Science.gov

Sample records for agricultural greenhouse gas

  1. Greenhouse gas mitigation in agriculture.

    PubMed

    Smith, Pete; Martino, Daniel; Cai, Zucong; Gwary, Daniel; Janzen, Henry; Kumar, Pushpam; McCarl, Bruce; Ogle, Stephen; O'Mara, Frank; Rice, Charles; Scholes, Bob; Sirotenko, Oleg; Howden, Mark; McAllister, Tim; Pan, Genxing; Romanenkov, Vladimir; Schneider, Uwe; Towprayoon, Sirintornthep; Wattenbach, Martin; Smith, Jo

    2008-02-27

    Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively.

  2. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  3. Mitigation potential and costs for global agricultural greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a substantial contributor to global greenhouse gas (GHG) emissions, accounting for about 58% of the world’s anthropogenic non-carbon dioxide GHG emissions and 14% of all anthropogenic GHG emissions, and agriculture is often viewed as a potential source of relatively low-c...

  4. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture.

    PubMed

    Milne, Alice E; Glendining, Margaret J; Lark, R Murray; Perryman, Sarah A M; Gordon, Taylor; Whitmore, Andrew P

    2015-09-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as 'likely' and 'very unlikely'; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those who worked

  5. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania

    NASA Astrophysics Data System (ADS)

    Rosenstock, Todd S.; Mpanda, Mathew; Pelster, David E.; Butterbach-Bahl, Klaus; Rufino, Mariana C.; Thiong'o, Margaret; Mutuo, Paul; Abwanda, Sheila; Rioux, Janie; Kimaro, Anthony A.; Neufeldt, Henry

    2016-06-01

    Knowledge of greenhouse gas (GHG) fluxes in soils is a prerequisite to constrain national, continental, and global GHG budgets. However, data characterizing fluxes from agricultural soils of Africa are markedly limited. We measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) fluxes at 10 farmer-managed sites of six crop types for 1 year in Kenya and Tanzania using static chambers and gas chromatography. Cumulative emissions ranged between 3.5-15.9 Mg CO2-C ha-1 yr-1, 0.4-3.9 kg N2O-N ha-1 yr-1, and -1.2-10.1 kg CH4-C ha-1 yr-1, depending on crop type, environmental conditions, and management. Manure inputs increased CO2 (p = 0.03), but not N2O or CH4, emissions. Soil cultivation had no discernable effect on emissions of any of the three gases. Fluxes of CO2 and N2O were 54-208% greater (p < 0.05) during the wet versus the dry seasons for some, but not all, crop types. The heterogeneity and seasonality of fluxes suggest that the available data describing soil fluxes in Africa, based on measurements of limited duration of only a few crop types and agroecological zones, are inadequate to use as a basis for estimating the impact of agricultural soils on GHG budgets. A targeted effort to understand the magnitude and mechanisms underlying African agricultural soil fluxes is necessary to accurately estimate the influence of this source on the global climate system and for determining mitigation strategies.

  6. The FAOSTAT database of greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Tubiello, Francesco N.; Salvatore, Mirella; Rossi, Simone; Ferrara, Alessandro; Fitton, Nuala; Smith, Pete

    2013-03-01

    Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961-2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961-2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO2 yr-1 in 2010 (up to 5.4-5.8 Gt CO2 yr-1 with emissions from biomass burning and organic soils included). Over the same decade 2000-2010, the

  7. USDA Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 43%, 152%, and 20% respectively since about 1750. In 2013, total U.S. greenhouse gas emissions were 6,673 million metric tons of carbon dioxide equivalents (MMT CO2 eq.), ris...

  8. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    PubMed

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  9. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon

    PubMed Central

    Galford, Gillian L.; Melillo, Jerry M.; Kicklighter, David W.; Cronin, Timothy W.; Cerri, Carlos E. P.; Mustard, John F.; Cerri, Carlos C.

    2010-01-01

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006–2050) impacts on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO2-equivalents (CO2-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24–49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2–0.4 Pg CO2-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso. PMID:20651250

  10. Providing low-budget estimations of carbon sequestration and greenhouse gas emissions in agricultural wetlands

    NASA Astrophysics Data System (ADS)

    Lloyd, Colin R.; Rebelo, Lisa-Maria; Finlayson, C. Max

    2013-03-01

    The conversion of wetlands to agriculture through drainage and flooding, and the burning of wetland areas for agriculture have important implications for greenhouse gas (GHG) production and changing carbon stocks. However, the estimation of net GHG changes from mitigation practices in agricultural wetlands is complex compared to dryland crops. Agricultural wetlands have more complicated carbon and nitrogen cycles with both above- and below-ground processes and export of carbon via vertical and horizontal movement of water through the wetland. This letter reviews current research methodologies in estimating greenhouse gas production and provides guidance on the provision of robust estimates of carbon sequestration and greenhouse gas emissions in agricultural wetlands through the use of low cost reliable and sustainable measurement, modelling and remote sensing applications. The guidance is highly applicable to, and aimed at, wetlands such as those in the tropics and sub-tropics, where complex research infrastructure may not exist, or agricultural wetlands located in remote regions, where frequent visits by monitoring scientists prove difficult. In conclusion, the proposed measurement-modelling approach provides guidance on an affordable solution for mitigation and for investigating the consequences of wetland agricultural practice on GHG production, ecological resilience and possible changes to agricultural yields, variety choice and farming practice.

  11. Strategies to meet the challenges of monitoring greenhouse gas emissions in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  12. Agricultural greenhouse gas flux determination via remote sensing and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious concerns have been raised about increasing levels of atmospheric greenhouse gases (GHGs) and associated climate change. For every degree in global temperature increase, grain production yields are expected to decrease 10%, while the global human population continues to increase by roughly 8...

  13. Climate science: Agricultural greenhouse gases

    NASA Astrophysics Data System (ADS)

    Pollock, Chris

    2011-05-01

    Mitigating greenhouse gas emissions from agriculture is important and achievable. However, cutting emissions to meet the UK's legal targets for 2050 will bring technical and political challenges, and may affect food production.

  14. Agriculture: Nurseries and Greenhouses

    EPA Pesticide Factsheets

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  15. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  16. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    PubMed

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  17. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.

  18. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  19. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  20. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    PubMed

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO2eq kg(-1) rice, 45.54 kg CO2eq kg(-1) mutton meat and 2.4 kg CO2eq kg(-1) milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO2eq kg(-1) product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  1. Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture.

    PubMed

    Friel, Sharon; Dangour, Alan D; Garnett, Tara; Lock, Karen; Chalabi, Zaid; Roberts, Ian; Butler, Ainslie; Butler, Colin D; Waage, Jeff; McMichael, Anthony J; Haines, Andy

    2009-12-12

    Agricultural food production and agriculturally-related change in land use substantially contribute to greenhouse-gas emissions worldwide. Four-fifths of agricultural emissions arise from the livestock sector. Although livestock products are a source of some essential nutrients, they provide large amounts of saturated fat, which is a known risk factor for cardiovascular disease. We considered potential strategies for the agricultural sector to meet the target recommended by the UK Committee on Climate Change to reduce UK emissions from the concentrations recorded in 1990 by 80% by 2050, which would require a 50% reduction by 2030. With use of the UK as a case study, we identified that a combination of agricultural technological improvements and a 30% reduction in livestock production would be needed to meet this target; in the absence of good emissions data from Brazil, we assumed for illustrative purposes that the required reductions would be the same for our second case study in São Paulo city. We then used these data to model the potential benefits of reduced consumption of livestock products on the burden of ischaemic heart disease: disease burden would decrease by about 15% in the UK (equivalent to 2850 disability-adjusted life-years [DALYs] per million population in 1 year) and 16% in São Paulo city (equivalent to 2180 DALYs per million population in 1 year). Although likely to yield benefits to health, such a strategy will probably encounter cultural, political, and commercial resistance, and face technical challenges. Coordinated intersectoral action is needed across agricultural, nutritional, public health, and climate change communities worldwide to provide affordable, healthy, low-emission diets for all societies.

  2. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.

  3. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?

    NASA Astrophysics Data System (ADS)

    Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.

    2013-09-01

    In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.

  4. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    PubMed Central

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E.; Hillier, Jonathan; Rosenstock, Todd S.

    2016-01-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of ‘GHG calculators’— simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data. PMID:27197778

  5. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    NASA Astrophysics Data System (ADS)

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E.; Hillier, Jonathan; Rosenstock, Todd S.

    2016-05-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of ‘GHG calculators’— simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data.

  6. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture.

    PubMed

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E; Hillier, Jonathan; Rosenstock, Todd S

    2016-05-20

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of 'GHG calculators'- simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data.

  7. Agricultural soil greenhouse gas emissions: a review of national inventory methods.

    PubMed

    Lokupitiya, Erandathie; Paustian, Keith

    2006-01-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.

  8. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  9. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  10. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  11. Spatial variation related to hydroloigc patterns and vegetation in greenhouse gas fluxes from the Mississippi Delta agricultural region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes from agricultural landscapes may contribute significantly to regional greenhouse gas budgets due to stimulation of soil microbial activity through fertilizer application and variable soil moisture effects. In this study, measuremen...

  12. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  13. Insights from EMF Associated Agricultural and Forestry Greenhouse Gas Mitigation Studies

    SciTech Connect

    McCarl, Bruce A.; Murray, Brian; Kim, Man-Keun; Lee, Heng-Chi; Sands, Ronald D.; Schneider, Uwe

    2007-11-19

    Integrated assessment modeling (IAM) as employed by the Energy Modeling Forum (EMF) generally involves a multi-sector appraisal of greenhouse gas emission (GHGE) mitigation alternatives and climate change effects typically at the global level. Such a multi-sector evaluation encompasses potential climate change effects and mitigative actions within the agricultural and forestry (AF) sectors. In comparison with many of the other sectors covered by IAM, the AF sectors may require somewhat different treatment due to their critical dependence upon spatially and temporally varying resource and climatic conditions. In particular, in large countries like the United States, forest production conditions vary dramatically across the landscape. For example, some areas in the southern US present conditions favorable to production of fast growing, heat tolerant pine species, while more northern regions often favor slower-growing hardwood and softwood species. Moreover, some lands are currently not suitable for forest production (e.g., the arid western plains). Similarly, in agriculture, the US has areas where citrus and cotton can be grown and other areas where barley and wheat are more suitable. This diversity across the landscape causes differential GHGE mitigation potential in the face of climatic changes and/or responses to policy or price incentives. It is difficult for a reasonably sized global IAM system to reflect the full range of sub-national geographic AF production possibilities alluded to above. AF response in the face of climate change altered temperature precipitation regimes or mitigation incentives will likely involve region-specific shifts in land use and agricultural/forest production. This chapter addresses AF sectoral responses in climate change mitigation analysis. Specifically, we draw upon US-based studies of AF GHGE mitigation possibilities that incorporate sub-national detail drawing largely on a body of studies done by the authors in association with

  14. Greenhouse gases and agriculture. Book chapter

    SciTech Connect

    Jackson, R.B.

    1993-01-01

    Agriculture ranks third in its contribution to Earth's anthropogenically enhanced greenhouse effect. (Energy use and production and chlorofluorocarbons are ranked first and second, respectively.) Specifically, greenhouse gas sources and sinks are increased, and sinks are decreased, by conversion of land to agricultural use, using fertilizers, cultivating paddy rice, producing other plant and animal crops, and by creating and managing animal and plant wastes. However, some of these same activities increase greenhouse gas sinks and decrease greenhouse gas sources so the net effects are not obvious. The paper identifies the agricultural inputs, outputs, and wastes that alter atmospheric concentrations of carbon dioxide, methane, and nitrous oxides, and discusses agriculture's net impact on greenhouse gas fluxes.

  15. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries.

  16. Agricultural management and greenhouse gas flux: cropland management in eastern and central US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils are the primary source of nitrous oxide (N2O) and a minor source of methane (CH4), two important biogenic greenhouse gases (GHG) that are contributing to catastrophic global climate change. Nitrous oxide emissions are expected to increase by 35-60% worldwide as pressure to increa...

  17. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  18. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  19. Spatial and Temporal Variations in Greenhouse Gas Emissions from an Agricultural Reservoir

    EPA Science Inventory

    Reservoirs are being built at an increasing rate each year to provide humans with resources such as hydroelectric power and drinking water. These man-made systems have provided society with important services, but these have come at the cost of enhanced greenhouse gas (GHG) emiss...

  20. Measurement of greenhouse gas flux from agricultural soils using static chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape mana...

