M.; Cline, J.F.; Cushing, C.E.; McShane, M.C.; Rogers, J.E.; Rogers, L.E.; Simpson, J.C.; Skalski, J.R.

    1983-04-01

    The goals were: (1) determine the variability (both within and between laboratories) for the various bioassay procedures using contaminated soil samples from the Rocky Mountain Arsenal (RMA); (2) assess variability within and between plots for several assessment techniques (for sampling small mammals, plants, insects including honeybees and microarthropods) so that field studies could be designed to detect a defined biotic change; (3) establish three field plant transects which are apparently (a) contaminated, (b) appear contaminated and (c) could serve as a control; (4) assess the feasibility (in the laboratory) of using Basin F water to contaminate RMA soil artificially, and to supply information for the design of a field plot study in 1983; (5) attempt to obtain preliminary data on any promising field or laboratory bioassessment techniques not currently mentioned in the statement of work; and (6) obtain field data to assess the ecological status of RMA lakes and compare these observations to results from bioassessment testing.

  13. [Distribution of species and kdr gene frequency among Anopheles gambiae s.s. and Anopheles coluzzii populations in five agricultural sites in Côte d'Ivoire].

    PubMed

    Tia, E; Chouaibou, M; Gbalégba, C N G; Boby, A M O; Koné, M; Kadjo, A K

    2017-03-29

    The resistance of Anopheles gambiae s.l. to insecticides constitutes a concern for the programs of malaria control because it can be an obstacle to effective control of the vectors. The follow-up of this resistance is a priority to work out strategies of management and to preserve the means of that major malaria vector control activities. The general objective of this study is to identify the species within An. gambiae s.l., and to determine the frequency of the Kdr gene in An. gambiae s.s. and An. coluzzii in five agricultural sites in Ivory Coast: an urban site, two semirural sites (coffee-trees/cacao-trees, orchard) and two rural sites (rice site and a traditional village without agricultural insecticide). During this study, 2285 specimens of An. gambiae s.l. were analyzed for this purpose. An. gambiae s.s. (in the past called molecular form S) and An. coluzzii (in the past called molecular form M) were the only species of the complex An. gambiae identified in all the sites. The frequency of the Kdr mutation varied from 0.37 in the site without agricultural insecticide to 0.95 in the urban site where there is an intense use of insecticides. Three areas of these species distribution were observed: an area where the species An. gambiae s.s. is dominant (sites located in savanna), an area with predominance of An. coluzzii (in the southern forested area) and an intermediate area where the two species were in a same proportion (pre-forested site).The Kdr mutation was identified in the two species in all the sites in savanna and forest, except in the site without agricultural insecticide where only An. gambiae was resistant. It shows the increase of the receptive potential of An. gambiae s.l. with respect to the Kdr gene and the extension of the resistance to insecticide of this species in Ivory Coast.

  14. Pisces field chemical emissions monitoring project: Site 117 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 117. Site 117 is a 1 MW selective catalytic reduction (SCR) pilot plant. The host boiler is an 850 MW boiler which burned a residual fuel oil. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  15. Intensive field measurements of nitrous oxide emissions from a tropical agricultural soil

    NASA Astrophysics Data System (ADS)

    Crill, P. M.; Keller, M.; Weitz, A.; Grauel, B.; Veldkamp, E.

    2000-03-01

    The amount of nitrous oxide (N2O) continues to increase in the atmosphere. Agricultural use of nitrogen fertilizers in the tropics is thought to be an important source of atmospheric N2O. High frequency, highly precise measurements of the N2O flux were made with an automated system deployed in N fertilized and unfertilized agricultural plots of papaya and corn in Costa Rica for an entire corn crop growth to harvest cycle. N2O fluxes were as high as 64 ng N-N2O cm-2 h-1 from fertilized versus 12 ng N-N2O cm-2 h-1 from unfertilized corn and 28 ng N-N2O cm-2 h-1 from fertilized versus 4.6 ng N-N2O cm-2 h-1 from unfertilized papaya. Fertilized corn released more N2O than fertilized papaya over the 125 days of the crop cycle, 1.83 kg N ha-1 versus 1.37 kg N ha-1. This represents a loss as N2O of 1.1 and 0.9% of the total N applied as ammonium nitrate to the corn and papaya, respectively. As has often been observed, N2O fluxes were highly variable. The fastest rates of emission were associated with fertilization and high soil moisture. A diurnal cycle in the fluxes was not evident probably due to the minimal day/night temperature fluctuations. Each chamber was measured between 509 and 523 times over the course of the experiment. This allows us to evaluate the effect on constructed mean fluxes of lowered sampling frequencies. Sampling each collar about once a day throughout the crop cycle (25% of the data set) could result in a calculated mean flux from any individual chamber that can vary by as much as 20% even though the calculated mean would probably be within 10% of the mean of the complete data set. The uncertainty increases very rapidly at lower sampling frequencies. For example, if only 10% of the data set were used which would be the equivalent of sampling every other day, a very high sampling frequency in terms of manual measurements, the calculated mean flux could vary by as much as 40% or more at any given site.

  16. Fate and risk of atrazine and sulfentrazone to nontarget species at an agriculture site.

    PubMed

    Thorngren, Jordan L; Harwood, Amanda D; Murphy, Tracye M; Huff Hartz, Kara E; Fung, Courtney Y; Lydy, Michael J

    2016-10-25

    The present study evaluated the risk associated with the application and co-occurrence of 2 herbicides, atrazine and sulfentrazone, applied to a 32-ha corn and soybean rotational field. Field concentrations of the compounds were measured in soil, runoff water, and groundwater, with peak mean atrazine and sulfentrazone concentrations found in the soil (144 ng/g dry wt, and 318 ng/g dry wt, respectively). Individual and mixture laboratory bioassays were conducted to determine the effects of atrazine and sulfentrazone on the survival of Daphnia magna and Pimephales promelas, the germination of Lactuca sativa, and the growth of Pseudokirchneriella subcapita and Lemna minor. Pseudokirchneriella subcapita and L. minor were the most susceptible species tested, and the effects on growth of the herbicides in mixtures best fit an independent action model. Risk quotients and margin of safety of 10% (MOS10) values were used to estimate risk and were calculated using runoff water concentrations. The MOS10 values were more sensitive than risk quotients in estimating risk. The MOS10 value for sulfentrazone runoff water concentration effects on P. subcapita was 7.8, and for L. minor was 1.1, with MOS10 values < 1 indicating potential risk. Overall, the environmentally relevant concentrations fell below the effect concentrations; therefore, atrazine and sulfentrazone posed little to no risk to the nontarget species tested. Environ Toxicol Chem 2016;9999:1-10. © 2016 SETAC.

  17. Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva

    2015-04-01

    Water repellency is a natural soil property with implications on infiltration, erosion and plant growth. It depends on soil texture, type and amount of organic matter, fungi, microorganisms, and vegetation cover (Doerr et al., 2000). Human activities as agriculture can have implications on soil water repellency (SWR) due tillage and addition of organic compounds and fertilizers (Blanco-Canqui and Lal, 2009; Gonzalez-Penaloza et al., 2012). It is also assumed that SWR has a high small-scale variability (Doerr et al., 2000). The aim of this work is to study the spatial probability of SWR in an abandoned field testing several geostatistical methods, Organic Kriging (OK), Simple Kriging (SK), Indicator Kriging (IK), Probability Kriging (PK) and Disjunctive Kriging (DK). The study area it is located near Vilnius urban area at (54 49' N, 25 22', 104 masl) in Lithuania (Pereira and Oliva, 2013). It was designed a experimental plot with 21 m2 (07x03 m). Inside this area it was measured SWR was measured every 50 cm using the water drop penetration time (WDPT) (Wessel, 1998). A total of 105 points were measured. The probability of SWR was classified in 0 (No probability) to 1 (High probability). The methods accuracy was assessed with the cross validation method. The best interpolation method was the one with the lowest Root Mean Square Error (RMSE). The results showed that the most accurate probability method was SK (RMSE=0.436), followed by DK (RMSE=0.437), IK (RMSE=0.448), PK (RMSE=0.452) and OK (RMSE=0.537). Significant differences were identified among probability tests (Kruskal-Wallis test =199.7597 p<0.001). On average the probability of SWR was high with the OK (0.58±0.08) followed by PK (0.49±0.18), SK (0.32±0.16), DK (0.32±0.15) and IK (0.31±0.16). The most accurate probability methods predicted a lower probability of SWR in the studied plot. The spatial distribution of SWR was different according to the tested technique. Simple Kriging, DK, IK and PK methods

  18. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    EPA Science Inventory

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  19. THE USE OF CHEMICALS IN THE FIELD OF FARM ANIMAL HEALTH (NUTRITION, ENTOMOLOGY, PATHOLOGY). AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVE OF THIS MODULE IS TO PREPARE TECHNICIANS IN THE FIELD OF THE USE OF CHEMICALS FOR ANIMAL HEALTH. SECTIONS INCLUDE -- (1)…

  20. Nitrogen Cycle Modeling: a Mechanistic Estimate of N-losses From Agricultural Fields Over the Seasonal Time Period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogeochemical cycle of nitrogen and production of NO, N2O, and CO2 gas and NO2- and NO3- ions in nutrient-enriched agricultural fields is mediated by soil microbial activity, the hydrological cycle, plant dynamics, and climatic forcing. Understanding how NO, N2O, CO2 gases and NO2- and NO3- io...

  1. Testing the Need for Replication of Eddy Covariance Carbon Dioxide Flux Measurements over Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Taylor, A. M.; Amiro, B. D.; Gervais, M.

    2015-12-01

    The eddy covariance method directly measures carbon dioxide (CO2) fluxes for long periods of time and with footprints up to hundreds of meters in size. Any ecosystem process that alters how gases and energy move between the atmosphere and soil/vegetation can affect these fluxes. Eddy covariance is vulnerable to systematic errors and uncertainy, particular through relying on assumptions about surface characteristics. Additionally, spatial variation within a site can cause more uncertainty in these measurements and lack of replication in many eddy covariance studies makes statistical analysis of carbon fluxes challenging. We tested if there are significant differences between co-located and simultaneous CO2 flux measurements over a uniform crop surface, and if the differences increase if we measure different flux footprint areas over the same field. During the summer of 2014, three matched instrumented 2.5-m high towers were co-located and then periodically separated by moving at 50 m intervals along a north-south transect on an alfalfa/trefoil field and a spring wheat field in Southern Manitoba, Canada to compare CO­2 fluxes. Georeferenced leaf area index measurements were taken in 50 m grid of each field to establish uniformity of the source/sink within a footprint. Diurnal differences of similar magnitude in the CO2 ­fluxes were found in both the co-located experiment and the spatially separated intervals. Despite rigorous calibration during the experiment, some differences were caused by the measurement systems rather than by variation within the field. Interpretation of the spatial variation in leaf area index is being used to determine the contribution caused by difference in source/sink contributions to the flux footprint areas when the towers were spatially separated.

  2. Development of a field worthy sensor system to monitor gaseous nitrogen transfer from agricultural cropland

    SciTech Connect

    Not Available

    1992-11-01

    Nitrogen fertilizer accounts for 25 to 33% of the energy requirements in modern crop agriculture in the world today. Energy input for the manufacture of these N fertilizers is in the range of 460 [times] 10[sup 12] Btu per year. Unfortunately, for some N sources up to 70% of this energy in the form of NK can be lost through improper application techniques and poor N management strategies. Anhydrous NH[sub 3] may be lost to the atmosphere during and after placement due to soil conditions placement. Measurement of volatile N is difficult, especially under field conditions. A precise and convenient method of measuring gaseous NH[sub 3] near and above the soil surface is prerequisite to the development and evaluation of altemative fertilizer management strategies and application techniques which can reduce the potential for significant loss. Recent advances in integrated-optic (IO) based sensing offers the potential of measuring low levels of NH[sub 3] loss from a cropping system in the range of 100 ppB. The integrated design of an IO system allows for a more durable device that can be mass produced at low cost. Under Phase I of this project, two IO devices were designed and tested: an absorption device using an oxazine dye as a waveguide coating and an interferometric device using an anilinium salt as a waveguide coating.

  3. Particulate characteristics and emission rates during the injection of class B biosolids into an agricultural field.

    PubMed

    Bhat, Abhishek; Kumar, Ashok

    2012-01-01

    A field study was conducted during the summer of 2009 to collect airborne particulate matter emitted during the agricultural activities. The activities surrounding the injection application of class B biosolids were targeted for the sampling. The sampling was carried out before (pre-application), during (application), and after (post-application) the application. This study characterized the particulate emissions deposited on the aerosols spectrometer. The effect of different biosolids related activities was significant on the mass concentration, the number concentration, and the size distribution. The mass concentration of fine (PM(2.5)) and ultrafine (PM(1.0)) was highest during the pre-application. The mass concentration of thoracic fraction (PM(2.5-10)) increased significantly during the application. A bimodal size distribution was observed throughout the sampling. Nuclei mode formation was predominant during the pre-application and the post-application, whereas the accumulation mode was distinctive during the application. The number concentration of ultrafine particles was highest during the entire sampling period. The application of biosolids resulted into a higher number of coarse particle emission. It was also observed that the ultrafine and fine particles traveled longer downwind distances. The emission rates were determined for pre-application, application, and post-application activities.

  4. Field evaluation of hazardous waste site bioassessment protocols. Volume 2

    SciTech Connect

    Thomas, J.M.; Cline, J.F.; Gano, K.A.; McShane, M.C.; Rogers, J.E.; Rogers, L.E.; Simpson, J.C.; Skalski, J.R.

    1984-04-01

    The overall goal of the plan was to demonstrate that honeybees could be used in detecting likely areas of chemical pollution, to demonstrate the usefulness of microbial and plant phytoassays, and to demonstrate a relationship between laboratory derived phytotoxicity results and field observations of plant community structure and diversity. Field studies were conducted through a cooperative arrangement with the US Army arsenal in Commerce City, Colorado.

  5. Using GPR early-time amplitude analysis to monitor variations in soil water content at a clay-rich agricultural site in response to irrigation

    NASA Astrophysics Data System (ADS)

    Algeo, Jonathan; Van Dam, Remke; Slater, Lee

    2015-04-01

    Geophysical methods are increasingly used to analyze spatial variation in soil water content (SWC). Electrical resistivity (ER), ground-penetrating radar (GPR), and time-domain reflectometry (TDR) have all been applied to this problem. However, TDR is limited in terms of its ability to provide good spatial coverage over large areas, ER can be very time consuming depending on the survey, and GPR direct wave and reflection methods are ineffective in clay-rich environments. We employed a relatively new GPR methodology, early-time amplitude analysis, during an infiltration experiment conducted in a clay-rich agricultural field. The research took place at the Samford Ecological Research Facility, Queensland, Australia, with the goal of monitoring changes in SWC in response to irrigation. We hypothesize that early-time analysis can be used to detect and monitor infiltration in clay-rich soils where direct wave and reflection GPR fails, thus opening new avenues of hydrogeophysical research in the increasingly important field of water resource management. Initial field work showed that traditional methods of using GPR reflection surveys and ground wave velocity analysis were ineffective due to the excessive signal attenuation caused by the clay-rich soil at the site. GPR and TDR datasets were collected over a 20 meter by 15 meter section of the field. GPR datasets were collected once daily, at 10 am, and TDR measurements were collected once daily at 11 am from Thursday, August 28th, 2014 until Monday, September 1st, 2014. A sprinkler irrigation was carried out on the evening of Thursday, August 28th. The results suggest that the early-time GPR method is capable of monitoring the resulting changes in SWC due to infiltration in clayey soils despite the failure of reflection and ground wave velocity analysis. The early time GPR results are consistent with moisture content estimates from TDR and gravimetric analysis of soil cores taken in the field.

  6. Seasonal OVOC fluxes from an agricultural field planted with sugar beet

    NASA Astrophysics Data System (ADS)

    Custer, T. G.; Schade, G. W.

    2005-12-01

    Although agricultural crops are generally not strong isoprenoid emitters, they do emit a variety of other atmospherically significant species collectively known as oxygenated VOCs (OVOCs), such as methanol, acetaldehyde, or various hexenal and hexenol compounds. Many OVOCs have longer atmospheric lifetimes than isoprenoid compounds and can affect the atmosphere's oxidative potential at higher elevations and far from sources. We performed selected OVOC flux measurements for select species above an agricultural field planted with sugar beets ( B. vulgaris) in northern Germany in 2004 to better understand the magnitude and controls over these OVOC emissions. Virtual disjunct eddy covariance was used to measure fluxes beginning immediately following seeding and continuing until past harvest. A commercial PTR-MS provided mixing ratios of methanol (m/z 33), acetaldehyde (m/z 45), acetone (m/z 59), and the sum of the isoprene oxidation products methacrolein and methyl vinyl ketone (m/z 71) while 3D wind velocities were measured using a Gill R3 sonic anemometer. Here, we compare the fluxes of methanol and acetone over the growth cycle of sugar beet to plant development as measured by the leaf area index. Methanol fluxes ranged from approximately -0.05 to 0.15 mg C m-2 h-1 (mixing ratios from ~1 to 15 ppbv) and showed a clear diurnal cycle after the sugar beets established a significant leaf area. Acetone fluxes ranged from approximately -0.2 to 0.2 mg C m-2 h-1 (mixing ratios from ~0.2 to 3 ppb). Higher specific emissions were found during earlier growth stages. Methanol flux correlated strongly with latent heat flux (or alternatively, with canopy conductance derived from the latent heat flux), while acetone flux did not. Acetone flux was small compared to methanol flux and sugar beet is likely not a significant acetone emitter. Weekly measurements of soil OVOC exchange using a flux chamber showed that the soil may have contributed significantly to the overall flux values

  7. Organic particulate emissions from field burning of garden and agriculture residues

    NASA Astrophysics Data System (ADS)

    Gonçalves, Cátia; Evtyugina, Margarita; Alves, Célia; Monteiro, Cristina; Pio, Casimiro; Tomé, Mário

    2011-08-01

    To assess the particulate matter (PM) composition, the smoke from three different agriculture and garden residues, commonly subjected to open field burning in Northern Portugal (potato haulm (A), arable weed vegetation (B) and collard greens stalks/pruned green leafy-twigs (C)) have been sampled into 3 different size fractions (PM 2.5, PM 2.5-10 and PM > 10 ). To replicate another frequent practise of reducing or dispose agriculture/garden debris, residue C was complementarily burned in a metal container with addition of used lubricant oil. The size-segregated aerosol samples were analysed for elemental (EC) and organic (OC) carbon by a thermal-optical transmission technique. The organosoluble OC was fractionated by vacuum flash chromatography and analysed by gas chromatography-mass spectrometry (GC-MS). Burning of residue C produced the highest PM emissions. OC was the dominant carbonaceous component in all aerosol samples, contributing to about 98% of total carbon (TC). The detailed chemical profiles of particulate emissions, including organic tracer compounds, have been assessed. The contribution of phenolics (0.2-39% OC, w/w) and organic acids (1.5-13% OC, w/w) to OC was always predominant over other organic compounds, whose distribution patterns were found to vary from one residue to another. The polyphenols, as the guaiacyl derivatives, were particularly abundant in PM from the residue C burning, but anthropogenic constituents completely superimposed the emission profiles after addition of used lubricant oil. It was shown that the prevailing ambient conditions (such as high humidity) likely contributed to atmospheric processes (e.g. coagulation and hygroscopic growth), which influenced the particle size characteristics of the smoke tracers, shifting their distribution to larger diameters. Since it was shown that the relative contribution of different carbon forms and organic compounds may strongly depend on the size of the particulate matter, the barely

  8. Long-term impact of precision agriculture on a farmer’s field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century. Although potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmenta...

  9. Production and conservation results from a decade-long field-scale precision agriculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research is needed that simultaneously evaluates production and conservation outcomes of precision agriculture practices. From over a decade (1993-2003) of yield and soil mapping and water quality assessment, a multi-faceted, “precision agriculture system” (PAS) was developed and initiated in 2004 o...

  10. Agricultural terraces montoring and modeling: a field survey in Chianti region, Firenze, Italy – Second part

    NASA Astrophysics Data System (ADS)

    Preti, Federico; Caruso, Marco; Dani, Andrea; Cassiani, Giorgio; Romano, Nunzio; Tarolli, Paolo

    2015-04-01

    The two abstracts present the design and set-up of an experimental campaign which aims at sup-porting the modeling (conceptual and numerical) of water circulation in a terraced slope, and its in-fluence on stability of retaining dry stone walls. The case study is located at "Fattoria di Lamole" (Greve in Chianti, Firenze, Italy). At Lamole site both ancient and recently restored or rebuilt (with different techniques) dry stone walls are present. Furthermore the intense vineyards cultivation makes it very representative in terms of range of external stresses that affect both hillslopes and wall. The survey is developed within the bigger framework of landscape preservation as a way to prevent hydrogeological instabilities and landslide risks. Second Part A second effort is devoted to couple hydrological, hydraulic and geotechnical modeling: - Flow directions and the drainage area have been derived from DTM (high-resolution digital terrain model obtained by a terrestrial laser scanner.), and served for the RPII index calcula-tion (Tarolli et al., 2013), that is coherent with the critical spots observed in situ and marked with GPS. - Direct shear test on undisturbed and reconstituted soil samples will offer an estimation of the Mohr-Coulomb failure envelope parameters (friction angle and cohesion). - Retention curves related with different depths have been derived. - Geoelectric analysis in order to locate the bedrock and to determine the subterranean water flows originated from controlled infitration tests (1 l/s discharge). - A simple dry-wall stability model has been carried out; this model analyses the wall stability with finite elements method, evaluating pressures derived from uphill water infiltration, stone friction and buoyancy in retaining wall layers: simulated deformation are suitable with the observed ones. Acknowledgements Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, National network for monitoring, modeling, and

  11. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    NASA Astrophysics Data System (ADS)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Maize is the most important C4 crop worldwide. It is also the second most important crop worldwide (C3 and C4 mixed), and is a dominant crop in some world regions. Therefore, it can potentially influence local climate and air quality through its exchanges of gases with the atmosphere. Among others, biogenic volatile organic compounds (BVOC) are known to influence the atmospheric composition and thereby modify greenhouse gases lifetime and pollutant formation in the atmosphere. However, so far, only two studies have dealt with BVOC exchanges from maize. Moreover, these studies were conducted on a limited range of meteorological and phenological conditions, so that the knowledge of BVOC exchanges by this crop remains poor. Here, we present the first BVOC measurement campaign performed at ecosystem-scale on a maize field during a whole growing season. It was carried out in the Lonzée Terrestrial Observatory (LTO), an ICOS site. BVOC fluxes were measured by the disjunct by mass-scanning eddy covariance technique with a proton transfer reaction mass spectrometer for BVOC mixing ratios measurements. Outstanding results are (i) BVOC exchanges from soil were as important as BVOC exchanges from maize itself; (ii) BVOC exchanges observed on our site were much lower than exchanges observed by other maize studies, even under normalized temperature and light conditions, (iii) they were also lower than those observed on other crops grown in Europe. Lastly (iv), BVOC exchanges observed on our site under standard environmental conditions, i.e., standard emission factors SEF, were much lower than those currently considered by BVOC exchange up-scaling models. From those observations, we deduced that (i) soil BVOC exchanges should be better understood and should be incorporated in terrestrial BVOC exchanges models, and that (ii) SEF for the C4 crop plant functional type cannot be evaluated at global scale but should be determined for each important agronomic and pedo-climatic region

  12. Evaluation in the Field: The Need for Site Visit Standards

    ERIC Educational Resources Information Center

    Patton, Michael Quinn

    2015-01-01

    Our understanding of programs is enhanced when trained, skilled, and observant evaluators go "into the field"--the real world where programs are conducted--paying attention to what's going on, systematically documenting what they see, and reporting what they learn. The article opens by presenting and illustrating twelve reasons for…

  13. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin.

    PubMed

    Rajmohan, N; Prathapar, S A; Jayaprakash, M; Nagarajan, R

    2014-09-01

    The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I(geo)), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I(geo) values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87%. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC

  14. Stable isotopes in nitrous oxide emitted from tropical rain forest soils and agricultural fields: Implications for the global atmospheric nitrous oxide budget

    NASA Astrophysics Data System (ADS)

    Perez, Tibisay Josefina

    Nitrous oxide (N2O) is an important greenhouse gas and is the primary source of NOx in the stratosphere. Large uncertainties exist in the global N2O budget, mainly due to the high uncertainty associated with source estimates. Recently, stable isotopes of 15N and 18O have been proposed as a tool to better constrain the N2O global budget. This thesis develops analytical methods for constraining and measuring stable isotopes in N2O emitted from soils and reports initial investigations of N2O isotopes from the largest sources in the global N2O budget: tropical rain forest soils and agricultural fields. We found significant differences in the isotopic composition of N 2O emitted from tropical rain forest soils and fertilized agricultural fields. Differences were largest for 15N. Emission-weighted δ 15N-N2O were -26 +/- 2.5‰ s.d., n = 3 (Costa Rican forest), -6.6 +/- 11.3‰ s.d. n = 14 (Brazilian forest) and -36.7 +/- 9.2‰ s.d. n = 19 (Mexican agricultural field and Costa Rican Papaya plantation). We attribute the large range in δ 15N from tropical rain forests, where denitrification is the main source of N2O, to differences in the degree of N2O to N2 reduction. We attribute the very light δ15N values in fertilized agricultural fields to the enhanced nitrogen availability in the soils which facilitates higher fractionation between substrates and products. Similarly, in the Brazilian tropical forest lighter δ 15N-N2O from a local area of enhanced emission is attributed to locally more abundant N- substrate in that particular soil site. If the increase of N2O in the troposphere over the past 100 years is attributable to increased use of N fertilizer, and assuming that light δ 15N- N2O isotopic values are associated with agricultural practices, we expect the δ15N-N2O in the troposphere to have decreased since pre-industrial times. Theoretically, comparison of 15N and 18O signature of emitted N2O with precursors species (NO3 -, NH4+, H2O and O 2) should uniquely

  15. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China.

