Science.gov

Sample records for agricultural greenhouse gas

  1. Greenhouse gas mitigation in agriculture.

    PubMed

    Smith, Pete; Martino, Daniel; Cai, Zucong; Gwary, Daniel; Janzen, Henry; Kumar, Pushpam; McCarl, Bruce; Ogle, Stephen; O'Mara, Frank; Rice, Charles; Scholes, Bob; Sirotenko, Oleg; Howden, Mark; McAllister, Tim; Pan, Genxing; Romanenkov, Vladimir; Schneider, Uwe; Towprayoon, Sirintornthep; Wattenbach, Martin; Smith, Jo

    2008-02-27

    Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively. PMID:17827109

  2. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  3. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  4. Agricultural opportunities to mitigate greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a source for three primary greenhouse gases (GHG): carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). It can also be a sink for CO2 through carbon (C) sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestrati...

  5. Mitigation potential and costs for global agricultural greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a substantial contributor to global greenhouse gas (GHG) emissions, accounting for about 58% of the world’s anthropogenic non-carbon dioxide GHG emissions and 14% of all anthropogenic GHG emissions, and agriculture is often viewed as a potential source of relatively low-c...

  6. GREENHOUSE GASES AND AGRICULTURE

    EPA Science Inventory

    Agriculture ranks third in its contribution to Earth's anthropogenically nhanced greenhouse effect. Energy use and production and chlorofluorocarbons are anked first and second, respectively.) pecifically, greenhouse gas sources and inks are increased, and sinks are decreased, by...

  7. Communicating the Uncertainty in Greenhouse Gas Emissions from Agriculture

    NASA Astrophysics Data System (ADS)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Whitmore, Andy

    2014-05-01

    Effective communication of the uncertainty in estimates of greenhouse gas emissions is important. It allows an individual, whether they are a scientist, policy maker or member of the public, to draw proper conclusions and so make sound decisions. Communicating uncertainty is challenging, however. There is no single best method for communicating uncertainty and the success of a particular method will depend on the subject matter and the target audience. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from a national inventory. We tested six methods of communication. These were: calibrated phrases such as 'very uncertain' and 'likely'; probabilities, whereby the probability of being within a defined range of values is given; confidence intervals for the expected value; histograms; box plots and shaded arrays. We asked 64 individuals who use results from the greenhouse gas inventory for their opinions on how successfully these methods communicated uncertainty. We analysed the results to see which methods were preferred and to see whether this preference was affected either by the professional group to which individuals belonged or the level of mathematics to which they were educated. The professional groups represented in our study were categorised as (i) those who influence policy (ii) research scientists (iii) those representing the environment and (iv) those representing the agricultural industry. The responses to our questionnaire were varied but some clear messages came through. Our analysis showed that although calibrated phrases were thought to be a good method of communication they did not convey enough information and were open to misinterpretation. Shaded arrays were similarly criticized for being open to misinterpretation, but proved to give the best indication of uncertainty when individuals were asked to interpret results from the greenhouse gas

  8. Greenhouse gas budget of agricultural systems: real possibility or dream?

    NASA Astrophysics Data System (ADS)

    Neftel, A.; Ammann, C.; Calanca, P.; Fuhrer, J.; Leifeld, J.; Jocher, M.; Volk, M.

    2003-04-01

    It is now widely accepted that emission of greenhouse gases (GHG) by human activities are causing an increase of global mean temperature. Model calculations have shown that the rate of increase might have a decisive influence on the stability of the climate. It is therefore crucial to slow down the increase of GHG concentrations in the atmosphere. Storage of carbon in the terrestrial biosphere is mentioned as one possibility in the Kyoto protocol. Mitigation options to decrease GHG emissions in agricultural systems as well as to increase carbon stock in agricultural soils are in discussion. The quantification and verification of the GHG budget is a prerequisite to establish a trade within the Kyoto protocol. On the scientific level this comes down to a greenhouse gas budget for agricultural systems. Comparability and interpretation of GHG budgets depends on an appropriate and consistent choice of the considered system, especially the system boundaries. In this presentation we discuss the feasibility of such a budget for a the smallest unit: the yearly budget of grassland system. Differences between GHG budget and carbon budget will be assessed.

  9. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture

    PubMed Central

    Milne, Alice E.; Glendining, Margaret J.; Lark, R. Murray; Perryman, Sarah A.M.; Gordon, Taylor; Whitmore, Andrew P.

    2015-01-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as ‘likely’ and ‘very unlikely’; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those

  10. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture.

    PubMed

    Milne, Alice E; Glendining, Margaret J; Lark, R Murray; Perryman, Sarah A M; Gordon, Taylor; Whitmore, Andrew P

    2015-09-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as 'likely' and 'very unlikely'; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those who worked

  11. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania

    NASA Astrophysics Data System (ADS)

    Rosenstock, Todd S.; Mpanda, Mathew; Pelster, David E.; Butterbach-Bahl, Klaus; Rufino, Mariana C.; Thiong'o, Margaret; Mutuo, Paul; Abwanda, Sheila; Rioux, Janie; Kimaro, Anthony A.; Neufeldt, Henry

    2016-06-01

    Knowledge of greenhouse gas (GHG) fluxes in soils is a prerequisite to constrain national, continental, and global GHG budgets. However, data characterizing fluxes from agricultural soils of Africa are markedly limited. We measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) fluxes at 10 farmer-managed sites of six crop types for 1 year in Kenya and Tanzania using static chambers and gas chromatography. Cumulative emissions ranged between 3.5-15.9 Mg CO2-C ha-1 yr-1, 0.4-3.9 kg N2O-N ha-1 yr-1, and -1.2-10.1 kg CH4-C ha-1 yr-1, depending on crop type, environmental conditions, and management. Manure inputs increased CO2 (p = 0.03), but not N2O or CH4, emissions. Soil cultivation had no discernable effect on emissions of any of the three gases. Fluxes of CO2 and N2O were 54-208% greater (p < 0.05) during the wet versus the dry seasons for some, but not all, crop types. The heterogeneity and seasonality of fluxes suggest that the available data describing soil fluxes in Africa, based on measurements of limited duration of only a few crop types and agroecological zones, are inadequate to use as a basis for estimating the impact of agricultural soils on GHG budgets. A targeted effort to understand the magnitude and mechanisms underlying African agricultural soil fluxes is necessary to accurately estimate the influence of this source on the global climate system and for determining mitigation strategies.

  12. Greenhouse gas emissions from agricultural and restored Delta peatlands

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Sturtevant, C. S.; Koteen, L. E.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.

    2013-12-01

    The Sacramento-San Joaquin Delta in California was drained and converted to agriculture over a century ago, and since then has experienced high rates of soil subsidence due to peat oxidation. To help reverse subsidence and capture carbon there is growing interest in converting drained agricultural land-use types to flooded conditions. Restored wetlands and rice agriculture have been proposed as a flooded land-use type with high CO2 sequestration potential for this region. However, flooding may increase the emission of methane (CH4) as well as the loss of water via evapotranspiration. We conducted multiple years of simultaneous eddy covariance measurements at conventional drained agricultural sites (a pasture and a corn field) and flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2, CH4, and evaporation fluxes. We found that the drained sites were net greenhouse gas (GHG) sources, releasing between 134-350 g-C m-2 yr-1 as CO2 and up to 10 g-C m-2 yr-1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 450 g-C m-2 yr-1. However, they were also large sources of CH4, with emissions ranging from 40 to 57 g-C m-2 yr-1. In terms of the full annual GHG budget (assuming that 1 g-CH4 equals 25 g-CO2 with respect to the greenhouse effect over a time horizon of 100 years), the restored wetlands could be either GHG sources or sinks. Annual net CO2 exchange at the rice paddy ranged from -283 g-C m-2 to 95 g-C m-2 depending on management practices, and the site was always a moderate source of CH4. The flooded land-use types evaporated 45-200% more water than the pasture or corn sites. Therefore, from a subsidence perspective, restored wetlands and rice appear to provide a benefit for Delta sustainability as they are predominantly large carbon sinks. However, flooding also has secondary effects on the GHG budget through increased CH4 emissions and higher rates

  13. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    NASA Astrophysics Data System (ADS)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  14. The FAOSTAT database of greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Tubiello, Francesco N.; Salvatore, Mirella; Rossi, Simone; Ferrara, Alessandro; Fitton, Nuala; Smith, Pete

    2013-03-01

    Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961-2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961-2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO2 yr-1 in 2010 (up to 5.4-5.8 Gt CO2 yr-1 with emissions from biomass burning and organic soils included). Over the same decade 2000-2010, the

  15. USDA Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 43%, 152%, and 20% respectively since about 1750. In 2013, total U.S. greenhouse gas emissions were 6,673 million metric tons of carbon dioxide equivalents (MMT CO2 eq.), ris...

  16. The Role of Hydropedologic Vegetation Zones in Greenhouse Gas Emissions for Agricultural Wetland Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net greenhouse gas (GHG) source strength for agricultural wetland ecosystems in the Prairie Pothole Region (PPR) and spatial constraints associated with CH4, CO2, and N2O fluxes are currently unknown. Greenhouse gas fluxes typically vary with edaphic, hydrologic, biologic, and climatic factors. In...

  17. Agricultural greenhouse gas flux determination via remote sensing and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious concerns have been raised about increasing levels of atmospheric greenhouse gases (GHGs) and associated climate change. For every degree in global temperature increase, grain production yields are expected to decrease 10%, while the global human population continues to increase by roughly 8...

  18. Strategies to meet the challenges of monitoring greenhouse gas emissions in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  19. Strategies and Economics for Greenhouse Gas Mitigation in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION Agriculture can make significant contributions to climate change mitigation by a) increasing soil organic carbon sinks, b) reducing GHG emissions, and c) off-setting fossil fuel by promoting biofuels. The latter has the potential to counter-balance fossil-fuel emissions to some degree, ...

  20. Global Ppotentials for Greenhouse Gas Mitigation in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved management of agricultural and other terrestrial lands offers considerable potential to mitigate climate change. Currently, 83% of the world’s land area is directly influenced by human interventions (Sanderson et al. 2002), about half of the terrestrial earth’s surface is extensively manage...

  1. Supporting Evidence for Greenhouse Gas Mitigation in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION There are many opinions on the potentials for GHG mitigation in agriculture, but it is not always clear which among these are the most reliable and useful. The issues are complex, and the opinions as many and varied as those who have been brave enough to put their ideas forward. This co...

  2. Aproaches for mitigation of greenhouse gas emission from agricultural fields

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2009-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is required to be speed up. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is prolonged on intermittent irrigation drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the preliminary results in first year of this study. Nakaboshi (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was prolonged, the lesser emission amounts of CH4 decreased even after when Nakaboshi period lasted, as a whole. In some soil types, for example in Kagoshima

  3. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  4. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    PubMed

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  5. Strategic Environmental Assessment of Greenhouse Gas Mitigation Options in the Canadian Agricultural Sector

    NASA Astrophysics Data System (ADS)

    Noble, Bram F.; Christmas, Lisa M.

    2008-01-01

    This article presents a methodological framework for strategic environmental assessment (SEA) application. The overall objective is to demonstrate SEA as a systematic and structured policy, plan, and program (PPP) decision support tool. In order to accomplish this objective, a stakeholder-based SEA application to greenhouse gas (GHG) mitigation policy options in Canadian agriculture is presented. Using a mail-out impact assessment exercise, agricultural producers and nonproducers from across the Canadian prairie region were asked to evaluate five competing GHG mitigation options against 13 valued environmental components (VECs). Data were analyzed using multi-criteria and exploratory analytical techniques. The results suggest considerable variation in perceived impacts and GHG mitigation policy preferences, suggesting that a blanket policy approach to GHG mitigation will create gainers and losers based on soil type and associate cropping and on-farm management practices. It is possible to identify a series of regional greenhouse gas mitigation programs that are robust, socially meaningful, and operationally relevant to both agricultural producers and policy decision makers. The assessment demonstrates the ability of SEA to address, in an operational sense, environmental problems that are characterized by conflicting interests and competing objectives and alternatives. A structured and systematic SEA methodology provides the necessary decision support framework for the consideration of impacts, and allows for PPPs to be assessed based on a much broader set of properties, objectives, criteria, and constraints whereas maintaining rigor and accountability in the assessment process.

  6. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  7. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  8. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  9. Carbon Sequestration Potential in Irrigated Agriculture: Greenhouse Gas Emissions and the Contribution of Water.

    NASA Astrophysics Data System (ADS)

    Rolston, D. E.; Hopmans, J. W.; van Kessel, C.; Six, J.; Paw U, K.; Plant, R.; Lee, J.; Kochendorfer, J.; Ideris, A. J.; MacIntyre, J.; Louie, D.; Matista, T.; Evatt, J.; Poch, R.; King, A. P.

    2006-12-01

    This study aimed to quantify CO2 and N2O release from an irrigated field in California's Sacramento Valley in an effort to determine greenhouse gas mitigation potentials through minimum tillage (MT) practices. Surface CO2 and N2O flux were monitored on the 30 ha, laser-leveled field site from September 2003 through August 2006. Additional field-representative flux data was collected from eddy-covariance masts and continuously sampling auto-chambers. Irrigation and run-off waters were collected and analyzed for total suspended solids (TSS), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate-N, ammonium-N, total C and total N in the sediment. Overall, we found very little difference in CO2 flux, water composition, or sediment composition between the two tillage treatments. N2O flux was negligible in both systems until a fertilization and irrigation event occurred in each growing season, at which point the MT treatment showed slightly higher fluxes. NO3-N levels in the run-off exceeded drinking water quality standards only in irrigation events following fertilizer application. Collected CO2 and N2O data from this site will enable us to predict greenhouse gas emissions from similar agricultural systems in the California landscape. Our results indicate that the role of irrigation water in C budgets of agricultural systems is a significant factor in determining total C sequestration potential, but that short-term MT may not significantly decrease the contribution to global warming by irrigated agroecosystems and thus may not be a beneficial strategy for greenhouse gas mitigation.

  10. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis. PMID:26451699

  11. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?

    NASA Astrophysics Data System (ADS)

    Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.

    2013-09-01

    In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.

  12. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    PubMed Central

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E.; Hillier, Jonathan; Rosenstock, Todd S.

    2016-01-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of ‘GHG calculators’— simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data. PMID:27197778

  13. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture.

    PubMed

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E; Hillier, Jonathan; Rosenstock, Todd S

    2016-01-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of 'GHG calculators'- simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data. PMID:27197778

  14. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    NASA Astrophysics Data System (ADS)

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E.; Hillier, Jonathan; Rosenstock, Todd S.

    2016-05-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of ‘GHG calculators’— simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data.

  15. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  16. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  17. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  18. Spatial variation related to hydroloigc patterns and vegetation in greenhouse gas fluxes from the Mississippi Delta agricultural region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes from agricultural landscapes may contribute significantly to regional greenhouse gas budgets due to stimulation of soil microbial activity through fertilizer application and variable soil moisture effects. In this study, measuremen...

  19. Spatial and Temporal Variations in Greenhouse Gas Emissions from an Agricultural Reservoir

    NASA Astrophysics Data System (ADS)

    Smolenski, R. L.; Beaulieu, J.; Townsend-Small, A.; Nietch, C.

    2012-12-01

    Reservoirs are being built at an increasing rate each year to provide humans with resources such as hydroelectric power and drinking water. These man-made systems have provided society with important services, but these have come at the cost of enhanced greenhouse gas (GHG) emissions. Recent estimates suggest reservoirs are a globally significant source of GHG emissions, but these estimates are largely based on studies of oligotrophic boreal and tropical reservoirs. Reservoirs draining agricultural basins are common throughout much of the developed world and are subject to high nutrient loading rates from the watershed. Excess nutrient loading stimulates algae blooms and degrades water quality in these reservoirs, but surprisingly little is known about how nutrients and algal blooms affect GHG dynamics. To assess GHG dynamics in an agricultural reservoir we measured GHG emission rates, dissolved concentrations, and nutrient chemistry in William H. Harsha Lake, an agricultural reservoir located in southwestern Ohio (USA), on a monthly basis since October, 2011. Dissolved N2O was negatively related to nitrate (r2=.91, p<0.001) in October 2011, suggesting denitrification was an important source of N2O in the reservoir during fall turnover. Relationships between dissolved N2O and nitrate concentrations were inconsistent during the winter and spring, suggesting nitrate was not limited during these seasons. There was no consistent pattern in dissolved gas concentrations across the length of the reservoir, but concentrations were greater in hypolimnetic than eplimnetic waters during warmer months. The highest N2O and CH4 emissions occurred during lake turn over in the fall (CH4 flux= 4.76E+1 mg CH4 hr-1m-2, N2O flux= 9.24E+1 μg N2O-N hr-1m-2, and CO2 flux = 8.62E+2 mg CO2 hr-1m-2), while the lowest emission rates were observed during the winter. We found no clear spatial pattern in GHG emission rates across the length of the reservoir. On an annual basis, we estimate the

  20. Insights from EMF Associated Agricultural and Forestry Greenhouse Gas Mitigation Studies

    SciTech Connect

    McCarl, Bruce A.; Murray, Brian; Kim, Man-Keun; Lee, Heng-Chi; Sands, Ronald D.; Schneider, Uwe

    2007-11-19

    Integrated assessment modeling (IAM) as employed by the Energy Modeling Forum (EMF) generally involves a multi-sector appraisal of greenhouse gas emission (GHGE) mitigation alternatives and climate change effects typically at the global level. Such a multi-sector evaluation encompasses potential climate change effects and mitigative actions within the agricultural and forestry (AF) sectors. In comparison with many of the other sectors covered by IAM, the AF sectors may require somewhat different treatment due to their critical dependence upon spatially and temporally varying resource and climatic conditions. In particular, in large countries like the United States, forest production conditions vary dramatically across the landscape. For example, some areas in the southern US present conditions favorable to production of fast growing, heat tolerant pine species, while more northern regions often favor slower-growing hardwood and softwood species. Moreover, some lands are currently not suitable for forest production (e.g., the arid western plains). Similarly, in agriculture, the US has areas where citrus and cotton can be grown and other areas where barley and wheat are more suitable. This diversity across the landscape causes differential GHGE mitigation potential in the face of climatic changes and/or responses to policy or price incentives. It is difficult for a reasonably sized global IAM system to reflect the full range of sub-national geographic AF production possibilities alluded to above. AF response in the face of climate change altered temperature precipitation regimes or mitigation incentives will likely involve region-specific shifts in land use and agricultural/forest production. This chapter addresses AF sectoral responses in climate change mitigation analysis. Specifically, we draw upon US-based studies of AF GHGE mitigation possibilities that incorporate sub-national detail drawing largely on a body of studies done by the authors in association with

  1. Agricultural management and greenhouse gas flux: cropland management in eastern and central US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils are the primary source of nitrous oxide (N2O) and a minor source of methane (CH4), two important biogenic greenhouse gases (GHG) that are contributing to catastrophic global climate change. Nitrous oxide emissions are expected to increase by 35-60% worldwide as pressure to increa...

  2. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes. PMID:23739470

  3. Agricultural peat lands; towards a greenhouse gas sink - a synthesis of a Dutch landscape study

    NASA Astrophysics Data System (ADS)

    Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J. C.; Leffelaar, P. A.; Berendse, F.; Veenendaal, E. M.

    2013-06-01

    It is generally known that managed, drained peatlands act as carbon sources. In this study we examined how mitigation through the reduction of management and through rewetting may affect the greenhouse gas (GHG) emission and the carbon balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland, including a dairy farm, with the ground water level at an average annual depth of 0.55 m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 m below the soil surface. The third area is an (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as carbon and GHG sources but the rewetted agricultural peatland acted as a carbon and GHG sink. The terrestrial GHG source strength was 1.4 kg CO2-eq m-2 yr-1 for the intensively managed area and 1.0 kg CO2-eq m-2 yr-1 for the extensively managed area; the unmanaged area acted as a GHG sink of 0.7 kg CO2-eq m-2 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4 and the loss of DOC only played a minor role. Adding the farm-based CO2 and CH4 emissions increased the source strength for the managed sites to 2.7 kg CO2-eq m-2 yr-1 for Oukoop and 2.1 kg CO2-eq m-2 yr-1 for Stein. Shifting from intensively managed to extensively managed grass-on-peat reduced GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased. Overall, this study suggests that managed

  4. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  5. Producer and consumer responsibility for greenhouse gas emissions from agricultural production—a perspective from the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Zaks, D. P. M.; Barford, C. C.; Ramankutty, N.; Foley, J. A.

    2009-10-01

    Greenhouse gases from the combination of land use change and agriculture are responsible for the largest share of global emissions, but are inadequately considered in the current set of international climate policies. Under the Kyoto protocol, emissions generated in the production of agricultural commodities are the responsibility of the producing country, introducing potential inequities if agricultural products are exported. This study quantifies the greenhouse gas emissions from the production of soybeans and beef in the Amazon basin of Brazil, a region where rates of both deforestation and agricultural exports are high. Integrating methods from land use science and life-cycle analysis, and accounting for producer-consumer responsibility, we allocate emissions between Brazil and importing countries with an emphasis on ultimately reducing the greenhouse gas impact of food production. The mechanisms used to distribute the carbon emissions over time allocate the bulk of emissions to the years directly after the land use change occurred, and gradually decrease the carbon allocation to the agricultural products. The carbon liability embodied in soybeans exported from the Amazon between 1990 and 2006 was 128 TgCO2e, while 120 TgCO2e were embodied in exported beef. An equivalent carbon liability was assigned to Brazil for that time period.

  6. Measurement of greenhouse gas flux from agricultural soils using static chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape mana...

  7. Spatial and Temporal Variations in Greenhouse Gas Emissions from an Agricultural Reservoir

    EPA Science Inventory

    Reservoirs are being built at an increasing rate each year to provide humans with resources such as hydroelectric power and drinking water. These man-made systems have provided society with important services, but these have come at the cost of enhanced greenhouse gas (GHG) emiss...

  8. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions. PMID:27235901

  9. An Integrated Greenhouse Gas Assessment of an Alternative to Slash-and-Burn Agriculture in Eastern Amazonia

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Sá, T. D.; Carvalho, C. J.; Figueiredo, R. D.; Kato, M. D.; Kato, O. R.; Ishida, F. Y.

    2007-12-01

    Fires set for slash-and-burn agriculture contribute to the current unsustainable accumulation of atmospheric greenhouse gases, and they also deplete the soil of essential nutrients, which compromises agricultural sustainability at local scales. Integrated assessments of greenhouse gas emissions have compared intensive cropping systems in industrialized countries, but such assessments have not been applied to common cropping systems of smallholder farmers in developing countries. We report an integrated assessment of greenhouse gas emissions in slash-and-burn agriculture and an alternative chop-and-mulch system in the Amazon Basin. The soil consumed atmospheric methane under slash-and-burn treatment and became a net emitter of methane to the atmosphere under the mulch treatment. Mulching also caused about a 50 percent increase in soil emissions of nitric oxide and nitrous oxide and required use of fertilizer and fuel for farm machinery. Despite these significantly higher emissions of greenhouse gases during the cropping phase under the alternative chop- and-mulch system, calculated pyrogenic emissions in the slash-and-burn system were much larger, especially for methane. The global warming potential CO2-equivalent emissions calculated for the entire crop cycles were at least five times lower in chop-and-mulch compared to slash-and-burn and were dominated by differences in methane emissions. The crop yields were similar for the two systems. While economic and logistical considerations remain to be worked out for alternatives to slash-and-burn, these results demonstrate a potential "win-win" strategy for maintaining soil fertility and reducing net greenhouse gas emissions, thus simultaneously contributing to sustainability at both spatial scales.

  10. Agricultural peatlands: towards a greenhouse gas sink - a synthesis of a Dutch landscape study

    NASA Astrophysics Data System (ADS)

    Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J.; Berendse, F.; Veenendaal, E. M.

    2014-08-01

    It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and -1.7 (±1.8) g CO2-eq m-2 d-1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m-2 d-1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40-60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha-1 yr-1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha-1 yr-1. Water

  11. Climate Change Impacts on US Agriculture and the Benefits of Greenhouse Gas Mitigation

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sue Wing, I.; Stern, A.

    2014-12-01

    As contributors to the US EPA's Climate Impacts and Risk Assessment (CIRA) project, we present empirically-based projections of climate change impacts on the yields of five major US crops. Our analysis uses a 15-member ensemble of climate simulations using the MIT Integrated Global System Model (IGSM) linked to the NCAR Community Atmosphere Model (CAM), forced by 3 emissions scenarios (a "business as usual" reference scenario and two stabilization scenarios at 4.5W/m2 and 3.7 W/m2 by 2100), quantify the agricultural impacts avoided due to greenhouse gas emission reductions. Our innovation is the coupling of climate model outputs with empirical estimates of the long-run relationship between crop yields and temperature, precipitation and soil moisture derived from the co-variation between yields and weather across US counties over the last 50 years. Our identifying assumption is that since farmers' planting, management and harvesting decisions are based on land quality and expectations of weather, yields and meteorological variables share a long-run equilibrium relationship. In any given year, weather shocks cause yields to diverge from their expected long-run values, prompting farmers to revise their long-run expectations. We specify a dynamic panel error correction model (ECM) that statistically distinguishes these two processes. The ECM is estimated for maize, wheat, soybeans, sorghum and cotton using longitudinal data on production and harvested area for ~1,100 counties from 1948-2010, in conjunction with spatial fields of 3-hourly temperature, precipitation and soil moisture from the Global Land Data Assimilation System (GLDAS) forcing and output files, binned into annual counts of exposure over the growing season and mapped to county centroids. For scenarios of future warming the identical method was used to calculate counties' current (1986-2010) and future (2036-65 and 2086-2110) distributions of simulated 3-hourly growing season temperature, precipitation

  12. Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers

    PubMed Central

    Collier, Sarah M.; Ruark, Matthew D.; Oates, Lawrence G.; Jokela, William E.; Dell, Curtis J.

    2014-01-01

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. PMID:25146426

  13. Measurement of greenhouse gas flux from agricultural soils using static chambers.

    PubMed

    Collier, Sarah M; Ruark, Matthew D; Oates, Lawrence G; Jokela, William E; Dell, Curtis J

    2014-01-01

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. PMID:25146426

  14. Refinement of the nocturnal boundary layer budget method for quantifying agricultural greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Wittebol, Laura A.

    Measuring greenhouse gas (GHG) emissions directly at the farm scale is most relevant to the agricultural sector and has the potential to eliminate some of the uncertainty arising from scaling up from plot or field studies or down from regional or national levels. The stable nighttime atmosphere acts as a chamber within which sequentially-measured GHG concentration profiles determine the flux of GHGs. With the overall goal of refining the nocturnal boundary layer (NBL) budget method to obtain reliable flux estimates at a scale representative of the typical eastern Canadian farm (approximately 1 km2), fluxes of CO2, N2O, and CH4 were measured at two agricultural farms in Eastern Canada. Field sites in 1998 and 2002 were located on an experimental farm adjacent to a suburb southwest of the city of Ottawa, ON, a relatively flat area with corn, hay, and soy as the dominant crops. The field site in 2003 was located in the rural community of Coteau-du-Lac, QC, about 20 km southwest of the island of Montreal, a fairly flat area bordered by the St. Lawrence River to the south, consisting mainly of corn and hay with a mixture of soy and vegetable crops. A good agreement was obtained between the overall mean NBL budget-measured CO2 flux at both sites, near-in-time windy night eddy covariance data and previously published results. The mean NBL-measured N2O flux from all wind directions and farming management was of the same order of magnitude as, but slightly higher than, previously published baseline N2O emissions from agroecosystems. Methane fluxes results were judged to be invalid as they were extremely sensitive to wind direction change. Spatial sampling of CO 2, N2O, and CH4 around the two sites confirmed that [CH4] distribution was particularly sensitive to the nature of the emission source, field conditions, and wind direction. Optimal NBL conditions for measuring GHG fluxes, present approximately 60% of the time in this study, consisted of a very stable boundary layer

  15. GRACEnet (Greenhouse Gas Reduction through Agricultural Carbon Enhancement network): An assessment of soil carbon sequestration and greenhouse gas mitigation by agricultural management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities account for about 20% of the total human-induced warming effect due to emission of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Changes in management, including minimizing or eliminating tillage, adding organic matter (e.g. cover crops, manure), and improving...

  16. Mitigating greenhouse gas emissions with agricultural land management changes: What practices hold the best potential?

    NASA Astrophysics Data System (ADS)

    Eagle, A. J.; Olander, L.; Rice, C. W.; Haugen-Kozyra, K.; Henry, L. R.; Baker, J. S.; Jackson, R. B.

    2010-12-01

    Agricultural land management practices within the United States have significant potential to mitigate greenhouse gases (GHGs) in voluntary market or regulatory contexts - by sequestering soil carbon or reducing N2O or CH4 emissions. Before these practices can be utilized in active protocols or within a regulatory or farm bill framework, we need confidence in our ability to determine their impact on GHG emissions. We develop a side-by-side comparison of mitigation potential and implementation readiness for agricultural GHG mitigation practices, with an extensive literature review. We also consider scientific certainty, environmental and social co-effects, economic factors, regional specificity, and possible implementation barriers. Biophysical GHG mitigation potential from agricultural land management activities could reach more than 500 Mt CO2e/yr in the U.S. (7.1% of annual emissions). Up to 75% of the total potential comes from soil C sequestration. Economic potential is lower, given necessary resources to incentivize on-farm adaptations, but lower cost activities such as no-till, fertilizer N management, and cover crops show promise for near-term implementation in certain regions. Scientific uncertainty or the need for more research limit no-till and rice water management in some areas; and technical or other barriers need to be addressed before biochar, advanced crop breeding, and agroforestry can be widely embraced for GHG mitigation. Significant gaps in the current research and knowledge base exist with respect to interactions between tillage and N2O emissions, and with fertilizer application timing impacts on N2O emissions.

  17. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    NASA Astrophysics Data System (ADS)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  18. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    PubMed

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  19. Synergies and liabilities: a full-cost approach to the abatement of greenhouse gas fluxes in row-crop agriculture

    NASA Astrophysics Data System (ADS)

    Philip Robertson, G.; Grace, P. R.

    2003-04-01

    According to the IPCC TAR, agriculture is responsible for 21-25% of the global anthropic CO2 flux, 55-60% of the anthropic CH4 flux, and 65-80% of the anthropic flux of N2O. A number of CO2 stabilization strategies target agricultural production practices, and the potential for simultaneously abating fluxes of the non-CO2 greenhouse gases is substantial. But so is the potential for creating greenhouse gas (GHG) liabilities, the unintentional increase in one or more GHGs by activities that mitigate another. Whole-system accounting provides a means for including all GHG-contributing processes in the same cropping system analysis in order to illuminate major liabilities and synergies. We contrast a field crop system in the upper U.S. midwest with a similar system in tropical India, and provide evidence that N2O flux - the major contributor to radiative forcing in both row-crop systems - can be abated with little loss of crop productivity.