  1. An Integrated Greenhouse Gas Assessment of an Alternative to Slash-and-Burn Agriculture in Eastern Amazonia

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Sá, T. D.; Carvalho, C. J.; Figueiredo, R. D.; Kato, M. D.; Kato, O. R.; Ishida, F. Y.

    2007-12-01

    Fires set for slash-and-burn agriculture contribute to the current unsustainable accumulation of atmospheric greenhouse gases, and they also deplete the soil of essential nutrients, which compromises agricultural sustainability at local scales. Integrated assessments of greenhouse gas emissions have compared intensive cropping systems in industrialized countries, but such assessments have not been applied to common cropping systems of smallholder farmers in developing countries. We report an integrated assessment of greenhouse gas emissions in slash-and-burn agriculture and an alternative chop-and-mulch system in the Amazon Basin. The soil consumed atmospheric methane under slash-and-burn treatment and became a net emitter of methane to the atmosphere under the mulch treatment. Mulching also caused about a 50 percent increase in soil emissions of nitric oxide and nitrous oxide and required use of fertilizer and fuel for farm machinery. Despite these significantly higher emissions of greenhouse gases during the cropping phase under the alternative chop- and-mulch system, calculated pyrogenic emissions in the slash-and-burn system were much larger, especially for methane. The global warming potential CO2-equivalent emissions calculated for the entire crop cycles were at least five times lower in chop-and-mulch compared to slash-and-burn and were dominated by differences in methane emissions. The crop yields were similar for the two systems. While economic and logistical considerations remain to be worked out for alternatives to slash-and-burn, these results demonstrate a potential "win-win" strategy for maintaining soil fertility and reducing net greenhouse gas emissions, thus simultaneously contributing to sustainability at both spatial scales.

  2. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions.

  3. Agricultural peatlands: towards a greenhouse gas sink - a synthesis of a Dutch landscape study

    NASA Astrophysics Data System (ADS)

    Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J.; Berendse, F.; Veenendaal, E. M.

    2014-08-01

    It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and -1.7 (±1.8) g CO2-eq m-2 d-1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m-2 d-1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40-60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha-1 yr-1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha-1 yr-1. Water

  4. Climate Change Impacts on US Agriculture and the Benefits of Greenhouse Gas Mitigation

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sue Wing, I.; Stern, A.

    2014-12-01

    As contributors to the US EPA's Climate Impacts and Risk Assessment (CIRA) project, we present empirically-based projections of climate change impacts on the yields of five major US crops. Our analysis uses a 15-member ensemble of climate simulations using the MIT Integrated Global System Model (IGSM) linked to the NCAR Community Atmosphere Model (CAM), forced by 3 emissions scenarios (a "business as usual" reference scenario and two stabilization scenarios at 4.5W/m2 and 3.7 W/m2 by 2100), quantify the agricultural impacts avoided due to greenhouse gas emission reductions. Our innovation is the coupling of climate model outputs with empirical estimates of the long-run relationship between crop yields and temperature, precipitation and soil moisture derived from the co-variation between yields and weather across US counties over the last 50 years. Our identifying assumption is that since farmers' planting, management and harvesting decisions are based on land quality and expectations of weather, yields and meteorological variables share a long-run equilibrium relationship. In any given year, weather shocks cause yields to diverge from their expected long-run values, prompting farmers to revise their long-run expectations. We specify a dynamic panel error correction model (ECM) that statistically distinguishes these two processes. The ECM is estimated for maize, wheat, soybeans, sorghum and cotton using longitudinal data on production and harvested area for ~1,100 counties from 1948-2010, in conjunction with spatial fields of 3-hourly temperature, precipitation and soil moisture from the Global Land Data Assimilation System (GLDAS) forcing and output files, binned into annual counts of exposure over the growing season and mapped to county centroids. For scenarios of future warming the identical method was used to calculate counties' current (1986-2010) and future (2036-65 and 2086-2110) distributions of simulated 3-hourly growing season temperature, precipitation

  5. Measurement of greenhouse gas flux from agricultural soils using static chambers.

    PubMed

    Collier, Sarah M; Ruark, Matthew D; Oates, Lawrence G; Jokela, William E; Dell, Curtis J

    2014-08-03

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies.

  6. Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers

    PubMed Central

    Collier, Sarah M.; Ruark, Matthew D.; Oates, Lawrence G.; Jokela, William E.; Dell, Curtis J.

    2014-01-01

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. PMID:25146426

  7. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    NASA Astrophysics Data System (ADS)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  8. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    PubMed

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  9. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.

    PubMed

    Liebetrau, J; Reinelt, T; Clemens, J; Hafermann, C; Friehe, J; Weiland, P

    2013-01-01

    With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.

  10. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices.

    PubMed

    Stevanović, Miodrag; Popp, Alexander; Bodirsky, Benjamin Leon; Humpenöder, Florian; Müller, Christoph; Weindl, Isabelle; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Kreidenweis, Ulrich; Rolinski, Susanne; Biewald, Anne; Wang, Xiaoxi

    2017-01-03

    The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.

  11. Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products.

    PubMed

    Nguyen, Dai H; Biala, Johannes; Grace, Peter R; Scheer, Clemens; Rowlings, David W

    2014-01-01

    As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha(-1) on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha(-1)) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC < MM. Nitrous oxide emissions were significantly less in the clay soil compared to the sandy loam at all WFPS, and could be ranked RB < MB < MM < CM < UN < HC. These results led to linear models being developed to predict CO2 and N2O emissions as a function of the dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions.

  12. Field Studies Show That In Situ Greenhouse Gas Emission Factors for East African Agriculture Are Less Than IPCC Values

    NASA Astrophysics Data System (ADS)

    Pelster, D.; Butterbach-Bahl, K.; Rufino, M.; Rosenstock, T. S.; Wanyama, G.

    2015-12-01

    Greenhouse gas (GHG) emissions from African agricultural systems are thought to comprise a large portion of total emissions from the continent, however these estimates have been calculated using emission factors (EF) from other regions due to the lack of field studies in Africa, which results in large uncertainties for these estimates. Field measurements from western Kenya calculating emissions over a year in 59 different sites found that GHG emissions from typical smallholder farms ranged from 2.8 to 15.0 Mg CO2-C ha-1, -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1, and were not affected by management intensity. The lack of a response in N2O emissions to N fertilization suggests that the EF currently used in national inventories overestimates N2O emissions from typical smallholder agriculture. Another study measuring N2O and CH4 emissions from manure deposited by grazing cattle found that the N2O EF ranged from 0.1 to 0.2%, while the CH4 EF ranged from 0.04 to 0.14 Kg CH4-C per 173 kg animal. These suggest that the current IPCC EF overestimate agricultural soil and manure GHG emissions for Kenya, and likely for much of East Africa.

  13. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  14. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.

    PubMed

    Fine, Pinchas; Hadas, Efrat

    2012-02-01

    Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which

  15. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    PubMed

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  16. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    SciTech Connect

    Mccarl, Bruce A.; Schneider, Uwe; Murray, Brian; Williams, Jimmy; Sands, Ronald D.

    2001-05-14

    This paper examines the relative contribution of agricultural and forestry activities in an emission reduction program, focusing in part on the relative desirability of sequestration in forests and agricultural soils. The analysis considers the effects of competition for land and other resources between agricultural activities, forestry activities and traditional production. In addition, the paper examines the influence of saturation and volatility.

  17. Carbon sequestration and greenhouse gas fluxes in agriculture: Challenges and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, agriculture accounts for 13.5% of GHG emissions. In the United States, agriculture is a small but significant component of the country’s and world’s GHG emissions. We are moving into an uncertain and changing climate pattern that could affect agriculture production, sea levels, and human h...

  18. Sustainable agricultural practices: energy inputs and outputs, pesticide, fertilizer and greenhouse gas management.

    PubMed

    Wang, Yue-Wen

    2009-01-01

    The food security issue was addressed by the development of "modern agriculture" in the last century. But food safety issues and environment degradation were the consequences suffered as a result. Climate change has been recognized as the result of release of stored energy in fossil fuel into the atmosphere. Homogeneous crop varieties, machinery, pesticides and fertilizers are the foundation of uniform commodities in modern agriculture. Fossil fuels are used to manufacture fertilizers and pesticides as well as the energy source for agricultural machinery, thus characterizes modern agriculture. Bio-fuel production and the possibility of the agriculture system as a form of energy input are discussed.

  19. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of the three most important long-lived greenhouse gases (GHG) have increased measurably over the past two centuries. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 35%, 155%, and 18%, respectively, since 1750. ...

  20. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK's greenhouse gas inventory for agriculture

    NASA Astrophysics Data System (ADS)

    Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.

    2014-01-01

    The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.

  1. Greenhouse Gas Court Decision

    EPA Pesticide Factsheets

    View the June 26, 2012, U.S. Court of Appeals- D.C. Circuit's decision to uphold EPA's Endangerment Finding and greenhouse gas regulations issued under the Clean Air Act (CAA) for passenger vehicles and CAA permitting for stationary sources.

  2. Emissions and reduction of greenhouse gases from agriculture and food manufacturing -- A summary white paper

    SciTech Connect

    Johnston, S.

    1999-12-01

    This paper summarizes the current scientific and technological knowledge about greenhouse gas emissions from various agricultural practices and the manufacturing of food. The study also provides estimates that compare agriculture-related alternatives for reducing greenhouse gas emissions.

  3. Effects of agricultural practices on greenhouse gas emissions (N2O, CH4 and CO2) from corn fields

    NASA Astrophysics Data System (ADS)

    Hui, D.; Wang, J.; Jima, T.; Dennis, S.; Stockert, C.; Smart, D.; Bhattarai, S.; Brown, K.; Sammis, T.; Reddy, C.

    2012-12-01

    The United States is, by far, the largest producer of corn (Zea mays L.) in the world. Recent increases in fertilizer cost and concerns over global climate change have farmers and others interested in more efficient fertilization management and greenhouse gas emissions reductions. To seek the best management practices, we conducted field experiments during the 2012 growing season at Tennessee State University Agricultural Research and Demonstration Center in Nashville, TN. Six treatments were applied including regular URAN application [2 times], multiple URAN applications [4 times], denitrification inhibitor with regular URAN application, and chicken litter plus regular URAN application in no-tilled plots, and URAN application plus bio-char in tilled plots, all compared to regular URAN application in conventional tilled plots. Each treatment was replicated six times (blocks). We measured N2O, CO2 and CH4 emissions using a closed chamber method after rainfall events, fertilizer applications or every two weeks whichever was shorter. Corresponding soil NH4+-N and NO3--N, soil temperature and moisture were also measured during the gas sampling. Plant physiology and growth were measured about every two weeks. While preliminary results indicate that N2O and CO2 fluxes were significantly influenced by the agricultural practices on some days, particularly after rainfall events, CH4 flux was not influenced by the treatments during most of the days. Plots with bio-char showed significantly lower N2O emissions. We also measured N2O flux in a commercial corn field using the Eddy Covariance (EC) technique to ground verify the chamber based N2O emissions at the field scale. Results obtained with the EC technique seem comparable with the chamber method.

  4. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils.

    PubMed

    Rigby, H; Smith, S R

    2013-12-01

    turnover digestate N. In contrast to the sandy soil types, where nitrate (NO3-) concentrations increased during incubation, there was an absence of NO3- accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  5. Land Use Change In Australia's Tropical Savanna Woodlands: Greenhouse Gas Emissions From Deforestation And Conversion To Agriculture

    NASA Astrophysics Data System (ADS)

    Hutley, L. B.; Bristow, M.; Beringer, J.; Livesley, S. L.; Arndt, S. K.

    2015-12-01

    Clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHG), although there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas are 12% of global savanna extent and are largely intact; however there is currently a focus on agricultural expansion across northern Australia involving clearing for primary production. Eddy covariance and soil chamber methods were used over almost 2 years to quantify CO2 and non-CO2 fluxes from savanna that was cleared and prepared for agriculture (CS). Fluxes from an uncleared site (UC) were also monitored. Carbon fluxes from both sites were similar (NEE -0.23 Mg C ha-1 month-1) for the 5.4 months prior to clearing, a period spanning the late dry to mid-wet season. Fluxes were monitored for a further 17 months through a dry-wet-dry climate cycle and phased land use change which included clearing and a debris curing phase, followed by burning and soil preparation for cropping. Over this period (excluding the managed fire), the CS site was a source of +0.43 Mg C ha-1 month-1 compared to a net sink at the UC site of -0.05 Mg C ha-1 month-1. Woody debris from clearing (30.9 Mg C ha-1) was removed from the site via burning in the late dry season and emission factors were used to calculate emissions of CO2, CH4 and N2O which totalled 138.0 Mg CO2-e ha-1. Over the 17 months of monitoring this land transformation, emissions were +9.7 Mg CO2-e ha-1 month-1 compared to a sink of -0.17 Mg CO2-e from the UC site. Using these emissions and LUC scenarios at catchment to regional scales suggest proposed clearing for agriculture could significantly increase the region's fire-dominated GHG emissions. These data are essential for both land-atmosphere models as well as decision support tools that inform trade-offs between greenhouse gas accounting, conservation and development goals.

