Science.gov

Sample records for agricultural great plains

  1. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  2. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  3. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    SciTech Connect

    DeSutter, T.M.; Cihacek, L.J.

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  4. Dryland agriculture in Mexico and the U.S. Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following the "Dryland" monograph editors standardized chapter format, we describe the US southern Great Plains and northern Mexico dryland production regional boundaries and various climatic factors including: precipitation, evaporation, temperature, and water deficit. Dryland soil management, eros...

  5. The taming of the prairie: A century of agricultural research at the Northern Great Plains Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly a century after Congress authorized the Northern Great Plains Research Laboratory, it had approximately 35 employees and an annual budget of 3.4 million dollars. The long history of research accomplishments from the Laboratory have been well accepted by the agricultural community and have ide...

  6. Distribution and nesting success of ferruginous hawks and Swainson's hawks on an agricultural landscape in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied nest site land cover associations, and reproductive success of two Buteo species of conservation concern on the southern Great Plains, USA. The study area was in Cimarron County, Oklahoma, where land use is dominated by row crop agriculture, livestock grazing, and Conservation Reserve Pro...

  7. Agricultural Producer Perceptions of Climate Change and Climate Education Needs for the Central Great Plains

    ERIC Educational Resources Information Center

    Hibbs, Amber Campbell; Kahl, Daniel; PytlikZillig, Lisa; Champion, Ben; Abdel-Monem, Tarik; Steffensmeier, Timothy; Rice, Charles W.; Hubbard, Kenneth

    2014-01-01

    The Central Great Plains Climate Education Partnership conducted focus groups throughout Kansas to gain a better understanding of farmer perceptions and attitudes towards climate change education. Results indicate concern about climatic changes, even if producers are unsure that "human caused climate change" is occurring. Participants…

  8. Great plains regional climate assessment technical report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  9. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  10. History of the Central Great Plains Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Great Plains Research Station was established in 1907 as one of several Agricultural Fact Finding Institutions located in the Great Plains of the United States by the Bureau of Plant Industry. This document summarizes the circumstances surrounding the creation of the station and changes ...

  11. Moving from pixels to parcels: Modeling agricultural scenarios in the northern Great Plains using a hybrid raster- and vector-based approach

    NASA Astrophysics Data System (ADS)

    Sohl, T.; Wika, S.; Dornbierer, J.; Sayler, K. L.; Quenzer, R.

    2015-12-01

    Policy and economic driving forces have resulted in a higher demand for biofuel feedstocks in recent years, resulting in substantial increases in cultivated cropland in the northern Great Plains. A cellulosic-based biofuel industry could potentially further impact the region, with grassland and marginal agricultural land converted to perennial grasses or other feedstocks. Scenarios of projected land-use change are needed to enable regional stakeholders to plan for the potential consequences of expanded agricultural activity. Land-use models used to produce spatially explicit scenarios are typically raster-based and are poor at representing ownership units on which land-use change is based. This work describes a hybrid raster/vector-based modeling approach for modeling scenarios of agricultural change in the northern Great Plains. Regional scenarios of agricultural change from 2012 to 2050 were constructed, based partly on the U.S. Department of Energy's Billion Ton Update. Land-use data built from the 2012 Cropland Data Layer and the 2011 National Land Cover Database was used to establish initial conditions. Field boundaries from the U.S. Department of Agriculture's Common Land Unit dataset were used to establish ownership units. A modified version of the U.S. Geological Survey's Forecasting Scenarios of land-use (FORE-SCE) model was used to ingest vector-based field boundaries to facilitate the modeling of a farmer's choice of land use for a given year, while patch-based raster methodologies were used to represent expansion of urban/developed lands and other land use conversions. All modeled data were merged to a common raster dataset representing annual land use from 2012 to 2050. The hybrid modeling approach enabled the use of traditional, raster-based methods while integrating vector-based data to represent agricultural fields and other ownership-based units upon which land-use decisions are typically made.

  12. Great Plains Synfuels` hidden treasures

    SciTech Connect

    Kuhn, A.K.; Duncan, D.H.

    1996-12-31

    The Great Plains Synfuels Project was commissioned 12 years ago. While demonstrating success regarding SNG production, DGC quietly started development of chemical products derived from the liquid by-product streams of Lurgi moving bed gasifiers. Naphtha, crude phenol, and tar oil are the primary by-products, and these contain valuable compounds such as phenol, cresylic acid, catechols, naphthols, fluorene, and BTX. Process technologies have been developed for (1) separation of various impurities from cresylic acid distillate fractions or from whole cresylic acid; (2) extracting cresylic acid from tar oil; (3) conversion of tar pitch to a blend stock used in making anode binder pitch; and (4) separating high purity catechol and methyl catechols. As a result of this work, DGC built a phenol/cresylic acid facility. The cresylic acid side supplies over 10 percent of the world market. The achievement with the catechols is presently leading to bench scale routes for synthesis of chemical intermediates which ultimately may include compounds such as vanillin, pyrogallol, sesamol, homoveratrylamine, and many others, penetrating the fields of flavors and fragrances, pharmaceuticals, pesticides, photographic chemicals, dyes, etc. These efforts stimulate DGC`s growth and will provide an economic uplift. By-products already contribute more than 10% of revenues and are destined to rival natural gas in importance.

  13. Spatiotemporal variations in growing season exchanges of CO2, H2O,and sensible heat in agricultural fields of the Southern GreatPlains

    SciTech Connect

    Fischer, Marc L.; Billesbach, David P.; Berry, Joseph A.; Riley,William J.; Torn, Margaret S.

    2007-06-13

    Climate, vegetation cover, and management create fine-scaleheterogeneity in unirrigated agricultural regions, with important but notwell-quantified consequences for spatial and temporal variations insurface CO2, water, and heat fluxes. We measured eddy covariance fluxesin seven agricultural fields--comprising winter wheat, pasture, andsorghum--in the U.S. Southern Great Plains (SGP) during the 2001-2003growing seasons. Land-cover was the dominant source of variation insurface fluxes, with 50-100 percent differences between fields planted inwinter-spring versus fields planted in summer. Interannual variation wasdriven mainly by precipitation, which varied more than two-fold betweenyears. Peak aboveground biomass and growing-season net ecosystem exchange(NEE) of CO2 increased in rough proportion to precipitation. Based on apartitioning of gross fluxes with a regression model, ecosystemrespiration increased linearly with gross primary production, but with anoffset that increased near the time of seed production. Because theregression model was designed for well-watered periods, it successfullyretrieved NEE and ecosystem parameters during the peak growing season,and identified periods of moisture limitation during the summer. Insummary, the effects of crop type, land management, and water limitationon carbon, water, and energy fluxes were large. Capturing the controllingfactors in landscape scale models will be necessary to estimate theecological feedbacks to climate and other environmental impactsassociated with changing human needs for agricultural production of food,fiber, and energy.

  14. Life on the Great Plains. [Lesson Plan].

    ERIC Educational Resources Information Center

    2000

    In this four-part lesson, students examine the concept of geographic region by exploring the history of the United States Great Plains. In Part I, students gather information about the location and environment of the Great Plains in order to produce a map outlining the region in formal terms. In Part II, students examine how the region has been…

  15. The geologic story of the Great Plains

    USGS Publications Warehouse

    Trimble, Donald E.

    1980-01-01

    For more than half a century after Lewis and Clark crossed the country in 1805-6, the Great Plains was the testing ground of frontier America here America grew to maturity (fig. 1). In 1805-7, explorer Zebulon Pike crossed the southcentral Great Plains, following the Arkansas River from near Great Bend, Kans., to the Rocky Mountains. In later years, Santa Fe traders, lured by the wealth of New Mexican trade, followed Pike's path as far as Bents Fort, Colo., where they turned southwestward away from the river route. Those pioneers who later crossed the plains on the Oregon Trail reached the Platte River near the place that would become Kearney, Nebr., by a nearly direct route from Independence, Mo., and followed the Platte across the central part of the Great Plains.

  16. The Use of Remote Sensing for Monitoring, Prediction, and Management of Hydrologic, Agricultural, and Ecological Processes in the Northern Great Plains

    NASA Technical Reports Server (NTRS)

    Farwell, Sherry O.; DeTroye, Diane (Technical Monitor)

    2002-01-01

    The NASA-EPSCoR program in South Dakota is focused on the enhancement of NASA-related research in earth system science and corresponding infrastructure development to support this theme. Hence, the program has adopted a strategy that keys on research projects that: a) establish quantitative links between geospatial information technologies and fundamental climatic and ecosystem processes in the Northern Great Plains (NGP) and b) develop and use coupled modeling tools, which can be initialized by data from combined satellite and surface measurements, to provide reliable predictions and management guidance for hydrologic, agricultural, and ecological systems of the NGP. Building a partnership network that includes both internal and external team members is recognized as an essential element of the SD NASA-EPSCoR program. Hence, promoting and tracking such linkages along with their relevant programmatic consequences are used as one metric to assess the program's progress and success. This annual report first summarizes general activities and accomplishments, and then provides progress narratives for the two separate, yet related research projects that are essential components of the SD NASA-EPSCoR program.

  17. Spatial-temporal dynamics of agricultural drought in the tallgrass prairie region of the Southern Great Plains during 2000-2013

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Xiao, X.; Zhang, G.; Bajgain, R.; Dong, J.; Qin, Y.; Jin, C.; Wagle, P.; Basara, J. B.; McCarthy, H. R.; Anderson, M. C.; Hain, C.; Otkin, J.

    2015-12-01

    Tallgrass prairie is an important ecosystem type and a major feed for beef cattle in the Southern Great Plains (SGP: Kansas, Oklahoma, and Texas). Frequent drought in the SGP affects the production of tallgrass prairie and ultimately the beef cattle production. It is, therefore, necessary to map drought vulnerable areas to help ranchers adapt cattle industry to drought conditions. In this study, we analyzed Land Surface Water Index (LSWI) calculated from near infrared and shortwave infrared bands of Moderate Resolution Imaging Spectroradiometer (MODIS) and quantified the spatial-temporal dynamics of agricultural drought in the tallgrass prairie region of the SGP during 2000-2013. The number of days with LSWI < 0 during the thermal growing season (start and end dates as well as duration of land surface temperature > 5 °C) was defined as the duration of drought to generate drought duration maps for each year. Following the decreasing rainfall gradient from east to west in the SGP, counties in the west experienced whole growing season drought (WGSZ) more (three or more out of 14 years with WGSD), middle counties had one to two months summer drought, and eastern counties experienced less drought (mainly one year with WGSD and less than one month of summer drought). The LSWI-based drought duration map showed similar patterns with Evaporative Stress Index (ESI) and U.S. Drought Monitor (USDM) in wet, summer drought, and whole growing season drought years. Our drought map has identified the vulnerability of counties to different droughts (summer drought and whole growing season drought) in the SGP. This finer resolution (500 m) drought map has the potential to show the drought condition for individual ranch, which can be used to guide drought mitigation activities and livestock production.

  18. Long-term Agroecosystem Research in the Northern Great Plains.

    NASA Astrophysics Data System (ADS)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  19. Arapahos on the Great Plains. Student Workbook.

    ERIC Educational Resources Information Center

    Spoonhunter, Bob; Woodenlegs, Martha

    The student workbook is derived from "An Ethnological Report on Cheyenne and Arapaho: Aboriginal Occupation," by Zachary Gussow and "Northern Snows to Southern Summers--An Arapaho Odyssey," by Bob Spoonhunter. The first section discusses the Arapaho origins by recounting many different legends that explain how they arrived on the Great Plains. The…

  20. Regional dynamics of grassland change in the western Great Plains

    USGS Publications Warehouse

    Drummond, M.A.

    2007-01-01

    This paper examines the contemporary land-cover changes in two western Great Plains ecoregions between 1973 and 2000. Agriculture and other land uses can have a substantial effect on grassland cover that varies regionally depending on the primary driving forces of change. In order to better understand change, the rates, types, and causes of land conversion were examined for 1973, 1980, 1986, 1992, and 2000 using Landsat satellite data and a statistical sampling strategy. The overall estimated rate of land-cover change between 1973 and 2000 was 7.4% in the Northwestern Great Plains and 11.5% in the Western High Plains. Trends in both ecoregions have similarities, although the dynamics of change differ temporally depending on driving forces. Between 1973 and 1986, grassland cover declined when economic opportunity drove an expansion of agriculture. Between 1986 and 2000, grassland expanded as public policy and a combination of socioeconomic factors drove a conversion from agriculture to grassland. ?? 2007 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  1. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  2. Dust storms - Great Plains, Africa, and Mars

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Krauss, R.; Minzner, R.; Shenk, W.

    1977-01-01

    Dust storms in the Great Plains of North America and in the Sahara Desert are analyzed on the basis of imagery from the geostationary Synchronous Meteorological Satellite. The onset time, location and areal extent of the dust storms are studied. Over land surfaces, contrast enhancement techniques are needed to obtain an adequate picture of dust storm development. In addition, infrared imagery may provide a means of monitoring the strong horizontal temperature gradients characteristic of dust cloud boundaries. Analogies between terrestrial dust storms and the airborne rivers of dust created by major Martian dust storms are also drawn.

  3. A Sustainable Biomass Industry for the North American Great Plains

    SciTech Connect

    Rosenberg, Norman J.; Smith, Steven J.

    2009-12-01

    The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world can be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.

  4. Great Plains Wind Energy Transmission Development Project

    SciTech Connect

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the

  5. Circular buffer strips in center pivot irrigation for multiple benefits in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ogallala Aquifer has converted the Southern Great Plains from a dust bowl to a highly productive agricultural region in the US. However, over exploitation of the aquifer is threatening sustainability of irrigated agriculture in the region. Partial pivots, where high water using conventional crop...

  6. Greenhouse gas mitigation potential of dryland cropping systems in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Great Plains contain significant expanses of agricultural land dedicated to dryland cropping. Dryland cropping systems in the region that sequester soil organic carbon (SOC) and minimize nitrous oxide (N2O) emissions can serve to reduce the greenhouse gas (GHG) balance of U.S. agriculture....

  7. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining Ogallala Aquifer has threatened sustainability of highly productive irrigated agriculture in the region. The region, known for the dust bowl of thirties, is scared of its return. Lower well outputs and increasing pumping costs have compelled farmers to adapt alternative conservation strate...

  8. Statistical Downscaling for the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Coburn, J.

    2014-12-01

    The need for detailed, local scale information about the warming climate has led to the use of ever more complex and geographically realistic computer models as well as the use of regional models capable of capturing much finer details. Another class of methods for ascertaining localized data is known as statistical downscaling, which offers some advantages over regional models, especially in the realm of computational efficiency. Statistical downscaling can be described as the process of linking coarse resolution climate model output to that of fine resolution or even station-level data via statistical relationships with the purpose of correcting model biases at the local scale. The development and application of downscaling has given rise to a plethora of techniques which have been applied to many spatial scales and multiple climate variables. In this study two downscaling processes, bias-corrected statistical downscaling (BCSD) and canonical correlation analysis (CCA), are applied to minimum and maximum temperatures and precipitation for the Northern Great Plains (NGP, 40 - 53°N and 95 - 120°W) region at both daily and monthly time steps. The abilities of the methods were tested by assessing their ability to recreate local variations in a set of both spatial and temporal climate metrics obtained through the analysis of 1/16 degree station data for the period 1950 to 2000. Model data for temperature, precipitation and a set of predictor variables were obtained from CMIP5 for 15 models. BCSD was applied using direct comparison and correction of the variable distributions via quadrant mapping. CCA was calibrated on the data for the period 1950 to 1980 using a series of model-based predictor variables screened for increasing skill, with the derived model being applied to the period 1980 to 2000 so as to verify that it could recreate the overall climate patterns and trends. As in previous studies done on other regions, it was found that the CCA method recreated

  9. Particulate Loads Caused by Wind Erosion in the Great Plains

    ERIC Educational Resources Information Center

    Hagen, Lawrence J.; Woodruff, Neil P.

    1975-01-01

    In this paper the annual flux of suspended particulates caused by wind erosion in the Great Plains is estimated. This study demonstrated that climate causes wide variations in air pollution from wind erosion. (BT)

  10. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  11. Great Plains Drought in Simulations of Twentieth Century

    NASA Astrophysics Data System (ADS)

    McCrary, R. R.; Randall, D. A.

    2008-12-01

    The Great Plains region of the United States was influenced by a number of multi-year droughts during the twentieth century. Most notable were the "Dust Bowl" drought of the 1930s and the 1950s Great Plains drought. In this study we evaluate the ability of three of the Coupled Global Climate Models (CGCMs) used in the Fourth Assessment Report (AR4) of the IPCC to simulate Great Plains drought with the same frequency and intensity as was observed during the twentieth century. The models chosen for this study are: GFDL CM 2.0, NCAR CCSM3, and UKMO HadCM3. We find that the models accurately capture the climatology of the hydrologic cycle of the Great Plains, but that they tend to overestimate the variability in Great Plains precipitation. We also find that in each model simulation at least one long-term drought occurs over the Great Plains region during their representations 20th Century Climate. The multi-year droughts produced by the models exhibit similar magnitudes and spatial scales as was observed during the twentieth century. This study also investigates the relative roles that external forcing from the tropical Pacific and local feedbacks between the land surface and the atmosphere have in the initiation and perpetuation of Great Plains drought in each model. We find that cool, La Nina-like conditions in the tropical pacific are often associated with long-term drought conditions over the Great Plains in GFDL CM 2.0 and UKMO HadCM3, but there appears to be no systematic relationship between tropical Pacific SST variability and Great Plains drought in CCSM3. It is possible the strong coupling between the land surface and the atmosphere in the NCAR model causes precipitation anomalies to lock into phase over the Great Plains thereby perpetuating drought conditions. Results from this study are intended to help assess whether or not these climate models are credible for use in the assessment of future drought over the Great Plains region of the United States.

  12. Rural School District Reorganization on the Great Plains.

    ERIC Educational Resources Information Center

    Bryant, Miles

    2002-01-01

    Rural school district reorganization and school consolidation are put into perspective by reviewing the large population increases that fueled small-school growth in the Great Plains, 1870-1930. Since the Dust Bowl and Great Depression, population losses, improvements in transportation, and arguments advocating economies of scale and increased…

  13. Child Labor in the Early Sugar Beet Industry in the Great Plains, 1890-1920

    ERIC Educational Resources Information Center

    Lyons-Barrett, Mary

    2005-01-01

    Children working in agriculture have always been a part of the rural culture and work ethos of the United States, especially on the Great Plains. Many teenagers still detassel corn or walk the beans in the summer months to earn spending money or money for college. But what about the children who work as migrant laborers in commercialized…

  14. The future of irrigation on the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Great Plains, soil and water conservation is being achieved in both dryland and irrigated agricultural systems, and increasingly in combinations of these systems. Limiting tillage has increased the retention of crop residues on the surface and has reduced the evaporative loss of water, making...

  15. Simulating the production potential of dryland spring canola in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola (Brassica napus L.) has potential to be grown as dryland crop to diversify the winter wheat (Triticum aestivum L.)-fallow production system of the semi-arid Central Great Plains. Extensive regional field studies have not been conducted under rainfed conditions to provide farmers, agricultural...

  16. Resilience and vulnerability of beef cattle production in the southern great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate variability and periodic drought is a defining characteristic of the Southern Great Plains. Beef cattle production, based on a variety of crop, pasture, and native rangeland forages, is the most important economic commodity in this region and dominates the agricultural landscape. Press cov...

  17. Causes and Predictability of the 2012 Great Plains Drought

    NASA Technical Reports Server (NTRS)

    Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R.

    2013-01-01

    Central Great Plains precipitation deficits during May-August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in summertime precipitation over the central Great Plains during 2012. Yet, diagnosis of the retrospective climate simulations also reveals a regime shift toward warmer and drier summertime Great Plains conditions during the recent decade, most probably due to natural decadal variability. As a consequence, the probability for severe summer Great Plains drought may have increased in the last decade compared to the 1980s and 1990s, and the so-called tail-risk for severe drought may have been heightened in summer 2012. Such an extreme drought event was nonetheless still found to be a rare occurrence within the spread of 2012 climate model simulations. Implications of this study's findings for U.S. seasonal drought forecasting are discussed.

  18. Synthetic fuels: Status of the Great Plains coal gasification project

    SciTech Connect

    Not Available

    1987-01-01

    Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

  19. The Great Plains IDEA Gerontology Program: An Online, Interinstitutional Graduate Degree

    ERIC Educational Resources Information Center

    Sanders, Gregory F.

    2011-01-01

    The Great-Plains IDEA Gerontology Program is a graduate program developed and implemented by the Great Plains Interactive Distance Education Alliance (Great Plains IDEA). The Great Plains IDEA (Alliance) originated as a consortium of Colleges of Human Sciences ranging across the central United States. This Alliance's accomplishments have included…

  20. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  1. Management implications of global change for Great Plains rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Just as water and temperature drive the ecology of Great Plains rangelands, we predict that the impacts of global change on this region will be experienced largely through changes in these two important environmental variables. A third global change factor which will impact rangelands is increasing ...

  2. Producing and Marketing Proso Millet in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proso millet is a short-season summer crop that produces well in the semi-arid western Great Plains and is suitable for diversifying and intensifying dryland production systems. Proso allows transition back to winter wheat in cropping rotations. No-till methods work well with proso establishment. Pr...

  3. Crop diversity on traditional great plains wheat farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the vast majority of cropland in the western Great Plains was either seeded to continuous monoculture wheat or was in a wheat-fallow rotation. The objective of this paper is to determine the combined effects of crop diversity and tillage systems on wheat grain yield and net returns fo...

  4. Kansas environmental and resource study: A Great Plains model, tasks 1-6

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1972-01-01

    There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.

  5. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, Mark A.; Auch, Roger F.; Karstensen, Krista A.; Sayler, Kristi L.; Taylor, Janis L.; Loveland, Thomas R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km x 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors.

  6. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, M.A.; Auch, R.F.; Karstensen, K.A.; Sayler, K.L.; Taylor, J.L.; Loveland, T.R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km ?? 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human-environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors. ?? 2011.

  7. Effect of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.; Kruse, A.D.; Piehl, J.L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  8. Effects of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, Kenneth F.; Kruse, Arnold D.; Piehl, James L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  9. Great Plains ASPEN model development: Phosam section. Final topical report

    SciTech Connect

    Stern, S S; Kirman, J J

    1985-02-01

    An ASPEN model has been developed of the PHOSAM Section, Section 4600, of the Great Plains Gasification Plant. The bases for this model are the process description given in Section 6.18 of the Great Plains Project Management Plan and the Lummus Phosam Schematic Process Flow Diagram, Dwg. No. SKD-7102-IM-O. The ASPEN model that has been developed contains the complete set of components that are assumed to be in the gasifier effluent. The model is primarily a flowsheet simulation that will give the material and energy balance and equipment duties for a given set of process conditions. The model is unable to predict fully changes in process conditions that would result from load changes on equipment of fixed sizes, such as a rating model would predict. The model can be used to simulate the steady-state operation of the plant at or near design conditions or to design other PHOSAM units. Because of the limited amount of process information that was available, several major process assumptions had to be made in the development of the flowsheet model. Patent literature was consulted to establish the ammonia concentration in the circulating fluid. Case studies were made with the ammonia content of the feed 25% higher and 25% lower than the base feed. Results of these runs show slightly lower recoveries of ammonia with less ammonia in the feed. As expected, the duties of the Stripper and Fractionator reboilers were higher with more ammonia in the feed. 63 references.

  10. Lacustrine carbonates of the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.

    2012-11-01

    The northern Great Plains of western Canada, a vast region stretching from the Precambrian Shield east of Winnipeg, Manitoba, westward for some 1600 km to the foothills of the Rocky Mountains, contains literally millions of lakes and wetlands. Although often characterized as a saline, Na-SO4 system, in fact the wide range of water chemistries exhibited by the lakes results in an unusually large diversity of sediment composition. Despite a long history of limnogeological study, it is only recently that the spectrum of carbonate minerals and sedimentological processes in these lakes has been realized. About 30 species of carbonate minerals have been reported from the modern and Holocene sediment of about 50 basins in the region. The ubiquity of detrital calcite and dolomite is a legacy of the carbonate bedrock and carbonate-rich glacial sediments. Elevated salinities of the lakes, together with high alkalinities, productivity, and pH values, act in concert to create thermodynamically saturated or supersaturated conditions with respect to many carbonate minerals. The most common non-detrital components are Mg-calcite, aragonite and non-stoichiometric dolomite. Many of the basins whose brines have very high Mg/Ca ratios also contain hydromagnesite, magnesite, and nesquehonite. Although not common, sodium carbonates, including trona, natron and nahcolite, also occur in some of the hypersaline lakes. Because of their great range of formative conditions, carbonates have been the workhorse for much of the physical and geochemical paleolimnology in the Canadian Great Plains. However, the often-difficult task of distinguishing endogenic lacustrine carbonates from allogenic and authigenic minerals has limited the use of carbonate stratigraphy in the region. Despite this problem, the carbonates have been useful in deciphering (i) past changes in hydrology and drainage basin characteristics, (ii) lake level and water column stratification fluctuations, and (iii) water chemistry

  11. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  12. Summertime Low-Level Jets over the Great Plains

    SciTech Connect

    Stensrud, D.J.

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  13. ESTAR Measurements During the Southern Great Plains Experiment (SGP99)

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Jackson, T. J.; Swift, C. T.; Haken, M.; Bidwell, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    During the Southern Great Plains experiment, the synthetic aperture radiometer, ESTAR, mapped L-band brightness temperature over a swath about 50 km wide and about 300 km long extending west from Oklahoma City to El Reno and north from the Little Washita River watershed to the Kansas border. ESTAR flew on the NASA P-3B Orion aircraft at an altitude of 7.6 km and maps were made on 7 days between July 8-20, 1999. The brightness temperature maps reflect the patterns of soil moisture expected from rainfall and are consistent with values of soil moisture observed at the research sites within the SGP99 study area and with previous measurements in this area. The data add to the resources for hydrologic modeling in this area and are further validation of the technology represented by ESTAR as a potential path to a future mission to map soil moisture globally from space.

  14. Building Indigenous Community Resilience in the Great Plains

    NASA Astrophysics Data System (ADS)

    Gough, B.

    2014-12-01

    Indigenous community resilience is rooted in the seasoned lifeways, developed over generations, incorporated into systems of knowledge, and realized in artifacts of infrastructure through keen observations of the truth and consequences of their interactions with the environment found in place over time. Their value lies, not in their nature as artifacts, but in the underlying patterns and processes of culture: how previous adaptations were derived and evolved, and how the principles and processes of detailed observation may inform future adaptations. This presentation examines how such holistic community approaches, reflected in design and practice, can be applied to contemporary issues of energy and housing in a rapidly changing climate. The Indigenous Peoples of the Great Plains seek to utilize the latest scientific climate modeling to support the development of large, utility scale distributed renewable energy projects and to re-invigorate an indigenous housing concept of straw bale construction, originating in this region. In the energy context, we explore the potential for the development of an intertribal wind energy dynamo on the Great Plains, utilizing elements of existing federal policies for Indian energy development and existing federal infrastructure initially created to serve hydropower resources, which may be significantly altered under current and prospective drought scenarios. For housing, we consider the opportunity to address the built environment in Indian Country, where Tribes have greater control as it consists largely of residences needed for their growing populations. Straw bale construction allows for greater use of local natural and renewable materials in a strategy for preparedness for the weather extremes and insurance perils already common to the region, provides solutions to chronic unemployment and increasing energy costs, while offering greater affordable comfort in both low and high temperature extremes. The development of large

  15. Interannual Variability in Net Ecosystem Exchange in United States Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wylie, Bruce; Ji, Lei; Gilmanov, Tagir; Howard, Danny

    2010-05-01

    entire Great Plains grassland region was a carbon sink during the 9 years. However, three ecoregions were sources for carbon because of frequent droughts during 2000-2009 with a cumulative flux of -10 g C • m-2 for the Northwestern Great Plains, -438 g C • m-2 for the Western High Plains, and -696 g C • m-2 for the Southwestern Tablelands. NEE exhibited large spatial variation in the drier west (carbon sources) and in the wetter east (carbon sinks). In addition, large temporal variations in annual NEE were observed over the Great Plains during the 9 year period, especially in the western and southern portion of the region. These results suggest that Great Plains grassland ecosystems are potentially large carbon sinks but may turn to carbon sources during drought periods or upon conversion to agriculture.

  16. Land Use and Family Formation in the Settlement of the U.S. Great Plains

    PubMed Central

    Gutmann, Myron P.; Pullum-Piñón, Sara M.; Witkowski, Kristine; Deane, Glenn D.; Merchant, Emily

    2014-01-01

    In agricultural settings, environment shapes patterns of settlement and land use. Using the Great Plains of the United States during the period of its initial Euro-American settlement (1880–1940) as an analytical lens, this article explores whether the same environmental factors that determine settlement timing and land use—those that indicate suitability for crop-based agriculture—also shape initial family formation, resulting in fewer and smaller families in areas that are more conducive to livestock raising than to cropping. The connection between family size and agricultural land availability is now well known, but the role of the environment has not previously been explicitly tested. Descriptive analysis offers initial support for a distinctive pattern of family formation in the western Great Plains, where precipitation is too low to support intensive cropping. However, multivariate analysis using county-level data at 10-year intervals offers only partial support to the hypothesis that environmental characteristics produce these differences. Rather, this analysis has found that the region was also subject to the same long-term social and demographic changes sweeping the rest of the country during this period. PMID:24634550

  17. USGS Historical, Current, and Projected Future Land Cover Mapping for the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Sohl, T. L.; Gallant, A.; Sayler, K. L.

    2008-12-01

    Land cover in the Northern Great Plains has changed considerably in the last several decades. While a significant proportion of the landscape has been cultivated for over one hundred years, the intensity of cultivation, crop type, and management practices have changed in response to shifts in government policy, commodity prices, access to water, and technological advances. Changes in land cover impact a wide variety of ecosystem processes and services, including carbon balances, climate, hydrology and water quality, and biodiversity. A consistent record of historical land cover is required to understand relations between land- cover change and these ecological processes, while projections of future land cover are needed for planning and potential mitigation efforts. Several U.S. Geological Survey efforts have been completed or are ongoing in the Northern Great Plains, resulting in the compilation of an unmatched record of historical, current, and future land-cover information for the region. The USGS Land Cover Trends project is using the historical record of Landsat imagery and a robust sampling approach to examine the rates, causes, and consequences of contemporary (1973-2000) land-cover change on an ecoregional basis for the conterminous United States. Results from completed Trends analyses for Great Plains ecoregions revealed changes in the proportion and distribution of grassland/shrubland and agricultural uses during the study period; Some areas exhibited considerable loss in cultivated land after initiation of the Conservation Reserve Program (CRP) in the mid 1980s. In recent years (post-2000), agricultural commodity prices have skyrocketed as food and energy compete for use of agricultural products, which in conjunction with the expiration of many CRP contracts, has led to expansion of cultivated land. In the coming decades, calls for U.S. energy independence and the development of biofuels from cellulosic stock could result in a transformation of the Great

  18. Avian associations of the Northern Great Plains grasslands

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1983-01-01

    The grassland region of the northern Great Plains was divided into six broad subregions by application of an avian indicator species analysis to data obtained from 582 sample plots censused during the breeding season. Common, ubiquitous species and rare species had little classificatory value and were eliminated from the data set used to derive the avian associations. Initial statistical division of the plots likely reflected structure of the dominant plant species used for nesting; later divisions probably were related to foraging or nesting cover requirements based on vegetation height or density, habitat heterogeneity, or possibly to the existence of mutually similar distributions or shared areas of greater than average abundance for certain groups of species. Knowledge of the effects of grazing, mostly by cattle, on habitat use by the breeding bird species was used to interpret the results of the indicator species analysis. Moderate grazing resulted in greater species richness in nearly all subregions; effects of grazing on total bird density were more variable.

  19. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  20. View east over the Rocky Mountains and Great Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A color oblique view looking east over the Rocky Mountains and Great Plains (40.0N, 106.0W). This view covers a portion of the States of Colorado, Wyoming, and Nebraska. This entire region, covered with snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Only change to snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains that form the core of the Rocky Mountains. Individual mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton,

  1. Great Plains ASPEN model development: gasifier model. Final topical report

    SciTech Connect

    Benjamin, B.W.

    1985-01-01

    A rigorous model of a moving-bed, dry-bottom gasifier, RGAS, has been incorporated into ASPEN. The model is designed to calculate the variables which characterize gasifier performance: (1) the composition of the outlet gas; (2) the flow of the outlet gas; (3) the temperature of the outlet gas; (4) the temperature profile of the solids (especially important in dry bottom gasifiers because of the necessity of maintaining the maximum temperature of the bed below the ash softening temperature); and (5) the rate of steam generation in the jacket (if applicable). The option of using alternative kinetic expressions has been incorporated into the model structure. Presently, RGAS can be used to simulate gasifier performance using the kinetic expressions for gasification established at West Virginia University and the University of Delaware. The models of both West Virginia University and the University of Delaware were tuned to agree with the Great Plains gasifier flowsheet. Then, several case studies were run to determine the sensitivity of each model to changes in such inputs as: (1) feed rates; (2) feed temperatures; (3) reaction parameters; and (4) heat transfer coefficient. The data from these case studies have been compared with experimental findings. For example, increasing the oxygen feed rate or increasing the temperature of the inlet gas feed both serve to increase the reactor temperature which, in turn, increases the carbon conversion and steam generation rate. On the other hand, increasing the steam feed rate does the opposite. These results agree with trends observed experimentally. 5 references.

  2. Skip-row Planting Patterns Stabilize Corn Grain Yields in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly variable climate of the Central Great Plains makes dryland corn (Zea mays) production a risky enterprise. Twenty-three field trials were conducted across the Central Great Plains from 2004 through 2006 to quantify the effect of various skip-row planting patterns and plant populations on g...

  3. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  4. Agroecosystem diversity and pollinator ecosystem services on the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The northern Great Plains provide critical habitat to pollinators. In 2012, North and South Dakota produced one-third of the total honey in the U.S. According to large scale analyses, crop diversity in the northern Great Plains has increased during the past 35 years. Increased diversity, greater com...

  5. DEVELOPMENT AND EVALUATION OF A FISH ASSEMBLAGE INDEX OF BIOTIC INTEGRITY FOR NORTHWESTERN GREAT PLAINS STREAMS

    EPA Science Inventory

    Quantitative indicators of biological integrity are needed for streams in the Great Plains of North America, but it was not known if the Index of Biotic Integrity (IBI) approach would be effective in this semi-arid region. Great Plains streams have a depauperate and tolerant i...

  6. Catastrophic failure of the Northern Great Plains: A unifying hypothesis

    SciTech Connect

    Clausen, E.N. . Science Div.)

    1992-01-01

    The Northern Great Plains, at peak Laurentide glaciation, was a 1,600 km thick barrier between meltwater sources and the lower Missouri Valley. Meltwater and floodwaters flowed along the ice margin, moved between the Black Hills and Laurentide ice. Water was trapped between ice to the N and E and mountains to the W and S. The Pine Ridge Escarpment began as the S wall of a W-trending headcut while other headcuts eroded N, parallel to the ice margin. Sheetflow from the west and northwest stripped the easily-eroded surface between major headcuts. The Cheyenne Valley headcut then captured sheetflow from the eastern Powder River Basin, both N and S of the Black Hills. Sheetflow moving through the western Powder River Basin, however, continued to spill over the southern wall of the initial headcut, carving the upper White River Valley. These floodwaters filled the lower White River Valley, including the Scenic and Sage Creek Basins, and breached divides by spilling over into the newly formed Cheyenne Valley. Another W-trending headcut next initiated the upper Little Missouri Valley by diverting sheetflow from the northeastern Powder River Basin. The Little Missouri Valley was extended northward by diversion of flow to a fourth major headcut and then again by diversion to the Missouri Valley headcut. Sheetflow, moving SE into the Powder River Basin, was progressively captured and diverted as SW-trending headcuts formed the Yellowstone-Powder, Yellowstone-Tongue, and Yellowstone-Bighorn valleys. At the same time sheetflow was progressively captured and diverted by a northerly set of SW-trending headcuts which eroded the Redwater, Big Dry, and Musselshell valleys. Major spillways finally breached the 1,600 km thick barrier by cutting between the Highwood and Bearpaw Mountains and between Milk River Ridge and the Cypress Hills.

  7. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American

  8. Transitioning from Corn to Switchgrass in the US Great Plains: Implications for Climate and Water Resource

    NASA Astrophysics Data System (ADS)

    Oglesby, R. J.; Rowe, C. M.; Erickson, D. J.