    PubMed

    Chen, Weiwei; Tong, Daniel; Zhang, Shichun; Dan, Mo; Zhang, Xuelei; Zhao, Hongmei

    2015-12-01

    This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city, China. Ambient air was sampled by filter-based samplers and online PM monitors. The filter samples were analyzed to determine the abundance of ionic/inorganic elements, organic carbon (OC) and elemental carbon (EC). The daily PM10 concentrations varied significantly over the monitoring period, with an average of 168±63 (in the range of 52-277)μg/m(3) during the land preparation/planting period (26 April-15 June), 85±65 (36-228)μg/m(3) during the growing season (16 June-25 September), and 207±88 (103-310)μg/m(3) during the harvest period (26 September-31 October). PM2.5 accounted for 44%, 56% and 66% of atmospheric PM10 during these periods, respectively. The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00 (LST) during the growing and harvesting seasons, while a gradual increase throughout the daytime until 17:00 was observed during tilling season. Mineral dust elements (Al, Ca, Fe, and Mg) dominated the PM10 chemical composition during the tilling season; OC, NO3(-), SO4(2-) and NH4(+) during the growing season; and carbonaceous species (i.e., OC and EC) during the harvesting season. Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region. Therefore, development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling.

  16. Utilizing In-Situ Static Chamber Measurements and UAV Imagery for Integrated Greenhouse Gas Emissions Estimations: Assessing Environmental and Management Impacts on Agricultural Emissions for Two Paired-Watershed Sites in Vermont

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Peterson, F. S.; Wyngaard, J.

    2015-12-01

    Agricultural greenhouse gas (GHG) emissions contribute to ~10-12% of global anthropogenic emissions. While agriculture is a major source of GHG emissions, there is also great potential for mitigation, as emissions can be reduced by utilizing specific field management and fertilization strategies. This study closely monitors hay and corn fields in Vermont in two paired-watershed sites. Carbon dioxide, nitrous oxide and methane emissions were measured weekly using static chambers and a Photoacoustic Gas Sensor (PAS) across both field management treatments: conventional and mitigation. Accurately quantifying emissions from agricultural landscapes is crucial to develop and implement optimal mitigation strategies, but quantifying landscape-wide emissions is challenging. In this study, we show that both field management treatments and environmental conditions (such as field flooding from rain events) significantly affect GHG emissions, and both can be highly spatially variable even on the field-scale. Monitoring this kind of complexity across a watershed is difficult, as most current emissions quantification techniques, such as static chambers, are localized, point specific and costly. Remote sensing provides an opportunity to monitor landscapes more efficiently and cost effectively. High resolution imagery from an Unmanned Aerial Vehicle (UAV) can also provide opportunities for more accurate watershed-wide estimates of GHG emission rates based on observable agricultural field conditions and management signals, such as field flooding, fertilizer application method, and cover cropping. Satellite imagery, and even the higher resolution aerial imagery used for agricultural monitoring, do not provide the spatial or temporal resolution needed to monitor the on-field complexities that affect GHG emissions. This study combines and compares environmental and management observations from UAV imagery and in-situ field GHG emissions measurements to determine the effectiveness of

  17. Site study plan for utilities and solid waste, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    This site plan describes utilities and solid waste studies to be conducted during the characterization of the Deaf Smith County, Texas, site for the US Department of Energy's Salt Repository Project. After utilities and solid waste information needs derived from Federal, State, and local statutes and regulations and the project specifications are briefly described, the site study plan describes the study design and rationale, the field data collection procedures and equipment, and data analysis methods and application of results, the data management strategy, the schedule of field activities, the management of the study, and the study's quality assurance program. The field data collection activities are organized into programs to characterize electrical power, natural gas, communication, water, wastewater sludge, nonradiological solid waste, nonradiological hazardous waste, and low-level radiological waste. These programs include details for the collection of project needs, identification of utilities and solid waste disposal contractor capabilities, and verification of the obtained data. Utilities and solid waste field activities will begin approximately at the time of site access. Utilities and solid waste characterization will be completed within the first year of activity. 29 refs., 6 figs., 2 tabs.

  18. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    USGS Publications Warehouse

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    Crop agriculture occupies 13 percent of the conterminous United States. Agricultural management practices, such as crop and tillage types, affect the hydrologic flow paths through the landscape. Some agricultural practices, such as drainage and irrigation, create entirely new hydrologic flow paths upon the landscapes where they are implemented. These hydrologic changes can affect the magnitude and partitioning of water budgets and sediment erosion. Given the wide degree of variability amongst agricultural settings, changes in the magnitudes of hydrologic flow paths and sediment erosion induced by agricultural management practices commonly are difficult to characterize, quantify, and compare using only field observations. The Water Erosion Prediction Project (WEPP) model was used to simulate two landscape characteristics (slope and soil texture) and three agricultural management practices (land cover/crop type, tillage type, and selected agricultural land management practices) to evaluate their effects on the water budgets of and sediment yield from agricultural lands. An array of sixty-eight 60-year simulations were run, each representing a distinct natural or agricultural scenario with various slopes, soil textures, crop or land cover types, tillage types, and select agricultural management practices on an isolated 16.2-hectare field. Simulations were made to represent two common agricultural climate regimes: arid with sprinkler irrigation and humid. These climate regimes were constructed with actual climate and irrigation data. The results of these simulations demonstrate the magnitudes of potential changes in water budgets and sediment yields from lands as a result of landscape characteristics and agricultural practices adopted on them. These simulations showed that variations in landscape characteristics, such as slope and soil type, had appreciable effects on water budgets and sediment yields. As slopes increased, sediment yields increased in both the arid and

  19. Multi-year assessment of soil-vegetation-atmosphere transfer (SVAT) modeling uncertainties over a Mediterranean agricultural site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Lafont, S.; Martin, E.; Chanzy, A.; Marloie, O.; Bertrand, N.; Desfonds, V.; Renard, D.

    2012-04-01

    Vegetation productivity and water balance of Mediterranean regions will be particularly affected by climate and land-use changes. In order to analyze and predict these changes through land surface models, a critical step is to quantify the uncertainties associated with these models (processes, parameters) and their implementation over a long period of time. Besides, uncertainties attached to the data used to force these models (atmospheric forcing, vegetation and soil characteristics, crop management practices...) which are generally available at coarse spatial resolution (>1-10 km) and for a limited number of plant functional types, need to be evaluated. This paper aims at assessing the uncertainties in water (evapotranspiration) and energy fluxes estimated from a Soil Vegetation Atmosphere Transfer (SVAT) model over a Mediterranean agricultural site. While similar past studies focused on particular crop types and limited period of time, the originality of this paper consists in implementing the SVAT model and assessing its uncertainties over a long period of time (10 years), encompassing several cycles of distinct crops (wheat, sorghum, sunflower, peas). The impacts on the SVAT simulations of the following sources of uncertainties are characterized: - Uncertainties in atmospheric forcing are assessed comparing simulations forced with local meteorological measurements and simulations forced with re-analysis atmospheric dataset (SAFRAN database). - Uncertainties in key surface characteristics (soil, vegetation, crop management practises) are tested comparing simulations feeded with standard values from global database (e.g. ECOCLIMAP) and simulations based on in situ or site-calibrated values. - Uncertainties dues to the implementation of the SVAT model over a long period of time are analyzed with regards to crop rotation. The SVAT model being analyzed in this paper is ISBA in its a-gs version which simulates the photosynthesis and its coupling with the stomata

  20. Zoning of an agricultural field using a fuzzy indicator model in combination with tool for multi-attributed decision-making

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. This paper extends previously published work entitled “Zoning of an agricultural field using a fuzzy indicator model” to a general case where there is disagreement between groups of managers or expert...

  1. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    NASA Astrophysics Data System (ADS)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits

  2. [Establishment and application of the estimation model for agricultural non-point source pollution in the field].

    PubMed

    Li, Qiang-kun; Li, Huai-en; Hu, Ya-wei; Chen, Wei-wei; Sun, Juan

    2009-12-01

    The quantitative research on pollution loads is the basis of control, evaluation and management of non-point source pollution. The estimation of agricultural non-point source pollution loads includes two steps: evaluation of water discharge and prediction of pollutant concentration in agricultural drain. Water discharge was calculated by DRAINMOD model based on the principle of water balance on farmland. Meanwhile, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, the pollutant concentration changes in agricultural drain is looked as the response process corresponding to the impulse input, the complex migratory and transforming process of pollutant in soil are expressed implied by Inverse Gaussian Probability Density Function. Based on the above, the estimation model of agricultural non-point source pollution loads at field scale was constructed. Taking the typical experimentation area of Qingtongxia Irrigation District in Ningxia as an example, the loads of nitrate nitrogen and total phosphorus in paddy-field drain was simulated by this model. The results show that the simulated accorded with measured data approximately and Nash-Suttcliffe coefficient is 0.963 and 0.945 respectively.

  3. Superfund record of decision (EPA Region 4): T. H. Agriculture and Nutrition Site, operable unit 1, Montgomery, AL, April 17, 1995

    SciTech Connect

    1995-04-01

    This decision document presents the selected interim remedial action for the T H Agriculture and Nutrition (THAN) Site, Montgomery, Alabama. This interim remedial action employs the use of extraction wells combined with a pump and treat system to prevent further migration of contaminated groundwater from the Site and to initiate groundwater restoration pending completion of the RI/FS and implementation of the final remedial action.

  4. Iron coated sand/glauconite filters for phosphorus removal from artificially drained agricultural fields

    NASA Astrophysics Data System (ADS)

    Vandermoere, Stany; De Neve, Stefaan

    2016-04-01

    Flanders (Belgium) is confronted with reactive phosphorus concentrations in streams and lakes which are three to four times higher than the 0.1 ppm P limit set by the Water Framework Directive. Much of the excessive P input in surface waters is derived from agriculture. Direct P input from artificially drained fields (short-circuiting the buffering capacity of the subsoil) is suspected to be one of the major sources. We aim to develop simple and cheap filters that can be directly installed in the field to reduce P concentration from the drain water. Here we report on the performance of such filters tested at lab scale. As starting materials for the P filter, iron coated sand and acid pre-treated glauconite were used. These materials, both rich in Fe, were mixed in ratios of 75/25, 65/35, 50/50 and 0/100 (iron coated sand/glauconite ratio based on weight basis) and filled in plastic tubes. A screening experiment using the constant head method with a 0.01 M CaCl2 solution containing 1 ppm P showed that all four types of mixtures reduced the P concentration in the outflowing water to almost zero, and that the 75/25, 65/35 and 0/100 mixtures had a sufficiently large hydraulic conductivity of 0.9 to 6.0 cm/min, while the hydraulic conductivity of the 50/50 mixture was too low (< 0.4 cm/min). In a second experiment the iron coated sand and acid pre-treated glauconite were mixed in ratios of 75/25, 65/35 and 0/100 and filled in the same plastic tubes as in the first experiment. Subsequently a 0.01 M CaCl2 solution containing 1 ppm P was passed through the filters over several days, in amounts equivalent to half of the yearly water volume passing through the drains. This experiment firstly showed that in all cases the hydraulic conductivity fluctuated strongly: it decreased from 4.0-6.0 cm/min to 2.0-1.5 cm/min for the 75/25 filter, and to values < 0.4 cm/min for the 65/35 filter, whereas it increased from 0.8 to 1.4 cm/min for the 0/100 filter. Secondly, we observed a

  5. Multi-frequency SAR data for soil surface moisture estimation over agricultural fields

    NASA Astrophysics Data System (ADS)

    Zribi, Mehrez; Baghdadi, Nicolas

    2015-04-01

    Soil moisture plays a crucial role in the continental water cycle, in particular through its influence on the distribution of precipitation between surface runoff and infiltration, which is the main driver behind most hydrological and geomorphologic processes. Although there is now a good understanding of soil hydrodynamics and water transfer in porous media, the development of reliable techniques allowing field heterogeneities to be fully analyzed in space and time remains a key issue. In recent decades, various inversion models have been proposed for the retrieval of surface parameters (mainly soil moisture and surface roughness) from Synthetic Aperture Radar (SAR) high resolution measurements. The proposed techniques depend particularly on two instrumental parameters: the radar system's spatial resolution and the number of configurations measured during satellite acquisitions (mainly incidence angle and polarization). In this paper, our objective is to illustrate different applications of SAR data to estimate soil moisture over bare soil and vegetation cover areas (wheat, olive groves, meadows ...). Potential of very high resolution data, with the availability of TerraSAR-X and COSMO-SkyMed constellations is also discussed. This study is based on different experimental campaigns organized over different sites in humid and semi-arid regions. Ground measurements (soil moisture, soil roughness, vegetation description) over test fields were carried out simultaneously to SAR measurements. Effect of vegetation attenuation on radar signal is considered through a synergy with optical remote sensing. Soil moisture precision for all proposed applications is generally ranged between 3 and 5% of volumetric moisture. These methodologies are developed in the context of the preparation for having a high soil moisture operational product, with SENTINEL and/or the other planned constellations. After an analysis of radar data sensitivity (C and X bands) to surface parameters

  6. Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Wöhling, Thomas; Ingwersen, Joachim; Wizemann, Hans-Dieter; Warrach-Sagi, Kirsten; Attinger, Sabine; Streck, Thilo; Wulmeyer, Volker

    2014-05-01

    Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather and climate. However, land-surface schemes used in large scale models continue to show deficits in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multi-physics version of the Noah land-surface model (Noah-MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land-surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation-related processes is the most important control for a consistent simulation of energy and water fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented sub-module to simulate root growth dynamics has enhanced the performance of Noah-MP at both field sites. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the sub-soil, land-surface and atmosphere in fully-coupled hydrological and atmospheric models.

  7. Novel insight into soil and ecosystem COS fluxes in an agricultural field

    NASA Astrophysics Data System (ADS)

    Maseyk, Kadmiel; Seibt, Ulrike; Billesbach, David; Campbell, John E.; Torn, Margaret; Berry, Joe

    2013-04-01

    A promising new approach to partition net ecosystem carbon and water fluxes is the use of carbonyl sulfide (COS) as a tracer of the canopy components. COS is taken up by leaves via the same pathway as CO2 (stomatal diffusion followed by hydration by carbonic anhydrase), leading to a close coupling of vegetation COS and CO2 fluxes during photosynthesis and the potential to estimate gross photosynthesis from concurrent measurements of COS and CO2. A necessary requirement for this approach at ecosystem and continental scales is knowledge of soil COS fluxes. Considered small in magnitude relative to the vegetation fluxes, soil is also largely considered a sink for COS, but our knowledge of in situ soil COS fluxes remains very limited. We measured soil COS fluxes in a wheat field in Oklahoma from April to June 2012, using a novel combination of an automated soil chamber coupled to a COS laser analyzer, in parallel with some of the first eddy covariance measurements of ecosystem COS fluxes. We provide the first continuous record of soil COS fluxes under natural conditions, and report on some unique responses. In contrast to the majority of published results, we found that the agricultural soil was a source of COS under most conditions during the campaign. Mean COS flux over the study period was 1.9 pmol m-2 s-1 and highly correlated with soil temperature, shifting from a sink to a source at a soil temperature of around 15°C. Diel amplitudes of up to 15 pmol m-2 s-1 and fluxes of up to 25 pmol m-2 s-1 were observed. To locate the source of the COS production, we investigated different soil components. Wheat roots were found to be emitting COS under all conditions. Root-free soil was a COS sink up to a soil temperature of around 25°C, but turned into a COS source at higher soil temperatures. We also observed COS production from the roots of several other species, indicating that this may be a widespread phenomenon. The soil component was small relative to canopy uptake

  8. Physical and chemical control of released microorganisms at field sites

    SciTech Connect

    Donegan, K.; Seidler, R.; Matyac, C.

    1991-01-01

    An important consideration in the environmental release of a genetically engineered microorganism (GEM) is the capability for reduction or elimination of GEM populations once their function is completed or if adverse environmental effects are observed. The decontamination treatments of burning and biocide application, alone and in combination with tilling, were evaluated for their ability to reduce populations of bacteria released on the phylloplane. Field plots of bush beans sprayed with the bacterium Erwinia herbicola, received the following treatments: (1) control, (2) control + till, (3) burn, (4) burn + till, (5) Kocide (cupric hydroxide), (6) Kocide + till, (7) Agri-strep (streptomycin sulfate), and (8) Agri-strept + till. Leaves and soil from the plots were sampled -1, 1, 5, 8, 12, 15, 19, and 27 days after application of the decontamination treatments. Burning produced a significant and persistent reduction in the number of bacteria whereas tilling, alone or in combination with the biocide treatments, stimulated a significant and persistent reduction in the number of bacteria, whereas tilling, alone or in combination with the biocide treatments, stimulated a significant increase in bacterial populations that persisted for several weeks.

  9. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  10. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  11. Field Sampling and Selecting On-Site Analytical Methods for Explosives in Soil

    EPA Pesticide Factsheets

    The purpose of this issue paper is to provide guidance to Remedial Project Managers regarding field sampling and on-site analytical methods fordetecting and quantifying secondary explosive compounds in soils.

  12. Anthropogenic and geogenic Cd, Hg, Pb and Se sources of contamination in a brackish aquifer below agricultural fields

    NASA Astrophysics Data System (ADS)

    Mastrocicco, Micòl; Colombani, Nicolò; Di Giuseppe, Dario; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2015-04-01

    Groundwater quality is often threatened by industrial, agricultural and land use practices (anthropogenic input). In deltaic areas is however difficult to distinguish between geogenic and anthropogenic inorganic contaminants pollution, since these phenomena can influence each other and often display a seasonal cycling. The effect of geogenic groundwater ionic strength (>10 g/l) on the mobility of trace elements like Cd, Hg, Pb and Se was studied in combination with the anthropogenic sources of these elements (fertilizers) in a shallow aquifer. The site is located in the Po river plain (Northern Italy) in an agricultural field belonging to a reclaimed deltaic environment, near Codigoro town. It is 6 ha wide and is drained by a subsurface drainage system made of PVC tile drains with a slope of 3‰, which provides gravity drainage towards two ditches that in turn discharge in a main channel. The whole area has been intensively cultivated with cereal rotation since 1960, mainly using synthetic urea as nitrogen fertilizer at an average rate of 180 kg-N/ha/y and pig slurry at an average rate of 60 kg-N/ha/y. The sediments were analyzed for major and trace elements via XRF, while major ions in groundwater were analyzed via IC and trace elements via ICP-MS. Three monitoring wells, with an inner diameter of 2 cm and screened down to 4 m below ground level, were set up in the field and sampled every four month from 2012 to 2014. The use of intensive depth profiles with resolution of 0.5 m in three different locations, gave insights into groundwater and sediment matrix interactions. To characterize the anthropogenic inputs synthetic urea and pig slurry were analyzed for trace elements via ICP-MS. The synthetic urea is a weak source of Cd and Hg (~1 ppb), while Se and Pb are found below detection limits. The pig slurry is a much stronger source of Se (~19 ppb) and Pb (~23 ppb) and a weak source of Cd (~3 ppb) and Hg (~2 ppb). Although, the mass loading rate pig slurry is

  13. Site Study Plan for background environmental radioactivity, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    The Background Environmental Radioactivity Site Study Plan describes a field program consisting of an initial radiological survey and a radiological sampling program. The field program includes measurement of direct radiation and collection and analysis of background radioactivity samples of air, precipitation, soil, water, milk, pasture grass, food crops, meat, poultry, game, and eggs. The plan describes for each study: the need for the study, the study design, data management and use, schedule of proposed activities, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project (SRP) Requirements Document. 50 refs., 11 figs., 7 tabs.

  14. FIELD MEASUREMENT OF VAPOR INTRUSION RATES AT A PCE SITE (ABSTRACT ONLY)

    EPA Science Inventory

    A field study was performed to evaluate vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. Results from an initial site ch...

  15. Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test

    USGS Publications Warehouse

    Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.

    2001-01-01

    Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field

  16. Preliminary assessment of DOC and THM precursor loads from a freshwater restored wetland, an agricultural field, and a tidal wetland in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Fujii, R.; Bergamaschi, B.A.; Ganju, N.K.; Fleck, J.A.; Burow-Fogg, K.R.; Schoellhamer, D.; Deverel, S.J.

    2003-01-01

    Water exported from the Sacramento-San Joaquin River Delta supplies drinking water to more than 22 million people in California. At certain times of the year, Delta waters contain relatively high concentrations of dissolved organic carbon (DOC) and bromide. During these times, chlorination of Delta water for drinking water disinfection will form disinfection byproducts, such as trihalomethanes (THMs), that can exceed the U.S. Environmental Protection Agency's maximum contaminant level for THMs of 80 mg/L. Important sources of DOC and THM precursors (types of DOC that form THMs when chlorinated) to the Delta include rivers, drainage water from peat islands, water from wetlands and areas with extensive riparian vegetation, and in-channel growth of algae and macrophytes. Due to proposed ecosystem restoration and creation of wetlands in the Delta, there is an urgent need for information on the relative loads of DOC and THM precursors produced from three different land uses: restored wetlands constructed for subsidence mitigation, tidal wetlands, and agricultural operations. We have been conducting research in the Delta to provide this information. A restored wetland and agricultural field located on Twitchell Island, and a tidal wetland on Browns Island have been monitored for flow, DOC, and THM precursors. Initial results indicate that the loads of DOC and THM precursors are similar for the restored wetland (surface water only) and the agricultural field. These land uses produce DOC loads of about 14 and 11 g C/m2/yr, respectively, and THM precursor loads of about 1.7 and 1.0 g THM/m2/yr, respectively. Estimates of DOC and THM precursor loads for the tidal wetland site on Browns Island and seepage associated with the restored wetland are being developed.

  17. Validating a high-resolution digital soil map for precision agriculture across multiple fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA is based on its ability to provide useful spatial soil information for o...

  18. Treatment of phosphorus transported from tile and ditch-drained agricultural fields using sorption materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many flat, poorly drained soils, such as the Delmarva Peninsula, the upper Midwest, and certain areas of Europe such as Denmark and Netherlands, have been extensively drained through the construction of artificial drainage ditches and tiles to allow agriculture and other human activities. In additi...

  19. The Impact of Crop, Pest, and Agricultural Management Practices on Mycotoxin Contamination of Field Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycotoxins are highly toxic secondary metabolites produced by several fungal genera which occur in a wide variety of agricultural commodities worldwide. Health issues and economic losses due to mycotoxin contamination occur at all stages of the food and feed production process. Mycotoxigenic fungi...

  20. Barriers to the Adoption of Sustainable Agriculture on Rented Land: An Examination of Contesting Social Fields

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2005-01-01

    While over half of the cropland in the United States is rented, interest in land tenancy within sociological circles has been sporadic at best. In light of the prevalence of rented land in agriculture--particularly in the Midwest--it is vital that further research be conducted to investigate the effect that the rental relationship has upon the…

  1. Using lidar to characterize particles from point and diffuse sources in an agricultural field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. Aglite is a three-wavelength portable scanning lidar system built at the Energy Dynamics Laboratory (EDL) to measure the spati...

  2. THE USE OF CHEMICALS TO CONTROL FIELD RODENTS AND OTHER PREDATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. IT IS ONE OF A SERIES OF MODULES DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS ARE (1) USE OF CHEMICALS FOR RODENT CONTROL AND ERADICATION, (2) TERMINOLOGY AND COMPUTATIONS, (3) RODENT…

  3. Celtic field agriculture and Early Anthropogenic Environmental change in the Meuse-Demer-Scheldt region, NW Europe

    NASA Astrophysics Data System (ADS)

    Van der Sanden, Germaine; Kluiving, Sjoerd; Roymans, Nico

    2016-04-01

    The field of Archaeology remains focused on historical issues while underexploring its potential contribution on currently existing societal problems, e.g. climate change. The aim of this paper is to show the relevance of archeological studies for the research of the 'human species as a significant moving agent' in terms of the changing natural environment during a much earlier time frame. This research is based on the study area of the Meuse-Demer-Scheldt region in the Netherlands and Belgium and exhibits the period from the Late Bronze Age to the Early Roman period. This period is characterized by the widespread introduction and use of an agricultural system, often referred to as the Celtic Field system that served as one of the most modifying systems in terms of anthropogenic-environmental change during this period. Emphasis in this research is given to results generated by the use of the remote sensing technology, LiDAR. New information is reported considering a correlation between singular field size and the overall surface of the agricultural complexes and secondly, the presentation of newly identified Celtic field systems in the Meuse-Demer-Scheldt region are presented. The study of the dynamics of the Celtic Field agricultural system provides evidence for a significant anthropogenic footprint on the natural environment due to land cover dominance, soil degeneration, increased soil acidification and forest clearance. Soil exhaustion forced the inhabitants to re-establish their relationship with the landscape in terms of fundamental changes in the habitation pattern and the agrarian exploitations of the land.