  20. Estimating greenhouse gas fluxes from an agriculture-dominated landscape using multiple planetary boundary layer methods

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lee, X.; Griffis, T. J.; Baker, J. M.; Xiao, W.

    2014-02-01

    Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes derived from bottom-up approaches. We first applied the eddy covariance, equilibrium, inverse modeling (CarbonTracker), and flux aggregation methods using three years of carbon dioxide (CO2) measurements on a 244 m tall tower in the Upper Midwest, USA. We then applied the equilibrium method for estimating methane (CH4) and nitrous oxide (N2O) fluxes with one-month high-frequency CH4 and N2O gradient measurements on the tall tower and one-year concentration measurements on a nearby tall tower, and evaluated the uncertainties of this application. The results indicate that: (1) the flux aggregation, eddy covariance, the equilibrium method, and the CarbonTracker product all gave similar seasonal patterns of the regional CO2 flux (105-106 km2), but that the equilibrium method underestimated the July CO2 flux by 52-69%. (2) The annual budget varied among these methods from 74 to -131 g C-CO2 m-2 yr-1, indicating a large uncertainty in the annual CO2 flux estimation. (3) The regional CH4 and N2O emissions according to a top-down method were at least six and two times higher than the emissions from a bottom-up inventory (Emission Database for Global Atmospheric Research), respectively. (4) The global warming potentials of the CH4 and N2O emissions were equal in magnitude to the cooling benefit of the regional CO2 uptake. The regional GHG budget, including both biological and anthropogenic origins, is estimated at 7 ± 160 g CO2 eq m-2 yr-1.

  1. Managing agricultural greenhouse gases: The basis of GRACEnet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, USDA Agricultural Research Service has been engaged in a national project called GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network). Goals of the project are to (1) evaluate soil organic carbon status and change, (2) assess net greenhouse gas emissions (...

  2. Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products.

    PubMed

    Nguyen, Dai H; Biala, Johannes; Grace, Peter R; Scheer, Clemens; Rowlings, David W

    2014-01-01

    As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha(-1) on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha(-1)) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC < MM. Nitrous oxide emissions were significantly less in the clay soil compared to the sandy loam at all WFPS, and could be ranked RB < MB < MM < CM < UN < HC. These results led to linear models being developed to predict CO2 and N2O emissions as a function of the dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions. PMID

  3. Field Studies Show That In Situ Greenhouse Gas Emission Factors for East African Agriculture Are Less Than IPCC Values

    NASA Astrophysics Data System (ADS)

    Pelster, D.; Butterbach-Bahl, K.; Rufino, M.; Rosenstock, T. S.; Wanyama, G.

    2015-12-01

    Greenhouse gas (GHG) emissions from African agricultural systems are thought to comprise a large portion of total emissions from the continent, however these estimates have been calculated using emission factors (EF) from other regions due to the lack of field studies in Africa, which results in large uncertainties for these estimates. Field measurements from western Kenya calculating emissions over a year in 59 different sites found that GHG emissions from typical smallholder farms ranged from 2.8 to 15.0 Mg CO2-C ha-1, -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1, and were not affected by management intensity. The lack of a response in N2O emissions to N fertilization suggests that the EF currently used in national inventories overestimates N2O emissions from typical smallholder agriculture. Another study measuring N2O and CH4 emissions from manure deposited by grazing cattle found that the N2O EF ranged from 0.1 to 0.2%, while the CH4 EF ranged from 0.04 to 0.14 Kg CH4-C per 173 kg animal. These suggest that the current IPCC EF overestimate agricultural soil and manure GHG emissions for Kenya, and likely for much of East Africa.

  4. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  5. Carbon sequestration and greenhouse gas fluxes in agriculture: Challenges and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, agriculture accounts for 13.5% of GHG emissions. In the United States, agriculture is a small but significant component of the country’s and world’s GHG emissions. We are moving into an uncertain and changing climate pattern that could affect agriculture production, sea levels, and human h...

  6. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    SciTech Connect

    Mccarl, Bruce A.; Schneider, Uwe; Murray, Brian; Williams, Jimmy; Sands, Ronald D.

    2001-05-14

    This paper examines the relative contribution of agricultural and forestry activities in an emission reduction program, focusing in part on the relative desirability of sequestration in forests and agricultural soils. The analysis considers the effects of competition for land and other resources between agricultural activities, forestry activities and traditional production. In addition, the paper examines the influence of saturation and volatility.

  7. Sustainable agricultural practices: energy inputs and outputs, pesticide, fertilizer and greenhouse gas management.

    PubMed

    Wang, Yue-Wen

    2009-01-01

    The food security issue was addressed by the development of "modern agriculture" in the last century. But food safety issues and environment degradation were the consequences suffered as a result. Climate change has been recognized as the result of release of stored energy in fossil fuel into the atmosphere. Homogeneous crop varieties, machinery, pesticides and fertilizers are the foundation of uniform commodities in modern agriculture. Fossil fuels are used to manufacture fertilizers and pesticides as well as the energy source for agricultural machinery, thus characterizes modern agriculture. Bio-fuel production and the possibility of the agriculture system as a form of energy input are discussed. PMID:19965338

  8. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of the three most important long-lived greenhouse gases (GHG) have increased measurably over the past two centuries. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 35%, 155%, and 18%, respectively, since 1750. ...

  9. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remot...

  10. Remote sensing of soil carbon and greenhouse gas dynamics across agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate assessments of the overall impact of the GRACEnet strategies for enhancing soil C sequestration and reducing greenhouse gases emissions requires extending results from small plot of field experiments to regional and national scales. This spatial scaling task is nontrivial because the mechan...

  11. Effects of agricultural practices on greenhouse gas emissions (N2O, CH4 and CO2) from corn fields

    NASA Astrophysics Data System (ADS)

    Hui, D.; Wang, J.; Jima, T.; Dennis, S.; Stockert, C.; Smart, D.; Bhattarai, S.; Brown, K.; Sammis, T.; Reddy, C.

    2012-12-01

    The United States is, by far, the largest producer of corn (Zea mays L.) in the world. Recent increases in fertilizer cost and concerns over global climate change have farmers and others interested in more efficient fertilization management and greenhouse gas emissions reductions. To seek the best management practices, we conducted field experiments during the 2012 growing season at Tennessee State University Agricultural Research and Demonstration Center in Nashville, TN. Six treatments were applied including regular URAN application [2 times], multiple URAN applications [4 times], denitrification inhibitor with regular URAN application, and chicken litter plus regular URAN application in no-tilled plots, and URAN application plus bio-char in tilled plots, all compared to regular URAN application in conventional tilled plots. Each treatment was replicated six times (blocks). We measured N2O, CO2 and CH4 emissions using a closed chamber method after rainfall events, fertilizer applications or every two weeks whichever was shorter. Corresponding soil NH4+-N and NO3--N, soil temperature and moisture were also measured during the gas sampling. Plant physiology and growth were measured about every two weeks. While preliminary results indicate that N2O and CO2 fluxes were significantly influenced by the agricultural practices on some days, particularly after rainfall events, CH4 flux was not influenced by the treatments during most of the days. Plots with bio-char showed significantly lower N2O emissions. We also measured N2O flux in a commercial corn field using the Eddy Covariance (EC) technique to ground verify the chamber based N2O emissions at the field scale. Results obtained with the EC technique seem comparable with the chamber method.

  12. Land Use Change In Australia's Tropical Savanna Woodlands: Greenhouse Gas Emissions From Deforestation And Conversion To Agriculture

    NASA Astrophysics Data System (ADS)

    Hutley, L. B.; Bristow, M.; Beringer, J.; Livesley, S. L.; Arndt, S. K.

    2015-12-01

    Clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHG), although there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas are 12% of global savanna extent and are largely intact; however there is currently a focus on agricultural expansion across northern Australia involving clearing for primary production. Eddy covariance and soil chamber methods were used over almost 2 years to quantify CO2 and non-CO2 fluxes from savanna that was cleared and prepared for agriculture (CS). Fluxes from an uncleared site (UC) were also monitored. Carbon fluxes from both sites were similar (NEE -0.23 Mg C ha-1 month-1) for the 5.4 months prior to clearing, a period spanning the late dry to mid-wet season. Fluxes were monitored for a further 17 months through a dry-wet-dry climate cycle and phased land use change which included clearing and a debris curing phase, followed by burning and soil preparation for cropping. Over this period (excluding the managed fire), the CS site was a source of +0.43 Mg C ha-1 month-1 compared to a net sink at the UC site of -0.05 Mg C ha-1 month-1. Woody debris from clearing (30.9 Mg C ha-1) was removed from the site via burning in the late dry season and emission factors were used to calculate emissions of CO2, CH4 and N2O which totalled 138.0 Mg CO2-e ha-1. Over the 17 months of monitoring this land transformation, emissions were +9.7 Mg CO2-e ha-1 month-1 compared to a sink of -0.17 Mg CO2-e from the UC site. Using these emissions and LUC scenarios at catchment to regional scales suggest proposed clearing for agriculture could significantly increase the region's fire-dominated GHG emissions. These data are essential for both land-atmosphere models as well as decision support tools that inform trade-offs between greenhouse gas accounting, conservation and development goals.

  13. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils.

    PubMed

    Rigby, H; Smith, S R

    2013-12-01

    turnover digestate N. In contrast to the sandy soil types, where nitrate (NO3-) concentrations increased during incubation, there was an absence of NO3- accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes. PMID:24035244

  14. Forest and Agricultural Sector Optimization Model Greenhouse Gas Version (FASOM-GHG)

    EPA Science Inventory

    FASOM-GHG is a dynamic, multi-period, intertemporal, price-endogenous, mathematical programming model depicting land transfers and other resource allocations between and within the agricultural and forest sectors in the US. The model solution portrays simultaneous market equilibr...

  15. On-site denitrification beds could reduce indirect greenhouse gas emissions from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) laden agricultural drainage waters are non-point sources of indirect nitrous oxide (N2O) emissions, which represent a significant fraction of total N2O emissions in the USA. On-site denitrification beds filled with woodchips were used to reduce NO3- under carbon rich anaerobic conditi...

  16. Management of agricultural soils for greenhouse gas mitigation: Learning from a case study in NE Spain.

    PubMed

    Sánchez, B; Iglesias, A; McVittie, A; Álvaro-Fuentes, J; Ingram, J; Mills, J; Lesschen, J P; Kuikman, P J

    2016-04-01

    A portfolio of agricultural practices is now available that can contribute to reaching European mitigation targets. Among them, the management of agricultural soils has a large potential for reducing GHG emissions or sequestering carbon. Many of the practices are based on well tested agronomic and technical know-how, with proven benefits for farmers and the environment. A suite of practices has to be used since none of the practices can provide a unique solution. However, there are limitations in the process of policy development: (a) agricultural activities are based on biological processes and thus, these practices are location specific and climate, soils and crops determine their agronomic potential; (b) since agriculture sustains rural communities, the costs and potential for implementation have also to be regionally evaluated and (c) the aggregated regional potential of the combination of practices has to be defined in order to inform abatement targets. We believe that, when implementing mitigation practices, three questions are important: Are they cost-effective for farmers? Do they reduce GHG emissions? What policies favour their implementation? This study addressed these questions in three sequential steps. First, mapping the use of representative soil management practices in the European regions to provide a spatial context to upscale the local results. Second, using a Marginal Abatement Cost Curve (MACC) in a Mediterranean case study (NE Spain) for ranking soil management practices in terms of their cost-effectiveness. Finally, using a wedge approach of the practices as a complementary tool to link science to mitigation policy. A set of soil management practices was found to be financially attractive for Mediterranean farmers, which in turn could achieve significant abatements (e.g., 1.34 MtCO2e in the case study region). The quantitative analysis was completed by a discussion of potential farming and policy choices to shape realistic mitigation policy at

  17. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico.

    PubMed

    Dendooven, Luc; Gutiérrez-Oliva, Vicente F; Patiño-Zúñiga, Leonardo; Ramírez-Villanueva, Daniel A; Verhulst, Nele; Luna-Guido, Marco; Marsch, Rodolfo; Montes-Molina, Joaquín; Gutiérrez-Miceli, Federico A; Vásquez-Murrieta, Soledad; Govaerts, Bram

    2012-08-01

    In 1991, the 'International Maize and Wheat Improvement Center' (CIMMYT) started a field experiment in the rain fed Mexican highlands to investigate conservation agriculture (CA) as a sustainable alternative for conventional maize production practices (CT). CT techniques, characterized by deep tillage, monoculture and crop residue removal, have deteriorated soil fertility and reduced yields. CA, which combines minimum tillage, crop rotations and residue retention, restores soil fertility and increases yields. Soil organic matter increases in CA compared to CT, but increases in greenhouse gas emissions (GHG) in CA might offset the gains obtained to mitigate global warming. Therefore, CO(2), CH(4) and N(2)O emissions, soil temperature, C and water content were monitored in CA and CT treatments in 2010-2011. The cumulative GHG emitted were similar for CA and CT in both years, but the C content in the 0-60 cm layer was higher in CA (117.7 Mg C ha(-1)) than in CT (69.7 Mg C ha(-1)). The net global warming potential (GWP) of CA (considering soil C sequestration, GHG emissions, fuel use, and fertilizer and seeds production) was -7729 kg CO(2) ha(-1) y(-1) in 2008-2009 and -7892 kg CO(2) ha(-1) y(-1) in 2010-2011, whereas that of CT was 1327 and 1156 kg CO(2) ha(-1) y(-1). It was found that the contribution of CA to GWP was small compared to that of CT. PMID:22687433

  18. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  19. Implications of agricultural encroachment on the carbon and greenhouse gas dynamics in tropical African wetlands.

    NASA Astrophysics Data System (ADS)

    Saunders, Matthew; Kansiime, Frank; Jones, Michael

    2015-04-01

    Cyperus papyrus L. (papyrus) wetlands dominate the permanently inundated wetlands of tropical East Africa and support the livelihoods of millions of people in rural sub-Saharan Africa through the provision of multiple ecosystem services such as the supply of drinking water, fish protein, building materials and biofuels. These wetlands are also extremely important in local and regional scale biogeochemical cycles due to their extensive spatial distribution, high rates of photosynthetic carbon dioxide (CO2) assimilation, long-term carbon (C) sequestration in the form of peat and the control of water loss through evapotranspiration. However, these wetlands are facing significant anthropogenic pressures due to the increasing demand for agricultural land where the papyrus plants are removed and replaced with subsistence crops such as cocoyam (Colocasia esculenta). Eddy covariance measurements were made on an undisturbed papyrus wetland and a cocoyam dominated wetland on the Ugandan shoreline of Lake Victoria to better understand the impacts of agricultural encroachment on the C sequestration potential of these wetlands. Peak rates of net photosynthetic CO2 assimilation at the papyrus wetland were over 40 μmol CO2 m-2 s-1, even under increasing vapour pressure deficit (≥2 kPa), while maximum rates of assimilation at the cocoyam site were 28 μmol CO2 m-2 s-1. Annual rates of papyrus net primary productivity (NPP) were amongst the highest recorded for wetland systems globally (3.09 kg C m-2 yr-1) and the continual regeneration of the papyrus plants, due to an absence of pronounced seasonal climatic variability, can lead to significant C accumulation in the above and belowground biomass (≥88 t C ha-1). Where these wetlands remain inundated and anaerobic conditions prevail, significant detrital and peat deposits can form further increasing the combined C sink capacity of these ecosystems to over 700 t C ha-1. The C sink strength of these wetlands is however offset by

  20. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    NASA Astrophysics Data System (ADS)

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  1. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  2. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect

    Rigby, H.; Smith, S.R.

    2013-12-15

    , indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  3. Intermittent spring flooding of agricultural fields will increase net global-warming potential of greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smyth, E. M.; Smith, C. M.; Kantola, I. B.; Krichels, A.; Yang, W. H.; DeLucia, E. H.

    2014-12-01

    The U.S. Corn Belt is currently a net source of carbon dioxide and nitrous dioxide to the atmosphere but is also a weak sink for methane. Climate change is projected to increase the frequency and duration of spring precipitation in the North American Midwest, resulting in intermittent flooding and ponding in agricultural fields. Inundation changes the greenhouse gas (GHG) fluxes of the soil, especially by promoting methanogenesis under anoxic conditions. DNA and 16S cDNA sequencing results of earlier, similar experiments confirmed the presence of methanogens in soil samples, albeit in low abundance (representing <0.01% of reads per sample). We installed collars into bare ground of a central Illinois research field to experiment with flooding conditions and observe changes in gas fluxes, microbial community, and soil chemistry. We established three treatments of five replicates—control, continuously flooded, and intermittently flooded—each with separate collars for gas flux measurements, soil sample collection, and soil probe measurements. A drip irrigation system flooded the headspaces of the collars to produce flooding events. The continuously flooded collars were maintained in a flooded condition for the duration of the experiment, and the intermittently flooded collars were flooded for 72 hours per flooding event and then kept dry for at least 5 days before the next flooding event. We measured net concentrations of N2O, CH4, and CO2 in situ using a static chamber connected to a cavity ringdown spectrometer. We found that the periodicity of wetting and drying events induces hysteresis effects that push GHG shifts to occur rapidly (< 1 hr). Integrating fluxes across the period of the experiment, the intermittently flooded collars showed 88.7% higher global-warming potential of GHG fluxes at the 100-year horizon versus control, with most of change driven by increased net CO2 flux (87.1% higher) and net methane flux (29 times higher). These data indicate that

  4. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  5. Greenhouse gas emissions tool

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Power plants were the largest stationary source of direct greenhouse gas (GHG) emissions in the United States in 2010, according to data from the Environmental Protection Agency's (EPA) GHG Reporting Program, the agency announced on 11 January. The GHG data set, which includes reports from more than 6700 facilities, provides information that the public can search to identify local sources of emissions and that businesses can use to track emissions. Gina McCarthy, assistant administrator for EPA's Office of Air and Radiation, said the program is “a transparent, powerful data resource available to the public” and that it provides “a critical tool” for businesses and others to find efficiencies to reduce emissions.

  6. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    PubMed

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. PMID:25958357

  7. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India.

    PubMed

    Pretty, J N; Ball, A S; Xiaoyun, Li; Ravindranath, N H

    2002-08-15

    This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome. PMID:12460495

  8. Greenhouse gas emissions from dairy farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reduction of greenhouse gas emissions is becoming more important throughout the world. As a result, scientists and policymakers have sought cost-effective methods of reducing global emissions. One such proposed method is to sequester carbon in soil, particularly land used for agriculture. This p...

  9. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  10. Midwestern Greenhouse Gas Reduction Accord

    SciTech Connect

    2007-07-01

    The Midwestern Greenhouse Gas Reduction Acccord, or Midwestern Greenhouse gas Accord (MGA), is a regional agreement by governors of the states in the US Midwest and one Canadian province to reduce greenhouse gas emissions to combat climate change. Signatories to the accord include the US states of Minnesota, Wisconsin, Illinois, Indiana, Iowa, Michigan, Kansas, Ohio and South Dakota, and the Canadian Province of Manitoba. The accord, signed on November 15, 2007, established the Midwestern Greenhouse Gas Reduction Program, which aims to: establish greenhouse gas reduction targets and timeframes consistent with MGA member states' targets; develop a market-based and multi-sector cap-and-trade mechanism to help achieve those reduction targets; establish a system to enable tracking, management, and crediting for entities that reduce greenhouse gas emissions; and develop and implement additional steps as needed to achieve the reduction targets, such as a low-carbon fuel standards and regional incentives and funding mechanisms. The GHG registry will be managed by the Climate Registry, which manages the registry for other US state schemes. One of the first actions was to convene an Energy Security under Climate Stewardship Platform to guide future development of the Midwest's energy economy.

  11. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  12. The cost effectiveness of a policy to store carbon in Australian agricultural soils to abate greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    White, Robert E.; Davidson, Brian

    2015-07-01

    Data for cropping and pastoral enterprises in south eastern Australia were used in a cost-effectiveness analysis to assess the feasibility of abating greenhouse gas (GHG) emissions through storing soil carbon (C) as soil organic matter under the Australian government's Carbon Farming Initiative. We used the C credit value for 2013-14 of 24.15 per tonne of CO2- equivalent (CO2-e) and a C storage rate of 0.5 tonne C/hectare/year for conversion of cropland to pasture. Given that a change of enterprise is driven primarily by farmer returns, we found that none of the changes were feasible at current prices, with the exception of wheat to cattle or sheep in an irrigated system, and dryland cotton to cattle or sheep. Given that our model scenario assumed the most favourable economic factors, it is unlikely that increased soil C storage through a change from cropping to pasture can make a significant contribution to abating Australia's CO2 emissions. However, of greater concern to society is the methane emissions from grazing cattle or sheep, which would negate any gain in soil C under pasture, except for a switch from dryland cropping to sheep.

  13. Greenhouse gas (CO2, CH4, N2O) flux associated with agricultural fields with residual poultry litter applied as banded and surface applied treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. One fertilization practice that can have long lasting impacts in greenhouse gas emissions is poultry litter. Poultry litter is increasingly being used as a source of fertilizer i...

  14. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  15. Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesizing of available data and suggestions for further studies

    NASA Astrophysics Data System (ADS)

    Kim, D. G.; Thomas, A. D.; Pelster, D.; Rosenstock, T. S.; Sanz-Cobena, A.

    2015-12-01

    This paper synthesizes currently available data on greenhouse gas (GHG) emissions from African natural and agricultural lands, outlines the knowledge gaps and suggests future directions and strategies for GHG emission studies. GHG emission data were collected from 42 studies conducted in 21 countries in sub-Saharan Africa (SSA). Soil GHG emissions from African natural terrestrial systems ranged from 3.3 to 57.0 Mg carbon dioxide (CO2) ha-1 y-1, -4.8 to 3.5 kg methane (CH4) ha-1 y-1 and -0.1 to 13.7 kg nitrous oxide (N2O) ha-1 y-1. Soil physical and chemical properties, rewetting, vegetation type, forest management and land-use changes were all found to be important factors affecting soil GHG emissions. Greenhouse gas emissions from African aquatic systems ranged from 5.7 to 232.0 Mg CO2 ha-1 y-1, -26.3 to 2741.9 kg CH4 ha-1 y-1 and 0.2 to 3.5 kg N2O ha-1 y-1 and were strongly affected by amount of discharge. Soil GHG emissions from African croplands ranged from 1.7 to 141.2 Mg CO2 ha-1 y-1, -1.3 to 66.7 kg CH4 ha-1 y-1 and 0.05 to 112.0 kg N2O ha-1 y-1 and N2O emission factor (EF) ranged from 0.01 to 4.1%. Soil GHG emissions in vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha-1 y-1 and 53.4 to 177.6 kg N2O ha-1 y-1 and N2O EFs ranged from 3 to 4%. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha-1 y-1 and exponentially with N application rates up to 300 kg N ha-1 y-1. The lowest yield-scaled N2O emissions were reported with N application rates ranging between 100 and 150 kg N ha-1. Overall, total CO2 eq. emissions in African natural and agricultural lands were 56.9 ± 12.7 Pg CO2 eq. y-1 and natural and agricultural lands contribute 76.3% and 23.7%, respectively. Additional GHG emission measurements throughout Africa agricultural and natural lands are urgently required to quantify annual GHG emissions and identify major control factors and mitigation options on emissions.

  16. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services. PMID:26147156

  17. Investigation of greenhouse gas emissions from a landfill site and agriculture in the UK by deployment of an in-situ FTIR

    NASA Astrophysics Data System (ADS)

    Sonderfeld, Hannah; Humpage, Neil; Jeanjean, Antoine; Leigh, Roland; Allen, Grant; Boesch, Hartmut

    2016-04-01

    The main greenhouse gases (GHG) emitted by human activities in the UK are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Understanding and quantifying their emissions is essential to monitor and guide emission reduction measures. The GAUGE (Greenhouse gAs Uk and Global Emissions) project funded by NERC aims to improve the knowledge of the UK GHG budget by an extensive measurement program. In this presentation, we focus on two important sources of these GHG: Waste and agricultural sector. We are presenting data from the deployment of an in-situ FTIR (Ecotech) for continuous and simultaneous sampling of CO2, CH4, N2O and CO with a high time resolution in the order of minutes. During a two week field campaign at a landfill site near Ipswich in August 2014, measurements were taken within a radius of 320 m of the uncovered and active area of the landfill, which was still filled with new incoming waste. The data are analysed in detail for emission ratios of CH4 to CO2. Thereby a consistent ratio in favour of CO2 is found for these emissions. We have applied a computation fluid dynamics (CFD) model, constrained with local wind measurements and a detailed topographic map of the landfill site, to the in-situ concentration data to calculate emission fluxes of the active site. Since October 2014 the FTIR has been sampling from a church tower in Glatton as part of a near surface sampling network in East Anglia focusing on regional GHG emissions from agriculture. The site is mainly influenced by south westerly winds. A clear diurnal cycle is observed in summer for CO2, CH4 and N2O, which is less pronounced in the winter months. A simulation of the methane and nitrous oxide concentrations through application of the NAME model to the EDGAR and NAEI emission inventories illustrates some shortcomings in the available emission inventories for the probed region.

  18. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    PubMed

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. PMID:26590867

  19. Greenhouse Gas Reductions: SF6

    SciTech Connect

    Anderson, Diana

    2012-01-01

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  20. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2013-04-19

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  1. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    PubMed

    Knox, Sara Helen; Sturtevant, Cove; Matthes, Jaclyn Hatala; Koteen, Laurie; Verfaillie, Joseph; Baldocchi, Dennis

    2015-02-01

    Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions. PMID:25229180

  2. Greenhouse gas emissions from soil under changing environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  3. Synthesis and modeling of greenhouse gas emissions and carbon storage in agricultural and forest systems to guide mitigation and adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the early 21st century, climate change has emerged as one of the great societal challenges. Taking effective actions to address this concern is complicated by many technological hurdles and socio-economic challenges. Agriculture is a critical player in this arena, because it disproportionately in...

  4. Reviews and syntheses: Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further studies

    NASA Astrophysics Data System (ADS)

    Kim, D.-G.; Thomas, A. D.; Pelster, D.; Rosenstock, T. S.; Sanz-Cobena, A.

    2015-10-01

    This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural and agricultural lands, outlines the knowledge gaps and suggests future directions and strategies for GHG emission studies. GHG emission data were collected from 73 studies conducted in 22 countries in sub-Saharan Africa (SSA). Soil GHG emissions from African natural terrestrial systems ranged from 3.3 to 57.0 Mg carbon dioxide (CO2) ha-1 yr-1, -4.8 to 3.5 kg methane (CH4) ha-1 yr-1 and -0.1 to 13.7 kg nitrous oxide (N2O) ha-1 yr-1. Soil physical and chemical properties, rewetting, vegetation type, forest management and land-use changes were all found to be important factors affecting soil GHG emissions. Greenhouse gas emissions from African aquatic systems ranged from 5.7 to 232.0 Mg CO2 ha-1 yr-1, -26.3 to 2741.9 kg CH4 ha-1 yr-1 and 0.2 to 3.5 kg N2O ha-1 yr-1 and were strongly affected by discharge. Soil GHG emissions from African croplands ranged from 1.7 to 141.2 Mg CO2 ha-1 yr-1, -1.3 to 66.7 kg CH4 ha-1 yr-1and 0.05 to 112.0 kg N2O ha-1 yr-1 and the N2O emission factor (EF) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers resulted in significant changes in GHG emissions but these were different for CO2 and N2O. Soil GHG emissions in vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha-1 yr-1 and 53.4 to 177.6 kg N2O ha-1 yr-1 and N2O EFs ranged from 3 to 4 %. Soil CO2 and N2O emissions from agroforestry were 38.6 Mg CO2 ha-1 yr-1 and 0.2 to 26.7 kg N2O ha-1 yr-1, respectively. Improving fallow with nitrogen (N)-fixing trees increased CO2 and N2O emissions compared to conventional croplands and type and quality of plant residue is likely to be an important control factor affecting N2O emissions. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha-1 yr-1 and increased exponentially with N application rates up to 300 kg N ha-1 yr-1. The lowest yield-scaled N2O emissions

  5. Chapter 2: Livestock and grazed land emissions. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005. Technical bulletin 1921

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : A total of 259 Tg CO2 eq. of greenhouse gasses (GHGs) were emitted from livestock, managed livestock waste, and grazed land in 2005. This represents about 49% of total emissions from the agricultural sector. Compared to the base line year (1990), emissions from this source were about 2% lower in...

  6. Net global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency: a 5 year field study

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, Z.; Liu, Y.; Xu, X.; Wang, J.; Zhang, H.; Xiong, Z.

    2015-11-01

    Our understanding of how net global warming potential (NGWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a 5 year field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on NGWP and GHGI after accounting for carbon dioxide (CO2) emissions from all sources (methane, CH4, and nitrous oxide, N2O, emissions, agrochemical inputs, Ei, and farm operations, Eo) and sinks (i.e., soil organic carbon, SOC, sequestration). For the improvement of rice yield and agronomic nitrogen use efficiency (NUE), four ISSM scenarios consisting of different nitrogen (N) fertilization rates relative to the local farmers' practice (FP) rate were carried out, namely, N1 (25 % reduction), N2 (10 % reduction), N3 (FP rate) and N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios, i.e., N1, N2, N3 and N4, significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 86 and 82 %, respectively. In addition, compared with the FP, the N1 and N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar NGWPs. The N3 and N4 scenarios remarkably increased the NGWP and GHGI by an average of 67 and 36 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  7. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  8. Eco-efficient agriculture for producing higher yields with lower greenhouse gas emissions: a case study of intensive irrigation wheat production in China

    NASA Astrophysics Data System (ADS)

    Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.

    2013-10-01

    Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.

  9. MAGGnet: An international network to foster mitigation of agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research networks provide a framework for review, synthesis, and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a greenhouse gas (GHG) research network referred to as MAGGnet (Managing Agricultural Greenhouse ...

  10. Cropping System Impacts on Greenhouse Gas Emissions in the Cool, Humid Northeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating global greenhouse gas (GHG) emissions from agriculture requires regional measurements of different production systems. A long-term potato cropping systems experiment in Maine was designed to contribute to the USDA-ARS national project entitled Greenhouse Gas Reduction through Agricultural...

  11. Biofuels and the Greenhouse Gas Factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels have been scrutinized for their potential to be used as a fuel substitute to offset a portion of the greenhouse gas (GHG) emissions produced by fossil fuel combustion. But quantifying that offset is complex. Bioenergy crops offset their greenhouse-gas contributions in three key ways: by rem...

  12. The Dairy Greenhouse Gas Model: A Tool for estimating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Animal agriculture is a recognized source of GHG emissions, but good information does not exist on the net emissions from our farms. A software tool called the Dai...