    2007-12-01

    Much attention has been paid to the use of corn as a biofuel, in large part because corn is already grown throughout much of the US and technology is in place to convert it to ethanol. Increasingly, however, it is recognized that other types of vegetation are likely to be more efficient producers of biofuel. In particular, switchgrass (the primary component of prairie long grass) may be a very efficient producer in the Great Plains (as well as portions of the Midwest and Southeast), where it is an indigenous species. The dominant agricultural planting in the Great Plains at present is corn. A transition from corn to switchgrass may have numerous benefits, both because it may be a better source of biofuels, and because in the water-scarce Great Plains it would likely make better use of available water resources. In addition to these positive benefits, however, there may be effects on the climate of this region that can be deleterious. While switchgrass, with its deep and extensive root system may be less subject to drought, and less needing of irrigation, than corn, it also cycles much less water during its growing season. This reduction in water input to the atmosphere means less water available for local and regional precipitation, and also dramatically affects the surface energy balance, resulting in more sensible and longwave heating of the atmosphere. This may cause a significant increase in surface air temperature and stabilization of the atmosphere, leading to a reduction in precipitation as well as increased evaporative potential (both of which would help negate any increased water efficiency of switchgrass). We use the MM5 and WRF regional climate models to investigate these effects over the Great Plains. Simulations were made assuming all corn ('irrigated cropland') and all switchgrass ('grassland') and compared to a control using present-day land use types that is largely a mix of the two. Model runs are being made for three years with normal

  9. Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary

    SciTech Connect

    DeMott, PJ; Suski, KJ; Hill, TCJ; Levin, EJT

    2015-03-01

    The first ever ice nucleating particle (INP) measurements to be collected at the Southern Great Plains site were made during a period from late April to June 2014, as a trial for possible longer-term measurements at the site. These measurements will also be used to lay the foundation for understanding and parameterizing (for cloud resolving modeling) the sources of these climatically important aerosols as well as to augment the existing database containing this knowledge. Siting the measurements during the spring was intended to capture INP sources in or to this region from plant, soil, dust transported over long distances, biomass burning, and pollution aerosols at a time when they may influence warm-season convective clouds and precipitation. Data have been archived of real-time measurements of INP number concentrations as a function of processing conditions (temperature and relative humidity) during 18 days of sampling that spanned two distinctly different weather situations: a warm, dry and windy period with regional dust and biomass burning influences in early May, and a cooler period of frequent precipitation during early June. Precipitation delayed winter wheat harvesting, preventing intended sampling during that perturbation on atmospheric aerosols. INP concentrations were highest and most variable at all temperatures in the dry period, where we attribute the INP activity primarily to soil dust emissions. Additional offline INP analyses are underway to extend the characterization of INP to cover the entire mixed phase cloud regime from -5°C to -35°C during the full study. Initial comparisons between methods on four days show good agreement and excellent future promise. The additional offline immersion freezing data will be archived as soon as completed under separate funding. Analyses of additional specialized studies for specific attribution of INP to biological and smoke sources are continuing via the National Science Foundation and National Aeronautics

  10. Biological Conditions and Economic Development: Nineteenth-Century Stature on the U.S. Great Plains.

    PubMed

    Carson, Scott Alan

    2015-06-01

    Average stature is now a well-accepted measure of material and economic well-being in development studies when traditional measures are sparse or unreliable, but little work has been done on the biological conditions for individuals on the nineteenth-century U.S. Great Plains. Records of 14,427 inmates from the Nebraska state prison are used to examine the relationship between stature and economic conditions. Statures of both black and white prisoners in Nebraska increased through time, indicating that biological conditions improved as Nebraska's output market and agricultural sectors developed. The effect of rural environments on stature is illustrated by the fact that farm laborers were taller than common laborers. Urbanization and industrialization had significant impacts on stature, and proximity to trade routes and waterways was inversely related to stature. PMID:26040245

  11. Historical and current environmental influences on an endemic great plains fish

    USGS Publications Warehouse

    Fischer, John R.; Paukert, C.P.

    2008-01-01

    Native fishes of the Great Plains are at risk of decline due to disturbances to physical habitat caused by changes in land and water use, as well as shifts in species assemblages driven by the invasion of introduced species with the loss of natives. We used historical and current fish assemblage data in conjunction with current habitat information to assess these influences on an endemic Great Plains stream fish, the plains topminnow (Fundulus sciadicus). Of the 31 sites where the plains topminnow occurred historically (1939-1940), it was found in only seven of those sites in 2003-2005. Our results demonstrate a shift in fish assemblage over time that coincides with the loss of plains topminnow. Changes in fish assemblages were characterized by increases in occurrence of exotic, invasive and generalist species with declines in occurrences of native fishes. An information theoretic approach was used to evaluate candidate models of current fish assemblage and physical/chemical habitat on the presence of the plains topminnow. Candidate models that included both instream habitat (e.g., vegetation coverage, undercut banks) and the native fish species assemblage are important to predicting presence of the plains topminnow within its historic range. Conservation of Great Plains fishes including the plains topminnow will need a combination of habitat protection and enhancement.

  12. The Buffalo Commons: Great Plains Residents' Responses to a Radical Vision

    ERIC Educational Resources Information Center

    Rees, Amanda

    2005-01-01

    The American Great Plains has gained and shed various regional meanings since Euro-American exploration began. From a desert to a garden to a dust bowl to a breadbasket, this region's identity has shifted radically and dramatically over the last 200 years. In the mid-1980s unusual things were happening on the Plains that suggested yet another…

  13. Carbon and Water cycling in Southern Great Plains ecosystems converted to switchgrass production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here the initiation of a multi-disciplinary, integrative program to investigate the effects of conversion of traditional southern Great Plains pasture and wheat systems to switchgrass (Panicum virgatum L.) production. The project is based at the USDA-ARS Southern Plains Range Research Stat...

  14. Trace metal enrichment in agricultural soils of Jianghan Plain

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Ying, S.; Daniel, J. N.; Bu, J.; Gan, Y.; Wang, Y.; Schaefer, M.; Fendorf, S. E.

    2014-12-01

    Coal consumption in China is increasing annually due to constantly rising energy demand. As a result, a massive amount of coal combustion byproducts, particularly in the form of fly ash, are expelled from power plants and distributed through atmospheric transport. The fly ash is eventually deposited on to land, potentially contaminating agricultural soils. Coal fly ash contains high concentration of a suite of toxic trace metals including lead, chromium, and arsenic. In this study, we surveyed the concentration of trace metals in agricultural soils at 131 sites within a 20 km radius of Yangluo Power Plant, a 2400 MW plant within the highly populated Jianghan Plain of Central China. Using X-ray fluorecence (XRF) spectrometry, the total concentration of trace metals in homogenized surface and subsurface soil samples were measured to calculate the corresponding enrichment factor at each site. Our initial findings demonstrate that Pb is enriched in a majority of sites, independent of land use, whereas As and Cr are generally not enriched in this region. Further studies using Pb isotopes as a source-tracing tool will help determine the Pb pollution's origin. Ultimately, the results of this study may inform whether crops grown within the Jianghan Plain have the potential of being contaminated by metals emitted from coal power plants.

  15. Simulated responses of soil organic carbon stock to tillage management scenarios in the Northwest Great Plains

    PubMed Central

    Tan, Zhengxi; Liu, Shuguang; Li, Zhengpeng; Loveland, Thomas R

    2007-01-01

    Background Tillage practices greatly affect carbon (C) stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC) in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS). Tillage management scenarios included actual tillage management (ATM), conventional tillage (CT), and no-till (NT). Results Model simulations show that the average amount of C (kg C ha-1yr-1) released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. Conclusion For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale. PMID:17650336

  16. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    USGS Publications Warehouse

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  17. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  18. Dynamical connection between Great Plains low-level winds and variability of central Gulf States precipitation

    NASA Astrophysics Data System (ADS)

    Pu, Bing; Dickinson, Robert E.; Fu, Rong

    2016-04-01

    The Great Plains low-level jet has been related to summer precipitation over the northern Great Plains and Midwest through its moisture transport and convergence at the jet exit area. Much less studied has been its negative relationship with precipitation over the southern Great Plains and the Gulf coastal area. This work shows that the southerly low-level winds at 30°-40°N over the southern Great Plains are significantly correlated with anticyclonic vorticity to its east over the central Gulf States (30°-35°N, 85°-95°W) from May to July. When the low-level jet is strong in June and July, anomalous anticyclonic vorticity over the central Gulf States leads to divergence and consequent subsidence suppressing precipitation over that region. In contrast, an enhanced southerly flow at the entrance region of the jet over the Gulf of Mexico, largely uncorrelated with the meridional wind over the southern Great Plains, is correlated with increased precipitation over the central Gulf States. Precipitation is large over the central Gulf States when the meridional wind over the southern Great Plains is weakest and over the Gulf of Mexico is strongest. This increase is consistent with the increased moisture transport and dynamic balance between loss of vorticity by advection and friction and gain by convergence.

  19. Subtask 7.3 - The Socioeconomic Impact of Climate Shifts in the Northern Great Plains

    SciTech Connect

    Jaroslav Solc; Tera Buckley; Troy Simonsen

    2007-12-31

    The Energy & Environmental Research Center (EERC) evaluated the water demand response/vulnerability to climate change factors of regional economic sectors in the northern Great Plains. Regardless of the cause of climatic trends currently observed, the research focused on practical evaluation of climate change impact, using water availability as a primary factor controlling long-term regional economic sustainability. Project results suggest that the Upper Missouri, Red River, and Upper Mississippi Watersheds exhibit analogous response to climate change, i.e., extended drought influences water availability in the entire region. The modified trend suggests that the next period for which the Red River Basin can expect a high probability of below normal precipitation will occur before 2050. Agriculture is the most sensitive economic sector in the region; however, analyses confirmed relative adaptability to changing conditions. The price of agricultural commodities is not a good indicator of the economic impact of climate change because production and price do not correlate and are subject to frequent and irregular government intervention. Project results confirm that high water demand in the primary economic sectors makes the regional economy extremely vulnerable to climatic extremes, with a similar response over the entire region. Without conservation-based water management policies, long-term periods of drought will limit socioeconomic development in the region and may threaten even the sustainability of current conditions.

  20. Alternative No-till Rotations and Drought Mitigation Research in the Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in the dryland portion of the Central Great Plains Region make their living on land that receives 14-20 inches of precipitation annually. The evaporative demand in the region is usually 4 to 8 times that amount and so the challenge to successfully farm this region is great. The crops and lan...

  1. Alfalfa production with subsurface drip irrigation in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated alfalfa production is gaining interest because of the growing number of dairies in the semi-arid U.S. Central Great Plains and its longstanding superior profitability compared to other alternative crops grown in the region. Irrigation requirements for alfalfa are great because of alfalfa's...

  2. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  3. Meteorological contribution to the mitigation and adaptation of the 'extreme water events' of Hungarian Great Plain

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Vincze, E.; Moring, A.

    2012-04-01

    The lack of water is a traditional problem of Hungarian agriculture. Two big rivers cross the territory of Hungary and times to times they produce huge floods. In the Carpathian basin a flood and a drought can occur in the same year. The general problem of Hungarian agriculture is the 'water' in two contexts, in lack of water and in surplus. Not only of the next year but of the next decades the basic question of the Hungarian planning is how the national economy can handle the increasing numbers of unexpected negative events of climate change because the growing numbers of sometimes catastrophic floods and droughts seems to be connected with global warming. Beside the 'normal floods' in the last few years the numbers of so called flash floods show increasing tendency too. The presentation summarises the 'extreme water events' of Hungarian Great Plain, and the forecast problems of Hungarian meteorology together with the National strategy in mitigation and adaptation in connection with climate change. From meteorological point of view the handling of flood and drought problem is totally different. In case of flood the stress is on the forecast, in case of drought mainly of the evaluation of the historical data mainly the short and long term evaluation of drought indices. Drought indices seem to be the simplest tools in drought analysis. The more or less well known and popular indices have been collected and compared not only with the well known simple but more complicated water balance and so called 'recursive' indices beside few ones use remotely sensed data, mainly satellite born information. The indices are classified into five groups, namely 'precipitation', 'water balance', 'soil moisture', 'recursive' and 'remote sensing' indices. For every group typical expressions are given and the possible use in the decision making and hazard risk evaluation and compensation of the farmers after the events. The meteorological elements of new Hungarian agricultural risk

  4. Kansas environmental and resource study: A Great Plains model

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T. (Principal Investigator)

    1973-01-01

    The land use category of subimage regions over Kansas within an MSS image can be identified with an accuracy of about 70% using the textural-spectral features of the multi-images from the four MSS bands. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Agricultural consultants have expressed substantial interest in work conducted on center pivot irrigation and have inquired as to how they may use ERTS-1 imagery to aid those in the irrigation field. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available.

  5. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  6. Channel narrowing and vegetation development following a great plains flood

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Lewis, W.M., Jr.

    1996-01-01

    Streams in the plains of eastern Colorado are prone to intense floods following summer thunderstorms. Here, and in other semiarid and arid regions, channel recovery after a flood may take several decades. As a result, flood history strongly influences spatial and temporal variability in bottomland vegetation. Interpretation of these patterns must be based on understanding the long-term response of bottomland morphology and vegetation to specific floods. A major flood in 1965 on Plum Creek, a perennial sandbed stream, removed most of the bottomland vegetatiqn and transformed the single-thread stream into a wider, braided channel. Channel narrowing began in 1973 and continues today. In 1991, we determined occurrences of 150 vascular plant species in 341 plots (0.5 m2) along a 7-km reach of Plum Creek near Louviers, Colorado. We related patterns of vegetation to elevation, litter cover, vegetative cover, sediment particle size, shade, and year of formation of the underlying surface (based on age of the excavated root flare of the oldest woody plants). Geomorphic investigation determined that Plum Creek fluvial surfaces sort into five groups by year of formation: terraces of fine sand formed before 1965; terraces of coarse sand deposited by the 1965 flood; stable bars formed by channel narrowing during periods of relatively high bed level (1973-1986); stable bars similarly formed during a recent period of low bed level (1987-1990); and the present channel bed (1991). Canonical correspondence analysis indicates a strong influence of elevation and litter cover, and lesser effects of vegetative cover, shade, and sediment particle size. However, the sum of all canonical eigenvalues explained by these factors is less than that explained by an analysis including only the dummy variables that define the five geomorphically determined age groups. The effect of age group is significant even when all five other environmental variables are specified as covariables. Therefore, the

  7. Modeling Prairie Wetland Weather and Climate Feedbacks in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Capehart, W. J.; Taylor, J. A.

    2005-05-01

    Storm-scale simulations of the Northern Great Plains have shown that the prairie wetland systems in the region influence warm-season convective systems even under synoptic-scale forcings. These complex surface water systems, in turn, swell in surface area during wet cycles and contract (and in some cases completely disappear into the cropland/pastureland land cover matrix) during dry cycles. Since the early-to-mid 1990s, these wetland systems have expanded to their historical maximum. The resulting expansions have had an impact on surface hydrology, and agricultural practices (including new crop rotation regimes in the affected areas) and may impact regional climate feedbacks. To examine the potential for these feedbacks, we shall present results of regional climate simulations of the recent decadal period featuring comparisons of precipitation and evaporation patterns with the ambient land cover regimes currently used in mesoscale and regional climate models (which do not include any reference to the larger wetland system in the region), and approximations of the pre-expansion and current wetland states using modified land cover and soil moisture patterns as a proxy. These latter simulations represent a first step in developing a companion wetland parameterization which could facilitate not only coupled hydroclimatological studies of the region, but ecological and biogeochemical studies as well.

  8. Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of Mechanisms from SGP ARM Data

    SciTech Connect

    Sumant Nigam

    2013-02-01

    Work reported included analysis of pentad (5 day) averaged data, proposal of a hypothesis concerning the key role of the Atlantic Multi-decadal Oscillation in 20th century drought and wet periods over the Great Plains, analysis of recurrent super-synoptic evolution of the Great Plains low-level jet, and study of pentad evolution of the 1988 drought and 1993 flood over the Great Plains from a NARR perspective on the atmospheric and terrestrial water balance.

  9. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang

    2012-01-01

    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.

  10. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    USGS Publications Warehouse

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  11. Does climatic variability influence agricultural land prices under differing uses? The Texas High Plains case

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultural land prices under different land uses in the Texas High Plains, employing the Ri...

  12. Global Warming Potential of Long-Term Grazing Management Systems in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing lands in the northern Great Plains of North America are extensive, occupying over 50 Mha. Yet grazing land contributions to, or mitigation of, global warming potential (GWP) is largely unknown for the region. The objective of this study was to estimate GWP for three long-term (70 to 90 yr)...

  13. Soil erosion and organic matter variations for central Great Plains cropping systems under residue removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  14. Dataset: Soil erosion and organic matter for central Great Plains cropping systems under residue removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  15. Cover crop biomass production and water use in the central great plains under varying water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  16. Crop Diversification and Management System Influence Yield and Weeds in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available water, depleted soil quality, and weed competition are major constraints to dryland crop production in the northern Great Plains. We initiated a trial in 2004 comparing four crop rotations, with each rotational component in a two-by-two matrix of tillage (conventional vs. zero tillage) an...

  17. Genetic Improvement in Winter Wheat Yields in the Great Plains of North America, 1959-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data from USDA-coordinated winter wheat regional performance nurseries collected over the time period 1959-2008 were used to estimate genetic gain (loss) in grain yield, grain volume weight, days to heading, and plant height in winter wheats (Triticum aestivum L.) adapted to the Great Plains. In bo...

  18. Black Enclaves of Violence: Race and Homicide in Great Plains Cities, 1890-1920

    ERIC Educational Resources Information Center

    McKanna, Clare V., Jr.

    2003-01-01

    The author examines interracial homicides in the early twentieth century in three Great Plains cities: Coffeyville, Kansas; Topeka, Kansas; and Omaha, Nebraska. Railroads attracted hundreds of young blacks searching for steady employment. Alcohol played an important role in violence levels as did the availability of cheap and handguns, and certain…

  19. Ancient Way in a New Land: Benedictine Education in the Great Plains

    ERIC Educational Resources Information Center

    Frigge, Marielle

    2003-01-01

    Benedictine men and women brought with them centuries of experience as learners and teachers, and they shared their educative way of life as well as their schools with Native peoples and European immigrants. In turn, the land and peoples of the Great Plains have contributed to the evolution of Benedictine monastic life in North America.

  20. Cover crops can affect subsequent wheat yield in the central great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production systems in the water-limited environment of the semi-arid central Great Plains may not have potential to profitably use cover crops because of lowered subsequent wheat (Triticum asestivum L.) yields following the cover crop. Cover crop mixtures have reportedly shown less yield-reduci...

  1. Inmigrants to the Northern Great Plains: Survey Results from Nebraska and North Dakota.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Cordes, Sam; Sell, Randall S.; Allen, John C.; Filkins, Rebecca

    2000-01-01

    A study of characteristics and motives of migrants to the Northern Great Plains surveyed 1,590 new residents in Nebraska and North Dakota. New arrivals were younger and had higher educational levels than existing residents. Most often cited reasons for moving were desire to be closer to relatives, safety concerns, and quality of the natural…

  2. SELECTING LEAST-DISTURBED SURVEY SITES FOR GREAT PLAINS STREAMS AND RIVERS

    EPA Science Inventory

    True reference condition probably does not exist for streams in highly utilized regions such as the Great Plains. Selecting least-disturbed sites for large regions is confounded by the association between human uses and natural gradients, and by multiple kinds of disturbance. U...

  3. TOWARDS A VERIFIABLE AMMONIA EMISSIONS INVENTORY FOR CATTLE FEEDLOTS IN THE GREAT PLAINS

    EPA Science Inventory

    Collectively, beef cattle feedlots in the Great Plains may be the nation’s single largest source of atmospheric ammonia. Unfortunately, the large uncertainty around these emissions not only affects the U.S. ammonia inventory, but also undermines attempts to understand and miti...

  4. Water use and yield of cotton grown in four Great Plains soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of earlier maturing and cool temperature tolerant varieties of cotton (Gossypium hirsutum L.) has allowed cotton production to expand northward in the US Great Plains to regions with shorter, cooler growing seasons. The expansion of the drought tolerant cotton into these regions as ...

  5. Early weaning in Northern Great Plains beef cattle production systems: II. Development of replacement heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr study was conducted to evaluate effects of weaning heifer calves early (approx. 80-d) or at the normal (approx. 215-d) weaning age on BW gain to 215-d, subsequent BW gain, luteal activity, and pregnancy rate in two herds located in the Northern Great Plains. In exp. 1 and 2, heifer calves fr...

  6. But What Is There to See? An Exploration of a Great Plains Aesthetic

    ERIC Educational Resources Information Center

    Tangney, ShaunAnne

    2004-01-01

    In the fall of 2001 I taught a beginning college composition course at Minot State University, a small state university located in the northwestern quadrant of North Dakota. It is typical of such courses to include a fair amount of reading, and one of the texts I assigned was Ian Frazier's "Great Plains". The book is a travelogue that Frazier…

  7. Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...

  8. Developing the 18th indicator for interpreting indicators of rangeland health on Northern Great Plains rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National Resources Inventory (NRI) resource assessment report shows little to no departure on Rangeland Health for most Northern Great Plains Rangelands. This information is supported by Interpreting Indicators of Rangeland Health (IIRH) data collected at local to regional scales. There is however a...

  9. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  10. Adaptation of Pulse Crops to the Changing Climate of the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate over the northern Great Plains has generally warmed over the last 60 yr. The rate of warming has varied temporally and spatially, confounding trend analysis for climate indicators such as increased length of the growing season. Change in precipitation has been even more variable. Despite thi...

  11. Skip-row Corn and Sorghum in the West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skip-row planting of corn and sorghum has recently developed as a strategy for mitigating drought in the dryland regions of the western Central Great Plains. Here we compare 16 site-years of no-till feed grain yields when planted skip-row and when planted conventionally in Eastern Colorado and Weste...

  12. Simulating Alternative Dryland Rotational Cropping Systems in the Central Great Plains with RZWQM2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term crop rotation effects on crop water use and yield have been investigated in the Central Great Plains since the 1990s. System models are needed to synthesize these long-term results for making management decisions and for transferring localized data to other conditions. The objectives of th...

  13. Potential Climate Change Effects on Warm-Season Livestock Production in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate changes suggested by some global circulation models (GCM) will impact livestock production systems in the Great Plains region of the United States. Production/response models for growing swine and beef cattle, and milk-producing dairy cattle, were developed based on summary information conta...

  14. Weather pattern climatology of the Great Plains and the related wind regime

    SciTech Connect

    Barchet, W.R.

    1982-11-01

    The meteorology of the Great Plains can be described as a constant progression of air masses, fronts and cyclonic storm systems. Each of these meteorological conditions can be characterized by identifiable isobaric and related weather parameter patterns. Nine such patterns have been defined to type the weather patterns in the Great Plains. Time series of weather pattern types were produced for 62 stations on the Great Plains. Statistical analyses of these time series produced annual and seasonal frequencies of occurrence of the weather pattern types. Maps of the annual and seasonal frequency of occurrence of weather pattern type are presented for the Great Plains. Persistence and alternation frequencies match what is expected for traveling temperate latitude cyclones, anticyclones and fronts. The wind regime for stations at which the anemometer height and location was constant (and known) for a minimum of three consecutive years was stratified by weather pattern type. Statistical analyses were made to show the response of the wind to the large-scale distribution of air pressure associated with a weather pattern type. The response of the wind to the weather pattern is a site-specific result of the interaction of the large-scale meteorology with local terrain, surface roughness and atmospheric stability. Mean wind speed discriminates between pairs of weather pattern types with better than 75% confidence for more than two-thirds of the possible pairs of weather pattern types.

  15. Evidence for Wind-Driven Rain Erosion on Sunflower Stubble Land in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-crop production systems in the northern Great Plains have undergone species diversification to include those with non-durable residues. To assess hazards when lands with such crops are tilled or fallowed, a wind erosion study was established in central North Dakota on silt loam soil (Haplustoll...

  16. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  17. Identifying Winter Forage Triticale (X Triticosecale Wittmack) Strains for the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticale (X Triticosecale Wittmack), a human-made crop, is mainly used as a forage crop in the central Great Plains. A successful triticale cultivar should have high forage yield with good quality, and also high grain yield so the seed can be economically produced. Hence, the purpose of this study...

  18. IMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We exam...

  19. IIMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examin...

  20. Skip-Row Planting as a Drought Avoidance Strategy in the West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Great Plains Region is a net importer of feed grains. This market provides an incentive to develop stable dryland corn and sorghum yields. The lack of adequate moisture during silking/pollen shed is a major limitation to dryland feed-grain production in the region. Here we investigate st...

  1. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  2. Grain yield and plant characteristics of corn hybrids in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply for crop use is the primary factor controlling corn (Zea mays L.) grain yield in the west-central Great Plains. With water supply varying as production systems range from dryland through irrigated, selecting hybrids for optimum yield in the anticipated water environment is vital for suc...

  3. Understanding Great Plains Urbanization through the Lens of South Dakota Townscapes

    ERIC Educational Resources Information Center

    Conzen, Michael P.

    2010-01-01

    Most towns were crucial to the initial colonization and economic development of the Great Plains. Many were, directly or indirectly, creatures of railroad corporate planning, owing their location as well as their physical layout to the townsite companies controlled by railroad officials. This article examines how these facts shaped the fundamental…

  4. Cotton water use and lint yield in four Great Plains Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of earlier maturing and cool temperature tolerant varieties of cotton (Gossypium hirsutum L.) has allowed cotton production to expand northward in the United States Great Plains to regions with shorter, cooler growing seasons. Cotton, as a substitute for the less drought tolerant ma...

  5. Reflectance based characterization of wheat cultivars for identifying drought tolerance in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. Southern Great Plains (SGP), drought stress is the single most important factor for reducing yield in winter wheat. Selection of drought tolerant wheat cultivars has been and will continue to be a critical strategy for wheat management under limited water conditions. Currently, yield is ...

  6. Cover crop water use and impacts on subsequent wheat yields in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been demonstrated to provide a wide array of benefits to soils in various regions of the United States, but their use has not been thoroughly tested in the semi-arid environment of the Central Great Plains. This article reports on the results of an experiment with the objectives of ...

  7. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  8. Major advances of soil and water conservation in the U.S. Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Southern Great Plains comprise the broad expanse of prairie and steppe lands that lie east of the Rocky Mountains and cover parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas where semi-arid dryland crop production merges into rainfed farming. Except for exposed Pliocene alluvial st...

  9. National coal resource assessment: Fort Union coals of the Northern Rocky Mountains and Great Plains

    SciTech Connect

    Flores, R.M.; Bader, L.R.; Ellis, M.S. |

    1996-12-31

    The present investigation assesses geologic controls on the distribution, resource occurrence, and quality of the Paleocene Fort Union and equivalent coals in the northern Rocky Mountains and Great Plains. Results of this investigation will assist in predicting areas wit h high quality coals that will be available for development. Published products will include digital output and hard copy readily accessible for analysis and utilization.

  10. Restoration of Degraded/Eroded Soil under Different Management Practices in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmlands in the Central Great Plains Region (CGPR) have lost topsoil through wind and water erosion induced by tillage and poor soil management. These soils are now degraded with low soil quality and productivity. Productivity and quality of degraded/eroded soils can be restored using manure and i...

  11. Best Management Practices for Remediation/Restoration of Degraded Soils in the Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmlands in the Central Great Plains Region (CGPR) have lost topsoil through wind and water erosion induced by tillage and poor soil management (Wheat-fallow management). Productivity of degraded/eroded soils can be restored using organic amendment such as manure and improved crop and soil manageme...

  12. Remediation/Restoration of Degraded Soil to Improve Productivity In The Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality and productivity of some farmlands in the central Great Plains Region (CGPR) have been lost through wind and water erosion induced by tillage and poor soil management. Productivity of degraded/eroded soils can be restored using organic amendments such as manure and improved crop and soil...

  13. Cropping Intensity Impacts on Soil Aggregation and Carbon Sequestration in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The predominant cropping system in the Central Great Plains is conventional tillage (CT) winter wheat–summer fallow. We investigated the effect 15 yrs of variable cropping intensity, fallow frequency, and tillage (CT and no-till [NT]) had on soil organic C (SOC) sequestration, particulate organic ma...

  14. Immigration to the Great Plains, 1865-1914: War, Politics, Technology, and Economic Development

    ERIC Educational Resources Information Center

    Garver, Bruce

    2011-01-01

    The advent and vast extent of immigration to the Great Plains states during the years 1865 to 1914 is perhaps best understood in light of the new international context that emerged during the 1860s in the aftermath of six large wars whose consequences included the enlargement of civil liberties, an acceleration of economic growth and technological…

  15. The Physics of Great Plains Drought, Its Predictability, and Its Changed Risk in a Warming World

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Livneh, B.

    2015-12-01

    The talk will examine the fundamental physics of Great Plains drought. The US Great Plains experienced a severe drought in 2012, symptoms of which included severe rainfall deficits and record setting high temperatures. An outstanding question is the relationship between the precipitation deficits and the heat wave, and further their mutual effects on soil moisture conditions. Land surface model simulations are presented to demonstrate the combined and separate effects of rainfall deficits and air temperature on soil moisture. The effects of antecedent conditions are also assessed, and implications for drought prediction are discussed. A further question to be addressed is the role of human-induced climate change on future Great Plains drought. Results are presented of the land surface responses to plausible scenarios for precipitation and temperature change. Applying an understanding of the fundamental physics of drought, we seek to better understand the sensitivity of deep soil moisture in a significantly warmer world that can inform discussions on risks for unprecedented future drought conditions in the Great Plains.

  16. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  17. Growth and Quality of Perennial C3 Grasses in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring and fall gaps in forage production for systems utilizing winter wheat forage in the Southern Great Plains have led to an interest in additional resources such as C3 perennial grasses. We evaluated the potential of nine cool-season grass entries for forage production and quality through the fa...

  18. Growth and Quality of Cool-Season Perennial Grass Species in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annually planted winter wheat is the major cool-season livestock forage enterprise in a large part of the southern Great Plains and is a good complement to warm-season perennials. However, gaps in both fall and spring exist in the system. Cool-season perennial grasses that have origins in the Nort...

  19. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust prediction models describing vegetation and animal responses to stocking rate in North American Great Plains rangelands are lacking as across site comparisons are limited by different qualitative designations of light, moderate and heavy stocking. Comparisons of stocking rates across sites ca...

  20. Simulating the impact of human land use change on forest composition in the Great Plains agroecosystems with the Seedscape model

    USGS Publications Warehouse

    Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.

    2001-01-01

    The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.

  1. Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the Great Plains

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Scott, M.L.; Auble, G.T.

    1998-01-01

    The response of rivers and riparian forests to upstream dams shows a regional pattern related to physiographic and climatic factors that influence channel geometry. We carried out a spatial analysis of the response of channel geometry to 35 dams in the Great Plains and Central Lowlands, USA. The principal response of a braided channel to an upstream dam is channel-narrowing, and the principal response of a meandering channel is a reduction in channel migration rate. Prior to water management, braided channels were most common in the southwestern Plains where sand is abundant, whereas meandering channels were most common in the northern and eastern Plains. The dominant response to upstream dams has been channel-narrowing in the southwestern Plains (e.g., six of nine cases in the High Plains) and reduction in migration rate in the north and east (e.g., all of twelve cases in the Missouri Plateau and Western Lake Regions). Channel-narrowing is associated with a burst of establishment of native and exotic woody riparian pioneer species on the former channel bed. In contrast, reduction in channel migration rate is associated with a decrease in reproduction of woody riparian pioneers. Thus, riparian pioneer forests along large rivers in the southwestern Plains have temporarily increased following dam construction while such forests in the north and east have decreased. These patterns explain apparent contradictions in conclusions of studies that focused on single rivers or small regions and provide a framework for predicting effects of dams on large rivers in the Great Plains and elsewhere. These conclusions are valid only for large rivers. A spatial analysis of channel width along 286 streams ranging in mean annual discharge from 0.004 to 1370 cubic meters per second did not produce the same clear regional pattern, in part because the channel geometries of small and large streams are affected differently by a sandy watershed.

  2. 78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408) AGENCIES: Western Area... Service (Service), have, as joint lead agencies, prepared the Upper Great Plains Wind Energy Draft... wind energy development within Western's Upper Great Plains Customer Service Region (UGP Region),...

  3. Spatial and Temporal Complexities of Current Great Plains Dunefield Chronological Data

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Johnson, W. C.

    2012-12-01

    The North American Great Plains span nearly 2.8 million km2, of which nearly half is mantled by aeolian sediments (loess deposits, sand sheets, and dunefields). Stratigraphies of these sediments contain a rich history of late-Quaternary climate change, in particular aeolian dunefields, which provide a record of drought. During arid conditions in the Great Plains, stabilizing vegetation is diminished, leaving dunefields susceptible to aeolian erosion; during periods of increased moisture, conversely, vegetation re-establishes and dunefields stabilize. Using radiometric dating techniques, researchers can extract from the stratigraphy of dunefields the timing of past activity, and, therefore, periods of past drought. To date, more than 50 chronologies, comprised of over 700 ages, have established a detailed record of past dunefield activity in the Great Plains. Despite this extensive dataset, correlating periods of past droughts across the region remains problematic, in large part due to the spatial and temporal limitations in the data. In this poster, we present a spatial and temporal synthesis of current Great Plains dunefield chronologies, followed by an analysis of the complexities of these data, in particular when used to determine periods of past drought. To illustrate these complexities, we present a bicentennial, 1 x 1 degree gridded model of dune activity (e.g., active, stable, no data) spanning the last 2000 years. Our model clearly illustrates gaps in spatial coverage and temporal biases of chronologies. To further highlight the complexities of using current Great Plains datasets as proxies for prehistoric drought, we compare a 2.5 x 2.5 degree gridded model of dune activity during the Medieval Climatic Anomaly (A.D. 1000-1400) and historic time (A.D. 1800-2000) to Palmer Drought Severity Index (PDSI)-reconstructed droughts for the same time intervals. In general, dunefield activity is in good agreement with PDSI-reconstructed drought, however, unlike tree

  4. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA

    USGS Publications Warehouse

    Preston, Todd M.; Kim, Kevin

    2016-01-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000 – 2015) development, the area and previous land cover of all well pads (pads) constructed during this time was determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990 ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121 ha have likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and- gas wells (i.e. stratigraphic test wells, water wells, injection wells, etc.), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  5. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA.

    PubMed

    Preston, Todd M; Kim, Kevin

    2016-10-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000-2015) development, the area and previous land cover of all well pads (pads) constructed during this time were determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121ha has likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and-gas wells (i.e. stratigraphic test wells, water wells, and injection wells), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin. PMID:27318516

  6. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  7. Large-eddy simulation of flow over the Great Plains under stable atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Chow, F. K.

    2010-12-01

    The Great Plains in the central part of North America hosts enormous wind resources. One of the key meteorological features over the Great Plains is the frequent occurrence of nocturnal low-level jets under stably-stratified conditions. The flow speed up due to the formation of the low-level jets represents great wind power potential. In this study, large-eddy simulations (LES) will be performed over the site where the Cooperative Atmospheric-surface Exchange Study (CASES-99) field experiment took place. Atmospheric boundary layer (ABL) simulations driven by both strongly and weakly forced synoptic flows under stable atmospheric conditions will be investigated. While continuous turbulence is expected under strongly forced conditions, the weakly forced scenario is likely intermittent in nature, with occasional elevated turbulent bursts. The focus of this study includes vertical wind shear profiles, as well as turbulent statistics under stable conditions over the relatively flat, yet complex terrain. We will use an explicit filtering and reconstruction turbulence modeling LES approach. This approach has been proven advantageous in our previous work in terms of turbulence representation and agreement with similarity theory in neutral and stable atmospheric boundary layer flow over flat terrain. The dynamic reconstruction turbulence closure is capable of handling strong atmospheric stability, and predicting intermittent turbulence burst events in previous idealized simulations. This LES study ill provide detailed flow features under stable conditions over the Great Plains that can be valuable to the wind energy industry.

  8. Dynamics of Cultural Transmission in Native Americans of the High Great Plains

    PubMed Central

    Lycett, Stephen J.

    2014-01-01

    Culture is a phenomenon shared by all humans. Attempts to understand how dynamic factors affect the origin and distribution of cultural elements are, therefore, of interest to all humanity. As case studies go, understanding the distribution of cultural elements in Native American communities during the historical period of the Great Plains would seem a most challenging one. Famously, there is a mixture of powerful internal and external factors, creating-for a relatively brief period in time-a seemingly distinctive set of shared elements from a linguistically diverse set of peoples. This is known across the world as the “Great Plains culture.” Here, quantitative analyses show how different processes operated on two sets of cultural traits among nine High Plains groups. Moccasin decorations exhibit a pattern consistent with geographically-mediated between-group interaction. However, group variations in the religious ceremony of the Sun Dance also reveal evidence of purifying cultural selection associated with historical biases, dividing down ancient linguistic lines. The latter shows that while the conglomeration of “Plains culture” may have been a product of merging new ideas with old, combined with cultural interchange between groups, the details of what was accepted, rejected or elaborated in each case reflected preexisting ideological biases. Although culture may sometimes be a “melting pot,” the analyses show that even in highly fluid situations, cultural mosaics may be indirectly shaped by historical factors that are not always obvious. PMID:25372277

  9. Dynamics of cultural transmission in Native Americans of the high Great Plains.

    PubMed

    Lycett, Stephen J

    2014-01-01

    Culture is a phenomenon shared by all humans. Attempts to understand how dynamic factors affect the origin and distribution of cultural elements are, therefore, of interest to all humanity. As case studies go, understanding the distribution of cultural elements in Native American communities during the historical period of the Great Plains would seem a most challenging one. Famously, there is a mixture of powerful internal and external factors, creating-for a relatively brief period in time-a seemingly distinctive set of shared elements from a linguistically diverse set of peoples. This is known across the world as the "Great Plains culture." Here, quantitative analyses show how different processes operated on two sets of cultural traits among nine High Plains groups. Moccasin decorations exhibit a pattern consistent with geographically-mediated between-group interaction. However, group variations in the religious ceremony of the Sun Dance also reveal evidence of purifying cultural selection associated with historical biases, dividing down ancient linguistic lines. The latter shows that while the conglomeration of "Plains culture" may have been a product of merging new ideas with old, combined with cultural interchange between groups, the details of what was accepted, rejected or elaborated in each case reflected preexisting ideological biases. Although culture may sometimes be a "melting pot," the analyses show that even in highly fluid situations, cultural mosaics may be indirectly shaped by historical factors that are not always obvious. PMID:25372277

  10. Habitat relationships with fish assemblages in minimally disturbed Great Plains regions

    USGS Publications Warehouse

    Fischer, John R.; Paukert, C.P.

    2008-01-01

    Effects of local environmental influences on the structure of fish assemblages were evaluated from 159 sites in two regions of the Great Plains with limited anthropogenic disturbance. These regions offered an opportunity to evaluate the structure and variation of streams and fish assemblages within the Great Plains. We used canonical correspondence analyses to determine the influence of environmental conditions on species abundances, species occurrences and assemblage characteristics. Analysis of regions separately indicated that similar environmental factors structured streams and fish assemblages, despite differences in environmental conditions and species composition between regions. Variance in fish abundance and assemblage characteristics from both regions was best explained by metrics of stream size and associated metrics (width, depth, conductivity and instream cover). Our results provide a framework and reference for conditions and assemblage structure in North American prairie streams.