  4. Forecasting the Feasibility of Implementing Isolation Perimeters Between GM and non-GM Maize Fields Under Agricultural Conditions

    NASA Astrophysics Data System (ADS)

    Devos, Yann; Cougnon, Mathias; Thas, Olivier; De Clercq, Eva M.; Cordemans, Karl; Reheul, Dirk

    2008-10-01

    Although spatially isolating genetically modified (GM) maize fields from non-GM maize fields is a robust on-farm strategy to keep the adventitious presence of GM material in the harvests of neighboring non-GM maize fields due to cross-fertilizations below established labeling thresholds (and thus to ensure the spatial co-existence between maize cropping systems), the practical implementation of isolation perimeters attracted little research efforts. In this study, the feasibility of implementing isolation perimeters around GM maize fields is investigated. Using Geographic Information System datasets and Monte Carlo simulations, various scenarios differing in shares and spatial distributions of GM maize were tested for various isolation perimeters in six agricultural areas in Flanders. Factors that affect the feasibility of implementing isolation perimeters are discussed.

  5. Selection of flooded agricultural fields and other landscapes by female northern pintails wintering in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2003-01-01

    Habitat selection and use are measures of relative importance of habitats to wildlife and necessary information for effective wildlife conservation. To measure the relative impor- tance of flooded agricultural fields and other landscapes to northern pintails (Anas acuta) wintering in Tulare Basin (TB), California, we radiotagged female pintails during late August-early October, 1991-1993 in TB and other San Joaquin Valley areas and deter- mined use and selection of these TB landscapes through March each year. Availability of landscape and field types in TB changed within and among years. Pintail use and selec- tion (based upon use-to-availability log ratios) of landscape and field types differed among seasons, years, and diel periods. Fields flooded after harvest and before planting (i.e., pre-irrigated) were the most available, used, and selected landscape type before the hunting season (Prehunt). Safflower was the most available, used, and-except in 1993, when pre-irrigated fallow was available-selected pre-irrigated field type during Prehunt. Pre-irrigated barley-wheat received 19-22% of use before hunting season, but selection varied greatly among years and diel periods. During and after hunting season, managed marsh was the most available, used, and, along with floodwater areas, selected landscape type; pre-irrigated cotton and alfalfa were the least selected field types and accounted for <13% of pintail use. Agricultural drainwater evaporation ponds, sewage treatment ponds, and reservoirs accounted for 42-48% of flooded landscape available but were lit- tle used and least selected. Exodus of pintails from TB coincided with drying of pre-irri- gated fallow, safflower, and barley-wheat fields early in winter, indicating that preferred habitats were lacking in TB during late winter. Agriculture conservation programs could improve TB for pintails by increasing flooding of fallow and harvested safflower and grain fields. Conservation of remaining wetlands should

  6. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains.

    PubMed

    Maseyk, Kadmiel; Berry, Joseph A; Billesbach, Dave; Campbell, John Elliott; Torn, Margaret S; Zahniser, Mark; Seibt, Ulli

    2014-06-24

    Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1-6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.

  7. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains

    PubMed Central

    Maseyk, Kadmiel; Berry, Joseph A.; Billesbach, Dave; Campbell, John Elliott; Torn, Margaret S.; Zahniser, Mark; Seibt, Ulli

    2014-01-01

    Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1–6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies. PMID:24927594

  8. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The coming Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10-20...

  9. Carbonic anhydrase binding site parameterization in OPLS-AA force field.

    PubMed

    Bernadat, Guillaume; Supuran, Claudiu T; Iorga, Bogdan I

    2013-03-15

    The parameterization of carbonic anhydrase binding site in OPLS-AA force field was performed using quantum chemistry calculations. Both OH2 and OH(-) forms of the binding site were considered, showing important differences in terms of atomic partial charges. Three different parameterization protocols were used, and the results obtained highlighted the importance of including an extended binding site in the charge calculation. The force field parameters were subsequently validated using standard molecular dynamics simulations. The results presented in this work should greatly facilitate the use of molecular dynamics simulations for studying the carbonic anhydrase, and more generally, the metallo-enzymes.

  10. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration

  11. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  12. Sites for Student Field Experiences in Refugee Mental Health. Task VI--Training.

    ERIC Educational Resources Information Center

    Hoshino, George; And Others

    This report on sites for student field experiences in refugee mental health has been prepared by the University of Minnesota's Mental Health Technical Assistance Center for the state refugee assistance programs. After a brief introduction describing the mission of the Technical Assistance Center, the characteristics of field experience in mental…

  13. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 5. Effects of High Electric Fields on Animals

    NASA Astrophysics Data System (ADS)

    Isaka, Katsuo

    The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.

  14. Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are a leading source of reactive nitrogen to aquatic and atmospheric ecosystems. Natural d15Nnitrate and d18Onitrate are used to identify the dominant nitrogen cycle processes and sources of NO3- leached from a tile-drained, dryland agricultural field. Tile-drain water discharge...

  15. [The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

    2009-01-01

    Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production.

  16. Field sampling and selecting on-site analytical methods for explosives in soil

    SciTech Connect

    Crockett, A.B.; Craig, H.D.; Jenkins, T.F.; Sisk, W.E.

    1996-12-01

    A large number of defense-related sites are contaminated with elevated levels of secondary explosives. Levels of contamination range from barely detectable to levels above 10% that need special handling because of the detonation potential. Characterization of explosives-contaminated sites is particularly difficult because of the very heterogeneous distribution of contamination in the environment and within samples. To improve site characterization, several options exist including collecting more samples, providing on-site analytical data to help direct the investigation, compositing samples, improving homogenization of the samples, and extracting larger samples. This publication is intended to provide guidance to Remedial Project Managers regarding field sampling and on-site analytical methods for detecting and quantifying secondary explosive compounds in soils, and is not intended to include discussions of the safety issues associated with sites contaminated with explosive residues.

  17. Modelling Water Flow, Heat Transport, Soil Freezing and Thawing, and Snow Processes in a Clayey, Subsurface Drained Agricultural Field

    NASA Astrophysics Data System (ADS)

    Warsta, L.; Turunen, M.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Karvonen, T.; Taskinen, A.

    2012-12-01

    Simulation of hydrological processes for the purposes of agricultural water management and protection in boreal environment requires description of winter time processes, including heat transport, soil freezing and thawing, and snow accumulation and melt. Finland is located north of the latitude of 60 degrees and has one third to one fourth of the total agricultural land area (2.3 milj. ha) on clay soils (> 30% of clay). Most of the clayey fields are subsurface drained to provide efficient drainage and to enable heavy machines to operate on the fields as soon as possible after the spring snowmelt. Generation of drainflow and surface runoff in cultivated fields leads to nutrient and sediment load, which forms the major share of the total load reaching surface waters at the national level. Water, suspended sediment, and soluble nutrients on clayey field surface are conveyed through the soil profile to the subsurface drains via macropore pathways as the clayey soil matrix is almost impermeable. The objective of the study was to develop the missing winter related processes into the FLUSH model, including soil heat transport, snow pack simulation and the effects of soil freezing and thawing on the soil hydraulic conductivity. FLUSH is an open source (MIT license), distributed, process-based model designed to simulate surface runoff and drainflow in clayey, subsurface drained agricultural fields. 2-D overland flow is described with the diffuse wave approximation of the Saint Venant equations and 3-D subsurface flow with a dual-permeability model. Both macropores and soil matrix are simulated with the Richards equation. Soil heat transport is described with a modified 3-D convection-diffusion equation. Runoff and groundwater data was available from different periods from January 1994 to April 1999 measured in a clayey, subsurface drained field section (3.6 ha) in southern Finland. Soil temperature data was collected in two locations (to a depth of 0.8 m) next to the

  18. Interactively Improving Agricultural Field Mapping in Sub-Saharan Africa with Crowd-Sourcing and Active Learning

    NASA Astrophysics Data System (ADS)

    Debats, S. R.; Estes, L. D.; Caylor, K. K.

    2015-12-01

    As satellite imagery becomes increasingly available, management of large image databases becomes more important for efficient image processing. We have developed a computer vision-based classification algorithm to distinguish smallholder agricultural land cover in Sub-Saharan Africa, using a group of high-resolution images from South Africa as a case study. For supervised classification, smallholder agriculture, with ambiguous patterns of small, irregular fields, requires a wide range of training data samples to adequately describe the variability in appearance. We employ crowd-sourcing to obtain new training data to expand the geographic range of our algorithm. A crowd-sourcing user is asked to hand-digitize the boundaries of agricultural fields in an assigned 1 km2 image. Yet random assignment of images to users could result in a highly redundant training data set with limited discriminative power. Furthermore, larger training data sets require a greater number of users to hand-digitize fields, which increases costs through crowd-sourcing engines like Amazon Mechanical Turk, as well as longer algorithm training times, which increases computing costs. Therefore, we employ an active learning approach to interactively select the most informative images to be hand-digitized for training data by crowd-sourcing users, based on changes in algorithm accuracy. We investigate the use of various image similarity measures used in content-based image retrieval systems, which quantify the distance, such as Euclidean distance or Manhattan distance, between a variety of extracted feature spaces to determine how similar the content of two images are. We determine the minimum training data set needed to maximize algorithm accuracy, as well as automate the selection of additional training images to classify a new target image that expands the geographic range of our algorithm.

  19. Technical procedures for implementation of acoustics site studies, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-09-01

    The purpose and scope of the technical procedure for processing data from the tethered meteorological system are covered. Definitions, interfaces, and concurrent data needs are also addressed. This technical procedure describes how to control, organize, verify, and archive tethered meteorological system data. These data will be received at the processing location from the field measurement location and are part of the characterization of the Deaf Smith County Site, Texas for the salt repository program. These measurements will be made in support of the sound propagation study and are a result of environmental data requirements for acoustics. 6 refs., 15 figs., 5 tabs.

  20. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    NASA Astrophysics Data System (ADS)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  1. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Ryan, J.V.; Perry, E.; Linak, W.P.; DeMarini, D.M.; Williams, R.W.

    1989-01-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open-field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. The study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  2. Particle size distribution and inorganic aerosol characterization during DAURE 2009 winter field campaign at Montseny site

    NASA Astrophysics Data System (ADS)

    Aranzazu Revuelta, M.; Gómez-Moreno, Francisco J.; Plaza, Javier; Coz, Esther; Pey, Jorge; Cusack, Michael; Pandolfi, Marco; Rodríguez-Maroto, Jesús J.; Pujadas, Manuel

    2010-05-01

    During DAURE 2009 winter field campaign, one of the sampling sites was Montseny, a rural background station located 40 km NNE from Barcelona and 25 km W from the Mediterranean Sea. It is a Natural Park and a protected area, thus with low human activity, mainly agriculture. The sampling station was located on a valley with it axis oriented on the direction NW-SE. At this site, a TSI-SMPS (DMA 3071 and CPC 3022) was installed in order to measure the particle number distribution in the size range 15-600 nm during the period March 19-27 with a measurement cycle of 12 minutes The particle mass distribution was measured by a micro-orifice uniform deposit impactor (MOUDI) using eleven size stages with aluminum substrates and a quartz fiber backup filter. Four samples were taken during the period 13-19 March, two during 24 hours and other two during 48 hours. This impactor has a wider size range allowing to measure from 56 to 18000 nm. The substrates and filters obtained were later analyzed for determining soluble ions (sulfate, nitrate, ammonium and calcium) by IC. There are mainly two different kinds of events measured with the SMPS. When the air masses were coming from SE, which meant that they could come from the park but also from the urban and industrial areas located in the pre-coastal depression, it was characterized by higher particle number concentrations and by size distributions centered on 80 nm. This meant it was an aged aerosol, which had grown up by coagulation, condensation and oxidation processes. When the air masses were coming from NW (the second valley axis side), the particle measured were much smaller, the instrument started to detect particles with 15 nm, but smaller ones could be possible. This meant that new particle nucleation could have occurred in the valley, just before arriving to the sampling point. From MOUDI samplings, two different types of events were also observed. Three of the four samplings coincided with stagnation of air masses or

  3. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils.

    PubMed

    Van Slycken, Stijn; Witters, Nele; Meiresonne, Linda; Meers, Erik; Ruttens, Ann; Van Peteghem, Pierre; Weyens, Nele; Tack, Filip M G; Vangronsveld, Jaco

    2013-01-01

    Short rotation coppice (SRC) of willow and poplar might be a promising phytoremediation option since it uses fast growing, high biomass producing tree species with often a sufficient metal uptake. This study evaluates growth, metal uptake and extraction potentials of eight willow clones (Belders, Belgisch Rood, Christina, Inger, Jorr, Loden, Tora and Zwarte Driebast) on a metal-contaminated agricultural soil, with total cadmium (Cd) and zinc (Zn) concentrations of 6.5 +/- 0.8 and 377 +/- 69 mg kg(-1) soil, respectively. Although, during the first cycle, on average generally low productivity levels (3.7 ton DM (dry matter) ha(-1) y(-1)) were obtained on this sandy soil, certain clones exhibited quite acceptable productivity levels (e.g. Zwarte Driebast 12.5 ton DM ha(-1) y(-1)). Even at low biomass productivity levels, SRC of willow showed promising removal potentials of 72 g Cd and 2.0 kg Zn ha(-1) y(-1), which is much higher than e.g. energy maize or rapeseed grown on the same soil Cd and Zn removal can be increased by 40% if leaves are harvested as well. Nevertheless, nowadays the wood price remains the most critical factor in order to implement SRC as an acceptable, economically feasible alternative crop on metal-contaminated agricultural soils.

  4. Traffic Management Advisor: Iterative Field Development and Assessment at Multiple Sites

    NASA Technical Reports Server (NTRS)

    Sanford, Beverly D.; Lee, Katharine K.; Harwood, Kelly; Denery, Dallas G. (Technical Monitor)

    1995-01-01

    Previous studies have demonstrated the necessity of involving users in the development of automation aids, especially for complex domains such as air traffic control (ATC). Traditional development only demanded a single field test to validate a completed system, but a more iterative combination of development and assessment ensures that the technology meets the requirements of its application domain. Exposure across an adequate spectrum of field users is also required during development, and the use of multiple development sites provides an opportunity to consider individual facility cultures as they relate to implementation strategies. The development of the Center/TRACON Automation System (CTAS) Traffic Management Advisor (TMA) at the Denver and Dallas ATC facilities demonstrates successful iterative development and assessment at multiple field sites. The use of field development changes the nature of assessment. As development progresses, periodic assessments are required to validate that system development is progressing along an appropriate track. In the development of the TMA, assessments were performed based on software in the field, and input from traffic managers was analyzed and incorporated into subsequent releases of the TMA, to be reassessed in the field. This has led to a tool with operational suitability and broad user acceptance. Assessment at multiple sites provides a more generalizable perspective that allows the production of a system that is both generic enough to be used at different sites and tailored enough to be of use at any site. In addition to providing a better understanding of specific facility requirements, the use of multiple assessment sites in the development of TMA has provided an opportunity to consider individual facility operations, procedures and cultures as they relate to development and implementation strategies.

  5. Evaluating multiple indices of agricultural water use efficiency and productivity to improve comparisons between sites and trends

    NASA Astrophysics Data System (ADS)

    Levy, M. C.

    2012-12-01

    Approximately 70% of global available freshwater supplies are used in the agricultural sector. Increased demands for water to meet growing population food requirements, and expected changes in the reliability of freshwater supplies due to climate change, threaten the sustainability of water supplies worldwide - not only on farms, but in connected cities and industries. Researchers concerned with agricultural water use sustainability use a variety of theoretical and empirical measures of efficiency and productivity to gain insight into the sustainability of agricultural water use. However, definitions of measures, or indices, vary between different natural and political boundaries, across regions, states and nations and between their respective research, industry, and environmental groups. Index development responds to local data availability and local agendas, and there is debate about the validity of various indices. However, real differences in empirical index measures are not well-understood across the multiple disciplines that study agricultural water use, including engineering and hydrology, agronomy, climate and soil sciences, and economics. Nevertheless reliable, accessible, and generalizable indices are required for planners and policymakers to promote sustainable water use systems. This study synthesizes a set of water use efficiency and productivity indices based on academic, industry and government literature in California and Australia, two locations with similarly water-stressed and valuable agricultural industries under pressure to achieve optimal water use efficiency and productivity. Empirical data at the irrigation district level from the California San Joaquin Valley and Murray Darling Basin states of Victoria and New South Wales in Australia are used to compute indices that estimate efficiency, yield productivity, and economic productivity of agricultural water use. Multiple index estimates of same time-series data demonstrate historical spread

  6. Comparing Nitrous Oxide Emissions from Paired No-Tillage and Conventional Tillage Agricultural Fields in the Northwest US: Insights from a Year of Intensive Monitoring

    NASA Astrophysics Data System (ADS)

    Waldo, S.; Kostyanovsky, K.; Pressley, S. N.; Huggins, D. R.; Stockle, C.; O'Keeffe, P.; Lamb, B. K.

    2015-12-01

    Agricultural soils are the main anthropogenic source of nitrous oxide (N2O), a potent greenhouse gas (GHG) and ozone depleting substance. Due to a high degree of both spatial and temporal variability coupled with limited availability of high-precision N2O sensors, emissions of N2O are difficult to quantify at the regional and field levels, scales important for determining best management practices. This study combined the use of automated static chambers and the flux gradient micrometeorological technique to continuously monitor emissions of N2O over two canola fields with differing tillage management: no-tillage and conventional tillage. Each site was instrumented with an array of sixteen chambers for the entire 2015 crop year (1 Oct - 30 Sept), and the N2O emissions were measured with the flux gradient method from 1 April thru 30 September. The chamber measurements indicated cumulative annual emissions of 6.0 and 3.1 kg N2O-N ha-1 for the conventional tillage and no-tillage sites, respectively, or 4.8% and 2.5% of applied fertilizer N. Emissions at the conventional tillage site were very low until the field was planted and fertilized, when emissions increased dramatically and stayed high until crop senesce. The growing season (1 April - June 15) accounted for 80% of total measured N2O losses (4.8 kg N2O-N ha-1). In contrast, the no-till site was characterized by consistent moderate emissions, and no spike after planting and fertilization was observed. The growing season only accounted for 30% of the total emissions (1.0 kg N2O-N ha-1). However, even sixteen chambers may not properly capture hot spots of emissions, and the spatially integrated flux gradient results did not corroborate the chamber results. The total emissions measured by the flux gradient method over the growing season were 1.6 and 1.4 kg N2O-N ha-1 for the conventional tillage and no-till sites, respectively. Further work on integrating the two techniques will be necessary to optimize

  7. Transfer function control strategy of Subak rice field land and agricultural development in Denpasar city

    NASA Astrophysics Data System (ADS)

    Lanya, Indayati; Netera Subadiyasa, N.; Sardiana, Ketut; Putu Ratna Adi, Gst.

    2017-01-01

    The success of tourism development in Bali gave a negative impact on Subak rice fields, especially on land convertion over 2579 ha year-1 (2002-2013) to the area awakened. Denpasar city has lost rice fields 185 ha year-1 and six Subak, as well as potentially losing 10 Subak, as a result of the allocation of space in the region in the Spatial Planing. UNESCO, in 2012 the establishment of Subak as a cultural heritage. Most Subak rice fields designated as an Urban Green Open Space ( UGOS). Satellite image Iconos 2002, World 2015 View Coverage of Denpasar, and ArcGIS 10.3 software used for mapping the balance of rice field and violation of land use in the area of UGOS. The control strategy over the convertion of spatial land-based environment is done through zoning map. Land conversion of rice fields for 13 years (2002-2015) in Denpasar (572.76 ha), comes standard acreage of rice fields in 2015. Denpasar city has experienced of food deficits, even in the UGOS has awakened 96.04 ha (24.04 ha year-1). A period of 50 years into the future, rice fields which needs to be protected 872.83 ha, buffer area 984.77 ha, and can be converted 499.81 ha.

  8. Rocketdyne division environmental monitoring annual report, Santa Susana Field Laboratory, De Soto, and Canoga Sites, 1990

    SciTech Connect

    none,

    1991-06-20

    This annual report discuses environmental monitoring at three manufacturing and test operations sites operated in the Southern California area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL.), the De Soto site, and the Canoga site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto and Canoga sites are essentially light industry with some laboratory-scale R&D and have little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear and radioactive materials, i.e., the U.S. DOE, the U.S. Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS), Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major realm of interest is radiological, this report also includes some discussion of nonradiological monitoring at SSFL

  9. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture

    PubMed Central

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-01-01

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205

  10. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

    PubMed

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-07-10

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  11. A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary

    2015-11-01

    Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.

  12. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.

    PubMed

    Fried, Stephen D; Bagchi, Sayan; Boxer, Steven G

    2014-12-19

    Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.

  13. Assessment of soil redistribution rates by (137)Cs and (210)Pbex in a typical Malagasy agricultural field.

    PubMed

    Rabesiranana, N; Rasolonirina, M; Solonjara, A F; Ravoson, H N; Raoelina Andriambololona; Mabit, L

    2016-02-01

    Soil degradation processes affect more than one-third of the Malagasy territory and are considered as the major environmental threat impacting the natural resources of the island. This innovative study reports about a pioneer test and use of radio-isotopic techniques (i.e. Cs-137 and Pb-210ex) under Madagascar agroclimatic condition to evaluate soil erosion magnitude. This preliminary investigation has been conducted in a small agricultural field situated in the eastern central highland of Madagascar, 40 km East from Antananarivo. Both anthropogenic Cs-137 and geogenic Pb-210 soil tracers provided similar results highlighting soil erosion rates reaching locally 18 t ha(-1) yr(-1,) a level almost two times higher than the sustainable soil loss rate under Madagascar agroclimatic condition. The sediment delivery ratio established with both radiotracers was above 80% indicating that most of the mobilized sediment exits the field. Assessing soil erosion rate through fallout radionuclides in Madagascar is a first step towards an efficient land and water resource management policy to optimise the effectiveness of future agricultural soil conservation practices.

  14. Investigating summer flow paths in a Dutch agricultural field using high frequency direct measurements

    NASA Astrophysics Data System (ADS)

    Delsman, J. R.; Waterloo, M. J.; Groen, M. M. A.; Groen, J.; Stuyfzand, P. J.

    2014-11-01

    The search for management strategies to cope with projected water scarcity and water quality deterioration calls for a better understanding of the complex interaction between groundwater and surface water in agricultural catchments. We separately measured flow routes to tile drains and an agricultural ditch in a deep polder in the coastal region of the Netherlands, characterized by exfiltration of brackish regional groundwater flow and intake of diverted river water for irrigation and water quality improvement purposes. We simultaneously measured discharge, electrical conductivity and temperature of these separate flow routes at hourly frequencies, disclosing the complex and time-varying patterns and origins of tile drain and ditch exfiltration. Tile drainage could be characterized as a shallow flow system, showing a non-linear response to groundwater level changes. Tile drainage was fed primarily by meteoric water, but still transported the majority (80%) of groundwater-derived salt to surface water. In contrast, deep brackish groundwater exfiltrating directly in the ditch responded linearly to groundwater level variations and is part of a regional groundwater flow system. We could explain the observed salinity of exfiltrating drain and ditch water from the interaction between the fast-responding pressure distribution in the subsurface that determined groundwater flow paths (wave celerity), and the slow-responding groundwater salinity distribution (water velocity). We found water demand for maintaining water levels and diluting salinity through flushing to greatly exceed the actual sprinkling demand. Counterintuitively, flushing demand was found to be largest during precipitation events, suggesting the possibility of water savings by operational flushing control.

  15. Production and conservation outcomes of a decade-long field-scale precision agriculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of site-specific crop management has often considered only a single management practice at a time. Research is needed that simultaneously considers economic and environmental objectives in crop production. From over a decade (1993-2003) of yield and soil mapping and water quality assess...

  16. Predation by carabid beetles on the invasive slug Arion vulgaris in an agricultural semi-field experiment.

    PubMed

    Pianezzola, E; Roth, S; Hatteland, B A

    2013-04-01

    Arion vulgaris Moquin-Tandon 1855 is one of the most important invasive species in Europe, affecting both biodiversity and agriculture. The species is spreading in many parts of Europe, inflicting severe damage to horticultural plants and cultivated crops partly due to a lack of satisfactory and effective management solutions. Molluscicides have traditionally been used to manage slug densities, although the effects are variable and some have severe side-effects on other biota. Thus, there is a need to explore potential alternatives such as biological control. The nematode Phasmarhabditis hermaphrodita is the only biological agent that has been applied commercially so far. However, other biological control agents such as carabid beetles have also been found to be promising. In addition, some carabid species have been shown to feed on A. vulgaris in the field as well as in the laboratory. Two species in particular have been found to be important predators of A. vulgaris, and these species are also common in agricultural environments: Pterostichus melanarius and Carabus nemoralis. This study is the first to use semi-field experiments in a strawberry field, manipulating densities, to investigate how P. melanarius and C. nemoralis affect densities of A. vulgaris eggs and juveniles, respectively. Gut contents of C. nemoralis were analysed using multiplex PCR methods to detect DNA of juvenile slugs. Results show that both P. melanarius and C. nemoralis significantly affect densities of slug eggs and juvenile slugs under semi-field conditions and that C. nemoralis seems to prefer slugs smaller than one gram. Carabus nemoralis seems to be especially promising in reducing densities of A. vulgaris, and future studies should investigate the potential of using this species as a biological control agent.