  6. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    PubMed

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  7. Greenhouse gas fluxes of drained organic and flooded mineral agricultural soils in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drained organic soils for agriculture represent less than 1% of the area used for crops in the United States (US). However, emission of carbon dioxide (CO2) from microbial oxidation of drained organic soils offsets almost half of the contributions that carbon sequestration of other cropping systems ...

  8. Biochar as a tool to reduce the agricultural greenhouse-gas burden-knowns, unknowns, and future research needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture and land use change has significantly increased atmospheric emissions of greenhouse gasses (GHG) such as nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategi...

  9. Management of agricultural soils for greenhouse gas mitigation: Learning from a case study in NE Spain.

    PubMed

    Sánchez, B; Iglesias, A; McVittie, A; Álvaro-Fuentes, J; Ingram, J; Mills, J; Lesschen, J P; Kuikman, P J

    2016-04-01

    A portfolio of agricultural practices is now available that can contribute to reaching European mitigation targets. Among them, the management of agricultural soils has a large potential for reducing GHG emissions or sequestering carbon. Many of the practices are based on well tested agronomic and technical know-how, with proven benefits for farmers and the environment. A suite of practices has to be used since none of the practices can provide a unique solution. However, there are limitations in the process of policy development: (a) agricultural activities are based on biological processes and thus, these practices are location specific and climate, soils and crops determine their agronomic potential; (b) since agriculture sustains rural communities, the costs and potential for implementation have also to be regionally evaluated and (c) the aggregated regional potential of the combination of practices has to be defined in order to inform abatement targets. We believe that, when implementing mitigation practices, three questions are important: Are they cost-effective for farmers? Do they reduce GHG emissions? What policies favour their implementation? This study addressed these questions in three sequential steps. First, mapping the use of representative soil management practices in the European regions to provide a spatial context to upscale the local results. Second, using a Marginal Abatement Cost Curve (MACC) in a Mediterranean case study (NE Spain) for ranking soil management practices in terms of their cost-effectiveness. Finally, using a wedge approach of the practices as a complementary tool to link science to mitigation policy. A set of soil management practices was found to be financially attractive for Mediterranean farmers, which in turn could achieve significant abatements (e.g., 1.34 MtCO2e in the case study region). The quantitative analysis was completed by a discussion of potential farming and policy choices to shape realistic mitigation policy at

  10. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico.

    PubMed

    Dendooven, Luc; Gutiérrez-Oliva, Vicente F; Patiño-Zúñiga, Leonardo; Ramírez-Villanueva, Daniel A; Verhulst, Nele; Luna-Guido, Marco; Marsch, Rodolfo; Montes-Molina, Joaquín; Gutiérrez-Miceli, Federico A; Vásquez-Murrieta, Soledad; Govaerts, Bram

    2012-08-01

    In 1991, the 'International Maize and Wheat Improvement Center' (CIMMYT) started a field experiment in the rain fed Mexican highlands to investigate conservation agriculture (CA) as a sustainable alternative for conventional maize production practices (CT). CT techniques, characterized by deep tillage, monoculture and crop residue removal, have deteriorated soil fertility and reduced yields. CA, which combines minimum tillage, crop rotations and residue retention, restores soil fertility and increases yields. Soil organic matter increases in CA compared to CT, but increases in greenhouse gas emissions (GHG) in CA might offset the gains obtained to mitigate global warming. Therefore, CO(2), CH(4) and N(2)O emissions, soil temperature, C and water content were monitored in CA and CT treatments in 2010-2011. The cumulative GHG emitted were similar for CA and CT in both years, but the C content in the 0-60 cm layer was higher in CA (117.7 Mg C ha(-1)) than in CT (69.7 Mg C ha(-1)). The net global warming potential (GWP) of CA (considering soil C sequestration, GHG emissions, fuel use, and fertilizer and seeds production) was -7729 kg CO(2) ha(-1) y(-1) in 2008-2009 and -7892 kg CO(2) ha(-1) y(-1) in 2010-2011, whereas that of CT was 1327 and 1156 kg CO(2) ha(-1) y(-1). It was found that the contribution of CA to GWP was small compared to that of CT.

  11. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  12. Implications of agricultural encroachment on the carbon and greenhouse gas dynamics in tropical African wetlands.

    NASA Astrophysics Data System (ADS)

    Saunders, Matthew; Kansiime, Frank; Jones, Michael

    2015-04-01

    Cyperus papyrus L. (papyrus) wetlands dominate the permanently inundated wetlands of tropical East Africa and support the livelihoods of millions of people in rural sub-Saharan Africa through the provision of multiple ecosystem services such as the supply of drinking water, fish protein, building materials and biofuels. These wetlands are also extremely important in local and regional scale biogeochemical cycles due to their extensive spatial distribution, high rates of photosynthetic carbon dioxide (CO2) assimilation, long-term carbon (C) sequestration in the form of peat and the control of water loss through evapotranspiration. However, these wetlands are facing significant anthropogenic pressures due to the increasing demand for agricultural land where the papyrus plants are removed and replaced with subsistence crops such as cocoyam (Colocasia esculenta). Eddy covariance measurements were made on an undisturbed papyrus wetland and a cocoyam dominated wetland on the Ugandan shoreline of Lake Victoria to better understand the impacts of agricultural encroachment on the C sequestration potential of these wetlands. Peak rates of net photosynthetic CO2 assimilation at the papyrus wetland were over 40 μmol CO2 m-2 s-1, even under increasing vapour pressure deficit (≥2 kPa), while maximum rates of assimilation at the cocoyam site were 28 μmol CO2 m-2 s-1. Annual rates of papyrus net primary productivity (NPP) were amongst the highest recorded for wetland systems globally (3.09 kg C m-2 yr-1) and the continual regeneration of the papyrus plants, due to an absence of pronounced seasonal climatic variability, can lead to significant C accumulation in the above and belowground biomass (≥88 t C ha-1). Where these wetlands remain inundated and anaerobic conditions prevail, significant detrital and peat deposits can form further increasing the combined C sink capacity of these ecosystems to over 700 t C ha-1. The C sink strength of these wetlands is however offset by

  13. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  14. Modeling Impacts of Farming Management Alternatives on Greenhouse Gas Emissions: A Case Study for Rice Agriculture of China

    NASA Astrophysics Data System (ADS)

    Li, C.; Frolking, S.; Xiao, X.; Salas, W.; Moore, B.; Boles, S.; Qiu, J.; Huang, Y.; Sass, R.

    2004-05-01

    Since early 1980s, water management for rice agriculture in China has substantially changed, with midseason drainage gradually replacing the traditional practice, continuous flooding over this 20-year period. This change provided an opportunity for us to estimate how a management alternative could impact greenhouse gas emissions at a large regional scale. To answer this question, we developed a tool by integrating a process-based model, DNDC, with a GIS database. With this tool, we simulated carbon sequestration in and CH4 and N2O emissions from all of the rice paddies (about 30 million ha) in China based on 1990 climate and management conditions. Two water management scenarios, continuous flooding and midseason drainage, were applied in the simulations to quantify their effects on emissions of the three greenhouse gases. The modeled results indicated significant impacts of the change in water management on both CH4 and N2O emissions although CO2 fluxes were only slightly altered. Methane emissions were reduced over the 20-year period by about 40 percent, or by 5 Tg/yr, roughly 5-10 percent of total global methane emissions from rice paddies. The mitigating effect of midseason drainage on CH4 was highly uneven across the country with the highest reduction rates (200-290 kg CH4-C/ha) for provinces Hainan, Sichuan, Hubei and Guangdong where double- or triple-cropping rice systems dominated with warm weather and high-clay soils, and the lowest reduction rates (less than 25 kg CH4-C/ha) for Tianjin, Hebei, Ningxia, Liaoning and Gansu where there were only single cropping systems with relatively cool weather and low-clay soils. Shifting water management from continuous flooding to midseason drainage increased N2O emissions from Chinese rice paddies by 0.15 Tg N per year, which offset a large fraction (65 percent) of the greenhouse gas benefit gained by the decrease in CH4 emissions. The midseason drainage-induced N2O fluxes were high (higher than 8.0 kg N/ha) in Jilin

  15. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect

    Rigby, H.; Smith, S.R.

    2013-12-15

    , indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  16. Intermittent spring flooding of agricultural fields will increase net global-warming potential of greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smyth, E. M.; Smith, C. M.; Kantola, I. B.; Krichels, A.; Yang, W. H.; DeLucia, E. H.

    2014-12-01

    The U.S. Corn Belt is currently a net source of carbon dioxide and nitrous dioxide to the atmosphere but is also a weak sink for methane. Climate change is projected to increase the frequency and duration of spring precipitation in the North American Midwest, resulting in intermittent flooding and ponding in agricultural fields. Inundation changes the greenhouse gas (GHG) fluxes of the soil, especially by promoting methanogenesis under anoxic conditions. DNA and 16S cDNA sequencing results of earlier, similar experiments confirmed the presence of methanogens in soil samples, albeit in low abundance (representing <0.01% of reads per sample). We installed collars into bare ground of a central Illinois research field to experiment with flooding conditions and observe changes in gas fluxes, microbial community, and soil chemistry. We established three treatments of five replicates—control, continuously flooded, and intermittently flooded—each with separate collars for gas flux measurements, soil sample collection, and soil probe measurements. A drip irrigation system flooded the headspaces of the collars to produce flooding events. The continuously flooded collars were maintained in a flooded condition for the duration of the experiment, and the intermittently flooded collars were flooded for 72 hours per flooding event and then kept dry for at least 5 days before the next flooding event. We measured net concentrations of N2O, CH4, and CO2 in situ using a static chamber connected to a cavity ringdown spectrometer. We found that the periodicity of wetting and drying events induces hysteresis effects that push GHG shifts to occur rapidly (< 1 hr). Integrating fluxes across the period of the experiment, the intermittently flooded collars showed 88.7% higher global-warming potential of GHG fluxes at the 100-year horizon versus control, with most of change driven by increased net CO2 flux (87.1% higher) and net methane flux (29 times higher). These data indicate that

  17. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  18. USDA Northeast climate hub greenhouse gas mitigation workshop technical report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...

  19. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    PubMed

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries.

  20. Greenhouse gas trading starts up

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  1. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India.

    PubMed

    Pretty, J N; Ball, A S; Xiaoyun, Li; Ravindranath, N H

    2002-08-15

    This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.

  2. Midwestern Greenhouse Gas Reduction Accord

    SciTech Connect

    2007-07-01

    The Midwestern Greenhouse Gas Reduction Acccord, or Midwestern Greenhouse gas Accord (MGA), is a regional agreement by governors of the states in the US Midwest and one Canadian province to reduce greenhouse gas emissions to combat climate change. Signatories to the accord include the US states of Minnesota, Wisconsin, Illinois, Indiana, Iowa, Michigan, Kansas, Ohio and South Dakota, and the Canadian Province of Manitoba. The accord, signed on November 15, 2007, established the Midwestern Greenhouse Gas Reduction Program, which aims to: establish greenhouse gas reduction targets and timeframes consistent with MGA member states' targets; develop a market-based and multi-sector cap-and-trade mechanism to help achieve those reduction targets; establish a system to enable tracking, management, and crediting for entities that reduce greenhouse gas emissions; and develop and implement additional steps as needed to achieve the reduction targets, such as a low-carbon fuel standards and regional incentives and funding mechanisms. The GHG registry will be managed by the Climate Registry, which manages the registry for other US state schemes. One of the first actions was to convene an Energy Security under Climate Stewardship Platform to guide future development of the Midwest's energy economy.

  3. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  4. Full greenhouse gas balance (CO2, N2O, CH4) of a bioenergy plantation (POPFULL) converted from agriculture and pasture: carbon debt and climate sensitivity

    NASA Astrophysics Data System (ADS)

    Zona, D.; Janssens, I.; Ceulemans, R.