  13. Greenhouse gas (GHG) emission in organic farming. Approximate quantification of its generation at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM)

    NASA Astrophysics Data System (ADS)

    Campos, Jorge; Barbado, Elena; Maldonado, Mariano; Andreu, Gemma; López de Fuentes, Pilar

    2016-04-01

    As it well-known, agricultural soil fertilization increases the rate of greenhouse gas (GHG) emission production such as CO2, CH4 and N2O. Participation share of this activity on the climate change is currently under study, as well as the mitigation possibilities. In this context, we considered that it would be interesting to know how this share is in the case of organic farming. In relation to this, a field experiment was carried out at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM). The orchard included different management growing areas, corresponding to different schools of organic farming. Soil and gas samples were taken from these different sites. Gas samples were collected throughout the growing season from an accumulated atmosphere inside static chambers inserted into the soil. Then, these samples were carried to the laboratory and there analyzed. The results obtained allow knowing approximately how ecological fertilization contributes to air pollution due to greenhouse gases.

  14. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  15. Greenhouse gas exchange over grazed systems

    NASA Astrophysics Data System (ADS)

    Felber, R.; Ammann, C.; Neftel, A.

    2012-04-01

    Grasslands act as sinks and sources of greenhouse gases (GHG) and are, in conjunction with livestock production systems, responsible for a large share of GHG emissions. Whereas ecosystem scale flux measurements (eddy covariance) are commonly used to investigate CO2 exchange (and is becoming state-of-the-art for other GHGs, too), GHG emissions from agricultural animals are usually investigated on the scale of individual animals. Therefore eddy covariance technique has to be tested for combined systems (i.e. grazed systems). Our project investigates the ability of field scale flux measurements to reliably quantify the contribution of grazing dairy cows to the net exchange of CO2 and CH4. To quantify the contribution of the animals to the net flux the position, movement, and grazing/rumination activity of each cow are recorded. In combination with a detailed footprint analysis of the eddy covariance fluxes, the animal related CO2 and CH4 emissions are derived and compared to standard emission values derived from respiration chambers. The aim of the project is to test the assumption whether field scale CO2 flux measurements adequately include the respiration of grazing cows and to identify potential errors in ecosystem Greenhouse gas budgets.

  16. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  17. Greenhouse Gas Emissions from Dairy Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reduction of greenhouse gas emissions is becoming more important world-wide. Although research suggests that farm land can serve as a sink for carbon, animal production is also an important source of emissions. Thus, strategies must be designed to reduce or eliminate net emissions of greenhouse ...

  18. Multiagency Initiative to Provide Greenhouse Gas Information

    NASA Astrophysics Data System (ADS)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  19. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  20. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  1. Greenhouse-gas-trading markets.

    PubMed

    Sandor, Richard; Walsh, Michael; Marques, Rafael

    2002-08-15

    This paper summarizes the extension of new market mechanisms for environmental services, explains of the importance of generating price information indicative of the cost of mitigating greenhouse gases (GHGs) and presents the rationale and objectives for pilot GHG-trading markets. It also describes the steps being taken to define and launch pilot carbon markets in North America and Europe and reviews the key issues related to incorporating carbon sequestration into an emissions-trading market. There is an emerging consensus to employ market mechanisms to help address the threat of human-induced climate changes. Carbon-trading markets are now in development around the world. A UK market is set to launch in 2002, and the European Commission has called for a 2005 launch of an European Union (EU)-wide market, and a voluntary carbon market is now in formation in North America. These markets represent an initial step in resolving a fundamental problem in defining and implementing appropriate policy actions to address climate change. Policymakers currently suffer from two major information gaps: the economic value of potential damages arising from climate changes are highly uncertain, and there is a lack of reliable information on the cost of mitigating GHGs. These twin gaps significantly reduce the quality of the climate policy debate. The Chicago Climate Exchange, for which the authors serve as lead designers, is intended to provide an organized carbon-trading market involving energy, industry and carbon sequestration in forests and farms. Trading among these diverse sectors will provide price discovery that will help clarify the cost of combating climate change when a wide range of mitigation options is employed. By closing the information gap on mitigation costs, society and policymakers will be far better prepared to identify and implement optimal policies for managing the risks associated with climate change. Establishment of practical experience in providing

  2. Embodied greenhouse gas emissions in diets.

    PubMed

    Pradhan, Prajal; Reusser, Dominik E; Kropp, Juergen P

    2013-01-01

    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO(2eq.)/day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO(2eq.)/yr by 2050. PMID:23700408

  3. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  4. Greenhouse gas source identification and flux measurements using an optical remote sensing method and a photoacoustic multi-gas analyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil properties such as particle size, soil organic carbon (SOC) and moisture contents, tillage operations and crop management practices influence greenhouse gas emission or consumption patterns from agricultural lands. Greenhouse gas (GG) emissions have been measured on small field plots, although ...

  5. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  6. Overview of ARB's Greenhouse Gas Research Program

    NASA Astrophysics Data System (ADS)

    Falk, M.; Chen, Y.; Kuwayama, T.; Vijayan, A.; Herner, J.; Croes, B.

    2015-12-01

    Since the passage of the California Global Warming Solutions Act (or AB32) in 2006, California Air Resources Board (ARB) has established and implemented a comprehensive plan to understand, quantify, and mitigate the various greenhouse gas (GHG) emission source sectors in the state. ARB has also developed a robust and multi-tiered in-house research effort to investigate methane (CH4), nitrous oxide (N2O) and fluorinated gas emission sources. This presentation will provide an overview of ARB's monitoring and measurement research efforts to study the regional and local emission sources of these pollutants in California. ARB initiated the first subnational GHG Research Monitoring Network in 2010 to study the regional GHG emissions throughout the state. The network operates several high precision analyzers to study CH4, N2O, CO and CO2 emissions at strategically selected regional sites throughout California, and the resulting data are used to study the statewide emission trends and evaluate regional sources using statistical analyses and inverse modeling efforts. ARB is also collaborating with leading scientists to study important emission sources including agriculture, waste, and oil and gas sectors, and to identify "hot spot" methane sources through aerial surveys of high methane emitters in California. At the source level, ARB deploys Mobile Measurement Platforms (MMP) and flux chambers to measure local and source specific emissions, and uses the information to understand source characteristics and inform emissions inventories. Collectively, all these efforts are offering a comprehensive view of regional and local emission sources, and are expected to help in developing effective mitigation strategies to reduce GHG emissions in California.

  7. Validation of the DNDC model in order to simulate future greenhouse gas emissions and soil carbon changes from the Prairie-Pothole region of North Dakota following prairie conversion to agriculture

    NASA Astrophysics Data System (ADS)

    Suddick, E.; Phillips, R. L.; Waldron, S. E.; Davidson, E. A.

    2012-12-01

    The Prairie Pothole Region (PPR) in North America is home to a diverse range of habitats that support large populations of water fowl and other bird species. Some of the habitats such as the native prairie grasslands of the PPR are under threat due to conversion to cropland. Despite the importance of the PPR, little research has been conducted in this region to understand the impact land-use changes will have on greenhouse gas emissions and soil organic carbon storage (SOC). Therefore, process based biogeochemical models such as the Denitrification Decomposition (DNDC) model can be used to simulate the potential effects that future land-use change will have upon the cycling of carbon and nitrogen in both agricultural and non-agricultural ecosystems. The objective of this study was to validate the DNDC model for two different ecosystems within the PPR region. We aimed to test the ability of the model to predict the flux of the greenhouse gas nitrous oxide (N2O) and SOC changes in both an agricultural cropping system and a natural prairie in order to understand future land use change scenarios and forecast the change in N2O and SOC following prairie conversion to agriculture. Using a baseline climate scenario from observed daily measurements at each site, the DNDC model was tested against observed static chamber field measurements of N2O measured from April 2009 to December 2011, as well as being tested against other ancillary soil measurements (e.g., soil moisture and temperature) from an alfalfa cropping system and a native prairie grassland in the PPR of North Dakota, USA. Soils from the native prairie were classified as a non hydric clay loam with a SOC content of 0.033 kg C kg-1, where the alfalfa cropping system was a non hydric silt loam with a SOC content of 0.019 kg C kg-1. Initial results indicate that simulated N2O emissions at both sites and the change in SOC with conversion of prairie to cropland were generally in agreement with observed field

  8. Greenhouse gas induced climate change.

    PubMed

    Hegerl, G C; Cubasch, U

    1996-06-01

    Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence. PMID:24234957

  9. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China

    NASA Astrophysics Data System (ADS)

    Li, B.; Fan, C. H.; Zhang, H.; Chen, Z. Z.; Sun, L. Y.; Xiong, Z. Q.

    2015-01-01

    Field experiments were conducted to determine the effects of nitrogen (N) fertilization and biochar addition on the net global warming potential (net GWP), greenhouse gas intensity (GHGI) and net ecosystem economic budget (NEEB). These experiments were conducted in an intensive vegetable field with 4 consecutive vegetable crops in 2012 and 2013 in southeastern China. The experiment was conducted with a 32 factorial design in triplicate at N fertilizer rates of 0, 1475, 1967 kg N ha-1 and biochar rates of 0, 20, and 40 t ha-1. Although CH4 emissions were not obviously affected by N fertilization, N2O emissions increased by 27.2-116.2% and the net GWP increased by 30.6-307.2%. Consequently, the GHGI increased significantly, but vegetable yield and the NEEB did not improve. Furthermore, biochar amendments did not significantly influence CH4 emissions, but significantly decreased the N2O emissions by 1.7-25.4%, the net GWP by 89.6-700.5%, and the GHGI by 89.5-644.8%. In addition, vegetable yields significantly increased by 2.1-74.1%, which improved the NEEB. Thus, N fertilization did not increase vegetable yields or the NEEB. However, N fertilization did increase the net GWP and GHGI. In contrast, biochar additions resulted in lower N2O emissions and net GWP and GHGI, but increased vegetable yield and the NEEB in the intensive vegetable production system. Therefore, appropriate biochar amendment should be studied to combat changing climate and to improve the economic profits of vegetable production.

  10. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  11. Assessing Greenhouse Gas Emissions from University Purchases

    ERIC Educational Resources Information Center

    Thurston, Matthew; Eckelman, Matthew J.

    2011-01-01

    Purpose: A greenhouse gas (GHG) inventory was conducted for Yale University's procurement of goods and services over a one-year period. The goal of the inventory was to identify the financial expenditures resulting in the greatest "indirect" GHG emissions. This project is part of an ongoing effort to quantify and reduce the university's…

  12. 78 FR 23149 - Mandatory Greenhouse Gas Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 Mandatory Greenhouse Gas Reporting CFR Correction In Title 40 of the Code of Federal Regulations, Parts 96 to 99, revised as of July 1, 2012, on page 768, in Sec. 98.226, in...

  13. Second Greenhouse Gas Information System Workshop

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  14. Micrometeorological methods for assessing greenhouse gas flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micrometeorological methods for measuring carbon dioxide and nitrous oxide provide an opportunity for large-scale, long-term monitoring of greenhouse gas flux without the limitations imposed by chamber methods. Flux gradient and eddy covariance methods have been used for several decades to monitor g...

  15. Economic outcomes of greenhouse gas mitigation options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic outcomes of greenhouse gas (GHG) mitigation options are reviewed including reductions in tillage intensity, diversifying crop rotation, and N fertilizer management. The review indicates that, while reducing tillage can be a cost effective GHG mitigation practice, results vary by region and ...

  16. The Global Research Alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Global Research Alliance on Agricultural Greenhouse Gases was proposed by New Zealand at the United Nations Framework Convention on Climate Change Conference of the Parties (COP) in Copenhagen in 2009 and developed in partnership with the United States. This alliance now includes 32 member count...

  17. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  18. The Dairy Greenhouse Gas Emission Model: Reference Manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...

  19. Utilizing In-Situ Static Chamber Measurements and UAV Imagery for Integrated Greenhouse Gas Emissions Estimations: Assessing Environmental and Management Impacts on Agricultural Emissions for Two Paired-Watershed Sites in Vermont

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Peterson, F. S.; Wyngaard, J.

    2015-12-01

    Agricultural greenhouse gas (GHG) emissions contribute to ~10-12% of global anthropogenic emissions. While agriculture is a major source of GHG emissions, there is also great potential for mitigation, as emissions can be reduced by utilizing specific field management and fertilization strategies. This study closely monitors hay and corn fields in Vermont in two paired-watershed sites. Carbon dioxide, nitrous oxide and methane emissions were measured weekly using static chambers and a Photoacoustic Gas Sensor (PAS) across both field management treatments: conventional and mitigation. Accurately quantifying emissions from agricultural landscapes is crucial to develop and implement optimal mitigation strategies, but quantifying landscape-wide emissions is challenging. In this study, we show that both field management treatments and environmental conditions (such as field flooding from rain events) significantly affect GHG emissions, and both can be highly spatially variable even on the field-scale. Monitoring this kind of complexity across a watershed is difficult, as most current emissions quantification techniques, such as static chambers, are localized, point specific and costly. Remote sensing provides an opportunity to monitor landscapes more efficiently and cost effectively. High resolution imagery from an Unmanned Aerial Vehicle (UAV) can also provide opportunities for more accurate watershed-wide estimates of GHG emission rates based on observable agricultural field conditions and management signals, such as field flooding, fertilizer application method, and cover cropping. Satellite imagery, and even the higher resolution aerial imagery used for agricultural monitoring, do not provide the spatial or temporal resolution needed to monitor the on-field complexities that affect GHG emissions. This study combines and compares environmental and management observations from UAV imagery and in-situ field GHG emissions measurements to determine the effectiveness of

  20. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  1. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4

  2. Unexpected stimulation of soil methane uptake by bio-based residue application: An emerging property of agricultural soils offsetting greenhouse gas balance.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Reim, Andreas; Ruijs, Rienke; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; Putten, Wim H. vd.; Bodelier, Paul L. E.

    2016-04-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over two months. Unexpectedly, after amendments with specific residues we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotrophic population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus spp. may facilitate methane oxidation in the agricultural soils. Studies are under way to identify the active methane-oxidizers at near atmospheric methane concentrations using PLFA-Stable isotope probing (SIP). While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that the methane oxidation rate can be stimulated, leading to higher soil methane uptake. Moreover, the addition of

  3. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research. PMID:18839604

  4. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces

  5. Joint implementation: Biodiversity and greenhouse gas offsets

    NASA Astrophysics Data System (ADS)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  6. Joint implementation: Biodiversity and greenhouse gas offsets

    SciTech Connect

    Cutright, N.J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases form increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de janeiro during the June 19923 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled {open_quotes}Joint Implementation,{close_quotes} whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits. 6 refs., 1 tab.

  7. Global Scale DAYCENT Model Analysis of Greenhouse Gas Mitigation Strategies for Cropped Soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of native vegetation to cropland and intensification of agriculture typically result in increased greenhouse gas (GHG) emissions (mainly N2O and CH4) and more NO3 leached below the root zone and into waterways. Agricultural soils are often a source but can also be a sink of CO2. Regional...

  8. Greenhouse gas mitigation potential of dryland cropping systems in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Great Plains contain significant expanses of agricultural land dedicated to dryland cropping. Dryland cropping systems in the region that sequester soil organic carbon (SOC) and minimize nitrous oxide (N2O) emissions can serve to reduce the greenhouse gas (GHG) balance of U.S. agriculture....

  9. Greenhouse Gas Emission Mitigation And Agriculture, Trade-off Or Win-win Situation: Bioeconomic Farm Modelling In The Sudanian Area of Burkina Faso

    NASA Astrophysics Data System (ADS)

    Some, T. E.; Barbier, B.

    2015-12-01

    Climate changes talks regularly underline that developing countries' agriculture could play a stronger role in GHGs mitigation strategies and benefit from the Kyoto Protocol program of subsidies. Scientists explain that agriculture can contribute to carbon mitigation by storing more carbon in the soil through greener cropping systems. In this context, a growing number of research projects have started to investigate how developing countries agriculture can contribute to these objectives. The clean development mechanism (CDM) proposed in the Kyoto protocol is one particular policy instrument that can incite farmers to mitigate the GHG balance towards more sequestration and less emission. Some economists such as Michael Porter think that environmental regulation lead to a win-win outcome, in which case subsidies are not necessary. If it is a trade-off between incomes and the environment, subsidies are required. CDM can be mobilized to support the mitigation strategy. Agriculture implies the use of inputs. Reducing the emission implies the reduction of those inputs which will in turn imply a yield decrease. The study aims to assess whether this measure will imply a trade-off between environmental and economic objectives or a win-win situation. I apply this study to the case of small farmers in Burkina Faso through environmental instruments such as the emissions limits and agroforestry using a bioeconomic model, in which the farmers maximize their utility subject to constraints. The study finds that the limitation of emissions in annual crops production involves a trade-off. by impacting negatively their net cash come. By integrating perennial crops in the farming system, the farmers' utility increases. Around 6,118 kg are sequestrated individually. By computing the value on this carbon balance, farmers' net cash incomes go better. Then practicing agroforestry is a win-win situation, as they reach a higher level of income, and reduce emissions. Policymakers must

  10. Greenhouse-gas emissions from soils increased by earthworms

    NASA Astrophysics Data System (ADS)

    Lubbers, Ingrid M.; van Groenigen, Kees Jan; Fonte, Steven J.; Six, Johan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2013-03-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon dioxide and nitrous oxide. Hence, it remains highly controversial whether earthworms predominantly affect soils to act as a net source or sink of greenhouse gases. Here, we provide a quantitative review of the overall effect of earthworms on the soil greenhouse-gas balance. Our results suggest that although earthworms are largely beneficial to soil fertility, they increase net soil greenhouse-gas emissions.

  11. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.

    PubMed

    Morse, Jennifer L; Ardón, Marcelo; Bernhardt, Emily S

    2012-01-01

    Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions. PMID:22471089

  12. Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe.

    PubMed

    Banks, C J; Salter, A M; Chesshire, M

    2007-01-01

    The paper considers the role of anaerobic digestion in promoting good agricultural practice on farms and the contribution this would make to reducing the environmental impacts associated with manure management. There are no regulatory drivers to promote the use of digestion in Europe, and the technology has only been widely adopted where economic drivers and coherent policies have been implemented at a national level. These measures have included direct subsidy on the energy price paid for "green electricity", and exemption of tax when biogas is used as a vehicle fuel. In those countries where financial incentives are not available or where a financial penalty is incurred through the regulatory regime, the uptake of digestion has been poor. Even with subsidies, digestion of animal manures as a single substrate is not common, and countries with successful schemes have achieved this either by permitting the import of wastes onto the farm or offering bonus subsidies for the use of energy crops. Both of these measures improve the energy efficiency of the process by increasing the volumetric methane production, although concerns are expressed that attention could concentrate on energy production at the expense of improving manure management. PMID:17564382

  13. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-01

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate. PMID:22789002

  14. CO2 As An Inverse Greenhouse Gas

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.

    1984-01-01

    It is a well-known fact that mankind's burning of fossil fuels such as coal, gas and oil has significantly increased the CO2 content of Earth's atmosphere, from something less than 300 ppm (parts per million by volume) in the pre-Industrial Revolution era to a con-centration which is currently somewhat over 340 ppm. It is also fairly well established that a concentration of 600 ppm will be reached sometime in the next century. Atmospheric scientists using complex computer models of the atmosphere have predicted that such a concentration doubling will lead to a calamatous climatic warming, due to the thermal infra-red "greenhouse" properties of CO2. However, my investigation of a large body of empirical evidence suggests just the opposite. Indeed, long-term records of surface air temperature and snow cover data indicate that increasing concentrations of atmospheric CO2 may actually tend to cool the Earth and not warm it. These and other observations of the real world lead to the conclusion that, for the present composition of the Earth's atmosphere, CO2 appears to behave as an inverse greenhouse gas. A mechanism for this phenomenon is suggested; and it is then indicated how enhanced concentrations of atmospheric CO2 may be beneficial for the planet, particularly with respect to the ability of enhanced CO2 concentrations to stimulate plant growth and reduce water requirements.

  15. Competitiveness of Terrestrial Greenhouse Gas Offsets: Are They a Bridge to the Future?

    SciTech Connect

    McCarl, Bruce A.; Sands, Ronald D.

    2007-01-22

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration utilize currently known and readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from dynamic and multiple strategy viewpoints. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower carbon prices and in the near term, soil carbon and other agricultural/forestry options are important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher carbon prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system provide an increasing share of potential reductions in total U.S. greenhouse gas emissions.

  16. Greenhouse gas budgets of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Horváth, L.; Jones, S. K.

    2012-04-01

    Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the

  17. Extraction, drainage, rewetting, flooding - Patterns of greenhouse gas turnover in restoring temperate peatlands

    NASA Astrophysics Data System (ADS)

    Glatzel, Stephan

    2016-04-01

    The disturbance of natural peatlands destroys carbon sink and is often associated with nitrous oxide emissions. Therefore, the general efforts to mitigate greenhouse gas sources and to create carbon sinks also include peatland restoration. The variety of peatland type (most importantly bog or fen), use (extraction or agriculture), and restoration technique (rewetting or flooding) result in specific patterns of greenhouse gas uptake or emission. Based on examples from own work, I present an overview of the greenhouse gas turnover of following sites: • Cutover peat bogs in Eastern Canada and following rewetting, flooding, and abandonment • Drained cutover and agriculturally used peat bogs in Northern Germany and following extensive agricultural management, paludiculture, rewetting, flooding, and abandonment • Drained agriculturally used fens in Northern Germany and following flooding and paludiculture I show that rewetting, but not flooding may succeed in re-establishing long-term carbon sinks with low methane release rates comparable to the greenhouse gas turnover known from natural peatlands. Flooding risks creating, at least in the short term, extremely strong methane sources. Extensive agricultural management and paludiculture may result in low methane, carbon dioxide and nitrous oxide release rates and could be a sensible option when aiming at reconciling peatland use and protection.

  18. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration adjustment... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...

  19. Life cycle greenhouse gas emissions from bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Life cycle greenhouse gas emissions from bioenergy crops Bioenergy cropping systems could help offset greenhouse gas emissions from energy use, but quantifying that offset is complex. We conducted a life cycle assessment of a range of bioenergy cropping systems to determine the impact on net greenho...

  20. Valuation of carbon capture and sequestration under Greenhouse gas regulations

    SciTech Connect

    Lokey, Elizabeth

    2009-05-15

    The value assigned to CCS depends on the type of greenhouse gas regulation chosen and details of how the market is implemented. This article describes some ways in which CCS can be incorporated into greenhouse gas regulations, together with their implications, and how CCS is treated in current regulations for regulated entities. (author)

  1. Greenhouse gas emissions from traditional and biofuels cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  2. UK emissions of the greenhouse gas nitrous oxide

    PubMed Central

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  3. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture. PMID:25354441

  4. Greenhouse gas emissions from a managed grassland

    NASA Astrophysics Data System (ADS)

    Jones, S. K.; Rees, R. M.; Skiba, U. M.; Ball, B. C.

    2005-07-01

    Managed grasslands contribute to global warming by the exchange of the greenhouse gases carbon dioxide, nitrous oxide and methane. To reduce uncertainties of the global warming potential of European grasslands and to assess potential mitigation options, an integrated approach quantifying fluxes from all three gases is needed. Greenhouse gas emissions from a grassland site in the SE of Scotland were measured in 2002 and 2003. Closed static chambers were used for N 2O and CH 4 flux measurements, and samples were analysed by gas chromatography. Closed dynamic chambers were used for soil respiration measurements, using infrared gas analysis. Three organic manures and two inorganic fertilizers were applied at a rate of 300 kg N ha -1 a -1 (available N) and compared with a zero-N control on grassland plots in a replicated experimental design. Soil respiration from plots receiving manure was up to 1.6 times larger than CO 2 release from control plots and up to 1.7 times larger compared to inorganic treatments ( p<0.05). A highly significant ( p<0.001) effect of fertilizer and manure treatments on N 2O release was observed. Release of N 2O from plots receiving inorganic fertilizers resulted in short term peaks of up to 388 g N 2O-N ha -1 day -1. However losses from plots receiving organic manures were both longer lasting and greater in magnitude, with an emission of up to 3488 g N 2O-N ha -1 day -1 from the sewage sludge treatments. During the 2002 growing season the cumulative total N 2O flux from manure treatments was 25 times larger than that from mineral fertilizers. CH 4 emissions were only significantly increased ( p<0.001) for a short period following applications of cattle slurry. Although soil respiration in manure plots was high, model predictions and micrometeorological flux measurements at an adjacent site suggest that all plots receiving fertilizer or manure acted as a sink for CO 2. Therefore in terms of global warming potentials the contribution of N 2O from

  5. EDITORIAL: Tropical deforestation and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly K.; Herold, Martin

    2007-10-01

    Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world

  6. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... ADMINISTRATION Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal... Supplier Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on... Information Collection 3090- 00XX; Supplier Greenhouse Gas Emissions Inventory Pilot, by any of the...

  7. Software for evaluating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...

  8. Chapter 5: Quantifying greenhouse gas sources and sinks in animal production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this publication is to develop methods to quantify greenhouse gas emissions (GHG) from U.S. agriculture and forestry. This chapter provides guidance for reporting GHG emissions from animal production systems. In particular, it focuses on methods for estimating emissions from beef cat...

  9. Chapter 10 – Management to Reduce Greenhouse Gas Emissions in Western U.S. Croplands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a major activity in the western U.S. with approximately 57 million ha of harvested cropland of which 27% is irrigated; however, irrigated crops account for a high proportion of the economic returns because of their high economic value. We sought to summarize greenhouse gas (GHG) flux ...

  10. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    EPA Science Inventory

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  11. Bringing a needle to a laser fight: comparing greenhouse gas sampling methods with gas chromatography and fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As scientists, producers, policymakers, and the general public become more concerned about impacts of climate change, there is an increasing need to understand and quantify greenhouse gas emissions from agricultural practices, which often feed into global, multi-institution databases. Current best p...

  12. Estonian greenhouse gas emissions inventory report

    SciTech Connect

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  13. California's new mandatory greenhouse gas reporting regulation

    SciTech Connect

    Patrick Gaffney; Doug Thompson; Richard Bode

    2008-11-15

    Beginning in early 2009, approximately 1000 California businesses will begin reporting their greenhouse gas (GHG) emissions based on the requirements of a new regulation adopted by the California Air Resources Board (CARB) in December 2007. California's mandatory GHG reporting regulation is the first rule adopted as a requirement of the Global Warming Solutions Act of 2006, passed by the California Legislature as Assembly Bill 32 (AB 32; Nunez, Chapter 488, Statutes of 2006) and signed by Governor Arnold Schwarzenegger in September 2006. The regulation is the first of its kind in the United States to require facilities to report annual GHG emissions. In general, all facilities subject to reporting are required to report their on-site stationary source combustion emissions of CO{sub 2}, nitrous oxide (N{sub 2}O), and methane (CH{sub 4}). Some industrial sectors, such as cement producers and oil refineries, also must report their process emissions, which occur from chemical or other noncombustion activities. Fugitive emissions from facilities are required to be reported when specified in the regulation. Sulfur hexafluoride (SF{sub 6}) and hydrofluorocarbon (HFC) use is prevalent in electricity facilities and must be reported. CO{sub 2} emissions from biomass-derived fuels must be separately identified during reporting, and reporters must also provide their consumption of purchased or acquired electricity and thermal energy; these requirements will assist facilities in evaluating changes in their fossil fuel carbon footprints. 1 tab.

  14. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    NASA Astrophysics Data System (ADS)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  15. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  16. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities. PMID:19808731

  17. Integrated Belowground Greenhouse Gas Flux Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.

    2013-12-01

    Soil greenhouse gas (GHG) emissions play a significant role as biotic feedbacks to climate change. However, these complex processes, involving C, N, and O2 substrates and inhibitors, interactions with plant processes, and environmental influences of temperature, moisture, and gas transport, remain challenging to simulate in process models. Because CO2, CH4, and N2O production and consumption processes are inter-linked through common substrates and the contrasting effects of O2 as either an essential substrate or a potential inhibitor, the simulation of fluxes of any one gas must be consistent with mechanistic simulations and observations of fluxes of the other gases. Simulating the fluxes of one gas alone is a simpler task, but simulating all three gases simultaneously would provide multiple constraints and would afford greater confidence that the most important mechanisms are aptly simulated. A case in point is the challenge of resolving the apparent paradox of observed simultaneous CO2 production by aerobic respiration, CH4 uptake (oxidation), CH4 production, and N2O uptake (reduction) in the same soil profile. Consumption of atmospheric N2O should occur only under reducing conditions, and yet we have observed uptake of atmospheric CH4 (oxidation) and N2O (reduction) simultaneously. One of the great challenges of numerical modeling is determining the appropriate level of complexity when representing the most important environmental controllers. Ignoring complexity, such as simulating microbial processes with only simple Q10 functions, often results in poor model performance, because soil moisture and substrate supply can also be important factors. On the other hand, too much complexity, while perhaps mechanistically compelling, may result in too many poorly constrained parameters. Here we explore a parsimonious modeling framework for consistently integrated mechanistic and mathematical representation of the biophysical processes of belowground GHG production and

  18. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  19. Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts

    EPA Science Inventory

    Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...

  20. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  1. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  2. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  3. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  4. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. PMID:26059550

  5. 78 FR 25392 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    .... Environmental Protection Agency FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program CO... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... Greenhouse Gas Reporting Rule must submit requests for use of best available monitoring methods to...

  6. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  7. Greenhouse Gas Emission from In-situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2013-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication, which continues to be a serious and chronic problem. Two primary processes for removing excess NO3- from water are biological assimilation and denitrification. Denitrifying bacteria use NO3- as the electron acceptor for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas (GHG). A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs), though research has been limited to NO3- level reduction and omitted process mechanisms. DNBRs work by providing an anaerobic environment with plenty of organic matter (commonly woodchips) for denitrifying bacteria to flourish. While, initial results from bioreactor studies show that they can cost-effectively remove NO3-, GHG emission could be an unintended consequence. The study's goal is to determine how bioreactor design promotes microbial denitrification while limiting N2O production. It specifically focuses on expanding the body of knowledge concerning DNBRs in the areas of design implications and internal processes by measuring intermediate compounds and not solely NO3-. Nutrient samples are collected at inflow and outflow structures and tested for NO3- and nitrite (NO2-). Dissolved and headspace gas samples are collected and tested for N2O. Additional gas samples will be analyzed for naturally-occurring isotopic N2 to support proposed pathways. Designs will be analyzed both through the N2O/N2 production ratio and NO2- production caused by various residence times and inflow NO3- concentrations. High GHG ratios and NO2- production suggest non-ideal conditions or flow patterns for complete denitrification. NO3- reduction is used for comparison with previous studies. Few

  8. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    EIA Publications

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  9. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  10. Editorial and Introduction of the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

    SciTech Connect

    Dooley, James J.; Benson, Sally M.; Karimjee, Anhar; Rubin, Edward S.