  11. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  12. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.

    1973-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.

  13. Simulation of the great plains low-level jet and associated clouds by general circulation models

    SciTech Connect

    Ghan, S.J.; Bian, X.; Corsetti, L.

    1996-07-01

    The low-level jet frequently observed in the Great Plains of the United States forms preferentially at night and apparently influences the timing of the thunderstorms in the region. The authors have found that both the European Centre for Medium-Range Weather Forecasts general circulation model and the National Center for Atmospheric Research Community Climate Model simulate the low-level jet rather well, although the spatial distribution of the jet frequency simulated by the two GCM`s differ considerably. Sensitivity experiments have demonstrated that the simulated low-level jet is surprisingly robust, with similar simulations at much coarser horizontal and vertical resolutions. However, both GCM`s fail to simulate the observed relationship between clouds and the low-level jet. The pronounced nocturnal maximum in thunderstorm frequency associated with the low-level jet is not simulated well by either GCM, with only weak evidence of a nocturnal maximum in the Great Plains. 36 refs., 20 figs.

  14. Are Droughts in the United States Great Plains Predictable on Seasonal and Longer Time Scales?

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, M.; Pegion, P.; Kistler, M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The United States Great Plains has experienced numerous episodes of unusually dry conditions lasting anywhere from months to several years, In this presentation, we will examine the predictability of such episodes and the physical mechanisms controlling the variability of the summer climate of the continental United States. The analysis is based on ensembles of multi-year simulations and seasonal hindcasts generated with the NASA Seasonal to-Interannual Prediction Project (NSIPP-1) General Circulation Model.

  15. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  16. Correlation of spacecraft passive microwave system data with soil moisture indices (API). [great plains corridor

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Mcfarland, M. J.; Theis, S.; Richter, J. G.

    1981-01-01

    Electrical scanning microwave radiometer brightness temperature, meteorological data, climatological data, and winter wheat crop information were used to estimate that soil moisture content in the Great Plains region. Results over the predominant winter wheat areas indicate that the best potential to infer soil moisture occurs during fall and spring. These periods encompass the growth stages when soil moisture is most important to winter wheat yield. Other significant results are reported.

  17. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, D.H.; Euliss, B.R.

    2001-01-01

    During 1997-1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 i?? 186.4 SE, whereas inactive colonies occupied 560.4 i?? 89.2 km2. These data represent the 1st quantitative assessment of prairie-dog colonies in the northern Great Plains. The survey dispels popular notions that millions of square kilometers of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts

  18. The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.; Flanagan, L. B.; Hanan, N. P.; Litvak, M. E.; Suyker, A. E.

    2016-02-01

    In the Great Plains, grassland carbon dynamics differ across broad gradients of precipitation and temperature, yet finer-scale variation in these variables may also affect grassland processes. Despite the importance of grasslands, there is little information on how fine-scale relationships compare between them regionally. We compared grassland C exchanges, energy partitioning and precipitation variability in eight sites in the eastern and western Great Plains using eddy covariance and meteorological data. During our study, both eastern and western grasslands varied between an average net carbon sink and a net source. Eastern grasslands had a moderate vapor pressure deficit (VPD = 0.95 kPa) and high growing season gross primary productivity (GPP = 1010 ± 218 g C m-2 yr-1). Western grasslands had a growing season with higher VPD (1.43 kPa) and lower GPP (360 ± 127 g C m-2 yr-1). Western grasslands were sensitive to precipitation at daily timescales, whereas eastern grasslands were sensitive at monthly and seasonal timescales. Our results support the expectation that C exchanges in these grasslands differ as a result of varying precipitation regimes. Because eastern grasslands are less influenced by short-term variability in rainfall than western grasslands, the effects of precipitation change are likely to be more predictable in eastern grasslands because the timescales of variability that must be resolved are relatively longer. We postulate increasing regional heterogeneity in grassland C exchanges in the Great Plains in coming decades.

  19. Climatic Forcing of Wetland Landscape Connectivity in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Wright, C.

    2012-12-01

    Conservation biologists have recognized an urgent need to manage landscapes in a way that promotes biological adaptation to climate change. Of particular importance is the ability of species to adjust their ranges as climatic shifts occur. Habitat fragmentation complicates such an adjustment. We are using Great Plains wetlands as a general model for studying linkages between habitat connectivity and climatic forcing. Great Plains wetlands, including playas and prairie potholes, are sensitive to intra- and inter-seasonal variation in precipitation and evaporation. As a result, both the number and spatial configuration of wetlands containing surface water varies dramatically over short timespans. Additionally, land use heterogeneity within the intervening matrix affects dispersal between wetlands. We use graph theory to assess effects of this variability on habitat connectivity across a range of spatial scales. Here we will present results from both remote-sensing and modeling studies, focusing on the historical range-of-variability of habitat connectivity in the Great Plains and projecting future connectivity under climate change.

  20. Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, fourth quarter, 1983. [Great Plains, Mercer County, North Dakota

    SciTech Connect

    Not Available

    1983-01-01

    Activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Gasification Plant: detailed engineering in the Contractors' home office was completed in the fourth quarter. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the fourth quarter. Although the Plant's construction activities are still slightly behind schedule, it is currently forecasted that the construction schedule will be regained by the end of June 1984. Start-Up operations are continuing at a rapid pace. The current emphasis is on system turnover and commissioning activities. The environmental permitting for the construction phase is complete. Freedom Mine: mine development activities remain on schedule.

  1. SuomiNet efforts in the U. S. Southern Great Plains.

    SciTech Connect

    Peppler, R. A.; Carr, F. H.; Ahern, J. L.; Liljegren, J. C.; Eagan, R. C.; Smith, J. J.

    2000-10-10

    SuomiNet provides great promise for advancing research at the University of Oklahoma in numerical weather prediction and plate tectonics studies, and will further help the U.S. DOE ARM (Atmospheric Radiation Measurement) Program better specify the measurement of water vapor over the Southern Great Plains. The SuomiNet program is also allowing ARM to upgrade its data collection infrastructure to provide more reliable and near real-time observations not only to SuomiNet but also to other researchers.

  2. Loess record of the Pleistocene-Holocene transition on the northern and central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Miao, X.; Hanson, P.R.; Johnson, W.C.; Jacobs, P.M.; Goble, R.J.

    2008-01-01

    Various lines of evidence support conflicting interpretations of the timing, abruptness, and nature of climate change in the Great Plains during the Pleistocene-Holocene transition. Loess deposits and paleosols on both the central and northern Great Plains provide a valuable record that can help address these issues. A synthesis of new and previously reported optical and radiocarbon ages indicates that the Brady Soil, which marks the boundary between late Pleistocene Peoria Loess and Holocene Bignell Loess, began forming after a reduction in the rate of Peoria Loess accumulation that most likely occurred between 13.5 and 15 cal ka. Brady Soil formation spanned all or part of the B??lling-Aller??d episode (approximately 14.7-12.9 cal ka) and all of the Younger Dryas episode (12.9-11.5 cal ka) and extended at least 1000 years beyond the end of the Younger Dryas. The Brady Soil was buried by Bignell Loess sedimentation beginning around 10.5-9 cal ka, and continuing episodically through the Holocene. Evidence for a brief increase in loess influx during the Younger Dryas is noteworthy but very limited. Most late Quaternary loess accumulation in the central Great Plains was nonglacigenic and was under relatively direct climatic control. Thus, Brady Soil formation records climatic conditions that minimized eolian activity and allowed effective pedogenesis, probably through relatively high effective moisture. Optical dating of loess in North Dakota supports correlation of the Leonard Paleosol on the northern Great Plains with the Brady Soil. Thick loess in North Dakota was primarily derived from the Missouri River floodplain; thus, its stratigraphy may in part reflect glacial influence on the Missouri River. Nonetheless, the persistence of minimal loess accumulation and soil formation until 10 cal ka at our North Dakota study site is best explained by a prolonged interval of high effective moisture correlative with the conditions that favored Brady Soil formation. Burial

  3. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    USGS Publications Warehouse

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  4. Hydrologic characteristics of soils in the High Plains, northern Great Plains, and Central Texas Carbonates Regional Aquifer Systems

    USGS Publications Warehouse

    Dugan, Jack T.; Hobbs, Ryne D.; Ihm, Laurie A.

    1990-01-01

    Certain physical characteristics of soils, including permeability, available water capacity, thickness, and topographic position, have a measurable effect on the hydrology of an area. These characteristics control the rate at which precipitation infiltrates or is transmitted through the soil, and thus they have an important role in determining the rates of actual evapotranspiration (consumptive water use), groundwater recharge, and surface runoff. In studies of groundwater hydrology, it is useful to differentiate soils spatially according to their physical characteristics and to assign values that indicate their hydrologic responses.The principal purpose of this report is to describe the relation between the hydrologic characteristics of the soils in the study area and those environmental factors that affect the development and distribution of the soils. This objective will be achieved by (1) defining both qualitatively and quantitatively those soil characteristics that affect hydrology, and (2) classifying and delineating the boundaries of the soils in the study area according to these hydrologic characteristics.The study area includes the High Plains, Northern Great Plains, the Central Texas Carbonates, and parts of the Central Midwest Regional Aquifer Systems as described by the U.S. Geological Survey Regional Aquifer-System Analysis (RASA) Program (Sun, 1986, p.5and Sun, personal commun., June 1985) and shown in figures 1 through 5. The spatial patterns of the soils classified according to their quantifiable hydrologic characteristics will subsequently serve as an integral component in the analysis of actual evapotranspiration (consumptive water use), consumptive irrigation requirements, and potential ground-water recharge of the study area.The classification system used to describe the soils in this report is compatible with that of Dugan (1986). Dugan described the same characteristics of soils that are immediately underlain by principal aquifers of

  5. Farmers, Ranchers, and the Railroad: The Evolution of Fence Law in the Great Plains, 1865-1900

    ERIC Educational Resources Information Center

    Kawashima, Yasuhide

    2010-01-01

    This article is divided into three parts. The first examines specific fencing policies in Kansas, Nebraska, and other Plains states, highlighting the transformation from the "fence-out" to "fence-in" (herd laws) policies. The second part discusses the coming of the railroads to the Great Plains and the farmers and the ranchers as beneficiaries who…

  6. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  7. Transmission of biology and culture among post-contact Native Americans on the western Great Plains.

    PubMed

    Lycett, Stephen J; von Cramon-Taubadel, Noreen

    2016-01-01

    The transmission of genes and culture between human populations has major implications for understanding potential correlations between history, biological, and cultural variation. Understanding such dynamics in 19th century, post-contact Native Americans on the western Great Plains is especially challenging given passage of time, complexity of known dynamics, and difficulties of determining genetic patterns in historical populations for whom, even today, genetic data for their descendants are rare. Here, biometric data collected under the direction of Franz Boas from communities penecontemporaneous with the classic bison-hunting societies, were used as a proxy for genetic variation and analyzed together with cultural data. We show that both gene flow and "culture flow" among populations on the High Plains were mediated by geography, fitting a model of isolation-by-distance. Moreover, demographic and cultural exchange among these communities largely overrode the visible signal of the prior millennia of cultural and genetic histories of these populations. PMID:27514818

  8. Cowbird parasitism in grassland and cropland in the northern Great Plains

    USGS Publications Warehouse

    Koford, Rolf R.; Bowen, B.S.; Lokemoen, J.T.; Kruse, A.D.

    2000-01-01

    The landscape of the Great Plains has been greatly altered by human activities in the past century, and several grassland passerines have experienced significant population declines in recent decades. We explore here whether brood parasitism by Brown-headed Cowbirds, which are abundant in the Great Plains, has contributed to these declines. We measured the frequency of cowbird parasitism of passerine species in seeded grassland, natural grassland, and cropland in studies conducted in North Dakota during 1981-1993. The proportions of parasitized nests were 25%, 34%, and 39% in seeded grassland, natural grassland, and cropland, respectively. We speculate that much of the variation in parasitism rate among these habitats is related to the local abundance of cowbirds, to nest visibility, and to the presence of suitable perches for female cowbirds. Local abundance of cowbirds may be high in areas with cattle pastures. Nests and nesting behavior are probably more visible to female cowbirds in cropland than in grassland. Female cowbirds may use shrubs as perches while searching for host nests, and shrubs are more common in natural grasslands than in the other habitats we examined. Experimental work on the determinants of cowbird abundance in grasslands is needed.

  9. Cowbird parasitism in grassland and cropland in the northern Great Plains: Chapter 27

    USGS Publications Warehouse

    Koford, Rolf R.; Bowen, B.S.; Lokemoen, John T.; Kruse, Arnold D.

    2000-01-01

    The landscape of the Great Plains has been greatly altered by human activities in the past century, and several grassland passerines have experienced significant population declines in recent decades. We explore here whether brood parasitism by Brown-headed Cowbirds, which are abundant in the Great Plains, has contributed to these declines. We measured the frequency of cowbird parasitism of passerine species in seeded grassland, natural grassland, and cropland in studies conducted in North Dakota during 1981-1993. The proportions of parasitized nests were 25%, 34%, and 39% in seeded grassland, natural grassland, and cropland, respectively. We speculate that much of the variation in parasitism rate among these habitats is related to the local abundance of cowbirds, to nest visibility, and to the presence of suitable perches for female cowbirds. Local abundance of cowbirds may be high in areas with cattle pastures. Nests and nesting behavior are probably more visible to female cowbirds in cropland than in grassland. Female cowbirds may use shrubs as perches while searching for host nests, and shrubs are more common in natural grasslands than in the other habitats we examined. Experimental work on the determinants of cowbird abundance in grasslands is needed.

  10. Inventory methods for trees in nonforest areas in the Great Plains States.

    PubMed

    Lister, Andrew J; Scott, Charles T; Rasmussen, Steven

    2012-04-01

    The US Forest Service's Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in urban areas, in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g., shelterbelts), or in riparian areas. In the Great Plains States, little is known about the tree resource in these noninventoried, nonforest areas, and there is a great deal of concern about the potential impact of invasive pests, such as the emerald ash borer. To address this knowledge gap, FIA's National Inventory and Monitoring Applications Center has partnered with state cooperators and others in a project called the Great Plains Initiative to design and implement an inventory of trees in nonforest areas. The goal of the inventory is to characterize the nonforest tree resource using methods compatible with those of FIA so a holistic understanding of the resource can be obtained by integrating the two surveys. The goal of this paper is to describe the process of designing and implementing the survey, including plot and sample design, and to present some example results from a reporting tool we developed. PMID:21713500

  11. Evidence of Late-Holocene floods in the central Great Plains

    SciTech Connect

    May, D.W. . Dept. of Geography)

    1992-01-01

    From southwestern Kansas to northeastern Nebraska alluvial studies are revealing stratigraphic and morphological evidence of two brief periods of large-magnitude floods in the central Great Plains during the past 2,500 years. Evidence for these floods consists of deeply-scoured paleochannels, coarse-textured point-bar deposits overlying fine-grained deposits, soils on former floodplains that are buried by alluvium, and fluvial terraces. Wood and bone collagen in several deeply-scoured paleochannels date to about 2,300--2,000 yr B.P. Modest incision and floodplain reconstruction at this time is evident from both maps of fluvial landforms and C-14-dated stratigraphic sections in both large and small basins. Sediments near the base and top of inset gully fills in both trenched and untrenched tributary valleys to Great Plains rivers date to about 2,000 yr B.P. A second episode of large floods in the central Great Plains occurred about 1,300--850 yr B.P. Throughout most valleys a buried soil that developed in alluvium occurs from 50 cm to 1.0 m below terraces. Recently, stratified point-bar deposits beneath a low terrace in a small (9.6 km[sup 2]) basin in east-central Nebraska were exposed and studied. Crossbedded, gravelly sand strata alternative with massive, dark, silty strata. The C-14-dated section indicates that multiple floods occurred between 1,250 and 850 yr B.P. Such widespread evidence of flooding about 2,300--2,000 yr B.P. and again 1,250--850 yr B.P. attests to regional, and probably, global climate changes at these times. Discontinuities in the alluvial record have previously been recognized at 2,000 and 1,200 yr B.P. Furthermore, a discontinuity in the pollen record at 850 yr B.P. has long been recognized.

  12. The hydrology and hydrometeorology of extreme floods in the Great Plains of Eastern Nebraska

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Smith, James A.; Baeck, Mary Lynn

    The Great Plains of eastern Nebraska occupy a distinctive hydroclimatological niche, characterized by a high frequency of organized thunderstorm systems. A consequence of the hydroclimatology of these systems is a sharp seasonal peak in the regional flood frequency in late June. Pebble Creek and Maple Creek are adjacent drainage basins in the Great Plains of Nebraska with drainage areas of 528 and 1165 km2, respectively. The hydrometeorological and hydrologic controls of extreme floods are examined through analyses of a series of five major flood events that occurred in these catchments during the warm season of 1996. Particular attention is given to two storm systems. The 20-21 June flood event was produced by a series of tornadic supercell thunderstorms which tracked over Pebble Creek. The 4-5 August 1996 event, which resulted in record flood peaks in both Pebble Creek and Maple Creek, was produced by a system of multicellular thunderstorms. Analyses of the structure, motion and evolution of these two storm systems provide a conceptual framework for interpreting hydrometeorological controls of scale-dependent flood response. Hydrometeorological analyses are based on both volume scan WSR-88D reflectivity observations from the Omaha, Nebraska radar and composite reflectivity observations from the WSR-88D radar network. Analyses of composite reflectivity observations for the US east of the Rocky Mountains for the 4-year period from 1996 to 1999 are used to place the scale-dependent flood response of the Great Plains within a broader hydroclimatological context. Discharge data for Maple Creek and Pebble Creek, at 15 min time scale, serve as the basis for stream flow analyses. The striking contrasts in flood response between Maple Creek and Pebble Creek are related to contrasts in drainage network structure, infiltration properties and flood wave attenuation. The scale-dependent flood response of these catchments is analyzed in terms of the space-time variability of

  13. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  14. Expansion of Juniperus virginiana L. in the Great Plains: Changes in soil organic carbon dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Dixie L.; Johnson, Loretta C.

    2003-06-01

    Woody encroachment by Juniperus virginiana into Great Plains grasslands allowed us to answer: Does changing the type of plant input to soils alter soil organic carbon (SOC) distribution or soil carbon (C) storage? The answer is critical because woody encroachment may alter C cycling over millions of hectares in the Great Plains and Midwest. We predicted that (1) forest SOC would become concentrated in shallow soil layers compared to SOC distribution in grassland, (2) woody expansion would increase soil C storage, and (3) forest C would be apparent in the larger soil organic matter fractions. Using δ13C signatures of SOC, 1/5 of the C from 0 to 25 cm in juniper forest soils was derived from C3 juniper trees. Forest C3 input occurred primarily in shallow surface layers: Forest soils developed over former C4 prairie contained 42% C3-SOC from 0 to 2.5 cm depth, and decreased to 6% at 25 cm. Isotopic analysis of SOC size fractions revealed that at 0-2.5 cm, the forest soil fraction >212 μm was -25.7‰. The fraction <2 μm had a 13C isotope ratio of -17.0‰ at the same depth, reflecting the predominance of residual prairie C in the smallest fraction. In spite of fast dynamics of soil C turnover, there was no net change in SOC amounts over 40-60 years (cumulative mineral and organic SOC in forest, 8782 g C/m2 ± 810; in grassland, 7699 ± 1004). Thus as junipers expand into mesic areas of the Great Plains, juniper forests will provide little additional soil C storage.

  15. Hydrogeologic considerations for an interstate ground-water compact on the Madison aquifer, northern Great Plains

    USGS Publications Warehouse

    Konikow, Leonard F.

    1978-01-01

    The development of an interstate ground-water compact for the Madison aquifer in the Northern Great Plains may provide a framework to allocate equitably this large ground-water resource while avoiding possible future interstate legal conflicts. However, some technical problems will have to be resolved first. A compact designed to regulate or to allocate the available ground water will have to be written in very precise, legally acceptable definitions. The required definitions may infer a degree of measurement accuracy that cannot be technically or economically provided. Therefore, a trade off may be required between preserving natural conditions and allowing beneficial use of the ground-water resource.

  16. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J. C.

    1974-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data.

  17. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  18. Stratigraphic evidence of desertification in the west-central Great Plains within the past 1000 yr

    USGS Publications Warehouse

    Madole, R.F.

    1994-01-01

    Stratigraphic and geomorphic relations, archaeological data, and eight radiocarbon ages at five widely scattered localities in northeastern Colorado indicate that eolian sand was mobilized over broad areas within the past 1000 yr. The mobilization began after 1 ka, was episodic, and ended at some as yet undetermined time prior to the latter part of the 19th century. Given that climate-model simulations suggest only slight variation in average surface temperature and annual precipitation in this region during the past 1000 yr, this part of the Great Plains evidently is near the threshold of widespread eolian sand transport under the present climate. -Author

  19. Ecoregional differences in late-20th-century land-use and land-cover change in the U.S. northern great plains

    USGS Publications Warehouse

    Auch, R.F.; Sayler, K.L.; Napton, D.E.; Taylor, J.L.; Brooks, M.S.

    2011-01-01

    Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level 111 ecoregions located in the U.S. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey's Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/ shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes. ?? 2011 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  20. Impact of dredging on dissolved phosphorus transport in agricultural drainage ditches of the Atlantic Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic coastal plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches...

  1. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  2. Identifiying and evaluating a suitable index for agricultural drought monitoring in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a highly destructive natural phenomenon that affects portions of the United States almost every year. Severe water deficiencies can become catastrophic for agriculture and crop yields, especially in the Texas High Plains where generally inadequate rainfall is augmented by irrigation for c...

  3. Effects of controlled agricultural practices on water quality in the Minnesota sand-plain aquifer

    USGS Publications Warehouse

    Anderson, H.W., Jr.; Stoner, J.D.

    1989-01-01

    Recent studies of Minnesota's sand plains indicate that ground-water chemistry is related to agricultural practices. Surficial sand-plain aquifers cover 8,000,000 acres of Minnesota and are a major source of water for domestic use, irrigation, and some municipal systems. The sand-plain aquifers consist of sand and gravel deposits that are from 20 to greater than 100 feet thick and are covered by a thin sandy loam that generally is less than 2 feet thick. Sand-plain aquifers are recharged by the downward percolation of precipitation through the soil root zone and the unsaturated zone in the sand to the water table. The water table is the upper surface of the zone of saturation and forms the top of the sand-plain aquifer. Sand-plain aquifers are susceptible to contamination by agricultural chemicals (fertilizers and pesticides), if downward-percolating recharge water contains these chemicals. The concentrations of nitrate, pesticides, and some other chemical constituents fluctuate seasonally and differ with depth below the water table (Anderson, 1989). Despite the availability of water-quality data for about 260 wells that were collected during previous studies in three U.S. Geological Survey (USGS) project areas in Minnesota, it is not known how concentrations of agricultural chemicals in ground water relate to the rate and timing of fertilizer and pesticide application or to the tillage practices used. Field-scale research is needed to determine the effects of different farming practices on the concentrations of nitrate, pesticides, and other agricultural chemicals in ground water in the unsaturated and saturated zones.

  4. Improving soybean performance in the Northern Great Plains through the use of cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are capable of providing “multiple services” for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of...

  5. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.

  6. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities.

    PubMed

    Worthington, Thomas A; Brewer, Shannon K; Grabowski, Timothy B; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375-780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery. PMID:23873736

  7. Interpretation and compendium of historical fire accounts in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.

    1986-01-01

    This interpretation and compendium of historical fire accounts in the northern Great Plains provides resource managers with background information to justify the study or use of fire in management and provides a reference of historic fire accounts for those without ready access to major library collections. Historical accounts of fire are critiqued to aid interpreting the compendium accounts. An interpretation is included by the author.Lightning-set fires were recorded in the literature far less frequently than were Indian-set fires. The kinds of fire most frequently reported were scattered, single events of short duration and small extent. Although fires occurred in wetlands, wetlands as well as sandy soil sites usually were good areas for escape from the effects of fire. Both Indians and wild animals were reportedly injured or killed during prairie fires. The frequency of historic fires was less evident in the literature than the descriptions of fire distribution in time and space. Indian-set fires were reported in every month except January. Fires occurred mainly in two periods, March through May with a peak in April, and July to early November with a peak in October. Grassland fuels burned readily within a few hours or days after rain and even during light snowfall.I agree with arguments that support the concept that Indians of the northern Great Plains generally did not subscribe to annual wholesale or promiscuous burning practices, but that they did purposely use fire as a tool to aid hunting and gathering of food and materials. Apparently, the northern plains Indians did not pattern their use of fire with the seasonal patterns of lightning fires. More likely they developed seasonal patterns of burning the prairies in harmony with bison (Bison bison) herd movements because the hunter-gatherer economy of these nomadic tribes was centrally focused and largely dependent on bison and bison ecology.

  8. Evaluation of herbacceous biomass crops in the northern Great Plains. Final report

    SciTech Connect

    Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G.

    1994-08-01

    Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

  9. Magnitude, Duration, and Geographic Coherence of Interannual Anomalies of the Great Plains Low-Level Jet

    NASA Technical Reports Server (NTRS)

    Helfand, H. Mark; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Great Plains region of the United States is characterized by some of the world's most frequent and regular occurrences of a nocturnal low-level jet (LLJ). While this southerly jet is generally confined to the lowest kilometer of the atmosphere, it may cover a substantial region of the Great Plains and reach wind speed maxima of 20 m/s or more. The temporal and spatial structure of this jet has been well captured by the GEOS-1 15-year reanalysis. The jet is most evident during the warm season, May through August. The year-to-year variability of the seasonally-averaged jet structure is small relative to its diurnal or its intraseasonal variability and is comparable in magnitude to the seasonal variability for the mean climatology. The interannual variance maximum is located to the east of both the jet maximum and the seasonal variance maximum and seems to be related to a biennial oscillation which occurs for the first six years of the reanalysis period. There is a second maximum which is free of this oscillation, which is located at the same latitude but further south in the Gulf of Mexico. Interannual anomalies seem to have a duration of about three weeks and spatial coherences about ten degrees wide. Meridional velocity anomalies for the drought year 1988 and the flood year 1993 are large, but their impacts on the hydrological cycle may be as sensitive to their eastward location as to their magnitudes.

  10. Potential effects of anthropogenic greenhouse gases on avian habitas and populations in the northern Great Plains

    SciTech Connect

    Larson, D.L. )

    1994-04-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect CO[sub 2] has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains. Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled CO[sub 2] scenarios will require substantial basic research to clarify. 113 refs., 1 fig.

  11. Projected intensification of subseasonal temperature variability and heat waves in the Great Plains

    NASA Astrophysics Data System (ADS)

    Teng, Haiyan; Branstator, Grant; Meehl, Gerald A.; Washington, Warren M.

    2016-03-01

    Compared to changes in the climatological mean temperature, we have less confidence in how much and by what mechanisms temperature variability may be affected by anthropogenic climate change. Here based on a 30-member climate change projection from an earth system model, we find that summertime subseasonal temperature variability in the U.S. Great Plains is enhanced by approximately 20% in 2070-2100 relative to 1980-2010. In particular, daily temperature departures from the new climatologies during future heat waves are on average 0.6°C warmer than are the corresponding departures under present-day conditions. Although in both periods heat waves in the Great Plains tend to be associated with planetary wave events, the amplification of future heat waves does not appear to be induced by changes in planetary wave variability in the midlatitudes. Instead, in this experiment the strengthening appears to be primarily caused by enhanced local land-atmosphere feedbacks resulting from a warmer/drier future climate.

  12. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes

    PubMed Central

    Osborne, Megan J; Perkin, Joshuah S.; Gido, Keith B.; Turner, Thomas F.

    2014-01-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits, and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model, and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

  13. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  14. Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates

    USGS Publications Warehouse

    Guo, Q.; Brandle, J.R.; Schoeneberger, M.M.; Buettner, D.

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers) where such forests are a minor but ecologically important component of the land mosaics. This study used SEEDSCAPE, a recently modified gap model designed for cultivated land mosaics in the Great Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths (light changes as the selected resulting factor) using current climate data and nested regional circulation models (RegCMs). Results indicated that (1) it took 70-80 simulation years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (2) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass but increase dominance in the linear forests, especially in the upland forests; (3) linear forests with higher planting species richness and smaller width produced higher aboveground tree biomass per unit area; and (4) same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements (e.g., the effects of understory species should be included), the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems.

  15. Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates

    USGS Publications Warehouse

    Guo, Q.; Brandle, J.; Schoeneberger, M.; Buettner, D.

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEDSCAPE, a recently modified gap model designed for cultivated land mosaics in the Great Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths (light changes as the selected resulting factor) using current climate data and nested regional circulation models (RegCMs). Results indicated that (i) it took 70-80 simulation years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (ii) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass, but increase dominance in the linear forests, especially in the upland forests; (iii) linear forests with higher planting species richness and smaller width produced higher aboveground tree biomass per unit area; and (iv) the same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements (e.g., the effects of understory species should be included), the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems. ?? 2004 NRC Canada.

  16. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  17. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.

    PubMed

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  18. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-01-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  19. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-07-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  20. PROBLEMS OF MODELING LOCAL IMPACTS OF ENERGY DEVELOPMENT: PROCEEDINGS OF THE GREAT PLAINS RESEARCH COORDINATING COMMITTEE NUMBER 8 (GPC-8) HELD AT DENVER, COLORADO ON MARCH 18-19, 1980

    EPA Science Inventory

    The Committee on Social and Economic Implications of Energy Extraction, Conversion, and Transportation (GPC-8) of the Great Plains Agricultural Council sponsored a workshop on Modeling Local Impacts of Energy Development in Denver, Colorado in March, 1980. The workshop included n...

  1. Sustaining Irrigated Agriculture In The Central High Plains With Limited Irrigation Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on limited water supplies will require maximizing crop production per unit water. Field studies are being carried out to develop water production functions for crops grown in the Great Plains. Irrigation water is applied through drip irrigation systems; precipitation and reference...

  2. Ps Reciever Function Analysis of the Crustal Structure Beneath the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Thurner, S.; Levander, A.; Niu, F.

    2013-12-01

    The North American Great Plains, located directly east of the Rocky Mountain deformation front, were initially formed in the Precambrian through a series of island arc accretion events, and they have since been affected by multiple phases of both compression and extension. Understanding both the past and present tectonic deformation occurring throughout the Great Plains region can, therefore, provide valuable information regarding the assembly of southern North America. We use Ps teleseismic receiver functions to investigate the crustal and lithospheric structure throughout this region. Using over 250 M > 6.0 events recorded at ~450 USArray Transportable Array seismic located in the Great Plains, we calculated .5 Hz, 1Hz, and 2 Hz receiver functions. Both CCP stacking and H-k analysis were applied to the dataset in order to determine the crustal thickness structure of the region. The Ps receiver functions indicate an average crustal thickness of ~ 45 km in the central portion of the study region with variations up to +/- 10 km. We observe NE-SW trending zones of increased crustal thickness (up to ~53 km) associated with the NE-SW trending boundaries between accreted Proterozoic terrains. We also observe a sharp increase in crustal thickness from ~35 km just west of the Rio Grande Rift to ~50 km just east of the Rio Grande Rift. Finally, we observe a very complicated crustal structure in the north-central portion of the study region. Here we see a thrust system that appears to affect much of the crust north of 40° latitude between -104° to - 98° longitude. This structure appears to reach Moho depths in some places and is likely associated with the original suturing of the Wyoming and Superior Archean provinces at the Trans Hudson Orogen as well as subsequent Proterozoic accretion events that occurred during continent formation. Similar Moho penetrating features have been observed in the Lithoprobe studies further north (Winardhi et al, 1997; Clowes et al.,2002

  3. Road crossing designs and their impact on fish assemblages of Great Plains streams

    USGS Publications Warehouse

    Bouska, Wesley W.; Paukert, Craig P.

    2010-01-01

    A mark-recapture field study was conducted to determine fish passage at 5 concrete box culverts and 5 low-water crossings (concrete slabs vented by culverts) as well as 10 control sites (below a natural riffle) in Flint Hills streams of northeastern Kansas. Additionally, we tested the upstream passage of four fish species native to Great Plains streams (Topeka shiner Notropis topeka, green sunfish Lepomis cyanellus, red shiner Cyprinella lutrensis, and southern redbelly dace Phoxinus erythrogaster) through three simulated crossing designs (box culverts, round corrugated culverts, and natural rock riffles) at water velocities of 0.1 to 1.1 m/s in an experimental stream. The field study indicated that cyprinids were twice as likely to move upstream of box culverts than low-water crossings and 1.4 times as likely to move upstream of control reaches than any crossing type. The best models indicated that the proportion of cyprinids that moved upstream increased with decreased culvert slope and length, perching, and increased culvert width. Our controlled experiment indicated that fish can move through velocities up to 1.1 m/s in a 1.86-m simulated stream and that the proportion of fish that moved upstream did not differ among crossing designs for southern redbelly dace, green sunfish, or Topeka shiner; however, natural rock riffles had lower proportional movements (mean = 0.19) than the box (0.38) or corrugated culvert designs (0.43) for red shiners. Water velocity did not affect the proportional upstream movement of any species except that of Topeka shiners, which increased with water velocity. Crossing design alone may not determine fish passage, and water velocities up to 1.1 m/s may not affect the passage of many Great Plains fishes. Barriers to fish movement may be the result of other factors (e.g., perching, slope, and crossing length). The use of properly designed and installed crossings has promise in conserving Great Plains stream fishes.

  4. Geohydrologic systems in Kansas physical framework of the Great Plains aquifer system

    USGS Publications Warehouse

    Spinazola, Joseph M.; McGovern, Harold E.; Wolf, R.J.

    1992-01-01

    The purpose of this map report is to provide a description of one of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. The report is the result of an investigation made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifer and confining systems in Kansas. Chapter B describes the physical framework of the Great Plains aquifer system and presents maps and a geohydrologic cross section that show the thickness, the areal extent, and the altitude and configuration of the top of the Lower Cretaceous rocks that compose the Great Plains aquifer system. The maps are based on data from selected geophysical and lithologic logs and from published maps of stratigraphically equivalent units. Maps that show the thickness and the altitude and configuration of the top of the Great Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian surface through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic system are consistent with maps of underlying and overlying systems; modifications were made where necessary. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of geohydrologic systems in

  5. Longitudinal variability in hydraulic geometry and substrate characteristics of a Great Plains sand-bed river

    NASA Astrophysics Data System (ADS)

    Costigan, Katie H.; Daniels, Melinda D.; Perkin, Joshuah S.; Gido, Keith B.

    2014-04-01

    Downstream trends in hydraulic geometry and substrate characteristics were investigated along a 200 km reach of the Ninnescah River in south central Kansas, USA. The Ninnescah River is a large sand-bed, perennial, braided river located in the Central Plains physiographic province and is a tributary of the Arkansas River. Hydraulic geometry characteristics were measured at eleven reaches and included slope, sinuosity, bankfull channel width, and bankfull channel depth. Results indicated that the Ninnescah River followed a predicted trend of decreasing slope and increasing depth and width downstream. There were localized divergences in the central tendency, most notability downstream of a substantial tributary that is impounded and at the end of the surveying reach where the Ninnescah River approaches the Arkansas River. Surface grain-size samples were taken from the top 10 cm of the bed at five points across the wetted cross-section within each of the 11 reaches. Sediment analyses demonstrated a significant trend in downstream fining of surface grain-sizes (D90 and D50) but unlike previous studies of sand-bedded rivers we observed coarsening of substrates downstream of the major tributary confluence. We propose that the overall low discharge from the tributary was the primary reason for coarsening of the bed downstream of the tributary. Results of this study provide valuable baseline information that can provide insight in to how Great Plains sand-bed systems may be conserved, managed, and restored in the future.

  6. Impact of historical land-use changes on greenhouse gas exchange in the U.S. Great Plains, 1883-2003.

    PubMed

    Hartman, Melannie D; Merchant, Emily R; Parton, William J; Gutmann, Myron P; Lutz, Susan M; Williams, Stephen A

    2011-06-01

    European settlement of North America has involved monumental environmental change. From the late 19th century to the present, agricultural practices in the Great Plains of the United States have dramatically reduced soil organic carbon (C) levels and increased greenhouse gas (GHG) fluxes in this region. This paper details the development of an innovative method to assess these processes. Detailed land-use data sets that specify complete agricultural histories for 21 representative Great Plains counties reflect historical changes in agricultural practices and drive the biogeochemical model, DAYCENT, to simulate 120 years of cropping and related ecosystem consequences. Model outputs include yields of all major crops, soil and system C levels, soil trace-gas fluxes (N2O emissions and CH4 consumption), and soil nitrogen mineralization rates. Comparisons between simulated and observed yields allowed us to adjust and refine model inputs, and then to verify and validate the results. These verification and validation exercises produced measures of model fit that indicated the appropriateness of this approach for estimating historical changes in crop yield. Initial cultivation of native grass and continued farming produced a significant loss of soil C over decades, and declining soil fertility led to reduced crop yields. This process was accompanied by a large GHG release, which subsided as soil fertility decreased. Later, irrigation, nitrogen-fertilizer application, and reduced cultivation intensity restored soil fertility and increased crop yields, but led to increased N2O emissions that reversed the decline in net GHG release. By drawing on both historical evidence of land-use change and scientific models that estimate the environmental consequences of those changes, this paper offers an improved way to understand the short- and long-term ecosystem effects of 120 years of cropping in the Great Plains. PMID:21774417

  7. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  8. Preliminary Report of NRC Twin Otter Operations in the 1997 Southern Great Plains Experiment

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian

    1997-01-01

    From June 18 to July 17, 1997, the NRC Twin Otter atmospheric research aircraft was operated from Oklahoma City, U.S.A., in the Southern Great Plains 1997 (SGP97) Hydrology Experiment. The primary role of the aircraft was to measure the vertical fluxes of sensible and latent heat, CO2, ozone and momentum in the atmospheric boundary layer, along with supporting meteorological and radiometric data. Approximately 400 flux runs and 100 soundings were flown in 27 project flights over rural areas near Oklahoma City. This preliminary report documents the flight program, lists the instrumentation aboard the aircraft, and presents a summary of run-averaged data from each flux run. These data are from the in-field analysis and must be considered preliminary. A re-analysis incorporating updated calibrations is planned for the fall of 1997 followed by a more comprehensive technical report.