    2012-04-01

    Bioenergy from biomass is currently receiving a lot of attention as an energy source alternative to fossil fuels. Bioenergy could have a lower impact on the environment and supposedly lower greenhouse gas emissions. There are, however, still many uncertainties on the claimed "climate neutrality" of bioenergy plantations. A major concern regards the carbon (C) debt from the land use change connected to the establishment of these bioenergy plantations. Land use conversion has been proved to lead to large C emissions, which may require years to decades to be paid off by the C sequestered in the plantations. In this study we report on the greenhouse gas fluxes (CO2, CH4, and N2O) deriving from the conversion of pasture and agricultural fields into a short-rotation poplar plantation for bio-energy. The establishment of the plantation led to a large overall CO2 and N2O loss during the first year. Nitrous oxides represented 50% of the overall greenhouse gas balance, which was mostly connected to a week-long peak emission following an extreme rainfall event during the first season. The week-long peak N2O emission event represented most of the total annual N2O emission during the first year. The second year was characterized by a much lower N2O emission and a much larger CO2 uptake, with the CO2 uptake being clearly water-limited for most of the summer season. Over the two years CH4 fluxes were constantly very low, consistent with the fact that sandy soils do not support a significant methanogenic community.

  5. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  6. The cost effectiveness of a policy to store carbon in Australian agricultural soils to abate greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    White, Robert E.; Davidson, Brian

    2015-07-01

    Data for cropping and pastoral enterprises in south eastern Australia were used in a cost-effectiveness analysis to assess the feasibility of abating greenhouse gas (GHG) emissions through storing soil carbon (C) as soil organic matter under the Australian government's Carbon Farming Initiative. We used the C credit value for 2013-14 of 24.15 per tonne of CO2- equivalent (CO2-e) and a C storage rate of 0.5 tonne C/hectare/year for conversion of cropland to pasture. Given that a change of enterprise is driven primarily by farmer returns, we found that none of the changes were feasible at current prices, with the exception of wheat to cattle or sheep in an irrigated system, and dryland cotton to cattle or sheep. Given that our model scenario assumed the most favourable economic factors, it is unlikely that increased soil C storage through a change from cropping to pasture can make a significant contribution to abating Australia's CO2 emissions. However, of greater concern to society is the methane emissions from grazing cattle or sheep, which would negate any gain in soil C under pasture, except for a switch from dryland cropping to sheep.

  7. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production.

    PubMed

    Rebolledo-Leiva, Ricardo; Angulo-Meza, Lidia; Iriarte, Alfredo; González-Araya, Marcela C

    2017-03-22

    Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions.

  8. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  9. Drained peatlands used for extraction and agriculture: biogeochemical status with special attention to greenhouse gas fluxes and rewetting

    NASA Astrophysics Data System (ADS)

    Sirin, Andrey; Chistotin, Maxim; Suvorov, Gennady; Glagolev, Mikhail; Kravchenko, Irina; Minaeva, Tatiana

    2010-05-01

    Many peatlands previously drained for peat extraction or utilized for agriculture (directly or after partial cutoff) are left abandoned during last decades in Europe, and especially in its eastern part. In the European part of Russia alone, several million hectares of peatlands have been modified for peat extraction and agriculture by direct water level draw-down and nowadays are not under use by economic reasons. This makes up one of the most serious and urgent problems of wise use and management of peatlands in these regions with serious feedback to people, environment and economy (Quick Scan of Peatlands in Central and Eastern Europe, 2009). Drainage for agriculture leads to peat oxidation resulting in substantial emissions of greenhouse gases (carbon dioxide and sometimes nitrous oxide) to the atmosphere. Together with peat fires this is the most significant negative input of peatland degradation to climate change (Assessment on Peatlands Biodiversity and Climate Change, 2008; Peatlands and Climate Change, 2008). Besides that, dehydrated peatlands often release methane. Starting from 2003, the effect of drainage and subsequent utilization of peatlands on the emissions of carbon dioxide and methane was studied in Tomsk region (West Siberia) during the summer-fall periods (Glagolev et al. 2008). The measurements were conducted by chamber method at peatlands drained for use as croplands (now partly being fallows) and peat cutting (currently abandoned or reclaimed for forest planting, haying, or pasturing), as well as at a wide range of undrained oligotrophic, mesotrophic, and eutrophic mires and burnt mire areas of different regeneration stages. The statistical analysis of data from a large number of study sites indicated a higher release of carbon dioxide from disturbed peatlands compared to undrained ones. At the same time some drained peatlands had considerable methane emission rates, additionally enhanced by the intensive efflux from the surface of drainage

  10. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    PubMed

    Knox, Sara Helen; Sturtevant, Cove; Matthes, Jaclyn Hatala; Koteen, Laurie; Verfaillie, Joseph; Baldocchi, Dennis

    2015-02-01

    Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions.

  11. Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesizing of available data and suggestions for further studies

    NASA Astrophysics Data System (ADS)

    Kim, D. G.; Thomas, A. D.; Pelster, D.; Rosenstock, T. S.; Sanz-Cobena, A.

    2015-12-01

    This paper synthesizes currently available data on greenhouse gas (GHG) emissions from African natural and agricultural lands, outlines the knowledge gaps and suggests future directions and strategies for GHG emission studies. GHG emission data were collected from 42 studies conducted in 21 countries in sub-Saharan Africa (SSA). Soil GHG emissions from African natural terrestrial systems ranged from 3.3 to 57.0 Mg carbon dioxide (CO2) ha-1 y-1, -4.8 to 3.5 kg methane (CH4) ha-1 y-1 and -0.1 to 13.7 kg nitrous oxide (N2O) ha-1 y-1. Soil physical and chemical properties, rewetting, vegetation type, forest management and land-use changes were all found to be important factors affecting soil GHG emissions. Greenhouse gas emissions from African aquatic systems ranged from 5.7 to 232.0 Mg CO2 ha-1 y-1, -26.3 to 2741.9 kg CH4 ha-1 y-1 and 0.2 to 3.5 kg N2O ha-1 y-1 and were strongly affected by amount of discharge. Soil GHG emissions from African croplands ranged from 1.7 to 141.2 Mg CO2 ha-1 y-1, -1.3 to 66.7 kg CH4 ha-1 y-1 and 0.05 to 112.0 kg N2O ha-1 y-1 and N2O emission factor (EF) ranged from 0.01 to 4.1%. Soil GHG emissions in vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha-1 y-1 and 53.4 to 177.6 kg N2O ha-1 y-1 and N2O EFs ranged from 3 to 4%. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha-1 y-1 and exponentially with N application rates up to 300 kg N ha-1 y-1. The lowest yield-scaled N2O emissions were reported with N application rates ranging between 100 and 150 kg N ha-1. Overall, total CO2 eq. emissions in African natural and agricultural lands were 56.9 ± 12.7 Pg CO2 eq. y-1 and natural and agricultural lands contribute 76.3% and 23.7%, respectively. Additional GHG emission measurements throughout Africa agricultural and natural lands are urgently required to quantify annual GHG emissions and identify major control factors and mitigation options on emissions.

  12. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India

    NASA Astrophysics Data System (ADS)

    Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.

    2016-11-01

    Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there

  13. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services.

  14. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2016-07-12

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  15. Investigation of greenhouse gas emissions from a landfill site and agriculture in the UK by deployment of an in-situ FTIR

    NASA Astrophysics Data System (ADS)

    Sonderfeld, Hannah; Humpage, Neil; Jeanjean, Antoine; Leigh, Roland; Allen, Grant; Boesch, Hartmut

    2016-04-01

    The main greenhouse gases (GHG) emitted by human activities in the UK are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Understanding and quantifying their emissions is essential to monitor and guide emission reduction measures. The GAUGE (Greenhouse gAs Uk and Global Emissions) project funded by NERC aims to improve the knowledge of the UK GHG budget by an extensive measurement program. In this presentation, we focus on two important sources of these GHG: Waste and agricultural sector. We are presenting data from the deployment of an in-situ FTIR (Ecotech) for continuous and simultaneous sampling of CO2, CH4, N2O and CO with a high time resolution in the order of minutes. During a two week field campaign at a landfill site near Ipswich in August 2014, measurements were taken within a radius of 320 m of the uncovered and active area of the landfill, which was still filled with new incoming waste. The data are analysed in detail for emission ratios of CH4 to CO2. Thereby a consistent ratio in favour of CO2 is found for these emissions. We have applied a computation fluid dynamics (CFD) model, constrained with local wind measurements and a detailed topographic map of the landfill site, to the in-situ concentration data to calculate emission fluxes of the active site. Since October 2014 the FTIR has been sampling from a church tower in Glatton as part of a near surface sampling network in East Anglia focusing on regional GHG emissions from agriculture. The site is mainly influenced by south westerly winds. A clear diurnal cycle is observed in summer for CO2, CH4 and N2O, which is less pronounced in the winter months. A simulation of the methane and nitrous oxide concentrations through application of the NAME model to the EDGAR and NAEI emission inventories illustrates some shortcomings in the available emission inventories for the probed region.

  16. Accounting for Greenhouse Gas Emissions from Reservoirs

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  17. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    PubMed

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems.

  18. Greenhouse gas emissions from soil under changing environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  19. Synthesis and modeling of greenhouse gas emissions and carbon storage in agricultural and forest systems to guide mitigation and adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the early 21st century, climate change has emerged as one of the great societal challenges. Taking effective actions to address this concern is complicated by many technological hurdles and socio-economic challenges. Agriculture is a critical player in this arena, because it disproportionately in...

  20. Reviews and syntheses: Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further studies

    NASA Astrophysics Data System (ADS)

    Kim, D.-G.; Thomas, A. D.; Pelster, D.; Rosenstock, T. S.; Sanz-Cobena, A.

    2015-10-01

    This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural and agricultural lands, outlines the knowledge gaps and suggests future directions and strategies for GHG emission studies. GHG emission data were collected from 73 studies conducted in 22 countries in sub-Saharan Africa (SSA). Soil GHG emissions from African natural terrestrial systems ranged from 3.3 to 57.0 Mg carbon dioxide (CO2) ha-1 yr-1, -4.8 to 3.5 kg methane (CH4) ha-1 yr-1 and -0.1 to 13.7 kg nitrous oxide (N2O) ha-1 yr-1. Soil physical and chemical properties, rewetting, vegetation type, forest management and land-use changes were all found to be important factors affecting soil GHG emissions. Greenhouse gas emissions from African aquatic systems ranged from 5.7 to 232.0 Mg CO2 ha-1 yr-1, -26.3 to 2741.9 kg CH4 ha-1 yr-1 and 0.2 to 3.5 kg N2O ha-1 yr-1 and were strongly affected by discharge. Soil GHG emissions from African croplands ranged from 1.7 to 141.2 Mg CO2 ha-1 yr-1, -1.3 to 66.7 kg CH4 ha-1 yr-1and 0.05 to 112.0 kg N2O ha-1 yr-1 and the N2O emission factor (EF) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers resulted in significant changes in GHG emissions but these were different for CO2 and N2O. Soil GHG emissions in vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha-1 yr-1 and 53.4 to 177.6 kg N2O ha-1 yr-1 and N2O EFs ranged from 3 to 4 %. Soil CO2 and N2O emissions from agroforestry were 38.6 Mg CO2 ha-1 yr-1 and 0.2 to 26.7 kg N2O ha-1 yr-1, respectively. Improving fallow with nitrogen (N)-fixing trees increased CO2 and N2O emissions compared to conventional croplands and type and quality of plant residue is likely to be an important control factor affecting N2O emissions. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha-1 yr-1 and increased exponentially with N application rates up to 300 kg N ha-1 yr-1. The lowest yield-scaled N2O emissions

  1. Chapter 2: Livestock and grazed land emissions. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005. Technical bulletin 1921

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : A total of 259 Tg CO2 eq. of greenhouse gasses (GHGs) were emitted from livestock, managed livestock waste, and grazed land in 2005. This represents about 49% of total emissions from the agricultural sector. Compared to the base line year (1990), emissions from this source were about 2% lower in...

  2. Net global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency: a 5 year field study

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, Z.; Liu, Y.; Xu, X.; Wang, J.; Zhang, H.; Xiong, Z.