    2010-03-01

    Short one page editorial to introduce the +30 peer reviewed papers contained within the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

  11. Greenhouse Gas Emissions from Three Cage Layer Housing Systems

    PubMed Central

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-01-01

    Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The

  12. Usepa Development and Use of Greenhouse Gas Emissions Information

    NASA Astrophysics Data System (ADS)

    Irving, W. N.; Wirth, T.; Weitz, M.; Hockstad, L.

    2014-12-01

    EPA uses greenhouse gas emissions data for a variety of different purposes, including the development, implementation, and assessment of mitigation policies & programs domestically and internationally. In this presentation, EPA will describe its greenhouse gas dataset requirements, how it develops and uses its own data, how it makes use of data from external providers, and some ideas for further collaboration with the research community. In particular, EPA will provide examples of the type of information and calculations used for specific sources of greenhouse gas emissions (e.g., oil & gas emissions), and how it updates its estimates for these sources on the basis of new and improved information. The presentation will also address uncertainty assessments and different types of verification approaches. The presentation will also identify key emission sources and sinks that have the highest estimated uncertainty and which could benefit from additional characterization, data collection and measurement by the research community.

  13. Description of the Use of Greenhouse Facilities by Secondary Agricultural Education Instructors in Arizona

    ERIC Educational Resources Information Center

    Franklin, Edward A.

    2008-01-01

    The purpose of this study was to determine the status and use of greenhouse laboratory facilities by secondary agricultural education instructors in Arizona. Specific objectives were to determine the number of programs with operating greenhouses, types of operating systems, how the facilities are used in the local program, level of preparation of…

  14. Effects of elevated CO2 and agricultural management on flux of greenhouse gases from soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the contribution of agriculture to climate change, flux of greenhouse gases from different cropping systems must be assessed. Measurement of soil efflux of greenhouse gases (CO2, N2O, and CH4) from conservation and conventional tillage systems that have been under the influence of eleva...

  15. Special Issue From the 4th USDA Greenhouse Gas Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  16. Greenhouse gas fluxes in response to corn stover harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils play a critical role in the mitigation of increasing levels of atmospheric greenhouse gases (GHGs) such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Identifying management strategies (fertilization, tillage, irrigation) that optimize corn stover removal rates ...

  17. Evaluation of poultry litter fertilization practices on greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of greenhouse gases (GHGs) in the atmosphere have been increasing since preindustrial times. Integrating poultry litter use into conservation agricultural systems could be a management practice for sequestering atmospheric C in soil. However, consideration for the best method for this...

  18. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  19. Economics of lifecycle analysis and greenhouse gas regulations

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces

  20. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas. PMID:22107036

  1. Wellbeing impacts of city policies for reducing greenhouse gas emissions.

    PubMed

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-12-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what 'wellbeing' is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  2. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  3. Greenhouse gas emissions from stabilization ponds in subtropical climate.

    PubMed

    Hernandez-Paniagua, I Y; Ramirez-Vargas, R; Ramos-Gomez, M S; Dendooven, L; Avelar-Gonzalez, F J; Thalasso, F

    2014-01-01

    Waste stabilization ponds (WSPs) are a cost-efficient method to treat municipal and non-toxic industrial effluents. Numerous studies have shown that WSPs are a source of greenhouse gas (GHG). However, most reports concerned anaerobic ponds (AP) and few have addressed GHG emissions from facultative (FP) and aerobic/maturation ponds (MPs). In this paper, GHG emissions from three WSP in series are presented. These WSPs were designed as anaerobic, facultative and aerobic/maturation and were treating agricultural wastewater. CH4 fluxes from 0.6 +/- 0.4 g CH4 m(-2) d(-1) in the MP, to 7.0 +/- 1.0 g CH4 m(-2) d(-1) in the (AP), were measured. A linear correlation was found between the loading rates of the ponds and CH4 emissions. Relatively low CO2 fluxes (0.2 +/- 0.1 to 1.0 +/- 0.8 g CO2 m(-2) d(-1)) were found, which suggest that carbonate/bicarbonate formation is caused by alkaline pH. A mass balance performed showed that 30% of the total chemical oxygen demand removed was converted to CH4. It has been concluded that the WSP system studied emits at least three times more GHG than aerobic activated sludge systems and that the surface loading rate is the most important design parameter for CH4 emissions. PMID:24645453

  4. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  5. Opportunities for reducing greenhouse gas emissions in tropical peatlands

    PubMed Central

    Murdiyarso, D.; Hergoualc’h, K.; Verchot, L. V.

    2010-01-01

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO2 per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO2 per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N2O emissions compared to CO2 losses remains unclear. PMID:21081702

  6. A Snapshot of Greenhouse Gas Emissions from a Cattle Feedlot.

    PubMed

    Bai, Mei; Flesch, Thomas K; McGinn, Sean M; Chen, Deli

    2015-11-01

    Beef cattle feedlots emit large amounts of the greenhouse gases (GHG) methane (CH) and nitrous oxide (NO), as well as ammonia (NH), which contributes to NO emission when NH is deposited to land. However, there is a lack of simultaneous, in situ, and nondisturbed measurements of the major GHG gas components from beef cattle feedlots, or measurements from different feedlot sources. A short-term campaign at a beef cattle feedlot in Victoria, Australia, quantified CH, NO, and NH emissions from the feedlot pens, manure stockpiles, and surface run-off pond. Open-path Fourier transform infrared (OP-FTIR) spectrometers and open-path lasers (OP-Laser) were used with an inverse-dispersion technique to estimate emissions. Daily average emissions of CH, NO, and NH were 132 (± 2.3 SE), 0, and 117 (± 4.5 SE) g animal d from the pens and 22 (± 0.7 SE), 2 (± 0.2 SE), and 9 (± 0.6 SE) g animal d from the manure stockpiles. Emissions of CH and NH from the run-off pond were less than 0.5 g animal d. Extrapolating these results to the feedlot population of cattle across Australia would mean that feedlots contribute approximately 2% of the agricultural GHG emissions and 2.7% of livestock sector emissions, lower than a previous estimate of 3.5%. PMID:26641350

  7. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... AGENCY 40 CFR Parts 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY..., 2010 EPA promulgated Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule... outlined for calculating greenhouse gas emissions for the petroleum and natural gas systems source...

  8. Managing greenhouse gas emission in the indian aluminum industry

    NASA Astrophysics Data System (ADS)

    Mahadevan, H.

    2001-11-01

    Fluorocarbons are pollutants that destroy the ozone layer in the upper atmosphere and allow more ultraviolet radiation to reach the surface of the earth. Over-exposure to such radiation damages plants and greatly increases people’s risk of skin cancer. Aluminum refineries and smelters, which consume large amounts of energy, are committed to continuous improvement in greenhouse gas abatement. Although India is under no international pressure to reduce greenhouse gas emissions, the Indian aluminum industry could undertake such a commitment voluntarily. This analysis shows where immediate improvements are possible, and presents a tentative action plan for the industry.

  9. Greenhouse gas flux from tropical peatlands: context and controls

    NASA Astrophysics Data System (ADS)

    Page, Susan; Jauhiainen, Jyrki; Hooijer, Aljosja

    2010-05-01

    Peatlands play a key role within the global carbon cycle by storing a disproportionately large amount of soil carbon relative to other terrestrial ecosystems. Peatland systems have accumulated carbon through an imbalance between the uptake and release of CO2 from and to the atmosphere. In a pristine condition, tropical peat swamp forest is one of the world's most efficient carbon sequestering ecosystems as a result of substantial biomass production and the waterlogged condition of the peat, which reduces significantly the rate of organic matter decomposition. Tropical peat deposits have acted as sinks of atmospheric carbon since at least the beginning of the Holocene and, in some cases, the Late Pleistocene. They currently store ~ 65 Gt C, most of which is located in thick deposits in Southeast Asia. Tropical peatlands are, however, vulnerable to destabilisation through both human and climate induced changes. The former include poor forest and land management practices, drainage, large-scale conversion to plantation agriculture, and fire; these lead to degradation and reduction of the peatland carbon store and contribute to greenhouse gas emissions, whilst compromising other valuable ecosystem services. Climate induced changes include susceptibility to drought-impacts, particularly during ENSO-events; there are also initial indications that regional climates in areas with extensive peatlands are experiencing reduced rainfall, which threatens longer term peatland sustainability. This paper reviews the current understanding of carbon-climate-human interactions on tropical peatlands. It focuses on the main causes of peatland degradation, in particular natural and anthropogenic changes in peatland hydrology; considers the risks that hydrological change, especially water-table drawdown, poses to the peatland carbon pool; and assesses the scale of peatland drainage-associated CO2 emissions, which are currently of the order of ~250 Mt C yr-1 for Southeast Asian peatlands

  10. The economics of biomass for power and greenhouse gas reduction

    NASA Astrophysics Data System (ADS)

    Cameron, Jay Brooker

    The power cost and optimum plant size for power plants using straw fuel in western Canada was determined. The optimum size for agricultural residues is 450 MW (the largest single biomass unit judged feasible in this study), and the power cost is 50.30 MWh-1. If a larger biomass boiler could be built, the optiμm project size for straw would be 628 MW. For a market power price of 40 MWh-1 the cost of the GHG credit generated by a straw-fired plant is 11 tonne-1 CO2. Straw was evaluated as a possible supplement to the primary coal fuel at the Genesee power station in order to reduce the greenhouse gas (GHG) emissions intensity. Cofiring straw at the Genesee power station does not compete favorably with other GHG abatement technologies, even the lowest cost option is estimated at 22 tonne-1 CO2. The cost of transporting wood chips by truck and by pipeline as a water slurry is determined. The pipeline would be economical at large capacity (>0.5 M dry tonnes per year for a one way pipeline, and >1.25 M dry tonnes per year for a two way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km (one way) and >470 km (two way) at a capacity of 2 M dry tonnes per year). Pipelining was determined to be unsuitable for combustion applications. Pipeline transport of corn is evaluated against a range of truck transport costs. At 20% solids, pipeline transport of corn stover costs less than trucking at capacities in excess of 1.4 M dry tonnes/yr when compared to a mid range of truck transport. Pipelining of corn stover gives the opportunity to conduct simultaneous transport and saccharification (STS) but would require a source of waste heat at the pipeline inlet in order to be economical. Transport of corn stover in multiple pipelines offers the opportunity to develop a large ethanol fermentation plant, avoiding some of the diseconomies of scale that arise from smaller plants whose capacities are limited by issues of truck congestion

  11. [Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem].

    PubMed

    Li, Jian-zheng; Wang, Ying-chun; Wang, Li-gang; Li, Hu; Qiu, Jian-jun; Wang, Dao-long

    2015-01-01

    In spite of the increasing studies on greenhouse gas (GHG) emissions mitigation technologies, there is still a lack of systematic indices for evaluation of their overall impacts in croplands. In this study, we collected all the indices relating to greenhouse gas emissions and analyzed each index following the principles of representativeness, objectivity, completeness, dominance and operability. Finally, we proposed evaluation indices for mitigation technologies based on the current situation of China. Crop yield per unit area was proposed as a constrained index, and greenhouse gas emissions intensity, defined as GHG emissions per unit of produced yield, was proposed as comprehensive index to evaluate the greenhouse effect of various croplands mitigation technologies. Calculation of GHG emissions intensity involved yield, change of soil organic carbon, direct N2O emissions, paddy CH4 emissions and direct and indirect emissions from inputs into croplands. By following these evaluation indices, the greenhouse effect of the technologies could be well evaluated, which could provide scientific basis for their further adoption. PMID:25985682

  12. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  13. Influence of Organic Agriculture on the Net Greenhouse Effect in the Red River Valley, Minnesota

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.

    2004-12-01

    Fluxes for the suite of biologically-produced greenhouse gases (CH4, N2O and CO2) are strongly influenced by agriculture, yet the influence of organic agriculture on all three gases, which comprise the net greenhouse effect (GHE), is not clear in the context of large-scale agricultural production. Greenhouse gas mitigation potential will depend upon the net balance for all three gases [GHE balance (CO2 equiv.)= CO2 flux+ 23CH4flux + 296N2Oflux]. On-farm, field-scale experiments were performed to test the hypothesis that the net GHE at the soil-atmosphere interface is reduced under organic wheat production, compared with conventional, and that effects vary inter-seasonally. Trace gas fluxes were measured at the soil-atmosphere interface for organic and conventional wheat farms in the Red River Valley, Minnesota, one of the most productive agricultural regions in the US. We utilized 40-60 ha field pairs planted with hard red spring wheat (Triticum aestivum L.). Treatment pairs were located 6km apart and consisted of fields continuously cropped for wheat/soybean/sugar beet production for over 20 yr. Ten random, permanent points were generated for each 8.1 ha sub-plot nested inside each field. Each field pair was similar with respect to crop, climate, cultivation history, tillage, rotation, soil texture, pH, macronutrients, bulk density, and water holding capacity. Differences between treatments for the last five years were soil amendments (compost or urea) and herbicide/fungicide application versus mechanical weed control. We collected gas fluxes at each of the 41 points from April (wheat emergence) until the end of July (maturity) to determine the hourly and seasonally integrated net GHE for each management practice, given similar soil/plant/climatic conditions. Moreover, we analyzed inter-seasonal variability to determine the relationship between wheat phenology and flux under field conditions for soil temperature and moisture (water-filled pore space). The net GHE

  14. Agriculture, greenhouse, wetland and other beneficial uses of geothermal fluids and heat

    SciTech Connect

    Schmitt, R.C.

    1981-04-05

    The status for related beneficial uses including agriculture, greenhousing, and geothermal wetlands is presented. Data published for the geothermal fluids found in areas of China have been examined and compared with the geothermal fluids used in the agriculture evaluations in the United States. This comparison indicates that the geothermal fluids found in parts of China are similar to those used in the US agriculture experiments. Greenhousing is addressed largely from the standpoint of hardware systems and technology being employed or being proposed in the United States.

  15. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%. PMID:18983094

  16. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  17. 78 FR 19605 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... AGENCY 40 CFR Part 98 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request... published a direct final rule, Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method... petroleum and natural gas systems source category of the Greenhouse Gas Reporting Rule are required...

  18. Intertemporal Regulatory Tasks and Responsibilities for Greenhouse Gas Reductions

    ERIC Educational Resources Information Center

    Deason, Jeffrey A.; Friedman, Lee S.

    2010-01-01

    Jurisdictions are in the process of establishing regulatory systems to control greenhouse gas emissions. Short-term and sometimes long-term emissions reduction goals are established, as California does for 2020 and 2050, but little attention has yet been focused on annual emissions targets for the intervening years. We develop recommendations for…

  19. The Role of Nuclear Power in Reducing Greenhouse Gas Emissions

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge As this chapter will point out, nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to gr...

  20. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  1. Institutionalizing a Greenhouse Gas Emission Reduction Target at Yale

    ERIC Educational Resources Information Center

    Rauch, Jason N.; Newman, Julie

    2009-01-01

    Purpose: The purpose of this paper is to analyze the development and implementation of how a greenhouse gas GHG reduction target at Yale University has resulted in broad and long-term institutional commitment. Design/methodology/approach: Interviews are conducted with key individuals representing those most directly involved in developing and…

  2. Greenhouse Gas Mitigation Options Database(GMOD)and Tool

    EPA Science Inventory

    Greenhouse Gas Mitigation Options Database (GMOD) is a decision support database and tool that provides cost and performance information for GHG mitigation options for the power, cement, refinery, landfill and pulp and paper sectors. The GMOD includes approximately 450 studies fo...

  3. PROCEEDINGS: THE 1992 GREENHOUSE GAS EMISSIONS AND MITIGATION RESEARCH SYMPOSIUM

    EPA Science Inventory

    The report documents the 1992 Greenhouse Gas Emissions and Mitigation Research Symposium held in Washington, DC, August 18-20, 1992. The symposium provided a forum for exchange of technical information on global change emissions and potential mitigation technologies. The primary ...

  4. Life cycle greenhouse gas impacts of grassland management practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from conservation and dedicated grasslands could be an important feedstock for biofuels. Estimating the carbon (C) intensity of biofuel production pathways is important in order to meet greenhouse gas (GHG) targets set by government policy. Management decisions made during feedstock producti...

  5. Assessment and mitigation of greenhouse gas emissions from feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This was an invited 45 minute oral presentation concerning assessment and mitigation of greenhouse gas emissions from feedlots. The audience at the summit (about 60 people) included university professors, environmental regulators, and producers. The presentation included a brief review of environm...

  6. Estimated Greenhouse Gas Emissions from a Representative Northeastern Dairy Farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions to the atmosphere and their potential impact on global climate change have become important concerns world-wide. Livestock production systems, such as dairy farms, provide both sinks and sources for GHG emissions. Farmland can serve as a carbon sink by providing a lon...

  7. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  8. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  9. Greenhouse gas emissions from municipal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    by a person in Germany or Austria (10.6 t CO2e/p/a, UBA, 2016). The results indicate that GHG emissions from WWTP have at global scale a small impact, as also highlighted by the Austrian national inventory report (NIR, 2015), where the estimated CO2e emissions from WWTPs account for only 0.23% of the total CO2e emission in Austria. References IPCC (2006). Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Program, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Anabe K. (eds). Published: IGES, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/. NIR (2015). Austria's National Inventory Report 2015. Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Reports, Band 0552, ISBN: 978-3-99004-364-6, Umweltbundesamt, Wien. Parravicini V., Valkova T., Haslinger J., Saracevic E., Winkelbauer A., Tauber J., Svardal K., Hohenblum P., Clara M., Windhofer G., Pazdernik K., Lampert C. (2015). Reduktionspotential bei den Lachgasemissionen aus Kläranlagen durch Optimierung des Betriebes (ReLaKO). The research project was financially supported by the Ministry for agriculture, forestry, Environment and Water Management. Project leader: TU Wien, Institute for Water Quality, Ressources and Waste Management; Project partner: Umweltbundesamt GmbH. Final report: http://www.bmlfuw.gv.at/service/publikationen/wasser/Lachgasemissionen---Kl-ranlagen.html. UBA (2016). German average carbon footprint. Umweltbundesamt, Januar 2016, http://uba.klimaktiv-co2-rechner.de/de_DE/page/footprint/

  10. Characteristics of WWTP sludge after drying in greenhouse for agricultural purposes.

    PubMed

    Lima, Márcia Regina Pereira; Zandonade, Eliana; Sobrinho, Pedro Alem

    2012-01-01

    The sludge generated by sewage treatment which meets regulatory standards can be used in agriculture. With this understanding, the focus of this study is the evaluation of the agricultural characteristics and inorganic substances in excess activated sludge, which was subjected to drying in a greenhouse. The variables (factor) evaluated during the drying process were: type of sludge (digested or not digested), addition of lime to the sludge, and the physical layout and rotation of sludge in the greenhouse. The parameters monitored for this assessment were moisture, volatile solids and pH. The greenhouse cover and sides were made of translucent plastic to allow the penetration of solar radiation and prevent water from entering. A impermeable floor was used. The sludge was generated in sewage treatment plants located in the metropolitan region of Grande Vitória, Espírito Santo, Brazil. The solar drying of wastewater sludge in a greenhouse presented satisfactory results. PMID:22864431

  11. Quantifying greenhouse gas mitigation potential of cropland management practices: A review of the GRA croplands research group greenhouse gas network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-national greenhouse gas (GHG) flux networks play a central role facilitating model development and verification while concurrently identifying critical research needs. In 2012, a network was established within Component 1 of the Global Research Alliance (GRA) Croplands Research Group. The ne...

  12. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    ERIC Educational Resources Information Center

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  13. Fractal dimension analysis of landscape scale variability in greenhouse gas production potentials

    NASA Astrophysics Data System (ADS)

    da Silva Bicalho, Elton; Spokas, Kurt; La Scala, Newton, Jr.

    2015-04-01

    Soil greenhouse gas emission is influenced by tillage and management practices that modify soil attributes directly related to the dynamics of soil carbon in the agricultural environment. The aim of this study was to assess the soil CO2 and N2O production potentials and their spatial variability characterized by fractal dimension in different scales, in addition to their correlation with other soil attributes. The quantification of soil CO2 and N2O production was carried out from dry soil samples collected in a grid of 50 × 50 m containing 133 points arranged symmetrically on a sugarcane area under green residue management in southern Brazil. Laboratory incubations were used to analyze greenhouse gas dynamics by gas chromatography. Soil CO2 and N2O production were correlated significantly (P < 0.05) with microbial biomass, silt and clay content, pH, available phosphorus, sum of metal cations (bases), and cation exchange capacity. Similarly, these soil attributes also were correlated with microbial biomass, supporting their role in soil microbial activity and greenhouse gas production. Furthermore, variations in the fractal dimension over the scale indicate that the pattern of the spatial variability structure of soil CO2 production potential was correlated to that observed for microbial biomass, pH, available phosphorus, sum of bases, and cation exchange capacity. On the other hand, only the spatial structure of the clay content, pH and the sum of bases were correlated with the soil N2O production. Therefore, examining the fractal dimension enables the spatially visualization of altering processes across a landscape at different scales, which highlights properties that influence greenhouse gas production and emission in agricultural areas.

  14. Greenhouse gas scenario in Indian continent

    NASA Astrophysics Data System (ADS)

    Singh, T. N.

    1999-12-01

    Global climate change depicts energy exchange balance between the earth and atmosphere and the space. The balance is affected by human activities -- burning of fuel -- fossil or biological generating carbon dioxide, nitrous oxide or trace gases. Accumulation of these gases in the atmosphere may follow intensification of green house effect and cause global sea warming. Warming may affect agriculture, forestry, water resources and rising or falling of levels. The burning of fuel is for the generation of commercial energy -- electricity, household energy -- cooking, heating or burning of bushes, waste product and biomass. The world population distribution reveals heavy tilt in terms of growth rate and the cumulative figure. Nearly 80% of the world population is in the developing economy with only 20% resource available to them. The energy demand in five major Asian developing economy for the year 1990 is summarized.

  15. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... started on October 16, 2012 (77 FR 63538). This document announces the extension of the deadline for... AGENCY 40 CFR Part 98 Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality... rule titled ``Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality...

  16. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Leadership in Environmental, Energy, and Economic Performance (74 FR 52117) in order to establish an... QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council on Environmental Quality. ACTION: Notice of Availability, Draft Guidance, ``Federal Greenhouse Gas Accounting...

  17. Greenhouse Gas Emissions from Dairy Manure Management: A Review of Field-based Studies

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Silver, W. L.

    2013-12-01

    Dairy manure is a large potential source of agriculturally-derived greenhouse gases, but few studies have compared source locations or management strategies, nor evaluated how well emissions factors capture actual emission rates. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 approach. Greenhouse gas emissions varied by several orders of magnitude from all sources due to the heterogeneity of surface conditions and manure composition, the length of sampling, and the measurement technique. Anaerobic lagoons were the largest source of methane (1097 × 591 g hd-1 d-1), over twice that from enteric fermentation (~350 g hd-1 d-1). Corrals and manure piles were the largest sources of nitrous oxide. Methane and nitrous oxide emissions from hardstandings and barn floors were negligible. Predicted methane emissions underestimated measured fluxes for slurry tanks, barns, and whole dairies. Predicted nitrous oxide emissions underestimated anaerobic lagoon fluxes but overestimated emissions from slurry tanks and barn floors. Refining these calculations requires: 1) within-site comparisons of measurement techniques, 2) multiple year data sets, 3) within-site comparisons across measurement scales, and 4) better metadata to constrain greenhouse gas emission models.

  18. Tillage and field scale controls on greenhouse gas emissions.

    PubMed

    Lee, Juhwan; Six, Johan; King, Amy P; van Kessel, Chris; Rolston, Dennis E

    2006-01-01

    There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions. PMID:16585613

  19. Requirements for a Global Greenhouse Gas Information System

    NASA Astrophysics Data System (ADS)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  20. Long-term tillage and drainage influences on greenhouse gas fluxes from a poorly-drained soil of central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive tillage practices and poorly-drained soils of Midwestern USA are the prime reasons for greenhouse gas (GHG) fluxes from agriculture. The naturally poorly-drained soils prevalent in this region require subsurface drainage for improved aeration and improved crop productivity. Soil surface GH...

  1. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues like corn stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn residue removal from a no-till, corn-soybean rotation on greenhouse gas (GHG...

  2. DairyGHG: a tool for evaluating the greenhouse gas emissions and carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on the environment have become important national and international concerns. Dairy production, along with all other animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from our farm...

  3. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  4. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  5. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  6. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  7. 78 FR 11619 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... category of the Greenhouse Gas Reporting Rule must submit requests for use of best available monitoring... address: GHGReportingRule@epa.gov . For technical information, contact the Greenhouse Gas Reporting...

  8. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  9. Towards European organisation for integrated greenhouse gas observation system

    NASA Astrophysics Data System (ADS)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  10. Effect of different agronomic practises on greenhouse gas emissions, especially N2O and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2014-05-01

    In order to achieve a reduction of greenhouse gas emissions, management practises need to be adapted by implementing sustainable land use. At first, reliable field data are required to assess the effect of different farming practises on greenhouse gas budgets. The conducted field experiment covers and compares two main aspects of agricultural management, namely an organic farming system and an integrated farming system, implementing additionally the effects of diverse tillage systems and fertilisation practises. Furthermore, the analysis of the alterable biological, physical and chemical soil properties enables a link between the impact of different management systems on greenhouse gas emissions and the monitored cycle of matter, especially the nitrogen cycle. Measurements were carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then, parcels in a field (each around 0,2-0,4 ha) with a particular interior plot set-up have been conducted. So the 20 years impacts of different tillage and fertilisation practises on soil properties including trace gases were examined. Fluxes of CH4, N2O and CO2 are monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (per point: 4 chambers, each covering 0,4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit (Flessa et al. 2002). Each chamber is sampled 3-4 times in 24 hours. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas fluxes as influenced by management practice events (fertilisation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods

  11. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-10-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  12. Emergence of the global research alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing human population pressure on the Earth is of great concern and a key reason why agricultural and natural resource sciences must be fully engaged to develop solutions for a sustainable future. Increasing population puts pressure on the demand for food, clean water, healthy soil, and a sta...

  13. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    NASA Astrophysics Data System (ADS)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The

  14. Optimization of wastewater treatment plant operation for greenhouse gas mitigation.

    PubMed

    Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C

    2015-11-01

    This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation. PMID:26292772

  15. Recent and future trends in synthetic greenhouse gas radiative forcing

    NASA Astrophysics Data System (ADS)

    Rigby, M.; Prinn, R. G.; O'Doherty, S.; Miller, B. R.; Ivy, D.; Mühle, J.; Harth, C. M.; Salameh, P. K.; Arnold, T.; Weiss, R. F.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Young, D.; Simmonds, P. G.

    2014-04-01

    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m-2 in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to "no HFC policy" projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m-2 by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.

  16. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  17. Environmental impacts of food trade via resource use and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-03-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio-economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required.

  18. Research on Greenhouse-Gas-Induced Climate Change

    SciTech Connect

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  19. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  20. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  1. Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules

    SciTech Connect

    Go, Clark Kendrick C.; Maquiling, Joel T.

    2010-07-28

    Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

  2. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  3. Greenhouse-gas payback times for crop-based biofuels

    NASA Astrophysics Data System (ADS)

    Elshout, P. M. F.; van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; van der Velde, M.; Huijbregts, M. A. J.

    2015-06-01

    A global increase in the demand for crop-based biofuels may be met by cropland expansion, and could require the sacrifice of natural vegetation. Such land transformation alters the carbon and nitrogen cycles of the original system, and causes significant greenhouse-gas emissions, which should be considered when assessing the global warming performance of crop-based biofuels. As an indicator of this performance we propose the use of greenhouse-gas payback time (GPBT), that is, the number of years it takes before the greenhouse-gas savings due to displacing fossil fuels with biofuels equal the initial losses of carbon and nitrogen stocks from the original ecosystem. Spatially explicit global GPBTs were derived for biofuel production systems using five different feedstocks (corn, rapeseed, soybean, sugarcane and winter wheat), cultivated under no-input and high-input farm management. Overall, GPBTs were found to range between 1 and 162 years (95% range, median: 19 years) with the longest GPBTs occurring in the tropics. Replacing no-input with high-input farming typically shortened the GPBTs by 45 to 79%. Location of crop cultivation was identified as the primary factor driving variation in GPBTs. This study underscores the importance of using spatially explicit impact assessments to guide biofuel policy.

  4. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models?

    NASA Astrophysics Data System (ADS)

    Kraus, David; Weller, Sebastian; Janz, Baldur; Klatt, Steffen; Santabárbara, Ignacio; Haas, Edwin; Werner, Christian; Wassmann, Reiner; Kiese, Ralf; Butterbach-Bahl, Klaus

    2016-04-01

    Paddy rice cultivation is increasingly challenged by physical and economic irrigation water scarcity. This already results in the trend of converting paddy rice to upland crop cultivation (e.g., maize, aerobic rice) in large parts of South East Asia. Such land management change from flooded lowland systems to well-aerated upland systems drastically affects soil C and N cycling and related emissions of greenhouse gases. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will most likely increase. In addition to such fast evolving 'pollution swapping' it is expected that on longer time scales significant amounts of soil organic carbon (SOC) stocks will be lost in form of carbon dioxide (CO2). Within the DFG-funded research unit ICON (Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water cycles), we investigated environmental impacts of land management change from historical paddy rice cultivation to the upland crops maize and aerobic rice at experimental sites at the International Rice Research Institute (IRRI), the Philippines. To present, more than three years of continuous measurement data of CH4 and N2O emissions under different fertilization regimes have been collected. In addition, measurements of SOC contents and bulk densities in different soil horizons allow for an overall very good characterization of the environmental impacts of mentioned land management change. In this contribution we will show how well mentioned land management change effects in tropical agricultural systems can be represented and thus better understood by the help of process-based biogeochemical models. Seasonal emissions of CH4 and N2O are simulated with r2 values of 0.85 and 0.78 and average underestimations of 15 and 14 %, respectively. These underestimations predominantly originate from treatments in which no fertilizer is applied (CH4) as well as uncertainties of soil hydrology (N2O). Long

  5. Preface to book entitled: Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric greenhouse gas (GHG) absorbs and emits radiation within the thermal infrared range, a natural process that regulates the temperature of the Earth. Long-term changes in GHG emission could negatively or positively affect global surface temperature (USGCRP, 2009). The abatement of climate...

  6. Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas.