  9. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  10. Clear Sky Identification Using Data From Remote Sensing Systems at ARM's Southern Great Plains Site

    SciTech Connect

    Delle Monache, L.; Rodriguez, D.; Cederwall, R.

    2000-06-27

    Clouds profoundly affect our weather and climate due, in large part, to their interactions with radiation. Unfortunately, our understanding of these interactions is, at best, incomplete, making it difficult to improve the treatment of atmospheric radiation in climate models. The improved treatment of clouds and radiation, and a better understanding of their interaction, in climate models is one of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program's major goals. To learn more about the distribution of water and ice, i.e., clouds, within an atmospheric column, ARM has chosen to use the remote sensing of clouds, water vapor and aerosols at its three climatologically-diverse sites as its primary observational method. ARM's most heavily instrumented site, which has operated continuously for more than a decade, is its Southern Great Plains (SGP) Central Facility, located near Lamont, OK. Cloud-observing instruments at the Central Facility include the Whole Sky Imager, ceilometers, lidar, millimeter cloud radar, microwave radiometers and radiosondes.

  11. The Saga of Leafy Spurge (Euphorbia esula) in the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.

    2009-01-01

    Leafy spurge (Euphorbia esula L.) is an invasive Eurasian perennial introduced into the United States as a contaminant of crop seed in the 1880s and 1890s. It typically forms monocultures in rangeland and natural areas of the northern Great Plains where, because of the latex that occurs in all parts of the plant, it is not consumed by naturally occurring herbivores. U.S. Geological Survey (USGS) scientists and their collaborators have been studying leafy spurge at Theodore Roosevelt National Park (TRNP) and at Arrowwood and Tewaukon National Wildlife Refuges in North Dakota since 1998. Study findings have been published in Larson and Grace (2004), Larson and others (2006), Larson and others (2007), Jordan and others (2008), and Larson and others (2008). This fact sheet summarizes that body of research.

  12. A one-year climatology using data from the Southern Great Plains (SGP) site micropulse lidar

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; Spinhirne, J.; Scott, S.

    1996-04-01

    The micropulse lidar (MPL) has been operational at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement Program for the past 15 months. The compact MPL is unique among research lidar systems in that it is eye-safe and operates continuously, except during precipitation. The MPL is capable of detecting cloud base throughout the entire depth of the troposphere. The MPL data set is an unprecedented time series of cloud heights. It is a vital resource for understanding the frequency of cloud ocurrence and the impact of clouds on the surface radiation budget, as well as for large-scale model validation and satellite retrieval verification. The raw lidar data are processed for cloud base height at a temporal frequency of one minute and a vertical resolution of 270 m. The resultant time series of cloud base is used to generate histograms as a function of month and time of day. Sample results are described.

  13. Selected drill-stem-test data from the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1981-01-01

    Selected drill-stem-test data were collected for use in the hydrologic analysis of aquifers in the northern Great Plains area of Montana. To supplement existing data defining the potentiometric surface of various aquifers, shut-in pressures recorded during drill-stem tests of oil and gas test wells were used to calculate the altitude of the potentiometric surface. The transmissivity of the aquifers also was calculated if sufficient data existed. Records for 627 drill-stem tests from 523 wells are tabulated in this report. Data include well location, well name, formation tested, well epth, tested interval, date tested, test number, flow period, transmissivity, shut-in pressure, and altitude of water surface. Locations of the wells are shown on a map at a scale of 1:1,000,000. (USGS)

  14. Water assessment report: Section 13 (c); Great Plains gasification project, Mercer County, ND

    SciTech Connect

    1980-12-01

    The Water Resources Council is completing a water assessment of synfuels development in the Upper Missouri River Basin. This is being done under Section 13(a) of the Federal Nonnuclear Energy Research and Development Act. The assessment area includes the coal deposits in the Mercer County project site. Levels of North Dakota coal gasification development that are several times the production level of the Great Plains gasification project are being examined. This report assesses: (1) the availability of adequate water supplies to meet the water requirements of the project, supporting activities, and other development induced by the project; and (2) the changes in the water resources that will result from the project. Findings of the 13(a) assessment show that water supplies are physically available within the mainstem of the Missouri River in North Dakota to supply the requirements of the gasification facilities and the supporting activities - mining and reclamation, electricity, and project-induced population increases.

  15. Stratum variance estimation for sample allocation in crop surveys. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Perry, C. R., Jr.; Chhikara, R. S. (Principal Investigator)

    1980-01-01

    The problem of determining stratum variances needed in achieving an optimum sample allocation for crop surveys by remote sensing is investigated by considering an approach based on the concept of stratum variance as a function of the sampling unit size. A methodology using the existing and easily available information of historical crop statistics is developed for obtaining initial estimates of tratum variances. The procedure is applied to estimate stratum variances for wheat in the U.S. Great Plains and is evaluated based on the numerical results thus obtained. It is shown that the proposed technique is viable and performs satisfactorily, with the use of a conservative value for the field size and the crop statistics from the small political subdivision level, when the estimated stratum variances were compared to those obtained using the LANDSAT data.

  16. Grassland bird use of Conservation Reserve Program Fields in the Great Plains

    USGS Publications Warehouse

    Johnson, D.H.

    2000-01-01

    The area enrolled in the Conservation Reserve Program in the Great Plains is enormous: nearly 18 million acres, or more than 7 million hectares, in Montana, North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, and Texas. This change in land use has had a huge influence on grassland bird populations. Many, but certainly not all, grassland species flourish in CRP habitats. Responses to the program vary not only by species, but by region, year, vegetation composition in a field, and whether or not a field was hayed or grazed. Further, the large scale of CRP has allowed researchers to begin to address other important conservation questions, such as the effect of the size of habitat patch and the influences of landscape features. Although the CRP provisions of farm bills have been beneficial to grassland birds, it is critical that gains in grassland habitat induced by the program not be offset by losses due to sodbusting.

  17. Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Kanemasu, E. T.; Bagley, J. O.; Rasmussen, V. P.

    1977-01-01

    Locating areas where soil moisture is limiting to crop growth is important for estimating winter-wheat yields on a regional basis. In the 1975-76 growing season, we evaluated soil-moisture conditions and winter-wheat yields for a five-state region of the Great Plains using Landsat estimates of leaf area index (LAI) and an evapotranspiration (ET) model described by Kanemasu et al (1977). Because LAI was used as an input, the ET model responded to changes in crop growth. Estimated soil-water depletions were high for the Nebraska Panhandle, southwestern Kansas, southeastern Colorado, and the Texas Panhandle. Estimated yields in five-state region ranged from 1.0 to 2.9 metric ton/ha.

  18. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  19. Geohydrologic systems in Kansas, geohydrology of the Great Plains aquifer system

    USGS Publications Warehouse

    McGovern, Harold E.; Wolf, R.J.

    1993-01-01

    Sedimentary rocks of Late Cambrian through Early Cretaceous age in Kansas are part of a regional flow system of hydraulically connected aquifers and confining units. Future demands for water require that these deeply buried rocks be studied to describe hydrologic properties and ground-water-flow conditions and to provide information that will serve as the basis for decisions concerning the protection and the management of the water resources contained therein, Toward this end, the U.S. Geological Survey, as a part of its Central Midwest Regional Aquifer-System Analysis (CMRASA), began a 5-year hydrologic investigation of this regional flow system in Arkansas, Colorado, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, South Dakota, and Texas (Jorgensen and Signor, 1981).This chapter is one of nine contained in Hydrologic Investigations Atlas HA-722, which present a description of the physical framework (Chapters B-F) and the geohydrology (Chapters G-I} of principal aquifers and confining systems in Upper Cambrian through Lower Cretaceous rocks in Kansas; the stratigraphic relations of these geohydrologic systems are discussed in detail in Chapter A (Wolf and others, 1990). This chapter (G) describes the geohydrology of the Great Plains aquifer system; the physical framework of the Great Plains aquifer system is presented in Chapter B (Spinazola and others, 1992).The maps in this chapter are based on existing data from selected geophysical and lithologic logs, drill-stem tests, water-level measurements, water-quality analyses, and published maps of stratigraphically equivalent units. An index to the geohydrologic data compiled for the CMRASA in Kansas is presented in Spinazola and others (1987). For the most part, data used to construct the maps were collected over many years and do not reflect aquifer conditions for any specific time period.

  20. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, A.J.; Jonas, J.L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity. ?? Society for Range

  1. Tropospheric chemistry over the lower Great Plains of the United States. I. Meteorology

    SciTech Connect

    Ryan, W.F.; Dickerson, R.R.; Huffman, G.J.; Luke, W.T. )

    1992-11-20

    Convective clouds and thunderstorms inject planetary boundary layer air with high concentrations of ozone (0[sub 3]) and 0[sub 3] precursors into the free troposphere; these local actions can have global consequences. We have devised a method to identify weather patterns conducive to convection in the southern or lower Great Plains in early summer and applied this method to meteorological and chemical data from a series of research flights carried out in June 1985. Previous studies have noted that weather patterns in the lower Great Plains in this season are characterized by alternating pulses of polar and maritime air masses and very frequent episodes of violent convection. In this study, a set of selection criteria is applied to surface and upper air meteorological data from central Oklahoma to distinguish the two meridional phases characteristic of this region: maritime and polar. A deep layer of moist, southerly flow and convective instability is encountered in the maritime regime, while the polar phase is connectively stable throughout the midtroposphere and much less conducive to convection. For the period 1980-1985 both maritime and polar regimes occur with a frequency of about 35% in May, while the maritime phase becomes dominant in June (53% maritime versus 20% polar). Within the maritime regime, conditions conducive to the development of severe storms are characterized by the presence of a dry, low-level inversion that tends to inhibit scattered midday convection over a wide region while simultaneously enhancing the probability of larger thunderstorms and mesoscale convective systems. Profiles from the surface to 200 mbar, made on 18 flights in the 1985 PRESTORM project, are categorized according to the selection criteria. Part 2 of this study presents concentrations of ozone, carbon monoxide, and reactive nitrogen compounds as a function of altitude (0-12 km) for each category and discusses the implications of these findings. 109 refs., 14 figs., 9 tabs.

  2. Late quaternary temperature record from buried soils of the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.

    2007-01-01

    We present the first comprehensive late Quaternary record of North American Great Plains temperature by assessing the behavior of the stable isotopic composition (??13C) of buried soils. After examining the relationship between the ??13C of topsoil organic matter and July temperature from 61 native prairies within a latitudinal range of 46??-38??N, we applied the resulting regression equation to 64 published ??13C values from buried soils of the same region to construct a temperature curve for the past 12 k.y. Estimated temperatures from 12 to 10 ka (1 k.y. = 1000 14C yr B.P.) fluctuated with a periodicity of ???1 k.y. with two cool excursions between -4.5 and -3.5 ??C and two warmer excursions between -1 and 0 ??C, relative to modern. Early Holocene temperatures from ca. 10-7.5 ka were -1.0 to -2.0 ??C before rising to +1.0 ??C in the middle Holocene between 6.0 and 4.5 ka. After a cool interlude from 4.2 to 2.6 ka, when temperatures dropped to slightly below modern, another warm interval ensued from 2.6 to 1 ka as temperatures increased to ???+0.5 ??C. A final decline in temperature to below modern occurred beginning ca. 0.5 ka. Cooler than present temperatures in the Great Plains indicate telecommunications with cool-water episodes in the Gulf of Mexico and North Atlantic potentially governed by a combination of glacial meltwater pulses and low solar irradiance. ?? 2007 Geological Society of America.

  3. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  4. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David; Krapu, Gary

    2016-01-01

    Numerous wind energy projects have been constructed in the central and southern Great Plains, USA, the main wintering area for midcontinental Sandhill Cranes (Grus canadensis). In an initial assessment of the potential risks of wind towers to cranes, we estimated spatial overlap, investigated potential avoidance behavior, and determined the habitat associations of cranes. We used data from cranes marked with platform transmitting terminals (PTTs) with and without global positioning system (GPS) capabilities. We estimated the wintering distributions of PTT-marked cranes prior to the construction of wind towers, which we compared with current tower locations. Based on this analysis, we found 7% spatial overlap between the distributions of cranes and towers. When we looked at individually marked cranes, we found that 52% would have occurred within 10 km of a tower at some point during winter. Using data from cranes marked after tower construction, we found a potential indication of avoidance behavior, whereby GPS-marked cranes generally used areas slightly more distant from existing wind towers than would be expected by chance. Results from a habitat selection model suggested that distances between crane locations and towers may have been driven more by habitat selection than by avoidance, as most wind towers were constructed in locations not often selected by wintering cranes. Our findings of modest regional overlap and that few towers have been placed in preferred crane habitat suggest that the current distribution of wind towers may be of low risk to the continued persistence of wintering midcontinental Sandhill Cranes in the central and southern Great Plains.

  5. Urban influences on land surface phenologies in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Walker, J.; de Beurs, K.; Henebry, G. M.

    2013-12-01

    Global populations are increasingly found in urban environments. The associated transformation of rural landscapes into regions of highly concentrated human activity drives broad climatic and environmental changes at multiple scales. The elevated surface and air temperatures of urban areas compared to surrounding rural environments (the urban heat island [UHI] effect) can influence the timing of vegetation growth dynamics within and outside the urban boundary, thereby affecting regional surface radiation and energy budgets. We examined patterns of land surface phenology (LSP) across the U.S. Great Plains region, which contains a range of metropolitan areas within herbaceous-dominated landscapes. We assembled a time series (2002-2012) of MODIS surface reflectance data (MCD43A4) and land surface temperature data (MOD11A2) at 500m and 1000m spatial resolution, respectively. We derived measures of the vegetated land surface and the thermal regime of the growing season at 8-day intervals using the Normalized Difference Vegetation Index (NDVI) and Accumulated Growing Degree-Days (AGDD). Fitting the convex quadratic LSP model of NDVI as a function of AGDD yielded several model parameter coefficients and phenometrics for each growing season: start, end, and length of growing season; thermal time at start of season; thermal time to peak NDVI; peak NDVI; and coefficients of determination for the LSP model. We linked the phenometrics with impervious surface area measures extracted from the National Land Cover Database (NLCD) and urban characteristics to (1) determine the UHI impacts across the Great Plains under a variety of climatic conditions, and (2) explore scaling relationships between the phenometrics and the extent of each urbanized area.

  6. Brown-headed cowbird, Molothrus ater, parasitism and abundance in the northern Great Plains

    USGS Publications Warehouse

    Igl, L.D.; Johnson, D.H.

    2007-01-01

    The Brown-headed Cowbird (Molothrus ater) reaches its highest abundance in the northern Great Plains, but much of our understanding of cowbird ecology and host-parasite interactions comes from areas outside of this region. We examine cowbird brood parasitism and densities during two studies of breeding birds in the northern Great Plains during 1990-2006. We found 2649 active nests of 75 species, including 746 nonpasserine nests and 1902 passerine nests. Overall, <1% of non-passerine nests and 25% of passerine nests were parasitized by Brown-headed Cowbirds. Although the overall frequency of cowbird parasitism in passerine nests in these two studies is considered moderate, the frequency of multiple parasitism among parasitized nests was heavy (nearly 50%). The mean number of cowbird eggs per parasitized passerine nest was 1.9 ?? 1.2 (SD; range = 1-8 cowbird eggs). The parasitism rates were 9.5% for passerines that typically nest in habitats characterized by woody vegetation, 16.4% for grassland-nesting passerines, 4.7% for passerines known to consistently eject cowbird eggs, and 28.2% for passerines that usually accept cowbird eggs. The Red-winged Blackbird (Agelaius phoeniceus) was the most commonly parasitized species (43.1 % parasitism, 49.6% multiple parasitism, 71.2% of all cases of parasitism). Passerine nests found within areas of higher female cowbird abundance experienced higher frequencies of cowbird parasitism than those found in areas of lower female cowbird abundance. Densities of female cowbirds were positively related to densities and richness of other birds in the breeding bird community.

  7. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  8. Grassland bird use of Conservation Reserve Program fields in the Great Plains

    USGS Publications Warehouse

    Johnson, Douglas H.

    2005-01-01

    An enormous area in the Great Plains is currently enrolled in the Conservation Reserve Program (CRP): 19.5 million acres (nearly 8 million ha) in Montana, North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, and Texas. This change in land use from cropland to grassland since 1985 has markedly influenced grassland bird populations. Many, but certainly not all, grassland species do well in CRP fields. The responses by birds to the program differ not only by species but also by region, year, the vegetation composition in a field, and whether or not a field has been hayed or grazed. The large scale and extent of the program has allowed researchers to address important conservation questions, such as the effect of the size of habitat patch and the influence of landscape features on bird use. However, most studies on nongame bird use of CRP in or near the Great Plains have been short-lived; 83% lasted only 1-3 years. Further, attention to the topic seems to have waned in recent years; the number of active studies peaked in the early 1990s and dramatically declined after 1995. Because breeding-bird use of CRP fields varies dramatically in response both to vegetational succession and to climatic variation, long-term studies are important. What was learned about CRP in its early stages may no longer be applicable. Finally, although the CRP provisions of the Farm Bill have been beneficial to many grassland birds, it is critical that gains in grassland habitat produced by the program not be off set by losses of native prairie.

  9. Centennial-to-millennial climate variability over the Great Plains in transient simulations of the Holocene with a coupled GCM

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Schwalb, A.; Zorita, E.

    2010-12-01

    Two simulations with the coupled Atmosphere-Ocean general circulation model ECHO-G for the period 7,000 years BP until present are investigated related to climatic variability over the central Great Plains. The first simulation is driven with changes in orbital forcing, the second simulation with additional variable solar and greenhouse gas forcing. The simulations have not been forced with an acceleration technique in order to take into account ocean-atmosphere interactions on longer time scales. The solar forced simulation has been used to investigate connections between changes in solar activity and the North America summer monsoon. The composite pattern between zonal winds at 850 hPa and changes in solar activity clearly shows that during periods with increased solar activity the northward flow and hence the North American monsoon is increased. The correlation pattern between the Pacific Decadal Oscillation (PDO) and summer precipitation over the Great Plains show significant correlations from inter-annual to multi-decadal time scales. Oceanic fingerprints between precipitation over the Great Plains and the North Atlantic and North Pacific Ocean, respectively, show distinct differences between winter and summer season. During northern winter the well known tripole pattern over the North Atlantic Ocean is evident while over the northeastern Pacific a negative SST anomaly is evident. During northern summer, precipitation variability over the Great Plains is strongly connected with tropical Pacific SSTs related to an El-Nino pattern. Our results therefore suggest that changes in solar activity are linked via indirect atmosphere-ocean coupling to climate variability over the Great Plains on longer time scales, mostly pronounced during northern summer. These changes occur on top of internal climate variability and therefore can exert amplifying and/or dampening effects on precipitation dynamics over the North America Great Plains.

  10. Implementation of AN Agricultural Environmental Information System (aeis) for the Sanjiang Plain, Ne-China

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Brocks, S.; Lenz-Wiedemann, V.; Miao, Y.; Jiang, R.; Chen, X.; Zhang, F.; Bareth, G.

    2012-07-01

    The Sino-German Project between the China Agricultural University and the University of Cologne, Germany, focuses on regional agro-ecosystem modelling. One major focus of the cooperation activity is the establishment of joint rice field experiment research in Jiansanjiang, located in the Sanjiang Plain (Heilongjiang Province, north-eastern part of China), to investigate the different agricultural practices and their impact on yield and environment. An additional task is to set-up an Agricultural Environmental Information System (AEIS) for the Sanjiang Plain (SJP), which covers more than 100 000 km2. Research groups from Geography (e.g. GIS & Remote Sensing) and Plant Nutrition (e.g. Precision Agriculture) are involved in the project. The major aim of the AEIS for the SJP is to provide information about (i) agriculture in the region, (ii) the impact of agricultural practices on the environment, and (iii) simulation scenarios for sustainable strategies. Consequently, the AEIS for the SJP provides information for decision support and therefore could be regarded as a Spatial Decision Support System (SDSS), too. The investigation of agricultural and environmental issues has a spatial context, which requires the management, handling, and analysis of spatial data. The use of GIS enables the capture, storage, analysis and presentation of spatial data. Therefore, GIS is the major tool for the set-up of the AEIS for the SJP. This contribution presents the results of linking agricultural statistics with GIS to provide information about agriculture in the SJP and discusses the benefits of this method as well as the integration of methods to produce new data.

  11. Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Jianyao; Tang, Changyuan; Sakura, Yasuo; Yu, Jingjie; Fukushima, Yoshihiro

    2005-06-01

    A survey of the quality of groundwater across a broad area of the North China Plain, undertaken in 1998 to 2000, indicates that nitrate pollution is a serious problem affecting the drinking water for a vast population. The use of nitrogen (N)-fertilizer in agriculture has greatly increased over the past 20 years to meet the food needs of the rapidly expanding population. During the study, 295 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. High concentrations of nitrate, especially in a recharge area along the western side, but also in the vicinity of Beijing and locally in other parts of the plain, pose a serious problem for the drinking water supply. In places, the nitrate concentration exceeds the maximum for safe drinking water of 45 mg/L. The intense use of N-fertilizer and the widespread use of untreated groundwater for crop irrigation contribute greatly to the problem, but no doubt the disposal of industrial and municipal waste into streams and infiltrating the aquifer also contribute to the problem; however, the lack of data prevents evaluation of those sources. In the recharge area, nitrate is found at depths of as much as 50 m. Near Beijing, relatively high concentrations of nitrate occur at depths of as much as 80 m. In the discharge area, in the vicinity of the Yellow River, high concentrations of nitrate occur at depths of <8 m.

  12. Prairie dog poisoning in northern Great Plains: An analysis of programs and policies

    NASA Astrophysics Data System (ADS)

    Roemer, David M.; Forrest, Steven C.

    1996-05-01

    This paper describes the programs and policies regarding prairie dog control in the northern Great Plains states of Montana, South Dakota, and Wyoming. The poisoning programs of federal and state agencies are described, along with the statutes and legal mandates that shape agency management of prairie dogs. Current policies on National Grasslands and other federal lands typically limit prairie dogs to small percentages of available potential habitat, to the detriment of prairie dogs and associated species. State programs to assist landowners in prairie dog control differ greatly, employing cost-share incentives (Wyoming) and regulatory fines (South Dakota) to encourage the poisoning of prairie dogs. Prairie dog control is not actively funded or practiced by state or county agencies in Montana. We document federal and state involvement in more than 1 million acres of prairie dog poisoning in the study area during 1978 1992. In combination with undocumented poisoning by private landowners, plague, and shooting, prairie dogs may be experiencing net regional declines, contributing to the disintegration of the prairie dog ecosystem. We recommend that Animal Damage Control operations concerning prairie dogs be terminated, on the basis that they duplicate state programs and are at cross purposes with federal wildlife management programs that seek to perpetuate and/or recover wildlife species that depend on the prairie dog ecosystem. We further recommend that federal range improvement funds be offered as subsidies for the integration of prairie dogs in range management, as opposed to funding prairie dog eradication programs.

  13. Drought effect on selection of conservation reserve program grasslands by white-tailed deer on the Northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2011-01-01

    Limited information exists regarding summer resource selection of white-tailed deer (Odocoileus virginianus) in grassland regions of the Northern Great Plains. During summers 2005-2006, we analyzed habitat selection of adult female white-tailed deer in north-central South Dakota. We collected 1905 summer locations and used 21 and 30 home ranges during 2005 and 2006, respectively, to estimate habitat selection. Results indicated that selection occurred at the population (P < 0.001) and home range (P < 0.001) levels. Deer selected for Conservation Reserve Program grasslands and corn during both summers and shifted selection temporally within summer. Use of CRP grasslands occurred during early summer; 73.1 and 88.9% of locations in CRP were documented prior to 1 Jul. during 2005 and 2006, respectively. Conversely, selection for corn occurred during late summer; 86.0 and 68.4% of locations in corn were documented after 1 Jul. during 2005 and 2006, respectively. Additionally, deer selected for forested cover and rural development areas containing permanent water sources during extreme drought conditions during 2006. Deer likely selected for fields of CRP grasslands during early summer for cover and natural forages, such as clover (Trifolium sp.), prior to the period when agricultural crops become available. Drought conditions occurring in semiarid prairie grassland regions may reduce food and water availability and contribute to subsequent changes in deer habitat selection across the range of the species.

  14. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  15. Configuration and Intraseasonal Duration of Interannual Anomalies of the Great Plains Low-Level Jet

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    2002-01-01

    Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable climatological features of the low-level continental flow during the warm-season months, May through August. We have used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine its climatology and mean diurnal cycle and to study its interannual variability. Interannual anomalies of the meridional flow associated with the GPLLJ are much smaller than the mean diurnal fluctuations, than random intraseasonal anomalies, and than the mean wind itself. There are three maxima of low-level meridional flow variance over the Great Plains and the Gulf of Mexico: a 1.2 m2 s-2 peak over the southeast Texas, to the east and south of the mean velocity peak, a 1.0 m2 s-2 peak over the western Gulf of Mexico, and a .8 m2 s-2 peak over the upper Great Plains (UGP), near the Nebraska/South Dakota border. Each of the three variance maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are also three dominant modes of interannual variability corresponding to the three variance maxima, but not in a simple one-to-one relationship. Cross-sectional profiles of mean southerly wind over Texas remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six to seven years of the reanalysis period and only then. This intermittent biennial oscillation (IBO, one of the three modes discussed in the previous paragraph) in the lowlevel flow is restricted to the region surrounding eastern

  16. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    NASA Astrophysics Data System (ADS)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  17. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal

    2002-01-01

    The United States Great Plains (USGP) experienced a number of multi-year droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multi-year) variations in the USGP precipitation that are similar to those observed. A correlative analysis suggests that the ensemble mean low frequency (time scales longer than about 6 years) rainfall variations in the USGP are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the 2 polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influence the USGP. As such, the USGP tend to have above normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally-symmetric component in which USGP pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extra-tropics. The potential predictability of rainfall in the USGP associated with SSTs is rather modest, with on average about 1/3 of the total low frequency rainfall variance forced by SST anomalies. Further idealized experiments with climatological SST, suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil

  18. A multidisciplinary analysis of groundwater declines and agricultural production in the High Plains Aquifer of Kansas

    NASA Astrophysics Data System (ADS)

    Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.

    2014-05-01

    The High Plains Aquifer provides groundwater for 30% of the irrigated agriculture in the USA. Within Kansas, groundwater supports the congressional district with highest market value of agriculture. And yet, over-pumping and associated groundwater declines threaten the long-term prospects. The groundwater portion of this study quantifies the availability of groundwater stores over the next 100 years. A water-use function is developed to quantify the historical and future impacts of irrigation on corn production. A relationship between corn consumption per head of cattle quantifies the herd size that can be supported by irrigated corn. Together, we project the impacts of changes in groundwater stores on corn and cattle production for the next century. Scenarios analyze the impacts of water savings today on current and future agriculture production. Reference: Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M. and M. D. Apley, Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110, Proceedings of the National Academy of Sciences of the United States of America, 110(37) E3477-E3486, September 10, 2013. http://dx.doi.org/10.1073/pnas.1220351110

  19. Groundwater Depletion versus Soil Salinization in Irrigated Agriculture in Semiarid Southern High Plains, Texas

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Gates, J. B.; Scanlon, B. R.

    2008-12-01

    Because irrigated agriculture is the primary consumer of global freshwater resources, there is increased emphasis on using more water conservative irrigation application techniques to reduce depletion of water resources while maintaining crop productivity. The objective of this study was to evaluate the impacts of land use change from natural or rainfed agricultural ecosystems to irrigated agricultural ecosystems on water resources and soil salinity using data from the southern High Plains (SHP, 75,000 km2) in Texas, USA as an example. Approximately 11% of the land surface is irrigated with groundwater from the Ogallala (High Plains) Aquifer. Boreholes were drilled beneath irrigated cropland (13 boreholes) and beneath rainfed cropland (19 boreholes) and native vegetation (3 boreholes) to provide baseline control. Unsaturated zone soil samples were analyzed for water content, matric potential, and water-extractable chloride, bromide, sulfate, and nitrate concentrations. Increased drainage beneath irrigated sites displaced pre-existing salt bulges downward to 5 m in fine-grained soils and to greater than profile depths in coarser soils (4 - 17 m). Most irrigated profiles showed salt bulges which are attributed to deficit irrigation. Large inventories of nitrate and high correlations with chloride indicate overapplication of fertilizers and leaching below the root zone. Estimated drainage rates beneath irrigated sites are similar to the range of drainage/recharge rates beneath rainfed agriculture. These results emphasize the potential for soil salinization with deficit irrigation when the irrigation water quality is poor and precipitation is insufficient to flush accumulating salts.

  20. Soil water distribution and water use efficiency of forage and grain soybeans in the southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing legumes during summer fallow periods between wheat crops in the southern Great Plains (SGP) can reduce soil erosion and add nitrogen to the soil. However, information on water use by legumes and effects on water availability for subsequent wheat crops is limited. We described soil water patt...

  1. Alternative Crop Rotations in the Semi-arid Central Great Plains Region: How Much Fallow? Evaluating the Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The traditional crop production system in the semi-arid Central Great Plains Region (CGPR) of the U.S.A. is winter wheat (Triticum aestivum L.)-summer fallow (WF) or one crop every two years. This system is not a long-term sustainable dryland system. It is conducive to soil degradation and provide...

  2. Casting the Buffalo Commons: A Rhetorical Analysis of Print Media Coverage of the Buffalo Commons Proposal for the Great Plains

    ERIC Educational Resources Information Center

    Umberger, Mary L.

    2002-01-01

    In 1987, Frank and Deborah Popper, a planner/geographer team from Rutgers University, proposed the Buffalo Commons. If implemented, the Buffalo Commons would have preserved a large area of the Great Plains, including land in ten states, in a national park to be used by exiting Native American reservations, and for the reintroduction of buffalo.

  3. The Cups of Blood Are Emptied: Pietism and Cultural Heritage in Two Danish Immigrant Schools on the Great Plains.

    ERIC Educational Resources Information Center

    Nielsen, John Mark

    2003-01-01

    Histories of two church-related folk schools established by Lutheran Danish immigrants to the Great Plains reveal different underlying philosophies. Influenced by pietism, one stressed disciplined reading of the scriptures, active participation in the church, and missionary work. The other emphasized the importance of the living church community…

  4. Farming systems with improved returns to inputs of energy and water in the Northern Great Plains of North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming systems which are environmentally responsible, economically robust and energy reduced [refers to a term of(ER)] are in various stages of development and implementation in the Northern Great Plains. Improving the energy use energy (EUE) or net energy balance of farming systems in a sustainabl...

  5. From Mothers' Pensions to Aid to Dependent Children in the Great Plains: The Course from Charity to Entitlement

    ERIC Educational Resources Information Center

    Lee, R. Alton

    2012-01-01

    The most important third-party movement in American history emerged out of the social and economic chaos brewing in the Great Plains in the last two decades of the nineteenth century. The maelstrom, labeled Populism, contained a powerful, indeed a truly revolutionary message--that man was his brother's keeper. This concept proved to have…

  6. Ammonia and hydrogen sulfide concentration and emission patterns for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mono-slope buildings are one type of roofed and confined cattle feeding facility that is becoming increasingly popular in the Northern Great Plains. In response to questions and concerns about the barn environment and air quality regulations, the objectives of this study were to determine gas concen...

  7. DROUGHT MANAGEMENT IN THE NORTHERN GREAT PLAINS. II. EVALUATION OF ALTERNATIVE STRATEGIES FOR COW-CALF ENTERPRISES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to evaluate alternative drought management strategies for their effects on beef cow-calf enterprise profitability based on early detection of drought. A bio-economic model was parameterized to represent a range-based cow-calf production system in the Northern Great Plains. The ba...

  8. Can subsurface drip irrigation (SDI) be a competitive irrigation system in the Great Plains region for commodity crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) as with all microirrigation systems is typically only used on crops with greater value. In the U.S. Great Plains region, the typical irrigated crops are the cereal and oil seed crops and cotton. These crops have less economic revenue than typical microirrigated cro...

  9. The water conundrum of planting cover crops in the great plains: when is an inch not an inch?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop use is being widely promoted throughout the entire United States because of the potential benefits related to protecting and improving the soil. However, the semi-arid environment of the western and central Great Plains has a much different environment from areas where cover cropping has ...

  10. Perennial biomass grasses and the Mason-Dixon Line: Comparative productivity across latitudes in the southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding latitudinal adaptation of switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus J. M. Greef & Deuter ex Hodk. & Renvoize) to the southern Great Plains is key to maximizing productivity by matching each grass variety to its ideal production environment. Objectives of...

  11. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Southern Great Plains are characterized by a fine-scale mixture of different land cover types, predominantly winter-wheat and pasture lands, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought (especially during the s...

  12. Stable-Carbon Isotopes of U.S. Great Plains Soils and Climate Events during the Holocene.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A suite of 12 soil profiles from the U.S. Great Plains and western Corn Belt were sampled to a depth of 2 m and radiocarbon dating control was established to investigate possible changes in stable-carbon isotope composition of SOC over space and time associated with major Holocene climate events. T...

  13. Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region of the United States and Canada is an area of widespread dryland crop production, with wheat being the dominant crop. Precipitation in the region ranges from 300 to 500 mm annually, with the majority of precipitatioCPRLn falling during hot summer months. The prevailing croppi...

  14. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  15. A Use of Skip-Row Planting as a Strategy for Drought Mitigation in the West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For dryland farmers in the Central Great Plains region (CGPR) mitigating the deleterious effects of drought on crop production continues to be their greatest challenge. Skip-row planting of corn and sorghum has recently developed as a strategy for mitigating drought in the dryland regions of the CGP...

  16. 'Duster' wheat: A durable, dual-purpose cultivar adapted to the southern great plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat (Triticum aestivum L.) cultivars which gain broad commercial acceptance in Oklahoma and surrounding states of the U.S. southern Great Plains must produce a definitive grain yield advantage, and they must demonstrate season-long dependability in dual purpose management systems, effective...

  17. 'Billings' wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection pressure for earliness, resistance to multiple pathogens, and quality attributes consistent with the hard red winter (HRW) wheat (Triticum aestivum L.) market class is tantamount to, or can obscure, selection for yield potential in lower elevations of the U.S. southern Great Plains. The de...

  18. Long-term tillage impacts on soil aggregation and carbon dynamics under wheat-fallow in the central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional tillage (CT) winter wheat (Tritucum aestivum L.) with summer fallow (WF) is the predominant cropping system in the central Great Plains. We investigated the effect of 39 yr of different tillage intensities, conventional tillage (CT); moldboard plow (MP); no-tillage (NT); and reduced ti...

  19. Swept Away: Chronic Hardship and Fresh Promise on the Rural Great Plains. A Socio-Economic Study of the Rural Great Plains.

    ERIC Educational Resources Information Center

    Bailey, Jon M.; Preston, Kim

    In the six-state region of Iowa, Kansas, Minnesota, Nebraska, North Dakota, and South Dakota, 182 counties have been identified as having an agriculturally based economy. Characteristics of these counties have been identified using data from the U.S. Census and the U.S. Bureau of Economic Analysis. Agriculturally based counties have lost…

  20. Late Paleogene topography of the Central Rocky Mountains and western Great Plains region using hydrogen isotope ratios in volcanic glass

    NASA Astrophysics Data System (ADS)

    Rossetto, G.; Fricke, H. C.; Cassel, E. J.; Evanoff, E.

    2015-12-01

    The Central Rocky Mountains (CRM), located in southern Wyoming, Colorado, and northern New Mexico, are characterized by the highest elevation basins (up to 2500 m) and mountains (over 4000 m) in the North American Cordillera. The timing and drivers for surface uplift of the CRM have not been conclusively determined. The goal of this study is to constrain the timing of surface uplift of the CRM by comparing hydrogen isotope ratios of hydration waters (δDglass) in late Paleogene volcanic glasses preserved in felsic tuffs deposited in CRM basins to δDglass values from glasses of similar age (34.9 to 32.2 Ma) preserved in tuffs from the surrounding Great Plains. The tuffs deposited in the Great Plains, to the north and east of the CRM, are currently at elevations of 1100-1600 m. Volcanic glass hydrates shortly after deposition, preserving the δD of ancient meteoric water on geologic timescales, and can thus be used as a proxy for ancient precipitation δD values. Volcanic glasses from the CRM have δDglass values that are an average of ~31‰ higher than δDglass values from the Great Plains, while modern day precipitation δD values in the CRM are ~25‰ lower than δD values in the Great Plains. These results suggest that the uplift of the CRM relative to the surrounding Great Plains occurred after ~32 Ma. This requires a mechanism such as mantle upwelling or differential crustal hydration, not solely Laramide tectonism, to uplift the CRM to current elevations. Elevation, however, may not have been the only control on the spatial distribution of precipitation δD values across the western US. Similar to the modern, mixing of Pacific and Gulf coast air masses likely occurred during the latest Paleogene, driving regional variability in δD values of precipitation.

  1. A prototype physical database for passive microwave retrievals of precipitation over the US Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-10-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10 GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  2. Potential Effects of Climate Change on Aquatic Ecosystems of the Great Plains of North America

    NASA Astrophysics Data System (ADS)

    Covich, A. P.; Fritz, S. C.; Lamb, P. J.; Marzolf, R. D.; Matthews, W. J.; Poiani, K. A.; Prepas, E. E.; Richman, M. B.; Winter, T. C.