    2015-11-01

    Our understanding of how net global warming potential (NGWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a 5 year field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on NGWP and GHGI after accounting for carbon dioxide (CO2) emissions from all sources (methane, CH4, and nitrous oxide, N2O, emissions, agrochemical inputs, Ei, and farm operations, Eo) and sinks (i.e., soil organic carbon, SOC, sequestration). For the improvement of rice yield and agronomic nitrogen use efficiency (NUE), four ISSM scenarios consisting of different nitrogen (N) fertilization rates relative to the local farmers' practice (FP) rate were carried out, namely, N1 (25 % reduction), N2 (10 % reduction), N3 (FP rate) and N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios, i.e., N1, N2, N3 and N4, significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 86 and 82 %, respectively. In addition, compared with the FP, the N1 and N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar NGWPs. The N3 and N4 scenarios remarkably increased the NGWP and GHGI by an average of 67 and 36 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  3. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  4. Eco-efficient agriculture for producing higher yields with lower greenhouse gas emissions: a case study of intensive irrigation wheat production in China

    NASA Astrophysics Data System (ADS)

    Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.

    2013-10-01

    Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.

  5. MAGGnet: An international network to foster mitigation of agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research networks provide a framework for review, synthesis, and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a greenhouse gas (GHG) research network referred to as MAGGnet (Managing Agricultural Greenhouse ...

  6. Designing advanced biochar products for maximizing greenhouse gas mitigation potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...

  7. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  8. The Dairy Greenhouse Gas Model: A Tool for estimating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Animal agriculture is a recognized source of GHG emissions, but good information does not exist on the net emissions from our farms. A software tool called the Dai...

  9. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Gill; Thomas, Andrew D.; Pelster, David; Rosenstock, Todd S.; Sanz-Cobena, Alberto

    2016-08-01

    This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural ecosystems and agricultural lands. The available data are used to synthesize current understanding of the drivers of change in GHG emissions, outline the knowledge gaps, and suggest future directions and strategies for GHG emission research. GHG emission data were collected from 75 studies conducted in 22 countries (n = 244) in sub-Saharan Africa (SSA). Carbon dioxide (CO2) emissions were by far the largest contributor to GHG emissions and global warming potential (GWP) in SSA natural terrestrial systems. CO2 emissions ranged from 3.3 to 57.0 Mg CO2 ha-1 yr-1, methane (CH4) emissions ranged from -4.8 to 3.5 kg ha-1 yr-1 (-0.16 to 0.12 Mg CO2 equivalent (eq.) ha-1 yr-1), and nitrous oxide (N2O) emissions ranged from -0.1 to 13.7 kg ha-1 yr-1 (-0.03 to 4.1 Mg CO2 eq. ha-1 yr-1). Soil physical and chemical properties, rewetting, vegetation type, forest management, and land-use changes were all found to be important factors affecting soil GHG emissions from natural terrestrial systems. In aquatic systems, CO2 was the largest contributor to total GHG emissions, ranging from 5.7 to 232.0 Mg CO2 ha-1 yr-1, followed by -26.3 to 2741.9 kg CH4 ha-1 yr-1 (-0.89 to 93.2 Mg CO2 eq. ha-1 yr-1) and 0.2 to 3.5 kg N2O ha-1 yr-1 (0.06 to 1.0 Mg CO2 eq. ha-1 yr-1). Rates of all GHG emissions from aquatic systems were affected by type, location, hydrological characteristics, and water quality. In croplands, soil GHG emissions were also dominated by CO2, ranging from 1.7 to 141.2 Mg CO2 ha-1 yr-1, with -1.3 to 66.7 kg CH4 ha-1 yr-1 (-0.04 to 2.3 Mg CO2 eq. ha-1 yr-1) and 0.05 to 112.0 kg N2O ha-1 yr-1 (0.015 to 33.4 Mg CO2 eq. ha-1 yr-1). N2O emission factors (EFs) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers invariably resulted in significant changes in GHG emissions, but results were inconsistent as the magnitude and direction of

  10. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  11. Multiagency Initiative to Provide Greenhouse Gas Information

    NASA Astrophysics Data System (ADS)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  12. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  13. Advancing Greenhouse Gas Reductions through Affordable Housing

    EPA Pesticide Factsheets

    James City County, Virginia, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  14. Non-Profit Greenhouse Gas Reductions Program

    EPA Pesticide Factsheets

    Baltimore City, Maryland, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  15. Regulations for Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  16. Greenhouse Gas Reductions for Marginalized Communities

    EPA Pesticide Factsheets

    Honolulu, Hawaii, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  17. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  18. Greenhouse gas (GHG) emission in organic farming. Approximate quantification of its generation at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM)

    NASA Astrophysics Data System (ADS)

    Campos, Jorge; Barbado, Elena; Maldonado, Mariano; Andreu, Gemma; López de Fuentes, Pilar

    2016-04-01

    As it well-known, agricultural soil fertilization increases the rate of greenhouse gas (GHG) emission production such as CO2, CH4 and N2O. Participation share of this activity on the climate change is currently under study, as well as the mitigation possibilities. In this context, we considered that it would be interesting to know how this share is in the case of organic farming. In relation to this, a field experiment was carried out at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM). The orchard included different management growing areas, corresponding to different schools of organic farming. Soil and gas samples were taken from these different sites. Gas samples were collected throughout the growing season from an accumulated atmosphere inside static chambers inserted into the soil. Then, these samples were carried to the laboratory and there analyzed. The results obtained allow knowing approximately how ecological fertilization contributes to air pollution due to greenhouse gases.

  19. Greenhouse-gas-trading markets.

    PubMed

    Sandor, Richard; Walsh, Michael; Marques, Rafael

    2002-08-15

    This paper summarizes the extension of new market mechanisms for environmental services, explains of the importance of generating price information indicative of the cost of mitigating greenhouse gases (GHGs) and presents the rationale and objectives for pilot GHG-trading markets. It also describes the steps being taken to define and launch pilot carbon markets in North America and Europe and reviews the key issues related to incorporating carbon sequestration into an emissions-trading market. There is an emerging consensus to employ market mechanisms to help address the threat of human-induced climate changes. Carbon-trading markets are now in development around the world. A UK market is set to launch in 2002, and the European Commission has called for a 2005 launch of an European Union (EU)-wide market, and a voluntary carbon market is now in formation in North America. These markets represent an initial step in resolving a fundamental problem in defining and implementing appropriate policy actions to address climate change. Policymakers currently suffer from two major information gaps: the economic value of potential damages arising from climate changes are highly uncertain, and there is a lack of reliable information on the cost of mitigating GHGs. These twin gaps significantly reduce the quality of the climate policy debate. The Chicago Climate Exchange, for which the authors serve as lead designers, is intended to provide an organized carbon-trading market involving energy, industry and carbon sequestration in forests and farms. Trading among these diverse sectors will provide price discovery that will help clarify the cost of combating climate change when a wide range of mitigation options is employed. By closing the information gap on mitigation costs, society and policymakers will be far better prepared to identify and implement optimal policies for managing the risks associated with climate change. Establishment of practical experience in providing

  20. Embodied Greenhouse Gas Emissions in Diets

    PubMed Central

    Pradhan, Prajal; Reusser, Dominik E.; Kropp, Juergen P.

    2013-01-01

    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to 3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7–6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050. PMID:23700408

  1. Embodied greenhouse gas emissions in diets.

    PubMed

    Pradhan, Prajal; Reusser, Dominik E; Kropp, Juergen P

    2013-01-01

    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO(2eq.)/day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO(2eq.)/yr by 2050.

  2. Greenhouse Gas Analysis by GC/MS

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Easton, Z. M.; Macek, P.

    2015-12-01

    Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.

  3. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  4. Towards a Greenhouse Gas Lidar in Space

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Amediek, Axel; Quatrevalet, Mathieu

    Highly accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) by a space-borne lidar will help to substantially improve knowledge of greenhouse gas fluxes. The method of integrated-path differential-absorption lidar for total column measurements has proven to be a suitable means for CH4 detection in natural gas leak surveillance and active remote sensing of CO2. This pioneering work facilitated the instrument development of an advanced greenhouse gas lidar on HALO and set the stage for the development of a CH4-lidar in space instrument foreseen in the Franco-German climate mission MERLIN.

  5. Stakeholder Workshop Presentations: EPA Greenhouse Gas Data on Petroleum and Natural Gas Systems

    EPA Pesticide Factsheets

    View the summary and presentations from the November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  6. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  7. Overview of ARB's Greenhouse Gas Research Program

    NASA Astrophysics Data System (ADS)

    Falk, M.; Chen, Y.; Kuwayama, T.; Vijayan, A.; Herner, J.; Croes, B.

    2015-12-01

    Since the passage of the California Global Warming Solutions Act (or AB32) in 2006, California Air Resources Board (ARB) has established and implemented a comprehensive plan to understand, quantify, and mitigate the various greenhouse gas (GHG) emission source sectors in the state. ARB has also developed a robust and multi-tiered in-house research effort to investigate methane (CH4), nitrous oxide (N2O) and fluorinated gas emission sources. This presentation will provide an overview of ARB's monitoring and measurement research efforts to study the regional and local emission sources of these pollutants in California. ARB initiated the first subnational GHG Research Monitoring Network in 2010 to study the regional GHG emissions throughout the state. The network operates several high precision analyzers to study CH4, N2O, CO and CO2 emissions at strategically selected regional sites throughout California, and the resulting data are used to study the statewide emission trends and evaluate regional sources using statistical analyses and inverse modeling efforts. ARB is also collaborating with leading scientists to study important emission sources including agriculture, waste, and oil and gas sectors, and to identify "hot spot" methane sources through aerial surveys of high methane emitters in California. At the source level, ARB deploys Mobile Measurement Platforms (MMP) and flux chambers to measure local and source specific emissions, and uses the information to understand source characteristics and inform emissions inventories. Collectively, all these efforts are offering a comprehensive view of regional and local emission sources, and are expected to help in developing effective mitigation strategies to reduce GHG emissions in California.

  8. Greenhouse gas emission inventory for Senegal, 1991.

    PubMed

    Sokona, Y

    1995-01-01

    The first greenhouse gas (GHG) emission estimates for Senegal, for the year 1991, were produced according to the draft IPCC/OECD guidelines for national inventories of GHGs. Despite certain discrepancies, nonavailability of data, the quality of some of the data collected, and the methodology, the estimates provide a provisional basis for Senegal to fulfill its obligations under the UN Framework Convention on Climate Change. This inventory reveals that GHG emissions in Senegal, like those in many developing countries, can mainly be attributed to the use of biomass for energy, land-use change and forestry, and savanna burning. Taking into account the direct global warming potential of the main GHGs (CO2, CH4, and N2O), Senegal's emissions are estimated at 17.6 Tg ECO2. The major gases emitted are CO2 (61% of GHG emissions), followed by CH4 (35%) and N2O (4%). Energy accounts for 45% of total emissions (12% from fossil energy and 33% from traditional biomass energy); land-use change and forests, 18%; agriculture, 24%; waste, 12%; and industry, 1%.

  9. 78 FR 52898 - Science-Based Methods for Entity-Scale Quantification of Greenhouse Gas Sources and Sinks From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Science-Based Methods for Entity-Scale Quantification of Greenhouse Gas Sources and Sinks From Agriculture... methods for quantifying entity-scale greenhouse gas (GHG) emissions and removals from the agriculture and... emissions and carbon sequestration at the farm-, forest- and entity-scale. The report and other...

  10. Second Greenhouse Gas Information System Workshop

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  11. 78 FR 23149 - Mandatory Greenhouse Gas Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 Mandatory Greenhouse Gas Reporting CFR Correction In Title 40 of the Code of Federal Regulations, Parts 96 to 99, revised as of July 1, 2012, on page 768, in Sec. 98.226, in...

  12. Assessing Greenhouse Gas Emissions from University Purchases

    ERIC Educational Resources Information Center

    Thurston, Matthew; Eckelman, Matthew J.

    2011-01-01

    Purpose: A greenhouse gas (GHG) inventory was conducted for Yale University's procurement of goods and services over a one-year period. The goal of the inventory was to identify the financial expenditures resulting in the greatest "indirect" GHG emissions. This project is part of an ongoing effort to quantify and reduce the university's…

  13. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China

    NASA Astrophysics Data System (ADS)

    Li, B.; Fan, C. H.; Zhang, H.; Chen, Z. Z.; Sun, L. Y.; Xiong, Z. Q.