    PubMed

    de Ruiter, Henri; Macdiarmid, Jennie I; Matthews, Robin B; Kastner, Thomas; Smith, Pete

    2016-01-01

    Producing sufficient, healthy food for a growing world population amid a changing climate is a major challenge for the twenty-first century. Agricultural trade could help alleviate this challenge by using comparative productivity advantages between countries. However, agricultural trade has implications for national food security and could displace environmental impacts from developed to developing countries. This study illustrates the global effects resulting from the agricultural trade of a single country, by analysing the global cropland and greenhouse gas impacts of the UK's food and feed supply. The global cropland footprint associated with the UK food and feed supply increased by 2022 kha (+23%) from 1986 to 2009. Greenhouse gas emissions (GHGE) associated with fertilizer and manure application, and rice cultivation remained relatively constant at 7.9 Mt CO2e between 1987 and 2008. Including GHGE from land-use change, however, leads to an increase from 19.1 in 1987 to 21.9 Mt CO2e in 2008. The UK is currently importing over 50% of its food and feed, whereas 70% and 64% of the associated cropland and GHGE impacts, respectively, are located abroad. These results imply that the UK is increasingly reliant on external resources and that the environmental impact of its food supply is increasingly displaced overseas. PMID:26740576

  7. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

    NASA Astrophysics Data System (ADS)

    de Faria, Felipe A. M.; Jaramillo, Paulina; Sawakuchi, Henrique O.; Richey, Jeffrey E.; Barros, Nathan

    2015-12-01

    Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models’ uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.

  8. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  9. Nutrient removal and greenhouse gas emissions in duckweed treatment ponds.

    PubMed

    Sims, Atreyee; Gajaraj, Shashikanth; Hu, Zhiqiang

    2013-03-01

    Stormwater treatment ponds provide a variety of functions including sediment retention, organic and nutrient removal, and habitat restoration. The treatment ponds are, however, also a source of greenhouse gases. The objectives of this study were to assess greenhouse gas (CH(4), CO(2) and N(2)O) emissions in duckweed treatment ponds (DWPs) treating simulated stormwater and to determine the role of ammonia-oxidizing organisms in nutrient removal and methanogens in greenhouse gas emissions. Two replicated DWPs operated at a hydraulic retention time (HRT) of 10 days were able to remove 84% (± 4% [standard deviation]) chemical oxygen demand (COD), 79% (± 3%) NH(4)(+)-N, 86% (± 2%) NO(3)(-)-N and 56% (± 7%) orthophosphate. CH(4) emission rates in the DWPs ranged from 502 to 1900 mg CH(4) m(-2) d(-1) while those of nitrous oxide (N(2)O) ranged from 0.63 to 4 mg N(2)O m(-2) d(-1). The CO(2) emission rates ranged from 1700 to 3300 mg CO(2) m(-2) day(-1). Duckweed coverage on water surface along with the continued deposit of duckweed debris in the DWPs and low-nutrient influent water created a low dissolved oxygen environment for the growth of unique ammonia-oxidizing organisms and methanogens. Archaeal and bacterial amoA abundance in the DWPs ranged from (1.5 ± 0.2) × 10(7) to (1.7 ± 0.2) × 10(8) copies/g dry soil and from (1.0 ± 0.3) × 10(3) to (1.5 ± 0.4) × 10(6) copies/g dry soil, respectively. The 16S rRNA acetoclastic and hydrogenotrophic methanogens ranged from (5.2 ± 0.2) × 10(5) to (9.0 ± 0.3) × 10(6) copies/g dry soil and from (1.0 ± 0.1) × 10(2) to (5.5 ± 0.4) × 10(3) copies/g dry soil, respectively. Ammonia-oxidizing archaea (AOA) appeared to be the dominant nitrifiers and acetoclastic Methanosaeta was the major methanogenic genus. The results suggest that methane is the predominant (>90%) greenhouse gas in the DWPs, where the relatively low stormwater nutrient inputs facilitate the growth of K-strategists such as AOA and Methanosaeta that may

  10. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  11. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  12. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. PMID:25044806

  13. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ..., ``Federal Leadership in Environmental, Energy, and Economic Performance'' (74 FR 52117), in order to... QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council On Environmental Quality. ACTION: Notice of Availability, Draft Revised Guidance, ``Federal Greenhouse...

  14. Emissions of greenhouse gases from agriculture, land-use change, and forestry in the Gambia.

    PubMed

    Jallow, B P

    1995-01-01

    The Gambia has successfully completed a national greenhouse gas emissions inventory based on the results of a study funded by the United Nations Environment Programme (UNEP)/Global Environment Facility (GEF) Country Case Study Program. The concepts of multisectoral, multidisciplinary, and interdisciplinary collaboration were most useful in the preparation of this inventory. New data were gathered during the study period, some through regional collaboration with institutions such as Environment and Development in the Third World (ENDA-TM) Energy Program and the Ecological Monitoring Center in Dakar, Senegal, and some through national surveys and the use of remote sensing techniques, as in the Bushfires Survey. Most of the data collected are used in this paper. The Intergovernmental Panel on Climate Change/Organisation for Economic Co-operation and Development/International Energy Agency (IPCC/OECD/IEA) methodology is used to calculate greenhouse gas emissions. Many of the default data in the IPCC/OECD/IEA methodology have also been used. Overall results indicate that in the biomass sectors (agriculture, forestry, and land-use change) carbon dioxide (CO2) is emitted most, with a total of 1.7 Tg. This is followed by methane (CH4), 22.3 Gg; carbon monoxide (CO), 18.7 Gg; nitrogen oxides (NOx), 0.3 Gg; and nitrous oxide (N2O), 0.014 Gg. The Global Warming Potential (GWP) was used as an index to describe the relative effects of the various gases reported here. Based on the emissions in The Gambia in 1993, it was found that CO2 will contribute 75%, CH4 about 24.5%, and N2O 0.2% of the warming expected in the 100-year period beginning in 1993. The results in this analysis are limited by the shortcomings of the IPCC/OECD/IEA methodology and scarce national data. Because the methodology was developed outside of the developing world, most of its emissions factors and coefficients were developed and tested in environments that are very different from The Gambia. This is likely

  15. Globally significant greenhouse-gas emissions from African inland waters

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Darchambeau, François; Teodoru, Cristian R.; Marwick, Trent R.; Tamooh, Fredrick; Geeraert, Naomi; Omengo, Fredrick O.; Guérin, Frédéric; Lambert, Thibault; Morana, Cédric; Okuku, Eric; Bouillon, Steven

    2015-08-01

    Carbon dioxide emissions to the atmosphere from inland waters--streams, rivers, lakes and reservoirs--are nearly equivalent to ocean and land sinks globally. Inland waters can be an important source of methane and nitrous oxide emissions as well, but emissions are poorly quantified, especially in Africa. Here we report dissolved carbon dioxide, methane and nitrous oxide concentrations from 12 rivers in sub-Saharan Africa, including seasonally resolved sampling at 39 sites, acquired between 2006 and 2014. Fluxes were calculated from published gas transfer velocities, and upscaled to the area of all sub-Saharan African rivers using available spatial data sets. Carbon dioxide-equivalent emissions from river channels alone were about 0.4 Pg carbon per year, equivalent to two-thirds of the overall net carbon land sink previously reported for Africa. Including emissions from wetlands of the Congo river increases the total carbon dioxide-equivalent greenhouse-gas emissions to about 0.9 Pg carbon per year, equivalent to about one quarter of the global ocean and terrestrial combined carbon sink. Riverine carbon dioxide and methane emissions increase with wetland extent and upland biomass. We therefore suggest that future changes in wetland and upland cover could strongly affect greenhouse-gas emissions from African inland waters.

  16. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina."The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding," said Michael Zammit Cutajar, executive secretary of the convention. "In Buenos Aires, governments will try to establish the rules of the game for reaching these targets.""

  17. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina.“The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding,” said Michael Zammit Cutajar, executive secretary of the convention. “In Buenos Aires, governments will try to establish the rules of the game for reaching these targets."”

  18. The challenge of identifying greenhouse gas-induced climatic change

    NASA Technical Reports Server (NTRS)

    Maccracken, Michael C.

    1992-01-01

    Meeting the challenge of identifying greenhouse gas-induced climatic change involves three steps. First, observations of critical variables must be assembled, evaluated, and analyzed to determine that there has been a statistically significant change. Second, reliable theoretical (model) calculations must be conducted to provide a definitive set of changes for which to search. Third, a quantitative and statistically significant association must be made between the projected and observed changes to exclude the possibility that the changes are due to natural variability or other factors. This paper provides a qualitative overview of scientific progress in successfully fulfilling these three steps.

  19. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  20. A new Masters program in Greenhouse Gas Management and Accounting at Colorado State University

    NASA Astrophysics Data System (ADS)

    Conant, R. T.; Ogle, S. M.

    2015-12-01

    Management guru Peter Drucker said that "what gets measured gets managed." But the unstated implication is that what doesn't get measured doesn't get managed. Accurate quantification of greenhouse gas mitigation efforts is central to the clean technology sector. Very soon professionals of all kinds (business people, accountants, lawyers) will need to understand carbon accounting and crediting. Over the next few decades food production is expected to double and energy production must triple in order to meet growing global demands; sustainable management of land use and agricultural systems will be critical. The food and energy supply challenges are inextricably linked to the challenge of limiting anthropogenic impacts on climate by reducing the concentration of greenhouse gases (GHG) in the atmosphere. To avoid serious disruption of the climate system and stabilize GHG concentrations, society must move aggressively to avoid emissions of CO2, CH4, and N2O and to actively draw down CO2 already in the atmosphere. A new cadre of technically adept professionals is needed to meet these challenges. We describe a new professional Masters degree in greenhouse gas management and accounting at Colorado State University. This effort leverages existing, internationally-recognized expertise from across campus and partners from agencies and industry, enabling students from diverse backgrounds to develop the skills needed to fill this emerging demand.

  1. Monitoring soil greenhouse gas emissions from managed grasslands

    NASA Astrophysics Data System (ADS)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  2. Greenhouse gas emissions in the state of Morelos, Mexico: a first approximation for establishing mitigation strategies.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Sánchez-Salinas, Enrique; Castrejón-Godínez, María Luisa; Ortiz-Hernández, Ma Laura

    2013-11-01

    In this study, the authors report the first greenhouse gas emission inventory of Morelos, a state in central Mexico, in which the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have been identified using the Intergovernmental Panel on Climate Change (IPCC) methodology. Greenhouse gas (GHG) emissions were estimated as CO2 equivalents (CO2 eq) for the years 2005, 2007, and 2009, with 2005 being treated as the base year. The percentage contributions from each category to the CO2 eq emissions in the base year were as follows: 38% from energy, 30% from industrial processes, 23% from waste, 5% from agriculture, and 4% from land use/land use change and forestry (LULUCF). As observed in other state inventories in Mexico, road transportation is the main source of CO2 emissions, wastewater handling and solid waste disposal are the main sources of CH4 emissions, and agricultural soils are the source of the most significant N2O emissions. The information reported in this inventory identifies the main emission sources. Based on these results, the government can propose public policies specifically designed for the state of Morelos to establish GHG mitigation strategies in the near future. PMID:24344573

  3. Greenhouse gas emission associated with sugar production in southern Brazil

    PubMed Central

    2010-01-01

    Background Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern. Here we analyze some data characterizing various activities of two sugarcane mills during the harvest period of 2006-2007 and quantify the carbon footprint of sugar production. Results According to our calculations, 241 kg of carbon dioxide equivalent were released to the atmosphere per a ton of sugar produced (2406 kg of carbon dioxide equivalent per a hectare of the cropped area, and 26.5 kg of carbon dioxide equivalent per a ton of sugarcane processed). The major part of the total emission (44%) resulted from residues burning; about 20% resulted from the use of synthetic fertilizers, and about 18% from fossil fuel combustion. Conclusions The results of this study suggest that the most important reduction in greenhouse gas emissions from sugarcane areas could be achieved by switching to a green harvest system, that is, to harvesting without burning. PMID:20565736

  4. Integrating terrestrial sequestration into a greenhouse gas management plan

    NASA Astrophysics Data System (ADS)

    Brown, Joel R.; Sampson, Neil

    Terrestrial sequestration has the potential to contribute to national and global greenhouse gas management strategies. However, spatial and temporal variability in sequestration potential and in the implementation of sequestering technologies introduces serious questions about how to resolve uncertainties and raise the credibility of terrestrial sequestration. Carbon flux in terrestrial ecosystems without land use change generally is less than one ton CO2e/ha and driven primarily by precipitation. Land use and management changes are relatively common and are driven by economics and social considerations both in the private and public sectors. Implementing a credible greenhouse gas management program that integrates terrestrial sequestration along with other sources and sinks requires a systematic approach to identify and quantitatively monitor changes in the drivers of terrestrial sequestration. A credible terrestrial sequestration monitoring program will require close attention to integrating direct measurement of soils and vegetation, statistically valid scaling, remote sensing, and computer modeling. Predicting changes at a level of confidence useful to policy development will also require an understanding of how land owners and managers respond to private sector price signals and government conservation initiatives.

  5. A Proposed Framework for Synthesis Analysis of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Lanz, A.; Berliner, M.; Braverman, A. J.

    2010-12-01

    Synthesis Analysis for greenhouse gas (GHG) emissions data refers to the “meta-integration” of many sources of GHG emissions data (beyond the standardization of related data required for a data assimilation system). This includes integration of various data types such as, but not limited to: data from multiple data assimilation systems; data from standardized economic-based emissions inventories such as the UNFCCC National Emissions Inventories (NEI) from various Annex I countries; data from non-NEI emissions inventories for sectors specified by UNFCCC as excluded; and ancillary data available from other sources. The term data integration refers to meaningful comparisons between different data sets and associated uncertainties but does not necessarily imply reduction to a single value or set of values. This analysis intends to develop a preliminary framework for development and assessment of the quality and impact of policies and decisions based on Bayesian statistical methods. It will also identify some likely data sources that will need to be synthesized for greenhouse gas emission discussions and policy products. Uncertainties and uncertainty methodologies are explored, along with suggestions for improving reporting of emissions quantities and associated uncertainties to better facilitate future data comparison.

  6. Greenhouse Gas Growth Rates from AIRS Hyperspectral Radiance Time Series

    NASA Astrophysics Data System (ADS)

    Strow, L. L.; Desouza-Machado, S. G.; Hannon, S.; Imbiriba, B.; Schou, P.

    2009-12-01

    The AIRS seven year hyperspectral radiance record provides an ideal platform for measurings growth rates of infrared active minor gases, especially carbon dioxide and methane. The largest changes in CLARREO radiances will likely be due to increasing carbon dioxide and other greenhouse gases. We have produced a 5+ year record of almost cloud-free AIRS radiances, from which we have derived the radiance anomaly and linear time rate of change. The source of these radiances are the L1b radiances corrected for small frequency drifts. Growth rates of carbon dioxide, nitrous oxide, methane, ozone, and CFC11 are simultaneously derived from zonal averages of these radiance rates for tropics, and mid-latitude northern and southern hemispheres. The effective linear rate of change of ~5 layers of water vapor and temperature, plus the surface temperature are also simultaneously derived with the minor gas rates. No model data or prior is needed and more than 1000 channels are used in the fit. Sampling issues may preclude the use of the mid-latitude temperature and water vapor rates for climate analysis, but possibly not for the tropics. The resulting greenhouse gas growth rates agree very well with in-situ measurements, which suggests high radiometric stability for AIRS. Radiance intercomparisons for climate analysis between IASI and AIRS will also be presented.

  7. 78 FR 11585 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... natural gas systems source category of the Greenhouse Gas Reporting Rule must submit requests for use of... timely withdrawal notice in the Federal Register to inform the public that this rule will not take...

  8. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment. PMID:24584642

  9. Greenhouse Gas Emissions from the Nuclear Fuel Cycle

    SciTech Connect

    Strom, Daniel J.

    2010-03-01

    Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

  10. The dynamics of grazed woodlands in southwest Queensland, Australia and their effect on greenhouse gas emissions.

    PubMed

    Moore, J L; Howden, S M; McKeon, G M; Carter, J O; Scanlan, J C

    2001-09-01

    This study outlines the development of an approach to evaluate the sources, sinks, and magnitudes of greenhouse gas emissions from a grazed semiarid rangeland dominated by mulga (Acacia aneura) and how these emissions may be altered by changes in management. This paper describes the modification of an existing pasture production model (GRASP) to include a gas emission component and a dynamic tree growth and population model. An exploratory study was completed to investigate the likely impact of changes in burning practices and stock management on emissions. This study indicates that there is a fundamental conflict between maintaining agricultural productivity and reducing greenhouse gas emissions on a given unit of land. Greater agricultural productivity is allied with the system being an emissions source while production declines and the system becomes a net emissions sink as mulga density increases. Effective management for sheep production results in the system acting as a net source (approximately 60-200 kg CO2 equivalents/ha/year). The magnitude of the source depends on the management strategies used to maintain the productivity of the system and is largely determined by starting density and average density of the mulga over the simulation period. Prior to European settlement, it is believed that the mulga lands were burnt almost annually. Simulations indicate that such a management approach results in the system acting as a small net sink with an average net absorption of greenhouse gases of 14 kg CO2 equivalents/ha/year through minimal growth of mulga stands. In contrast, the suppression of fire and the introduction of grazing results in thickening of mulga stands and the system can act as a significant net sink absorbing an average of 1000 kg CO2 equivalents/ha/year. Although dense mulga will render the land largely useless for grazing, land in this region is relatively inexpensive and could possibly be developed as a cost-effective carbon offset for

  11. Greenhouse gas emissions from septic systems in New York State

    NASA Astrophysics Data System (ADS)

    Truhlar, A. M.; Rahm, B. G.; Brooks, R. A.; Nadeau, S. A.; Walter, M. T.

    2015-12-01

    Onsite septic systems are a practical way to treat wastewater in rural or less-densely populated areas. Septic systems utilize microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). At each of nine septic systems, we measured fluxes of CH4, CO2, and N2O from the soil over the leach field and sand filter, and from the roof outlet vent. These are the most likely locations for gas emissions during normal operation of the septic system. The majority of all septic system gas emissions were released from the roof vent. However, our comparisons of the gas fluxes from these locations suggest that biological processes in the soil, especially the soil over the leach field, can influence the type and quantity of gas that is released from the system. The total vent, sand filter, and leach field GHG emissions were 0.12, 0.045, and 0.046 tonne CO2e capita-1 year-1, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the US.

  12. Inventory of US greenhouse gas emissions and sinks: 1990-2004

    SciTech Connect

    2006-04-15

    The document provides information on greenhouse gas sources and sinks and estimates of emissions and removals for the United States for 1990-2000 as well as the methods used to calculate these estimates and the uncertainties associated with them. Emissions are given by gas and source category, the latter groups being energy, industrial processes, solvent use, agriculture, land-use change and forestry, and waste. Annexes provide additional information on methodologies for estimating emissions from various sources, global warming potentials, ozone depleting substance emissions, sulphur dioxide emissions and IPCC reference approach for estimating CO{sub 2} emissions from fossil fuel combustion. The report found that US emissions rose by 15.8% from 1990 to 2004 and spiked almost 2% in 2004. CO{sub 2} makes up the bulk of GHGs, and most is released by energy producers, followed by transportation and industrial sources. However, EPA calculates that the country's global warming potential decreased because the economy grew. 7 annexes.

  13. Spatially-Explicit Estimates of Greenhouse Gas Emissions from Fire and Land-Use Change in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Spera, S. A.; Coe, M. T.; Costa, C., Jr.

    2014-12-01

    Understanding the multiple types of land-use changes that can occur within an ecosystem provides a comprehensive picture of the human's impact on natural systems. We use the Cerrado (savanna) of Brazil to examine the primary and secondary impacts of land-use change on greenhouse gas emissions. The primary land-use changes include fires for land-clearing, conversions to pasture and row-crop agriculture, and shifting management practices of agricultural lands. Secondary land-use changes include savanna degradation due to fires that escape from intended burn areas. These escape fires typically have a lower combustion completion coefficient than clearing fires, so it is important to distinguish them to correctly estimate the regional greenhouse gas budget. We have created a first-order spatio-temporal model of greenhouse gas emissions that can be easily modified for other savanna regions using globally available data products as inputs. Our data inputs are derived from publically available remote sensing imagery. Initial biomass is estimated by Baccini et al. 2012, which is derived from LiDAR and MODIS imagery. All other input data sets give annual estimates. Clearing of the savanna is documented by LAPIG of Universidade Federal de Goias using MODIS (MOD13Q1), LANDSAT and CBERS images. MODIS burned area products delineate annual fires; in combination with the savanna clearing database we determine primary and escape fires. Pastures and row-crop agriculture are documented by LAPIG and Spera et al. 2014, respectively. The row-crop agriculture dataset enables us to estimate greenhouse gas emissions associated with specific crops (e.g., soy or maize) and management (e.g., fertilizer use). Recent contributions to the literature have provided many in situ measurements from the land-use changes of interest needed to estimate a regional greenhouse gas budget, including combustion coefficients of savanna sub-types, carbon emission soil stocks, nitrogen emissions from fertilizer

  14. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  15. Adapting a weather forecast model for greenhouse gas simulation

    NASA Astrophysics Data System (ADS)

    Polavarapu, S. M.; Neish, M.; Tanguay, M.; Girard, C.; de Grandpré, J.; Gravel, S.; Semeniuk, K.; Chan, D.

    2015-12-01

    The ability to simulate greenhouse gases on the global domain is useful for providing boundary conditions for regional flux inversions, as well as for providing reference data for bias correction of satellite measurements. Given the existence of operational weather and environmental prediction models and assimilation systems at Environment Canada, it makes sense to use these tools for greenhouse gas simulations. In this work, we describe the adaptations needed to reasonably simulate CO2 with a weather forecast model. The main challenges were the implementation of a mass conserving advection scheme, and the careful implementation of a mixing ratio defined with respect to dry air. The transport of tracers through convection was also added, and the vertical mixing through the boundary layer was slightly modified. With all these changes, the model conserves CO2 mass well on the annual time scale, and the high resolution (0.9 degree grid spacing) permits a good description of synoptic scale transport. The use of a coupled meteorological/tracer transport model also permits an assessment of approximations needed in offline transport model approaches, such as the neglect of water vapour mass when computing a tracer mixing ratio with respect to dry air.

  16. Greenhouse Gas Emissions within Seasonally Flooded Tropical River Deltas

    NASA Astrophysics Data System (ADS)

    Salvador, A. K.; Schaefer, M.; Roberts, K. A.; Fendorf, S. E.; Benner, S. G.

    2015-12-01

    Soils contain the largest terrestrial carbon pool on Earth, and approximately one-third of soil carbon is stored in the tropics. Gas exchange between soil and the atmosphere occurs largely as a result of microbial degradation (mineralization) of organic carbon. The rate of soil organic matter (SOM) mineralization is determined by a combination of climatic factors and soil ecosystem properties, which dictate the dominant metabolic pathway(s) within soil at a given time; major changes in metabolic rate are particularly pronounced between aerobic and anaerobic mineralization. Here we assessed the impact of soil moisture, a major factor determining soil anaerobiosis, on greenhouse gas fluxes in a tropical, seasonally flooded wetland in the Mekong Delta. We monitored CO2, CH4, and N2O gas fluxes, porewater chemistry, and soil moisture content in a seasonal wetland. Additionally, we collected wetland soil cores (10 cm diameter) and manipulated them in the laboratory, allowing us to control soil moisture and drying rates, and to simulate multiple periods of wetting and drying. During drying, CH4 fluxes within the wetland initially increase to a maximum before decreasing as soil moisture decreases and oxygen diffusion into the soil increases. Maximum CH4 fluxes vary with moisture content, but the wettest sites produced fluxes >1000 mg C m-2 d-1 for short periods of time. As drying continues, CH4 fluxes decrease to nearly zero, and N2O fluxes begin to increase to ~3 mg N m-2 d-1 but do not appear to have reached a maximum before sampling ceased. Gas flux from soil core incubations (n=5) exhibit trends and values similar to field measurements. CH4 fluxes initially increase and reach >1000 mg C m-2 d-1 in cores while N2O fluxes reach up to 10 mg N m-2 d-1 and decrease with continued drying. CO2 fluxes in both field and laboratory are sustained until near desiccated conditions. Seasonal wetlands are characteristic of large tropical deltas. Our findings provide a means to

  17. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  18. Interactions between greenhouse gas policies and acid rain control strategies

    SciTech Connect

    Klein, D.E.; Kane, R.L.; Mansueti, L.

    1997-12-31

    Conventional wisdom and much of the public policy debate have usually drawn a clean delineation between acid rain issues and global warming concerns. This traditional approach of evaluating one policy at a time is too simplistic to serve as a framework for electric utilities making major capital investment and fuel procurement decisions to comply with various environmental requirements. Potential Climate change regulation can affect acid rain compliance decisions, and acid rain compliance decisions will affect future GHG emissions. This paper explores two categories of linkages between these different environmental issues. First, the assumptions one makes regarding future climate change policies can have a profound impact on the economic attractiveness of various acid rain compliance strategies. Second, decisions regarding acid rain compliance strategy can have greenhouse gas implications that might prove more or less difficult to address in future climate change legislation.

  19. Beyond Hammers and Nails: Mitigating and Verifying Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin Robert

    2013-05-01

    One of the biggest challenges to future international agreements on climate change is an independent, science-driven method of verifying reductions in greenhouse gas emissions (GHG) [Niederberger and Kimble, 2011]. The scientific community has thus far emphasized atmospheric measurements to assess changes in emissions. An alternative is direct measurement or estimation of fluxes at the source. Given the many challenges facing the approach that uses "top-down" atmospheric measurements and recent advances in "bottom-up" estimation methods, I challenge the current doctrine, which has the atmospheric measurement approach "validating" bottom-up, "good-faith" emissions estimation [Balter, 2012] or which holds that the use of bottom-up estimation is like "dieting without weighing oneself" [Nisbet and Weiss, 2010].

  20. Can Aerosol Forcing Compensate the Greenhouse Gas Warming?

    NASA Astrophysics Data System (ADS)

    Feichter, J.; Liepert, B.; Lohmann, U.; Roeckner, E.

    2002-12-01

    Fossil fuel combustion and biomass burning modify the chemical composition of the atmosphere by enhancing aerosol particles (AP) and greenhouse gas (GHG) concentrations. These changes induce opposite effects on temperature, i.e. warming through increasing GHG levels and cooling through increasing AP concentrations. While increasing GHGs tend to enhance the hydrological cycle, the APs have the opposite effect: First, through climate cooling and, second, through a reduction in solar radiation absorbed at the Earth's surface. Moreover, in contrast to GHGs, there is a strong coupling between aerosols, clouds and precipitation formation such that AP induced changes in the hydrological cycle feed back on the aerosol distribution. We performed simulations with of a low-resolution version (T30 spectral truncation) of the atmospheric general circulation model ECHAM4 coupled to an ocean mixed layer model and a thermodynamic sea ice model. Furthermore, the atmospheric model solves prognostic equations for the mass mixing ratio of dimethyl sulfide, sulfur dioxide, sulfate aerosols, organic and black carbon aerosols, mineral dust, sea-salt, cloud liquid water, cloud ice and for the cloud droplet and ice crystal number concentration. It also includes a fully coupled aerosol-cloud microphysics module. We performed three pairs of climate equilibrium experiments. Each pair consists of two simulations: one represents pre-industrial (year 1870) (PI) and one present-day (early 1980's) conditions (PD). In the first pair we change the greenhouse gas (GHG) concentrations and apply the model's operational aerosol climatology as PD conditions. In the second pair we calculate the aerosol interactively and we change the anthropogenic aerosol and aerosol precursor emissions and keep the GHG concentrations fixed to PD level. In the third pair we change both, GHG concentrations and aerosol emissions. The climate responses and the basic mechanisms will be discussed.

  1. Greenhouse gas emissions during cattle feedlot manure composting.

    PubMed

    Hao, X; Chang, C; Larney, F J; Travis, G R

    2001-01-01

    The emission of greenhouse gases (GHG) during feedlot manure composting reduces the agronomic value of the final compost and increases the greenhouse effect. A study was conducted to determine whether GHG emissions are affected by composting method. Feedlot cattle manure was composted with two aeration methods--passive (no turning) and active (turned six times). Carbon lost in the forms of CO2 and CH4 was 73.8 and 6.3 kg C Mg-1 manure for the passive aeration treatment and 168.0 and 8.1 kg C Mg-1 manure for the active treatment. The N loss in the form of N2O was 0.11 and 0.19 kg N Mg-1 manure for the passive and active treatments. Fuel consumption to turn and maintain the windrow added a further 4.4 kg C Mg-1 manure for the active aeration treatment. Since CH4 and N2O are 21 and 310 times more harmful than CO2 in their global warming effect, the total GHG emission expressed as CO2-C equivalent was 240.2 and 401.4 kg C Mg-1 manure for passive and active aeration. The lower emission associated with the passive treatment was mainly due to the incomplete decomposition of manure and a lower gas diffusion rate. In addition, turning affected N transformation and transport in the window profile, which contributed to higher N2O emissions for the active aeration treatment. Gas diffusion is an important factor controlling GHG emissions. Higher GHG concentrations in compost windrows do not necessarily mean higher production or emission rates. PMID:11285897

  2. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller. PMID:26114481

  3. Effort Optimization in Minimizing Food Related Greenhouse Gas Emissions, a look at "Organic" and "Local"

    NASA Astrophysics Data System (ADS)

    Bowen, E.; Martin, P. A.; Eshel, G.

    2008-12-01

    The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a

  4. Greenhouse gas emissions from heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Rideout, Greg; Rosenblatt, Deborah; Hendren, Jill

    This paper summarizes greenhouse gas (GHG) emissions measurements obtained during several recent studies conducted by Environment Canada, Emissions Research and Measurement Division (ERMD). A variety of heavy-duty vehicles and engines operating on a range of different fuels including diesel, biodiesel, compressed natural gas (CNG), hythane (20% hydrogen, 80% CNG), and liquefied natural gas (LNG), and with different advanced aftertreatment technologies were studied by chassis dynamometer testing, engine dynamometer testing or on-road testing. Distance-based emission rates of CO 2, CH 4, and N 2O are reported. Fuel consumption calculated by carbon balance from measured emissions is also reported. The measurement results show, for heavy-duty diesel vehicles without aftertreatment, that while CO 2 emissions dominate, CH 4 emissions account for between 0% and 0.11% and N 2O emissions account for between 0.16% and 0.27% of the CO 2-equivalent GHG emissions. Both of the aftertreatment technologies (diesel oxidation catalyst and active regeneration diesel particle filter) studied increased N 2O emissions compared to engine out emissions while CH 4 emissions remain essentially unchanged. No effect on tailpipe GHG emissions was found with the use of up to 20% biodiesel when the engine was equipped with an oxidation catalyst. Biodiesel use did show some reductions in tailpipe GHG emissions as compared to ULSD without aftertreatment and with the use of a diesel particle filter. Natural gas and hythane also offer decreased GHG emissions (10-20%) at the tailpipe when compared with diesel. Emission factors (g L -1 fuel) for CH 4 and N 2O are suggested for heavy-duty vehicles fueled with diesel-based fuels and natural gas. These emission factors are substantially lower than those recommended for use by IPCC methodologies for developing national inventories.