  17. Waterfowl density on agricultural fields managed to retain water in winter

    USGS Publications Warehouse

    Twedt, D.J.; Nelms, C.O.

    1999-01-01

    Managed water on private and public land provides habitat for wintering waterfowl in the Mississippi Valley, where flood control projects have reduced the area of natural flooding. We compared waterfowl densities on rice, soybean, and moist-soil fields under cooperative agreements to retain water from 1 November through 28 February in Arkansas and Mississippi and assessed temporal changes in waterfowl density during winter in 1991-1992 and 1992-1993. Fields flooded earlier in Arkansas, but retained water later in Mississippi. Over winter, waterfowl densities decreased in Arkansas and increased in Mississippi. Densities of waterfowl, including mallard (Anas platyrhynchos), the most abundant species observed, were greatest on moist-soil fields. However, soybean fields had the greatest densities of northern shoveler (Spatula clypeata).

  18. Spectral properties of agricultural crops and soils measured from space, aerial, field, and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1981-01-01

    Investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems are reviewed. The relationships of important biological and physical characteristics to the spectral properties of crops and soils are addressed.

  19. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-07-08

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.

  20. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River Basin, Maryland

    USGS Publications Warehouse

    McFarland, E. Randolph

    1995-01-01

    The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River Basin, Maryland, during 1986- 92. Nitrogen load was larger in ground water than in surface runoff at both sites. Denitrification and (or) long traveltimes of ground water at the study site in the Piedmont Province resulted in lower concentrations of nitrate than at the site in the Coastal Plain Province. The study period was brief compared to traveltimes of nitrogen in ground water of several decades. Therefore, the effects of agricultural practices were observed only in parts of both sites. At the Piedmont site, nitrate concentration in two springs was 7 mg/L (milligrams per liter) two years after corn was grown under no-till cultivation, and decreased to 3.5 mg/L during 4 years while cultivation practices and crops included no-till soybeans, continuous alfalfa, and contoured strips alternated among corn, alfalfa, and soybeans. Nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pounds per acre per year). At the Coastal Plain site, the concentration of nitrate in ground water decreased from 10 mg/L after soybeans were grown under no-till cultivation for 2 years, to 9 mg/L after soybeans were grown under conventional till cultivation for 3 years. No-till cultivation in 1988 resulted in a greater nitrogen load in ground water (12.55 (lbs/acre)/yr), as well as greater ground-water recharge and discharge, than conventional till cultivation in 1991 (11.51 (lbs/ acre)/yr), even though the amount and timing of precipitation for both years were similar.

  1. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    USGS Publications Warehouse

    McFarland, E. Randolph

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  2. Development of an unmanned aerial vehicle-based remote sensing system for site-specific management in precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Aerial Vehicle (UAV) can be remotely controlled or fly autonomously based on pre-programmed flight plans or more complex dynamic automation systems. In agriculture, UAVs have been used for pest control and remote sensing. The objective of this research was to develop a UAV system to en...

  3. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of surface energy fluxes over irrigated agriculture is needed to monitor crop water use. Estimates are commonly done using well-established techniques such as eddy covariance (EC) and weighing lysimetry, but implementing these to collect spatially distributed observations is complex and c...

  4. Standardization of doctoral study in agricultural and extension education: is the field of study mature enough for achievement of the optimum degree of order?

    PubMed

    Briers, G E; Lindner, J R; Shinn, G C; Wingenbach, G W; Baker, M T

    2010-01-01

    Agricultural and extension education--or some derivative name--is a field of study leading to the doctoral degree in universities around the world. Is there are body of knowledge or a taxonomy of the knowledge--e.g., a knowledge domain--that one should possess with a doctorate in agricultural and extension education? The purpose of this paper was to synthesize the work of researchers who attempted to define the field of study, with a taxonomy comprising the knowledge domains (standards) and knowledge objects--structured interrelated sets of data, knowledge, and wisdom--of the field of study. Doctoral study in agricultural and extension education needs a document that provides for rules and guidelines--rules and guidelines that in turn provide for common and repeated use--all leading to achievement of an optimum degree of order in the context of academic, scholarly, and professional practice in agricultural and extension education. Thus, one would know in broad categories the knowledge, skills, and abilities possessed by one who holds a doctoral degree in agricultural and extension education. That is, there would exist a standard for doctoral degrees in agricultural and extension education. A content analysis of three previous attempts to categorize knowledge in agricultural and extension education served as the primary technique to create a new taxonomy--or to confirm an existing taxonomy--for doctoral study in agricultural and extension education. The following coalesced as nine essential knowledge domains for a doctorate in agricultural and extension education: (1) history, philosophy, ethics, and policy; (2) agricultural/rural development; (3) organizational development and change management; (4) planning, needs assessment, and evaluation; (5) learning theory; (6) curriculum development and instructional design; (7) teaching methods and delivery strategies; (8) research methods and tools; and, (9) scholarship and communications.

  5. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  6. Health system reform and the role of field sites based upon demographic and health surveillance.

    PubMed Central

    Tollman, S. M.; Zwi, A. B.

    2000-01-01

    Field sites for demographic and health surveillance have made well-recognized contributions to the evaluation of new or untested interventions, largely through efficacy trials involving new technologies or the delivery of selected services, e.g. vaccines, oral rehydration therapy and alternative contraceptive methods. Their role in health system reform, whether national or international, has, however, proved considerably more limited. The present article explores the characteristics and defining features of such field sites in low-income and middle-income countries and argues that many currently active sites have a largely untapped potential for contributing substantially to national and subnational health development. Since the populations covered by these sites often correspond with the boundaries of districts or subdistricts, the strategic use of information generated by demographic surveillance can inform the decentralization efforts of national and provincial health authorities. Among the areas of particular importance are the following: making population-based information available and providing an information resource; evaluating programmes and interventions; and developing applications to policy and practice. The question is posed as to whether their potential contribution to health system reform justifies arguing for adaptations to these field sites and expanded investment in them. PMID:10686747

  7. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    USGS Publications Warehouse

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through

  8. Interim Report for Bioventing Field Initiative at Site UST 173, Robins Air Force Base, Georgia

    DTIC Science & Technology

    2007-11-02

    This report describes the activities conducted at Robins Air Force Base (AFB), Georgia, Site UST 173 as part of the Bioventing Field Initiative for...which includes a soil gas survey, air permeability test, in situ respiration tests, and installation of bioventing systems. The specific objectives of this task are described in the following section.

  9. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Tom G.; Vanzyl, Jakob J.

    1991-01-01

    Polarimetric signatures from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert show systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright 'spokes', which seems to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripple on the relatively vegetationless fields. A Late Pleistocene/Holocene sand bar deposit, which can be identified in the radar images, is probably responsible for the failure of three fields to match the age sequence patterns in roughness and peak shift.

  10. Infrared-temperature variability in a large agricultural field. [Dunnigan, California

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. L. (Principal Investigator)

    1980-01-01

    The combined effect of water carved gullies, varying soil color, moisture state of the soil and crop, nonuniform phenology, and bare spots was measured for commercially grown barley planted on varying terrain. For all but the most rugged terrain, over 80% of the area within 4, 16, 65, and 259 ha cells was at temperatures within 3 C of the mean cell temperature. The result of using relatively small, 4 ha instantaneous field of views for remote sensing applications is that either the worst or the best of conditions is often observed. There appears to be no great advantage in utilizing a small instantaneous field of view instead of a large one for remote sensing of crop canopy temperatures. The two alternatives for design purposes are then either a very high spatial resolution, of the order of a meter or so, where the field is very accurately temperature mapped, or a low resolution, where the actual size seems to make little difference.

  11. Field fracturing multi-sites project. Annual report, August 1, 1995--July 31, 1996

    SciTech Connect

    1996-12-31

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments are to be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment conducive to acquiring high-quality data. The primary Project goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic fracturing test site to diagnose, characterize, and test hydraulic fracturing technology and performance. It is anticipated that the research work being conducted by the multi-disciplinary team of GRI and DOE contractors will lead to the development of a commercial fracture mapping tool/service.

  12. Effects of agricultural practices on greenhouse gas emissions (N2O, CH4 and CO2) from corn fields

    NASA Astrophysics Data System (ADS)

    Hui, D.; Wang, J.; Jima, T.; Dennis, S.; Stockert, C.; Smart, D.; Bhattarai, S.; Brown, K.; Sammis, T.; Reddy, C.

    2012-12-01

    The United States is, by far, the largest producer of corn (Zea mays L.) in the world. Recent increases in fertilizer cost and concerns over global climate change have farmers and others interested in more efficient fertilization management and greenhouse gas emissions reductions. To seek the best management practices, we conducted field experiments during the 2012 growing season at Tennessee State University Agricultural Research and Demonstration Center in Nashville, TN. Six treatments were applied including regular URAN application [2 times], multiple URAN applications [4 times], denitrification inhibitor with regular URAN application, and chicken litter plus regular URAN application in no-tilled plots, and URAN application plus bio-char in tilled plots, all compared to regular URAN application in conventional tilled plots. Each treatment was replicated six times (blocks). We measured N2O, CO2 and CH4 emissions using a closed chamber method after rainfall events, fertilizer applications or every two weeks whichever was shorter. Corresponding soil NH4+-N and NO3--N, soil temperature and moisture were also measured during the gas sampling. Plant physiology and growth were measured about every two weeks. While preliminary results indicate that N2O and CO2 fluxes were significantly influenced by the agricultural practices on some days, particularly after rainfall events, CH4 flux was not influenced by the treatments during most of the days. Plots with bio-char showed significantly lower N2O emissions. We also measured N2O flux in a commercial corn field using the Eddy Covariance (EC) technique to ground verify the chamber based N2O emissions at the field scale. Results obtained with the EC technique seem comparable with the chamber method.

  13. Aquatic Insect Emergence in Post-Harvest Flooded Agricultural Fields in the Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Moss, R. C.; Blumenshine, S.; Fleskes, J.

    2005-05-01

    California's Southern San Joaquin Valley is one of the most important waterbird areas in North America, but has suffered a disproportionate loss of wetlands when compared to other California regions. This project analyzes the habitat value of post-harvest flooded cropland by measuring the emergence of aquatic insects across multiple crop types. Aquatic insect emergence was sampled from post-harvest flooded fields of four crop types (alfalfa, corn, tomato, wheat), August-October, 2003-2004. Emergence was measured using traps deployed with a stratified random distribution to sample between and within field variation. Emergence rate and emergent biomass was significantly higher in flooded tomato fields. Results from corn fields indicate that flooding depth was correlated (r=0.095) with both diel temperature fluctuation and emergence rate. Chironomus dilutus larvae were grown in environmental chambers, under two thermal treatments with the same mean but different amplitudes (high: 15°-32°C, low: 20°-26°C) to investigate thermal fluctuation effects on survival and biomass. Larval survival (4x) and biomass (2x) were significantly greater in the low versus high temperature fluctuation treatment. This research has the potential to affect agricultural management throughout the 12,600 km2 region, increase aquatic insect production and aid in the recovery of declining bird populations.

  14. Growing Indian Fig Opuntia on selenium-laden agriculture drainage sediment under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing alternative crops for saline and selenium (Se) impacted lands in arid regions, e.g., Western United States, depends upon the plant’s ability to tolerate the presence of high salts and boron (B). In this field study, we planted 2-month old cacti plants on 30 x 1m beds and evaluated the abilit...

  15. Validation of a new method for quantification of ammonia volatilization from agricultural field plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low cost method of atmospheric ammonia (NH3) concentration was developed and validated for use in static chambers. This technique utilizes glass tubes coated with oxalic acid to adsorb NH3 from the air. The advantage of this procedure is that it can be used to quantify NH3 emissions from field p...

  16. Multi-scale satellite assessment of water availability and agricultural drought: from field to global scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper discusses a multi-scale remote sensing modeling system that fuses flux assessments generated with TIR imagery collected by multiple satellite platforms to estimate daily surface fluxes from field to global scales. The Landsat series of polar orbiting systems has collected TIR imagery at 6...

  17. Rapid field assessment of RO desalination of brackish agricultural drainage water.

    PubMed

    Thompson, John; Rahardianto, Anditya; Gu, Han; Uchymiak, Michal; Bartman, Alex; Hedrick, Marcos; Lara, David; Cooper, Jim; Faria, Jose; Christofides, Panagiotis D; Cohen, Yoram

    2013-05-15

    Rapid field evaluation of RO feed filtration requirements, selection of effective antiscalant type and dose, and estimation of suitable scale-free RO recovery level were demonstrated using a novel approach based on direct observation of mineral scaling and flux decline measurements, utilizing an automated Membrane Monitor (MeMo). The MeMo, operated in a stand-alone single-pass desalting mode, enabled rapid assessment of the adequacy of feed filtration by enabling direct observation of particulate deposition on the membrane surface. The diagnostic field study with RO feed water of high mineral scaling propensity revealed (via direct MeMo observation) that suspended particulates (even for feed water of turbidity <1 NTU) could serve as seeds for promoting surface crystal nucleation. With feed filtration optimized, a suitable maximum RO water recovery, with complete mineral scale suppression facilitated by an effective antiscalant dose, can be systematically and directly identified (via MeMo) in the field for a given feed water quality. Scale-free operating conditions, determined via standalone MeMo rapid diagnostic tests, were shown to be applicable to spiral-would RO system as validated via both flux decline measurements and ex-situ RO plant membrane scale monitoring. It was shown that the present approach is suitable for rapid field assessment of RO operability and it is particularly advantageous when evaluating water sources of composition that may vary both temporally and across the regions of interest.

  18. Oscillatory Hydraulic Tomography at the Field Scale: Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Lim, D.; Barrash, W.; Cardiff, M. A.

    2015-12-01

    The use of sinusoidal or periodic testing for field-scale tomography of aquifer parameters (conductivity / storativity) is a novel, minimally-invasive method for aquifer characterization between boreholes. Previous results have demonstrated the effectiveness of this method, which we name Oscillatory Hydraulic Tomography (OHT), through both numerical and laboratory experiments. However, implementation and analysis of field-scale OHT testing has not been achieved to-date, and thus the technique remains unproven for application in real-world aquifers. We present an evaluation of OHT at the field scale here through application at the Boise Hydrogeophysical Research Site (BHRS), a field-scale (~20m diameter x 20m thickness) research site. Through Bayesian inversion, we assess issues such as data quality impacts and resolution of obtained tomographic images. We discuss issues associated with both data collection and data processing, and based on our experiences suggest a workflow for OHT performance at other field sites. The advantages of OHT, relative to "traditional" hydraulic tomography with constant rate pumping tests, include the ability to test across a range of stimulation frequencies (obtaining increased heterogeneity information), very high signal-to-noise ratios. Additionally, we examine the impact of nonlinear effects - such as water table boundary conditions - and their impact on OHT analysis algorithms.

  19. Numerical modeling of field tests in unsaturated fractured basalt at the Box Canyon site

    SciTech Connect

    Doughty, C.

    1998-05-01

    A TOUGH2 model of a ponded infiltration test has been developed and used to predict the results of a field experiment conducted in the vadose zone of the fractured Snake River Plain basalts, at the Box Canyon site in southeastern idaho. The key question addressed is how fracture-pattern characteristics and connectivity affect the pattern of liquid infiltration. The numerical model, a two-dimensional vertical cross-section, uses half-meter discretization for the shallow field site, which extends about 20 m from the ground surface to an underlying perched water body. The model includes explicit but highly simplified representations of major fractures and other important hydrological features. It adequately reproduces the majority of the field observations, confirming the notion that infiltration is largely fracture-controlled.

  20. Impact of land consolidation and field borders on soil erosion and storage within agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Salvador-Blanes, Sébastien; Olivier, Evrard; Van Oost, Kristof; Hinschberger, Florent; Macaire, Jean-Jacques

    2014-05-01

    Soil erosion plays an important role in sediment and carbon storage within, and exports from, catchments. In cultivated landscapes, field borders can improve the temporary storage of eroded soil particles and associated carbon, by impeding lateral soil fluxes. These local soil accumulations can lead to the development of linear landforms (such as headlands and lynchets) which will keep evolving after field border removal. A recent study performed in a representative cultivated hillslope of the SW Parisian Basin showed that 39% of the area corresponds to landforms resulting from soil accumulation induced by former and present field borders. This study demonstrated that field borders influence greatly the landscape morphology, but also the spatial distribution of soil thickness, and locally the A-horizon thickness, which are essential parameters for the prediction of SOC stocks. This study aims at characterizing and quantifying the effect of field borders and their removal on medium term topsoil erosion and deposition rates in a cultivated hillslope of the SW Parisian Basin, consolidated in 1967. Here, we used the Cs-137 technique to assess recent patterns of soil redistribution. We measured the Cs-137 inventories of 68 soil cores sampled along transects covering the area and, more specifically, linear landforms identified along present and past field borders (i.e., lynchet and undulation landforms, respectively). Then, we used a spatially-distributed Cs-137 conversion model that simulates and discriminates soil redistribution induced by water and tillage erosion processes over the last fifty years. Finally, observations and model outputs were confronted. Our results show that tillage erosion dominate the soil redistribution in the study area for the 1954-2009 period and generated about 95% (i.e., 4.50 Mg.ha-1.yr-1) of the total gross erosion. Soil redistribution was largely affected by the presence of current and former field borders, where hotspots areas of

  1. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  2. Performance of in situ chemical oxidation field demonstrations at DOE sites

    SciTech Connect

    Cline, S.R.; West, O.R.; Siegrist, R.L.; Holden, W.L.

    1997-04-01

    Researchers at the Oak Ridge National Laboratory (ORNL) have been investigating the use of in situ chemical oxidation to remediate organic contaminants (VOCs, SVOCs, and PCBs) in soils and groundwater at the laboratory and field scales. Field scale design parameters (e.g., oxidant loading rates and oxidant delivery techniques) are often dictated by site conditions (e.g., soil properties and initial contaminant concentrations). Chemical destruction of organic compounds can be accomplished using a variety of oxidants. Recent research has involved field scale in situ chemical oxidation demonstrations using H{sub 2}O{sub 2} and KMnO{sub 4} in conjunction with soil mixing as the oxidant delivery mechanism. A description of some of these fields activities and future field-scale work is presented here.

  3. Evaluation of the effects of varying moisture contents on microwave thermal emissions from agriculture fields

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.

    1980-01-01

    Three tasks related to soil moisture sensing at microwave wavelengths were undertaken: (1) analysis of data at L, X and K sub 21 band wavelengths over bare and vegetated fields from the 1975 NASA sponsored flight experiment over Phoenix, Arizona; (2) modeling of vegetation canopy at microwave wavelengths taking into consideration both absorption and volume scattering effects; and (3) investigation of overall atmospheric effects at microwave wavelengths that can affect soil moisture retrieval. Data for both bare and vegetated fields are found to agree well with theoretical estimates. It is observed that the retrieval of surface and near surface soil moisture information is feasible through multi-spectral and multi-temporal analysis. It is also established that at long wavelengths, which are optimal for surface sensing, atmospheric effects are generally minimal. At shorter wavelengths, which are optimal for atmosheric retrieval, the background surface properties are also established.

  4. Remote sensing for precision agriculture: Within-field spatial variability analysis and mapping with aerial digital multispectral images

    NASA Astrophysics Data System (ADS)

    Gopalapillai, Sreekala

    2000-10-01

    Advances in remote sensing technology and biological sensors provided the motivation for this study on the applications of aerial multispectral remote sensing in precision agriculture. The feasibility of using high-resolution multispectral remote sensing for precision farming applications such as soil type delineation, identification of crop nitrogen levels, and modeling and mapping of weed density distribution and yield potential within a crop field was explored in this study. Some of the issues such as image calibration for variable lighting conditions and soil background influence were also addressed. Intensity normalization and band ratio methods were found to be adequate image calibration methods to compensate for variable illumination and soil background influence. Several within-field variability factors such as growth stage, field conditions, nutrient availability, crop cultivar, and plant population were found to be dominant in different periods. Unsupervised clustering of color infrared (CIR) image of a field soil was able to identify soil mapping units with an average accuracy of 76%. Spectral reflectance from a crop field was highly correlated to the chlorophyll reading. A regression model developed to predict nitrogen stress in corn identified nitrogen-stressed areas from nitrogen-sufficient areas with a high accuracy (R2 = 0.93). Weed density was highly correlated to the spectral reflectance from a field. One month after planting was found to be a good time to map spatial weed density. The optimum range of resolution for weed mapping was 4 m to 4.5 m for the remote sensing system and the experimental field used in this study. Analysis of spatial yield with respect to spectral reflectance showed that the visible and NIR reflectance were negatively correlated to yield and crop population in heavily weed-infested areas. The yield potential was highly correlated to image indices, especially to normalized brightness. The ANN model developed for one of the

  5. [Information and communication on the electromagnetic fields: analysis of the Italian Internet sites].

    PubMed

    Bedini, A; Giliberti, C; Salerno, S

    2008-01-01

    The aim of this study is to evaluate the presence of contents related to communication and information on the exposure to the electromagnetic fields (emf) in the first 100 Italian Internet sites, carried out using the search engine Google with the key words "emf" and "emf and health". Each Internet site has been evaluated using 10 selected indicators: (1) Definition of electric, magnetic and electromagnetic fields; (2) Description of the physical effects of the emf; (3) Description of biological and health effects of the emf; (4) Description of the environmental sources; (5) Description of the environmental levels produced by the different sources; (6) Main legislation; (7) Risk perception; (8) Frequently asked questions (FAQ); (9) Links; (10) Forum for discussion. The sites, obtained for each search, have been classified into 6 main categories: (1) Public Research Institutes; (2) Health and Environmental Authorities; (3) Local Authorities; (4) Associations; (5) Commercial sites; (6) Other. The results show lack of information and communication on the emf in the analysed Italian Internet sites. A need for a design of any scientific Internet information and communication on this topic is shown.

  6. HT to HTO conversion and field experiments near Darlington Nuclear Power Generating Station (DNPGS) site.

    PubMed

    Kim, S B; Stuart, M; Bredlaw, M; Festarini, A; Beaton, D

    2014-06-01

    The Canadian input parameters related to tritiated hydrogen gas (HT) used in tritium dose models are currently based on experiments performed at the Chalk River Laboratories (CRL) site in 1986, 1987 and 1994. There is uncertainty in how well other sites experiencing atmospheric HT releases are represented by these data. In order to address this uncertainty, HT to HTO conversion factors were evaluated at different locations near the Darlington Nuclear Power Generating Station (DNPGS) site using various experimental approaches. These were D2 gas exposure chamber experiments, atmospheric tritium measurements, and HTO and OBT measurements in vegetation and soil. In addition to these field experiments, chamber experiments were conducted using HT gas on field soil samples. The suggested Canadian input parameters for atmospheric tritium releases estimate the total fraction of HT oxidized in air and in soil, at the site, to be up to a maximum of 2.4%. Based on the more limited data obtained near DNPGS in early spring, this fraction would likely be closer to 0.5%. The result suggests that current parameters provide a conservative estimate for the DNPGS site.

  7. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    SciTech Connect

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ``standard sites`` located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements.

  8. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  9. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  10. Temporal variability of colloidal material in agricultural storm runoff from managed grassland using flow field-flow fractionation.

    PubMed

    Gimbert, Laura J; Worsfold, Paul J

    2009-12-25

    This paper reports the use of flow field-flow fractionation (FlFFF) to determine the temporal variability of colloidal (<1mum) particle size distributions in agricultural runoff waters in a small managed catchment in SW England during storm events. Three storm events of varying intensity were captured and the colloidal material in the runoff analysed by FlFFF. The technique had sufficient sensitivity to determine directly the changing colloidal profile over the 0.08-1.0mum size range in the runoff waters during these storm events. Rainfall, total phosphorus and suspended solids in the bulk runoff samples were also determined throughout one storm and showed significant correlation (P<0.01) with the amount of colloidal material. Whilst there are some uncertainties in the resolution and absolute calibration of the FlFFF profiles, the technique has considerable potential for the quantification of colloidal material in storm runoff waters.

  11. Controls on Nitrogen Fluxes from Agricultural Fields: Differing Conclusions Based on Choice of Sensitivity Analysis Method

    NASA Astrophysics Data System (ADS)

    Ahrens, T.; Matson, P.; Lobell, D.