    2015-01-01

    Field experiments were conducted to determine the effects of nitrogen (N) fertilization and biochar addition on the net global warming potential (net GWP), greenhouse gas intensity (GHGI) and net ecosystem economic budget (NEEB). These experiments were conducted in an intensive vegetable field with 4 consecutive vegetable crops in 2012 and 2013 in southeastern China. The experiment was conducted with a 32 factorial design in triplicate at N fertilizer rates of 0, 1475, 1967 kg N ha-1 and biochar rates of 0, 20, and 40 t ha-1. Although CH4 emissions were not obviously affected by N fertilization, N2O emissions increased by 27.2-116.2% and the net GWP increased by 30.6-307.2%. Consequently, the GHGI increased significantly, but vegetable yield and the NEEB did not improve. Furthermore, biochar amendments did not significantly influence CH4 emissions, but significantly decreased the N2O emissions by 1.7-25.4%, the net GWP by 89.6-700.5%, and the GHGI by 89.5-644.8%. In addition, vegetable yields significantly increased by 2.1-74.1%, which improved the NEEB. Thus, N fertilization did not increase vegetable yields or the NEEB. However, N fertilization did increase the net GWP and GHGI. In contrast, biochar additions resulted in lower N2O emissions and net GWP and GHGI, but increased vegetable yield and the NEEB in the intensive vegetable production system. Therefore, appropriate biochar amendment should be studied to combat changing climate and to improve the economic profits of vegetable production.

  14. Accounting For Greenhouse Gas Emissions From Flooded Lands

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  15. Joint Implementation: Biodiversity and Greenhouse Gas Offsets

    PubMed

    CUTRIGHT

    1996-11-01

    / One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled "Joint Implementation," whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits.KEY WORDS: Joint implementation; Activities implemented jointly; Carbon sequestration; Carbon dioxide; Global climate change; Greenhouse gas; Belize

  16. Multi-sectorial convergence in greenhouse gas emissions.

    PubMed

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-03-20

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence.

  17. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  18. Greenhouse gas emissions intensity of global croplands

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Gerber, James S.; Mueller, Nathaniel D.; Herrero, Mario; MacDonald, Graham K.; Brauman, Kate A.; Havlik, Petr; O'Connell, Christine S.; Johnson, Justin A.; Saatchi, Sassan; West, Paul C.

    2017-01-01

    Stabilizing greenhouse gas (GHG) emissions from croplands as agricultural demand grows is a critical component of climate change mitigation. Emissions intensity metrics--including carbon dioxide equivalent emissions per kilocalorie produced (`production intensity’)--can highlight regions, management practices, and crops as potential foci for mitigation. Yet the spatial and crop-wise distribution of emissions intensity has been uncertain. Here, we develop global crop-specific circa 2000 estimates of GHG emissions and GHG intensity in high spatial detail, reporting the effects of rice paddy management, peatland draining, and nitrogen (N) fertilizer on CH4, CO2 and N2O emissions. Global mean production intensity is 0.16 Mg CO2e M kcal-1, yet certain cropping practices contribute disproportionately to emissions. Peatland drainage (3.7 Mg CO2e M kcal-1)--concentrated in Europe and Indonesia--accounts for 32% of these cropland emissions despite peatlands producing just 1.1% of total crop kilocalories. Methane emissions from rice (0.58 Mg CO2e M kcal-1), a crucial food staple supplying 15% of total crop kilocalories, contribute 48% of cropland emissions, with outsized production intensity in Vietnam. In contrast, N2O emissions from N fertilizer application (0.033 Mg CO2e M kcal-1) generate only 20% of cropland emissions. We find that current total GHG emissions are largely unrelated to production intensity across crops and countries. Climate mitigation policies should therefore be directed to locations where crops have both high emissions and high intensities.

  19. The Dairy Greenhouse Gas Emission Model: Reference Manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...

  20. Accounting For Greenhouse Gas Emissions From Flooded ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  1. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  2. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4

  3. The Global Research Alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Global Research Alliance on Agricultural Greenhouse Gases was proposed by New Zealand at the United Nations Framework Convention on Climate Change Conference of the Parties (COP) in Copenhagen in 2009 and developed in partnership with the United States. This alliance now includes 32 member count...

  4. 40 CFR 1036.108 - Greenhouse gas emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Greenhouse gas emission standards... and Related Requirements § 1036.108 Greenhouse gas emission standards. This section contains standards... of six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  5. 40 CFR 1036.108 - Greenhouse gas emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Greenhouse gas emission standards... and Related Requirements § 1036.108 Greenhouse gas emission standards. This section contains standards... of six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  6. Utilizing In-Situ Static Chamber Measurements and UAV Imagery for Integrated Greenhouse Gas Emissions Estimations: Assessing Environmental and Management Impacts on Agricultural Emissions for Two Paired-Watershed Sites in Vermont

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Peterson, F. S.; Wyngaard, J.

    2015-12-01

    Agricultural greenhouse gas (GHG) emissions contribute to ~10-12% of global anthropogenic emissions. While agriculture is a major source of GHG emissions, there is also great potential for mitigation, as emissions can be reduced by utilizing specific field management and fertilization strategies. This study closely monitors hay and corn fields in Vermont in two paired-watershed sites. Carbon dioxide, nitrous oxide and methane emissions were measured weekly using static chambers and a Photoacoustic Gas Sensor (PAS) across both field management treatments: conventional and mitigation. Accurately quantifying emissions from agricultural landscapes is crucial to develop and implement optimal mitigation strategies, but quantifying landscape-wide emissions is challenging. In this study, we show that both field management treatments and environmental conditions (such as field flooding from rain events) significantly affect GHG emissions, and both can be highly spatially variable even on the field-scale. Monitoring this kind of complexity across a watershed is difficult, as most current emissions quantification techniques, such as static chambers, are localized, point specific and costly. Remote sensing provides an opportunity to monitor landscapes more efficiently and cost effectively. High resolution imagery from an Unmanned Aerial Vehicle (UAV) can also provide opportunities for more accurate watershed-wide estimates of GHG emission rates based on observable agricultural field conditions and management signals, such as field flooding, fertilizer application method, and cover cropping. Satellite imagery, and even the higher resolution aerial imagery used for agricultural monitoring, do not provide the spatial or temporal resolution needed to monitor the on-field complexities that affect GHG emissions. This study combines and compares environmental and management observations from UAV imagery and in-situ field GHG emissions measurements to determine the effectiveness of

  7. Joint implementation: Biodiversity and greenhouse gas offsets

    SciTech Connect

    Cutright, N.J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases form increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de janeiro during the June 19923 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled {open_quotes}Joint Implementation,{close_quotes} whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits. 6 refs., 1 tab.

  8. Greenhouse gas mitigation potential of dryland cropping systems in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Great Plains contain significant expanses of agricultural land dedicated to dryland cropping. Dryland cropping systems in the region that sequester soil organic carbon (SOC) and minimize nitrous oxide (N2O) emissions can serve to reduce the greenhouse gas (GHG) balance of U.S. agriculture....

  9. Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.

    2014-12-01

    Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.

  10. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  11. Unexpected stimulation of soil methane uptake by bio-based residue application: An emerging property of agricultural soils offsetting greenhouse gas balance.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Reim, Andreas; Ruijs, Rienke; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; Putten, Wim H. vd.; Bodelier, Paul L. E.

    2016-04-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over two months. Unexpectedly, after amendments with specific residues we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotrophic population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus spp. may facilitate methane oxidation in the agricultural soils. Studies are under way to identify the active methane-oxidizers at near atmospheric methane concentrations using PLFA-Stable isotope probing (SIP). While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that the methane oxidation rate can be stimulated, leading to higher soil methane uptake. Moreover, the addition of

  12. Quantification and Controls of Wetland Greenhouse Gas Emissions

    SciTech Connect

    McNicol, Gavin

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  13. Determining thresholds for mandatory reporting of greenhouse gas emissions.

    PubMed

    West, Tristram O; Peña, Naomi

    2003-03-15

    A number of countries are considering implementation of reporting requirements for greenhouse gases. Some reporting systems have been proposed that would require each entity or facility exceeding an annual emissions threshold to report their emissions to a governmental agency. The analysis presented here provides a first approximation of the number of facilities in selected U.S. economic sectors that would report under several different reporting thresholds. Results indicate that thresholds below 10,000 Mg of carbon dioxide equivalent (CO2E) per year may bring in relatively large numbers of facilities while minimally increasing the percentage of reported emissions. None of the reporting thresholds considered in this analysis would account for the majority of greenhouse gas emissions from the U.S. agricultural, transportation, or residential and commercial building sectors. If these sectors, in which large numbers of farms, vehicles, and buildings each emit relatively small amounts of greenhouse gases, are to be included in a reporting framework, additional or alternative approaches to reporting should be considered. Alternative approaches may include creating separate thresholds for individual greenhouse gases instead of using an aggregated CO2E unit, creating separate reporting thresholds for individual sectors, or combining sources of small emissions into a single reporting entity.

  14. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  15. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces

  16. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.

    PubMed

    Morse, Jennifer L; Ardón, Marcelo; Bernhardt, Emily S

    2012-01-01

    Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.

  17. On strategies for reducing greenhouse gas emissions.

    PubMed

    Bolin, B; Kheshgi, H S

    2001-04-24

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO(2) emissions that would be required to stabilize the atmospheric concentration of CO(2) at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO(2) emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO(2) concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them.

  18. Greenhouse Gas Emission Mitigation And Agriculture, Trade-off Or Win-win Situation: Bioeconomic Farm Modelling In The Sudanian Area of Burkina Faso

    NASA Astrophysics Data System (ADS)

    Some, T. E.; Barbier, B.

    2015-12-01

    Climate changes talks regularly underline that developing countries' agriculture could play a stronger role in GHGs mitigation strategies and benefit from the Kyoto Protocol program of subsidies. Scientists explain that agriculture can contribute to carbon mitigation by storing more carbon in the soil through greener cropping systems. In this context, a growing number of research projects have started to investigate how developing countries agriculture can contribute to these objectives. The clean development mechanism (CDM) proposed in the Kyoto protocol is one particular policy instrument that can incite farmers to mitigate the GHG balance towards more sequestration and less emission. Some economists such as Michael Porter think that environmental regulation lead to a win-win outcome, in which case subsidies are not necessary. If it is a trade-off between incomes and the environment, subsidies are required. CDM can be mobilized to support the mitigation strategy. Agriculture implies the use of inputs. Reducing the emission implies the reduction of those inputs which will in turn imply a yield decrease. The study aims to assess whether this measure will imply a trade-off between environmental and economic objectives or a win-win situation. I apply this study to the case of small farmers in Burkina Faso through environmental instruments such as the emissions limits and agroforestry using a bioeconomic model, in which the farmers maximize their utility subject to constraints. The study finds that the limitation of emissions in annual crops production involves a trade-off. by impacting negatively their net cash come. By integrating perennial crops in the farming system, the farmers' utility increases. Around 6,118 kg are sequestrated individually. By computing the value on this carbon balance, farmers' net cash incomes go better. Then practicing agroforestry is a win-win situation, as they reach a higher level of income, and reduce emissions. Policymakers must

  19. Competitiveness of Terrestrial Greenhouse Gas Offsets: Are They a Bridge to the Future?

    SciTech Connect

    McCarl, Bruce A.; Sands, Ronald D.

    2007-01-22

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration utilize currently known and readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from dynamic and multiple strategy viewpoints. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower carbon prices and in the near term, soil carbon and other agricultural/forestry options are important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher carbon prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system provide an increasing share of potential reductions in total U.S. greenhouse gas emissions.

  20. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-07

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate.

  1. Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe.

    PubMed

    Banks, C J; Salter, A M; Chesshire, M

    2007-01-01

    The paper considers the role of anaerobic digestion in promoting good agricultural practice on farms and the contribution this would make to reducing the environmental impacts associated with manure management. There are no regulatory drivers to promote the use of digestion in Europe, and the technology has only been widely adopted where economic drivers and coherent policies have been implemented at a national level. These measures have included direct subsidy on the energy price paid for "green electricity", and exemption of tax when biogas is used as a vehicle fuel. In those countries where financial incentives are not available or where a financial penalty is incurred through the regulatory regime, the uptake of digestion has been poor. Even with subsidies, digestion of animal manures as a single substrate is not common, and countries with successful schemes have achieved this either by permitting the import of wastes onto the farm or offering bonus subsidies for the use of energy crops. Both of these measures improve the energy efficiency of the process by increasing the volumetric methane production, although concerns are expressed that attention could concentrate on energy production at the expense of improving manure management.

  2. Promoting international deployment of greenhouse gas technologies

    SciTech Connect

    Brown, M.A.; Kelley, J.S.; Voss, M.K.