  5. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  6. Agroecosystem Management Effects on Greenhouse Gas Emissions Across a Coastal Plain Catena

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape variability influences soil properties that influence soil respiration and subsequent trace gas emissions. Scarcity of data on greenhouse gas emissions as influenced by landscape variability and agroecosystem management in southeastern US necessitates study. The objective of this study was...

  7. Greenhouse Gas Mitigation Economics for Irrigated Cropping Systems in Northeastern Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent soil and crop management technologies have potential for mitigating greenhouse gas emissions. However, these management strategies must be profitable if they are to be adopted by producers. The economic feasibility of reducing net greenhouse gas emissions in irrigated cropping systems was eva...

  8. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment on... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  9. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment on... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  10. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment on... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  11. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... published in the Federal Register on April 13, 2012 (77 FR 22392), and is available at: http://www.epa.gov... AGENCY 40 CFR Part 60 Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources... proposed rule, ``Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources:...

  12. 78 FR 19801 - 2013 Revisions to the Greenhouse Gas Reporting Rule and Proposed Confidentiality Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Protection Agency F degrees Fahrenheit FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting... in the Federal Register on October 30, 2009 (74 FR 56260). Part 98 became effective on December 29... published in 2010 promulgating the requirements for subparts T, FF, II, and TT (75 FR 39736, July 12,...

  13. 75 FR 18942 - FY 2010 Discretionary Sustainability Funding Opportunity; Transit Investments for Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... Investments for Greenhouse Gas and Energy Reduction (TIGGER) Program and Clean Fuels Grant Program, Augmented... clean energy sources that will both enhance the environment through improved air quality and curb our... funds in Fiscal Year (FY) 2010 for the Transit Investments for Greenhouse Gas and Energy...

  14. 77 FR 51477 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... required by the November 2010 Subpart L final rule (75 FR 74774), defers the deadline for reporting a data... Protection Agency FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program kg/ft\\3... Register on October 30, 2009 (74 FR 56260, hereafter referred to as the ``2009 final rule'' or ``Part...

  15. 75 FR 45112 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ...: Corrections EPA published a Call for Information in the Federal Register (75 FR 41173) on July 15, 2010. In... AGENCY Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other... greenhouse gas emissions from bioenergy and other biogenic sources. Inadvertently, incorrect text...

  16. INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS 1990-2004

    EPA Science Inventory

    The Environmental Protection Agency submits the U.S. greenhouse gas inventory as an annual reporting requirement under UNFCCC, which the United States and other developed countries signed June 1992 at the Rio Earth Summit. The EPA has submitted the greenhouse gas inventory to the...

  17. INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS 1990-2011

    EPA Science Inventory

    The Environmental Protection Agency submits the U.S. greenhouse gas inventory as an annual reporting requirement under UNFCCC, which the United States and other developed countries signed June 1992 at the Rio Earth Summit. The EPA has submitted the greenhouse gas inventory to the...

  18. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  19. Overview of coal consumption and related environmental trends, and implications for greenhouse gas emissions

    SciTech Connect

    Johnson, C.J.; Wang, X.

    1997-06-01

    This paper reviews world and regional trends in coal consumption, and its growing contribution to greenhouse gas emissions. The paper then discusses a number of options within the coal system where greenhouse gas emissions, particularly CO{sub 2}, can be reduced. The commercial status and environmental performance of the main power plant technology options are briefly reviewed.

  20. 76 FR 59533 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    .... Currently, according to the provisions in 76 FR 22825 (April 25, 2011), owners and operators subject to 40.... Environmental Protection Agency. FR Federal Register. GHG greenhouse gas. ICR Information Collection Request... Systems of the Greenhouse Gas Reporting Rule on November 30, 2010, 40 CFR part 98, subpart W (75 FR...

  1. 77 FR 29935 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...The EPA is proposing to amend specific provisions of the Greenhouse Gas Reporting Rule to provide greater clarity and flexibility to facilities subject to reporting emissions from certain source categories. These source categories will report greenhouse gas (GHG) data for the first time in September of 2012. The proposed changes are not expected to significantly change the overall calculation......

  2. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.

    PubMed

    Mosier, Arvin R; Halvorson, Ardell D; Reule, Curtis A; Liu, Xuejun J

    2006-01-01

    The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha(-1). Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer. PMID:16825479

  3. Coupling above and below ground gas measurements to understand greenhouse gas production in the soil profile

    NASA Astrophysics Data System (ADS)

    Nickerson, Nick; Creelman, Chance

    2016-04-01

    Natural and anthropogenic changes in climate have the potential to significantly affect the Earth's natural greenhouse gas balances. To understand how these climatic changes will manifest in a complex biological, chemical and physical system, a process-based understanding of the production and consumption of greenhouse gases in soils is critical. Commonly, both chamber methods and gradient-based approaches are used to estimate greenhouse gas flux from the soil to the atmosphere. Each approach offers benefits, but not surprisingly, comes with a list of drawbacks. Chambers are easily deployed on the surface without significant disturbance to the soil, and can be easily spatially replicated. However the high costs of automated chamber systems and the inability to partition fluxes by depth are potential downfalls. The gradient method requires a good deal of disturbance for installation, however it also offers users spatiotemporally resolved flux estimates at a reasonable price point. Researchers widely recognize that the main drawback of the gradient approach is the requirement to estimate diffusivity using empirical models based on studies of specific soils or soil types. These diffusivity estimates can often be off by several orders of magnitude, yielding poor flux estimates. Employing chamber and gradient methods in unison allows for in-situ estimation of the diffusion coefficient, and therefore improves gradient-based estimates of flux. A dual-method approach yields more robust information on the temporal dynamics and depth distribution of greenhouse gas production and consumption in the soil profile. Here we present a mathematical optimization framework that allows these complimentary measurement techniques to yield more robust information than a single technique alone. We then focus on how it can be used to improve the process-based understanding of greenhouse gas production in the soil profile.

  4. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. PMID:27118738

  5. Greenhouse gas emissions from on-site wastewater treatment systems

    NASA Astrophysics Data System (ADS)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  6. Greenhouse gas mitigation options in the forestry sector of The Gambia: Analysis based on COMAP model

    SciTech Connect

    Jallow, B.P.

    1996-12-31

    Results of the 1993 Greenhouse Gas Emissions Inventory of The Gambia showed net CO{sub 2} emissions of over (1.66 x 10{sup 6} tons) and 1% was due to uptake by plantations (0.01 x 10{sup 6} tons). This is a clear indication that there is need to identify changes in the land-use policy, law and tenure that discourages forest clearing at the same time significantly influencing the sustainable distribution of land among forestry, rangeland and livestock, and agriculture. About 11% of the total area of The Gambia is either fallow or barren flats that once supported vegetation and hence is still capable of supporting vegetation. The US Country Study Programme has provided the Government of The Gambia through the National Climate Committee funds to conduct Assessment of Mitigation Options to Reduce Greenhouse Gas Emissions. The Forestry Sector is one area for which assessment is being conducted. The assessment is expected to end in September 1996. The Comprehensive Mitigation Analysis Process (COMAP) is one of the Models supplied to the National Climate Committee by the Lawrence Berkeley Laboratory, on behalf of the US Country Study Programme, and is being used to conduct the analysis in The Gambia.

  7. High temporal frequency measurements of greenhouse gas emissions from soils

    NASA Astrophysics Data System (ADS)

    Savage, K.; Phillips, R.; Davidson, E.

    2014-05-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency, precise measurements of CO2 have been available for years, methods for measuring soil fluxes of CH4 and N2O at high temporal frequency have been hampered by lack of appropriate technology for in situ real-time measurements. A previously developed automated chamber system for measuring CO2 flux from soils was configured to run in line with a new quantum cascade laser (QCLAS) instrument that measures N2O and CH4. Here we present data from a forested wetland in Maine and an agricultural field in North Dakota, which provided examples of both net uptake and production for N2O and CH4. The objective was to provide a range of conditions in which to run the new system and to compare results to a traditional manual static-chamber method. The high-precision and more-than-10-times-lower minimum detectable flux of the QCLAS system, compared to the manual system, provided confidence in measurements of small N2O uptake in the forested wetland. At the agricultural field, the greatest difference between the automated and manual sampling systems came from the effect of the relatively infrequent manual sampling of the high spatial variation, or "hot spots", in GHG fluxes. Hot spots greatly influenced the seasonal estimates, particularly for N2O, over one 74-day alfalfa crop cycle. The high temporal frequency of the automated system clearly characterized the transient response of all three GHGs to precipitation and demonstrated a clear diel pattern related to temperature for GHGs. A combination of high-frequency automated and spatially distributed chambers would be ideal for characterizing hot spots and "hot moments" of GHG fluxes.

  8. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2012-10-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to

  9. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in

  10. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales. PMID:19020618

  11. Benefits of dealing with uncertainty in greenhouse gas inventories: introduction

    SciTech Connect

    Jonas, Matthias; Winiwarter, Wilfried; Marland, Gregg; White, Thomas; Nahorski, Zbigniew; Bun, Rostyslav

    2010-01-01

    The assessment of greenhouse gases emitted to and removed from the atmosphere is high on the international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need for policy-oriented solutions to the issue of uncertainty in, and related to, inventories of greenhouse gas (GHG) emissions. The approaches to addressing uncertainty discussed in this Special Issue reflect attempts to improve national inventories, not only for their own sake but also from a wider, systems analytical perspective-a perspective that seeks to strengthen the usefulness of national inventories under a compliance and/or global monitoring and reporting framework. These approaches demonstrate the benefits of including inventory uncertainty in policy analyses. The authors of the contributed papers show that considering uncertainty helps avoid situations that can, for example, create a false sense of certainty or lead to invalid views of subsystems. This may eventually prevent related errors from showing up in analyses. However, considering uncertainty does not come for free. Proper treatment of uncertainty is costly and demanding because it forces us to make the step from 'simple to complex' and only then to discuss potential simplifications. Finally, comprehensive treatment of uncertainty does not offer policymakers quick and easy solutions. The authors of the papers in this Special Issue do, however, agree that uncertainty analysis must be a key component of national GHG inventory analysis. Uncertainty analysis helps to provide a greater understanding and better science helps us to reduce and deal with uncertainty. By recognizing the importance of identifying and quantifying uncertainties, great strides can be made in ongoing discussions regarding GHG inventories and accounting for climate change. The 17 papers in this Special Issue deal with many aspects of analyzing and dealing with uncertainty in emissions

  12. Lakes as components in the greenhouse gas balance - regional implications as exemplified for Lake Neusiedl (Austria)

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Kitzler, Barbara; Soja, Anna-Maria

    2013-04-01

    Inland surface waters and associated wetlands must not be neglected when global greenhouse gas emissions are balanced. Natural lakes, rivers and hydroelectric reservoirs are parts of the surface water system where outgassing of CO2 or CH4 enhances the carbon flux to the atmosphere. For lakes, the carbon emission estimates vary over several orders of magnitude, depending on the age of the lake, depth, area, volume, temperature, input of organic carbon and residence time. Nitrogen input into lakes may be caused by wet atmospheric deposition, by surface runoff from agricultural areas and by wastewater inputs into the tributaries. In most cases, denitrification of nitrate is the dominating source of N2O; only in the case of high ammonium loads and oxygen availability nitrification and subsequent denitrification to N2O and N2 play a major role. Focusing on Lake Neusiedl (Austria) as case study, this study aims at illuminating the regional role of a shallow steppe lake as greenhouse gas emitter and at analyzing the local physico-chemical conditions affecting the emission of CO2, CH4 and N2O. The uniqueness of this lake with regard to its shallowness, salinity and sediment depth required the performance of separate measurement campaigns instead of applying general lake greenhouse gas flux rates. For the period of 9 months (based on 6 observation episodes in spring, summer, and autumn), the greenhouse gas emissions of the lake consisted of about 75700 t CO2, 1006 t CH4, and 18 t N2O. Presumably because of significant sulphate concentrations in the lake water (0.3-0.4 g/l) and high pH (8.5-9) the C emissions were not dominated by CH4 but by CO2. Approximately one third of the methane and carbon dioxide emissions originated in the pelagic zone and two thirds in the reed belt whereas nitrous oxide emissions were similar in these two zones. An estimate of ebullitive emissions resulted in additional 1765 t CH4 that predominantly originated in or near the reed belt from spring

  13. Anthropogenic greenhouse gas contribution to UK autumn flood risk

    NASA Astrophysics Data System (ADS)

    Pall, Pardeep; Aina, Tolu; Stone, Dáithí; Stott, Peter; Nozawa, Toru; Hilberts, Arno; Lohmann, Dag; Allen, Myles

    2010-05-01

    Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing[1]. Yet climate models typically used for studying the attribution problem do not resolve weather at scales causing damage[2]. Here we present the first multi-step study that attributes increasing risk of a damaging regional weather-related event to global anthropogenic greenhouse gas emissions. The event was the UK flooding of October and November 2000, occurring during the wettest autumn in England & Wales since records began in 1766[3] and inundating several river catchments[4]. Nearly 10,000 properties were flooded and transport services and power supplies severely disrupted, with insured losses estimated at £1.3bn[5,6]. Though the floods were deemed a ‘wake up call' to the impacts of climate change[7], anthropogenic drivers cannot be blamed for this individual event: but they could be blamed for changing its risk[8,9]. Indeed, typically quoted thermodynamic arguments do suggest increased probability of precipitation extremes under anthropogenic warming[10]. But these arguments are too simple[11,12,13] to fully account for the complex weather[4,14] associated with the flooding. Instead we use a Probabilistic Event Attribution framework, to rigorously estimate the contribution of anthropogenic greenhouse gas emissions to England & Wales Autumn 2000 flood risk. This involves comparing an unprecedented number of daily river runoff realisations for the region, under Autumn 2000 scenarios both with and without the emissions. These realisations are produced using publicly volunteered distributed computing power to generate several thousand seasonal forecast resolution climate model simulations[15,16] that are then fed into a precipitation-runoff model[17,18]. Autumn 2000 flooding is characterised by realisations exceeding the highest daily river runoff for that period, derived from the observational-based ERA-40 re-anaylsis[19]. We find that our

  14. Bridging the data gap: engaging developing country farmers in greenhouse gas accounting

    NASA Astrophysics Data System (ADS)

    Paustian, Keith

    2013-06-01

    For many developing countries, the land use sector, particularly agriculture and forestry, represents a large proportion of their greenhouse gas (GHG) emissions, making this sector a priority for GHG mitigation activities. Previous global surveys (e.g., IPCC 2000) as well as the most recent IPCC assessment report clearly indicate that the greatest technical potential for carbon sequestration and reductions of non-CO2 GHG emissions from the land use sector is in developing countries. Estimates that consider economic feasibility suggest that agriculture and forestry together provide among the greatest opportunities for short-term and low-cost mitigation measures across all sectors of the global economy1 (IPCC 2007). In addition, it is widely recognized that the ecosystem changes entailed by most mitigation practices, i.e., building soil organic matter, reducing losses and tightening nutrient cycles, more efficient production systems and preserving native vegetation, are well aligned with goals of increasing food security and rural development as well as buffering land use systems against climate change (Lal 2004). Hence, there is growing interest in jump-starting the capacity for broad-based engagement in agriculturally-based GHG mitigation projects in developing countries. Against this favorable background, there are a number of significant challenges—in addition to the fundamental need for comprehensive mandatory reduction policies—to accelerating the involvement of agriculture in GHG mitigation. As detailed by articles in this special issue, quantifying emissions and emission reductions/sequestration of agricultural sources of CO2,N2O and CH4 is difficult. Emissions and C sequestration are distributed across the landscape, with high spatial and temporal variability and with multiple and interacting climate, soil and management factors that affect rates. In most cases, this makes instrument-based measurement of fluxes and C stock changes in agricultural

  15. Greenhouse Gas Emissions from Septic Systems in New York State.

    PubMed

    Truhlar, Allison M; Rahm, Brian G; Brooks, Rachael A; Nadeau, Sarah A; Makarsky, Erin T; Walter, M Todd

    2016-07-01

    Onsite septic systems use microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). Current USEPA estimates for septic system GHG emissions are based on one study conducted in north-central California and are limited to methane; therefore, the contribution of these systems to the overall GHG emission budget is unclear. This study quantified and compared septic system GHG emissions from the soil over leach fields and the roof vent, which are the most likely locations for gas emissions during normal septic system operation. At each of eight septic systems, we measured fluxes of CH, CO, and NO using a static chamber method. The roof vent released the majority of septic system gas emissions. In addition, the leach field was a significant source of NO fluxes. Comparisons between leach field and vent emissions suggest that biological processes in the leach field soil may influence the type and quantity of gas released. Overall, our results suggest that (i) revisions are needed in USEPA guidance (e.g., septic systems are not currently listed as a source of NO emissions) and (ii) similar studies representing a wider range of climatic and geographic settings are needed. The total vent, sand filter, and leach field GHG emissions were 0.17, 0.045, and 0.050 t CO-equivalents capita yr, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the United States. PMID:27380062

  16. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity.

    PubMed

    Lubbers, Ingrid M; van Groenigen, Kees Jan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-01-01

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488

  17. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity

    PubMed Central

    Lubbers, Ingrid M.; Jan van Groenigen, Kees; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-01-01

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488

  18. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  19. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  20. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  1. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  2. The relationship between greenhouse gas emissions and the intensity of milk production in Ireland.

    PubMed

    Casey, J W; Holden, N M

    2005-01-01

    European Union agri-environmental schemes aim to reduce the environmental impact of agricultural production, but were developed before consideration of greenhouse gas emissions from agriculture. Life cycle assessment methodology provided a framework for comparing emissions as kg CO2 equivalent per kg of energy corrected milk (ECM) (kg CO2 kg(-1) ECM yr(-1)) and per hectare (kg CO2 ha(-1) yr(-1)) for farms both within and outside the Irish agri-environmental scheme. The agri-environmental scheme farms operate extensive systems from 40 to 120 cows producing between 3032 and 5946 kg ECM cow(-1) lactation(-1). The cows are fed on grass, conserved silage, and concentrates. Supplementation ranged between 250 and 620 kg cow(-1) yr(-1). The conventional farms had between 30 and 77 milking cows producing 4736 to 6944 kg ECM cow(-1) lactation(-1). Supplementation ranged from 400 to 1000 kg cow(-1) yr(-1). The emissions from each unit were estimated using published emissions factors and possible error was evaluated by using ranges for each factor. Calculated emissions ranged from 0.92 to 1.51 kg CO2 kg(-1) ECM yr(-1) and 5924 to 8323 kg CO2 ha(-1). On average, total emissions from conventional farms were around 18% (p = 0.01) greater than the agri-environmental scheme farms and emissions per hectare (total area required) were 17% greater (p = 0.02) but there was no significant difference (p = 0.335) in terms of emission per unit milk produced. To evaluate greenhouse gas emissions for each farm in terms of the system intensity it was necessary to define a measure of intensification and area per liter of milk produced that was best. PMID:15758094

  3. Unified account of gas pollutants and greenhouse gas emissions: Chinese transportation 1978-2004

    NASA Astrophysics Data System (ADS)

    Ji, Xi; Chen, G. Q.

    2010-09-01

    To facilitate the aggregation of both quantity and quality of waste emissions, the concept of chemical exergy combining the first and second laws of thermodynamics is introduced for a unified account of gas pollutants and greenhouse gases, by a case study for the Chinese transportation system 1978-2004 with main gas pollutants of NO, SO2, CO and main greenhouse gases of CO2 and CH4. With chemical exergy emission factors concretely estimated, the total emission as well as emission intensity by exergy of the overall transportation system and of its four modes of highways, railways, waterways and civil aviation are accounted in full detail and compared with those by the conventionally prevailing metrics of mass, with essential implications for environmental policy making.

  4. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles. PMID:26757000

  5. Agricultural greenhouse gas trading markets in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists have assembled evidence of climate change and emphasized its anthropogenic causes. Carbon (C) management and an emissions trading system may be a way to address concerns about climate change and associated environmental impacts. Limited experience has shown a practical policy approach t...

  6. Incorporating energy trade into national greenhouse gas emission estimates

    SciTech Connect

    Ashton, W.B.; Kinzey, B.R.; Dailey, R.G.; Spencer, D.F.

    1994-12-31

    As negotiations aimed at establishing national emissions reductions targets proceed, it is very important to understand the differences between alternative methods of estimating and attributing emissions to the respective countries. Current estimates of national energy-related greenhouse gas (GHG) emissions frequently consider only domestic emissions sources. However, this approach may inaccurately reflect the true level of global emissions resulting from energy consumed by a particular economy, particularly if it engages in significant levels of energy trade. Alternative estimation methods may more accurately reflect these ``trade-based`` emissions. In this paper, the authors propose a method of estimating emissions, by country, that incorporates the effects of international energy trade. The paper shows that estimated trade-based emission levels for a country can significantly differ from domestic-based emissions estimates, depending on that country`s levels of fossil energy imports and exports relative to its domestic energy consumption. Four preliminary case studies are presented to demonstrate the impact of energy trade on emissions estimates, including the United States, Japan, France, and Saudi Arabia. Countries that are large exporters of fossil energy (like Saudi Arabia) tend to have reduced emissions attributable to their economy, while the converse is true for large energy importers (such as Japan).

  7. Aligning corporate greenhouse-gas emissions targets with climate goals

    NASA Astrophysics Data System (ADS)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; van Vuuren, Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-12-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO2 between 2011 and 2050 for the 2 °C target). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.

  8. Managed grasslands: A greenhouse gas sink or source?

    NASA Astrophysics Data System (ADS)

    Leahy, Paul; Kiely, Ger; Scanlon, Todd M.

    2004-10-01

    We describe a unique, one year investigation of CO2 and N2O fluxes over a fertilized grassland in Ireland using two eddy covariance systems. As the global warming potential (GWP) of N2O is 296 (100 year time horizon), relatively small N2O emissions have a potentially large impact on overall radiative forcing. Therefore nitrogen fertilizer application practices may possibly turn a site with a net CO2 uptake into a net radiative forcing source. We observed a net annual uptake of 9.45 T CO2 ha-1. N2O emissions equivalent to 5.42 T ha-1 CO2 GWP counteracted 57% of the effect of the CO2 uptake. Estimated methane emissions from ruminants (3.74 T ha-1 CO2 GWP) further counteract the CO2 uptake, making the overall GWP nearly neutral. This delicate balance of the greenhouse gas fluxes underscores the significance of fertilizer application strategies in determining whether a managed grassland is a net GWP source or sink.

  9. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  10. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  11. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  12. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE)

    NASA Astrophysics Data System (ADS)

    Dobler, Jeremy; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Tim; Botos, Chris

    2016-06-01

    Exelis has recently developed a novel laser-based instrument to aid in the autonomous real-time monitoring and mapping of CO2 concentration over a two-dimensional area. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) instrument uses two transceivers and a series of retroreflectors to continuously measure the differential transmission over a number of overlapping lines of sight or "chords", forming a plane. By inverting the differential transmission measurements along with locally measured temperature (T), pressure (P) and relative humidity (RH) the average concentration of CO2 along each chord can be determined and, based on the overlap between chords, a 2D map of CO2 concentration over the measurement plane can be estimated. The GreenLITE system was deployed to the Zero Emissions Research and Technology (ZERT) center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions, while utilizing a controlled release of CO2 into a segmented underground pipe [1]. The system demonstrated the ability to identify persistent CO2 sources at the test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, instrument design, and results from the deployment to the ZERT site.

  13. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol. PMID:25588032

  14. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  15. Continuous Greenhouse Gas Monitoring on South Atlantic Islands

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R. E.; Lanoiselle, M.; Nisbet, E. G.; Dlugokencky, E. J.; Manning, A. C.

    2010-12-01

    Analytical instruments based on cavity ring-down spectroscopy (CRDS) with automated calibration systems are being deployed on South Atlantic Islands to monitor atmospheric CO2 and CH4. Data have been returned daily from the CRDS analyzer deployed at the Meteorological Office Ascension Island site since 22 June 2010. Installation of a second instrument near Stanley Airport on the Falkland Islands is due to take place in October 2010. The equipment will reach the Falklands on the British Antarctic Survey ship, James Clark Ross and will monitor CO2 and CH4 continuously on the Atlantic voyage from the UK, providing additional important greenhouse gas data for the South Atlantic as well as for the south and east coast of the UK. Data for Ascension Island winter (June to August) show variations in CO2 between 387 and 390 ppm and CH4 between 1760 and 1778 ppb, but with prolonged periods of 3 weeks or more with both gas species toward the upper or lower ends of these ranges. These trends are also observed in twice weekly NOAA flask samples collected within 100 m of the RHUL air inlet. The averaged mixing ratio for NOAA flask samples collected over this period is within 0.04 ppm for CO2 and 0.4 ppb for CH4 of the averaged continuous CRDS record. Data for δ13C of methane measured on flask samples collected by RHUL since 2000 show a range of -47.2 to -46.7‰ with a maximum seasonal cycle of 0.3‰. Comparison of RHUL data for 2000-2004 and 2009-2010 suggest an isotopic enrichment of 0.2 per mil associated with an increase in mixing ratio of 15-20 ppb over this period.

  16. Greenhouse gas and alcohol emissions from feedlot steers and calves.

    PubMed

    Stackhouse, Kimberly R; Pan, Yuee; Zhao, Yongjing; Mitloehner, Frank M

    2011-01-01

    Livestock's contributions to climate change and smog-forming emissions are a growing public policy concern. This study quantifies greenhouse gas (GHG) and alcohol emissions from calves and feedlot steers. Carbon dioxide (CO) methane (CH), nitrous oxide (NO), ethanol (EtOH), and methanol (MeOH) were measured from a total of 45 Holstein and Angus steers and 9 Holstein calves representative of four different growth stages commonly present on calf ranches and commercial feedlots. Individuals from each animal type were randomly assigned to three equal replicate groups of nine animals per group. Steers were fed a high concentrate diet and calves a milk replacer and grain supplement. Cattle and calves were housed in groups of three animals in an environmental chamber for 24 h. The CO, NO, EtOH, and MeOH concentrations from the air inlet and outlet of the chamber were measured using an INNOVA 1412 monitor and CH using a TEI 55C methane analyzer. Emission rates (g head h) were calculated. The GHGs were mainly produced by enteric fermentation and respiration and differed across life stages of cattle. Compared with dairy cows, feedlot steers produce relatively less GHG. In general, ethanol and methanol, the most important volatile organic compound (VOC) group in the dairy sector, were below the lower limit of detection of the gas analyzer. The present data will be useful to verify models and to enhance GHG emission inventories for enteric fermentation, respiration, and fresh excreta for numerous cattle life stages across the beef industry. PMID:21546675

  17. Greenhouse Gas Balance in a Restored and Natural Wetland

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Jaffe, P. R.; Morin, T. H.; Bohrer, G.

    2015-12-01

    The greenhouse gas balance of natural and restored wetlands is an important consideration when assessing ecosystem services, structure and function and restoration success of wetlands. Fast methane (CH4) gas analyzers such as the LI7700 are now enabling continuous ecosystem scale (eddy flux) measurements and assessment in conjunction with CO2 measurements. Here, we have set up two locations, one in a natural and one in a restored tidal salt marsh in the Meadowlands of New Jersey (MNJ) USA, in order to compare ecosystem level methane and carbon dioxide fluxes. Continuous methane fluxes were measured at the ecosystem level over three growing seasons at the restored site and two growing seasons at the natural wetland site concomitant to carbon dioxide fluxes. Methane and carbon dioxide emissions were highly variable in space and time over the three years of investigation (2012-2014). The temporal dynamics of methane and carbon dioxide fluxes in each of the sites suggest small-scale site-specific controls on methane emissions, but ubiquitous, non-specific controls on carbon dioxide uptake and release. Methane emissions increased at the restored site from 2012 to 2013, despite no corresponding increases in carbon dioxide uptake. In contrast, methane emission decreased at the natural wetlands site over the same time with concomitant increase in carbon dioxide uptake (more negative net ecosystem exchange). In 2014, the trend continued at the natural and the restored wetland sites with decreasing methane emission and increasing CO2 uptake. The influence of temperature and phenology on the observed patterns will be discussed.

  18. Greenhouse gas emissions from naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E.

    2015-02-01

    Greenhouse gas (GHG) emissions from two naturally-ventilated dairy freestall barns measured for a total of 21 d, one week each in May, July, and September 2009, are presented in this article. The holding capacity of Barn 1 (B1) was 400 Holstein cows, while that for Barn 2 (B2) was 850 cows. Air samples were taken from inlets and outlets of the barns via a custom made multiplexer gas sampling system for measurement of gas concentrations using a photoacoustic infrared multigas analyzer. Barn ventilation rates were based on air velocity measured with arrays of 3-D ultrasonic anemometers at inlets and outlets. Gas concentrations (10 min means) in the barns ranged from: 443-789 ppm for CO2, 0.0-39.4 ppm for CH4, and 0.25-0.39 ppm for N2O; with mean concentrations ranging from 6 to 20%, 0 to 4%, and 26 to 180% above the average background concentrations for CO2, N2O, and CH4, respectively. The correlations between CO2 and CH4 enhanced concentrations were relatively stronger (R of 0.67-0.74) than between CO2 and N2O enhanced concentrations (R of 0.10-0.20). Environmental conditions did not significantly (p = 0.46) impact the enhanced concentrations of N2O in the barns. All three parameters (T, RH, and v) had significant (p < 0.01) influences on CO2 enhanced concentrations; while only T (p < 0.01) and v (p < 0.01) had significant influences on CH4 enhanced concentrations. Enhanced concentrations of CO2 and CH4 correlated negatively with all three parameters. The influence of the temperature-humidity index (THI) on CO2 enhanced concentrations was higher than that of v; while the effect v had on CH4 enhanced concentrations was slightly higher than that of the temperature-humidity index. The average emissions, based on hourly means, ranged from 5.3 to 10.7 kg d-1 AU-1 for CO2; 0.3 to 2.5 g d-1 AU-1 for N2O; and between 67 and 252 g d-1 AU-1 for CH4. Nitrous oxide emissions from the smaller barn, B1 (0.4-2.5 g d-1 AU-1), were significantly higher than from the larger barn, B2

  19. Harmonization of Initial Estimates of Shale Gas Life Cycle Greenhouse Gas Emissions for Electric Power Generation

    NASA Astrophysics Data System (ADS)

    Heath, G.; O'Donoughue, P.; Arent, D.; Bazilian, M.

    2014-12-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  20. Federal, state and utility roles in reducing new building greenhouse gas emissions

    SciTech Connect

    Johnson, J.A.; Shankle, D.; Boulin, J.

    1995-03-01

    This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

  1. The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China

    NASA Astrophysics Data System (ADS)

    Hu, Yuanan; Cheng, Hefa

    2013-08-01

    Already the largest generator of hydroelectricity, China is accelerating dam construction to increase the share of hydroelectricity in its primary energy mix to reduce greenhouse gas emissions. Here, we review the evidence on emissions of GHGs, particularly methane, from the Three Gorges Reservoir, and argue that although the hydroelectric reservoirs may release large amounts of methane, they contribute significantly to greenhouse gas reduction by substitution of thermal power generation in China. Nonetheless, more systematic monitoring and modelling studies on greenhouse gas emissions from representative reservoirs are necessary to better understand the climate impact of hydropower development in China.