    1997-06-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research.

  3. Site scientific mission plan for the Southern Great Plains CART site: July--December 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. The primary objectives of the ARM program are: to describe the radiative energy flux profile of the clear and cloudy atmosphere; to understand the processes determining the flux profile; and to parameterize the processes determining the flux profile for incorporation into general circulation models.

  4. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

    2011-01-08

    Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

  5. Hydrology of Area 61, Northern Great Plains and Rocky Mountain Coal Provinces, Colorado and New Mexico

    USGS Publications Warehouse

    Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick

    1983-01-01

    Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation.

  6. Analysis of ecosystem controls on soil carbon source-sink relationships in the northwest Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Liu, J.; Tieszen, L.L.

    2006-01-01

    Our ability to forecast the role of ecosystem processes in mitigating global greenhouse effects relies on understanding the driving forces on terrestrial C dynamics. This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in the northwest Great Plains. SOC source-sink relationships were quantified using the General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly located 10 ?? 10 km2 sample blocks. These sample blocks were aggregated into cropland, grassland, and forestland groups based on land cover composition within each sample block. Canonical correlation analysis indicated that SOC source-sink relationship from 1973 to 2000 was significantly related to the land cover type while the change rates mainly depended on the baseline SOC level and annual precipitation. Of all selected driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for the forestland and cropland groups, while annual precipitation determined the C source-sink relationship for the grassland group in which noticeable SOC sink strength was attributed to the conversion from cropped area to grass cover. Canonical correlation analysis also showed that grassland ecosystems are more complicated than others in the ecoregion, which may be difficult to identify on a field scale. Current model simulations need finther adjustments to the model input variables for the grass cover-dominated ecosystems in the ecoregion. Copyright 2006 by the American Geophysical Union.

  7. Soil organic carbon dynamics as related to land use history in the northwestern Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Loveland, T.R.; Tieszen, L.L.; Liu, J.; Kurtz, R.

    2005-01-01

    Strategies for mitigating the global greenhouse effect must account for soil organic carbon (SOC) dynamics at both spatial and temporal scales, which is usually challenging owing to limitations in data and approach. This study was conducted to characterize the SOC dynamics associated with land use change history in the northwestern Great Plains ecoregion. A sampling framework (40 sample blocks of 10 ?? 10 km2 randomly located in the ecoregion) and the General Ensemble Biogeochemical Modeling System (GEMS) were used to quantify the spatial and temporal variability in the SOC stock from 1972 to 2001. Results indicate that C source and sink areas coexisted within the ecoregion, and the SOC stock in the upper 20-cm depth increased by 3.93 Mg ha-1 over the 29 years. About 17.5% of the area was evaluated as a C source at 122 kg C ha-1 yr-1. The spatial variability of SOC stock was attributed to the dynamics of both slow and passive fractions, while the temporal variation depended on the slow fraction only. The SOC change at the block scale was positively related to either grassland proportion or negatively related to cropland proportion. We concluded that the slow C pool determined whether soils behaved as sources or sinks of atmospheric CO2, but the strength depended on antecedent SOC contents, land cover type, and land use change history in the ecoregion. Copyright 2005 by the American Geophysical Union.

  8. Fish assemblages and habitat relationships in a small northern Great Plains stream

    USGS Publications Warehouse

    Barfoot, C.A.; White, R.G.

    1999-01-01

    We examined fish populations and environmental characteristics of pool and riffle habitats of Little Beaver Creek, Montana, a small northern Great Plains stream. We collected 4,980 fishes representing 20 species in eight families. The most abundant and species-rich family was Cyprinidae. Nearly 88% (4,369) of all fishes were collected in pools. Pools also supported greater numbers ofspecies (x = 6.3, SO = 2.6, n = 58) than did riffles ( x = 2.2, SO = 1.9, n = 47). Most species showed distinct patterns of relative abundance along the stream gradient. Community changes were primarily reflected by the downstream addition of species; species replacement was of less importance. A multivariate analysis of fish relative abundance identified two relatively well-defined pool fish assemblages: a downstream assemblage comprised largely of native fluvial cyprinids, and a more diverse midstream-upstream assemblage comprised of fishes from several families. No well-defined assemblages were identified in riffle habitats. Environmental measures of stream size, substrate characteristics, water clarity, and banks ide conditions appeared to be associated with differences in fish assemblage structure. However, correlations between habitat conditions and fish assemblages were weak, possibly because a complex of factors act conculTently to shape assemblages.

  9. The role of the US Great Plains low-level jet in nocturnal migrant behavior

    NASA Astrophysics Data System (ADS)

    Wainwright, Charlotte E.; Stepanian, Phillip M.; Horton, Kyle G.

    2016-02-01

    The movements of aerial animals are under the constant influence of atmospheric flows spanning a range of spatiotemporal scales. The Great Plains nocturnal low-level jet is a large-scale atmospheric phenomenon that provides frequent strong southerly winds through a shallow layer of the airspace. The jet can provide substantial tailwind assistance to spring migrants moving northward, while hindering southward migration during autumn. This atmospheric feature has been suspected to play a prominent role in defining migratory routes, but the flight strategies used with respect to these winds are yet to be examined. Using collocated vertically pointing radar and lidar, we investigate the altitudinal selection behavior of migrants over Oklahoma during two spring and two autumn migration seasons. In general, migrants choose to fly within the jet in spring, often concentrating in the favorable wind speed maximum. Autumn migrants typically fly below the jet, although some will rapidly climb to reach altitudes above the inhibiting winds. The intensity of migration was relatively constant throughout the spring due to the predominantly favorable southerly jet winds. Conversely, autumn migrants were more apt to delay departure to wait for the relatively infrequent northerly winds.

  10. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.; Smith, E. )

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes the stream assessment. 6 refs., 3 figs., 3 tabs.

  11. Evaluation of the Empirical Piecewise Regression Model in Simulating GPP in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wylie, B. K.; Fosnight, E. A.

    2005-12-01

    For better understanding the carbon fluxes in the grassland ecosystems, an empirical piecewise regression (PWR) model was developed to estimate gross primary production (GPP) for the grassland ecosystems in the Northern Great Plains and Northern Kazakhstan. The PWR model spatially scales up the localized flux tower measurements across an ecoregion at 1-km resolution. In this study, we compared the PWR GPP and the MODIS GPP with five grassland flux tower measurements. Then we employed cross-validation to evaluate the PWR GPP values. We also compared PWR GPP and MODIS GPP for grasslands for the entire study area. Factors that may explain the spatial pattern of the GPP differences between the two models were explored using decision tree technique. The results indicated that the PWR modeling approach was robust with a good agreement (agreement coefficient d=0.71-0.97) between PWR model and tower measurements. Cross-validation showed a relatively low agreement (d=0.71-0.78) at two influential flux tower sites. We also observed that the PWR GPP was lower than or similar to the MODIS GPP in the east and higher in the west and south. Further analysis suggested that percentage of C4 grasses, soil water holding capacity, percentage of clay, and percentage of crop mixed in the grassland contributed to the GPP difference of the PWR and MODIS models.

  12. Life-cycle assessment of the beef cattle production system for the northern great plains, USA.

    PubMed

    Lupo, Christopher D; Clay, David E; Benning, Jennifer L; Stone, James J

    2013-09-01

    A life-cycle assessment (LCA) model was developed to estimate the environmental impacts associated with four different U.S. Northern Great Plains (NPG) beef production systems. The LCA model followed a "cradle-to-gate" approach and incorporated all major unit processes, including mineral supplement production. Four distinct operation scenarios were modeled based on production strategies common to the NGP, and a variety of impacts were determined. The scenarios include a normal operation, early weaning of the calf, fast-tack backgrounding, and grassfed. Enteric emissions and manure emissions and handling were consistently the largest contributors to the LCA impacts. There was little variability between production scenarios except for the grassfed, where the greenhouse gas (GHG) emissions were 37% higher due to a longer finishing time and lower finishing weight. However, reductions to GHG emissions (15-24%) were realized when soil organic carbon accrual was considered and may be a more realistic estimate for the NGP. Manure emissions and handing were primary contributors to potential eutrophication and acidification impacts. Mitigation strategies to reduce LCA impacts, including diet manipulation and management strategies (i.e., treatment of manure), were considered from a whole-systems perspective. Model results can be used for guidance by NGP producers, environmental practitioners, and policymakers. PMID:24216416

  13. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.

    2003-01-01

    This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.

  14. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.; Sisterson, D.L.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  15. Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.; Larson, Jennifer L.

    2010-01-01

    Yellow sweetclover is an exotic herbaceous legume common in the Great Plains of the US. Although woody legumes have been shown to affect ecosystem processes through nitrogen (N) fixation (i.e., they can be considered "transformers" sensu Richardson et al. (2000)), the same has not been shown for short-lived herbaceous species. The objectives of this study were to (1) quantify the effects of yellow sweetclover on N mineralization and nitrification and (2) assess the effects of N fertilization on two plant communities, badlands sparse vegetation and western wheatgrass prairie. We used in situ (in wheatgrass prairie) and laboratory incubations (for both plant communities) to assess N dynamics at sites with high and low sweetclover cover in the two plant communities. We found that both N mineralization and nitrification were higher in the high sweetclover plots in the sparse plant community, but not in the wheatgrass prairie. To assess fertilization effects and determine if nutrients or water were limiting at our sites, we conducted a field experiment with five resource addition treatments, (1) N, (2) N + water, (3) water, (4) phosphorus, and (5) no addition. Water was limiting in the wheatgrass prairie but contrary to expectation, N was not. In contrast, N was limiting in the sparse community, where a fertilization effect was seen in exotic forbs, especially the toxic invader Halogeton glomeratus. Our results emphasize the contingent nature of plant invasion in which effects are largely dependent on attributes of the recipient vegetation.

  16. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  17. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  18. A study of Quaternary landforms and materials in the Midwest and Great Plains

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Hallberg, G. R. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Measurements made from prints of ERTS-1, MSS 5 images, show practical limits of detectability for this imagery in the Midwest. The smallest high contrast object detectable has an approximate measured diameter of 150 feet. The smallest clearly identifiable cultural feature is roughly 300 feet for high contrast, and 400 to 500 feet for low contrast objects. Rural roadways, with an average width of 75 feet, are clearly defined due to high reflectivity, linearity, and the instantaneous field of view of the scanner. On the infrared a farm pond slightly greater than one acre is detectable. Crop and natural foliage cover in the Midwest during summar months obscures geologic and soils information and hinders detailed mapping. In the western Great Plains large-scale mapping of this kind may be possible, even at this time of year. In southwestern Iowa, topographic and drainage system anomalies, revealed by the imagery, are related to the slope of and depth to the buried bedrock surface. In eastern Iowa land use classification can be done from ERTS-1 imagery.

  19. The Pierre Shale, northern Great Plains: a potential isolation medium for radioactive waste

    USGS Publications Warehouse

    Shurr, George W.

    1977-01-01

    The purpose of this reconnaissance is to assess the potential of the Pierre Shale, of Late Cretaceous age, as a possible isolation medium for radioactive wastes. The regional stratigraphic and structural setting of the Pierre Shale in the northern Great Plains is summarized from subsurface data. Geologic attributes mapped and employed in the identification of areas warranting further evaluation are: depth to the base of the Pierre Shale, shale thickness, overburden thickness, lithology and mineralogy of the shale, and penetrations by oil and gas wells. Three areas emerge as most favorable; each may contain many potential disposal sites. These large geologic study areas are further described on the basis of general structural and seismic considerations and are compared with respect to topography and mineral and water resources. A large area in west-central South Dakota is recommended for extensive further study. A smaller area in northeastern Colorado also may warrant additional investigation. A relatively small area in north-central North Dakota is also delineated, but currently is not proposed for further studies.

  20. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Rindt, J.R.; Smith, E. )

    1988-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report contains information on oxygenate analysis of jet fuels.

  1. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    USGS Publications Warehouse

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  2. Quantifying Uncertainty in Cloud Fraction Observations over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Wu, W.; Liu, Y.; Jensen, M. P.; Toto, T.

    2010-12-01

    Different methods have been used to measure cloud fraction, and there is an increasing need to quantify the range of uncertainty associated with these observations to facilitate evaluation of model results against observations. Here we use the most recent decade-long surface- and satellite- based observations over the Southern Great Plains (SGP) region of the United States to investigate uncertainties in estimates of cloud fraction. Our results show that non-negligible differences exist between these SGP cloud fraction estimates. The major sources of these differences are examined including variations in the measurement methods and/or retrieval algorithms. Observational data examined in this study include the three cloud fraction estimates from the Atmospheric Radiation Measurement (ARM) programs’ Climate Modeling Best Estimate (CMBE) value added products: (1) From surface-based, vertically pointing remote sensing observations (ARSCL: Active Remote Sensing of Clouds), (2) From a surface-based hemispheric imager (TSI - Total Sky Imager), and (3) from geostationary satellite observations (GOES - Geostationary Operational Environmental Satellite). We also employ cloud fraction estimates from hemispheric radiometer observations (SIRS - the Solar Infrared Radiation Station) and the two different satellite-based cloud fraction products: ISCCP - the International Satellite Cloud Climatology Project, and PATMOS-x - Pathfinder Atmospheres Extended. These results will be useful for evaluating and improving cloud parameterizations in climate models.

  3. American-Indian diabetes mortality in the Great Plains Region 2002–2010

    PubMed Central

    Kelley, Allyson; Giroux, Jennifer; Schulz, Mark; Aronson, Bob; Wallace, Debra; Bell, Ronny; Morrison, Sharon

    2015-01-01

    Objective To compare American-Indian and Caucasian mortality rates from diabetes among tribal Contract Health Service Delivery Areas (CHSDAs) in the Great Plains Region (GPR) and describe the disparities observed. Research design and methods Mortality data from the National Center for Vital Statistics and Seer*STAT were used to identify diabetes as the underlying cause of death for each decedent in the GPR from 2002 to 2010. Mortality data were abstracted and aggregated for American-Indians and Caucasians for 25 reservation CHSDAs in the GPR. Rate ratios (RR) with 95% CIs were used and SEER*Stat V.8.0.4 software calculated age-adjusted diabetes mortality rates. Results Age-adjusted mortality rates for American-Indians were significantly higher than those for Caucasians during the 8-year period. In the GPR, American-Indians were 3.44 times more likely to die from diabetes than Caucasians. South Dakota had the highest RR (5.47 times that of Caucasians), and Iowa had the lowest RR, (1.1). Reservation CHSDA RR ranged from 1.78 to 10.25. Conclusions American-Indians in the GPR have higher diabetes mortality rates than Caucasians in the GPR. Mortality rates among American-Indians persist despite special programs and initiatives aimed at reducing diabetes in these populations. Effective and immediate efforts are needed to address premature diabetes mortality among American-Indians in the GPR. PMID:25926992

  4. Grassland vegetation and bird communities in the southern Great Plains of North America

    USGS Publications Warehouse

    Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M., Jr.

    2004-01-01

    Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.

  5. Climate Change across the United States Northern Great Plains Influencing the Snowpack and the Energy Balance

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Cherry, M. L.

    2014-12-01

    On average, global temperatures have warmed at a greater rate in the past 50 years than in any preceding period. A warmer climate has been shown to yield less snowfall, a shallower snowpack and an earlier onset of snowmelt. Several studies have examined changes to the ratio of snow to rain throughout the United States, and found that there has not been a change in the amount of precipitation but at many locations there has been a decrease in the amount of snowfall. Across the Northern Great Plains of the central United States, snow accumulation is shallow but persistent for most of the winter. Here, 20 meteorological stations are used to examined climate change across this region over the past 60 years. In general, the amounts of precipitation (and snowfall) are not changing, but the number of days with snow has been decreasing, as the annual maximum and minimum temperatures have been warming. However, there is substantial spatial variability in the trends across this region. Since winter precipitation in solid phase will add fresh snow to the pack and increase its albedo, which alters the energy balance at the surface, albedo is modeled for all stations. Two adjacent stations are explored in further detail to highlight opposite trends.

  6. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  7. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    SciTech Connect

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W.

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  8. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    USGS Publications Warehouse

    Gu, Y.; Howard, D.M.; Wylie, B.K.; Zhang, L.

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  9. Site scientific mission plan for the Southern Great Plains CART site January--June 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed Intensive Observation Periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  10. Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis.

    PubMed

    Wang, Xiaoyu; McConkey, Brian G; VandenBygaart, A J; Fan, Jianling; Iwaasa, Alan; Schellenberg, Mike

    2016-01-01

    Grazing potentially alters grassland ecosystem carbon (C) and nitrogen (N) storage and cycles, however, the overall direction and magnitude of such alterations are poorly understood on the Northern Great Plains (NGP). By synthesizing data from multiple studies on grazed NGP ecosystems, we quantified the response of 30 variables to C and N pools and fluxes to grazing using a comprehensive meta-analysis method. Results showed that grazing enhanced soil C (5.2 ± 4.6% relative) and N (11.3 ± 9.1%) pools in the top layer, stimulated litter decomposition (26.8 ± 18.4%) and soil N mineralization (22.3 ± 18.4%) and enhanced soil NH4(+) (51.5 ± 42.9%) and NO3(-) (47.5 ± 20.7%) concentrations. Our results indicate that the NGP grasslands have sequestered C and N in the past 70 to 80 years, recovering C and N lost during a period of widespread grassland deterioration that occurred in the first half of the 20(th) century. Sustainable grazing management employed after this deterioration has acted as a critical factor for C and N amelioration of degraded NGP grasslands and about 5.84 Mg C ha(-1) CO2-equivalent of anthropogenic CO2 emissions has been offset by these grassland soils. PMID:27616184

  11. Estimation of Regional Net CO2 Exchange over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.

    2004-12-01

    Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.

  12. Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available

    SciTech Connect

    Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R.

    1998-12-31

    The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

  13. Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains

    USGS Publications Warehouse

    Macfarlane, P.A.; Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Whittemore, D.O.

    2000-01-01

    An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much older Pleistocene groups. Paleorecharge rates calculated from the Cl concentration in the samples show that recharge rates were at least twice the late Holocene rate during late Pleistocene-early Holocene time, which is consistent with their relative depletion in 16O and D. Noble gas (Ne, Ar, Kr, Xe) temperature calculations confirm that these older samples represent a recharge environment approximately 5??C cooler than late Holocene values. These results are consistent with the global climate models that show a trend toward a warmer, more arid climate during the Holocene. (C) 2000 University of Washington.

  14. Land Surface Product Validation Using the DOE ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Knuteson, R.; Revercomb, H.; Tobin, D.; Osborne, B.

    2003-12-01

    The University of Wisconsin Space Science and Engineering Center (UW-SSEC) is making use of the U.S. Department of Energy Atmospheric Radiation Measurement (DOE ARM) program Southern Great Plains (SGP) site for validation of NASA EOS land surface products. The DOE ARM site covers a 250 km square region that includes most of Oklahoma and southern Kansas. The site is dominated by a mixture of vegetation and bare soil with a vegetation fraction that changes with the growing season. The land use is divided between cattle ranching (permanent pasture) and wheat farming (seasonal). The DOE ARM site provides routine state-of-the-art vertical profile measurements of the atmospheric state. Special radiosonde launches have been conducted by DOE ARM to coincide with overpasses of the NASA Aqua platform. The UW-SSEC has provided ground truth measurements of surface characteristics using a mobile research vehicle (the AERIbago) during several aircraft field campaigns. The UW-SSEC Scanning High-resolution Interferometer Sounder (S-HIS) has provided high altitude observations of the thermal infrared spectrum for comparison to satellite observations. Coincident measurements of ground-based and aircraft observations with AIRS and MODIS satellite observations have been obtained during TX-2001, TX-2002, and IHOP. Preliminary land surface products from AIRS will be compared with MODIS land products and the validation measurements obtained from aircraft and ground-based sensors.

  15. Culture-independent analysis of the soil bacterial assemblage at the Great Salt Plains of Oklahoma

    PubMed Central

    Caton, Ingrid R.; Schneegurt, Mark A.

    2013-01-01

    The Great Salt Plains (GSP) of Oklahoma is a natural inland terrestrial hypersaline environment that forms evaporite crusts of mainly NaCl. Previous work described GSP bacterial assemblages through the phylogenetic and phenetic characterization of 105 isolates from 46 phylotypes. The current report describes the same bacterial assemblages through culture-independent 16S rRNA gene clone libraries. Although from similar hypersaline mud flats, the bacterial libraries from two sites, WP3 and WP6, were quite different. The WP3 library was dominated by cyanobacteria, mainly Cyanothece and Euhalothece. The WP6 library was rich in anaerobic sulfur-cycle organisms, including abundant Desulfuromonas. This pattern likely reflects differences in abiotic factors, such as frequency of flooding and hydrologic push. While more than 100 OTUs were identified, the assemblages were not as diverse, based on Shannon indexes, as bacterial communities from oligohaline soils. Since natural inland hypersaline soils are relatively unstudied, it was not clear what kind of bacteria would be present. The bacterial assemblage is predominantly genera typically found in hypersaline systems, although some were relatives of microbes common in oligohaline and marine environments. The bacterial clones did not reflect wide functional diversity, beyond phototrophs, sulfur metabolizers, and numerous heterotrophs. PMID:21953014

  16. Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development

    PubMed Central

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M. Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world’s best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas. PMID:22848505

  17. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  18. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

  19. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  20. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Team [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  1. Site scientific mission plan for the southern great plains CART site, July--December 1995

    SciTech Connect

    Splitt, M.E.; Lamb, P.J.; Sisterson, D.L.

    1995-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs Of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific Priorities for site activities during the six months beginning on July 1, 1995, and looks forward in lesser detail to subsequent six-month periods. The Primary Purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisioned site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as Priorities are adjusted in response to developments in scientific planning and understanding.

  2. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  3. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    SciTech Connect

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  4. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  5. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    SciTech Connect

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  6. Site Scientific Mission Plan for the Southern Great Plains CART site, July--December 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  7. Projecting groundwater declines and agricultural production through 2110 in the High Plains Aquifer of Kansas

    NASA Astrophysics Data System (ADS)

    Steward, D. R.; Bruss, P. J.; Yang, X.; Staggenborg, S. A.; Welch, S. M.; Apley, M. D.

    2013-12-01

    Groundwater pumping supports vibrant agricultural production in the High Plains Aquifer region of Kansas, and yet, persistent aquifer depletion threatens the long-term prospects and the capacity to help feed to world's population. A new model is presented to project changes in groundwater storage and agricultural production into the future using methodology recently developed by the authors (Steward et al. 2013). This vertically integrated model directly relates groundwater pumping to corn production and feed for cattle production. Estimates are provided for the time to aquifer depletion, the rate of recharge, and the time it would take to completely refill a depleted aquifer. Estimates are also projected into the future for corn and cattle production. Scenario analysis shows the impacts of reduced pumping today on future groundwater stores and on agricultural production. This knowledge is important for society to balance groundwater use across the demands of the present with the needs of the future.

  8. Diversity, seasonality, and context of mammalian roadkills in the southern Great Plains.

    PubMed

    Smith-Patten, Brenda D; Patten, Michael A

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and > 16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50/100 km. Four species were prone to collisions: the Virginia opossum (Didelphis virginiana), nine-banded armadillo (Dasypus novemcinctus), striped skunk (Mephitis mephitis), and northern raccoon (Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79/100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65/100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5 x), winter (1.4x), or summer (1.3x). The spring peak (in kills/100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should focus on

  9. Diversity, Seasonality, and Context of Mammalian Roadkills in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Smith-Patten, Brenda D.; Patten, Michael A.

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum ( Didelphis virginiana), nine-banded armadillo ( Dasypus novemcinctus), striped skunk ( Mephitis mephitis), and northern raccoon ( Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should

  10. Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN

    NASA Astrophysics Data System (ADS)

    Wang, M. X.; Liu, G. D.; Wu, W. L.; Bao, Y. H.; Liu, W. N.

    2006-07-01

    In recent years, nitrate contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to simulate agriculture derived groundwater nitrate pollution patterns with artificial neural network (ANN), which has been proved to be an effective tool for prediction in many branches of hydrology when data are not sufficient to understand the physical process of the systems but relative accurate predictions is needed. In our study, a back propagation neural network (BPNN) was developed to simulate spatial distribution of NO3-N concentrations in groundwater with land use information and site-specific hydrogeological properties in Huantai County, a typical agriculture dominated region of NCP. Geographic information system (GIS) tools were used in preparing and processing input-output vectors data for the BPNN. The circular buffer zones centered on the sampling wells were designated so as to consider the nitrate contamination of groundwater due to neighboring field. The result showed that the GIS-based BPNN simulated groundwater NO3-N concentration efficiently and captured the general trend of groundwater nitrate pollution patterns. The optimal result was obtained with a learning rate of 0.02, a 4-7-1 architecture and a buffer zone radius of 400 m. Nitrogen budget combined with GIS-based BPNN can serve as a cost-effective tool for prediction and management of groundwater nitrate pollution in an agriculture dominated regions in North China Plain.

  11. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan.

    PubMed

    Chiang, Kai Ying; Lin, Kuo Chuan; Lin, Sheng Chi; Chang, Tsun-Kuo; Wang, Ming Kuang

    2010-09-15

    This study investigates the species of As and Pb (beudantite) residues present in the seriously contaminated agricultural rice soils of the Guandu Plain. Two pedons in the Guandu Plain agricultural soils, each pedon separated into five horizons (each of 20 cm) were collected for this study. Soil samples were packed into a column for leaching with simulated acid rains. Soil pH ranged from 5.1 to 7.1 with high base saturation. Soils can be classified as clay loam, mixed, thermic, Typic or Umbric Albaqualfs. The XRD analysis indicated the beudantite particles are present in clay fractions, showing high concentrations of As and Pb. This is because of 50-100 years ago irrigation water was introduced from Huang Gang Creek of hot springs containing high concentrations of As and Pb. Only low concentrations of As and Pb can be leached out with simulated acid rains (i.e., pHs 2 and 4), even through 40 pore volumes of leaching experiments. The sequential extraction experiments resulted in the high portions of As and Pb remaining in the amorphous, Fe and Al oxyhydroxides and residual fractions. Thus, the remediation of As and Pb in this agricultural rice paddy soils merits further study. PMID:20566242

  12. Behavior of boundary layer ozone and its precursors over a great alluvial plain of the world: Indo-Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Beig, G.; Ali, K.

    2006-12-01

    We investigate the special behavior in the distribution of boundary layer ozone and its precursors over world's most extensive tract of uninterrupted alluvium and intensively farmed zones situated in the foothills of Himalayas as major river basin, known as Indo-Gangetic Plains (IGP). The study makes use of a Chemistry-Transport Model forced with dynamical fields and new emission inventories of pollutants established for 2001. It is found that the IGP region is highly vulnerable to human induced pollutant emissions due to conducive synoptic weather pattern which make it a source regions of ozone precursors within which these tracers remain confined and reinforce photochemical production of ozone. In addition, the continental tropical convergence zone and long range transport play a vital role. As a result, elevated levels of ozone concentration (maximum up to 80 ppbv) and its precursors with cellular structure of spatial variation with large seasonality are noticed.

  13. Combined Deterministic and Stochastic Approach to Determine Spatial Distribution of Drought Frequency and Duration in the Great Hungarian Plain

    NASA Astrophysics Data System (ADS)

    Szabó, J. A.; Kuti, L.; Bakacsi, Zs.; Pásztor, L.; Tahy, Á.

    2009-04-01

    Drought is one of the major weather driven natural hazards, which has most harm impacts on environment, agricultural and hydrological factors than the other hazards. In spite of the fact that Hungary - that country is situated in Central Europe - belongs to the continental climate zone (influenced by Atlantic and Mediterranean streams) and this weather conditions should be favourable for agricultural production, the drought is a serious risk factor in Hungary, especially on the so called "Great Hungarian Plain", which area has been hit by severe drought events. These drought events encouraged the Ministry of Environment and Water of Hungary to embark on a countrywide drought planning programme to coordinate drought planning efforts throughout the country, to ensure that available water is used efficiently and to provide guidance on how drought planning can be accomplished. With regard to this plan, it is indispensable to analyze the regional drought frequency and duration in the target region of the programme as fundamental information for the further works. According to these aims, first we initiated a methodological development for simulating drought in a non-contributing area. As a result of this work, it has been agreed that the most appropriate model structure for our purposes using a spatially distributed physically based Soil-Vegetation-Atmosphere Transfer (SVAT) model embedded into a Markov Chain-Monte Carlo (MCMC) algorithm for estimate multi-year drought frequency and duration. In this framework: - the spatially distributed SVAT component simulates all the fundamental SVAT processes (such as: interception, snow-accumulation and melting, infiltration, water uptake by vegetation and evapotranspiration, vertical and horizontal distribution of soil moisture, etc.) taking the groundwater table as lower, and the hydrometeorological fields as upper boundary conditions into account; - and the MCMC based stochastic component generates time series of daily weather

  14. Comparison of Agricultural Production and Fertilizer Consumption in the North China Plain (NCP) and the U.S. High Plains (HP)

    NASA Astrophysics Data System (ADS)

    Pei, H.; Shen, Y.; Scanlon, B. R.; Long, D.; Reedy, R. C.; Strassberg, G.

    2013-12-01

    The North China Plain (NCP) and US High Plains (USHP) are considered bread baskets of China and the US. The objective of this study was to compare agricultural production during the past 30 yr in both regions to assess impacts of different management options. The NCP and USHP are similar in terms of climate (mean annual precipitation: NCP, 570 mm; USHP, 520 mm) with mostly summer precipitation, and wheat and corn (maize) as the dominant crops. While single cropping is dominant in the USHP with summer crops coincident with seasonal precipitation, double cropping is prevalent in the NCP with summer corn coinciding with precipitation and winter wheat relying on irrigation. During the past 30 yr (1980 - 2008) in the NCP, crop yield has increased by a factor of 2.8 (2,200 - 6,200 kg/ha), grain production by a factor of 2.6 (23 - 59 million tons), chemical fertilizer application by a factor of 5.1 (68 - 350 kg/ha). During the same time period in the USHP, grain yield increased by a factor of 1.8 (2,800 - 5,000 kg/ha), crop production by a factor of 1.4 (48 - 68 million tons), chemical N fertilizer application by a factor of 1.2 (64 - 74 kg/ha). The spatial averages mask large scale local variability with grain yield in Luancheng county in the NCP for double cropped wheat and corn rising from 8,000 kg/ha in 1980 to ~16,000 kg/ha in 2008. The comparison between the two regions leads to the question of whether agricultural production in the NCP would be more sustainable with a single corn crop with a longer growing season more aligned with precipitation distribution. Increases in fertilizer application in the NCP greatly exceed crop yield increases, suggesting that much of this fertilizer may be leached to the environment, resulting in contamination. The comparisons between these two regions provide valuable insights that should be considered to move toward more sustainable management in terms of crop productivity and environmental impacts.

  15. Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.

    NASA Astrophysics Data System (ADS)

    Chang, Fong-Chiau; Smith, Eric A.

    2001-05-01

    A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the

  16. Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.; Tubbs, J.

    2008-01-01

    Evolution of the mixed and shortgrass prairie of the North American Great Plains is poorly understood because of limited proxies available for environmental interpretations. Buried soils in the Great Plains provide a solution to the problem because they are widespread both spatially and temporally with their organic reservoirs serving as a link to the plants than once grew on them. Through stable carbon isotopic analysis of soil organic carbon (??13C), the percent carbon from C4 plants (%C4) can be ascertained. Because C4 plants are primarily warm season grasses responding positively to summer temperature, their representation has the added advantage of serving as a climate indicator. To better understand grassland and climate dynamics in the Great Plains during the last 12 ka (ka=1000 radiocarbon years) we developed an isotopic standardization technique by: determining the difference in buried soil ??13C and modern soil ??13C expected for that latitude (????13C), and transferring the ????13C to ??%C4 (% C4) using mass balance calculations. Our analysis reveals two isotopic stages in the mixed and shortgrass prairie of the Great Plains based on trends in ??%C4. In response to orbital forcing mechanisms, ??%C4 was persistently below modern in the Great Plains between 12 and 6.7 ka (isotopic stage II) evidently because of the cooling effect of the Laurentide ice sheet and proglacial lakes in northern latitudes, and glacial meltwater pulses cooling the Gulf of Mexico and North Atlantic Ocean. The ??%C4 after 6.7 ka (isotopic stage I) increased to modern levels as conditioned by the outflow of warm, moist air from the Gulf of Mexico and dry incursions from the west that produced periodic drought. At the millennial-scale, time series analysis demonstrates that ??%C4 oscillated with 0.6 and 1.8 ka periodicities, possibly governed by variations in solar irradiance. Our buried soil isotopic record correlates well with other environmental proxy from the Great Plains and

  17. Buteo Nesting Ecology: Evaluating Nesting of Swainson’s Hawks in the Northern Great Plains

    PubMed Central

    Inselman, Will M.; Datta, Shubham; Jenks, Jonathan A.; Jensen, Kent C.; Grovenburg, Troy W.

    2015-01-01

    Swainson’s hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson’s hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson’s hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%–42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson’s hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson’s hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson’s hawks arriving to the breeding grounds. PMID:26327440

  18. Energy and Water Fluxes across a Heterogeneous Landscape in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bagley, J. E.; Williams, I. N.; Kueppers, L. M.; Lu, Y.; Torn, M. S.; Biraud, S.

    2015-12-01

    Fluxes of energy and water between the atmosphere and the land surface influence weather and climate. These fluxes depend on the state of the landscape, which contributes to differences in land-atmosphere coupling strength over space and time. One region with potentially strong land-atmosphere coupling is the Southern Great Plains (SGP) in North America. In this region, managed vegetation plays a key role in moderating the surface energy through effects on surface albedo, transpiration, precipitation interception, and other surface properties. However accurately modeling these effects is challenging because the vegetation in this region is very heterogeneous. Winter wheat is the dominant crop, but pasture, hayfields, corn, and recently introduced crops such as canola cover significant portions of the landscape as well. Winter wheat has a unique phenology with fall planting, maximum leaf area in late spring, and harvest in early summer. This phenology contrasts significantly with most other crops and with pastures and hayfields in the region, which have more typical spring-fall growing seasons. Therefore, to sufficiently model and assess land-atmosphere interactions in this region accurate characterization of differences in the seasonality of water and energy fluxes between vegetation types are necessary. We used observations including eddy covariance flux estimates, soil moisture data, state-of-the-art longwave and shortwave radiation measurements, and other observations available for several facilities within the SGP Atmospheric Radiation Measurement (ARM) site in north-central Oklahoma and southern Kansas. We compared the timing and variations in fluxes of water and energy between winter wheat and other land cover types, focusing on vegetation influences on rates of soil dry-down following precipitation events. We found distinct differences in fluxes between winter wheat and other land types. These flux differences had a nonlinear dependency on disparities in

  19. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    PubMed

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds. PMID:26327440

  20. Efficacy of Aerosol-Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes

    SciTech Connect

    Dunn, M.; Schwartz, S.; Kim, B.-G.; Miller, M.; Liu, Y.; Min, Q.

    2008-03-10

    Several studies have demonstrated that cloud dynamical processes such as entrainment mixing may be the primary modulator of cloud optical properties in certain situations. For example, entrainment of dry air alters the cloud drop size distribution by enhancing drop evaporation. However, the effect of entrainment mixing and other forms or turbulence is still quite uncertain. Although these factors and aerosol-cloud interactions should be considered together when evaluating the efficacy of aerosol indirect effects, the underlying mechanisms appear to be dependent upon each other. In addition, accounting for them is impossible with the current understanding of aerosol indirect effect. Therefore, careful objective screening and analysis of observations are needed to determine the extent to which mixing related properties affect cloud optical properties, apart from the aerosol first indirect effect. This study addresses the role of aerosol-cloud interactions in the context of varying meteorological conditions based on ARM data obtained at the Southern Great Plains (SGP) site in Oklahoma and at Pt. Reyes, California. Previous analyses of the continental stratiform clouds at the SGP site have shown that the thicker clouds of high liquid water path (LWP) tend to contain sub adiabatic LWPs. These sub adiabatic LWPs, which result from active mixing processes, correspond to a lower susceptibility of the clouds to aerosol-cloud interactions, and, hence, to reduced aerosol indirect effects. In contrast, the consistently steady and thin maritime stratus clouds observed at Pt. Reyes are much closer to adiabatic. These clouds provide an excellent benchmark for the study of the aerosol influence on modified marine clouds relative to continental clouds, since they form in a much more homogeneous meteorological environment than those at the continental site.

  1. Eco-Efficiency Model for Evaluating Feedlot Rations in the Great Plains, United States.

    PubMed

    Hengen, Tyler J; Sieverding, Heidi L; Cole, Noel A; Ham, Jay M; Stone, James J

    2016-07-01

    Environmental impacts attributable to beef feedlot production provide an opportunity for economically linked efficiency optimization. Eco-efficiency models are used to optimize production and processes by connecting and quantifying environmental and economic impacts. An adaptable, objective eco-efficiency model was developed to assess the impacts of dietary rations on beef feedlot environmental and fiscal cost. The hybridized model used California Net Energy System modeling, life cycle assessment, principal component analyses (PCA), and economic analyses. The model approach was based on 38 potential feedlot rations and four transportation scenarios for the US Great Plains for each ration to determine the appropriate weight of each impact. All 152 scenarios were then assessed through a nested PCA to determine the relative contributing weight of each impact and environmental category to the overall system. The PCA output was evaluated using an eco-efficiency model. Results suggest that water, ecosystem, and human health emissions were the primary impact category drivers for feedlot eco-efficiency scoring. Enteric CH emissions were the greatest individual contributor to environmental performance (5.7% of the overall assessment), whereas terrestrial ecotoxicity had the lowest overall contribution (0.2% of the overall assessment). A well-balanced ration with mid-range dietary and processing energy requirements yielded the most eco- and environmentally efficient system. Using these results, it is possible to design a beef feed ration that is more economical and environmentally friendly. This methodology can be used to evaluate eco-efficiency and to reduce researcher bias of other complex systems. PMID:27380071

  2. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  3. Grassland and Cropland Net Ecosystem Production of the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Howard, D. M.; Wylie, B. K.; Ji, L.; Gilmanov, T. G.; Zhang, L.