    1995-12-31

    Increasing emission of greenhouse gases from human activities are predicted to lead to significant global warming and possible undesirable Environmental effects by the middle of the next century. These gases trap solar energy that is reradiated from the earth`s surface, raising its temperature. The gases-carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons (CFCs)-are emitted as the result of a wide range of anthropogenic activities, including the production and conversion of energy from fossil fuels, the operation of air conditioning and refrigeration equipment, and coal mining, domestic sewage treatment, and the manufacture of cement and nylon. To slow global warming, technologies are being developed, promoted, and deployed to reduce these emissions. To make a practical response to global environmental issues such as greenhouse gas emissions, it is recognized that international collaboration is needed. Because of the accelerating pace of technology innovation and the increasingly interconnected world economy, national efforts to adapt to global environmental challenges are no longer sufficient. Through international collaboration, scarce resources can be shared and technological solutions can be adapted and replicated. ORNL is responsible for managing and supporting the U.S, involvement in many of the implementing agreements. In addition to collaborating with GREENTIE, ORNL is involved with the following other IEA implementing agreements, either as executive committee members, national team leaders, or operating agents: the Center for the Analysis and Dissemination of Demonstrated Energy Technologies, Heat Pump Program, Buildings and Community Systems, Alternative Motor Fuels, and Fusion Energy Stellerator Concept.

  3. Greenhouse gas emissions from global cities.

    PubMed

    Kennedy, Christopher; Steinberger, Julia; Gasson, Barrie; Hansen, Yvonne; Hillman, Timothy; Havránek, Miroslav; Pataki, Diane; Phdungsilp, Aumnad; Ramaswami, Anu; Villalba Mendez, Gara

    2009-10-01

    The world's population is now over 50% urban, and cities make an important contribution to national greenhouse gas (GHG) emissions. Many cities are developing strategies to reduce their emissions. Here we ask how and why emissions differ between cities. Our study often global cities shows how a balance of geophysical factors (climate, access to resources, and gateway status) and technical factors (power generation, urban design, and waste processing) determine the GHGs attributable to cities. Within the overall trends, however, there are differences between cities with more or less public transit while personal income also impacts heating and industrial fuel use. By including upstream emissions from fuels, GHG emissions attributable to cities exceed those from direct end use by upto 25%. Our findings should help foster intercity learning on reducing GHG emissions.

  4. Greenhouse gas budgets of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Horváth, L.; Jones, S. K.

    2012-04-01

    Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the

  5. An integrated study of nutrient leaching and greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient leaching and greenhouse gas emission are two of the primary environmental impacts of crop production. These processes have been studied at great length separately, but few integrated studies of leaching and greenhouse gas emission have been conducted. We measured nutrient leaching and green...

  6. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission rates. 1036.530 Section 1036.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...

  7. Net global warming potential and greenhouse gas intensity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  8. Extraction, drainage, rewetting, flooding - Patterns of greenhouse gas turnover in restoring temperate peatlands

    NASA Astrophysics Data System (ADS)

    Glatzel, Stephan

    2016-04-01

    The disturbance of natural peatlands destroys carbon sink and is often associated with nitrous oxide emissions. Therefore, the general efforts to mitigate greenhouse gas sources and to create carbon sinks also include peatland restoration. The variety of peatland type (most importantly bog or fen), use (extraction or agriculture), and restoration technique (rewetting or flooding) result in specific patterns of greenhouse gas uptake or emission. Based on examples from own work, I present an overview of the greenhouse gas turnover of following sites: • Cutover peat bogs in Eastern Canada and following rewetting, flooding, and abandonment • Drained cutover and agriculturally used peat bogs in Northern Germany and following extensive agricultural management, paludiculture, rewetting, flooding, and abandonment • Drained agriculturally used fens in Northern Germany and following flooding and paludiculture I show that rewetting, but not flooding may succeed in re-establishing long-term carbon sinks with low methane release rates comparable to the greenhouse gas turnover known from natural peatlands. Flooding risks creating, at least in the short term, extremely strong methane sources. Extensive agricultural management and paludiculture may result in low methane, carbon dioxide and nitrous oxide release rates and could be a sensible option when aiming at reconciling peatland use and protection.

  9. UK emissions of the greenhouse gas nitrous oxide.

    PubMed

    Skiba, U; Jones, S K; Dragosits, U; Drewer, J; Fowler, D; Rees, R M; Pappa, V A; Cardenas, L; Chadwick, D; Yamulki, S; Manning, A J

    2012-05-05

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N(2)O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N(2)O in many countries and responsible for 75 per cent of UK N(2)O emissions. Microbial N(2)O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling.

  10. UK emissions of the greenhouse gas nitrous oxide

    PubMed Central

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  11. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  12. Greenhouse gas emissions from a managed grassland

    NASA Astrophysics Data System (ADS)

    Jones, S. K.; Rees, R. M.; Skiba, U. M.; Ball, B. C.

    2005-07-01

    Managed grasslands contribute to global warming by the exchange of the greenhouse gases carbon dioxide, nitrous oxide and methane. To reduce uncertainties of the global warming potential of European grasslands and to assess potential mitigation options, an integrated approach quantifying fluxes from all three gases is needed. Greenhouse gas emissions from a grassland site in the SE of Scotland were measured in 2002 and 2003. Closed static chambers were used for N 2O and CH 4 flux measurements, and samples were analysed by gas chromatography. Closed dynamic chambers were used for soil respiration measurements, using infrared gas analysis. Three organic manures and two inorganic fertilizers were applied at a rate of 300 kg N ha -1 a -1 (available N) and compared with a zero-N control on grassland plots in a replicated experimental design. Soil respiration from plots receiving manure was up to 1.6 times larger than CO 2 release from control plots and up to 1.7 times larger compared to inorganic treatments ( p<0.05). A highly significant ( p<0.001) effect of fertilizer and manure treatments on N 2O release was observed. Release of N 2O from plots receiving inorganic fertilizers resulted in short term peaks of up to 388 g N 2O-N ha -1 day -1. However losses from plots receiving organic manures were both longer lasting and greater in magnitude, with an emission of up to 3488 g N 2O-N ha -1 day -1 from the sewage sludge treatments. During the 2002 growing season the cumulative total N 2O flux from manure treatments was 25 times larger than that from mineral fertilizers. CH 4 emissions were only significantly increased ( p<0.001) for a short period following applications of cattle slurry. Although soil respiration in manure plots was high, model predictions and micrometeorological flux measurements at an adjacent site suggest that all plots receiving fertilizer or manure acted as a sink for CO 2. Therefore in terms of global warming potentials the contribution of N 2O from

  13. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... ADMINISTRATION Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal... Supplier Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on... Information Collection 3090- 00XX; Supplier Greenhouse Gas Emissions Inventory Pilot, by any of the...

  14. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... AGENCY 40 CFR Part 98 Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality... rule titled ``Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations....gov . For technical questions, please see the ] Greenhouse Gas Reporting Program Web site...

  15. EDITORIAL: Tropical deforestation and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly K.; Herold, Martin

    2007-10-01

    Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world

  16. Bringing a needle to a laser fight: comparing greenhouse gas sampling methods with gas chromatography and fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As scientists, producers, policymakers, and the general public become more concerned about impacts of climate change, there is an increasing need to understand and quantify greenhouse gas emissions from agricultural practices, which often feed into global, multi-institution databases. Current best p...

  17. Chapter 5: Quantifying greenhouse gas sources and sinks in animal production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this publication is to develop methods to quantify greenhouse gas emissions (GHG) from U.S. agriculture and forestry. This chapter provides guidance for reporting GHG emissions from animal production systems. In particular, it focuses on methods for estimating emissions from beef cat...

  18. Greenhouse gas emissions from an irrigated dairy forage rotation as influenced by fertilizer and manure applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available regarding the long-term effects of nitrogen (N) fertilizer source on greenhouse gas (GHG) emissions from irrigated semiarid agricultural soils. In this study, conducted in south-central Idaho, we report nitrous oxide emissions along with carbon dioxide and methane fro...

  19. Chapter 10 - Management to Reduce Greenhouse Gas Emissions in Western U.S. Croplands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a major activity in the western U.S. with approximately 57 million ha of harvested cropland of which 27% is irrigated; however, irrigated crops account for a high proportion of the economic returns because of their high economic value. We sought to summarize greenhouse gas (GHG) flux ...

  20. Chapter 10 – Management to Reduce Greenhouse Gas Emissions in Western U.S. Croplands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a major activity in the western U.S. with approximately 57 million ha of harvested cropland of which 27% is irrigated; however, irrigated crops account for a high proportion of the economic returns because of their high economic value. We sought to summarize greenhouse gas (GHG) flux ...

  1. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    EPA Science Inventory

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  2. Software for evaluating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...

  3. California's new mandatory greenhouse gas reporting regulation

    SciTech Connect

    Patrick Gaffney; Doug Thompson; Richard Bode

    2008-11-15

    Beginning in early 2009, approximately 1000 California businesses will begin reporting their greenhouse gas (GHG) emissions based on the requirements of a new regulation adopted by the California Air Resources Board (CARB) in December 2007. California's mandatory GHG reporting regulation is the first rule adopted as a requirement of the Global Warming Solutions Act of 2006, passed by the California Legislature as Assembly Bill 32 (AB 32; Nunez, Chapter 488, Statutes of 2006) and signed by Governor Arnold Schwarzenegger in September 2006. The regulation is the first of its kind in the United States to require facilities to report annual GHG emissions. In general, all facilities subject to reporting are required to report their on-site stationary source combustion emissions of CO{sub 2}, nitrous oxide (N{sub 2}O), and methane (CH{sub 4}). Some industrial sectors, such as cement producers and oil refineries, also must report their process emissions, which occur from chemical or other noncombustion activities. Fugitive emissions from facilities are required to be reported when specified in the regulation. Sulfur hexafluoride (SF{sub 6}) and hydrofluorocarbon (HFC) use is prevalent in electricity facilities and must be reported. CO{sub 2} emissions from biomass-derived fuels must be separately identified during reporting, and reporters must also provide their consumption of purchased or acquired electricity and thermal energy; these requirements will assist facilities in evaluating changes in their fossil fuel carbon footprints. 1 tab.

  4. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  5. Estonian greenhouse gas emissions inventory report

    SciTech Connect

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  6. Greenhouse gas fluxes over Central European grasslands

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bahn, M.; Barthel, M.; Eugster, W.; Klumpp, K.; Ladreiter-Knauss, T.; Merbold, L.; Wohlfahrt, G.; Buchmann, N. C.

    2014-12-01

    The uptake of carbon dioxide (CO2) by grassland ecosystems can be offset by the concurrent emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in terms of CO2-equivalents. As a consequence, CH4 and N2O emissions can contribute to an increase of the global warming potential (GWP) of the respective study site. For a full assessment of the climatic impact of grassland ecosystems it is therefore necessary to quantify fluxes of these two compounds in combination with CO2 exchange. Since agricultural management practices and land use change at a given site can have a strong impact on annual CH4 and N2O budgets, both compounds are a frequent topic of discussion when planning GHG mitigation strategies.Here we present an overview of the GHG exchange of eight managed Central European grassland sites along a gradient of elevation and land use intensity. Fluxes of the three major GHGs CO2, CH4 and N2O were quantified using the eddy covariance or chamber technique. The grasslands differed with regard to the amount of fertilizer input, frequency of cuts and grazing duration and intensity, ranging from more intensively managed to very lightly managed and abandoned grassland. In this presentation we focus on time periods when measurements of all three compounds were available for all sites. We investigate common features among observed CH4 and N2O exchange patterns at the different grassland sites in relation to management activities and concurrently measured biotic / abiotic parameters. In addition, we evaluate the impact of CH4 and N2O fluxes on the annual GWP of field sites for which long-term measurements are available.

  7. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    NASA Astrophysics Data System (ADS)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  8. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  9. Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts

    EPA Science Inventory

    Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...

  10. Maximizing Greenhouse Gas Emissions Reductions through Food Waste Diversion

    EPA Pesticide Factsheets

    Humboldt County, California, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  11. Regulations for Greenhouse Gas Emissions from Passenger Cars and Trucks

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  12. Regulations for Greenhouse Gas Emissions from Commercial Trucks & Buses

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  13. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  14. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  15. Integrated Belowground Greenhouse Gas Flux Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.