  2. Microtrap assembly for greenhouse gas and air pollution monitoring

    SciTech Connect

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  3. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  4. Mitigation of Greenhouse Gas Emissions by the Energy Grass, Miscanthus.

    NASA Astrophysics Data System (ADS)

    Jones, M.; Styles, D.; Clifton Brown, J.

    2008-12-01

    A life-cycle approach was used to quantify the major GHG emission sources associated with the production of useful heat or electricity (kWh), per hectare cultivated and per annum, from pelleted Miscanthus fired in domestic boilers and chopped Miscanthus co-fired in peat power stations respectively. Fuel chain GHG emissions attributable to Miscanthus are between 70% and 88% lower than those for oil, gas and electric heating fuel chains, and 86% lower than for the peat-electricity fuel chain. However, long-term soil C sequestration when Miscanthus is grown on either grassland or tillage land exceeds cultivation emissions, and, along with possible displacement of marginal agricultural production, could result in electricity and heat production better than C-neutral. With life-cycle GHG reductions of between 9.68 and 37.15 t CO2 eq. ha-1 a-1, Miscanthus electricity and heat production represent highly efficient land-use options for GHG mitigation. Furthermore, Miscanthus cultivation has good potential to complement, rather than compete with, existing food crop production, and enhance agricultural ecosystems (e.g. by improving soil quality, and by reducing erosion and nutrient losses).

  5. Greenhouse gas fluxes from no-till rotated corn in the Upper Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined soil surface fluxes of greenhouse gases (carbon dioxide, nitrous oxide, methane) from no-till, dryland corn (Zea mays L.) in eastern South Dakota and tested the effect of rotation on greenhouse gas fluxes from corn. The corn was grown within a randomized, complete block study that incl...

  6. The Effect of Natural Gas Supply on US Renewable Energy and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Shearer, C.; Bistline, J.; Inman, M.; Davis, S. J.

    2014-12-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that more abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall energy use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-2055 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable energy, more abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  7. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  8. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied

  9. Designing optimal greenhouse gas monitoring networks for Australia

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  10. Greenhouse gas emission from covered windrow composting with controlled ventilation.

    PubMed

    Ermolaev, Evgheni; Pell, Mikael; Smårs, Sven; Sundberg, Cecilia; Jönsson, Håkan

    2012-02-01

    Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH(4)), nitrous oxide (N(2)O) and carbon dioxide (CO(2)) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH(4) concentrations (CH(4):CO(2) ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH(4) displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N(2)O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH(4) and N(2)O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics. PMID:21994145

  11. Greenhouse gas fluxes in mountain grassland differing in land use

    NASA Astrophysics Data System (ADS)

    Ladreiter-Knauss, Thomas; Schmitt, Michael; Butterbach-Bahl, Klaus; Kienzl, Sandra; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael

    2013-04-01

    Mountain grassland covers large areas, thus influences the global greenhouse gas (GHG) balance and is strongly affected by changes in land use. Effects of such changes on the GHG-balance have so far not been well documented. As a contribution to the EU-project GHG Europe we are studying the net ecosystem exchange (NEE) of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) on a mountain meadow, an adjacent and an abandoned pasture at 1820-1970m a.s.l. in the Austrian Central Alps. The GHG balance is estimated from manual and auto-chamber measurements, combined with already published CO2-NEE over almost a decade. Winter CO2-fluxes, primarily soil respiration underneath the snowpack, are estimated with solid state CO2-sensors using a validated diffusion model. We found that abandon the management decreases the NEE of CO2 while its component, soil respiration (Rs), increases. The decrease is explained by differences in leaf area index, biomass and leaf-area-independent changes that were likely related to photosynthetic physiology. The increase in Rs can be explained by higher belowground carbon input due to missing grazing or mowing. The abandoned pasture showed the highest uptake rates of CH4 and a slight uptake of N2O, possibly due to better soil aeration. Spring freeze-thaw events caused slight CH4 emissions in the managed grassland. The meadow and pasture had just low emission rates of N2O even at freeze-thaw cycles and organic fertilization. These results suggest that in mountain grassland the main contributor to the GHG balance are CO2 fluxes that can largely be influenced by land use changes.

  12. Measuring and Managing Greenhouse Gas Emissions from the Production of Livestock in Brazil

    NASA Astrophysics Data System (ADS)

    Cohn, A.

    2009-12-01

    Livestock production is the cause of substantial greenhouse gas emissions both through enteric fermentation and land use change. It has been shown that programs to reduce emissions from livestock could be a large and low-cost source of greenhouse gas mitigation. Yet in order to achieve emissions reductions, further research is needed to quantify how the emissions intensity of livestock production varies across the biophysical and socio-economic geographies of production. Particularly large data gaps exist for tropical livestock production even as tropical production expands rapidly. In this poster, I present results of a review of lifecycle greenhouse gas intensity for livestock production systems in Brazil. I also discuss opportunities and challenges in using these data as part of a decision support tool for programs to reduce greenhouse gas emissions from livestock.

  13. Spatial and temporal variability in greenhouse gas abundance of urban streams: The role of urban infrastructure

    EPA Science Inventory

    Background/Question/MethodsStreams and rivers are significant sources of greenhouse gas emissions globally. Water quality and watershed management, are likely to influence GHG emissions regionally. In urban-impacted watersheds, increased nitrogen loading, organic matter, and war...

  14. EPA GROUP VERIFIES PERFORMANCE OF GREENHOUSE GAS EMISSIONS-MITIGATION TECHNOLOGIES

    EPA Science Inventory

    The Greenhouse Gas Technology Verification Center (the Center) is one of 12 independently operated environmental technology verification organizations established by the U.S. Environmental Protection Agency (EPA). The Center provides third-party performance data to industry and o...

  15. Sustainability of Switchgrass for Cellulosic Ethanol: Evaluating Net Energy, Greenhouse Gas Emissions, and Feedstocks Costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial herbaceous plants such as switchgrass are being evaluated as cellulosic bioenergy crops. Sustainability concerns with switchgrass (Panicum virgatum L.) and similar energy crops have been about net energy efficiency, potential greenhouse gas (GHG) emissions, and economic feasibility grown ...

  16. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  17. Quantifying greenhouse gas sources and sinks in cropland and grazing land systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop and grazing land management influences greenhouse gas emissions, which can be reduced by adopting conservation practices. Operators of cropland systems use a variety of practices that have implications for emissions, such as nutrient additions, irrigation, liming applications, tillage practices...

  18. Development of Greenhouse Gas Emissions Model (GEM) for Heavy- & Medium-Duty Vehicle Compliance

    EPA Science Inventory

    A regulatory vehicle simulation program was designed for determining greenhouse gas (GHG) emissions and fuel consumption by estimating the performance of technologies, verifying compliance with the regulatory standards and estimating the overall benefits of the program.

  19. THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES

    EPA Science Inventory

    Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...

  20. 75 FR 49913 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ..., Energy, and Economic Performance (74 FR 52117) in order to establish an integrated strategy toward... QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council on Environmental Quality. ACTION: Notice: Extension of comment period. SUMMARY: This notice extends the...

  1. Greenhouse gas flux from managed grasslands in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managed grasslands are increasingly looked upon to serve as cost-effective sinks for mitigating climate change. Assurances of effective greenhouse gas mitigation strategies require detailed understanding of carbon dioxide, methane, and nitrous oxide flux for rangelands and pasturelands. Summarizat...

  2. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper

    2016-04-01

    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  3. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    EIA Publications

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  4. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    PubMed Central

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  5. A model of greenhouse gas emissions from the management of turf on two golf courses.

    PubMed

    Bartlett, Mark D; James, Iain T

    2011-11-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant–soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links −2.2 ± 0.4 Mg CO2e ha(−1) y(−1); Parkland − 2.0 ± 0.4 Mg CO2e ha(−1) y(−1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of −5.4 ± 0.9 Mg CO2e ha(−1) y(−1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of −1.6 ± 0.3 Mg CO2e ha(−1) y(−1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of

  6. A model of greenhouse gas emissions from the management of turf on two golf courses.

    PubMed

    Bartlett, Mark D; James, Iain T

    2011-03-15

    An estimated 32,000 golf courses worldwide (approximately 25,600 km(2)), provide ecosystem goods and services and support an industry contributing over $ 124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1Mg CO(2)e ha(-1)y(-1); Parkland 0.7 ± 0.2Mg CO(2)e ha(-1)y(-1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 ± 0.9 Mg CO(2e) ha(-1)y(-1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2Mg CO(2e) ha(-1)y(-1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range

  7. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation.

    PubMed

    Cohn, Avery S; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O'Hare, Michael; Obersteiner, Michael

    2014-05-20

    This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection. PMID:24778243

  8. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation

    PubMed Central

    Cohn, Avery S.; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O’Hare, Michael; Obersteiner, Michael

    2014-01-01

    This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection. PMID:24778243

  9. Flue gas desulfurization gypsum agricultural network alabama (cotton)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that can be beneficially used in agriculture. Research was conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration wi...

  10. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water.

    PubMed

    Groh, Tyler A; Gentry, Lowell E; David, Mark B

    2015-05-01

    Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. PMID:26024280

  11. Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.

    2008-12-01

    Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.

  12. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems.

    PubMed

    Linquist, Bruce A; Anders, Merle M; Adviento-Borbe, Maria Arlene A; Chaney, Rufus L; Nalley, L Lanier; da Rosa, Eliete F F; van Kessel, Chris

    2015-01-01

    Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1-13%; water-use efficiency was improved by 18-63%, global warming potential (GWP of CH4 and N2 O emissions) reduced by 45-90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2 O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield-scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade-offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales. PMID:25099317

  13. Greenhouse Operation and Management. Instructor Guide and Student Reference. Missouri Agricultural Education. Volume 21, Number 3.

    ERIC Educational Resources Information Center

    Wells, Judith A.; And Others

    These student and instructor materials for a one-semester course intended for high school juniors and seniors teach the following 24 lessons: (1) the scope and development of greenhouse production; (2) the economic importance of greenhouse crops; (3) careers in greenhouse operation and management; (4) greenhouse parts, structures, and coverings;…

  14. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the eastern United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.

    2014-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  15. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  16. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  17. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  18. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  19. Idaho National Laboratory’s FY14 Greenhouse Gas Report

    SciTech Connect

    Frerichs, Kimberly Irene

    2015-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were

  20. Greenhouse Gas Emissions Reporting through Integrated Business Solutions

    NASA Astrophysics Data System (ADS)

    Smith, D.

    2010-12-01

    Given the risks posed by global climate change, it is important that society as a whole responds in order to reduce the emission of greenhouse gas (GHG) into the atmosphere. Whether you are an environmentalist, a small-to-medium business owner, or a corporate risk manager - the need to act is now in order to reduce future environmental damage. While this sounds overwhelming, it’s really quite simple. Carbon Management is the process of understanding where your commercial activities generate GHG emissions, so that you can reduce those emissions in a planned, financially responsible way. Specifically, governments have the capacity to lead in this area and reduce these costs throughout their cities. Village Green Global develops and manages demonstration projects for the government that act as exemplar models to assist in gathering verifiable GHG reporting within selected regions and cities. This model highlights opportunities for the capture of conservation and energy credit commodities for local financial markets to use in global trading. Information gathered will prepare government for the ongoing changing global requirements and mitigate risk of unnecessary market exposure and cost; allow government to take a measured, responsible approach to its environmental responsibilities; reduce operational costs, improving the government’s asset utilization and more effectively streamlining its operations; and establish the government as responsible and proactive due to its creative approach to environmental challenges. Village Green Global’s government partnership model aims to deliver new jobs and technologies in the emerging “green economy;” a linkage to education at both at College and University levels, then assisting industry and community needs; and the involvement of industry leaders ensures training is targeted to job creation and local capacity building opportunities, in turn creating new skills and career pathways for the displaced workforce from the

  1. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer. PMID:25985667

  2. Effect of different agronomic management practices on greenhouse gas emissions and nutrient cycling in a long-term field trial

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2015-04-01

    In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental

  3. Bridging the data gap: engaging developing country farmers in greenhouse gas accounting

    NASA Astrophysics Data System (ADS)

    Paustian, Keith

    2013-06-01

    For many developing countries, the land use sector, particularly agriculture and forestry, represents a large proportion of their greenhouse gas (GHG) emissions, making this sector a priority for GHG mitigation activities. Previous global surveys (e.g., IPCC 2000) as well as the most recent IPCC assessment report clearly indicate that the greatest technical potential for carbon sequestration and reductions of non-CO2 GHG emissions from the land use sector is in developing countries. Estimates that consider economic feasibility suggest that agriculture and forestry together provide among the greatest opportunities for short-term and low-cost mitigation measures across all sectors of the global economy1 (IPCC 2007). In addition, it is widely recognized that the ecosystem changes entailed by most mitigation practices, i.e., building soil organic matter, reducing losses and tightening nutrient cycles, more efficient production systems and preserving native vegetation, are well aligned with goals of increasing food security and rural development as well as buffering land use systems against climate change (Lal 2004). Hence, there is growing interest in jump-starting the capacity for broad-based engagement in agriculturally-based GHG mitigation projects in developing countries. Against this favorable background, there are a number of significant challenges—in addition to the fundamental need for comprehensive mandatory reduction policies—to accelerating the involvement of agriculture in GHG mitigation. As detailed by articles in this special issue, quantifying emissions and emission reductions/sequestration of agricultural sources of CO2,N2O and CH4 is difficult. Emissions and C sequestration are distributed across the landscape, with high spatial and temporal variability and with multiple and interacting climate, soil and management factors that affect rates. In most cases, this makes instrument-based measurement of fluxes and C stock changes in agricultural

  4. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

    SciTech Connect

    Liu, Zhen; Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; van Bloemen Waanders, Bart Gustaaf; LaFranchi, Brian W.; Ivey, Mark D.; Schrader, Paul E.; Michelsen, Hope A.; Bambha, Ray P.

    2014-09-01

    In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF

  5. Landscape-level variation in greenhouse gas emissions in vineyards of central California

    NASA Astrophysics Data System (ADS)

    Berbeco, M.; Steenwerth, K. L.; Jackson, L. E.; Higgins, C.; Yu, O.; Greenhut, R. F.; O'Geen, T.

    2011-12-01

    Greenhouse gas emissions from agricultural soils can differ greatly across the landscape depending on soil type, landscape formation and management, making the implementation of mitigation practices challenging. In our study, we evaluated the carbon dioxide and nitrous oxide emissions from vineyard soils across a broad landscape in the Lodi Wine-grape District representing three soil types of different geologic history and under varying conventional management systems in the Central Valley of California. Soils of the District vary in space as a result of the depositional history of the parent materials from which the soils formed and subsequent weathering. The nature of the deposition of these materials has resulted in systematic patterns of soils in space. We sampled the following soils from this soil sequence over the larger landscape: 1) Slightly weathered granitic alluvium with low clay content located on the southern side of the district; 2) Intermediately weathered soils derived from granitic alluvium with high clay content located on the northern side of the district; and, 3) Highly weathered soils derived from metavolcanic and metasedimentary alluvium with intermediate clay content and rocky soils located on the eastern side of the district. The climate is Mediterranean with cool, moist winters and hot, dry summers. Initial results indicated that under wet conditions, the soils had similar carbon dioxide emissions with little variation between management or landscape formation. However, carbon dioxide emissions were typically higher in the alley than in the vine row. Nitrous oxide emissions were more variable in the higher clay soils as compared to sandier soils (0-180 g N/ha/day and 0-20 g N/ha/day, respectively). Nitrous oxide emissions were similar from the soil in the alley and vine row. We expect to see similar variability for carbon dioxide emissions under drier conditions later in the summer, but predict that it will differ by landscape position

  6. Smallholder African farms in western Kenya have limited greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Pelster, D. E.; Rufino, M. C.; Rosenstock, T.; Mango, J.; Saiz, G.; Diaz-Pines, E.; Baldi, G.; Butterbach-Bahl, K.

    2015-09-01

    Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems resulting in high uncertainty for national inventories. We provide here the most comprehensive study in Africa to date, examining annual CO2, CH4 and N2O emissions from 59 plots, across different vegetation types, field types and land classes in western Kenya. The study area consists of a lowland area (approximately 1200 m a.s.l.) rising approximately 600 m to a highland plateau. Cumulative annual fluxes ranged from 2.8 to 15.0 Mg CO2-C ha-1, -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1. Management intensity of the plots did not result in differences in annual fluxes for the GHGs measured (P = 0.46, 0.67 and 0.14 for CO2, N2O and CH4 respectively). The similar emissions were likely related to low fertilizer input rates (≤ 20 kg ha-1). Grazing plots had the highest CO2 fluxes (P = 0.005); treed plots were a larger CH4 sink than grazing plots (P = 0.05); while N2O emissions were similar across vegetation types (P = 0.59). This case study is likely representative for low fertilizer input, smallholder systems across sub-Saharan Africa, providing critical data for estimating regional or continental GHG inventories. Low crop yields, likely due to low inputs, resulted in high (up to 67 g N2O-N kg-1 aboveground N uptake) yield-scaled emissions. Improving crop production through intensification of agricultural production (i.e. water and nutrient management) may be an important tool to mitigate the impact of African agriculture on climate change.

  7. Stable Isotopes in Evaluation of Greenhouse Gas Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...

  8. Can Grazing Reduce Greenhouse Gas Emissions from Dairy Farms?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases (GHG) have become a common topic the past few years as more concern is developing over global climate change and the potential impact of these gases on our environment. So do our farms emit GHG? If so, how much and does the use of grazing affect these losses? A study was conducted u...

  9. Estimating greenhouse gas emissions from a waste lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cost-effective approach was used to investigate the relationship between emission of the greenhouse gases (GHG) CO2, CH4, and N2O and energy fluxes from a swine waste lagoon. Energy fluxes were calculated using the Penman method. The energy fluxes showed a diurnal pattern as expected of such flux...

  10. Greenhouse gas mitigation potential with cellulosic and grain bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The land use impacts, such as nitrous oxide (N2O) emissions and soil carbon sequestration, are associated with the largest changes in life cycle greenhouse gases from growing bioenergy crops. The biogeochemical model DAYCENT simulates fluxes of carbon (C) and nitrogen (N) between the atmosphere, veg...

  11. GLOBAL GREENHOUSE GAS EMISSIONS FROM RESERVOIRS: A MATTER OF METHANE

    EPA Science Inventory

    More than a decade ago, St. Louis et al. demonstrated that, collectively, manmade reservoirs play an important role in the global balance of greenhouse gases (GHGs). To update and build upon this important seminal work, we compiled reservoir CO2, CH4, and N2O flux estimates from...

  12. Holocene Changes in Land Cover and Greenhouse-gas Concentrations: Rethinking Natural vs Anthropogenic Causation

    NASA Astrophysics Data System (ADS)

    Roberts, C.

    2008-12-01

    The Holocene has witnessed a switch from a nature-dominated to a human-dominated Earth system. Although globally-significant human impacts (wildfire, megafaunal extinctions) occurred during the late Pleistocene, it was the advent of agriculture that led to the progressive transformation of land cover, and which distinguishes the Holocene from previous interglacial periods. A wide array of data provide clear evidence of local-to-regional human disturbance from ~5 ka BP, in some cases earlier. There is more uncertainty about when the anthropogenic "footprint" became detectable at a global scale, and there has consequently been debate about how much of the pre-industrial increase in atmospheric greenhouse gas concentrations is attributable to human causation, linked to processes such as deforestation (CO2) and wet rice cultivation (CH4). Although there has been recent progress in developing quantitative methods for translating pollen data into palaeo-land cover, such as the REVEALS model of Sugita (Holocene 2007) coupled to GIS, this has yet to be widely applied to existing data bases, and most pollen-based land-use reconstructions remain qualitative or semi-quantitative. Lake trophic status, sediment flux / soil erosion, and microcharcoal records of biomass burning provide alternative proxies that integrate regional-scale landscape disturbance. These proxy data along with documentary sources imply that globally-significant changes in land cover occurred prior to ~250 BP which must have altered atmospheric greenhouse gas concentrations by this time. The polarised debate for and against early anthropogenic impact on global carbon cycling mirrors our industrial-era division between nature and society, both conceptually (e.g. Cartesian dualism) and on the ground (e.g. demarcating land between monoculture agriculture and wilderness). However, for the period before ~1750 AD, this likely represents a false dichotomy, because pre-industrial societies more often formed part

  13. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level.

    PubMed

    Vanhala, Pekka; Bergström, Irina; Haaspuro, Tiina; Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78tCO2eqkm(-2) and 2.8tCO2eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250tCO2eqkm(-2) and 9.2tCO2eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. PMID:26994793

  14. Measurement of gas and aerosol agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  15. 78 FR 69337 - Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...The EPA is proposing to amend certain provisions of the Fluorinated Gas Production source category of the Greenhouse Gas Reporting Rule. The proposed changes would reduce the level of detail in which emissions were reported, establish a new set of default global warming potentials, eliminate the mass-balance emission calculation method, and clarify the emission factor method. We are also......

  16. Greenhouse gas emission from soil amended with biochar made from hydrothermally carbonizing swine solids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar made from hydrothermally carbonizing swine solids was mixed with a 50/50 mixture of Norfolk Ap and E horizon at a rate of 20 g/kg. During the incubation period of 54 days, greenhouse gas (CO2 and N2O) emission fluxes were calculated by nonlinearly regressing time-series headspace gas concent...

  17. Calculating the detection limits of chamber-based greenhouse gas flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamber-based measurement of greenhouse gas emissions from soil is a common technique. However, when changes in chamber headspace gas concentrations are small over time, determination of the flux can be problematic. Several factors contribute to the reliability of measured fluxes, including: samplin...

  18. Waste management options to reduce greenhouse gas emissions from paper in Australia

    NASA Astrophysics Data System (ADS)

    Pickin, J. G.; Yuen, S. T. S.; Hennings, H.

    A lifecycle assessment to estimate greenhouse gas emissions in Australia from the paper cycle is summarised. The greenhouse gas emissions from paper in Australia in 1999/2000 were estimated to be 12.1 million tonnes (Mt) of CO 2 equivalent. Nearly half of this amount consisted of CH 4 emissions from landfilled waste paper. Various waste management options were modelled to investigate the greenhouse impact of a tonne of paper over its whole lifecycle. Options that keep paper out of landfills significantly reduce greenhouse emissions, waste-to-energy recovery being most effective. Recycling is also beneficial, and is of particular interest from a management perspective because it can be controlled by the pulp and paper industry. These findings can be extended to other wood-based and organic wastes.

  19. On the potential for alternative greenhouse gas equivalence metrics to influence sectoral mitigation patterns

    NASA Astrophysics Data System (ADS)

    Brennan, Mark E.; Zaitchik, Benjamin F.

    2013-03-01

    Equivalence metrics used to quantify the relative climate impacts of different atmospheric forcers serve an essential function in policy and economic discussions about global climate change. The 100-year global warming potential (GWP-100), the most established greenhouse gas (GHG) equivalence metric, is used within the Kyoto Protocol, and in most emissions inventory, trading and offset mechanisms, to assign the mitigation value of non-carbon dioxide greenhouse gases relative to carbon dioxide. In recent literature the GWP-100 and alternative metrics have been used to compare various anthropogenic climate forcers with respect to a wide range of environmental and economic goals. Building on this work, we examine how 16 different static and time-varying CO2-equivalence schemes might influence GHG mitigation across sectors and gases in a perfect and fluid global mitigation regime. This mitigation regime is guided by achieving a global mean radiative forcing (RF) of 5.7 Wm-2 in 2100 from 1765 levels through a mitigation policy of prescribed emissions reductions in each decade. It was found that static metrics defined on 20- instead of 100-year time horizons favor mitigation strategies that maximize the abatement of short-lived gases (e.g. methane), on average resulting in an RF from methane in 2100 of 0.5 Wm-2 instead of 1.1 Wm-2 from 100-year metrics. Similarly, metrics that consider integrated rather than end-point climate impacts imply mitigation strategies that maximize mitigation of shorter-lived GHGs, resulting in higher abatement of agriculture and waste emissions. Comparing extreme scenarios, these mitigation shifts across gases and sectors result in a nearly 30% difference in the representation of methane in global cumulative emissions reductions. This shift across gases and sectors to mitigate shorter-lived GHGs, in lieu of longer-lived GHGs like carbon dioxide, has implications for the long-term warming commitment due to 21st century emissions.

  20. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the

  1. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL

  2. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    NASA Astrophysics Data System (ADS)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  3. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent efforts have been placed on trying to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research was conducted to assess the influence of cropping systems management on nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissio...

  4. Fertilizer Application Timing Influences Greenhouse Gas Fluxes Over a Growing Season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial production and consumption of greenhouse gases (GHG) is influenced by temperature and nutrients, especially during the first few weeks after agricultural fertilization. The effect of fertilization on GHG fluxes should be sensitive to environmental conditions during and shortly after appli...

  5. Reducing greenhouse gas emissions, water use and grain arsenic levels in rice systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is faced with the challenge of providing healthy food for a growing population while minimizing environmental consequences. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhous...

  6. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030

    EPA Science Inventory

    This report provides information on historical and projected estimates of emissions of non-CO2 greenhouse gases from anthropogenic sources. It includes over 20 individual source categories from the energy, industrial processes, agriculture, and waste sectors. It covers 92 countr...

  7. Enzymes, Total Organic Carbon, Microbial Biomass, and Greenhouse Gas Efflux in a Central Missouri Soybean Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon and nitrogen enter the atmosphere primarily as carbon dioxide (CO2) and nitrous oxide (N2O), respectively, partly due to anthropogenic effects of industrial and agricultural processes. The effects of these greenhouse gases (GHG) on global climate change and the environment require a better un...

  8. Greenhouse Gas Emissions from Soils as Affected by Addition of Biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) and carbon dioxide (CO2) are two major greenhouse gases that are emitted during agricultural and industrial activities. High concentrations of those gases in the stratospheric ozone layer are believed to be responsible for global climate change. Processing biomass by pyrolysis an...

  9. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions. PMID:21574555

  10. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. PMID:24602860

  11. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengxia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, Kranti

    2012-06-01

    We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of US beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO2-equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally.

  12. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romejn, Paul; Comer, Sophie; Gooddy, Daren; Ullah, Sami; Hannah, David; Krause, Stefan

    2016-04-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  13. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romeijn, P.; Comer, S.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2015-12-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  14. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    PubMed

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw

  15. Carbon Geography. The political economy of congressional support for legislation intended to mitigate greenhouse gas production

    SciTech Connect

    CRAGG, MICHAEL I.; ZHOU, YUYU; GURNEY, KEVIN; KAHN, MATTHEW E.

    2012-04-20

    Over the last five years, the U.S Congress has voted on several pieces of legislation intended to sharply reduce the nation’s greenhouse gas emissions. Given that climate change is a world public bad, standard economic logic would predict that the United States would -free rideII and wait for other nations to reduce their emissions. Within the Congress, there are clear patterns to who votes in favor of mitigating greenhouse gas emissions. This paper presents a political economy analysis of the determinants of pro-greenII votes on such legislation. Conservatives consistently vote against such legislation. Controlling for a Representative’s ideology, representatives from richer districts and districts with a lower per-capita carbon dioxide footprint are more likely to vote in favor of climate change mitigation legislation. Representatives from districts where industrial emissions represent a larger share of greenhouse gas emissions are more likely to vote no.

  16. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  17. Striking the balance between nutrient removal, greenhouse gas emissions, receiving water quality, and costs.

    PubMed

    Falk, Michael W; Reardon, David J; Neethling, J B; Clark, David L; Pramanik, Amit

    2013-12-01

    This Water Environment Research Foundation study considered the relationship between varying nutrient-removal levels at wastewater treatment plants, greenhouse gas emissions, receiving water quality (measured by potential algal production), and costs. The effluent nutrient concentrations required by some U.S. permits are very low, approaching the technology-best-achievable performance. This study evaluated five different treatment levels at a nominal 40 ML/d (10 mgd) flow. Greenhouse gas emissions and costs increase gradually up to the technologies' best-achievable performance, after which they increase exponentially. The gradual increase is attributed to additional biological treatment facilities, increased energy and chemical use, and additional tertiary nitrogen and phosphorus removal processes. Within the limited focus of this study, the evaluation shows that a point of diminishing return is reached as nutrient-removal objectives approach the technology-best-achievable performance, where greenhouse gas emissions and cost of treatment increases rapidly while the potential for algal growth reduce marginally. PMID:24597046

  18. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    NASA Astrophysics Data System (ADS)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; Mundra, Anupriya

    2015-11-01

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching 17 B under moderate mitigation, but only 7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to 18 B, generating benefits to moderate (stringent) mitigation as large as 26 B (20 B).

  19. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model.

    PubMed

    Cheng, Kun; Ogle, Stephen M; Parton, William J; Pan, Genxing

    2014-03-01

    Understanding the potential for greenhouse gas (GHG) mitigation in agricultural lands is a critical challenge for climate change policy. This study uses the DAYCENT ecosystem model to predict GHG mitigation potentials associated with soil management in Chinese cropland systems. Application of ecosystem models, such as DAYCENT, requires the evaluation of model performance with data sets from experiments relevant to the climate and management of the study region. DAYCENT was evaluated with data from 350 cropland experiments in China, including measurements of nitrous oxide emissions (N2 O), methane emissions (CH4 ), and soil organic carbon (SOC) stock changes. In general, the model was reasonably accurate with R(2) values for model predictions vs. measurements ranging from 0.71 to 0.85. Modeling efficiency varied from 0.65 for SOC stock changes to 0.83 for crop yields. Mitigation potentials were estimated on a yield basis (Mg CO2 -equivalent Mg(-1) Yield). The results demonstrate that the largest decrease in GHG emissions in rainfed systems are associated with combined effect of reducing mineral N fertilization, organic matter amendments and reduced-till coupled with straw return, estimated at 0.31 to 0.83 Mg CO2 -equivalent Mg(-1) Yield. A mitigation potential of 0.08 to 0.36 Mg CO2 -equivalent Mg(-1) Yield is possible by reducing N chemical fertilizer rates, along with intermittent flooding in paddy rice cropping systems. PMID:23966349

  20. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.

    2016-05-01

    Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.

  1. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  2. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  3. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    NASA Astrophysics Data System (ADS)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  4. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    USGS Publications Warehouse

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, D.C.; Marcot, B.G.; Durner, G.M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  5. Does manure management affect the latent greenhouse gas emitting potential of livestock manures?