    2014-12-01

    At observation sites throughout the world, carbon dioxide (CO2) levels and other ecosystem resources are measured by instruments known as flux towers. Although flux towers only measure the surrounding vicinity or spatial footprint of their placement ecosystem, the data recorded at these towers can be up-scaled to much greater levels through the use of comprehensive remote sensing data and advanced computer modeling. The purpose of this study was to develop ecological net ecosystem production (NEP) models capable of producing weekly cropland and grassland NEP maps of the U.S. Great Plains at 250 meter resolution for 2000 - 2008. Separate NEP regression tree models were developed for each land cover type (cropland and grassland) with 15 flux towers supporting the grassland model and 13 towers supporting the cropland model. The NEP regression tree models were established through training based on data from the supporting flux towers, remote sensing data, and other biogeophysical inputs. Map results of this study indicate, as anticipated, grassland ecosystems generally perform as net carbon (C) sinks, absorbing and storing C from the atmosphere, and conversely, croplands generally as net C sources (crop yields were not taken into account), releasing C, in the form of CO2, into the atmosphere. The models were evaluated by implementing a leave-one-out cross validation method, which withholds data form one particular year or site for testing a model developed with the remaining data. The cropland model validation analysis received an average Pearson's correlation coefficient (r) of 0.85 for the yearly validation and an average r = 0.73 for the site withholding. The grassland model validation analysis received an average r = 0.86 for the yearly validation and an average r = 0.83 for the site withholding.

  4. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage.

    PubMed

    Falke, Jeffrey A; Bailey, Larissa L; Fausch, Kurt D; Bestgen, Kevin R

    2012-04-01

    Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions. PMID:22690636

  5. Soil moisture anomalies and convection: investigation using ground-based measurements at US Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    Soil moisture is one of the key factors modulating the atmospheric boundary layer and thus the climate system. In this study, we use ground-based measurements to investigate the mechanism by which soil moisture anomalies affect clouds and precipitation. From decade-long warm season observation by Department of Energy Atmospheric Radiation Measurement at Southern Great Plains, we carefully select daytime weather regimes that are strongly coupled with land-surface processes such as clear-sky dry convection days, forced and active non-precipitating shallow cumuli days, and late-afternoon deep convective raining days (Zhang and Klein, 2010 and 2013). Based on this framework, we statistically assess: 1) the differences in soil moisture and surface heterogeneity between different convective regimes; and 2) the variances of the associated effects on surface and boundary layer meteorological conditions inside each convective regime. A specific question will be: under different soil moisture conditions, e.g. wet/dry, which convective weather regime will be favored and how this is related to large-scale environmental factors, such as free-troposphere stability and humidity? The answer to this question will improve our understanding of how soil moisture impacts boundary layer turbulence and thermodynamics, and influences the convection triggering and maintenance and their feedbacks on soil moisture, thus establish a link between soil moisture and convection at the process level. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675737

  6. Land Surface Phenologies in the North American Great Plains: Detecting Climate Change Amidst Climate Variation

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Goodin, D. G.

    2004-12-01

    The continental climate of the North American Great Plains is characterized by high interannual variability in growing season weather. Local averages of temperature and precipitation are not very helpful for predicting expected growing season conditions for vegetation production. We examined the temperature and precipitation records from a network of 'sentinel' weather stations across Kansas, Nebraska, and South Dakota. We assigned these stations into one or more of Wendland and Bryson's airstream regions (ASRs). For each station for each year, we calculated the day of year that the accumulated growing degree-days using a base of 0 oC reaches particular thermal thresholds. We call these Threshold Arrival Dates (TADs). Within each ASR we analyzed the station time series of TADs for two thermal thresholds--at the beginning and at the middle of the growing season for C4 grasses--using 30 year moving averages and Mann-Kendall trend tests. We found that the interannual variation of the onset of the growing season for C4 has increased over the period of record and especially in the last 30 years. At the same time, the central tendencies of the TADs have not changed significantly over the period of record. We also analyzed the TAD series using frequency domain analyses to identify characteristic periodicities. The spectral densities of the TADs point to possible linkages with climate modes. Finally, using the NASA Pathfinder AVHRR Land NDVI dataset, we demonstrate how to interpret the land surface phenologies revealed by synoptic sensors within the broader context of the regions' climatic envelopes.

  7. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    USGS Publications Warehouse

    Gosselin, D.C.; Harvey, F.E.; Frost, C.; Stotler, R.; Macfarlane, P.A.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist. ?? 2003 Elsevier Ltd. All rights reserved.

  8. Implications of invasion by Juniperus virginiana on small mammals in the southern Great Plains

    USGS Publications Warehouse

    Horncastle, V.J.; Hellgren, E.C.; Mayer, P.M.; Ganguli, A.C.; Engle, David M.; Leslie, David M., Jr.

    2005-01-01

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examined effects of invasion by eastern red cedar on small mammals in 3 plant communities (tallgrass prairie, old field, and cross-timbers forest) in the cross-timbers ecoregion in Oklahoma. We sampled small mammals seasonally from May 2001 to August 2002 by using Sherman live traps and mark-recapture techniques on 3.24-ha, 450-trap grids in each plant community. We sampled vegetation in two hundred twenty-five 12 x 12-m cells within each grid. The structure of the small-mammal community differed among the 3 habitat types, with higher species diversity and richness in the tallgrass-prairie and old-field sites. Overall, the small-mammal community shifted along a gradient of increasing eastern red cedar. In the old-field and tallgrass-prairie plots, occurrence of grassland mammals decreased with increasing red cedar, whereas only 1 woodland mammal species increased. In the cross-timbers forest site, percent woody cover (<1 m in height), rather than cover of red cedar, was the most important factor affecting woodland mammal species. Examination of our data suggests that an increase in overstory cover from 0% to 30% red cedar can change a species-rich prairie community to a depauperate community dominated by 1 species, Peromyscus leucopus. Losses in species diversity and changes in mammal distribution paralleled those seen in avian communities invaded by eastern red cedar. Our results highlight ecological effects of invasion by eastern red cedar on diversity and function at multiple trophic levels. ?? 2005 American Society of Mammalogists.

  9. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even

  10. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought.

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Hoerling, M. P.

    2014-12-01

    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  11. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  12. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  13. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains.

    PubMed

    Vogel, Jason R; Moore, Trisha L; Coffman, Reid R; Rodie, Steven N; Hutchinson, Stacy L; McDonough, Kelsey R; McLemore, Alex J; McMaine, John T

    2015-09-01

    Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management. PMID:26961478

  14. Applied regional monitoring of the vernal advancement and retrogradation (Green wave effect) of natural vegetation in the Great Plains corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Deering, D. W.; Haas, R. H.; Welch, R. I.; Harlan, J. C.; Whitney, P. R.

    1977-01-01

    The author has identified the following significant results. LANDSAT 2 has shown that digital data products can be effectively employed on a regional basis to monitor changes in vegetation conditions. The TV16 was successfully applied to an extended test site and the Great Plains Corridor in tests of the ability to assess green forage biomass on rangelands as an index to vegetation condition. A strategy for using TV16 on a regional basis was developed and tested. These studies have shown that: (1) for rangelands with good vegetative cover, such as most of the Great Plains, and which are not heavily infested with brush or undesirable weed species, the LANDSAT digital data can provide a good estimate (within 250 kg/ha) of the quantity of green forage biomass, and (2) at least five levels of pasture and range feed conditions can be adequately mapped for extended regions.

  15. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; and others

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  16. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  17. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains (fig. 1A). Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers (fig. 2) knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone (fig. 3). However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer (figs. 1A and 1B). The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in

  18. On the Micrometeorology of the Southern Great Plains 1: Legacy Relationships Revisited

    NASA Astrophysics Data System (ADS)

    Hicks, B. B.; Pendergrass, W. R.; Vogel, C. A.; Keener, R. N.; Leyton, S. M.

    2014-06-01

    Data from a 32-m tower located near Ocotillo, Texas (N; W), provide an opportunity to examine the relevance of standard micrometeorological flux-gradient formulations to observations made in an area characteristic of a large portion of the central USA, within the Southern Great Plains. Comparison with data obtained at a greater height (80 m) reveals that the velocity distributions change substantially between the lower set of observations and the upper, with the former being constrained at the low wind-speed end. In the early morning, sensible heat-flux divergence correlates well with the measured rate of change of temperature with time within the surface layer of air sampled by the tower, but this association disappears when the depth of the mixed layer extends beyond the reach of the tower. As in the case of all previous examinations of flux-gradient relationships, the overall dependence of the dimensionless wind and temperature gradients and on stability is characterized by considerable scatter, with the familiar relationships best describing the average. For conditions of stable stratification, there is indeed the expected close proximity of and , however, describing either or in terms of the classical stability index (where is the height above the zero plane and L is the Obukhov length scale of turbulence) then appears questionable because the dependence of on the measured sensible heat flux is not always single-valued, especially near the surface. For unstable stratification, support is found for the conclusions of early workers that free convection initiates at about , and that the general behaviour is then compatible with the concept of a moving air mass from which momentum is continuously extracted, embedded within freely convective cells. It is concluded that legacy descriptions of the relationships between fluxes and gradients apply to averages that might occur rarely, that a dominant factor is likely the chaotic nature of the processes that control the

  19. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative

  20. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    NASA Astrophysics Data System (ADS)

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; McMurry, Peter H.; Smith, James N.; Pierce, Jeffery R.

    2016-07-01

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters ˜ 1 to 30-100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid-base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth

  1. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands

    USGS Publications Warehouse

    Zhang, L.; Wylie, B.; Loveland, T.; Fosnight, E.; Tieszen, L.L.; Ji, L.; Gilmanov, T.

    2007-01-01

    Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results. In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub

  2. EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

    SciTech Connect

    Joseph H. Hartman

    1999-09-01

    This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern

  3. Radioactivity and uranium content of some Cretaceous shales, central Great Plains

    USGS Publications Warehouse

    Tourtelot, Harry A.

    1955-01-01

    The Sharon Springs member of the Pierre shale of Cretaceous age, a hard black organic-rich shale similar to the Chattanooga shale, is radioactive throughout central and western South Dakota, most of Nebraska, northern Kansas, and northeastern Colorado. In the Missouri River valley, thin beds of the shale contain as much as 0.01 percent uranium. Beds as much as 20 feet thick or more have a radioactivity of about 0.01 percent equivalent uranium in southwestern Nebraska according to interpretation of gamma-ray well logs. The radioactivity and uranium content is highest in the Missouri River valley in South Dakota and in southwestern Nebraska where the shale rests disconformably on the underlying Niobrara formation of Cretaceous age. Near the Black Hills, and in the area to the north, the shale of the Sharon Springs member rests on a wedge of the Gammon ferruginous member of the Pierre, which is represented by a disonformity to the east and south, and the radioactivity of the shale is low although greater than that of over-lying strata. The shale also contains a suite of trace elements in which arsenic, boron, chromium, copper, molybdenum, nickel, selenium, and vanadium are conspicuous. Molybdenum and tin are less abundant in the Sharon Springs than in similar shales of Palezoic age and silver and selenium are more abundant. In the Great Plains region, the upper 30-50 feet of Cretaceous shales overlain unconformably by the White River group of Oligocene age has been altered to bright-colored material. This altered zone is chiefly the result of pre-Oligocene weathering although post-Oligocene ground water conditions also have affected the zone. The greatest radioactivity occurs in masses of unaltered shale measuring about 1 x 4 feet in cross section included in the lower part of the altered zone. Where the zone is developed on shale and marl of the Niobrara formation, parts of the included unaltered shale contains as much as 0.1 percent equivalent uranium and 0

  4. Observational Evaluation of Simulated Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.

    2014-12-01

    In a recent study of observed features of land-atmosphere coupling (LAC) at the ARM Southern Great Plains (ARM SGP) site in northern Oklahoma (Phillips and Klein, 2014 Journal of Geophysical Research), we identified statistically significant interactions between 1997-2008 summertime daily averages of soil moisture (at 10 cm depth) and a number of surface atmospheric variables, such as surface evaporation, relative humidity, and temperature. Here we will report on an evaluation of similar features of LAC simulated by version 5 of the global Community Atmosphere Model (CAM5), coupled to its native CLM4 land model, and downscaled to the vicinity of the ARM SGP site. In these case studies, the CAM5 was initialized from a 6-hourly atmospheric reanalysis for each day of the years 2008 and 2009 (where the CLM4 land state was equilibrated to the atmospheric model state), thus permitting a close comparison of the modeled and observed summer daily average features of the LAC in these years. Correlation coefficients R and "sensitivity indices" I (a measure of the comparative change of an atmospheric variable for a one-standard-deviation change in soil moisture) provided quantitative measures of the respective coupling strengths. Such a comparison of observed versus modeled LAC is complicated by differences in atmospheric forcings of the land; for example, the CAM5's summertime precipitation is too scant, and thus the model's upper soil layer often is drier than observed. The modeled daily average covariations of soil moisture with lower atmospheric variables also display less coherence (lower R values), but sometimes greater "sensitivity" (higher I values) than are observed at the ARM SGP site. Since the observational estimate of LAC may itself be sensitive to soil moisture measurement biases, we also will report on a planned investigation of the dependence of LAC on several alternative choices of soil moisture data sets local to the ARM SGP site. AcknowledgmentsThis work was

  5. Linking suspended sediment transport metrics with fish functional traits in the Northwestern Great Plains (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.; Simon, A.; Klimetz, L.

    2009-12-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning

  6. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    NASA Astrophysics Data System (ADS)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    The current study was carried out within the FP7 ECLISE project in the Eastern Lower Danube Plain (Bărăgan Plain), one of the major agricultural areas in Romania. In this region, climate change signals are becoming more evident being predominantly characterized by increasing temperatures, decreasing of precipitations and intensification of extreme events in terms of frequency, intensity and duration. Over the past decades, the effects of extreme climatic phenomena on crop production have been ever more severe (very low outputs in the droughty years, significant crop losses during flooding periods, hailstorms, etc.). Concurrently, these effects have been the result of a whole range of complex interactions with other environmental, social, economic and political factors over the post-communist period. Using questionnaires survey for small individual households and large agricultural farms, focus group interviews and direct field observation, this study analyses the farmers' perception in terms of climate change, the impact of climate change on agriculture and how the farmers react and adapt to these changes. The current study have revealed that all farmers believe drought as being by far the most important climatic factor with major impact on agricultural production, followed by acid rains, hail storms and ground frost, facts evidenced also by the climatic diagnosis of the region. The majority of respondents have taken adaptation agricultural measures in response to changes in climate conditions (drought resistant seeds, modern technology to keep the moisture in the soil, etc.), but they consider that a national strategy for mitigating the effects of climate change would be more effective in this respect. Also, in order to correlate the farmers' perception of climate change and climatic factors, the authors used and processed a wide range of meteorological data (daily, monthly and annual from the most representative meteorological stations in the study-area), as

  7. Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains

    USGS Publications Warehouse

    Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Baron, J.S.; Stohlgren, T.J.

    1999-01-01

    Evidence from both meteorological stations and vegetational successional studies suggests that summer temperatures are decreasing in the mountain-plain system in northeast Colorado, particularly since the early 1980s. These trends are coincident with large changes in regional land cover. Trends in global, Northern Hemisphere and continental surface temperatures over the same period are insignificant. These observations suggest that changes in the climate of this mountain-plain system may be, in some part, a result of localized forcing mechanisms. In this study the effects of land use change on the northern Colorado plains, where large regions of grasslands have been transformed into both dry and irrigated agricultural lands, on regional weather is examined in an effort to understand this local deviation from larger-scale trends. We find with high-resolution numerical simulations of a 3-day summer period using a regional atmospheric-land surface model that replacing grasslands with irrigated and dry farmland can have impacts on regional weather and therefore climate which are not limited to regions of direct forcing. Higher elevations remote from regions of land use change are affected as well. Specifically, cases with altered landcover had cooler, moister boundary layers, and diminished low-level upslope winds over portions of the plains. At higher elevations, temperatures also were lower as was low-level convergence. Precipitation and cloud cover were substantially affected in mountain regions. We advance the hypothesis that observed land use changes may have already had a role in explaining part of the observed climate record in the northern Colorado mountain-plain system. Copyright 1999 by the American Geophysical Union.

  8. Large-eddy simulation of the nighttime boundary layer over the US Great Plains for wind energy applications

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Chow, F. K.

    2011-12-01

    The Great Plains in the central part of the United States hosts enormous wind resources. Low-level jets (LLJ) frequently occur at nighttime over the Great Plains within 300 m above the surface, often lower. The enhanced near-surface winds due to the LLJ provide great opportunities for wind energy capture, however, the nighttime stable boundary layer (SBL) is associated with various atmospheric processes including internal gravity waves, Kelvin-Helmholtz (KH) shear instabilities and turbulence events. Those processes can often disrupt wind turbine operations, lead to blade fatigues, and shorten turbine lifetime. Therefore, the ability to forecast nighttime boundary layer flow is useful for wind farm operators. In this study, nested large eddy-simulations (LES) are performed over the site where the Cooperative Atmospheric-Surface Exchange Study (CASES-99) field experiment took place, near Leon, Kansas. The night of Oct 5-6 (IOP2 of CASES-99) is chosen to represent a typical intermittently turbulent night over the Great Plains. Two turbulent bursting events in the SBL are identified. The former is associated with an easterly propagating density current. The latter is caused by shear induced KH instability. Simulations are initialized with North American Regional Reanalysis (NARR) on 32 km grids, and one-way nested to a very fine grid with 16 m horizontal spacing. The conventional TKE-1.5 and dynamic reconstruction turbulence models are used to compare the quality of simulations. While both closures predict the first event with great precision at 16 m scale, only the dynamic reconstruction model (DRM) is able to sustain intermittent turbulence and predict the second bursting event.

  9. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  10. Refining Rural Spaces: Women and Vernacular Gentility in the Great Plains, 1880-1920

    ERIC Educational Resources Information Center

    Radke, Andrea G.

    2004-01-01

    In 1887 the Plains photographer Solomon Butcher met the David Hilton family in Custer County, Nebraska. Mrs. Hilton desired a photograph to send to relatives back East, but felt embarrassed by the family's sod dwelling. She insisted that Butcher not take a photo of the house, but asked the men to drag the Hiltons' beautiful new pump organ out into…

  11. Yield and Agronomic Traits of Waxy Proso in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proso millet (Panicum miliaceum L.) is a summer annual grass that is capable of producing grain in 60 to 90 days. This characteristic, and its efficient use of water, makes it well suited short, and often hot and dry, growing season in the high plains of Kansas, Nebraska, Colorado, Wyoming, and the ...

  12. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess primary productivity responses to increases in precipitation amount and altered rainfall patterns, we conducted an experiment in 2011 and 2012 in shortgrass prairie (SGP; C4 dominated; Central Plains Experimental Grassland), northern mixed grass prairie (NMP; C3 dominated; Fort Keogh Lives...

  13. Annual Crop Type Classification of the U.S. Great Plains for 2000 - 2011: An Application of Classification Tree Modeling using Remote Sensing and Ancillary Environmental Data (Invited)

    NASA Astrophysics Data System (ADS)

    Howard, D. M.; Wylie, B. K.

    2013-12-01

    The purpose of this study was to increase spatial and temporal availability of crop classification data using reliable source data that have the potential of being applied on local, regional, national, and global levels. This study implemented classification tree modeling to map annual crop types throughout the U.S. Great Plains from 2000 - 2011. Classification tree modeling has been shown in numerous studies to be an effective tool for developing classification models. In this study, nearly 18 million crop observation points, derived from annual U.S. Department of Agriculture (USDA) National Agriculture Statistics Service (NASS) Cropland Data Layers (CDLs), were used in the training, development, and validation of a classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Differential Vegetation Index (NDVI) readings, annual climatic conditions, soil conditions, and a number of other biogeophysical environmental characteristics. The CTM accounted for the most prevalent crop types in the area, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Other crops that did not fit into any of these classes were identified and grouped into a miscellaneous class. An 87% success rate was achieved on the classification of 1.8 million observation points (10% of total observation points) that were withheld from training. The CTM was applied to create annual crop maps of the U.S. Great Plains for 2000 - 2011 at a spatial resolution of 250 meters. Product validation was performed by comparing county acreage derived from the modeled crop maps and county acreage data from the USDA NASS Survey Program for each crop type and each year. Greater than 15,000 county records from 2001 - 2010 were compared with a Pearson's correlation coefficient of r = 0.87.

  14. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.

    PubMed

    Vadrevu, Krishna; Lasko, Kristofer

    2015-01-15

    Agricultural fires in the Indo-Gangetic Plains (IGP) are a major cause of air pollution. In this study, we evaluate fire regimes and quantify the potential of agricultural residues in generating bioenergy that otherwise are subject to burning by local farmers in the region. For characterizing the fire regimes, we used MODIS satellite datasets in conjunction with IRS-AWiFS classified data. We collected crop statistical data for area, production, and yield for 31 different crops and mapped the bioenergy potential of agricultural residues. We also tested the MODIS net primary production (NPP) dataset potential for crop yield estimation and thereby bioenergy calculations. Results from land use-fire analysis suggested that 88.13% of fires occurred in agricultural areas. Relatively more fires and burnt areas were recorded during the winter rice residue burning season than the summer wheat residue burning season. Monte Carlo analysis suggested that nearly 16.5 Tg of crop residues are burned at 60% probability. MODIS NPP data could explain 62% of variation in field-level crop yield estimates. Our analysis revealed that in the IGP nearly 73.28 Tg of crop residue biomass is available for recycling. The energy equivalent from these residues is estimated to be 1110.77 PJ. From the residues, the biogas potential production is estimated to be 1165.1098 million m(3), the electric power potential at 20% efficiency is estimated at 61698.9 kWh, and the total bioethanol production potential at 21.0 billion liters. Results also highlight geographic locations of bioenergy resources in the IGP useful for energy planning. Controlling agricultural residue burning and promoting the bioenergy sector is an attractive "win-win" strategy in the IGP. PMID:24502932

  15. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  16. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    DOE PAGESBeta

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; et al

    2016-07-28

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid–base chemistrymore » in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  17. Conservation agriculture practices to enhance soil organic in Lombardy plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Perego, Alessia; Giussani, Andrea; Corsi, Stefano; Tosini, Andrea; Acutis, Marco

    2016-04-01

    It has been demonstrated that conservation agriculture (CA) determines a long-term increase in soil organic carbon (SOC) stock in cropland. The present study aimed to estimate the amount of SOC stored in soil of Lombardy plain (Northern Italy) following the change from tillage agriculture (TA) to CA by using crop ARMOSA crop over 23 years (1989-2011). The territorial analysis was performed at agrarian region scale (AR) after identification of the representative crops rotation and soil types. The land use information were data available at cadastral scale and referred to 5 years (from 2007 to 2011). The meteorological data (i.e. maximum and minimum temperature, precipitation) were measured at 14 monitoring stations. Solar radiation was estimated using the equation of the Bristow and Campbell model (1994). A spatial interpolation method was used to extend the meteorological data throughout the entire plain of the region by employing Thiessen polygon method; the meteorological data of the polygon were assigned to each AR. ARMOSA was parameterized to simulate the two tillage systems. For TA and CA scenario the depth of tillage was limited to 35 and 10 cm, respectively; crop residual incorporation was not simulated under CA. In TA scenario, we used the parameters calibrated and validated by Perego et al.(2013) on a wide dataset collected at six monitoring sites in Lombardy plain. In CA, the rate of C decomposition of humified organic C was assumed to be smaller by 30% in no-tillage than in TA (Oorts et al., 2007). The model results showed a significant improve of SOC (p<0.01) from TA to CA under all the crop rotations with a potential SOC sequestration ranged from 0.1 to 0.48 t C ha-1 y-1. While soil type did not affect significantly the SOC sequestration, crop residue determined relevant increases in SOC. That was particularly evident in grain maize monoculture with or without cover crop. References: Oorts K., Garnier P., Findeling A., Mary B., Richard G., Nicolardot B

  18. WORKSHOP ON CLIMATE CHANGE AND AGRICULTURE IN THE GREAT LAKES REGION

    EPA Science Inventory

    How might a changing climate impact agricultural productivity in the Great Lakes region? How might it affect a farmer's choice of crops or economic risk? What impacts could the development of wind power have on agricultural land owners? These and other questions will be explored ...

  19. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  20. The role of upper tropospheric jet streaks and lee-side cyclogenesis in the development of low level jets in the great plains

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.

    1980-01-01

    A review of 15 cases of low level jets (LLJ) which developed in the Great Plains is presented. For 12 out of the 15 cases, a systematic upper level flow pattern was isolated which includes the existence of a trough over the southwest United States and the propagation of upper level jet streaks from the Rocky Mountains toward the Great Plains. This flow pattern is responsible for lee side cyclogenesis or lee side troughing that produces the pressure gradients needed for the development of the LLJ. For the other three cases, a blocking ridge existed over the Great Plains and the upper level flow is relatively weak. It is during these situations that the classic, diurnal oscillating LLJ was observed. A more detailed review of four cases indicates that the subsynoptic scale adjustments associated with the upper level jet streak's forcing of lee side cyclogenesis could be an important factor in the development of LLJ's in the Great Plains.

  1. Irrigation Water Supply and Management in the Central High Plains: Can Agriculture Compete for a Limited Resource?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The era of expanding irrigated agriculture in the central high plains has come to an end, and we are likely entering a period of contraction. Contraction has begun in Colorado where the state estimates that current consumptive use exceeds sustainable supplies by about 10%. Groundwater pumping has ...

  2. Agricultural Conservation Practices and Wetland Ecosystem Services in a Wetland-Dominated Landscape: The Piedmont-Coastal Plain Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the wetlands-rich eastern Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the a...

  3. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market val...

  4. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    USGS Publications Warehouse

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; Van Sistine, Darren R.

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  5. The potential response of eolian sands to greenhouse warming and precipitation reduction on the Great Plains of the U.S.A.

    USGS Publications Warehouse

    Muhs, D.R.; Maat, P.B.

    1993-01-01

    Sand dunes and sand sheets are extensive on the semi-arid GreatPlains but are at present stabilized by a sparse vegetation cover. Use of a dune mobility index, which incorporates wind strength and the ratio of mean annual precipitation to potential evapotranspiration, shows that under predicted greenhouse climate effects of increased temperature and reduced precipitation, sand dunes and sand sheets on the GreatPlains are likely to become reactivated over a significant part of the region.

  6. The Pearlette family ash beds in the Great Plains: Finding their identities and their roots in the Yellowstone country

    USGS Publications Warehouse

    Wilcox, R.E.; Naeser, C.W.

    1992-01-01

    For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.

  7. Associations of grassland bird communities with black-tailed prairie dogs in the North American Great Plains.

    PubMed

    Augustine, David J; Baker, Bruce W

    2013-04-01

    Colonial burrowing herbivores can modify vegetation structure, create belowground refugia, and generate landscape heterogeneity, thereby affecting the distribution and abundance of associated species. Black-tailed prairie dogs (Cynomys ludovicianus) are such a species, and they may strongly affect the abundance and composition of grassland bird communities. We examined how prairie dog colonies in the North American Great Plains affect bird species and community composition. Areas occupied by prairie dogs, characterized by low percent cover of grass, high percent cover of bare soil, and low vegetation height and density, supported a breeding bird community that differed substantially from surrounding areas that lacked prairie dogs. Bird communities on colony sites had significantly greater densities of large-bodied carnivores (Burrowing Owls [Athene cunicularia], Mountain Plovers, [Charadrius montanus], and Killdeer [Charadrius vociferus]) and omnivores consisting of Horned Larks (Eremophila alpestris) and McCown's Longspurs (Rhynchophanes mccownii) than bird communities off colony sites. Bird communities off colony sites were dominated by small-bodied insectivorous sparrows (Ammodramus spp.) and omnivorous Lark Buntings (Calamospiza melanocorys), Vesper Sparrows (Pooecetes gramineus), and Lark Sparrows (Chondestes grammacus). Densities of 3 species of conservation concern and 1 game species were significantly higher on colony sites than off colony sites, and the strength of prairie dog effects was consistent across the northern Great Plains. Vegetation modification by prairie dogs sustains a diverse suite of bird species in these grasslands. Collectively, our findings and those from previous studies show that areas in the North American Great Plains with prairie dog colonies support higher densities of at least 9 vertebrate species than sites without colonies. Prairie dogs affect habitat for these species through multiple pathways, including creation of belowground

  8. Survey for Previously Common Native Coccinellidae (Coleoptera)in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey for coccinellids was conducted among agricultural and non-agricultural habitats in 22 counties of South Dakota, North Dakota, Minnesota, and Iowa from 2005 through 2007. A total of 1226 coccinellids were sampled by sweepnetting, timed searches, and the use of Malaise traps. Four native sp...

  9. Combined Deterministic and Stochastic Approach to Determine Spatial Distribution of Drought Frequency and Duration in the Great Hungarian Plain

    NASA Astrophysics Data System (ADS)

    Szabó, J. A.; Kuti, L.; Bakacsi, Zs.; Pásztor, L.; Tahy, Á.

    2009-04-01

    Drought is one of the major weather driven natural hazards, which has most harm impacts on environment, agricultural and hydrological factors than the other hazards. In spite of the fact that Hungary - that country is situated in Central Europe - belongs to the continental climate zone (influenced by Atlantic and Mediterranean streams) and this weather conditions should be favourable for agricultural production, the drought is a serious risk factor in Hungary, especially on the so called "Great Hungarian Plain", which area has been hit by severe drought events. These drought events encouraged the Ministry of Environment and Water of Hungary to embark on a countrywide drought planning programme to coordinate drought planning efforts throughout the country, to ensure that available water is used efficiently and to provide guidance on how drought planning can be accomplished. With regard to this plan, it is indispensable to analyze the regional drought frequency and duration in the target region of the programme as fundamental information for the further works. According to these aims, first we initiated a methodological development for simulating drought in a non-contributing area. As a result of this work, it has been agreed that the most appropriate model structure for our purposes using a spatially distributed physically based Soil-Vegetation-Atmosphere Transfer (SVAT) model embedded into a Markov Chain-Monte Carlo (MCMC) algorithm for estimate multi-year drought frequency and duration. In this framework: - the spatially distributed SVAT component simulates all the fundamental SVAT processes (such as: interception, snow-accumulation and melting, infiltration, water uptake by vegetation and evapotranspiration, vertical and horizontal distribution of soil moisture, etc.) taking the groundwater table as lower, and the hydrometeorological fields as upper boundary conditions into account; - and the MCMC based stochastic component generates time series of daily weather

  10. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains.

    PubMed

    Grogan, Sarah M; Brown-Guedira, Gina; Haley, Scott D; McMaster, Gregory S; Reid, Scott D; Smith, Jared; Byrne, Patrick F

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011-2012 and 2012-2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  11. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  12. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus. PMID:15696379

  13. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  14. Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains

    NASA Astrophysics Data System (ADS)

    Nigam, Sumant; Guan, Bin; Ruiz-Barradas, Alfredo

    2011-08-01

    The Great Plains of North America are susceptible to multi-year droughts, such as the 1930s ‘Dust Bowl’. The droughts have been linked to SST variability in the Pacific and Atlantic basins. This observationally rooted analysis shows the SST influence in multi-year droughts and wet episodes over the Great Plains to be significantly more extensive than previously indicated. The remarkable statistical reconstruction of the major hydroclimate episodes attests to the extent of the SST influence in nature, and facilitated evaluation of the basin contributions. We find the Atlantic SSTs to be especially influential in forcing multi-year droughts; often, more than the Pacific ones. The Atlantic Multidecadal Oscillation (AMO), in particular, contributed the most in two of the four reconstructed episodes (Dust Bowl Spring, 1980s fall wetness), accounting for almost half the precipitation signal in each case. The AMO influence on continental precipitation was provided circulation context from analysis of NOAA's 20th Century Atmospheric Reanalysis. A hypothesis for how the AMO atmospheric circulation anomalies are generated from AMO SSTs is proposed to advance discussion of the influence pathways of the mid-to-high latitude SST anomalies. Our analysis suggests that the La Nina-US Drought paradigm, operative on interannual time scales, has been conferred excessive relevance on decadal time scales in the recent literature.

  15. Population change and farm dependence: temporal and spatial variation in the U.S. Great Plains, 1900-2000.

    PubMed

    White, Katherine J Curtis

    2008-05-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  16. Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains

    NASA Astrophysics Data System (ADS)

    Simon Wang, S.-Y.; Huang, Wan-Ru; Hsu, Huang-Hsiung; Gillies, Robert R.

    2015-10-01

    The climate anomalies leading to the May 2015 floods in Texas and Oklahoma were analyzed in the context of El Niño teleconnection in a warmer climate. A developing El Niño tends to increase late-spring precipitation in the southern Great Plains, and this effect has intensified since 1980. Anthropogenic global warming contributed to the physical processes that caused the persistent precipitation in May 2015: Warming in the tropical Pacific acted to strengthen the teleconnection toward North America, modification of zonal wave 5 circulation that deepened the stationary trough west of Texas, and enhanced Great Plains low-level southerlies increasing moisture supply from the Gulf of Mexico. Attribution analysis using the Coupled Model Intercomparison Project Phase 5 single-forcing experiments and the Community Earth System Model Large Ensemble Project indicated a significant increase in the El Niño-induced precipitation anomalies over Texas and Oklahoma when increases in the anthropogenic greenhouse gases were taken into account.

  17. Population Change and Farm Dependence: Temporal and Spatial Variation in the U.S. Great Plains, 1900–2000

    PubMed Central

    CURTIS WHITE, KATHERINE J.

    2008-01-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  18. The USDA Southern Plains Climate Hub: Regional agricultural management in the context of weather and climate variability and change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southern Great Plains of the United States, extremes of weather and climate are the norm. Farmers, ranchers, and foresters rely upon timely and authoritative data and information when making management decisions that are weather- and climate-dependent. In response to the needs of these agricu...

  19. Future Projections for Southern High Plains Agriculture Using Coupled Economic and Hydrologic Models and Climate Variability

    NASA Astrophysics Data System (ADS)

    Rainwater, K.; Tewari, R.; Willis, D.; Stovall, J.; Hayhoe, K.; Hernandez, A.; Mauget, S. A.; Leiker, G.; Johnson, J.

    2013-12-01

    The objective of the project was to evaluate the hypothesis that predicted climate change will affect the useful life of the Ogallala aquifer in the Southern High Plains (SHP) through its impact on the amount of irrigation withdrawals, and thus affect the yields and economic costs and net income. A ninety-year time frame has been considered, although the research team recognizes that long-term predictions of crop prices and selections are perhaps even more uncertain than long-term weather projections. Previous work by the research team recently demonstrated the development of regionally downscaled climate projections for the SHP. Quantitative projections of precipitation, potential evaporation, and temperature trends for the 90-yr duration were selected from a downscaled set of high-resolution (one-eighth degree) daily climate and hydrological simulations covering the entire Great Plains region, driven by the latest IPCC AR4 climate model outputs. These projections were used as input to the Ogallala Ag Tool software developed by the USDA-ARS to predict daily and seasonal values of those variables, which directly affect irrigation, at different locations in the study area. Results from the Ogallala Ag Tool were then used to drive future projected crop production functions for cotton, corn, wheat, and sorghum using the DSSAT crop model. These production functions were then included in an integrated economic-hydrologic modeling approach that coupled an economic optimization model with a groundwater hydrological model. The groundwater model was based on the Texas Water Development Board's Southern Ogallala Groundwater Availability Model, which has been recalibrated by the research team for previous applications. The coupling of the two models allowed better recognition of spatial heterogeneity across the SHP, such that irrigation water availability was better represented through the spatial variations in pumping demands and saturated thickness. With this hydrologic

  20. Exploring agent-level calculations of risk and returns in relation to observed land-use changes in the US Great Plains, 1870–1940

    PubMed Central

    Sylvester, Kenneth M.; Brown, Daniel G.; Leonard, Susan H.; Merchant, Emily; Hutchins, Meghan

    2015-01-01

    Land-use change in the U.S. Great Plains since agricultural settlement in the second half of the nineteenth century has been well documented. While aggregate historical trends are easily tracked, the decision-making of individual farmers is difficult to reconstruct. We use an agent-based model to tell the history of the settlement of the West by simulating farm-level agricultural decision making based on historical data about prices, yields, farming costs, and environmental conditions. The empirical setting for the model is the period between 1875 and 1940 in two townships in Kansas, one in the shortgrass region and the other in the mixed grass region. Annual historical data on yields and prices determine profitability of various land uses and thereby inform decision-making, in conjunction with the farmer’s previous experience and randomly assigned levels of risk aversion. Results illustrating the level of agreement between model output and unique and detailed household-level records of historical land use and farm size suggest that economic behavior and natural endowments account for land change processes to some degree, but are incomplete. Discrepancies are examined to identify missing processes through model experiments, in which we adjust input and output prices, crop yields, agent memory, and risk aversion. These analyses demonstrate how agent-based modeling can be a useful laboratory for thinking about social and economic behavior in the past. PMID:25729323

  1. Remediation/restoration of degraded soil in the Central Great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil degradation became a problem in the arid region in the late 18th and early 19th century, as a consequence of agriculture expansion and conversion of native land to cropland. The objectives of this study are to evaluate the impact of different tillage practices, nitrogen (N) sources, and N rates...

  2. Tillage effects on physical properties in two soils of the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage practices profoundly affect soil physical and hydraulic properties. It is essential to select a tillage practice that sustains the soil physical properties required for successful growth of agricultural crops. We evaluated the effects of conventional (CT) and strip (ST) tillage practices on ...