    2006-12-01

    Sensitivity analyses (SA) of biogeochemical and agricultural models are often used to identify the importance of input variables for variance in model outputs, such as crop yield or nitrate leaching. Identification of these factors can aid in prioritizing efforts in research or decision support. Many types of sensitivity analyses are available, ranging from simple One-At-A-Time (OAT) screening exercises to more complex local and global variance-based methods (see Saltelli et al 2004). The purpose of this study was to determine the influence of the type of SA on factor prioritization in the Yaqui Valley, Mexico using the Water and Nitrogen Management Model (WNMM; Chen et al 2005). WNMM, a coupled plant-growth - biogeochemistry simulation model, was calibrated to reproduce crop growth, soil moisture, and gaseous N emission dynamics in experimental plots of irrigated wheat in the Yaqui Valley, Mexico from 1994-1997. Three types of SA were carried out using 16 input variables, including parameters related to weather, soil properties and crop management. Methods used for SA were local OAT, Monte Carlo (MC), and a global variance-based method (orthogonal input; OI). Results of the SA were based on typical interpretations used for each test: maximum absolute ratio of variation (MAROV) for OAT analyses; first- and second-order regressions for MC analyses; and a total effects index for OI. The three most important factors identified by MC and OI methods were generally in agreement, although the order of importance was not always consistent and there was little agreement for variables of less importance. OAT over-estimated the importance of two factors (planting date and pH) for many outputs. The biggest differences between the OAT results and those from MC and OI were likely due to the inability of OAT methods to account for non-linearity (eg. pH and ammonia volatilization), interactions among variables (eg. pH and timing of fertilization) and an over-reliance on baseline

  12. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability.

  13. Controlling factors of nitrous oxide (N2O) emissions at the field-scale in an agricultural slope

    NASA Astrophysics Data System (ADS)

    Vilain, Guillaume; Garnier, Josette; Tallec, Gaëlle; Tournebize, Julien; Cellier, Pierre; Flipo, Nicolas

    2010-05-01

    Agricultural practices widely contribute to the atmospheric nitrous oxide (N2O) concentration increase and are the major source of N2O which account for 24% of the global annual emission (IPCC, 2007). Soil nitrification and denitrification are the microbial processes responsible for the production of N2O, which also depends on soil characteristics and management. Besides their control by various factors, such as climate, soil conditions and management (content of NO3- and NH4+, soil water content, presence of degradable organic material…), the role of topography is less known although it can play an important role on N2O emissions (Izaurralde et al., 2004). Due to the scarcity of data on N2O direct vs. indirect emission rate from agriculture in the Seine Basin (Garnier et al., 2009), one of the objectives of the study conducted here was to determine the N2O emission rates of the various land use representative for the Seine Basin, in order to better assess the direct N2O emissions, and to explore controlling factor such as meteorology, topography, soil properties and crop successions. The main objective of this study was at the same time to characterize N2O fluxes variability along a transect from an agricultural plateau to a river and to analyze the influence of landscape position on these emissions. We conducted this study in the Orgeval catchment (Seine basin, France; between 48°47' and 48°55' N, and 03°00' and 03°55' E) from May 2008 to August 2009 on two agricultural fields cropped with wheat, barley, oats, corn. N2O fluxes were monitored from weekly to bimonthly using static manual chambers placed along the chosen transect in five different landscape positions from the plateau to the River. This study has shown that soil moisture (expressed as Water Filled Pore Space) and NO3- soil concentrations explained most of the N2O flux variability during the sampling period. Most of N2O was emitted directly after N fertilization application during a relatively

  14. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.

    PubMed

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-07-08

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.

  15. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan

    PubMed Central

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-01-01

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues. PMID:27399754

  16. Analysis of Malpractice Claims Associated with Surgical Site Infection in the Field of Plastic Surgery

    PubMed Central

    2016-01-01

    Postoperative infections are rare after plastic surgery; however, when present, they can affect the aesthetic outcome. Currently, many malpractice lawsuits are associated with surgical site infection. The present study aimed to analyze malpractice claims associated with surgical site infection in the field of plastic surgery through a review of Korean precedents. We analyzed the type of procedure, associated complications, and legal judgment in these cases. Most claimants were women, and claims were most often related to breast surgery. The common complications related to surgical site infection were deformity, scar, and asymmetry. Among the 40 cases, 34 were won by the plaintiff, and the mean claim settlement was 2,832,654 KRW (USD 2,636.6). The reasons for these judgements were as follows: 1) immediate bacterial culture tests were not performed and appropriate antibiotics were not used; 2) patients were not transferred to a high-level hospital or the infection control department was not consulted; 3) surgical site infection control measures were not appropriate; and 4) surgical procedures were performed without preoperative explanation about surgical site infection. The number of claims owing to surgical site infection after surgery is increasing. Infection handling was one of the key factors that influenced the judgement, and preoperative explanation about the possibility of infection is important. The findings will help surgeons achieve high patient satisfaction and reduce liability concerns. PMID:27822936

  17. Nitrogen Cycle Modeling: a Mechanistic Estimate of N-losses From Agricultural Fields Over the Seasonal Time Period

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Gu, C.; Venterea, R.; Riley, W.; Oldenburg, C.

    2007-12-01

    The biogeochemical cycle of nitrogen and production of NO, N2O, and CO2 gas and NO2- and NO3- ions in nutrient-enriched agricultural fields is mediated by soil microbial activity, the hydrological cycle, plant dynamics, and climatic forcing. Understanding how NO, N2O, CO2 gases and NO2- and NO3- ions are released from agricultural fields to the environment is a key factor in controlling the green-house effect and water contamination, and assumes ever greater importance in view of the foreseen increase in biofuel, food, and fiber production. To address these issues we have developed a mechanistic model (TOUGHREACT-N) for various nitrification and denitrification pathways, multiple microbial biomass dynamics, heat and water flows, and various chemical reactions at local and kinetic equilibrium. The soil column is represented in a 1D framework, with hydraulic properties described by a water tension-saturation model. Biotic and abiotic reactions are assumed to follow Michaelis-Menten kinetics, while a consortium of several micro-organismal strains is assumed to follow multiple Monod growth kinetics accounting for electron donor, electron acceptor, and inhibitor concentrations. Water flow is modeled with the Darcy-Richards equation, while nutrient transport is modeled by Fickian advective and diffusive processes in both gaseous and liquid phases. Heat flow is modeled with the Fourier equation. Plant dynamics is taken into account by coupling TOUGHREACT-N with CERES to determine water and nutrient uptake, and soil carbon accumulation. TOUGHREACT-N was calibrated against field measurements to assess pathways of N losses following fertilization. A good agreement between field observations and model predictions was found. We identified two dominant time scales in the system response that depended on plants dynamics. Before plants have substantial impact on soil nutrients and moisture content, N losses are characterized by rapid increases as a function of water application

  18. Field screening at petroleum contaminated sites: A tool to save time, money

    SciTech Connect

    Hood, G.M.; Pucel, P.G.; Allee, P.

    1998-01-01

    The most expensive part of an environmental assessment is often lab services. Control of these costs while still collecting adequate data to assess a site is sometimes the difference between solvency and bankruptcy, especially for small companies. Fortunately, the use of field screening techniques can significantly reduce the quantity of samples going to the laboratory for analysis, thus controlling overall project costs. Chemical and Environmental Consultants, Inc. (CEC) has been field evaluating a rapid, widely applicable method for field screening petroleum contaminated soils and wastes for SVOCs. The method is similar in application to US EPA Method 418.1 and allows for the field screening of soil and waste samples in about 10 minutes. The method uses fluorescence spectroscopy analysis of a solvent extract of the soil or waste sample.

  19. Changes in contaminant mass discharge from DNAPL source mass depletion: Evaluation at two field sites

    NASA Astrophysics Data System (ADS)

    Brooks, Michael C.; Wood, A. Lynn; Annable, Michael D.; Hatfield, Kirk; Cho, Jaehyun; Holbert, Charles; Rao, P. Suresh C.; Enfield, Carl G.; Lynch, Kira; Smith, Richard E.

    2008-11-01

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes ( J; ML - 2 T - 1 ) were integrated across the well transect to estimate contaminant mass discharge ( MD; MT - 1 ) from the source zone. Estimated MD before source treatment, based on both PFM and IPT methods, were ~ 76 g/day for TCE at the Hill AFB site; and ~ 640 g/day for TCE, and ~ 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to ~ 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to ~ 3 g/day for TCE and ~ 3 g/day for DCE ~ 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (> 90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.

  20. Changes in contaminant mass discharge from DNAPL source mass depletion: evaluation at two field sites.

    PubMed

    Brooks, Michael C; Wood, A Lynn; Annable, Michael D; Hatfield, Kirk; Cho, Jaehyun; Holbert, Charles; Rao, P Suresh C; Enfield, Carl G; Lynch, Kira; Smith, Richard E

    2008-11-14

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.

  1. Off-site impacts of agricultural composting: role of terrestrially derived organic matter in structuring aquatic microbial communities and their metabolic potential.

    PubMed

    Pommier, Thomas; Merroune, Asmaa; Bettarel, Yvan; Got, Patrice; Janeau, Jean-Louis; Jouquet, Pascal; Thu, Thuy D; Toan, Tran D; Rochelle-Newall, Emma

    2014-12-01

    While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems.

  2. Site exploration for rock-mechanics field tests in the Grouse Canyon Member, Belted Range Tuff, U12g Tunnel Complex, Nevada Test Site

    SciTech Connect

    Langkopf, B.S.; Eshom, E.

    1982-02-01

    This report describes site exploration work completed in support of planned rock-mechanics field tests in the Grouse Canyon Member of the Belted Range Ruff at Nevada Test Site`s, G-Tunnel. As part of this work, the Rock Mechanics Drift (RMD) and the Rock Mass Property Alcove (RMPA) were mined and three coreholes drilled. The results of mapping and corehole logging are displayed, described, and analyzed.

  3. Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E; Nybroe, Ole; Brandt, Kristian Koefoed

    2014-11-01

    Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu speciation and bioavailability artifacts during Leu-PICT detection. Hence, the agricultural application of urban wastes (sewage sludge or composted municipal waste) simulating more than 100 years of use did not result in sufficient accumulation of Cu to select for Cu resistance. Our findings also have implications for previously published PICT field studies and demonstrate that stringent PICT detection criteria are needed for field identification of specific toxicants.

  4. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  5. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    PubMed

    Natarajan, Aditya; Yabukarski, Filip; Lamba, Vandana; Schwans, Jason P; Sunden, Fanny; Herschlag, Daniel

    2015-08-28

    Fried et al. (Reports, 19 December 2014, p. 1510) demonstrated a strong correlation between reaction rate and the carbonyl stretching frequency of a product analog bound to ketosteroid isomerase oxyanion hole mutants and concluded that the active-site electric field provides 70% of catalysis. Alternative comparisons suggest a smaller contribution, relative to the corresponding solution reaction, and highlight the importance of atomic-level descriptions.

  6. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study.

    PubMed

    Ma, Ting Ting; Teng, Ying; Luo, Yong Ming; Christie, Peter

    2013-01-01

    A field experiment was conducted to study the phytoremediation of phthalic acid esters (PAEs) by legume (alfalfa, Medicago sativa L.)-grass (perennial ryegrass, Lolium perenne L. and tall fescue, Festuca arundinacea) intercropping in contaminated agricultural soil at one of the largest e-waste recycling sites in China. Two compounds, DEHP and DnBP, were present in the soil and in the shoots of the test plants at much higher concentrations than the other target PAEs studied. Over 80% of 'total' (i.e., all six) PAEs were removed from the soil across all treatments by the end of the experiment. Alfalfa in monoculture removed over 90% of PAEs and alfalfa in the intercrop of the three plant species contained the highest shoot concentration of total PAEs of about 4.7 mg kg(-1) DW (dry weight). Calculation of phytoextraction efficiency indicated that the most effective plant combinations in eliminating soil PAEs were the three-species intercrop (1.78%) and the alfalfa monocrop (1.41%). Phytoremediation with alfalfa was effective in both monoculture and intercropping. High bioconcentration factors (BCFs) indicated the occurrence of significant extraction of PAEs by plants from soil, suggesting that phytoremediation may have potential for the removal of PAEs from contaminated soils.

  7. Use of vegetated agricultural drainage ditches to decrease toxicity of irrigation runoff from tomato and alfalfa fields in California, USA.

    PubMed

    Werner, Inge; Deanovic, Linda A; Miller, Jeff; Denton, Debra L; Crane, David; Mekebri, Abdou; Moore, Matthew T; Wrysinski, Jeanette

    2010-12-01

    The current study investigated the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas),and the amphipod Hyalella azteca was measured for 12 h or less at the ditch inflow and outflow, using custom-built in situ exposure systems. In addition, water and sediment samples were subject to standard toxicity tests with Ceriodaphnia dubia and H. azteca, respectively. No acute toxicity to larval fathead minnow was observed; however, runoff was highly toxic to invertebrates. Passage through a 389- to 402-m section of vegetated ditch had a mitigating effect and reduced toxicity to some degree. However, runoff from an alfalfa field treated with chlorpyrifos remained highly toxic to both invertebrate species, and runoff from a tomato field treated with permethrin remained highly toxic to H. azteca after passage through the ditch. Predicted toxic units calculated from insecticide concentrations in runoff and 96-h median lethal concentration (LC50) values generally agreed with C. dubia toxicity measured in the laboratory but significantly underestimated in situ toxicity to H. azteca. Sediments collected near the ditch outflow were toxic to H. azteca. Results from the current study demonstrate that experimental vegetated ditches were unable to eliminate the risk of irrigation runoff to aquatic ecosystems. In addition, protective measures based on chemical concentrations or laboratory toxicity tests with C. dubia do not ensure adequate protection of aquatic ecosystems from pyrethroid-associated toxicity.

  8. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils.

    PubMed

    Li, Jing; Ma, Yi-Bing; Hu, Hang-Wei; Wang, Jun-Tao; Liu, Yu-Rong; He, Ji-Zheng

    2015-01-01

    Copper contamination on China's arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC) with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg(-1) in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values) characterized by SMBC. Structural equation model (SEM) analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

  9. Resilience at the Transition to Agriculture: The Long-Term Landscape and Resource Development at the Aceramic Neolithic Tell Site of Chogha Golan (Iran).

    PubMed

    Riehl, S; Asouti, E; Karakaya, D; Starkovich, B M; Zeidi, M; Conard, N J

    2015-01-01

    The evidence for the slow development from gathering and cultivation of wild species to the use of domesticates in the Near East, deriving from a number of Epipalaeolithic and aceramic Neolithic sites with short occupational stratigraphies, cannot explain the reasons for the protracted development of agriculture in the Fertile Crescent. The botanical and faunal remains from the long stratigraphic sequence of Chogha Golan, indicate local changes in environmental conditions and subsistence practices that characterize a site-specific pathway into emerging agriculture. Our multidisciplinary approach demonstrates a long-term subsistence strategy of several hundred years on wild cereals and pulses as well as on hunting a variety of faunal species that were based on relatively favorable and stable environmental conditions. Fluctuations in the availability of resources after around 10.200 cal BP may have been caused by small-scale climatic fluctuations. The temporary depletion of resources was managed through a shift to other species which required minor technological changes to make these resources accessible and by intensification of barley cultivation which approached its domestication. After roughly 200 years, emmer domestication is apparent, accompanied by higher contribution of cattle in the diet, suggesting long-term intensification of resource management.

  10. Resilience at the Transition to Agriculture: The Long-Term Landscape and Resource Development at the Aceramic Neolithic Tell Site of Chogha Golan (Iran)

    PubMed Central

    Riehl, S.; Asouti, E.; Karakaya, D.; Starkovich, B. M.; Zeidi, M.; Conard, N. J.

    2015-01-01

    The evidence for the slow development from gathering and cultivation of wild species to the use of domesticates in the Near East, deriving from a number of Epipalaeolithic and aceramic Neolithic sites with short occupational stratigraphies, cannot explain the reasons for the protracted development of agriculture in the Fertile Crescent. The botanical and faunal remains from the long stratigraphic sequence of Chogha Golan, indicate local changes in environmental conditions and subsistence practices that characterize a site-specific pathway into emerging agriculture. Our multidisciplinary approach demonstrates a long-term subsistence strategy of several hundred years on wild cereals and pulses as well as on hunting a variety of faunal species that were based on relatively favorable and stable environmental conditions. Fluctuations in the availability of resources after around 10.200 cal BP may have been caused by small-scale climatic fluctuations. The temporary depletion of resources was managed through a shift to other species which required minor technological changes to make these resources accessible and by intensification of barley cultivation which approached its domestication. After roughly 200 years, emmer domestication is apparent, accompanied by higher contribution of cattle in the diet, suggesting long-term intensification of resource management. PMID:26345115

  11. SUMMARY OF TECHNIQUES AND UNIQUE USES FOR DIRECT PUSH METHODS IN SITE CHARACTERIZATION ON CONTAMINATED FIELD SITES

    EPA Science Inventory

    Site characterization of subsurface contaminant transport is often hampered by a lack of knowledge of site heterogeneity and temporal variations in hydrogeochemistry. Two case studies are reviewed to illustrate the utility of macro-scale mapping information along with spatially-...

  12. Modelling in situ enzyme potential of soils: a tool to predict soil respiration from agricultural fields

    NASA Astrophysics Data System (ADS)

    Shahbaz Ali, Rana; Poll, Christian; Demyan, Scott; Nkwain Funkuin, Yvonne; Ingwersen, Joachim; Wizemann, Hans-Dieter; Kandeler, Ellen

    2014-05-01

    temperatures. Q10 of β-glucosidase activity changed significantly across the year (Q10 values ranges from 1.5 to 2.0 in Kraichgau and 1.6 to 2.1 in Swabian Alb), while for xylanase activity, no significant effects were found (Q10 values ranges from 1.2 to 3.0 in Kraichgau and 1.3 to 3.3 in Swabian Alb) in both study regions. By using laboratory based enzyme activities, calculated Q10 values, and daily soil temperature data, we modelled in situ enzyme potentials in soils for labile and recalcitrant carbon pools for both study regions. We observed an increase in modelled in situ enzyme activities during the summer period and a substantial decrease during winter indicating temperature as a strong controlling factor. A significant higher positive correlation of soil surface CO2 flux with modelled in situ β-glucosidase activity was found in both study regions compared to modelled in situ xylanase activity. These results demonstrate that (1) Q10 values are site and season specific and should be added into carbon models and (2) the indication of the relevance of greater contribution of labile carbon pool to soil CO2 emissions.

  13. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic

    SciTech Connect

    Linak, W.P.; Ryan, J.V.; Perry, E.; Williams, R.W.; DeMarini, D.M.

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions.

  14. A Guide to Field Trip Sites in Coastal North Carolina. Project CAPE Teaching Module SC3a.

    ERIC Educational Resources Information Center

    Carroll, Walter B.; Carroll, Carolyn H.

    This guide provides information on preparing students in grades 4-10 for field trips and describes possible field trip sites in the northeastern, mid-eastern, and southeastern regions of North Carolina. Selected sites in the northeastern region (from Roanoke Island to Ocracoke) include the Dare Coastline and Cape Hatteras National Seashore.…

  15. Secondary organic aerosol characterization at field sites across the United States during the spring-summer period

    EPA Science Inventory

    Sources of secondary organic carbon at 15 field sites across the United States (U.S.) during the years 2003-2010 have been examined. Filter samples have been taken for 24-h at a site in Research Triangle Park, NC; at SEARCH sites in southeastern U.S. during May and August 2005; ...

  16. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites.

    PubMed

    Hu, LiHong; Ryde, Ulf

    2011-08-09

    We have critically examined and compared various ways to obtain standard harmonic molecular mechanics (MM) force-field parameters for metal sites in proteins, using the 12 most common Zn(2+) sites as test cases. We show that the parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation, for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical (QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered. Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded interactions for atoms separated by two bonds. Complexes with a single water ligand

  17. Analysis of field size distributions, LACIE test sites 5029, 5033, and 5039, Anhwei Province, People's Republic of China

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1976-01-01

    A study was made of the field size distributions for LACIE test sites 5029, 5033, and 5039, People's Republic of China. Field lengths and widths were measured from LANDSAT imagery, and field area was statistically modeled. Field size parameters have log-normal or Poisson frequency distributions. These were normalized to the Gaussian distribution and theoretical population curves were made. When compared to fields in other areas of the same country measured in the previous study, field lengths and widths in the three LACIE test sites were 2 to 3 times smaller and areas were smaller by an order of magnitude.

  18. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    PubMed Central

    Christiansen, Peter; Nielsen, Lars N.; Steen, Kim A.; Jørgensen, Rasmus N.; Karstoft, Henrik

    2016-01-01

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). PMID:27845717

  19. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.

    PubMed

    Christiansen, Peter; Nielsen, Lars N; Steen, Kim A; Jørgensen, Rasmus N; Karstoft, Henrik

    2016-11-11

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45-90 m) than RCNN. RCNN has a similar performance at a short range (0-30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).

  20. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    NASA Astrophysics Data System (ADS)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Although maize is the second most important crop worldwide, and the most important C4 crop, no study on biogenic volatile organic compounds (BVOCs) has yet been conducted on this crop at ecosystem scale and over a whole growing season. This has led to large uncertainties in cropland BVOC emission estimations. This paper seeks to fill this gap by presenting, for the first time, BVOC fluxes measured in a maize field at ecosystem scale (using the disjunct eddy covariance by mass scanning technique) over a whole growing season in Belgium. The maize field emitted mainly methanol, although exchanges were bi-directional. The second most exchanged compound was acetic acid, which was taken up mainly in the growing season. Bi-directional exchanges of acetaldehyde, acetone and other oxygenated VOCs also occurred, whereas the terpenes, benzene and toluene exchanges were small, albeit significant. Surprisingly, BVOC exchanges were of the same order of magnitude on bare soil and on well developed vegetation, suggesting that soil is a major BVOC reservoir in agricultural ecosystems. Quantitatively, the maize BVOC emissions observed were lower than those reported in other maize, crops and grasses studies. The standard emission factors (SEFs) estimated in this study (231 ± 19 µg m-2 h-1 for methanol, 8 ± 5 µg m-2 h-1 for isoprene and 4 ± 6 µg m-2 h-1 for monoterpenes) were also much lower than those currently used by models for C4 crops, particularly for terpenes. These results suggest that maize fields are small BVOC exchangers in north-western Europe, with a lower BVOC emission impact than that modelled for growing C4 crops in this part of the world. They also reveal the high variability in BVOC exchanges across world regions for maize and suggest that SEFs should be estimated for each region separately.

  1. Effects of agricultural tillage practise on green house gas balance of an arable soil in a long term field experiment

    NASA Astrophysics Data System (ADS)

    Munch, Jean Charles; Schilling, Rolf; Ruth, Bernhard; Fuss, Roland

    2010-05-01

    Soils are an important part of the global carbon cycle. A large proportion of global carbon dioxide (CO2) emissions is released from soils, though carbon sequestration occurs. Nitrous oxide (N2O) emissions of soils are also believed to contribute significantly to the green house effect as well as the stratospheric ozone depletion. An important source of N2O emissions is denitrification of nitrate from nitrogen fertilized soils. Although it is desirable to minimize these emissions while maintaining high crop yields it is still poorly understood how green house gas emissions may be steered by agricultural management practise, i.e. tillage and fertilization systems . In an ongoing long term field experiment at the research farm Scheyern, Bavaria, a arable field with one homogenous soil formation was transformed into plots in a randomized design 14 years ago. Since then, they are managed using conventional tillage (CT) and no tillage (NT) as well as low and high fertilization. A conventional crop rotation is maintained on the field. Starting 2007, CO2 and N2O emissions were monitored continuously for 2.5 years. Furthermore water content, temperature and redox potential were measured in-situ as they are major factors on microbial activity and denitrification. Soil was sampled from the Ap horizons of the plots about twice a month and extracts from these soil samples were analyzed for dissolved organic carbon (DOC), ammonium, nitrate/nitrite, and dissolved organic nitrogen (DON). According to the results soil density and hydrology are clearly affected by tillage practise. DOC is more affected by tillage while concentration of nitrogen species is controlled mainly by fertilization. There are distinct differences in redox potential between CT and NT plots with CT plots having more anaerobic periods. CO2 and N2O emissions exhibit a clear seasonal pattern and are affected by both tillage system and fertilization

  2. Demonstration and validation of automated agricultural field extraction from multi-temporal Landsat data for the majority of United States harvested cropland

    NASA Astrophysics Data System (ADS)

    Yan, L.; Roy, D. P.

    2014-12-01

    The spatial distribution of agricultural fields is a fundamental description of rural landscapes and the location and extent of fields is important to establish the area of land utilized for agricultural yield prediction, resource allocation, and for economic planning, and may be indicative of the degree of agricultural capital investment, mechanization, and labor intensity. To date, field objects have not been extracted from satellite data over large areas because of computational constraints, the complexity of the extraction task, and because consistently processed appropriate resolution data have not been available or affordable. A recently published automated methodology to extract agricultural crop fields from weekly 30 m Web Enabled Landsat data (WELD) time series was refined and applied to 14 states that cover 70% of harvested U.S. cropland (USDA 2012 Census). The methodology was applied to 2010 combined weekly Landsat 5 and 7 WELD data. The field extraction and quantitative validation results are presented for the following 14 states: Iowa, North Dakota, Illinois, Kansas, Minnesota, Nebraska, Texas, South Dakota, Missouri, Indiana, Ohio, Wisconsin, Oklahoma and Michigan (sorted by area of harvested cropland). These states include the top 11 U.S states by harvested cropland area. Implications and recommendations for systematic application to global coverage Landsat data are discussed.