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D

    2015-12-01

    With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this. PMID:26320816

  6. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  7. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils

    NASA Astrophysics Data System (ADS)

    Del Grosso, Stephen J.; Ojima, Dennis S.; Parton, William J.; Stehfest, Elke; Heistemann, Maik; DeAngelo, Benjamin; Rose, Steven

    2009-05-01

    Conversion of native vegetation to cropland and intensification of agriculture typically result in increased greenhouse gas (GHG) emissions (mainly N 2O and CH 4) and more NO 3 leached below the root zone and into waterways. Agricultural soils are often a source but can also be a sink of CO 2. Regional and larger scale estimates of GHG emissions are usually obtained using IPCC emission factor methodology, which is associated with high uncertainty. To more realistically represent GHG emissions we used the DAYCENT biogeochemical model for non-rice major crop types (corn, wheat, soybean). IPCC methodology estimates N losses from croplands based solely on N inputs. In contrast, DAYCENT accounts for soil class, daily weather, historical vegetation cover, and land management practices such as crop type, fertilizer additions, and cultivation events. Global datasets of weather, soils, native vegetation, and cropping fractions were mapped to a 1.9° × 1.9° resolution. Non-spatial data (e.g., rates and dates of fertilizer applications) were assumed to be identical within crop types across regions. We compared model generated baseline GHG emissions and N losses for irrigated and rainfed cropping with land management alternatives intended to mitigate GHG emissions. Reduced fertilizer resulted in lower N losses, but crop yields were reduced by a similar proportion. Use of nitrification inhibitors and split fertilizer applications both led to increased (~ 6%) crop yields but the inhibitor led to a larger reduction in N losses (~ 10%). No-till cultivation, which led to C storage, combined with nitrification inhibitors, resulted in reduced GHG emissions of ~ 50% and increased crop yields of ~ 7%.

  8. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    PubMed

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  9. An evaluation of the social and private efficiency of adoption: anaerobic digesters and greenhouse gas mitigation.

    PubMed

    Manning, D T; Hadrich, J C

    2015-05-01

    Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions. PMID:25706409

  10. Quantifying nitrogen fluxes and their influence on the greenhouse gas balance - recent findings of the NitroEurope Integrated Project

    NASA Astrophysics Data System (ADS)

    Sutton, M. A.; Nemitz, E.; Reis, S.; Beier, C.; Butterbach-Bahl, K.; Cellier, P.; Cotrufo, M.; Erisman, J.; Skiba, U.; de Vries, W.; Zechmeister-Boltenstern, S.; Bleeker, A.; Calanca, P. S.; Dalgaard, T.; Dragosits, U.; Duyzer, J.; Gundersen, P.; Hensen, A.; Kros, H.; Leip, A.; Olesen, J.; Phillips, G. J.; Rees, R. M.; Smith, P.; Soussana, J.; Tang, S.; Theobald, M. R.; Winiwarter, W.; van Oijen, M.; Vesala, T.

    2009-12-01

    The human-driven production of reactive nitrogen to stimulate agricultural productivity and its unintended formation in combustion processes both have major impacts on the global environment. Effects of excess reactive nitrogen include reductions in air quality, water quality, soil quality and biodiversity. One of the most controversial impacts of nitrogen, however, is on the greenhouse gas balance. While recent papers have highlighted a possible benefit of nitrogen in enhancing rates of carbon sequestration, there remain many trade-offs between nitrogen and greenhouse gas exchange. The result is that the net effect of reactive nitrogen on the global radiative balance is currently far from clear. To better quantity these relationships requires measurement data and modelling that make the link between different nitrogen forms and their fate in the environment. It is essential to measure fluxes for a wide range of ecosystems considering the biosphere-atmosphere exchange each of the reactive nitrogen components and greenhouse gases, as well as the fixation and denitrification of di-nitrogen. Long term observations are needed for representative ecosystems, together with results from experiments addressing the responses of the key nitrogen and greenhouse gas fluxes to different global change drivers. The NitroEurope Integrated Project of the 6th Framework Programme of the European Commission European has developed a strategy to quantifying these different terms on multiple scales. This presentation reports some of the emerging results. It highlights the first estimates of net greenhouse gas exchange for a series of 13 flux ‘supersites’, complemented by the emerging results of reactive nitrogen concentrations a large network of 58 ‘inferential sites’, which are being used to estimate nitrogen inputs. In addition to these, new low cost methods to measure nitrogen fluxes will be reported, which are being tested at the ‘supersites’ and a network of regional

  11. Quantifying nitrogen fluxes and their influence on the greenhouse gas balance - recent findings of the NitroEurope Integrated Project

    NASA Astrophysics Data System (ADS)

    Reis, S.; Sutton, M. A.; Nemitz, E.; Beier, C.; Butterbach-Bahl, K.; Cellier, P.; de Vries, W.; Erisman, J.; Zechmeister-Boltenstern, S.; Bleeker, A.; Nitroeurope Ip Consortium

    2010-12-01

    The generation of reactive nitrogen (Nr) by human activities to stimulate agricultural productivity and the unintended formation of Nr in combustion processes both have major impacts on the global environment. Effects of excess Nr include the deterioration of air quality, water quality, soil quality and a decline in biodiversity. One of the most controversial impacts of nitrogen, however, is on the greenhouse gas balance. While recent papers have highlighted a possible benefit of nitrogen in enhancing rates of carbon sequestration, there remain many trade-offs between nitrogen and greenhouse gas exchange. The result is that the net effect of Nr on the global radiative balance has yet to be fully quantified. To better understand these relationships requires intense measurement and modelling of Nr fluxes at various temporal and spatial scales in order to make the link between different nitrogen forms and their fate in the environment. It is essential to measure fluxes for a wide range of ecosystems considering the biosphere-atmosphere exchange of the Nr components and greenhouse gases, as well as the fixation of di-nitrogen and its creation by denitrification. Long-term observations are needed for representative ecosystems, together with results from experiments addressing the responses of the key nitrogen and greenhouse gas fluxes to different global change drivers. The NitroEurope Integrated Project (in short NEU IP), funded under the 6th Framework Programme of the European Commission, has developed and applied a strategy for quantifying these different terms on multiple scales. With the project nearing completion, this presentation reports selected preliminary findings. It highlights the first estimates of Nr inputs and net green-house gas exchange for a series of 13 flux ‘supersites’, complemented by the emerging results of Nr concentrations and related N inputs at a network of 58 ‘inferential sites’, which extend the European representativity of the

  12. Greenhouse gas production in wastewater treatment: process selection is the major factor.

    PubMed

    Keller, J; Hartley, K

    2003-01-01

    Many practical design and operating decisions on wastewater treatment plants can have significant impacts on the overall environmental performance, in particular the greenhouse gas (GHG) emissions. The main factor in this regard is the use of aerobic or anaerobic treatment technology. This paper compares the GHG production of a number of case studies with aerobic or anaerobic main and sludge treatment of domestic wastewater and also looks at the energy balances and economics. This comparison demonstrates that major advantages can be gained by using primarily anaerobic processes as it is possible to largely eliminate any net energy input to the process, and therefore the production of GHG from fossil fuels. This is achieved by converting the energy of the incoming wastewater pollutants to methane which is then used to generate electricity. This is sufficient to power the aerobic processes as well as the mixing etc. of the anaerobic stages. In terms of GHG production, the total output (in CO2 equivalents) can be reduced from 2.4 kg CO2/kg COD(removed) for fully aerobic treatment to 1.0 kg CO2/kg COD(removed) for primarily anaerobic processes. All of the CO2 produced in the anaerobic processes comes from the wastewater pollutants and is therefore greenhouse gas neutral, whereas up to 1.4 kg CO2/kg COD(removed) originates from power generation for the fully aerobic process. This means that considerably more CO2 is produced in power generation than in the actual treatment process, and all of this is typically from fossil fuels, whereas the energy from the wastewater pollutants comes primarily from renewable energy sources, namely agricultural products. Even a change from anaerobic to aerobic sludge treatment processes (for the same aerobic main process) has a massive impact on the CO2 production from fossil fuels. An additional 0.8 kg CO2/kg COD(removed) is produced by changing to aerobic sludge digestion, which equates for a typical 100,000 EP plant to an additional

  13. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  14. Soil Greenhouse Gas Emissions from a Subtropical Mangrove in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lai, D. Y. F.; Xu, J.

    2014-12-01

    The concept of "blue carbon" has received increasing attention recently, which points to the potential role of vegetated coastal wetlands in carbon sequestration. Yet, the magnitude and controls of greenhouse gas emissions from coastal wetland ecosystems, especially mangroves in the subtropical regions, are still largely unknown. In this study, we conducted chamber measurements in the Mai Po Marshes Nature Reserve of Hong Kong at monthly intervals to characterize the spatial and temporal variability of the emission of greenhouse gases, including CO2, CH4 and N2O from mangrove soils, and examine the influence of environmental and biotic variables on greenhouse gas fluxes. We found the highest mean CH4 and N2O emissions in autumn and the highest CO2 flux in summer. Along the tidal gradient, we observed significantly higher CH4 and N2O emissions from the middle zones and landward zones, respectively, while no clear spatial variation of CO2 emissions was observed. There were significantly higher soil greenhouse gas emissions from sites dominated by Avicennia marina than those dominated by Kandelia obovata, which might be due to the presence of pneumatophores which facilitated gas transport. We found a significant, negative correlation between CH4 flux and soil NO3-N concentration, while CO2 flux was positively correlation with total Kjeldahl nitrogen content. Soil temperature was positively correlated with the emissions of all three greenhouse gases, while water table depth was positively and negatively correlated with CH4 and N2O emissions, respectively. Our findings demonstrate the high spatial and temporal variability of greenhouse gas emissions from mangrove soils which could be attributed in part to the differences in environmental conditions and dominant plant species.

  15. Secondary aerosol production from agricultural gas precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...

  16. Use of UAVs for greenhouse gas monitoring at hotspot emissions zones

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Allen, G.; Mead, M. I.; Hollingsworth, P.; Kabbabe, K.; Roberts, G.; Shallcross, D. E.

    2015-12-01

    Measuring greenhouse gas emissions from individual localised sources, or "hotspots", is important for both compliance monitoring and validating the techniques used to compile national emission inventories. Frequently ground based techniques are used, such as flux chamber measurements, which suffer from issues regarding sample representativeness, and tracer release methods, which for area sources rely heavily on release site configuration. Obtaining vertically resolved data can enable the use of a mass balance method to calculate greenhouse gas fluxes. This has been achieved using remote sensing techniques, but this usually requires the deployment of expensive, bulky instrumentation. Here we evaluate the suitability of using UAVs, in conjunction with emerging miniaturised sensor technology, as a highly manoeuvrable, low cost alternative for measuring hotspot greenhouse gas emissions. We describe a case study performed at a UK landfill site, where greenhouse gas measurements made on board a fixed wing UAV were used to estimate the bulk CH4 emission rate. Details of the mass balance technique employed, along with the key uncertainties associated with it, are discussed. This work is part of an ongoing study at the University of Manchester into the application of UAVs in atmospheric research, with the rapid advancement in miniaturised sensor technology providing new opportunities for integrating trace gas measurement with existing lightweight UAVs.

  17. Greenhouse-gas emissions from biofuel use in Asia.

    SciTech Connect

    Streets, D. G.; Waldhoff, S. T.

    1999-07-06

    Biomass is a primary fuel for much of the world's population. In some developing countries it can contribute 80-90% of total primary energy consumption. In Asia as a whole we estimate that biomass contributes about 22 EJ, almost 24% of total energy use. Much of this biomass is combusted in inefficient domestic stoves and cookers, enhancing the formation of products of incomplete combustion (PIC), many of which are greenhouse gases. An inventory of the combustion of biofuels (fuelwood, crop residues, and dried animal waste) in Asia is used to develop estimates of the emissions of carbon-containing greenhouse gases (CO{sub 2},CO, CH{sub 4}, and NMHC) in Asian countries. The data are examined from two perspectives: total carbon released and total global warming potential (GWP) of the gases. We estimate that blofuels contributed 573 Tg-C in 1990, about 28% of the total carbon emissions from energy use in Asia. China (259 Tg-C) and India (187 Tg-C) were the largest emitting countries by far. The majority of the emissions, 504 Tg-C, are in the form of CO{sub 2}; however, emissions of non-CO{sub 2} greenhouse gases are significant: 57 Tg-C as CO, 6.4 Tg-C as CH{sub 4}, and 5.9 Tg-C as NMHC. Because of the high rate of incomplete combustion in typical biofuel stoves and the high GWP coefficients of the products of incomplete combustion, biofuels comprise an even larger share of energy-related emissions when measured in terms of global warming potential (in CO{sub 2} equivalents): 38% over a 20-year time frame and 31% over 100 years. Even when the biofuel is assumed to be harvested on a completely sustainable basis (all CO{sub 2} emissions are reabsorbed in the following growing season), PIC emissions from biofuel combustion account for almost 5% of total carbon emissions and nearly 25% of CO{sub 2} equivalents in terms of short-term (20-year) GWP.

  18. Greenhouse Gas Fluxes from Forested Wetland and Upland Soils

    NASA Astrophysics Data System (ADS)

    Savage, K. E.; Davidson, E. A.

    2015-12-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important greenhouse gases. Soils are the dominant natural source of N2O, and have been shown to be a small sink under N-limited conditions. Wetlands are a significant natural source of CH4, and dry upland soils a natural CH4 sink. Soils release CO2 produced by both autotrophic (root) and heterotrophic (microbial) respiration processes. Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling soil aeration, and hence the balance between aerobic (predominantly CO2 producing) and anaerobic (both CO2 and CH4 producing) respiration. The production and consumption of N2O is also highly dependent on spatial and temporal variation in soil moisture. Howland forest, ME is a mosaic of well drained upland, wetland and small transitional upland/wetland soils which makes for a unique and challenging environment to measure the effects of soil moisture on the net exchange of these important greenhouse gases. To quantify the flux of CO2, CH4 and N2O from the Howland forest soils, we utilized a previously developed automated chamber system for measuring CO2 efflux (Licor 6252 IRGA) from soils, and configured it to run in-line with a new model quantum cascade laser (QCL) system which measures N2O and CH4 (Aerodyne model QC-TILDAS-CS). This system allowed for simultaneous, high frequency, continuous measurement of all three greenhouse gases. Fourteen sampling chambers were deployed in an upland soil (8), nearby wetland (3) and a transitional upland/wetland (3). Each chamber was measured every 90 minutes. Upland soils were consistent sources of CO2 and sinks for CH4, however the N2O fluxes were transient between sources and sinks. The wetland soils were consistent sources of high CH4 emissions, low CO2 emissions and a consistently small N2O sink. The transitional upland/wetland soil was a consistent source of CO2 but was much more transient between CH4 and N2O sources and

  19. Effect of enhanced leachate recirculated (ELR) landfill operation and gas extraction on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Samir, Sonia

    The bioreactor/ enhanced leachate recirculated (ELR) landfill operation with the addition of moisture/ leachate to the landfill, accelerate the process of landfill waste decomposition; and increase the generation of LFG over a shorter period of time. Since emissions from the landfills are directly related to the gas generation, the increase in gas generation might also increase the emission from the landfill. On the contrary, the presence of gas extraction is suggested to mitigate the fugitive emissions from the landfills. Therefore, the motivation of the current study was to evaluate the effect of ELR operation as well as the gas extraction on the greenhouse gas emissions from the landfill. The current study was conducted in the City of Denton Landfill, Texas. Methane emission was investigated using a portable FID and static flux chamber technique from the landfill surface. Emission was measured from an ELR operated cell (cell 2) as well as a conventional cell (cell 0) in the City of Denton Landfill. Methane emission for cell 2 varied from 9544.3 ppm to 0 ppm while for cell 0, it varied from 0 ppm to 47 ppm. High spatial variations were observed during monitoring from both cells 0 and cell 2 which could be recognized as the variation of gas generation below the cover soil. The comparison between emissions from the slope and surface of the landfill showed that more methane emission occurred from the slopes than the top surface. In addition, the average landfill emission showed an increasing trend with increase in temperature and decreasing trend with increasing precipitation. The effect of ELR operation near the recirculation pipes showed a lag period between the recirculation and the maximum emission near the pipe. The emission near the pipe decreased after 1 day of recirculation and after the initial decrease, the emission started to increase and continued to increase up to 7 days after the recirculation. However, approximately after 10 days of recirculation, the

  20. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    SciTech Connect

    McAlexander, Benjamin L.

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  1. A Teaching Experiment in the Use of Greenhouse Facilities in Vocational Agriculture.

    ERIC Educational Resources Information Center

    Drawbaugh, Charles Calvin

    Major purposes were to measure the comparative effectiveness of school greenhouses, community greenhouses, and classroom windowsills and a laboratory manual, functional experience, and teacher's own method for learning plant science principles relative to the environmental factors of light, temperature, moisture, aeration, and nutrients. Minor…

  2. Greenhouse Management Curriculum Guide for Vocational Agriculture/Agribusiness. Curriculum Development. Bulletin No. 1824.

    ERIC Educational Resources Information Center

    University of Southwestern Louisiana, Lafayette.

    This document contains teacher's materials for an 8-unit course in greenhouse management for 11th and 12th graders. The units are as follows: Producing Annual Bedding Plants; Foliage Plants; General Greenhouse Management; Poinsettia Production; Vegetable Bedding Plant Production: Tomatoes, Peppers, and Eggplants; Production of Potted…

  3. Forests on drained agricultural peatland are potentially large sources of greenhouse gases - insights from a full rotation period simulation

    NASA Astrophysics Data System (ADS)

    He, Hongxing; Jansson, Per-Erik; Svensson, Magnus; Björklund, Jesper; Tarvainen, Lasse; Klemedtsson, Leif; Kasimir, Åsa

    2016-04-01

    The CoupModel was used to simulate a Norway Spruce forest on fertile drained peat over 60 years, from planting in 1951 until 2011, describing abiotic, biotic and greenhouse gas (GHG) emissions (CO2 and N2O). By calibrating the model against tree ring derived biomass data and measured 6 year abiotic data we obtained a "reference" model by which we were able to describe the GHG fluxes and controlling factors over the 60 years. The GHG fluxes are composed of two important quantities, the forest carbon (C) uptake, 405 g C m‑2 yr‑1 and the decomposition of peat soil, 396 g C m‑2 yr‑1. N2O emissions contribute to the GHG emissions by 0.5 g N m‑2 yr‑1, corresponding to 56.8 g C m‑2 yr‑1. The 60-year-old Spruce forest has an accumulated biomass of 164 Mg C ha‑1. However, over this period 208 Mg C ha‑1 GHG has been added to the atmosphere, which means a net addition of GHG emissions. The main losses are from the peat soil and, indirectly, from forest thinning products, which we assume have a short lifetime. Model sensitivity analysis by changing initial soil C, drainage depth and initial soil C/N ratio also confirms that forests on drained agricultural peatland are a GHG source. We conclude that after harvest at an age of 80 years, most of the stored biomass carbon is liable to be released, the system having captured C only temporarily and with a cost of disappeared peat, adding both CO2 and N2O to the atmosphere.

  4. Improving greenhouse gas reduction calculations for bioenergy systems: Incremental life cycle analysis

    NASA Astrophysics Data System (ADS)

    Ney, Richard A.

    There are many scales that can be employed to calculate net greenhouse gas emissions from bioenergy systems, ranging from single point source (stack gas) measurement, to full, multi-layered life cycle analyses considering all of the inputs and outputs throughout the economy. At an appropriate scale within these extremes, a method can be selected to support verification activities related to project-based trading of greenhouse gas emissions. The boundaries of the analysis must be carefully selected in order to meet the twin goals of the verification activity: (1) to meet scientific standards for emission balance quantification; and (2) to meet cost-effectiveness criteria of the emission trading community. The Incremental Life Cycle Analysis (ILCA) methodology is proposed and implemented for the quantification of greenhouse gas emission reductions arising from substitution of switchgrass for coal in electricity generation. The method utilizes an incremental progression through the fuel life cycle, evaluating each level of the life cycle for the quality the emission estimate produced. The method also reviews the scientific uncertainty underlying emission estimation procedures so that areas of relative weakness can be targeted and improved. The ILCA methodology is applied to the Chariton Valley Biomass Project (CVBP) for case study and evaluation. The CVBP is seeking to replace coal combustion in an existing 650-MW generation facility with switchgrass, cofired at a rate of 5 percent switchgrass to 95 percent coal. When the project reaches full capacity, the ILCA estimates that 239 pounds of carbon dioxide-equivalent (CO2-eq) emissions will be reduced and/or removed from the atmosphere for every million Btu of switchgrass utilized, generating annual greenhouse gas reductions of 305,000 tons CO2-eq, leading to revenue for the project totaling over $1.5 million annually through trading of greenhouse gas emission reduction credits.

  5. Effect of irrigation on short-term pulses of greenhouse gas fluxes from manure-amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas fluxes were monitored at a no-till continuous corn field site contrasting irrigation rates (60% versus 100%), overall nitrogen fertilizer rates (125 versus 200 kg N/ha), and biennial application of cattle feedlot manure. Greenhouse gas fluxes were assessed after the manure applicatio...

  6. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the life cycle greenhouse gas benefits of biofuels has been critical for quantifying their potential for meeting governmental mitigation targets. Little work has been conducted to determine the life cycle greenhouse gas benefits of using biomass for heat or power generation, even though ...

  7. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  8. GREENHOUSE GAS EMISSION REDUCTION AND ENVIRONMENTAL QUALITY IMPROVEMENT FROM IMPLEMENTATION OF AEROBIC WASTE TREATMENT SYSTEMS IN SWINE FARMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trading of greenhouse gas (GHG) emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to determine greenhouse gas (GHG) emission reductions from implementation of aerobic technology in USA sw...

  9. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  10. 75 FR 31513 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...EPA is tailoring the applicability criteria that determine which stationary sources and modification projects become subject to permitting requirements for greenhouse gas (GHG) emissions under the Prevention of Significant Deterioration (PSD) and title V programs of the Clean Air Act (CAA or Act). This rulemaking is necessary because without it PSD and title V requirements would apply, as of......

  11. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of these experiments was to investigate the effect of dietary crude protein concentration on ammonia and greenhouse gas (GHG; nitrous oxide, methane, and carbon dioxide) emissions from dairy cow manure in simulated storage (Exp. 1) and from manure amended soil (Exp. 2). Manure was prep...

  12. Biochar alters manure's effect on nitrogen cycling and greenhouse gas emissions in a calcareous soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few multiyear field studies have examined the impacts of a one-time biochar application on net N mineralization and greenhouse gas emissions in an irrigated, calcareous soil; yet such applications are hypothesized as a means of sequestering atmospheric CO2 and improving soil quality. We fall-applie...

  13. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  14. Sustainable bioenergy feedstock production systems: Integrating carbon dynamics, erosion, water quality, and greenhouse gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing greenhouse gas (GHG) emission is one of several rationales for developing renewable biomass energy. Unfortunately, there are few studies reporting direct impacts of harvesting biomass feedstocks on GHG, especially effects on nitrous oxide (N2O) flux. Overzealous biomass harvest may accelera...

  15. Reducing Energy Cost and Greenhouse Gas Emission in the Corporate Sector, a Delphi Study

    ERIC Educational Resources Information Center

    Kramer, Maxim L.

    2013-01-01

    The study is titled "Reducing energy cost and GreenHouse Gas emission in the corporate sector, A Delphi Study". The study applied the Delphi methodology and focused on the Green IT solutions that can help the modern corporate organizations with less than 1000 employees to decrease their energy costs and GHG emissions. The study presents…

  16. Subjective Well-Being Approach to Environmental Valuation: Evidence for Greenhouse Gas Emissions

    ERIC Educational Resources Information Center

    Beja, Edsel L., Jr.

    2012-01-01

    The subjective well-being approach to environmental valuation is applied to analyze the valuation of greenhouse gas emissions with a fairness-adjustment in the valuation exercise. Results indicate that industrialized countries have high willingness-to-pay to reduce emissions. Developing countries differ in their valuations. Results indicate that…

  17. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  18. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... detection limit F-GHG fluorinated greenhouse gas FR Federal Register FTIR Fourier transform infrared GHG... requirements for subpart I were finalized on December 1, 2010 (75 FR 74774, hereafter referred to as ``final...: Extension of Best Available Monitoring Provisions for Electronics Manufacturing (76 FR 36339, published...

  19. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  20. INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS: 1990-2001

    EPA Science Inventory

    The inventory report presents estimates by the United States government of U.S. anthropogenic greenhouse gas emissions and sinks for the years 1990 through 2001. The emission estimates in the tables are presented on both a full molecular mass basis and on a Global Warming Potent...

  1. Regulating Greenhouse Gas 'Leakage': How California Can Evade the Impending Constitutional Attacks

    SciTech Connect

    Potts, Brian H.

    2006-06-15

    Federalist greenhouse gas regulation poses many constitutional pitfalls, and some fear that California's cap-and-trade and procurement cap proposals are vulnerable to constitutional challenge. An attack under the commerce clause seems to pose the biggest threat, but the author proposes an alternative that can eliminate this threat: market participation. (author)

  2. Regulating greenhouse gas 'leakage': how California can evade the impending constitutional attacks

    SciTech Connect

    Brian H. Potts

    2006-06-15

    Federalist greenhouse gas regulation poses many constitutional pitfalls, and some fear that California's cap-and-trade and procurement cap proposals are vulnerable to constitutional challenge. An attack under the commerce clause seems to pose the biggest threat, but the author proposes an alternative that can eliminate this threat: market participation.

  3. Computer simulation of energy use, greenhouse gas emissions and process economics of the fluid milk process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-farm activities associated with fluid milk production contribute approximately 70% of total greenhouse gas (GHG) emissions while off-farm activities arising from milk processing, packaging, and refrigeration, contribute the remainder in the form of energy-related carbon dioxide (CO2) emissions. W...

  4. Management to reduce greenhouse gas emissions in western U.S. croplands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions (CO2, CH4, N2O) research from crop production systems in the Western U.S. published from 2005-2011 is summarized here. Limited GHG emissions data were found. Data from irrigated cropping systems in California (grain, rice, vegetable, orchards), Texas (cotton), Colora...

  5. Greenhouse gas emission and groundwater pollution potentials of soils amended with raw and carbonized swine solids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solids and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture o...

  6. Greenhouse gas emission and groundwater pollution potentials of soils amended with different swine biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with various biochars using different biomass feedstocks and thermal processing conditions. Triplicate sets of small pots were designed; control soil consisting of Histi...

  7. Groundwater pollution potential and greenhouse gas emission from soils amended with different swine biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there exist numerous research studies in the literature on greenhouse gas emission and groundwater pollution potentials of soils amended with plant-based biochar made from traditional dry pyrolysis (hereafter referred as pyrochar), a very few such studies exist for hydrochar made from hydro...

  8. PROTOTYPE TOOL FOR EVALUATING THE COST AND EFFECTIVENESS OF GREENHOUSE GAS MITIGATION TECHNOLOGIES

    EPA Science Inventory

    The paper introduces the structure of a tool, being developed by the U.S. EPA's Office of Research and Development, that will be able to analyze the benefits of new technologies and strategies for controlling greenhouse gas (GHG) emissions. When completed, the tool will be able ...

  9. Effect of dietary protein concentration on ammonia and greenhouse gas emissions from dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to investigate the effect of dietary crude protein concentration on ammonia and greenhouse gas (GHG: carbon dioxide, methane, and nitrous oxide) emissions from dairy manure in simulated storage (Exp. 1) and from manure-amended soil in lysimeters (Exp. 2). Twenty four lacta...

  10. Impact of biochar field aging on laboratory greenhouse gas production potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent observations of decreased greenhouse gas (GHG) production from biochar amended soils have been used to further substantiate the environmental benefit of biochar production and soil incorporation strategies. However, the mechanisms behind the “biochar effect” have not been fully elucidated. In...

  11. Greenhouse Gas Fluxes in an Eastern Corn Belt Soil: Weather, N Source and Rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative contribution of diverse managed ecosystems to the greenhouse gas effect is not completely documented. This study was conducted to estimate soil surface fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and global warming potential (GWP) as affected by management practi...

  12. Quantification of Greenhouse Gas Emissions from Soil Applied Swine Effluent by Different Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (CO2, CH4, and N2O) emissions were measured from a field experiment in which pre-plant swine effluent application methods where evaluated for no-till corn grain production. The treatments included a control, an inorganic fertilizer treatment that received 179 kg N ha-1 as urea ammoni...

  13. Sub-surface soil carbon changes affects biofuel greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in direct soil organic carbon (SOC) can have a major impact on overall greenhouse gas (GHG) emissions from biofuels when using life-cycle assessment (LCA). Estimated changes in SOC, when accounted for in an LCA, are typically derived from near-surface soil depths (<30 cm). Changes in subsurf...

  14. Cropping System Management Impacts on Greenhouse Gas Emissions in the Cool, Humid Northeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating global greenhouse gas (GHG) emissions requires regional measurements be made within different production systems. A long-term potato cropping system experiment established in 2004 in Presque Isle, ME, on a sandy loam soil was designed to contribute to three of the following scenarios rel...

  15. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewed interest in quantifying greenhouse gas emissions from soil has lead to an increase in the application of chamber-based flux measurement techniques. Despite the apparent conceptual simplicity of chamber-based methods, nuances in chamber design, deployment, and data analyses can have marked ef...

  16. Greenhouse Gas Emission from Contrasting Management Scenarios in the Northern Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term cropping systems field plots were established in 2002 in west central Minnesota to compare tillage, rotation and fertilizer treatments and to identify and develop economically viable and environmentally sustainable farming systems. Greenhouse gas (GHG) emission was monitored in three scena...

  17. Fallow Effects on Soil Carbon and Greenhouse Gas Flux in Central North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inclusion of cover crops during fallow (i.e., green fallow) may mitigate greenhouse gas (GHG) emissions from dryland cropping systems. An investigation was conducted to quantify the effects of chemical- and green-fallow on soil organic carbon (SOC) and carbon dioxide, methane, and nitrous oxide flu...

  18. Growing season greenhouse gas flux from switchgrass in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is being evaluated as a bioenergy crop for the United States. Field measurements of CO2, CH4, and N2O flux from switchgrass are needed to estimate the net greenhouse gas (GHG) balance of this biofeedstock. The study objective was to determine effects of N fertiliz...

  19. Ammonia and greenhouse gas emissions from constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia and greenhouse gas emissions from marsh-pond-marsh constructed wetlands treating swine wastewater were measured with closed-chamber technique using a photoacoustic multigas analyzer. Theory behind the technique was discussed and the technique was demonstrated with actual field data. Nitrous ...

  20. Greenhouse gas flux from western U.S. agroecosystems: Synthesis of mitigation opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining critical agroecosystem functions will require proactive management responses that concurrently mitigate greenhouse gas (GHG) emissions and adapt to impacts from climate change. In the western U.S., numerous strategies currently exist to mitigate GHG emissions from cropland and rangeland...