  3. Lower Limits of Water Use By Cotton, Maize, and Grain Sorghum in Three Great Plains Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate knowledge of the amount of soil water available for crop use helps agricultural producers select cropping and irrigation management strategies that maximize crop yields. Using neutron attenuation, we measured the lower limits of soil water content (LL, in m**3 m**-3) at harvest (three seas...

  4. Global climatic change effects on irrigation requirements for the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising carbon dioxide and other green house gasses (water vapor, nitrous oxide, methane, etc.) are predicted to have an effect on future climates. These gasses impact crops and global and local weather. The carbon dioxide increase is generally considered to be favorable to agriculture as it increas...

  5. Climate change impacts on dryland cropping systems in the central Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...

  6. Physical restoration of eroded soils in the Northern Great Plains (NA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of agricultural lands often seeks to modify or control non-human environmental factors so as to support diverse (and often conflicting) objectives, such as extraction of resources, profitability, human survival, soil and water conservation, maintenance of wildlife habitat, food security, ...

  7. The Impact of Clouds on Ecosystem-Atmosphere CO18O Exchanges in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Riley, W. J.; Biraud, S. C.; Noone, D. C.; Berry, J. A.

    2005-12-01

    The downward excursion in δ18O of atmospheric CO2 observed during the 1990s and the large interannnual variability characteristic of this isotopologue are not understood. We hypothesize that these variations in δ18O of atmospheric CO2 may be linked to global-scale variations in cloud cover and its influence on biosphere-atmosphere CO18O exchanges. Recent work has demonstrated the influence of clouds on canopy photosynthesis through increases in the diffuse radiation fraction and relative humidity, combined with decreases in leaf temperature. In concert, these alterations tend to increase canopy photosynthesis, which should also increase CO18O fluxes. However, photosynthetic CO18O fluxes also depend on the δ18O of leafwater, and enhanced cloudiness should decrease the δ18O of leafwater by enhancing relative humidity. Thus, the net impact of differing cloud cover on biosphere-atmosphere CO18O exchanges is difficult to predict. To capture these contrasting effects, we employed a comprehensive ecosystem isotope model (ISOLSM) in the southern great plains region of Oklahoma and Kansas. This region is particularly amenable for such a study because of the density of cloud property and radiation measurements. The region contains natural and agricultural ecosystems representing a variety of photosynthetic pathways and growth forms, including tallgrass prairie pastures, broadleaf forests, and crops. To drive the model across the entire region, we used Mesonet meteorological data collected at 120 stations in 2004, as well as precipitation δ18O values from the National Atmospheric Deposition Program network. LAI profiles from 2004 were derived from MODIS data. Our results suggest a large impact of clouds on photosynthetic CO2 and CO18O fluxes across this region. In an unstressed broadleaf deciduous forest (LAI=6.3), three sequential midsummer days with contrasting cloud cover illustrate this impact. Julian Day 222 is sunny, JD 223 is partly cloudy, and JD 224 is very

  8. An environmental problem hidden in plain sight? Small human-made ponds, emergent insects, and mercury contamination of biota in the Great Plains.

    PubMed

    Chumchal, Matthew M; Drenner, Ray W

    2015-06-01

    Mercury (Hg) contamination of small human-made ponds and surrounding terrestrial communities may be 1 of the largest unstudied Hg-pollution problems in the United States. Humans have built millions of small ponds in the Great Plains of the United States, and these ponds have become contaminated with atmospherically deposited mercury. In aquatic ecosystems, less toxic forms of Hg deposited from the atmosphere are converted to highly toxic methylmercury (MeHg). Methylmercury is incorporated into the aquatic food web and then can be transferred to terrestrial food webs via emergent aquatic insects. The authors present a conceptual model that describes the movement of MeHg produced in aquatic ecosystems to terrestrial consumers via insects emerging from small human-made ponds. The authors hypothesize that pond permanence and the level of Hg contamination of the food web control this emergent insect-mediated flux of MeHg. The highest insect-mediated flux of MeHg is predicted to be from fishless semipermanent ponds with food webs that are highly contaminated with MeHg. Further development and testing of the conceptual model presented in the present column, particularly in the context of a changing climate, will require research at the regional, watershed, and pond scales. PMID:26013117

  9. Effects of soils and grazing on breeding birds of uncultivated upland grasslands of the Northern Great Plains

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1982-01-01

    The principal use of uncultivated upland grasslands in the northern Great Plains is for livestock production. However, on lands set aside for wildlife or for scientific or recreational use, grazing by livestock may be used as a management measure to enhance populations of game species or to create conditions that increase the diversity of plant or animal species. To determine the effects of grazing on the avifauna of various types of Great Plains grasslands, we conducted bird censuses and plant surveys during 1974-78 on 615 plots of lightly, moderately, or heavily grazed native rangeland.Numbers of horned lark (Eremophila alpestris), western meadowlark (Sturnella neglecta), lark bunting (Calamospiza melanocorys), and chestnut-collared longspur (Calcarius ornatus) accounted for 65-75% of the total bird population, regardless of grazing intensity. For the entire area sampled (600,000 km2), horned lark, western meadowlark, and chestnut-collared longspur were the dominant birds. Major differences in composition of the dominant species and species richness occurred among the major soils. Increased mean annual soil temperature seemingly had a greater negative influence on avian species richness than did decreased soil moisture or organic matter content. Differences in total bird density were not significant among soils and among grazing intensities within most soils. For the area as a whole, light or moderate grazing resulted in increased species richness. Of the 29 species studied, 2 responded significantly to grazing for the area as a whole and 6 others to grazing on the soil in which peak densities occurred. Response of several other species to grazing effects evidently varied among strata.A list of plants with mean cover values of more than 1% in any of the 18 combinations of soils and grazing intensities contained less than 25 species, attesting to the relative simplicity of the grassland vegetation in the northern Great Plains. Agropyron spp. and Bouteloua gracilis

  10. Investigation of evaporate deposits in the “Great Ear” area of Lop Nor salt plain, Xinjiang Province, China

    NASA Astrophysics Data System (ADS)

    Ma, L.; Li, B.; Jiang, P.; Lowenstein, T. K.; Zhong, J.; Sheng, J.; Wu, H.

    2009-12-01

    In arid regions of the world, salt pans are common features occupying the lowest areas of closed interior basin. The Lop Nor salt plain is located at the east end of the Tarim Basin, Xinjiang Province, China. Widespread Holocene salt deposits were known to cover thousands of square kilometers and up to hundreds of meters thick. However, the salt pans in the central-eastern sector of the Lop Nor salt plain is unusually represented by successive concentric black-and-white rings that closely resembled a big human ear in satellite images. The total area of the “Great Ear” is approximately 5,500 km2, and the internal morphology is considered essentially flat with an elevation of 800 m. A series of detailed field investigations on the “Great Ear” salt pans involved describing evaporates and surface morphologies, measuring chemical compositions, and groundwater depths. The deposits show clear lateral variations in salt content, water content, evaporate mineralogy, as well as the microrelief of salt crust in the “Great Ear” area. Spatially, spectral imaging variation corresponds to color variation in the “Great Ear”, which suggests surface moist conditions of a salt pan: dark-toned areas are wet and the bright-toned areas are dry. In the wet zone, capillary fringing of groundwater brines control the precipitation of evaporites and microrelief genesis. The salt pans are marked by pressure-ridge and well-developed hexagonal honeycomb polygons structures, where the microrelief of salt crust ranges from 30 to 80 cm. In the dry salt pans zone, groundwater discharge was not observed on the surface and the salt crust is characterized by low relief, low salinity, a lack of efflorescences crusts, and significant amounts of detrital sediments. This zone shows bright-tone in the satellite images due to higher reflectance of dry salt-encrusted pans surface. Though, the sediment beneath the surface typically is saturated with concentrated brines and displacive

  11. Psychological-Mindedness and American Indian Historical Trauma: Interviews with Service Providers from a Great Plains Reservation.

    PubMed

    Hartmann, William E; Gone, Joseph P

    2016-03-01

    The concept of historical trauma (HT) was developed to explain clinical distress among descendants of Jewish Holocaust survivors and has since been ascribed new meanings to account for suffering in diverse contexts. In American Indian (AI) communities, the concept of AI HT has been tailored and promoted as an expanded notion of trauma that combines psychological injury with historical oppression to causally connect experiences with Euro-American colonization to contemporary behavioral health disparities. However, rather than clinical formulations emphasizing psychological injury, a focused content analysis of interviews with 23 AI health and human service providers (SPs) on a Great Plains reservation demonstrated strong preferences for socio-cultural accounts of oppression. Reflective of a local worldview associated with minimal psychological-mindedness, this study illustrates how cultural assumptions embedded within health discourses like HT can conflict with diverse cultural forms and promote "psychologized" perspectives on suffering that may limit attention to social, economic, and political determinants of health. PMID:27217325

  12. Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    1995-01-01

    Dune fields are found in several areas of the Great Plains, and though mostly stabilised today, the accounts of early explorers show that they were more mobile in the last century. Using an index of dune mobility and tree ring data, it is found that these periods of mobility were related to temperature-induced drought, the high temperatures increasing evapotranspiration. Explorers also record that rivers upwind of these dune fields had shallow braided channels in the 19th century, and these would have supplied further aeolian sand. It is concluded that these dunes are extremely susceptible to climate change and that it may not need global warming to increase their mobility again. -K.Clayton

  13. 1999 resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Fort Union Coal Assessment Team

    1999-01-01

    The USGS has assessed resources of selected coal of the Fort Union Formation and equivalent units in the Northern Rocky Mountains and Great Plains region. The assessment focused on coal in the Powder River, Williston, Hanna-Carbon, and Greater Green River basins most likely to be utilized in the next few decades. In other basins in the region Tertiary coal resources are summarized but not assessed. Disc 1, in PDF files, includes results of the assessment and chapters on coal geology, quantity and quality, and land use and ownership. Disc 2 provides GIS files for land use and ownership maps and geologic maps, and basic GIS data for the assessed basins. ArcView shapefiles, PDF files for cross sections and TIFF files are included along with ArcView Datapublisher software for Windows-based computer systems.

  14. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  15. Climatological relationships of severe duststorms in the Great Plains to synoptic weather patterns: A potential for predictability

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Henz, J. F.

    1980-01-01

    A data base provided by 35 severe duststorms that occurred between 1968 and 1977 in the central and southern Great Plains allowed construction of a classification scheme of meteorological causes of duststorms, and a telescopic forecast technique for medium range (6 to 48 hour) prediction of severe cyclogenic duststorms. In addition, areal coverage definitions for duststorms based on characteristics of the storms, and a hierarchy of weather causes of severe duststorms were developed. The man machine mix forecast correctly predicted six of seven duststorms observed during the 1976-77 winter, with one overforecast; the machine-only forecast correctly predicted four of the seven duststorms, with one overforecast. Both techniques had problems correctly predicting the duration of severe duststorms.

  16. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    USGS Publications Warehouse

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO2-4 due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ18OH2O, δ2HH2O, and δ34SSO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO4 reduction.

  17. Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Homeyer, C. R.; Ryerson, T. B.; Aikin, K. C.; Peischl, J.; Apel, E. C.; Campos, T.; Flocke, F.; Hornbrook, R. S.; Knapp, D. J.; Montzka, D. D.; Weinheimer, A. J.; Riemer, D.; Diskin, G.; Sachse, G.; Mikoviny, T.; Wisthaler, A.; Bruning, E.; MacGorman, D.; Cummings, K. A.; Pickering, K. E.; Huntrieser, H.; Lichtenstern, M.; Schlager, H.; Barth, M. C.

    2016-02-01

    The reported range for global production of nitrogen oxides (NOx = NO + NO2) by lightning remains large (e.g., 32 to 664 mol NOx flash-1), despite incorporating results from over 30 individual laboratory, theoretical, and field studies since the 1970s. Airborne and ground-based observations from the Deep Convective Clouds and Chemistry experiment in May and June 2012 provide a new data set for calculating moles of NOx produced per lightning flash, P(NOx), in thunderstorms over the United States Great Plains. This analysis utilizes a combination of in situ observations of storm inflow and outflow from three instrumented aircraft, three-dimensional spatial information from ground-based radars and satellite observations, and spatial and temporal information for intracloud and cloud-to-ground lightning flashes from ground-based lightning mapping arrays. Evaluation of two analysis methods (e.g., a volume-based approach and a flux-based approach) for converting enhancements in lightning-produced NOx from volume-based mixing ratios to moles NOx flash-1 suggests that both methods equally approximate P(NOx) for storms with elongated anvils, while the volume-based approach better approximates P(NOx) for storms with circular-shaped anvils. Results from the more robust volume-based approach for three storms sampled over Oklahoma and Colorado during DC3 suggest a range of 142 to 291 (average of 194) moles NOx flash-1 (or 117-332 mol NOx flash-1 including uncertainties). Although not vastly different from the previously reported range for storms occurring in the Great Plains (e.g., 21-465 mol NOx flash-1), results from this analysis of DC3 storms offer more constrained upper and lower limits for P(NOx) in this geographical region.

  18. Are high-resolution NASA Unified WRF simulations credible tools for predicting extreme precipitation over the Great Plains?

    NASA Astrophysics Data System (ADS)

    Lee, H.; Waliser, D. E.; Case, J.; Iguchi, T.; Wang, W.

    2015-12-01

    Accurate simulation of extreme weather events remains a challenge in climate models. Previous studies indicate that regional climate models better reproduce extreme precipitation with their higher spatial resolution than coarser resolution global climate models. This study utilized radar-based hourly precipitation data with a resolution of 4 km to evaluate rainfall characteristics simulated with NASA Unified Weather Research and Forecasting (NU-WRF) model at horizontal resolutions of 24, 12 and 4 km. We also examined the impact of spectral nudging on the performance of NU-WRF. The rainfall characteristics in the observations and simulations were defined as a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. The Regional Climate Model Evaluation System (RCMES) is an open source software suite developed jointly by NASA's Jet Propulsion Laboratory and the University of California, Los Angeles. RCMES facilitates evaluation of NU-WRF evaluations by providing tools to process a vast amount of observational and model datasets with high resolutions. Using RCMES, we calculated JPDF for each dataset and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. The performance of NU-WRF simulations based on the precipitation JPDF is strongly dependent on their resolutions. The simulation with the highest resolution of 4 km shows the best agreement with the observations with the same resolution in simulating short-duration downpour events over the Great Plains. Our analysis indicates that even the regridded high-resolution simulation on low-resolution grids shows better performance than low-resolution simulations. The simulations with lower resolutions of 12 and 24 km show reasonable agreement only with the observational data whose resolutions are similar to the simulations.

  19. Asynchronous onset of eutrophication among shallow prairie lakes of the Northern Great Plains, Alberta, Canada.

    PubMed

    Maheaux, Heather; Leavitt, Peter R; Jackson, Leland J

    2016-01-01

    Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is evident in global meta-analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β-carotene, pheophytin a) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least-squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulfur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis, which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles. PMID:26313740

  20. AGRICULTURE IN THE GREAT PLAINS: NET CARBON CONSEQUENCES OF DRYLAND AND IRRIGATED CULTIVATION. (R824993)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Importance of agricultural landscapes to nesting burrowing owls in the Northern Great Plains, USA

    USGS Publications Warehouse

    Restani, M.; Davies, J.M.; Newton, W.E.

    2008-01-01

    Anthropogenic habitat loss and fragmentation are the principle factors causing declines of grassland birds. Declines in burrowing owl (Athene cunicularia) populations have been extensive and have been linked to habitat loss, primarily the decline of black-tailed prairie dog (Cynomys ludovicianus) colonies. Development of habitat use models is a research priority and will aid conservation of owls inhabiting human-altered landscapes. From 2001 to 2004 we located 160 burrowing owl nests on prairie dog colonies on the Little Missouri National Grassland in North Dakota. We used multiple linear regression and Akaike's Information Criterion to estimate the relationship between cover type characteristics surrounding prairie dog colonies and (1) number of owl pairs per colony and (2) reproductive success. Models were developed for two spatial scales, within 600 m and 2,000 m radii of nests for cropland, crested wheatgrass (Agropyron cristatum), grassland, and prairie dog colonies. We also included number of patches as a metric of landscape fragmentation. Annually, fewer than 30% of prairie dog colonies were occupied by owls. None of the models at the 600 m scale explained variation in number of owl pairs or reproductive success. However, models at the 2,000 m scale did explain number of owl pairs and reproductive success. Models included cropland, crested wheatgrass, and prairie dog colonies. Grasslands were not included in any of the models and had low importance values, although percentage grassland surrounding colonies was high. Management that protects prairie dog colonies bordering cropland and crested wheatgrass should be implemented to maintain nesting habitat of burrowing owls. ?? 2008 Springer Science+Business Media B.V.

  2. Role of eastward propagating convection systems in the diurnal cycle and seasonal mean summertime rainfall over the U. S. Great Plains

    SciTech Connect

    Jiang, X; Lau, N C; Klein, S A

    2006-06-07

    By diagnosing the 3-hourly North American Regional Reanalysis rainfall dataset for the 1979-2003 period, it is illustrated that the eastward propagation of convection systems from the Rockies to the Great Plains plays an essential role for the warm season climate over the central U.S. This eastward propagating mode could be the deciding factor for the observed nocturnal rainfall peak over the Great Plains. The results also suggest that nearly half of the total summer mean rainfall over this region is associated with these propagating convection systems. For instance, the extreme wet condition of the 1993 summer may be attributed to the frequent occurrence of propagating convection events and enhanced diurnal rainfall amplitude over the Great Plains. Thus, proper representation of this important propagating component in GCMs is essential for simulating the diurnal and seasonal mean characteristics of summertime rainfall over the central US.

  3. Automatic Training Site Selection for Agricultural Crop Classification: a Case Study on Karacabey Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdarici Ok, A.; Akyurek, Z.

    2011-09-01

    This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m) and multispectral (4m) Kompsat-2 images (July 2008) of Karacabey Plain (~100km2), located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m) image and multispectral (4m) image are orthorectified. Next, the fused image (1m) is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i) spatial domain (hs), (ii) range domain (hr), and (iii) minimum region (MR). In this study, in total, 176 parameter combinations (hs, hr, and MR) are tested on a small part of the area (~10km2) to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000) is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m) to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  4. Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea

    2013-04-01

    The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the

  5. Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea

    2013-04-01

    The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the

  6. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface

  7. Machine-readable data files from the Madison Limestone and northern Great Plains regional aquifer system analysis projects, Montana, Nebraska, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Downey, J.S.

    1982-01-01

    Lists of machine-readable data files were developed for the Madison Limestone and Northern Great Plains Regional Aquifer System Analysis (RASA) projects. They are stored on magnetic tape and available from the U.S. Geological Survey. Record format, file content, and size are given for: (1) Drill-stem-test data for Paleozoic and Mesozoic formations, (2) geologic data from the Madison Limestone project, (3) data sets used in the regional simulation model, (4) head data for the Lower and Upper Cretaceous aquifers, and (5) geologic data for Mesozoic formations of the Northern Great Plains. (USGS)

  8. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    SciTech Connect

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  9. Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.

  10. Develop an early warning climate indicator to support the Nation's resilience to 'flash' droughts over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, D. N.; YANG, Z.; Solis, R.

    2013-12-01

    'Flash' droughts refer to those droughts that intensify rapidly in spring and summer, coupled with a strong increase of summer extreme temperatures, such as those that occurred over Texas in 2011 and the Great Plains in 2012. These droughts represent a great threat to North American water security. Climate models have failed to predict these 'flash' droughts and are ambiguous in projecting their future changes largely because of models' weaknesses in predicting summer rainfall and soil moisture feedbacks. By contrast, climate models are more reliable in simulating changes of large-scale circulation and warming of temperatures during the winter and spring seasons. We present a prototype of an early warning indicator for the risk of 'flash' droughts in summer by using the large-scale circulation and land surface conditions in winter and spring based on observed relationships between these conditions and their underlying physical mechanisms established by previous observations and numerical model simulations. This prototype 'flash' drought indicator (IFDW) currently uses global and regional reanalysis products (e.g., CFSR, MERRA, NLDAS products) in winter and spring to provide an assessment of summer drought severity similar to drought severity indices like PDSI (Palmer Drought Severity Index), SPI (Standard Precipitation Index) etc., provided by the National Integrated Drought Information Center (NIDIS) with additional information about uncertainty and past probability distributions of IFDW. Preliminary evaluation of hindcasts suggests that the indicator captures the occurrences of all the regional severe to extreme summer droughts during the past 63 years (1949-2011) over the US Great Plains, and 95% of the drought ending. This prototype IFDW has several advantages over the available drought indices that simply track local drought conditions in the past, present and future: 1) It mitigates the weakness of current climate models in predicting future summer droughts

  11. Groundwater uptake by forest and herbaceous vegetation in the context of salt accumulation in the Hungarian Great Plain

    NASA Astrophysics Data System (ADS)

    Gribovszki, Zoltán; Kalicz, Péter; Balog, Kitti; Szabó, András; Fodor, Nándor; Tóth, Tibor

    2013-04-01

    In Hungarian Great Plain forested areas has significantly increased during the last century. Hydrological effects of trees differ from that of crops or grasses in that, due to their deep roots, they extract water from much deeper soil layers. It has been demonstrated that forest cover causes water table depression and subsurface salt accumulation above shallow saline water table in areas with a negative water balance. The above mentioned situation caused by the afforestation in the Hungarian Great Plain is examined in the frame of a systematic study, which analyzed all affecting factors, like climatic water balance, water table depth and salinity, three species, subsoil layering and stand age. At the regional scale altogether 108 forested and neighbouring non forested plots are sampled. At the stand scale 18 representative forested and accompanying non forested plots (from the 108) are monitored intensively. In this paper dataset of two neighbouring plots (common oak forest and herbaceous vegetation) was compared (as first results of this complex investigation). On the basis of the analysis it could be summarized that under forest the water table was lower, and the amplitude of diel fluctuation of water table was significantly larger as under the herbaceous vegetation. Both results demonstrate greater groundwater use of forest vegetation. Groundwater uptake of the forest (which was calculated by diel based method) was almost same as potential reference evapotranspiration (calculated by Penman-Monteith equation with locally measured meteorological dataset) along the very dry summer of 2012. Larger amount of forest groundwater use is not parallel with salt uptake, therefore salt accumulates in soil and also in groundwater as can be measured of the representative monitoring sites as well. In the long run this process can result in the decline of biological production or even the dry out of some part of the forest. Greater groundwater uptake and salt accumulation

  12. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  13. Geochemistry of water in aquifers and confining units of the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Busby, J.F.; Kimball, B.A.; Downey, J.S.; Peter, K.D.

    1995-01-01

    The geochemistry of water in five aquifers and two confining units in the Williston Basin of the Northern Great Plains is similar and is controlled by halite dissolution. In areas outside the Williston Basin ground-water is fresh and controlled by the solution chemistry of carbonate and sulfate minerals.

  14. Open to Horror: The Great Plains Situation in Contemporary Thrillers by E. E. Knight and by Douglas Preston and Lincoln Child

    ERIC Educational Resources Information Center

    Emrys, A. B.

    2009-01-01

    From the agoraphobic prairie where the father of Willa Cather's Antonia kills himself, to the claustrophobic North Dakota town of Argus devastated by storm in Louise Erdrich's "Fleur," to Lightning Flat, the grim home of Jack Twist in Annie Proulx's "Brokeback Mountain," much Great Plains literature is situational, placing human drama in the…

  15. Management Strategies to Improve Yield and Nitrogen Use of Spring Wheat and Field Pea in the Semi-Arid Northern Great Plains USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available water and N fertility are primary constraints to crop production in the northern Great Plains of the USA. A field trial was initiated in 2004 to compare four crop rotations in a complete factorial of two tillage and two management systems. Rotations were continuous spring wheat (SW), pea-...

  16. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The geographic spread of Kentucky bluegrass in rangelands of the USA has increased significantly over the past decades. Preliminary analysis of National Resources Inventory data indicates that Kentucky bluegrass occupies a majority of ecological sites across the Northern Great Plains. Despite its fa...

  17. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The geographic spread of Kentucky bluegrass in rangelands of the USA has increased significantly over the past 3 decades. Preliminary analysis indicates that Kentucky bluegrass occupies over half of all ecological sites across the Northern Great Plains. Kentucky bluegrass has served as nutritious fo...

  18. Effects of Climate Change on soil carbon and nitrogen storage in the US Great Plains. Special Issue "Mitigation of Climate Change"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils of the US Great Plains are strongly affected by climate and contain enormous soil organic carbon (SOC) and soil organic nitrogen stocks (SON) that are likely vulnerable to predicted climate and land-use change. Climate change scenarios predict a 2.2-3.6°C (4-6.5°F) increase in temperature acro...

  19. Reduction of soluble nitrogen and mobilization of plant nutrients in soils from U.S. northern Great Plains agroecosystems by phenolic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic plant secondary metabolites actively participate in a broad range of important reactions that affect livestock, plants and soil. In soil, phenolic compounds can affect nutrient dynamics and mobility of metals but their role in northern Great Plains agroecosystems is largely unknown. We eval...

  20. Effects of supplemental flaxseed or corn on site and extent of digestion in beef heifers grazing summer rangelands in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six Angus heifers (367 ± 8.0 kg) fitted with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of ground flaxseed or corn and advancing season on site and extent of digestion when beef heifers grazed summer range in the northern Great Plains. Starti...

  1. Effects of supplemental flaxseed on site and extent of digestion in beef heifers grazing summer native pasture in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six Angus heifers (367 ± 8.0 kg) fitted with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of ground flaxseed or corn and advancing season on site and extent of digestion when beef heifers grazed summer range in the northern Great Plains. Start...

  2. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat-fallow (W-F) rotation is the predominant cropping system in the Central Great Plains. However, other cropping systems are being suggested because reduced tillage and fallow can provide more residues that can increase soil organic carbon (SOC) content and other parameters related to soi...

  3. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  4. AGRONOMIC FEASIBILITY OF A CONTINUOUS DOUBLE CROP OF WINTER WHEAT AND SOYBEAN GROWN SOLELY FOR FORAGE IN THE SOUTHERN GREAT PLAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southern Great Plains winter wheat is grown for grain-crop and used extensively for forage. During summer, wheat fields are normally fallow and summer forage is mostly native and improved warm-season perennial grass that decline in quality as they mature. Dry-land double cropping soybean behi...

  5. EFFECT OF TILLAGE AND CHEMICALLY-WEEDED FALLOWING ON MEASURED WIND EROSION ON SUNFLOWER STUBBLE LAND IN THE NORTHERN GREAT PLAINS, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversification of cropping systems in the northern Great Plains of the USA includes crop species with residues that are less durable than small cereal grains, creating potential wind erosion hazards under drought and tillage disturbance. No-tillage with chemical weed control is currently considered...

  6. Imaging the Great Plains of the Central U.S. using Finite-Frequency Rayleigh Wave Tomography and Implications for Asthenosphere-Driven Uplift

    NASA Astrophysics Data System (ADS)

    Margolis, R. E.; Thurner, S.; Levander, A.

    2014-12-01

    Here we present a 3D shear velocity model for the lower crust and upper mantle beneath the Great Plains region in the central United States using finite frequency Rayleigh wave travel time tomography. We use USArray Transportable Array (TA) vertical component recording of teleseismic Rayleigh waves that we first invert for phase velocity using the modified two-plane wave method with finite frequency kernels. We then invert the resulting dispersion curves for shear velocity structure. Our analysis includes a characterization of the lithospheric structure in this tectonically transitional regime to illuminate the differences between the actively deforming western US and the stable continental interior of the northeastern Great Plains. The west is defined by slow velocities and thin lithosphere, whereas the east has fast velocities and thick lithosphere, with the thickest lithosphere in the northeast, representing the southwestern keel of the Superior craton. The Great Plains, which abut the Rocky Mountain Front, have an unusual elevation profile that possesses a much broader region of uplifted elevation and lower relief than other orogenic systems (Eaton 2009). From our tomography and regional heat flow data, we infer warm temperatures in the west and suggest that the asthenospheric mantle contributes to anomalously high elevation of the westernmost Great Plains with some secondary contribution due to crustal effects.

  7. Preliminary projections of the effects of chloride-control structures on the Quaternary aquifer at Great Salt Plains, Oklahoma

    USGS Publications Warehouse

    Reed, J.E.

    1982-01-01

    About 1,200 tons of chloride per day are added to the salt load of the Salt Fork of the Arkansas River at Great Salt Plains Lake from natural sources. The source of this chloride is brine discharge from the rocks of Permian age in the vicinity of the lake. The U.S. Army Corps of Engineers has planned a chloride-control project. The Corps requested that the U.S. Geological Survey use a digital model to project the effects of the chloride-control plan on ground water. Ground-water flow and ground-water transport models were calibrated to represent the Quaternary aquifer that is the near-surface part of the flow system. The models were used to project the effects of planned chloride-control structures. Based on model results, ground-water levels are projected to rise as much as 19 feet. However, these water-level rises will occur only in areas near three reservoirs. Changes in ground-water level caused by the project will be small throughout most of the area. Chloride concentration of ground water is projected to increase by more than 90,000 milligrams per liter at one location. However, significant increases in chloride concentration during the 50-year period simulated are projected to be limited to areas where the ground water already contains excessive chloride concentrations.

  8. Medieval Loess Constraints On the Climate Effect of Dust Aerosols In the Great Plains of North America

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Cook, B. I.; Seager, R.; Mason, J. A.

    2011-12-01

    Loess deposits in the Great Plains of North America, together with tree ring records, suggest the occurrence of medieval megadroughts within the past millenium when rainfall was below average over several decades. Loess results from the deposition of dust aerosols, created by wind erosion, perhaps following vegetation loss after extended drought. Dust aerosols have been previously shown to exacerbate the absence of rainfall during the twentieth century Dust Bowl, reinforcing the drought and loss of vegetation. Ocean temperatures in the equatorial Pacific make the predominant contribution to hydroclimate variability in this region, but dust may have had an amplifying effect during the medieval drought once the vegetation loss was sufficiently extensive. Here, we describe GCM experiments with dust aerosols created by wind erosion over medieval sources within North America. Our goal is twofold: first, to calculate the climate effect of dust, which is believed to reduce precipitation during the Dust Bowl. Second, we calculate dust deposition for comparison to the observed thickness of loess deposits. This comparison serves as a constraint upon the total dust mobilization and the aerosol effect upon precipitation, both of which depend upon the incompletely known source extent and its productivity.

  9. Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains

    SciTech Connect

    JW Monroe; MT Ritsche; M Franklin; KE Kehoe

    2008-02-28

    The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2008) Program’s Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS (~ 70 km) and the OKM (~ 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models.

  10. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  11. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    SciTech Connect

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  12. Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Downey, J.S.

    1986-01-01

    Rocks of Paleozoic and Mesozoic age underlie the entire northern Great Plains of the United States. These rocks form 5 artesian aquifer systems that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming and extend more than 600 miles to discharge areas in the northeastern part of North Dakota and in the Canadian Province of Manitoba. Generally, the principal direction of flow in each aquifer is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of geologic structure, and decreased permeability of rocks in the deeper parts of the basin. Major fracture systems or lineaments traverse the geologic section and are either vertical or horizontal conduits, or barriers to, groundwater flow. Vertical leakage from the aquifers is restricted by shale of minimal permeability, halite beds, and stratigraphic traps or minimal-permeability zones associated with petroleum accumulations. Interaquifer leakage appears to occur through and along some of the major lineaments. During the Pleistocene Epoch, thick ice sheets completely covered the discharge areas of the bedrock aquifers. This effectively blocked flow northeastward from the system and, at some locations, it may have caused a reversal of flow. The existing flow, system therefore, may not have reached hydrologic equilibrium with the stress of the last glacial period. (USGS)

  13. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains.

    PubMed

    Otto, Clint R V; Roth, Cali L; Carlson, Benjamin L; Smart, Matthew D

    2016-09-13

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes. PMID:27573824

  14. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    USGS Publications Warehouse

    Otto, Clint R.; Roth, Cali; Carlson, Benjamin; Smart, Matthew

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes.

  15. Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

    SciTech Connect

    Phillips, Thomas J.; Klein, Stephen A.

    2014-01-28

    This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scale atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, of the local land feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary-layer clouds are influenced by thermal updrafts known to be associated with convection originating at the surface. Finally, we also discuss potential implications of these results for climate-model representation of regional land-atmosphere coupling.

  16. Net global warming potential and greenhouse gas intensity under dryland cropping systems in the northern Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Sainju, U. M.; Usda-Ars-Gracenet

    2013-05-01

    Dryland cropping systems constitute a major farming system globally but little is known about management practices effect on net global warming potential (GWP) and greenhouse gas intensity (GHGI). We evaluated the effects of cropping sequences {conventional-tilled malt barley (Hordeum vulgaris L.)-fallow [CTB-F], no-tilled malt barley-pea (Pisum sativum L.) rotation [NTB-P], and no-tilled continuous malt barley [NTCB]} and N fertilization rates (0 and 80 kg N ha-1) on dryland soil greenhouse gas (GHG) emissions, GWP, and GHGI from 2008 to 2011 in eastern Montana, USA. The CO2 and N2O fluxes and CH4 uptake from spring to autumn were greater in NTB-P and NTCB with 80 kg N ha-1 than in other treatments. Net GWP and GHGI based on soil respiration and GHGI based on soil organic C (SOC) were greater in NTCB with 0 kg N ha-1 but GWP based on SOC was greater in CTB-F with 0 kg N ha-1 than in NTB-P with 0 and 80 kg N ha-1. Because of increased grain yield but reduced GWP and GHGI, NTB-P with 80 kg N ha-1 may be used as a management option to reduce dryland GWP and GHGI while sustaining crop yields in the northern Great Plains, USA.

  17. Carbon storage assessment of U.S. Great Plains relies on data from Landsat and other sources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    A new assessment of carbon storage in the U.S. Great Plains region helps to improve the understanding of carbon and greenhouse gas fluxes in parts of 14 states. It is the first of a series of such assessments, with the entire national assessment set for completion around 2013, the U.S. Geological Survey (USGS) announced at a 6 December press briefing at the AGU Fall Meeting in San Francisco, Calif. The assessment, based on measured and observed data collected by USGS from Landsat and other sources, also indicates the value of the troubled Landsat satellites, according to USGS director Marcia McNutt. The assessment of the 2.17-million-square-kilometer region of the country, which contains a number of different ecosystems, examines carbon storage as well as carbon, methane, and nitrous oxide fluxes in all terrestrial ecosystems in the region during a baseline period. Projections of these fluxes also were extended to 2050. The report was carried out to fulfill a section of the Energy Independence and Security Act of 2007.

  18. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  19. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Haines, Dustin F.; Larson, Jennifer L.

    2013-01-01

    Exotic plants have the ability to modify soil seed banks in habitats they invade, but little is known about the legacy of invasion on seed banks once an exotic plant has successfully been controlled. Natural areas previously invaded by leafy spurge in the northern Great Plains typically have one of two fates following its removal: a return of native plants, or a secondary invasion of other exotic plants. It is unknown, however, if this difference in plant communities following leafy spurge control is due to seed bank differences. To answer this question, we monitored seed banks and standing vegetation for 2 yr in mixed-grass prairies that were previously invaded by leafy spurge but controlled within 5 yr of our study. We found that native plant seed banks were largely intact in areas previously invaded by leafy spurge, regardless of the current living plant community, and leafy spurge invasion history had a larger impact on cover and diversity of the vegetation than on the seed banks. Differences in plant communities following leafy spurge control do not appear to be related to the seed banks, and soil conditions may be more important in determining trajectories of these postinvasion communities.

  20. A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.

  1. Radon and thoron levels, their spatial and seasonal variations in adobe dwellings - a case study at the great Hungarian plain.

    PubMed

    Szabó, Zsuzsanna; Jordan, Gyozo; Szabó, Csaba; Horváth, Ákos; Holm, Óskar; Kocsy, Gábor; Csige, István; Szabó, Péter; Homoki, Zsolt

    2014-06-01

    Radon and thoron isotopes are responsible for approximately half of the average annual effective dose to humans. Although the half-life of thoron is short, it can potentially enter indoor air from adobe walls. Adobe was a traditional construction material in the Great Hungarian Plain. Its major raw materials are the alluvial sediments of the area. Here, seasonal radon and thoron activity concentrations were measured in 53 adobe dwellings in 7 settlements by pairs of etched track detectors. The results show that the annual average radon and thoron activity concentrations are elevated in these dwellings and that the proportions with values higher than 300 Bq m(-3) are 14-17 and 29-32% for radon and thoron, respectively. The calculated radon inhalation dose is significantly higher than the world average value, exceeding 10 mSv y(-1) in 7% of the dwellings of this study. Thoron also can be a significant contributor to the inhalation dose with about 30% in the total inhalation dose. The changes of weather conditions seem to be more relevant in the variation of measurement results than the differences in the local sedimentary geology. Still, the highest values were detected on clay. Through the year, radon follows the average temperature changes and is affected by the ventilation, whereas thoron rather seems to follow the amount of precipitation. PMID:24437932

  2. Investigation of the Impact of Aerosols on Clouds During May 2003 Intensive Operational Period at the Southern Great Plains

    SciTech Connect

    Guo, H.; Penner, J.E.; Herzog, M.

    2005-03-18

    The effect of aerosols on the clouds, or the so-called aerosol indirect effect (AIE), is highly uncertain (Penner et al. 2001). The estimation of the AIE can vary from 0.0 to -4.8 W/m2 in Global Climate Models (GCM). Therefore, it is very important to investigate these interactions and cloud-related physical processes further. The Aerosol Intensive Operation Period (AIOP) at the Southern Great Plains (SGP) site in May 2003 dedicated some effort towards the measurement of the Cloud Condensation Nucleus concentration (CCN) as a function of super-saturation and in relating CCN concentration to aerosol composition and size distribution. Furthermore, airborn measurement for the cloud droplet concentration was also available. Therefore this AIOP provides a good opportunity to examine the AIE. In this study, we use a Cloud Resolving Model (CRM), i.e., Active Tracer High-resolution Atmospheric Model (ATHAM), to discuss the effect of aerosol loadings on cloud droplet effective radius (Re) and concentration. The case we examine is a stratiform cloud that occurred on May 17, 2003.