  3. Post Audit of a Field Scale Reactive Transport Model of Uranium at a Former Mill Site

    NASA Astrophysics Data System (ADS)

    Curtis, G. P.

    2015-12-01

    Reactive transport of hexavalent uranium (U(VI)) in a shallow alluvial aquifer at a former uranium mill tailings site near Naturita CO has been monitored for nearly 30 years by the US Department of Energy and the US Geological Survey. Groundwater at the site has high concentrations of chloride, alkalinity and U(VI) as a owing to ore processing at the site from 1941 to 1974. We previously calibrated a multicomponent reactive transport model to data collected at the site from 1986 to 2001. A two dimensional nonreactive transport model used a uniform hydraulic conductivity which was estimated from observed chloride concentrations and tritium helium age dates. A reactive transport model for the 2km long site was developed by including an equilibrium U(VI) surface complexation model calibrated to laboratory data and calcite equilibrium. The calibrated model reproduced both nonreactive tracers as well as the observed U(VI), pH and alkalinity. Forward simulations for the period 2002-2015 conducted with the calibrated model predict significantly faster natural attenuation of U(VI) concentrations than has been observed by the persistent high U(VI) concentrations at the site. Alternative modeling approaches are being evaluating evaluated using recent data to determine if the persistence can be explained by multirate mass transfer models developed from experimental observations at the column scale(~0.2m), the laboratory tank scale (~2m), the field tracer test scale (~1-4m) or geophysical observation scale (~1-5m). Results of this comparison should provide insight into the persistence of U(VI) plumes and improved management options.

  4. Effects of NO3 (-) and PO4 (3-) on the release of geogenic arsenic and antimony in agricultural wetland soil: a field and laboratory approach.

    PubMed

    Rouwane, Asmaa; Rabiet, Marion; Grybos, Malgorzata; Bernard, Guillaume; Guibaud, Gilles

    2016-03-01

    The dynamics of arsenic (As) and antimony (Sb) in wetland soil periodically submitted to agricultural pressure as well as the impact of soil enrichment with NO3 (-) (50 mg L(-1)) and PO4 (3-) (20 mg L(-1)) on As and Sb release were evaluated at both field and laboratory scales. The results showed that As and Sb exhibited different temporal behaviors, depending on the study scale. At field scale, As release (up to 93 μg L(-1)) occurred under Fe-reducing conditions, whereas Sb release was favored under oxidizing conditions (up to 5 μg L(-1)) and particularity when dissolved organic carbon (DOC) increased in soil pore water (up to 92.8 mg L(-1)). At laboratory scale, As and Sb release was much higher under reducing conditions (up to 138 and 1 μg L(-1), respectively) compared to oxic conditions (up to 6 and 0.5 μg L(-1), respectively) and was enhanced by NO3 (-) and PO4 (3-) addition (increased by a factor of 2.3 for As and 1.6 for Sb). The higher release of As and Sb in the enriched reduced soil compared to the non-enriched soil was probably induced by the combined effect of PO4 (3-) and HCO3 (-) which compete for the same binding sites of soil surfaces. Modeling results using Visual Minteq were in accordance with experimental results regarding As but failed in simulating the effects of PO4 (3-) and HCO3 (-) on Sb release.

  5. Problems getting from the laboratory to the field: Reclamation of an AML site

    SciTech Connect

    Dick, W.A.; Stehouwer, R.C.; Bigham, J.M.; Beeghly, J.H.

    1994-12-31

    Acid and toxic abandoned mineland sites provide an opportunity whereby flue gas desulfurization (FGD) by-product can be beneficially used as a reclamation amendment material. Studies are needed to compare the effectiveness of FGD by-product, as compared with resoil, for reclamation purposes. Initial studies provided information about the chemical and physical properties of the FGD by-product and how to transport and blend the FGD by-product with yard waste compost. Greenhouse studies indicated that rates of 125 dry tons/acre of FGD and 50 dry tons/acre of yard waste compost would provide optimum results for reclamation of acid and toxic spoil contained at the Fleming abandoned mineland (AML) site. Their results showed that heavy metal loading rates were much lower using the FGD/compost mixture than using resoil material. Dioxin in the mixture was also less than the 5 ppt level considered as normal background. The technical problems of using FGD by-product for reclamation of an AML site were solved. However, considerable efforts to educate the public about the merits of reclaiming the Fleming AML site using this FGD/compost mixture were required before initiating field reclamation activities. Education efforts must continue if FGD by-products are to achieve general acceptance as a reclamation alternative to resoil in cases where resoil is of scarce supply.

  6. PISCES field chemical emissions monitoring project: Site 116 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 116. Site 116 consists of a pulverized coal-fired boiler burning a bituminous coal, with an electrostatic precipitator for particulate control. Site 116 also included s a Babcock & Wilcox`s DOE Clean Coal Technology Program`s 5{minus}MWe SO{sub x}{minus}NO{sub x}-Rox Box {trademark} (SNRB{trademark}) Field Demonstration. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  7. Combined remediation technologies: results from field trials at chlorinated solvent impacted sites

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Chowdhury, A. I.; Lomheim, L.; Boparai, H. K.; Weber, K.; Austrins, L. M.; Edwards, E.; Sleep, B.; de Boer, C. V.; Garcia, A. N.

    2015-12-01

    Non-aqueous phase liquids (NAPLs) are one class of waste liquids often generated from waste mixtures in industrial processes containing surfactants, chlorinated hydrocarbons and other compounds. Chlorinated solvents, a particularly persistent NAPL contaminant, frequently contaminate water sources for decades and are one of the more common contaminants at brownfield and industrialized sites. Although considerable advances in our understanding of the phenomena governing NAPL remediation have been made, and a number of innovative remediation technologies have been developed, existing technologies are rarely able to achieve clean up goals in contaminated aquifers at the completion of remedial activities. The development and pilot scale testing of new and innovative remediation technologies is, therefore, crucial to achieve clean up goals at contaminated sites. Our research group is currently investigating a number of innovative remediation technologies, either individually or as combined remedies. This includes the applicability of nanometals and ISCO (e.g., persulfate) for contaminated site remediation. These technologies can be combined with technologies to enhance amendment delivery (e.g., electrokinetics) or create conditions favorable for enhanced biotic contaminant degradation. This presentation will discuss outcomes from a number of field trials conducted at chlorinated solvent impacted sites by our group with a particular focus on combined remediation technologies.

  8. In situ bioventing at a natural gas dehydrator site: Field demonstration

    SciTech Connect

    Lawrence, A.W.; Miller, D.L.; Miller, J.A.; Weightman, R.L.; Raetz, R.M.; Hayes, T.D.

    1995-12-31

    This paper describes a bioventing/biosparging field demonstration that was conducted over a 10-month period at a former glycol dehydrator site located near Traverse City, Michigan. The goal of the project was to determine the feasibility of this technology for dehydrator site remediation and to develop engineering design concepts for applying bioventing/biosparging at similar sites. The chemicals of interest are benzene, toluene, ethylbenzene, and xylenes (BTEX) and alkanes. Soil sampling indicated that the capillary fringe and saturated zones were heavily contaminated, but that the unsaturated zone was relatively free of the contaminants. A pump-and-treat system has operated since 1991 to treat the groundwater BTEX plume. Bioventing/biosparging was installed in September 1993 to treat the contaminant source area. Three different air sparging operating modes were tested to determine an optimal process configuration for site remediation. These operational modes were compared through in situ respirometry studies. Respirometry measurements were used to estimate biodegradation rates. Dissolved oxygen and carbon dioxide were monitored in the groundwater.

  9. Criteria for identifying and evaluating candidate sites for open-field trials of genetically engineered mosquitoes.

    PubMed

    Brown, David M; Alphey, Luke S; McKemey, Andrew; Beech, Camilla; James, Anthony A

    2014-04-01

    Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories-Scientific, Regulatory, Community Engagement, and Resources-in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a "go/no-go" decision-making process for further development and testing of the technologies.

  10. Criteria for Identifying and Evaluating Candidate Sites for Open-Field Trials of Genetically Engineered Mosquitoes

    PubMed Central

    Brown, David M.; Alphey, Luke S.; McKemey, Andrew; Beech, Camilla

    2014-01-01

    Abstract Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories—Scientific, Regulatory, Community Engagement, and Resources—in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a “go/no-go” decision-making process for further development and testing of the technologies. PMID:24689963

  11. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance.

  12. Genetic variability of spined soldier bugs (Hemiptera: Pentatomidae) sampled from distinct field sites and laboratory colonies in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spined soldier bug, Podisus maculiventris (Say), is an important biological control agent for agricultural and forest pests that preys on eggs and larvae of lepidopteran and coleopteran species. Genetic variability among field collected samples from Michigan, Mississippi, Missouri, and Florida, ...

  13. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses

    NASA Astrophysics Data System (ADS)

    Helmer, K. G.; Chou, M.-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-03-01

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  14. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses

    PubMed Central

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials. PMID:27330240

  15. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect

    Griffith, C.A.; Lowry, G.; Dzombak, D.; Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  16. The explosion sites of nearby supernovae seen with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, Hanindyo

    Integral field spectroscopy of nearby supernova sites within ~30 Mpc have been obtained using multiple IFU spectrographs in Hawaii and Chile. This technique enables both spatial and spectral information of the explosion sites to be acquired simultaneously, thus providing the identification of the parent stellar population of the supernova progenitor and the estimates for its physical parameters including age and metallicity via the spectrum. While this work has mainly been done in the optical wavelengths using instruments such as VIMOS, GMOS, and MUSE, a near-infrared approach has also been carried out using the AO-assisted SINFONI. By studying the supernova parent stellar population, we aim to characterize the mass and metallicity of the progenitors of different types of supernovae.

  17. Impact of dicyandiamide on emissions of nitrous oxide, nitric oxide and ammonia from agricultural field in the North China Plain.

    PubMed

    Zhou, Yizhen; Zhang, Yuanyuan; Tian, Di; Mu, Yujing

    2016-02-01

    Nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) emissions from an agricultural field in the North China Plain were compared for three treatments during a whole maize growing period from 26 June to 11 October, 2012. Compared with the control treatment (without fertilization, designated as CK), remarkable pulse emissions of N2O, NO and NH3 were observed from the normal fertilization treatment (designated as NP) just after fertilization, whereas only N2O and NH3 pulse emissions were evident from the nitrification inhibitor treatment (designated as ND). The reduction proportions of N2O and NO emissions from the ND treatment compared to those from the NP treatment during the whole maize growing period were 31% and 100%, respectively. A measurable increase of NH3 emission from the ND treatment was found with a cumulative NH3 emission of 3.8 ± 1.2 kg N/ha, which was 1.4 times greater than that from the NP treatment (2.7 ± 0.7 kg N/ha).

  18. Development of a field worthy sensor system to monitor gaseous nitrogen transfer from agricultural cropland. Phase 1, Final report

    SciTech Connect

    Not Available

    1992-11-01

    Nitrogen fertilizer accounts for 25 to 33% of the energy requirements in modern crop agriculture in the world today. Energy input for the manufacture of these N fertilizers is in the range of 460 {times} 10{sup 12} Btu per year. Unfortunately, for some N sources up to 70% of this energy in the form of NK can be lost through improper application techniques and poor N management strategies. Anhydrous NH{sub 3} may be lost to the atmosphere during and after placement due to soil conditions placement. Measurement of volatile N is difficult, especially under field conditions. A precise and convenient method of measuring gaseous NH{sub 3} near and above the soil surface is prerequisite to the development and evaluation of altemative fertilizer management strategies and application techniques which can reduce the potential for significant loss. Recent advances in integrated-optic (IO) based sensing offers the potential of measuring low levels of NH{sub 3} loss from a cropping system in the range of 100 ppB. The integrated design of an IO system allows for a more durable device that can be mass produced at low cost. Under Phase I of this project, two IO devices were designed and tested: an absorption device using an oxazine dye as a waveguide coating and an interferometric device using an anilinium salt as a waveguide coating.

  19. Classification of small agricultural fields using combined Landsat-8 and RapidEye imagery: case study of northern Serbia

    NASA Astrophysics Data System (ADS)

    Crnojević, Vladimir; Lugonja, Predrag; Brkljač, Branko; Brunet, Borislav

    2014-01-01

    A pixel-based cropland classification study based on the fusion of data from satellite images with different resolutions is presented. It is based on a time series of multispectral images acquired at different resolutions by different imaging instruments, Landsat-8 and RapidEye. The proposed data fusion method capabilities are explored with the aim of overcoming the shortcomings of different instruments in the particular cropland classification scenario characterized by the very small size of crop fields over the chosen agricultural region situated in the plains of Vojvodina in northern Serbia. This paper proposes a data fusion method that is successfully utilized in combination with arobust random forest classifier in improving the overall classification performance, as well as in enabling application of satellite imagery with a coarser spatial resolution in the given specific cropland classification task. The developed method effectively exploits available data and provides an improvement over the existing pixel-based classification approaches through the combination of different data sources. Another contribution of this paper is the employment of crowdsourcing in the process of reference data collection via dedicated smartphone application.

  20. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  1. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS.

    PubMed

    Bajgain, Rajen; Xiao, Xiangming; Basara, Jeffrey; Wagle, Pradeep; Zhou, Yuting; Zhang, Yao; Mahan, Hayden

    2017-02-01

    Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations (r (2) = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ∼30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.

  2. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS

    NASA Astrophysics Data System (ADS)

    Bajgain, Rajen; Xiao, Xiangming; Basara, Jeffrey; Wagle, Pradeep; Zhou, Yuting; Zhang, Yao; Mahan, Hayden

    2017-02-01

    Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations ( r 2 = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % ( D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ˜30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.

  3. SUMMARY OF TECNIQUES AND UNIQUE USES FOR DIRECT PUSH METHODS IN SITE CHARACTERIZATION ON CONTAMINATED FIELD SITES

    EPA Science Inventory

    At many of the sites where we have been asked to assist in site characterization, we have discovered severe discrepancies that new technologies may be able to prevent. This presentation is designed to illustrate these new technologies or unique uses of existing technology and the...

  4. Integration of geological, geochemical, and geophysical spatial data of the Cement oil field, Oklahoma, test site

    USGS Publications Warehouse

    Termain, Patricia A.; Donovan, Terrence J.; Chavez, Pat S.; Barringer, Anthony R.

    1980-01-01

    Measurement pertaining to geology, geochemistry, and geophysics of the Cement oil field, Oklahoma, test site were collected employing both airborne sensors and ground-based data collection. The measurements include: (1) airborne gamma-ray spectrometry (supplying bismuth 214, thalium 208, and potassium 40 gamma-ray intensities); (2) aeromagnetic survey data; (3) multi-frequency airborne resistivity survey data (supplying apparent electrical resistivity of near surface materials); (4) gravity data; (5) geological and topographic maps; and (6) image data from Landsat MSS and U-2 photography.

  5. Microbial adaption to a pesticide in agricultural soils: Accelerated degradation of 14C-atrazine in field soils from Brazil and Belgium

    NASA Astrophysics Data System (ADS)

    Jablonowski, Nicolai David; Martinazzo, Rosane; Hamacher, Georg; Accinelli, Cesare; Köppchen, Stephan; Langen, Ulrike; Linden, Andreas; Krause, Martina; Burauel, Peter

    2010-05-01

    An increasing demand for food, feed and bioenergy, and simultaneously a decline of arable land will require an intensive agricultural production including the use of pesticides. With an increasing use of pesticides the occurrence of an accelerated degradation potential has to be assessed. Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is one of the most widely used herbicides in the world. Even though its use was banned in several countries it is still widely used throughout America and the Asia-Pacific region. Atrazine is the most widely used herbicide in maize plantations in Brazil and the US. The use of atrazine in Belgium and all EU member states was banned in September 2004, with the permission to consume existing stocks until October 2005. Atrazine and its residues are still regularly detected in soil, ground and surface waters even years after its prohibition. Its persistence in soil and in association with organic particles might become crucial in terms of erosion due to climate and environmental changes. Due to its potential microbiological accessibility, the microbial mineralization of atrazine competes with chemical/physical interaction such as sorption and binding processes of the chemical molecule in the soil matrix. Binding or intrusion of the chemical on soil components results in a decrease of its accessibility for soil microbes, which does not necessarily exclude the molecule from environmental interactions. In the present study the accelerated atrazine degradation in agriculturally used soils was examined. Soil samples were collected from a Rhodic Ferralsol, Campinas do Sul, South Brazil, and Geric Ferralsol, Correntina, Northeastern Brazil. The sampling site of the Rhodic Ferralsol soil has been under crop rotation (soybean/wheat/maize/oat) since 1990. The Geric Ferralsol site has alternately been cultivated with maize and soybean since 2000. Both areas have been treated biennially with atrazine at recommended doses of 1.5 - 3

  6. Analyzing subsurface drain network performance in an agricultural monitoring site with a three-dimensional hydrological model

    NASA Astrophysics Data System (ADS)

    Nousiainen, Riikka; Warsta, Lassi; Turunen, Mika; Huitu, Hanna; Koivusalo, Harri; Pesonen, Liisa

    2015-10-01

    Effectiveness of a subsurface drainage system decreases with time, leading to a need to restore the drainage efficiency by installing new drain pipes in problem areas. The drainage performance of the resulting system varies spatially and complicates runoff and nutrient load generation within the fields. We presented a method to estimate the drainage performance of a heterogeneous subsurface drainage system by simulating the area with the three-dimensional hydrological FLUSH model. A GIS analysis was used to delineate the surface runoff contributing area in the field. We applied the method to reproduce the water balance and to investigate the effectiveness of a subsurface drainage network of a clayey field located in southern Finland. The subsurface drainage system was originally installed in the area in 1971 and the drainage efficiency was improved in 1995 and 2005 by installing new drains. FLUSH was calibrated against total runoff and drain discharge data from 2010 to 2011 and validated against total runoff in 2012. The model supported quantification of runoff fractions via the three installed drainage networks. Model realisations were produced to investigate the extent of the runoff contributing areas and the effect of the drainage parameters on subsurface drain discharge. The analysis showed that better model performance was achieved when the efficiency of the oldest drainage network (installed in 1971) was decreased. Our analysis method can reveal the drainage system performance but not the reason for the deterioration of the drainage performance. Tillage layer runoff from the field was originally computed by subtracting drain discharge from the total runoff. The drains installed in 1995 bypass the measurement system, which renders the tillage layer runoff calculation procedure invalid after 1995. Therefore, this article suggests use of a local correction coefficient based on the simulations for further research utilizing data from the study area.

  7. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    SciTech Connect

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  8. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    SciTech Connect

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy`s (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions.

  9. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings.

    PubMed

    Almasi, Bettina; Béziers, Paul; Roulin, Alexandre; Jenni, Lukas

    2015-09-01

    Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.

  10. Impact assessment and recommendation of alternative conjunctive water use strategies for salt affected agricultural lands through a field scale decision support system - a case study.

    PubMed

    Kaur, Ravinder; Paul, Madhumita; Malik, Rashmi

    2007-06-01

    Conjunctive use of saline/non-saline irrigation waters is generally aimed at minimizing yield losses and enhancing flexibility of cropping, without much alteration in farming operations. Recommendation of location-specific suitable conjunctive water use plans requires assessment of their long-term impacts on soil salinization/sodification and crop yield reductions. This is conventionally achieved through long-term field experiments. However such impact evaluations are site specific, expensive and time consuming. Appropriate decision support systems (DSS) can be time-efficient and cost-effective means for such long-term impact evaluations. This study demonstrates the application of one such (indigenously developed) DSS for recommending best conjunctive water use plans for a, rice-wheat growing, salt affected farmer's field in Gurgaon district of Haryana (India). Before application, the DSS was extensively validated on several farmers and controlled experimental fields in Gurgaon and Karnal districts of Haryana (India). Validation of DSS showed its potential to give realistic estimates of root zone soil salinity (with R = 0.76-0.94; AMRE = 0.03-0.06; RMSPD = 0.51-0.90); sodicity (with R = 0.99; AMRE = 0.02; RMSPD = 0.84) and relative crop yield reductions (AMRE = 0.24), under existing (local) resource management practices. Long term (10 years) root zone salt build ups and associated rice/wheat crop yield reductions, in a salt affected farmer's field, under varied conjunctive water use scenarios were evaluated with the validated DSS. It was observed that long-term applications of canal (CW) and tube well (TW) waters in a cycle and in 1:1 mixed mode, during Kharif season, predicted higher average root zone salt reductions (2-9%) and lower rice crop yield reductions (4-5%) than the existing practice of 3-CW, 3-TW, 3-CW. Besides this, long-term application of 75% CW mixed with 25% TW, during Rabi season, predicted about 17% lower average root-zone salt reductions than

  11. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  12. African Americans and Agriculture.

    ERIC Educational Resources Information Center

    Morgan, Joan

    2000-01-01

    Reviews the opportunities available in the field of agriculture for African American students and notes efforts of the 136 colleges of agriculture to publicize their offerings and recruit students. Profiles six black leaders in agriculture, highlighting their achievements in research and aid to developing countries. A table provides data on annual…

  13. Remaining Sites Verification Package for the 331 Life Sciences Laboratory Drain Field Septic System, Waste Site Reclassification Form 2008-020

    SciTech Connect

    J. M. Capron

    2008-10-16

    The 331 Life Sciences Laboratory Drain Field (LSLDF) septic system waste site consists of a diversion chamber, two septic tanks, a distribution box, and a drain field. This septic system was designed to receive sanitary waste water, from animal studies conducted in the 331-A and 331-B Buildings, for discharge into the soil column. However, field observations and testing suggest the 331 LSLDF septic system did not receive any discharges. In accordance with this evaluation, the confirmatory sampling results support a reclassification of the 331 LSLDF waste site to No Action. This site does not have a deep zone or other condition that would warrant an institutional control in accordance with the 300-FF-2 ROD under the industrial land use scenario.

  14. Initial Field Trials of the Site Characterization and Analysis Penetrometer System (SCAPS). Reconnaissance of Jacksonville Naval Air Station Waste Oil and Solvents Disposal Site

    DTIC Science & Technology

    1993-12-01

    Engineers Waterways Experiment Station DTIC Initial Field Trials of the Site ELECTF Characterization and Analysis JAN2 5 1994D Penetrometer System...038Prepared f NlFclitie 24En g m Prepared for Naval Facilities Engineering Command The contents of this report are not to be used for advertising. publication...Characterization and Analysis Penetrometer Sysstem (SCAPS) Reconnaissance of Jacksonville Naval Air Station Waste Oil and Solvents Disposal Site by Stafford S

  15. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Bustos, Víctor; Mondaca, Pedro; Verdejo, José; Sauvé, Sébastien; Gaete, Hernán; Celis-Diez, Juan L; Neaman, Alexander

    2015-12-01

    Several previous studies highlighted the importance of using field-collected soils-and not artificially-contaminated soils-for ecotoxicity tests. However, the use of field-collected soils presents several difficulties for interpretation of results, due to the presence of various contaminants and unavoidable differences in the physicochemical properties of the tested soils. The objective of this study was to estimate thresholds of metal toxicity in topsoils of 24 agricultural areas historically contaminated by mining activities in Chile. We performed standardized earthworm reproduction tests (OECD 222 and ISO 11268-2) with Eisenia fetida. Total soil concentrations of Cu, As, Zn, and Pb were in the ranges of 82-1295 mg kg(-1), 7-41 mg kg(-1), 86-345 mg kg(-1), and 25-97 mg kg(-1), respectively. In order to differentiate between the effects of different metals, we used regression analysis between soil metal concentrations and earthworm responses, as well as between metal concentrations in earthworm tissues and earthworm responses. Based on regression analysis, we concluded that As was a metal of prime concern for Eisenia fetida in soils affected by Cu mining activities, while Cu exhibited a secondary effect. In contrast, the effects of Zn and Pb were not significant. Soil electrical conductivity was another significant contributor to reproduction toxicity in the studied soils, forcing its integration in the interpretation of the results. By using soils with electrical conductivity ≤ 0.29 dS m(-1) (which corresponds to EC50 of salt toxicity to Eisenia fetida), it was possible to isolate the effect of soil salinity on earthworm reproduction. Despite the confounding effects of Cu, it was possible to determine EC10, EC25 and EC50 values for total soil As at 8 mg kg(-1), 14 mg kg(-1) and 22 mg kg(-1), respectively, for the response of the cocoon production. However, it was not possible to determine these threshold values for juvenile production. Likewise, we were able to

  16. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    PubMed Central

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-01-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690

  17. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-07-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.

  18. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction.

    PubMed

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G; Sarkar, Sagartirtha; Basu, Parthiba

    2015-07-27

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.

  19. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    PubMed Central

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  20. A probabilistic approach for estimating the spatial extent of pesticide agricultural use sites and potential co-occurrence with listed species for use in ecological risk assessments.

    PubMed

    Budreski, Katherine; Winchell, Michael; Padilla, Lauren; Bang, JiSu; Brain, Richard A

    2016-04-01

    A crop footprint refers to the estimated spatial extent of growing areas for a specific crop, and is commonly used to represent the potential "use site" footprint for a pesticide labeled for use on that crop. A methodology for developing probabilistic crop footprints to estimate the likelihood of pesticide use and the potential co-occurrence of pesticide use and listed species locations was tested at the national scale and compared to alternative methods. The probabilistic aspect of the approach accounts for annual crop rotations and the uncertainty in remotely sensed crop and land cover data sets. The crop footprints used historically are derived exclusively from the National Land Cover Database (NLCD) Cultivated Crops and/or Pasture/Hay classes. This approach broadly aggregates agriculture into 2 classes, which grossly overestimates the spatial extent of individual crops that are labeled for pesticide use. The approach also does not use all the available crop data, represents a single point in time, and does not account for the uncertainty in land cover data set classifications. The probabilistic crop footprint approach described herein incorporates best available information at the time of analysis from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) for 5 y (2008-2012 at the time of analysis), the 2006 NLCD, the 2007 NASS Census of Agriculture, and 5 y of NASS Quick Stats (2008-2012). The approach accounts for misclassification of crop classes in the CDL by incorporating accuracy assessment information by state, year, and crop. The NLCD provides additional information to improve the CDL crop probability through an adjustment based on the NLCD accuracy assessment data using the principles of Bayes' Theorem. Finally, crop probabilities are scaled at the state level by comparing against NASS surveys (Census of Agriculture and Quick Stats) of reported planted acres by crop. In an example application of the new method, the probabilistic

  1. Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China.

    PubMed

    Jia, Jinpu; Bi, Chunjuan; Guo, Xue; Wang, Xueping; Zhou, Xiaoxiao; Chen, Zhenlou

    2017-01-01

    Road dusts and agricultural soil samples were collected from eight sites close to steel mills, chemical plants, and municipal solid waste incinerator in suburban Shanghai. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (US EPA) priority controlled list were analyzed quantitatively using GC-MS. The total PAH concentrations ranged from 0.79 to 6.2 μg g(-1) in road dust samples with a mean value of 2.38 μg g(-1) and 0.26 to 0.54 μg g(-1) in agricultural soils with an average of 0.36 μg g(-1). The most abundant individual PAHs were phenanthrene, fluoranthene, pyrene, chrysene, and benzo(b)fluoranthene in dust samples and phenanthrene, fluoranthene, chrysene, and benzo(b)fluoranthene, benzo (k) fluoranthene in soil samples. Dominant compounds were four-ring and five- to six-ring PAHs, which accounted for 41.5 and 31.5 % in dusts and 33.9 and 41.1 % in soils. The spatial distribution of PAHs in dusts and soils was consistent. The wind direction could affect the spatial distribution of PAHs. Organic matter contents were found to be significantly positively correlated with PAH concentrations in both dusts and soils while grain size of particles had no correlation with PAH concentrations and could not significantly influence the distribution of PAH concentrations. PAH isomer ratios showed that combustion of grass, wood, and coal was important sources of PAHs in road dusts and agricultural soils. Toxic equivalent concentrations indicated seven kinds of carcinogenetic PAHs were major toxic equivalent concentration (TEQ) contributors, accounting for 98 % of TEQ, in the road dusts and agricultural soils. Incremental lifetime cancer risk (ILCR) estimation results showed that the PAHs in the dusts and soils had potential cancer risk for both children and adults only by direct ingestion exposure. The TEQ and ILCR values of PAHs in road dusts were much higher than those in soils, which suggested that PAHs in road

  2. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    SciTech Connect

    Loomis, G.G.; Farnsworth, R.K.

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  3. Highly parameterized inversion of groundwater reactive transport for a complex field site

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick; Seuntjens, Piet; Bastiaens, Leen; Sapion, Hans

    2015-02-01

    In this study a numerical groundwater reactive transport model of a shallow groundwater aquifer contaminated with volatile organic compounds is developed. In addition to advective-dispersive transport, the model includes contaminant release from source areas, natural attenuation, abiotic degradation by a permeable reactive barrier at the site, and dilution by infiltrating rain. Aquifer heterogeneity is parameterized using pilot points for hydraulic conductivity, specific yield and groundwater recharge. A methodology is developed and applied to estimate the large number of parameters from the limited data at the field site (groundwater levels, groundwater concentrations of multiple chemical species, point-scale measurements of soil hydraulic conductivity, and lab-scale derived information on chemical and biochemical reactions). The proposed methodology relies on pilot point parameterization of hydraulic parameters and groundwater recharge, a regularization procedure to reconcile the large number of spatially distributed model parameters with the limited field data, a step-wise approach for integrating the different data sets into the model, and high performance computing. The methodology was proven to be effective in reproducing multiple contaminant plumes and in reducing the prior parameter uncertainty of hydraulic conductivity and groundwater recharge. Our results further indicate that contaminant transport predictions are strongly affected by the choice of the groundwater recharge model and flow parameters should be identified using both head and concentration measurements.

  4. Highly parameterized inversion of groundwater reactive transport for a complex field site.

    PubMed

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick; Seuntjens, Piet; Bastiaens, Leen; Sapion, Hans

    2015-02-01

    In this study a numerical groundwater reactive transport model of a shallow groundwater aquifer contaminated with volatile organic compounds is developed. In addition to advective-dispersive transport, the model includes contaminant release from source areas, natural attenuation, abiotic degradation by a permeable reactive barrier at the site, and dilution by infiltrating rain. Aquifer heterogeneity is parameterized using pilot points for hydraulic conductivity, specific yield and groundwater recharge. A methodology is developed and applied to estimate the large number of parameters from the limited data at the field site (groundwater levels, groundwater concentrations of multiple chemical species, point-scale measurements of soil hydraulic conductivity, and lab-scale derived information on chemical and biochemical reactions). The proposed methodology relies on pilot point parameterization of hydraulic parameters and groundwater recharge, a regularization procedure to reconcile the large number of spatially distributed model parameters with the limited field data, a step-wise approach for integrating the different data sets into the model, and high performance computing. The methodology was proven to be effective in reproducing multiple contaminant plumes and in reducing the prior parameter uncertainty of hydraulic conductivity and groundwater recharge. Our results further indicate that contaminant transport predictions are strongly affected by the choice of the groundwater recharge model and flow parameters should be identified using both head and concentration measurements.

  5. Risk-Based Cleanup Actions for Closure of a Brown field Site

    SciTech Connect

    Rice, H.W.; Feild, J.F.; Farr Jr, L.C.

    2007-07-01

    Operating as a rail yard from approximately 1908 to 1987, Station Place is a 7.1-acre (4,046 square meter) property located in the downtown Portland, Oregon, River District Urban Renewal Area. The site soils were impacted with metals and polynuclear aromatic hydrocarbon compounds (PAHs). Benzene and select PAHs were detected in the shallow groundwater. Residual non-aqueous phase liquid (NAPL) was detected within the shallow saturated zone between 15 and 40 feet (4.5 to 12 meters) below grade and in the Troutdale Formation (used for municipal water supply at up-gradient location) at depths of up to 80 feet (24 meters) below grade. Site closure was obtained and redevelopment was completed at the site, by the Portland Development Commission and REACH Community Development, Inc., following the preparation of a baseline deterministic human health risk assessment, and beneficial land and water use determination to assess whether exposure to groundwater and soil posed a threat to human health or the environment. The property now provides affordable housing for the elderly and a city-owned parking garage. The housing provides substantial community benefit, allowing elderly people to live in a vibrant, exciting part of the city. Portland's city-owned parking garages also provide much needed parking space at reasonable rates. Both of these additions have changed an under-used Brown Field into affordable facilities, in a lively urban environment. (authors)

  6. A field trial for an ex-situ bioremediation of a drilling mud-polluted site.

    PubMed

    Rojas-Avelizapa, N G; Roldán-Carrillo, T; Zegarra-Martínez, H; Muñoz-Colunga, A M; Fernández-Linares, L C

    2007-01-01

    The remediation of drilling mud-polluted sites in the Southeast of Mexico is a top priority for Mexican oil industry. The objective of this work was to find a technology to remediate these sites. A field trial was performed by composting in biopiles, where four 1ton soil-biopiles were established, one treatment in triplicate and one unamended biopile. Amended biopiles were added with nutrients to get a C/N/P ratio of 100/3/0.5 plus a bulking agent (straw) at a soil/straw ratio of 97/3. Moisture content was maintained around 30-35%. Results showed that, after 180 d, total petroleum hydrocarbon (TPH) concentrations decreased from 99300+/-23000mgTPHkg(-1) soil to 5500+/-770mgTPHkg(-1) for amended biopiles and to 22900+/-7800mgTPHkg(-1) for unamended biopile. An undisturbed soil control showed no change in TPH concentrations. Gas chromatographic analysis showed residual alkyl dibenzothiophene type compounds. Highest bacterial counts were observed during the first 30 d which correlated with highest TPH removal, whereas fungal count increased at the end of the experimentation period. Results suggested an important role of the straw, nutrient addition and water content in stimulating aerobic microbial activity and thus hydrocarbon removal. This finding opens an opportunity to remediate old polluted sites with recalcitrant and high TPH concentration.

  7. The role of a fertilizer trial in reconciling agricultural expectations and landscape ecology requirements on an opencast coal site in South Wales, United Kingdom

    SciTech Connect

    Humphries, C.E.L.; Humphries, R.N.; Wesemann, H.

    1999-07-01

    Since the 1940s the restoration of opencast coal sites in the UK has been predominantly to productive agriculture and forestry. With new UK government policies on sustainability and biodiversity such land uses may be no longer be acceptable or appropriate in the upland areas of South Wales. A scheme was prepared for the upland Nant Helen site with the objective of restoring the landscape ecology of the site; it included acid grassland to provide the landscape setting and for grazing. The scheme met with the approval of the planning authority. An initial forty hectares (about 13% of the site) was restored between 1993 and 1996. While the approved low intensity grazing and low fertilizer regime met the requirements of the planning authority and the statutory agencies, it was not meeting the expectations of the grazers who had grazing rights to the land. To help reconcile the apparent conflict a fertilizer trial was set up. The trial demonstrated that additional fertilizer and intensive grazing was required to meet the nutritional needs of sheep. It also showed typical upland stocking densities of sheep could be achieved with the acid grassland without the need for reseeding with lowland types. However this was not acceptable to the authority and agencies as such fertilizer and grazing regimes would be detrimental to the landscape and ecological objectives of the restoration scheme. A compromise was agreed whereby grazing intensity and additional fertilizer have been zoned. This has been implemented and is working to the satisfaction of all parties. Without the fertilizer trial it is unlikely that the different interests could have been reconciled.

  8. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    SciTech Connect

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  9. Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi

    2015-07-01

    Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.

  10. Short-term temporal and spatial variability of soil hydrophobicity in an abandoned agriculture field in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Burguet, Maria; Cerdà, Artemi

    2013-04-01

    Soil water repellency (SWR) is a natural property of soils. Among other factors, SWR depends on soil moisture, mineralogy, texture, pH, organic matter, aggregate stability, fungal and microbiological activity and plant cover. It has implications on plant growth, superficial and subsurface hydrology and soil erosion. It is well known that SWR is temporarily, increasing when soils are dry and decreasing when moist. In agriculture, soil micro-topography is very heterogeneous with implications on surface water distribution and wettability. Normally, SWR studies are focused on large interval time (e.g, monthly or seasonally). The objective of this work is the study of SWR in a temporal scale and its variability in an abandoned agriculture field in Lithuania. An experimental plot with 21 m2 (07x03 m) was designed in a flat area. Inside this plot SWR was measured in the field, placing three droplets of water on the soil surface and counting the time that takes to infiltrate. A total of 105 sampling points were measured per sampling period. Soil water repellency was measured after a period of 14 days without rainfall and in the seven consequent weeks (one measurement per week between 28th May and 07th of July 2012). The results showed that in this small plot, SWR was observed in the first (May 28), third and fourth measurements (08th of June and 16th). It was observed an increasing of the percentage of hydrophobic points (Water Drop Penetration Test ≥5 seconds) between the first and the fourth measurement, decreasing thereafter. Significant differences of SWR were observed among all periods (F=78.32, p<0.0001). The coefficient of variation (CV%) changed strikingly, 361.10 % (8th of May), 151.78 % (01st of June), 83.77% (08th of June), 125.87% (16th of June), 0.45 (22nd of June), 121%(31st of June) and 67.13% (7th of July). The correlation between the mean SWR and the CV% is 0.75, p<0.05. The changes were attributed to different soil moisture conditions. The differences

  11. Modelling the buried human body environment in upland climes using three contrasting field sites.

    PubMed

    Wilson, Andrew S; Janaway, Robert C; Holland, Andrew D; Dodson, Hilary I; Baran, Eve; Pollard, A Mark; Tobin, Desmond J

    2007-06-14

    Despite an increasing literature on the decomposition of human remains, whether buried or exposed, it is important to recognise the role of specific microenvironments which can either trigger or delay the rate of decomposition. Recent casework in Northern England involving buried and partially buried human remains has demonstrated a need for a more detailed understanding of the effect of contrasting site conditions on cadaver decomposition and on the microenvironment created within the grave itself. Pigs (Sus scrofa) were used as body analogues in three inter-related taphonomy experiments to examine differential decomposition of buried human remains. They were buried at three contrasting field sites (pasture, moorland, and deciduous woodland) within a 15 km radius of the University of Bradford, West Yorkshire, UK. Changes to the buried body and the effect of these changes on hair and associated death-scene textile materials were monitored as was the microenvironment of the grave. At recovery, 6, 12 and 24 months post-burial, the extent of soft tissue decomposition was recorded and samples of fat and soil were collected for gas chromatography mass spectrometry (GCMS) analysis. The results of these studies demonstrated that (1) soil conditions at these three burial sites has a marked effect on the condition of the buried body but even within a single site variation can occur; (2) the process of soft tissue decomposition modifies the localised burial microenvironment in terms of microbiological load, pH, moisture and changes in redox status. These observations have widespread application for the investigation of clandestine burial and time since deposition, and in understanding changes within the burial microenvironment that may impact on biomaterials such as hair and other associated death scene materials.

  12. Probabilistic study of well capture zones distribution at the Lauswiesen field site.

    PubMed

    Riva, M; Guadagnini, L; Guadagnini, A; Ptak, T; Martac, E

    2006-11-20

    The delineation of well capture zones is of utmost environmental and engineering relevance as pumping wells are commonly used both for drinking water supply needs, where protection zones have to be defined, and for investigation and remediation of contaminated aquifers. We analyze the probabilistic nature of well capture zones within the well field located at the "Lauswiesen" experimental site. The test site is part of an alluvial heterogeneous aquifer located in the Neckar river valley, close to the city of Tübingen in South-West Germany. We explore the effect of different conceptual models of the structure of aquifer heterogeneities on the delineation of three-dimensional probabilistic well catchment and time-related capture zones, in the presence of migration of conservative solutes. The aquifer is modeled as a three-dimensional, doubly stochastic composite medium, where distributions of geo-materials and hydraulic properties are uncertain. We study the relative importance of uncertain facies geometry and uncertain hydraulic conductivity and porosity on predictions of catchment and solute time of travel to the pumping well by focusing on cases in which (1) the facies distribution is random, but the hydraulic properties of each material are fixed, and (2) both facies geometry and material properties vary stochastically. The problem is tackled within a conditional numerical Monte Carlo framework. Results are provided in terms of probabilistic demarcations of the three-dimensional well catchment and time-related capture zones. Our findings suggest that the uncertainty associated with the prediction of the location of the outer boundary of well catchment at the "Lauswiesen" site is significantly affected by the conceptual model adopted to incorporate the heterogeneous nature of the aquifer domain in a predictive framework. Taking into account randomness of both lithofacies distribution and materials hydraulic conductivity allows recognizing the existence of

  13. Physicochemical and mineralogical characterization of soil-saprolite cores from a field research site, Tennessee.

    PubMed

    Moon, Ji-Won; Roh, Yul; Phelps, Tommy J; Phillips, Debra H; Watson, David B; Kim, Young-Jin; Brooks, Scott C

    2006-01-01

    Site characterization is an essential initial step in determining the feasibility of remedial alternatives at hazardous waste sites. Physicochemical and mineralogical characterization of U-contaminated soils in deeply weathered saprolite at Area 2 of the DOE Field Research Center (FRC) site, Oak Ridge, TN, was accomplished to examine the feasibility of bioremediation. Concentrations of U in soil-saprolite (up to 291 mg kg(-1) in oxalate-extractable U(o)) were closely related to low pH (ca. 4-5), high effective cation exchange capacity without Ca (64.7-83.2 cmol(c) kg(-1)), amorphous Mn content (up to 9910 mg kg(-1)), and the decreased presence of relative clay mineral contents in the bulk samples (i.e., illite 2.5-12 wt. %, average 32 wt. %). The pH of the fill material ranged from 7.0 to 10.5, whereas the pH of the saprolite ranged from 4.5 to 8. Uranium concentration was highest (about 300 mg kg(-1)) at around 6 m below land surface near the saprolite-fill interface. The pH of ground water at Area 2 tended to be between 6 and 7 with U concentrations of about 0.9 to 1.7 mg L(-1). These site specific characteristics of Area 2, which has lower U and nitrate contamination levels and more neutral ground water pH compared with FRC Areas 1 and 3 (ca. 5.5 and <4, respectively), indicate that with appropriate addition of electron donors and nutrients bioremediation of U by metal reducing microorganisms may be possible.

  14. Sustainable corn stover harvest strategies for Midwest agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support emerging U.S. cellulosic bioenergy industries, 239 site-years of data from field studies at 36 sites in seven states were recently summarized in BioEnergy Research by the ARS Resilient Economic Agricultural Practices (REAP) team [formerly the Renewable Energy Assessment Project (REAP) tea...

  15. Technical procedures for implementation of background environmental radioactivity site studies, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-09-01

    The purpose of this technical procedure is to describe the method for performing field maintenance on low-volume air samplers and the associated topics of personnel and organization, procedure preparation, documentation, and quality assurance. The scope of this procedure includes the maintenance of low-volume air samplers in the field and does not encompass maintenance performed by the manufacturer.

  16. Intermittent spring flooding of agricultural fields will increase net global-warming potential of greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smyth, E. M.; Smith, C. M.; Kantola, I. B.; Krichels, A.; Yang, W. H.; DeLucia, E. H.

    2014-12-01

    The U.S. Corn Belt is currently a net source of carbon dioxide and nitrous dioxide to the atmosphere but is also a weak sink for methane. Climate change is projected to increase the frequency and duration of spring precipitation in the North American Midwest, resulting in intermittent flooding and ponding in agricultural fields. Inundation changes the greenhouse gas (GHG) fluxes of the soil, especially by promoting methanogenesis under anoxic conditions. DNA and 16S cDNA sequencing results of earlier, similar experiments confirmed the presence of methanogens in soil samples, albeit in low abundance (representing <0.01% of reads per sample). We installed collars into bare ground of a central Illinois research field to experiment with flooding conditions and observe changes in gas fluxes, microbial community, and soil chemistry. We established three treatments of five replicates—control, continuously flooded, and intermittently flooded—each with separate collars for gas flux measurements, soil sample collection, and soil probe measurements. A drip irrigation system flooded the headspaces of the collars to produce flooding events. The continuously flooded collars were maintained in a flooded condition for the duration of the experiment, and the intermittently flooded collars were flooded for 72 hours per flooding event and then kept dry for at least 5 days before the next flooding event. We measured net concentrations of N2O, CH4, and CO2 in situ using a static chamber connected to a cavity ringdown spectrometer. We found that the periodicity of wetting and drying events induces hysteresis effects that push GHG shifts to occur rapidly (< 1 hr). Integrating fluxes across the period of the experiment, the intermittently flooded collars showed 88.7% higher global-warming potential of GHG fluxes at the 100-year horizon versus control, with most of change driven by increased net CO2 flux (87.1% higher) and net methane flux (29 times higher). These data indicate that

  17. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    SciTech Connect

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management.

  18. A FIELD EVALUATION OF IN-SITU BIODEGRADATION OF CHLORINATED ETHENES: PART I, METHODOLOGY AND FIELD SITE CHARACTERIZATION

    EPA Science Inventory

    Careful site characterization and implementation of quantitative monitoring methods are prerequisites for a convincing evaluation of enhanced biostimulation for aquifer restoration. This paper describes the characterization of a site at Moffett Naval Air Station, Mountain View, C...

  19. Efficient, Off-Grid LiDAR Scanning of Remote Field Sites

    NASA Astrophysics Data System (ADS)

    Gold, P.; Gold, R.; Cowgill, E.; Kreylos, O.; Hamann, B.

    2007-12-01

    As terrestrial LiDAR scanning systems become increasingly available, strategies for executing efficient field surveys in settings without access to the power grid are increasingly needed. To evaluate scan methods and develop an off-grid power system, we used a tripod-mounted laser scanner to create high resolution (≤40 mm point spacing) topographic maps for use in neotectonic studies of active faulting in arid, high elevation settings. We required 1-2 cm internal precision within point clouds spanning field sites that were ~300 x 300 m. Main components of our survey system included a Trimble GX DR200+ terrestrial laser scanner, a Leica TCR407power total station, a ruggedized laptop (2 GB RAM, 2.33 GHz dual-processor, and an Intel GMA 950 graphics card), batteries, and a portable photovoltaic array. Our first goal was to develop an efficient field-survey workflow. We started each survey project by using the total station for 1-2 days to locate an average of 8 ground control locations per site and to measure key geomorphic features within the project area. We then used the laser scanner to capture overlapping scans of the site, which required an average of six, 5-hour scanning sessions and an average of ten station setups. At each station, the scanner located itself on a particular point by measuring the relative positions of an average of four backsights, each of which is a ~17 x 17cm reflective target mounted on a tripod over the ground control point. To locate the scanner at a particular station prior to scanning, we experimented with both setting up over known points as measured using the total station, and resectioning, by positioning the scanner over an unmeasured location and backsighting on previously scanned points. We found that resectioning provided the smallest errors in scan registration. We then framed and queued a series of scans from each station that optimized point density and minimized data repetition. We also increased the accuracy of the

  20. SUPERFUND TREATABILITY CLEARINGHOUSE: SUMMARY REPORT ON THE FIELD INVESTIGATION OF THE SAPP BATTERY SITE JACKSON COUNTY, FLORIDA

    EPA Science Inventory

    This treatability study presents the results of field investigations at the Sapp Battery site in Florida, an abandoned battery recycling operation. The site is estimated to contain 14,300 cubic yards of soils with lead levels in excess of 1,000 ppm. The soils in the immediate v...

  1. Vertical Chlorophyll Canopy Structure Affects the Remote Sensing Based Predictability of LAI, Chlorophyll and Leaf Nitrogen in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.; Cellier, P.; Sutton, M.

    2012-12-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing can be used to estimate leaf area index (LAI), chlorophyll content (CHL) and leaf nitrogen (N), but methods are often developed using plot-scale data and not verified over extended regions characterized by variations in environmental boundary conditions (soil, atmosphere) and canopy structures. Estimation of N can be indirect due to its association with CHL, however N is also included in pigments such as carotenoids and anthocyanin which have different spectral signatures than CHL. Photosynthesis optimization theory suggests that plants will distribute their N resources in proportion to the light gradient within the canopy. Such vertical variation in CHL and N complicates the evaluation of remote sensing-based methods. Typically remote sensing studies measure CHL of the upper leaf, which is then multiplied by the green LAI to represent canopy chlorophyll content, or random sampling is used. In this study, field measurements and high spatial resolution (10-20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHL and N in five European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, The Netherlands and Italy . All satellite images were atmospherically using the 6SV1 model with atmospheric inputs estimated by MODIS and AIRS data. Five spectral vegetation indices (SVIs) were calculated (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index), and an image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance) was applied to each of the five European landscapes. While the

  2. Water and carbon fluxes in rain fed agricultural sites under a changing climate: The role of stomata

    NASA Astrophysics Data System (ADS)

    Hosseini, A.; Gayler, S.; Streck, T.; Katul, G. G.

    2014-12-01

    Vegetation models are needed to assess how crop productivity may be altered due to variations in climatic conditions. Stomatal conductance controls both diffusion of CO2 from the atmosphere into the leaf and water losses from the soil-plant system to the atmosphere through transpiration (E). Despite its significance, stomatal conductance and its links to climatic variables remains empirically specified in current crop models thereby challenging their application to future climatic conditions. It has long been conjectured that stomata has evolved so as to allow terrestrial plants to assimilate CO2 in a desiccating atmosphere while minimizing water losses. Hence, the hypothesis that stomata adapt optimally to their environment so as to maximize assimilation (A) for a given amount of water loss has received significant attention over the past 4 decades. Here, a new approach to implement optimization theory of stomatal conductance into a dynamic canopy gas exchange model is introduced. A key variable in this theory is the so-called marginal water use efficiency (MWUE), which is assumed to be constant on time scales commensurate with fluctuations in stomatal aperture. However, on time scales relevant to crop productivity (daily to seasonal), the boundary conditions on the optimization problem evolve in time prompting the question of how to assign MWUE on such time scales. To address this question, MWUE was formulated as a function of time-integrated leaf-water potential and atmospheric CO2. Next, leaf water potential was linked to root and soil pressure using a soil water balance model based on a modified Richards' equation that considers vertical distribution of root water uptake. The adequacy of the new approach was tested by comparing predicted diurnal cycles of A and E as well as variability of soil moisture with long-term observations at a winter wheat (Triticum aestivum cv.Cubus) field in southwest Germany (see Figure), where transpiration and assimilation rates

  3. Distinguishing 'new' from 'old' organic carbon in reclaimed coal mine sites using thermogravimetry: II. Field validation

    SciTech Connect

    Maharaj, S.; Barton, C.D.; Karathanasis, T.A.D.; Rowe, H.D.; Rimmer, S.M.