  3. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  4. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  5. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  6. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production. PMID:27344509

  7. Eco-environment contribution of agroforestry to agriculture development in the plain area of China--Huai' an Prefecture, Jiangsu Province as the case study area.

    PubMed

    Ren, Hong-chang; Lu, Yong-long; Liu, Can; Meng, Qing-hua; Shi, Ya-juan

    2005-01-01

    For improving the environmental quality and ensuring supply of wood and non-timber forest products, many forests have been planted in plain areas of China. Scientists have studied their benefits, almost all of the approaches were based on fixed-point data, and few was considered on the non-efficient factors and temporal scale effects. This paper studies the positive and negative benefits at a large temporal scale, and the effects of plain afforestation on stockbreeding and rural economy. The benefits of plain afforestation, correlation coefficiency of agroforestry and production factors are analyzed via stochastic frontier modeling in Huanghuaihai Plain Area of China; elastic coefficient of agroforestry, husbandry, farming, and total output of agricultural sector are calculated through adopting partial differential equation. Some conclusions can be drawn that, plain forests have an important effect on the development of plain agriculture. But shelterbelts and small-scale forests have different effect on the development of agricultural economy. Shelterbelts have negative effect on the industries, but small-scale forest has positive effect. On the whole, contribution of forest resource to value of animal husbandry and gross production value of agriculture is positive, and to the value of farming is negative. PMID:16295915

  8. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains

    NASA Astrophysics Data System (ADS)

    Pei, Hongwei; Scanlon, Bridget R.; Shen, Yanjun; Reedy, Robert C.; Long, Di; Liu, Changming

    2015-04-01

    Agricultural intensification is often considered the primary approach to meet rising food demand. Here we compare impacts of intensive cultivation on crop yield in the North China Plain (NCP) with less intensive cultivation in the US High Plains (USHP) and associated effects on water resources using spatial datasets. Average crop yield during the past decade from intensive double cropping of wheat and corn in the NCP was only 15% higher than the yield from less intensive single cropping of corn in the USHP, although nitrogen fertilizer application and percent of cropland that was irrigated were both ˜2 times greater in the NCP than in the USHP. Irrigation and fertilization in both regions have depleted groundwater storage and resulted in widespread groundwater nitrate contamination. The limited response to intensive management in the NCP is attributed in part to the two month shorter growing season for corn to accommodate winter wheat than that for corn in the USHP. Previous field and modeling studies of crop yield in the NCP highlight over application of N and water resulting in low nitrogen and water use efficiencies and indicate that cultivars, plant densities, soil fertility and other factors had a much greater impact on crop yields over the past few decades. The NCP-USHP comparison along with previous field and modeling studies underscores the need to weigh the yield returns from intensive management relative to the negative impacts on water resources. Future crop management should consider the many factors that contribute to yield along with optimal fertilization and irrigation to further increase crop yields while reducing adverse impacts on water resources.

  9. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, B.C.; Tieszen, L.T.

    2003-01-01

    Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.

  10. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.

    2003-01-01

    Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.

  11. Structural Characteristics of Nocturnal Mesoscale Convective Systems in the U.S. Great Plains as Observed During the PECAN Field Campaign

    NASA Astrophysics Data System (ADS)

    Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.

    2015-12-01

    During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.

  12. Southern Great Plains Newsletter

    SciTech Connect

    J. Prell L. R. Roeder

    2010-09-01

    This months issue contains the following articles: (1) Scientists convene at SGP site for complex convective cloud experiment; (2) VORTEX2 spins down; (3) Sunphotometer supports SPARTICUS (a Sun and Aureole Measurement imaging sunphotometer) campaign and satellite validation studies; and (4) Ceilometer represents first deployment of new ground-based instruments from Recovery Act.

  13. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  14. Groundwater levels in Northern Texas High Plains:Baseline for existing agricultural management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New groundwater policies are being debated for the northern High Plains of Texas due to the depletion of the underlying Ogallala Aquifer, the major source of water for irrigation, and they should be thoroughly evaluated using a calibrated groundwater model for assessing the impact on subsequent grou...

  15. Utility of Thermal Sharpening Over Texas High Plains Irrigated Agricultural Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated crop production in the Texas High Plains (THP) is dependent on water extracted from the Ogallala Aquifer, an area suffering from sever water shortage. Water management in this area is therefore highly important. Thermal satellite imagery at high-temporal (~daily) and high-spatial (~100 m...

  16. a New High-Resolution Chronology of Megadrought Following the Medieval Climatic Anomaly and Little Ice Age in the Central Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Johnson, W. C.; Hanson, P. R.; Spencer, J. Q.; Woodburn, T.; Young, A. R.

    2010-12-01

    Recent research has emphasized using eolian sediments for reconstructing late Holocene megadroughts, especially in the Great Plains where other drought proxies are scarce. Eolian dune fields can serve as proxy sources for megadroughts because, during prolonged drought conditions, vegetation cover is diminished and eolian sedimentation ensues. In an effort to better characterize late-Holocene megadroughts, two dune fields spanning a 400 km east-west transect of the central Great Plains have been investigated, resulting thus far in over 110 optically stimulated luminescence ages. Ages from the Hutchinson and Arkansas River dune fields have provided a new, high-resolution chronology of dune activity that spans much of the past 2000 years. Both dune fields were stable prior to the Medieval Climatic Anomaly (MCA) but started to activate towards the height of the warming around 1.0 ka. Activity continued throughout the MCA but intensified as climate shifted towards cooler conditions between 0.8 and 0.7 ka. Around the onset of the Little Ice Age (LIA) dune activity decreased, but did not cease, and, by the end of the LIA, activity again intensified between 0.3 and 0.2 ka. Dune activity continued into historical times (e.g., 1930’s Dust Bowl drought), and today the dune fields are stable with only small areas of anthropogenically-triggered activity. A clustering of ages defines two periods of megadrought, at 0.8 to 0.7 and 0.3 to 0.2 ka. Dune activity between 0.8 and 0.7 ka correlates well with Palmer Drought Severity Index data constructed from tree-rings and regional dune activity; this suggests that one or more megadroughts occurred within much of the Great Plains during the MCA. The period of dune activity between 0.3 and 0.2 ka correlate with activity in the Great Bend Sand Prairie and southwestern Nebraska, but is not coeval with activation records from the Nebraska Sand Hills, or those from the Duncan and Abilene dune fields of the eastern Great Plains. This

  17. Agriculture drought risk assessment of the irrigated agriculture zone in North Henan Plain using HJ-1 and MODIS data

    NASA Astrophysics Data System (ADS)

    He, Haixia; Huang, He; Wang, Ping; Sun, Yinxiang

    2011-12-01

    This paper analyzed the evolution of drought and the spectral response of the crop at different growing seasons focuses on the irrigated agricultural areas of northen Henan using the HJ-1 data and MODIS data,associated with relevant meteologic data, regional geographical data and the social economic data.The Spatial and temporal distribution of the risk of disaster-causing factors and the fragility of the disaster-affected body was conducted and the comprehensive index of agricultral drought risk was built up.Then, trend of the agricultural drought was analyzed and the irrigated agricultural drought risk class was performed and the possible hazard and influence of agricultural drought and the performance of appropriate strategy to reduce agricultral drought have been estimated.At last,verification of the results and improvement of the model have been carried out supported by the historic cases, expert system and the on-site investigation data.

  18. Investigating the potential spread of infectious diseases of sheep via agricultural shows in Great Britain.

    PubMed

    Webb, C R

    2006-02-01

    The rate at which infectious diseases spread through farm animal populations depends both on individual disease characteristics and the opportunity for transmission via close contact. Data on the relationships affecting the contact structure of farm animal populations are, therefore, required to improve mathematical models for the spatial spread of farm animal diseases. This paper presents data on the contact network for agricultural shows in Great Britain, whereby a link between two shows occurs if they share common competitors in the sheep class. Using the network, the potential for disease spread through agricultural shows is investigated varying both the initial show infected and the infectious period of the disease. The analysis reveals a highly connected network such that diseases introduced early in the show season could present a risk to sheep at the majority of subsequent shows. This data emphasizes the importance of maintaining rigorous showground and farm-level bio-security. PMID:16409648

  19. Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment

    NASA Astrophysics Data System (ADS)

    Margulis, Steven A.; McLaughlin, Dennis; Entekhabi, Dara; Dunne, Susan

    2002-12-01

    Remotely sensed microwave measurements provide useful but indirect observations of surface soil moisture. Ground-based measurements are more direct but are very localized and limited in coverage. Model predictions provide a more regional perspective but rely on many simplifications and approximations and depend on inputs that are difficult to obtain over extensive areas. The only effective way to achieve soil moisture estimates with the accuracy and coverage required for hydrologic and meteorological applications is to merge information from satellites, ground-based stations, and models. In this paper we describe a convenient data merging (or data assimilation) procedure based on an ensemble Kalman filter. This procedure is illustrated with an application to the Southern Great Plains 1997 (SGP97) field experiment. It uses land surface and radiative transfer models to derive soil moisture estimates from airborne L band microwave observations and ground-based measurements of micrometeorological variables, soil texture, and vegetation type. The ensemble filter approach is appealing because (1) it can accommodate a wide range of models, (2) it can account for input and measurement uncertainties, (3) it provides information on the accuracy of its estimates, and (4) it is relatively efficient, making large-scale applications feasible. Results from our SGP97 application of the ensemble Kalman filter include large-scale maps (˜10,000 km2) of soil moisture estimates and estimation error standard deviations for the entire month long experiment and comparisons of filter soil moisture and latent heat estimates to ground truth measurements (gravimetric and flux tower observations). The ground truth comparisons show that the filter is able to track soil moisture fluctuations. The filter estimates are significantly better than those from an "open loop" simulation that includes the same ground-based data but does not incorporate radio brightness measurements. Overall, the results

  20. Architecture, heterogeneity, and origin of late Miocene fluvial deposits hosting the most important aquifer in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Joeckel, R. M.; Wooden, S. R.; Korus, J. T.; Garbisch, J. O.

    2014-08-01

    The Ash Hollow Formation (AHF) of the Ogallala Group is an important sedimentary archive of the emergence of the Great Plains and it contains major groundwater resources. Stratal patterns of constituent alluvial lithofacies demonstrate that the AHF is much more heterogeneous than is commonly assumed. Very fine- to fine-grained sandstone dominate overall, chiefly lithofacies Sm (massive to locally stratified sandstone). Stacked, thin sheets of Sm with accretionary macroform surfaces are common, indicating that many sandstone architectural elements originated as compound-bar deposits in dominantly sand-bed streams. Channel forms are difficult to identify and steep cutbanks are absent. Multiple units of lithofacies Sm show dense, and sometimes deep, burrowing by insects well above water tables under ancient floodplains. Massive, pedogenically modified siltstones (Fm), which compose floodplain fine architectural elements, are subsidiary in volumetric abundance to sandstones. Paleosols in these siltstones lack evidence for well-developed B horizons and advanced stages of maturity. Thin lenses of impure carbonate and laminated mud (lithofacies association Fl + C), which appear in most exposures, are deposits of ponded water in abandoned channels. Paleosols, ponded-water elements, and large vertebrate burrows in both Sm and Fm indicate that episodes of floodplain deposition, bar accretion, and channel filling were regularly followed by intervals of nondeposition on floodplains and by channel migration and abandonment. This study documents a major downdip change in the Ogallala Group overall, from source-proximal gravelly successions in the Wyoming Gangplank and deep, narrow paleovalley fills extending eastward into the Nebraska Panhandle. The lithofacies composition, stratigraphic architecture, and stratal dimensions of the AHF in the present study area are compatible with the planform geometries and floodplain soils of modestly-sized, sandy, low-sinuosity braided streams

  1. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  2. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning, is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.5C lower limit for the equilibrium global climate sensitivity to a doubling of CO2 which is based on models with near-adiabatic liquid water behavior and constant physical thickness

  3. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Wolf, Audrey B.

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types: At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.50 C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models with near-adiabatic liquid water behavior and constant physical thickness

  4. Downscaling Soil Moisture in the Southern Great Plains Through a Calibrated Multifractal Model for Land Surface Modeling Applications

    NASA Technical Reports Server (NTRS)

    Mascaro, Giuseppe; Vivoni, Enrique R.; Deidda, Roberto

    2010-01-01

    Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture ) and a stationary contribution accounting for static features (i.e., topography, soil texture, vegetation). For wet conditions, we found similar multifractal properties of soil moisture across all domains, which we ascribe to the signature of rainfall spatial variability. For drier states, the theta fields in the northern domains are more intermittent than in southern domains, likely because of differences in the distribution of vegetation coverage. Through our analyses, we propose a regional downscaling relation for coarse, satellite-based soil moisture estimates, based on ancillary information (static and dynamic landscape features), which can be used in the study area to characterize statistical properties of small-scale theta distribution required by land surface models and data assimilation systems.

  5. A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Khaiyer, M. M.; Rapp, A. D.; Doelling, D. R.; Nordeen, M. L.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.

    2001-01-01

    While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual climatological trends can be analyzed with such a dataset. For this purpose, monthly datasets of cloud and radiative properties from December 1996 through November 1999 over the SGP region have been derived using the layered bispectral threshold method (LBTM). The properties derived include cloud optical depths (ODs), temperatures and albedos, and are produced on two grids of lower (0.5 deg) and higher resolution (0.3 deg) centered on the ARM SGP CF. The extensive time period and high-resolution of the inner grid of this dataset allows for comparison with the suite of instruments located at the ARM CF. In particular, Whole-Sky Imager (WSI) and the Active Remote Sensing of Clouds (ARSCL) cloud products can be compared to the cloud amounts and heights of the LBTM 0.3 deg grid box encompassing the CF site. The WSI provides cloud fraction and the ARSCL computes cloud fraction, base, and top heights using the algorithms by Clothiaux et al. (2001) with a combination of Belfort Laser Ceilometer (BLC), Millimeter Wave Cloud Radar (MMCR), and Micropulse Lidar (MPL) data. This paper summarizes the results of the LBTM analysis for 3 years of GOES-8 data over the SGP and examines the differences between surface and satellite-based estimates of cloud fraction.

  6. A Modeling Study of Irrigation Effects on Surface Fluxes and Land-Air-Cloud Interactions in the Southern Great Plains

    SciTech Connect

    Qian, Yun; Huang, Maoyi; Yang, Ben; Berg, Larry K.

    2013-06-13

    In this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the Southern Great Plains (SGP) for an extremely dry (2006) and wet (2007) year. The results show that including irrigation reduces model bias in soil moisture and surface latent heat (LH) and sensible heat (SH) fluxes, especially during a dry year. Irrigation adds additional water to the surface, leading to changes in the planetary boundary layer. The increase in soil moisture leads to increases in the surface evapotranspiration and near-surface specific humidity but decreases in the SH and surface temperature. Those changes are local and occur during daytime. There is an irrigation-induced decrease in both the lifting condensation level (ZLCL) and mixed-layer depth. The decrease in ZLCL is larger than the decrease in mixed-layer depth, suggesting an increasing probability of shallow clouds. The simulated changes in precipitation induced by irrigation are highly variable in space, and the average precipitation over the SGP region only slightly increases. A high correlation is found among soil moisture, SH, and ZLCL. Larger values of soil moisture in the irrigated simulation due to irrigation in late spring and summer persist into the early fall, suggesting that irrigation-induced soil memory could last a few weeks to months. The results demonstrate the importance of irrigation parameterization for climate studies and improve the process-level understanding on the role of human activity in modulating land–air–cloud interactions.

  7. Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions

    SciTech Connect

    Luke, W.T.; Dickerson, R.R.; Ryan, W.F.; Pickering, K.E.; Nunnermacker, L.J. )

    1992-12-20

    Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O[sub 3], carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statisitcal distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. The maritime regime is characterized by southerly surface winds, convective instability, and a deep planetary boundary layer PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. During frontal passage both stratiform and convective clouds mix pollutants more uniformly into the middle and upper levels; high mixing ratios of CO are found at all altitudes, and O[sub 3] levels are highest of any category, implicating photochemical production. These results illustrate the importance of convection in tropospheric chemistry. Use of average trace gas profiles or eddy diffusion parameterized vertical mixing can lead to errors of 30 to 50% in O[sub 3] and CO concentrations and an order of magnitude for odd nitrogen. 80 refs., 18 figs., 9 tabs.

  8. Coupled mechanism of unsystematic Damming and Climate Change effect on the rivers of the Great Plains of Kansas

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Daniels, M. D.

    2014-12-01

    Damming the natural flow regime is responsible to drive away native species from the aquatic ecosystem and it becomes potentially damaging when it concerns the drought-prone areas in particular. Drought cycles are common in the Great Plains, which have given native fish species adapted strategies for coping with extreme variation in flow regimes. However, native populations have crashed as these stream networks became heavily fragmented beginning in the post-depression water reclamation era and continued into the 1960's boom in flood control dam construction. This study is an attempt to understand and assess the cumulative impacts of river network fragmentation and climate change on the river ecosystem, geomorphology and hydrology of the Smoky-Hill River Basin of North-West Kansas. The vast majority of the basin does not overly significant groundwater resources and is thus reliant on water supplied from precipitation, runoff, and shallow alluvial storage zones strongly connected to surface water systems, which is now fragmented by the construction of both small farm-ponds as well as big flood reservoir structures. Thus, there is a high probability of stream network segments to be dissociated (from the main channel during dry periods) and/or completely depleted (in case of a series of drought cycles) in this area. This paper would identify such vulnerable network segments and assess the impact of extreme climatic conditions - as a single event or scenario of cyclic droughts that can drive the native fishes out of the Smoky-Hill River Basin - by comparing modeled future flow regime projections with historic flow regimes in the fragmented river structure. The study will further address structural and functional connectivity of the river and would contribute to the understanding of fragmentation and its effect to the stream ecology at a higher scale, where a larger aquatic population can get affected by a single drought event.

  9. Using ARM Observations to Evaluate Model Predictions of Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.; Ma, H. Y.

    2015-12-01

    Statistically significant interactions between summertime soil moisture and a number of atmospheric surface and boundary-layer variables have been observed at the U.S. Southern Great Plains Central Facility (SGP CF) site that is maintained by the Department of Energy's Atmospheric Radiation Measurement (ARM) program in northern Oklahoma (Phillips and Klein, 2014 JGR). The observed land-atmosphere coupling (LAC) strength was assessed by means of correlation coefficients R and "sensitivity indices" I (a measure of the comparative change in an atmospheric variable for a one-standard-deviation change in soil moisture). In the current study, we evaluate similar features of LAC in global predictions generated by version 5.1 of the Community Atmosphere Model (CAM5.1), when coupled to the CLM4 land model and downscaled to the ARM SGP site. Each day's prediction was made after initializing the CAM5 atmosphere with ERA Interim reanalysis state variables, while other needed variables were obtained from a nudging simulation. In addition, the CLM4 daily initial conditions were determined by running the land model offline using observed surface net radiation, precipitation, and wind as forcings. Different aspects of LAC in the CAM5 will be compared with those found in the ARM observations during the summers of 2003-2011, when 3 independent measurements of soil moisture are available to provide an estimate of the inherent uncertainties in the LAC strengths determined from the ARM observations. This evaluation may uncover some unrealistic aspects of LAC in the CAM5 model that point toward potential deficiencies in its land or atmospheric model parameterizations. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Control of one invasive plant species allows exotic grasses to become dominant in northern Great Plains grasslands

    USGS Publications Warehouse

    Larson, D.L.; Larson, J.L.

    2010-01-01

    Decline of leafy spurge (Euphorbia esula) in the northern Great Plains of the US is generally viewed as a success story for biological control, but quality of the vegetation that survived the infestation is key to recovery of ecosystem function. In addition, effects of other invasive species, notably cool-season exotic grasses, must be taken into account. Objectives of this study were (1) to evaluate direction and significance of changes in biomass of native and exotic grasses, forbs, and leafy spurge and in plant species composition following control of leafy spurge by flea beetles and (2) to evaluate the relative effects of leafy spurge and exotic grasses on biomass of native grasses, biomass of forbs, and richness of native species. We monitored species composition (1998-2003 and 2008) and biomass (2000, 2002, 2003 and 2008) of these groups on spurge-infested and noninfested permanent plots at three sites with unbroken prairie sod in North Dakota, USA. We found little evidence, in terms of species richness or biomass of native grasses or forbs, that leafy spurge was being replaced by desirable native species, although desirable as well as weedy and exotic species were characteristic of 2008 vegetation at all three sites. Structural equation models revealed that leafy spurge had temporally intermittent negative effects on forb biomass and species richness, but no effects on native grasses. In contrast, exotic grass had consistently strong, negative effects on native grass biomass, as well as stronger negative effects than leafy spurge on native species richness. Although substantial native plant diversity remains at these sites, exotic grasses pose an important threat to these crucial building blocks of native prairie ecosystems. ?? 2010.

  11. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    SciTech Connect

    Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito; Ansley, R J; Boutton, Thomas W

    2010-01-01

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

  12. Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?

    USGS Publications Warehouse

    Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd

    2010-01-01

    Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link

  13. Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains

    SciTech Connect

    Hartman, J.H.; Roth, B.; Kihm, A.J.

    1997-08-11

    Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

  14. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Torn, Margaret S.; Biraud, Sebastien C.; Still, Christopher J.; Riley, William J.; Berry, Joe A.

    2011-04-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO2 concentration and δ13C-CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. δbio had a large and consistent seasonal cycle of 6-8‰. Ensemble monthly mean δbio ranged from -25.8 ± 0.4‰ (±SE) in March to -20.1 ± 0.4‰ in July. Thus, C3 vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil δ13C values were about -15‰, indicating that historically the region was dominated by C4 vegetation and had more positive δbio values. Based on a land-surface model, isofluxes (δbio× NEE) in this region have large seasonal amplitude because δbio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in δbio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO2 and CO2 fluxes.

  15. Quantifying the Land-Atmosphere Coupling Behavior in Modern Reanalysis Products over the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Santanello, J. A.; Roundy, J. K.; Dirmeyer, P.

    2014-12-01

    The coupling of the land with the planetary boundary layer (PBL) on diurnal timescales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve our understanding of land-atmosphere (L-A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this paper, we apply a suite of local land-atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-year period over the U. S. Southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation are applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface-PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land-PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. The implications for moist processes are also discussed, which warrants further investigation into the potential downstream impacts of land-PBL coupling on the diurnal cycle of clouds, convection, and precipitation. Lastly, the results are put into context of community investigations into drought assessment and predictability over the region and underscore that caution should be used when treating RAs as truth, as the coupled water and energy cycle representation in each can vary considerably.

  16. Analysis of environmental variation in a Great Plains reservoir using principal components analysis and geographic information systems

    USGS Publications Warehouse

    Long, J.M.; Fisher, W.L.

    2006-01-01

    We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.

  17. Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the Northern Great Plains

    USGS Publications Warehouse

    Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.

    2005-01-01

    Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.

  18. Impacts of stream flow and climate variability on native and invasive woody species in a riparian ecosystem of a semi-arid region of the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.; Huddle, J.

    2012-04-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains (United States) have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought, have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. The study utilizes tree ring analysis of annual growth rates and stable isotope ratios of 13C and 18O to determine 1) the response P. deltoides and invasive J. virginiana and E. angustifulia have to climate variation and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Preliminary results have shown that P. deltoids annual growth rate (using basal area increment growth) continually declined over the last 40 yrs, while that of E. angustifolia steadily increased. Growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors than E. angustifolia. Ecological and hydrological significance of the results will be presented.

  19. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  20. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  1. Interagency collaboration in the Rocky Mountains and Great Plains: Federal-university climate service networks for producing actionable information for climate change adaptation

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; McNie, E.; Averyt, K.; Morisette, J. T.; Derner, J. D.; Ojima, D. S.; Dilling, L.; Barsugli, J. J.

    2014-12-01

    Several federal agencies in north-central United States are each working to develop and disseminate useful climate information to enhance resilience to climate change. This talk will discuss how the U.S. Geological Survey (USGS) the North Central Climate Science Center, the National Oceanic and Atmospheric Administration Western Water Assessment RISA, and the U.S. Department of Agriculture Climate Hub, are building and managing a collaborative research and climate-service network in the Rocky Mountains and Great Plains. This presentation will describe the evolution of the interagency collaboration and the partnership with universities to build a climate service network. Such collaboration takes time and intention and must include the right people and organizations to effectively bridge the gap between use-inspired research and application. In particular, we will discuss a focus on the Upper Missouri Basin, developing research to meet needs in a basin that has had relatively less attention on risks of climate change and adaptation to those risks. Each organization has its own mission, stakeholders, and priorities, but there are many commonalities and potential synergies. Together, these organizations, and their agency scientists and university partners, are fostering cross-agency collaboration at the regional scale to optimize efficient allocation of resources while simultaneously enabling information to be generated at a scale that is relevant to decision makers. By each organization knowing the others needs and priorities, there are opportunities to craft research agendas and strategies for providing services that take advantage of the strengths and skills of the different organizations. University partners are key components of each organization, and of the collaboration, who bring in expertise beyond that in the agencies, in particular connections to social scientists, extension services.

  2. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGESBeta

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  3. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ∼30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  4. Building the foundations for a physically based passive microwave precipitation retrieval algorithm over the US Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Ringerud, Sarah

    The recently launched NASA Global Precipitation Measurement Mission (GPM) offers the opportunity for a greatly increased understanding of global rainfall and the hydrologic cycle. The GPM algorithm team has made improvements in passive microwave remote sensing of precipitation over land a priority for this mission, and implemented a framework allowing for algorithm advancement for individual land surface types as new techniques are developed. In contrast to the radiometrically cold ocean surface, land emissivity in the microwave is large with highly dynamic variability. An accurate understanding of the instantaneous, dynamic emissivity in terms of the associated surface properties is necessary for a physically based retrieval scheme over land, along with realistic profiles of frozen and liquid hydrometeors. In an effort to better simulate land surface microwave emissivity, a combined modeling technique is developed and tested over the US Southern Great Plains (SGP) area. The National Centers for Environmental Prediction (NCEP) Noah land surface model is utilized for surface information, with inputs optimized for SGP. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10 GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. The resulting emissivities can then be implemented in calculation of upwelling microwave radiance, and combined with ancillary datasets to compute brightness temperatures (Tbs) at the top of the atmosphere (TOA). For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM-PR) are utilized along with coincident Tbs from the TRMM radiometer (TMI), and cloud resolving

  5. Ephemeral Dissolved Organic Carbon Fluxes from Agricultural Runoff on the Virginia Coastal Plain in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Caverly, E. K.; Kaste, J. M.; Hancock, G. S.; Cammer, S. S.

    2011-12-01

    Dissolved organic carbon (DOC) plays a critical role in nutrient cycling and contaminant transport, but DOC fluxes are not well constrained across different land uses and environments. Recent work has shown that agricultural runoff can have high DOC contents due to leaching of crop residues and soil organic matter by rain and irrigation waters. While riparian buffers are assumed to protect surface waters from agricultural runoff, on some fields, the natural topography can concentrate runoff to such an extent that a channel is incised. These channels can become ephemeral pathways for agricultural runoff to exit fields and enter nearby perennial streams without substantial contact with the riparian buffer. We use automated high resolution sampling of agricultural storm runoff and stream height to quantify DOC fluxes and dynamics in a single channel on the coastal plain of Virginia. We also assess dissolved organic matter as a source of organically bound nitrogen and phosphorus in this environment. Discharge measurements for flux calculations are determined with rating curves developed using stream stage height and salt dilution measurements for individual storms. We quantify DOC and major nutrients using ion chromatography, high temperature catalytic oxidation, and specific absorbance measurements at 254 nm. We determine N and P pools using UV digestion followed by ion chromatography. For a single storm event, specific absorbance at 254 nm increases as the hydrograph progresses, suggesting that water with a longer field residence time leaches more DOC as it is transported to the monitoring site. It is anticipated that the antecedent field conditions, particularly the degree of saturation from previous rain events, strongly influence the fluxes and character of DOC from an agricultural watershed. While ephemeral channels are often overlooked as sources of agricultural runoff, we find that they can facilitate the export of large quantities of DOC and nutrients during

  6. Effects of agricultural conservation practices on oxbow lake watersheds in the Mississippi River alluvial plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, agricultural lands are considered to major sources of nonpoint source pollutants such as sediment, pesticides and nutrients in the United States. While conservation practices have been tested for their effectiveness in reducing agricultural related pollutants on test plot scales, they typ...

  7. Effects of groundwater flow on the distribution of biogenic gas in parts of the northern Great Plains of Canada and United States

    USGS Publications Warehouse

    Anna, Lawrence O.

    2011-01-01

    Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks.Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks. Large quantities of shallow biogenic gas are produced from low-permeability, Upper Cretaceous reservoirs in southeastern Alberta and southwestern Saskatchewan, Canada. Rocks of similar types and age produce sparingly in the United States except on large structures, such as Bowdoin dome and Cedar Creek anticline. Significant production also occurs in the Tiger Ridge area, where uplift of the Bearpaw Mountains created stratigraphic traps. The resource in Canada is thought to be a continuous, biogenic-gas-type accumulation with economic production in a variety of subtle structures and stratigraphic settings. The United States northern Great Plains area has similar conditions but only broad structural closures or stratigraphic traps associated with local structure have produced economically to date. Numerical flow modeling was used to help determine that biogenic gas in low-permeability reservoirs is held in place by high hydraulic head that overrides buoyancy forces of the gas. Modeling also showed where hydraulic head is greater under Tertiary capped topographic remnants rather than near adjacent topographic lows. The high head can override the capillary pressure of the rock and force gas to migrate to low head in topographically low areas. Most current biogenic gas production is confined to areas between mapped lineaments in the northern Great Plains. The lineaments may reflect structural zones in the Upper Cretaceous that help compartmentalize reservoirs and confine gas accumulations.

  8. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    SciTech Connect

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A.

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  9. Plains Prickly Pear Response to Fire: Effects of Fuel Load, Heat, Fire Weather, and Donor Site Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plains prickly pear (Opuntia polyacantha Haw.) is common throughout the Great Plains and like related species, often becomes detrimental to agricultural production. We examined direct fire effects on plains prickly pear and mechanisms of tissue damage to facilitate development of fire prescriptions...

  10. Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions

    NASA Astrophysics Data System (ADS)

    Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.

    1992-12-01

    Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those

  11. Cosmogenic nuclide concentrations in Neogene rivers of the Great Plains reveal the evolution of fluvial storage and recycling

    NASA Astrophysics Data System (ADS)

    Sinclair, Hugh; Stuart, Fin; McCann, Louise; Tao, Zui

    2016-04-01

    The measurement of the duration of near surface residence of sediment grains from the stratigraphic record has the potential to quantitatively reconstruct processes such as stratal condensation, sediment recycling and the exposure histories of unconformities. Geomorphological measurements of dates and rates of surfaces and erosion respectively has enabled significant advances in understanding, however, the radiogenic half life of typical cosmogenic nuclides such as 10Be and 26Al means they are not suitable for the stratigraphic record. Instead, we have applied the stable cosmogenic nuclide of 21Ne to quartz-rich sediment to quantify the routing history of the river systems that have drained the southern Rockies of Wyoming and Colorado during Neogene times. The Neogene sediments of Nebraska record fluvial systems of the Great Plains that flow from the Rockies towards the east and into the Mississippi catchment. This succession is <300 m thick, and records successive episodes of fluvial incision and aggradation associated with regional tilting from 6 to 4 Ma and periods of climate change. As part of an evaluation of the application of 21Ne to the stratigraphic record, we sampled quartzite pebbles from an Upper Miocene, Pliocene and modern river channel of the North Platte approximately 400 km from their mountainous source. The quartzite is derived from a single exposure of the Medicine Bow quartzites in Wyoming, therefore all three intervals recorded the same travel distance from source. Additionally, we know the erosion rate of the Medicine Bow quartzites from detrital 10Be analyses, and we also sampled shielded bedrock samples from the quartzite to evaluate for any non-cosmogenic 21Ne. This means that the concentrations of 21Ne in detrital pebbles >400 km from their source could be corrected for both inherited non-cosmogenic and erosion induced accumulation at source. Therefore, any additional amounts of 21Ne must record storage and exposure during transport down

  12. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  13. Urban expansion of major cities in the US Great Plains from 2000 to 2009 using scatterometer data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. H.; Nghiem, S. V.; Henebry, G. M.

    2015-12-01

    A long-term metric of urban landscape changes provide valuable information for many fundamental studies and applications. Here we studied expansion of the nine largest metropolitan statistical areas (MSA) in the Great Plains from 2000 to 2009 period using QuikSCAT backscatter data processed with the Dense Sampling Method (DSM). A 5x5 Gaussian Kernel Smoothing (with sigma=1) was applied to reduce noise in DSM backscatter images, which have a nominal spatial posting of 1 km. The outputs were then converted into vector files and coupled with the percent impervious surface area (ISA) data from the 2001 and 2011 National Land Cover Datasets to show changes in urban extent using two independent sources. The results demonstrate the capability of DSM scatterometer data to delineate urban extent and change. For instance, the Dallas - Fort Worth (DFW) MSA was separated into three sub-regions based on backscatter (cf. figure). The urban core area is identified by large commercial and industrial structures correspond to a high backscatter center greater than -6 dB. The urban built-up area consisting of smaller buildings falls within the -6 dB and -8 dB contours. Backscatter of the urban edge, where residential and other land uses are mixed, falls within the -8 dB and -10 dB contours. From 2000 to 2009, total urban area in DFW increased from 3484 to 5066 square kilometers, according to the filtered scatterometer data. The change in ISA between 2001 and 2011 within the -8 to -10 dB contour was 101 square kilometers, of which 73% occurred in the northern half of the DFW MSA. The Mann-Kendall trend test applied to the area time series indicates expanding spatial trends in every sub-region. Most changes occurred along the northern suburban edge. The distance between the 2000 and 2009 -10 dB contours ranged from 1.5 to 14.6 km with an average of 6 km and a coefficient of variation of 48%. We will present results for the other eight MSA from Houston, TX to Des Moines, IA.

  14. Evaluation of a coupled event-driven phenology and evapotranspiration model for croplands in the United States northern Great Plains

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.; Roy, D. P.; Adusei, B.; Hansen, M.; Senay, G.; Mocko, D. M.

    2013-06-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme consists of the VegET, a model to estimate ET from meteorological and water balance data, and an Event Driven Phenology Model (EDPM), an empirical crop specific model trained on multiple years of flux tower data transformed into six types of environmental forcings that are called "events" to emphasize their temporally discrete character, which has advantages for modeling multiple contingent influences. The EDPM in prognostic mode supplies seasonal trajectories of normalized difference vegetation index (NDVI); whereas in diagnostic mode, it can adjust the NDVI prediction with assimilated remotely sensed observations. The scheme was deployed within the croplands of the Northern Great Plains. The evaluation used 2007-2009 land surface forcing data from the North American Land Data Assimilation System and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the NDVI produced by the EDPM with NDVI data derived from the MODIS nadir bidirectional reflectance distribution function adjusted reflectance product. The EDPM performance in prognostic mode yielded a coefficient of determination (r2) of 0.8 ± 0.15and the root mean square error (RMSE) of 0.1 ± 0.035 across the entire study area. Retrospective correction of canopy attributes using assimilated MODIS NDVI values improved EDPM NDVI estimates, bringing the errors down to the average level of 0.1. The ET estimates produced by the coupled scheme were compared with the MODIS evapotranspiration product and with ET from NASA's Mosaic land surface model. The expected r2 = 0.7 ± 0.15 and RMSE = 11.2 ± 4 mm per 8 days achieved in earlier point-based validations were met in this study by the coupling scheme functioning in both prognostic and retrospective modes. Coupled model performance was diminished at the

  15. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110.

    PubMed

    Steward, David R; Bruss, Paul J; Yang, Xiaoying; Staggenborg, Scott A; Welch, Stephen M; Apley, Michael D

    2013-09-10

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation's irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500-1,300 y to completely refill a depleted aquifer. Significant declines in the region's pumping rates will occur over the next 15-20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15-20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20-80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability. PMID:23980153

  16. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    PubMed Central

    Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.

    2013-01-01

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500–1,300 y to completely refill a depleted aquifer. Significant declines in the region’s pumping rates will occur over the next 15–20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15–20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20–80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability. PMID:23980153

  17. Climatology, Natural Cycles, and Modes of Interannual Variability of the Great Plains Low-Level Jet as Assimilated by the GEOS-1 Data Analysis System

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.; Schubert, S. D.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable features of the low-level continental flow during the warm-season months, May through August. We have first used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine and validate its climatology and mean diurnal cycle and to study its interannual variability. Interannual variability of the GPLLJ is much smaller than mean diurnal and random intraseasonal variability and comparable in magnitude, but not location, to mean seasonal variability. There are three maxima of interannual low-level meridional flow variability of the GPLLJ over the upper Great Plains, southeastern Texas, and the western Gulf of Mexico. Cross-sectional profiles of mean southerly wind through the Texas maximum remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six years of the reanalysis period and only then. Each of the three variability maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are three prominent modes of interannual. variability. These include the intermittent biennial oscillation (IBO), local to the Texas maximum. Its signal is evident in surface pressure, surface temperature, ground wetness and upper air flow, as well. A larger-scale continental convergence pattern (CCP) of covariance, exhibiting strong anti-correlation between the flow near the Texas and the upper Great Plains variability maxima, is revealed only when the IBO is removed from the interannual

  18. Investigation of the 2006 Drought and 2007 Flood Extremes at the Southern Great Plains Through an Integrative Analysis of Observations

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; LEucyer, Tristan; Olson, William S.; Hsu, Kuo-lin; Liu, W. Timothy; Lin, BIng; Deng, Yi; Jiang, Tianyu

    2010-01-01

    Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic

  19. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity

  20. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...