    2007-04-15

    Thermogravimetry was used under laboratory conditions to differentiate 'new' and 'old' organic carbon (c) by using grass litter, coal, and limestone to represent the different C fractions. Thermogravimetric and derivative thermogravimetry curves showed pyrolysis peaks at distinctively different temperatures, with the peak for litter occurring at 270 to 395{sup o}C, for coal at 415 to 520 {sup o}C, and for limestone at 700 to 785{sup o}C. To validate this method in a field setting, we studied four reforested coal mine sites in Kentucky representing a chronosequence since reclamation: 0 and 2 years located at Bent Mountain and 3 and 8 years located at the Starfire mine. A nonmined mature (approximate to 80 years old) stand at Robinson Forest, Kentucky, was selected as a reference location. Results indicated a general peak increase in the 270 to 395{sup o}C region with increased time, signifying an increase in the 'new' organic matter (OM) fraction. For the Bent Mountain site, the OM fraction increased from 0.03 to 0.095% between years 0 and 2, whereas the Starfire site showed an increase from 0.095 to 1.47% between years 3 and 8. This equates to a C sequestration rate of 2.92 Mg ha{sup -1} yr{sup -1} for 'new' OM in the upper 10-cm layer during the 8 years of reclamation on eastern Kentucky reclaimed coal mine sites. Results suggest that stable isotopes and elemental data can be used as proxy tools for qualifying soil organic C (SOC) changes over time on the reclaimed coal mine sites but cannot be used to determine the exact SOC accumulation rate. However, results suggested that the thermogravimetric and derivative thermogravimetry methods can be used to quantify SOC accumulation and has the potential to be a more reliable, cost-effective, and rapid means to determine the new organic C fraction in mixed geological material, especially in areas dominated by coal and carbonate materials.

  4. The challenge of modelling nitrogen management at the field scale: simulation and sensitivity analysis of N2O fluxes across nine experimental sites using DailyDayCent

    NASA Astrophysics Data System (ADS)

    Fitton, N.; Datta, A.; Hastings, A.; Kuhnert, M.; Topp, C. F. E.; Cloy, J. M.; Rees, R. M.; Cardenas, L. M.; Williams, J. R.; Smith, K.; Chadwick, D.; Smith, P.

    2014-09-01

    The United Kingdom currently reports nitrous oxide emissions from agriculture using the IPCC default Tier 1 methodology. However Tier 1 estimates have a large degree of uncertainty as they do not account for spatial variations in emissions. Therefore biogeochemical models such as DailyDayCent (DDC) are increasingly being used to provide a spatially disaggregated assessment of annual emissions. Prior to use, an assessment of the ability of the model to predict annual emissions should be undertaken, coupled with an analysis of how model inputs influence model outputs, and whether the modelled estimates are more robust that those derived from the Tier 1 methodology. The aims of the study were (a) to evaluate if the DailyDayCent model can accurately estimate annual N2O emissions across nine different experimental sites, (b) to examine its sensitivity to different soil and climate inputs across a number of experimental sites and (c) to examine the influence of uncertainty in the measured inputs on modelled N2O emissions. DailyDayCent performed well across the range of cropland and grassland sites, particularly for fertilized fields indicating that it is robust for UK conditions. The sensitivity of the model varied across the sites and also between fertilizer/manure treatments. Overall our results showed that there was a stronger correlation between the sensitivity of N2O emissions to changes in soil pH and clay content than the remaining input parameters used in this study. The lower the initial site values for soil pH and clay content, the more sensitive DDC was to changes from their initial value. When we compared modelled estimates with Tier 1 estimates for each site, we found that DailyDayCent provided a more accurate representation of the rate of annual emissions.

  5. Low and high field sites of Cr3+ ions in calcium tetraborate glasses

    NASA Astrophysics Data System (ADS)

    Lesniewski, T.; Padlyak, B. V.; Barzowska, J.; Mahlik, S.; Adamiv, V. T.; Nurgul, Z.; Grinberg, M.

    2016-09-01

    This paper presents electron paramagnetic resonance and detailed optical spectroscopic characterization of CaB4O7 glasses doped with Cr3+. The luminescence excitation spectrum consists of two broad bands related to transitions from the ground state 4A2g to the excited states 4T1g and 4T2g of the octahedrally coordinated Cr3+ ions. The photoluminescence spectrum is a superposition of the R line related to the 2Eg → 4A2g transition and broad band related to the 4T2g → 4A2g transition. The analysis of electron paramagnetic resonance spectra allowed to distinguish different Cr3+ sites, whereas the analysis of luminescence and luminescence excitation spectra allowed to characterize the crystal field distribution in the glass host.

  6. IAEA workshop and field trial at the Oak Ridge K-25 Site

    SciTech Connect

    Hembree, D.M. Jr.; Ross, H.H.; Carter, J.A.

    1995-03-01

    In March 1994, members of the International Safeguards Department in the National Security Program Office (NSPO) hosted an environmental monitoring field trial workshop for International Atomic Energy Agency (IAEA) inspectors. The workshop was held at the Oak Ridge K-25 Site and its primary purpose was to train the inspectors in the techniques needed for effective environmental sample collection and handling. The workshop emphasized both sampling theory and practice. First, detailed techniques for swipe, vegetation, soil, biota, and water-associated sampling were covered in the classroom. Subsequently, the inspectors were divided into three groups for actual sample collection in and around the K-25 locale. The collected samples were processed by the Department of Energy (DOE) Network of Analytical Laboratories using established analytical techniques. This activity is part of the IAEA ``Programme 93+2 in. assessment of measures to enhance IAEA safeguards.

  7. Field-scale transplantation experiment to investigate structures of soil bacterial communities at pioneering sites.

    PubMed

    Lazzaro, Anna; Gauer, Andreas; Zeyer, Josef

    2011-12-01

    Studies on the effect of environmental conditions on plants and microorganisms are a central issue in ecology, and they require an adequate experimental setup. A strategy often applied in geobotanical studies is based on the reciprocal transplantation of plant species at different sites. We adopted a similar approach as a field-based tool to investigate the relationships of soil bacterial communities with the environment. Soil samples from two different (calcareous and siliceous) unvegetated glacier forefields were reciprocally transplanted and incubated for 15 months between 2009 and 2010. Controls containing local soils were included. The sites were characterized over time in terms of geographical (bedrock, exposition, sunlight, temperature, and precipitation) and physicochemical (texture, water content, soluble and nutrients) features. The incubating local ("home") and transplanted ("away") soils were monitored for changes in extractable nutrients and in the bacterial community structure, defined through terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA gene. Concentrations of soluble ions in most samples were more significantly affected by seasons than by the transplantation. For example, NO(3)(-) showed a seasonal pattern, increasing from 1 to 3 μg NO(3)(-) (g soil dry weight)(-1) after the melting of snow but decreasing to <1 μg NO(3)(-) (g soil dry weight)(-1) in autumn. Seasons, and in particular strong precipitation events occurring in the summer of 2010 (200 to 300 mm of rain monthly), were also related to changes of bacterial community structures. Our results show the suitability of this approach to compare responses of bacterial communities to different environmental conditions directly in the field.

  8. Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul A.

    2006-01-01

    The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.

  9. Personal UV exposure on a ski-field at an alpine site

    NASA Astrophysics Data System (ADS)

    Siani, A. M.; Casale, G. R.; Diémoz, H.; Agnesod, G.; Kimlin, M. G.; Lang, C. A.; Colosimo, A.

    2008-02-01

    Mountain sites experience enhanced ambient UV radiation levels due to the concurrent effects of shorter radiation path-length, low aerosol load and high reflectivity of the snow surfaces. This study was encouraged by the possibility to collect data of personal UV exposure in the mountainous areas of Italy, for the first time. Personal UV exposure (expressed in terms of Exposure Ratio, ER) of two groups of volunteers (ski instructors and skiers) at the Alpine site of La Thuile (Valle d'Aosta region, Italy) was assessed using polysulphone dosimetry which was tested in a mountainous snow-covered environment. In addition measurements of biological markers of individual response to UV exposure such as skin colorimetric parameters were carried out. It was found that snow and altitude of study site affect calibration curves of polysulphone dosimeters in comparison to a situation without snow. The median ER, taking into account the whole sample, is 0.60 in winter, with a range of 0.29 to 1.46, and 1.02 in spring, ranging from 0.46 to 1.72. There are no differences in exposures across skiers and instructors in spring while in winter skiers experience lower values. UV exposures are not sensitive to the use of sunscreen across instructor/skier group by day or by seasons or by photo-type. With regard to colorimetric parameters, the main result was that both skiers and instructors had on average significantly lower values of L* and b* after exposure i.e. becoming darker but the inappropriate sunscreen use did not reveal any changes in skin colorimetric parameters except in one spring day. In conclusions UV intensities on the ski-fields are often significantly higher than those on horizontal surfaces. Given the high levels of exposure observed in the present study, dedicated public heath messages on the correct sunscreen use should be adopted.

  10. Spatial Distribution of an Uranium-Respiring Betaproteobacterium at the Rifle, CO Field Research Site

    PubMed Central

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.

    2015-01-01

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site. PMID:25874721

  11. Dynamic temperature fields under Mars landing sites and implications for supporting microbial life.

    PubMed

    Ulrich, Richard; Kral, Tim; Chevrier, Vincent; Pilgrim, Robert; Roe, Larry

    2010-01-01

    While average temperatures on Mars may be too low to support terrestrial life-forms or aqueous liquids, diurnal peak temperatures over most of the planet can be high enough to provide for both, down to a few centimeters beneath the surface for some fraction of the time. A thermal model was applied to the Viking 1, Viking 2, Pathfinder, Spirit, and Opportunity landing sites to demonstrate the dynamic temperature fields under the surface at these well-characterized locations. A benchmark temperature of 253 K was used as a lower limit for possible metabolic activity, which corresponds to the minimum found for specific terrestrial microorganisms. Aqueous solutions of salts known to exist on Mars can provide liquid solutions well below this temperature. Thermal modeling has shown that 253 K is reached beneath the surface at diurnal peak heating for at least some parts of the year at each of these landing sites. Within 40 degrees of the equator, 253 K beneath the surface should occur for at least some fraction of the year; and, within 20 degrees , it will be seen for most of the year. However, any life-form that requires this temperature to thrive must also endure daily excursions to far colder temperatures as well as periods of the year where 253 K is never reached at all.

  12. Pitch-Angle Distribution for Electrons at Dipolarization Sites: Field Aligned Anisotropy and Isotropization

    NASA Astrophysics Data System (ADS)

    Wang, K.; Lin, C. H.; Hada, T.; Nishimura, T.; Angelopoulos, V.; Lee, W. J.; Lang, Z. R.

    2015-12-01

    Investigation of Earth's radiation environment is important not only because of its geophysical significance but also because it can inform the design of future satellites. The observed dipolarization effects on pitch-angle distributions (PAD) of electrons at the tailside in the inner plasmasheet during geomagnetic activity identified by AL index has been studied via analyzing data from THEMIS mission. We have shown that cigar distributions below about 1keV tend to become isotropized at the fronts at the dipolarization sites whereas isotropic distributions above 1keV tend to become more cigar-shaped (i.e., fluxes peak at pitch-angle of 0o and 180o). We have previously suggested that the ineffectiveness of Fermi acceleration below 1keV could be the factor causing this difference. We examine the dependence of this effect on radial distance from Earth taking place at or near dipolarization sites during times of geomagnetic activity. Because both the field line length and the properties of dipolarizations vary with radial distance. We anticipate significant dependence of this effect on radial distance. Our study contributes to our understanding of the electron environment during dipolarizations in Earth's magnetosphere.

  13. Electric field gradient and mean square displacement of iron sites in cubic iron sulphide

    NASA Astrophysics Data System (ADS)

    Garg, V. K.

    1981-01-01

    Mössbauer absorption of Fe57, for four equivalent but differently oriented sites, in naturally occuring single crystals of FeS2 (pyrite) has been studied as a function of the orientation of the crystal axes with respect to the γ-ray beam from a Co57/Pd source. Polarization effects for our absorbers of ˜0.1 mm thickness were found not to be appreciable. Experimental peak area ratio of ˜1 in the case of powdered absorber and monocrystalline absorbers in (111), (110), and (100) planes has been analyzed to obtain the principal axes of the electric-field-gradient and the mean-square displacement as ‖1,1,1‖, ‖-1,1,1‖, ‖1,1,-1‖, and ‖1,-1,1‖ direction for the Fe sites corresponding to 000, 1/2 1/2 0, 1/2 0 1/2 , and 0 1/2 1/2, respectively. The angular independent recoilless fraction at 298 K has been obtained to be 0.20±0.02 and for the mean-square displacement =< y2>=, and its value at 298 K is 4.34±0.23×10-19 cm2.

  14. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    SciTech Connect

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Morais, Paula V

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.

  15. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    DOE PAGES

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; ...

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminalmore » electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.« less

  16. Salton Sea Geothermal Field, Imperial Valley, California as a site for continental scientific drilling. [Abstract only

    SciTech Connect

    Elders, W.A.; Cohen, L.H.

    1983-03-01

    The Salton Trough, where seafloor spreading systems of the East Pacific Rise transition into the San Andreas transform fault system, is the site of such continental rifting and basin formation today. The largest thermal anomaly in the trough, the Salton Sea Geothermal Field (SSGF), is of interest to both thermal regimes and mineral resources investigators. At this site, temperatures >350/sup 0/C and metal-rich brines with 250,000 mg/L TDS have been encountered at <2 km depth. Republic Geothermal Inc. will drill a new well to 3.7 km in the SSGF early in 1983; we propose add-on experiments in it. If funded, we will obtain selective water and core samples and a large-diameter casing installed to 3.7 km will permit later deepening. In Phase 2, the well would be continuously cored to 5.5 km and be available for scientific studies until July 1985. The deepened well would encounter hydrothermal regimes of temperature and pressure never before sampled.

  17. The explosion sites of nearby supernovae seen with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, Hanindyo

    2015-08-01

    The progenitor stars of supernovae are still not very well constrained, despite numerous efforts in studying these objects directly or indirectly. There have been detections of the progenitor candidates in pre-explosion Hubble Space Telescope images, but these are rare and it is difficult to increase the statistics due to the limited availability of usable pre-explosion images. Alternatively, one may perform statistical studies on the supernova environments to derive useful constraints on the SN progenitor star. Integral field spectroscopy of nearby supernova sites within ~30 Mpc have been obtained using multiple IFU spectrographs in Hawaii and Chile. This technique enables both spatial and spectral information of the explosion sites to be acquired simultaneously, thus providing the identification of the parent stellar population of the supernova progenitor and the estimates for its physical parameters including age and metallicity. While this work has mainly been done in the optical wavelengths using instruments such as VIMOS, GMOS, and MUSE, a near-infrared approach has also been carried out using the AO-assisted SINFONI. By studying the supernova parent stellar population, we aim to characterize the mass and metallicity of the progenitors of different types of supernovae.

  18. Application of Geo-refrenced Geophysical Measurements to Precision Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield varies within a field because conventional farming manages fields uniformly with no consideration for spatial variability. Site-specific management units (SSMUs), a key component of precision agriculture, have been proposed as a means of handling the spatial variability of various factor...

  19. Drivers of nitrogen dynamics in ecologically based agriculture revealed by long-term, high-frequency field measurements.

    PubMed

    Finney, Denise M; Eckert, Sara E; Kaye, Jason P

    2015-12-01

    Nitrogen (N) loss from agriculture impacts ecosystems worldwide. One strategy to mitigate these losses, ecologically based nutrient management (ENM), seeks to recouple carbon (C) and N cycles to reduce environmental losses and supply N to cash crops. However, our capacity to apply ENM is limited by a lack of field-based high-resolution data on N dynamics in actual production contexts. We used data from a five-year study of organic cropping systems to investigate soil inorganic N (SIN) variability and nitrate (NO3-) leaching in ENM. Four production systems initiated in 2007 and 2008 in central Pennsylvania varied in crop rotation, timing and intensity of tillage, inclusion of fallow periods, and N inputs. Extractable SIN was measured fortnightly from March through November throughout the experiment, and NO3- N concentration below the rooting zone was sampled with lysimeters during the first year of the 2008 start. We used recursive partitioning models to assess the importance of management and environmental factors to SIN variability and NO3- leaching and identify interactions between influential variables. Air temperature and tillage were the most important drivers of SIN across systems. The highest SIN concentrations occurred when the average air temperature three weeks prior to measurement was above 21 degrees C. Above this temperature and within 109 days of moldboard plowing, average SIN concentrations were 22.1 mg N/kg soil; 109 days or more past plowing average SIN dropped to 7.7 mg N/kg soil. Other drivers of SIN dynamics were N available from manure and cover crops. Highest average leachate NO3- N concentrations (15.2 ppm) occurred in fall and winter when SIN was above 4.9 mg/kg six weeks prior to leachate collection. Late season tillage operations leading to elevated SIN and leachate NO3- N concentrations were a strategy to reduce weeds while meeting consumer demand for organic products. Thus, while tillage that incorporates organic N inputs preceding cash

  20. Improved HVSR site classification method for free-field strong motion stations validated with Wenchuan aftershock recordings

    NASA Astrophysics Data System (ADS)

    Wen, Ruizhi; Ren, Yefei; Shi, Dacheng

    2011-09-01

    Local site conditions play an important role in the effective application of strong motion recordings. In the China National Strong Motion Observation Network System (NSMONS), some of the stations do not provide borehole information, and correspondingly, do not assign the site classes yet. In this paper, site classification methodologies for free-field strong motion stations are reviewed and the limitations and uncertainties of the horizontal-to-vertical spectral ratio (HVSR) methods are discussed. Then, a new method for site classification based on the entropy weight theory is proposed. The proposed method avoids the head or tail joggle phenomenon by providing the objective and subjective weights. The method was applied to aftershock recordings from the 2008 Wenchuan earthquake, and 54 free-field NSMONS stations were selected for site classification and the mean HVSRs were calculated. The results show that the improved HVSR method proposed in this paper has a higher success rate and could be adopted in NSMONS.

  1. Introduction to the GRI/DOE Field Fracturing Multi-Site Project

    SciTech Connect

    Peterson, R.E.; Middlebrook, M.L.; Warpinski, N.R.; Cleary, M.P.; Branagan, P.T.

    1993-12-31

    The objective of the Field Fracturing Multi-Sites Project is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. It is anticipated that the primary benefit of the project experiments will be the development and widespread commercialization of new fracture diagnostics technologies to determine fracture length, height, width and azimuth. Data resulting from these new technologies can then be used to prove and refine the 3D fracture model mechanisms. It is also anticipated that data collected and analyzed in the project will define the correct techniques for determining fracture closure pressure. The overall impact of the research will be to provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response.

  2. Controlled Soil Warming Powered by Alternative Energy for Remote Field Sites

    PubMed Central

    Johnstone, Jill F.; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2°C in 1 m2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes. PMID:24386125

  3. Agreement between virtual and in-the-field environmental audits of assisted living sites.

    PubMed

    Chudyk, Anna M; Winters, Meghan; Gorman, Erin; McKay, Heather A; Ashe, Maureen C

    2014-07-01

    The authors investigated the use of Google Earth's Street View option to audit the presence of built environment features that support older adults' walking. Two raters conducted virtual (Street View) and in-the-field audits of 48 street segments surrounding urban and suburban assisted living sites in metropolitan Vancouver, BC, Canada. The authors determined agreement using absolute agreement. Their findings indicate that Street View may identify the presence of features that promote older adults' walking, including sidewalks, benches, public washrooms, and destinations. However, Street View may not be as reliable as in-the-field audits to identify details associated with certain items, such as counts of trees or street lights; presence, features, and height of curb cuts; and sidewalk continuity, condition, and slope. Thus, the appropriateness of virtual audits to identify microscale built environment features associated with older adults' walking largely depends on the purpose of the audits-specifically, whether the measurer seeks to capture highly detailed features of the built environment.

  4. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  5. Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels.

    PubMed

    Boonen, E; Akylas, V; Barmpas, F; Boréave, A; Bottalico, L; Cazaunau, M; Chen, H; Daële, V; De Marco, T; Doussin, J F; Gaimoz, C; Gallus, M; George, C; Grand, N; Grosselin, B; Guerrini, G L; Herrmann, H; Ifang, S; Kleffmann, J; Kurtenbach, R; Maille, M; Manganelli, G; Mellouki, A; Miet, K; Mothes, F; Moussiopoulos, N; Poulain, L; Rabe, R; Zapf, P; Beeldens, A

    2015-05-15

    Within the framework of the European Life+-funded project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), which was aimed at demonstrating the effectiveness of photocatalytic coating materials on a realistic scale, a photocatalytic de-polluting field site was set up in the Leopold II tunnel in Brussels, Belgium. For that purpose, photocatalytic cementitious materials were applied on the side walls and ceiling of selected test sections inside a one-way tunnel tube. This article presents the configuration of the test sections used and the preparation and implementation of the measuring campaigns inside the Leopold II tunnel. While emphasizing on how to implement measuring campaigns under such conditions, difficulties encountered during these extensive field campaigns are presented and discussed. This included the severe de-activation observed for the investigated material under the polluted tunnel conditions, which was revealed by additional laboratory experiments on photocatalytic samples that were exposed to tunnel air. Finally, recommendations for future applications of photocatalytic building materials inside tunnels are given.

  6. Groundwater nanoparticles in the far-field at the Nevada Test Site: mechanism for radionuclide transport.

    PubMed

    Utsunomiya, Satoshi; Kersting, Annie B; Ewing, Rodney C

    2009-03-01

    Colloid-like nanoparticles in groundwater have been shown to facilitate migration of several radionuclides: (239,240)Pu, 137Cs, (152,154, 155)Eu, and 60Co. However, the exact type of nanoparticle and the speciation of the associated radionuclides has remained unknown. We have investigated nanoparticles sampled from the far-field at the Nevada Test Site, Nevada, utilizing advanced electron microscopytechniques, including high-angle annular dark-field scanning TEM (HAADF-STEM). Fissiogenic elements: Cs, rare earth elements (REE), activation elements: Co; and actinides: U and Th, were detected. Cesium is associated with U-forming cesium uranate with a Cs/U atomic ratio of approximately 0.12. Light REEs and Th are associated with phosphates, silicates, or apatite. Cobalt occurs as a metallic aggregate, associated with Cr, Fe, Ni, and +/-Mo. Uranyl minerals; Na-boltwoodite and oxide hydrates are also present as colloids. Because of these chemical associations with nanoscale particles, in the size range <100 nm, these particles may facilitate transport, and a variety of trace nanoscale phases may be responsible for the migration of fissiogenic and actinide elements in groundwater. To accurately model the transport of these contaminants, predictive transport models should include consideration of nanoparticle-facilitated transport.

  7. Initial field trials of the site characterization and analysis penetrometer system (SCAPS). Reconnaissance of Jacksonville Naval Air Station waste oil and solvents disposal site. Final report

    SciTech Connect

    Cooper, S.S.; Douglas, D.H.; Sharp, M.K.; Olsen, R.A.; Comes, G.D.

    1993-12-01

    At the request of the Naval Facilities Engineering Command (NAVFAC), Southern Division, Charleston, SC, the U.S. Army Engineer Waterways Experiment Station (WES) conducted the initial field trial of the Site Characterization and Analysis Penetrometer System (SCAPS) at Jacksonville Naval Air Station (NAS), Jacksonville FL. This work was carried out by a field crew consisting of personnel from WES and the Naval Ocean Systems Center during the period of 16 July 1990 to 14 August 1990. The SCAPS investigation at the Jacksonville NAS has two primary objectives: (a) to provide data that could be useful in formulating remediation plans for the facility and (b) to provide for the initial field trial of the SCAPS currently under development by WES for the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), now the U.S. Army Environmental Center. The original concepts for the SCAPS was to develop an integrated site screening characterization system whose capabilities would include (a) surface mapping, (b) geophysical surveys using magnetic, induced electromagnetic, and radar instruments, (c) measurements of soil strength, soil electrical resistivity, and laser-induced soil fluorometry Cone penetrometer, Site Characterization and Analysis Laser Induced Fluorescence(LIF), Penetrometer System(SCAPS) POL Contamination, using screening instrumentation mounted in a soil penetrometer, (d) soil and fluid samplers, and (e) computerized data acquisition, interpretation, and visualization. The goal of the SCAPS program is to provide detailed, rapid, and cost-effective surface and subsurface data for input to site assessment/remediation efforts.

  8. Spatiotemporal variations in growing season exchanges of CO2, H2O,and sensible heat in agricultural