    2013-12-01

    Soil greenhouse gas (GHG) emissions play a significant role as biotic feedbacks to climate change. However, these complex processes, involving C, N, and O2 substrates and inhibitors, interactions with plant processes, and environmental influences of temperature, moisture, and gas transport, remain challenging to simulate in process models. Because CO2, CH4, and N2O production and consumption processes are inter-linked through common substrates and the contrasting effects of O2 as either an essential substrate or a potential inhibitor, the simulation of fluxes of any one gas must be consistent with mechanistic simulations and observations of fluxes of the other gases. Simulating the fluxes of one gas alone is a simpler task, but simulating all three gases simultaneously would provide multiple constraints and would afford greater confidence that the most important mechanisms are aptly simulated. A case in point is the challenge of resolving the apparent paradox of observed simultaneous CO2 production by aerobic respiration, CH4 uptake (oxidation), CH4 production, and N2O uptake (reduction) in the same soil profile. Consumption of atmospheric N2O should occur only under reducing conditions, and yet we have observed uptake of atmospheric CH4 (oxidation) and N2O (reduction) simultaneously. One of the great challenges of numerical modeling is determining the appropriate level of complexity when representing the most important environmental controllers. Ignoring complexity, such as simulating microbial processes with only simple Q10 functions, often results in poor model performance, because soil moisture and substrate supply can also be important factors. On the other hand, too much complexity, while perhaps mechanistically compelling, may result in too many poorly constrained parameters. Here we explore a parsimonious modeling framework for consistently integrated mechanistic and mathematical representation of the biophysical processes of belowground GHG production and

  16. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  17. Greenhouse Gas Endangerment Finding: Health Effects

    EPA Pesticide Factsheets

    View English or Spanish-language version of a fact sheet that highlights key effects that support EPA’s determination that current and future concentrations of greenhouse gases endanger public health.

  18. Inventory of Alabama greenhouse gas emissions and sinks: 1990

    SciTech Connect

    Li, Chumeng; Herz, W.J.; Griffin, R.A.

    1996-12-31

    Greenhouse gas concentrations in the atmosphere have been increasing since the industrial revolution. Worldwide efforts are being made to study anthropogenic greenhouse gas emissions. This study quantified the anthropogenic greenhouse gas emissions in Alabama in 1990. Alabama anthropogenic greenhouse gas emissions and sinks from 13 sources were studied. 1990 Alabama total anthropogenic greenhouse gas emissions and sinks were estimated to be 153.42 and 21.66 million tons of carbon dioxide equivalent. As a result, the net total greenhouse gas emissions were estimated to be 131.76 million tons of carbon dioxide equivalent. Fossil fuel combustion is the major source of emissions, representing approximately 78 percent. Coal mining and landfills are other two significant emission sources, representing approximately 10 and 6 percent of the total emissions respectively. Forests in Alabama represent the major sink, offsetting approximately 14 percent of the total emissions. On a per capita basis, Alabama`s emission rate is 32.3 tons of carbon dioxide equivalent per capita in 1990, compared to the national per capita average of 23.4 tons of carbon dioxide equivalent. The high emission rate is attributed to higher emissions than the national average from fossil fuel combustion, from coal mining and landfills in Alabama.

  19. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  20. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  1. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers.

  2. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  3. Greenhouse Gas Emission from In-situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2013-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication, which continues to be a serious and chronic problem. Two primary processes for removing excess NO3- from water are biological assimilation and denitrification. Denitrifying bacteria use NO3- as the electron acceptor for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas (GHG). A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs), though research has been limited to NO3- level reduction and omitted process mechanisms. DNBRs work by providing an anaerobic environment with plenty of organic matter (commonly woodchips) for denitrifying bacteria to flourish. While, initial results from bioreactor studies show that they can cost-effectively remove NO3-, GHG emission could be an unintended consequence. The study's goal is to determine how bioreactor design promotes microbial denitrification while limiting N2O production. It specifically focuses on expanding the body of knowledge concerning DNBRs in the areas of design implications and internal processes by measuring intermediate compounds and not solely NO3-. Nutrient samples are collected at inflow and outflow structures and tested for NO3- and nitrite (NO2-). Dissolved and headspace gas samples are collected and tested for N2O. Additional gas samples will be analyzed for naturally-occurring isotopic N2 to support proposed pathways. Designs will be analyzed both through the N2O/N2 production ratio and NO2- production caused by various residence times and inflow NO3- concentrations. High GHG ratios and NO2- production suggest non-ideal conditions or flow patterns for complete denitrification. NO3- reduction is used for comparison with previous studies. Few

  4. Editorial and Introduction of the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

    SciTech Connect

    Dooley, James J.; Benson, Sally M.; Karimjee, Anhar; Rubin, Edward S.

    2010-03-01

    Short one page editorial to introduce the +30 peer reviewed papers contained within the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

  5. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    EIA Publications

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  6. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  7. Greenhouse Gas Emissions from Three Cage Layer Housing Systems

    PubMed Central

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-01-01

    Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The

  8. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  9. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  10. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    EPA Pesticide Factsheets

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  11. Greenhouse gas fluxes in response to corn stover harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils play a critical role in the mitigation of increasing levels of atmospheric greenhouse gases (GHGs) such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Identifying management strategies (fertilization, tillage, irrigation) that optimize corn stover removal rates ...

  12. Special Issue From the 4th USDA Greenhouse Gas Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  13. Economics of lifecycle analysis and greenhouse gas regulations

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces

  14. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... AGENCY 40 CFR Parts 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY..., 2010 EPA promulgated Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule... outlined for calculating greenhouse gas emissions for the petroleum and natural gas systems source...

  15. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  16. Wellbeing impacts of city policies for reducing greenhouse gas emissions.

    PubMed

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-11-28

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what 'wellbeing' is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies.

  17. [Progress in research of urban greenhouse gas emission inventory].

    PubMed

    Chen, Cao-Cao; Liu, Chun-Lan; Tian, Gang; Wang, Hai-Hua; Li, Zheng

    2010-11-01

    Urban areas carry main responsibility for consuming massive energy sources and make great contribution to global anthropogenic greenhouse gas emissions. City and local governments are seen to have a key role in climate mitigation. Hence,one of the important work concerns accounting for city greenhouse gas (GHG) emissions, because it plays significant role in setting reduction targets and evaluating success of local measures. However, open system architectures like city face many challenges for greenhouse gas accounting. Based on the review in details the methodology and case study, our study focuses on the difference and interconnection between country and city GHG accounts,and uncertainty of accounts. Further, we propose the valuable experience in order to improve domestic research on city GHG emission inventory.

  18. Greenhouse gas emissions from stabilization ponds in subtropical climate.

    PubMed

    Hernandez-Paniagua, I Y; Ramirez-Vargas, R; Ramos-Gomez, M S; Dendooven, L; Avelar-Gonzalez, F J; Thalasso, F

    2014-01-01

    Waste stabilization ponds (WSPs) are a cost-efficient method to treat municipal and non-toxic industrial effluents. Numerous studies have shown that WSPs are a source of greenhouse gas (GHG). However, most reports concerned anaerobic ponds (AP) and few have addressed GHG emissions from facultative (FP) and aerobic/maturation ponds (MPs). In this paper, GHG emissions from three WSP in series are presented. These WSPs were designed as anaerobic, facultative and aerobic/maturation and were treating agricultural wastewater. CH4 fluxes from 0.6 +/- 0.4 g CH4 m(-2) d(-1) in the MP, to 7.0 +/- 1.0 g CH4 m(-2) d(-1) in the (AP), were measured. A linear correlation was found between the loading rates of the ponds and CH4 emissions. Relatively low CO2 fluxes (0.2 +/- 0.1 to 1.0 +/- 0.8 g CO2 m(-2) d(-1)) were found, which suggest that carbonate/bicarbonate formation is caused by alkaline pH. A mass balance performed showed that 30% of the total chemical oxygen demand removed was converted to CH4. It has been concluded that the WSP system studied emits at least three times more GHG than aerobic activated sludge systems and that the surface loading rate is the most important design parameter for CH4 emissions.

  19. Opportunities for reducing greenhouse gas emissions in tropical peatlands.

    PubMed

    Murdiyarso, D; Hergoualc'h, K; Verchot, L V

    2010-11-16

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO(2) per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO(2) per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N(2)O emissions compared to CO(2) losses remains unclear.

  20. Opportunities for reducing greenhouse gas emissions in tropical peatlands

    PubMed Central

    Murdiyarso, D.; Hergoualc’h, K.; Verchot, L. V.

    2010-01-01

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO2 per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO2 per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N2O emissions compared to CO2 losses remains unclear. PMID:21081702

  1. [Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem].

    PubMed

    Li, Jian-zheng; Wang, Ying-chun; Wang, Li-gang; Li, Hu; Qiu, Jian-jun; Wang, Dao-long

    2015-01-01

    In spite of the increasing studies on greenhouse gas (GHG) emissions mitigation technologies, there is still a lack of systematic indices for evaluation of their overall impacts in croplands. In this study, we collected all the indices relating to greenhouse gas emissions and analyzed each index following the principles of representativeness, objectivity, completeness, dominance and operability. Finally, we proposed evaluation indices for mitigation technologies based on the current situation of China. Crop yield per unit area was proposed as a constrained index, and greenhouse gas emissions intensity, defined as GHG emissions per unit of produced yield, was proposed as comprehensive index to evaluate the greenhouse effect of various croplands mitigation technologies. Calculation of GHG emissions intensity involved yield, change of soil organic carbon, direct N2O emissions, paddy CH4 emissions and direct and indirect emissions from inputs into croplands. By following these evaluation indices, the greenhouse effect of the technologies could be well evaluated, which could provide scientific basis for their further adoption.

  2. The economics of biomass for power and greenhouse gas reduction

    NASA Astrophysics Data System (ADS)

    Cameron, Jay Brooker

    The power cost and optimum plant size for power plants using straw fuel in western Canada was determined. The optimum size for agricultural residues is 450 MW (the largest single biomass unit judged feasible in this study), and the power cost is 50.30 MWh-1. If a larger biomass boiler could be built, the optiμm project size for straw would be 628 MW. For a market power price of 40 MWh-1 the cost of the GHG credit generated by a straw-fired plant is 11 tonne-1 CO2. Straw was evaluated as a possible supplement to the primary coal fuel at the Genesee power station in order to reduce the greenhouse gas (GHG) emissions intensity. Cofiring straw at the Genesee power station does not compete favorably with other GHG abatement technologies, even the lowest cost option is estimated at 22 tonne-1 CO2. The cost of transporting wood chips by truck and by pipeline as a water slurry is determined. The pipeline would be economical at large capacity (>0.5 M dry tonnes per year for a one way pipeline, and >1.25 M dry tonnes per year for a two way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km (one way) and >470 km (two way) at a capacity of 2 M dry tonnes per year). Pipelining was determined to be unsuitable for combustion applications. Pipeline transport of corn is evaluated against a range of truck transport costs. At 20% solids, pipeline transport of corn stover costs less than trucking at capacities in excess of 1.4 M dry tonnes/yr when compared to a mid range of truck transport. Pipelining of corn stover gives the opportunity to conduct simultaneous transport and saccharification (STS) but would require a source of waste heat at the pipeline inlet in order to be economical. Transport of corn stover in multiple pipelines offers the opportunity to develop a large ethanol fermentation plant, avoiding some of the diseconomies of scale that arise from smaller plants whose capacities are limited by issues of truck congestion

  3. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  4. Greenhouse gas emissions in Hong Kong

    NASA Astrophysics Data System (ADS)

    Leung, D. Y. C.; Lee, Y. T.

    This study provides a quantitative review of the emissions of carbon dioxide (CO 2) and methane (CH 4), the two most significant greenhouse gases (GHGs) in Hong Kong. Study indicated that CO 2 accounts for 90% of the local GHG emissions in Hong Kong. Among the different types of fuels coal is identified as the major source of CO 2, which constitutes about 50% by fuel type. On the other hand, CH 4, which mainly comes from waste decomposition, contributes to 5% of the total GHG emissions. Correlation study revealed that energy consumption and waste quantity were strongly correlated with population and gross domestic products (GDP), implying that not much has been done in Hong Kong to re-mediate GHG emissions. Regression analysis concluded that supply side management (fuel switch) was more effective than demand side management (energy conservation) in mitigating CO 2 emissions in Hong Kong.

  5. Sub-tropical freshwater storage catchments: major greenhouse gas sinks?

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2013-04-01

    The relatively unstudied catchments and freshwater storages of the sub-tropics represent a potentially important gap in understanding global greenhouse gas cycling. The low number of studies may bias attempts to include this region's contribution to global greenhouse gas cycling, as very few studies have examined the major drivers behind terrestrial and aquatic greenhouse cycling in such sub-tropical areas. In addition, the uncertainty associated in quantifying greenhouse gas emission rates is relatively unknown. This information is crucial to determine whether freshwater storages and their associated catchments are net sources or sinks of greenhouse gas. Here, we present a greenhouse gas audit of the catchment and freshwater storage of Little Nerang Dam to determine the greenhouse gas status of the system as a whole. Little Nerang Dam is a sub-tropical freshwater storage located in Southeast Queensland, Australia. The catchment is in a relatively pristine condition with over 85% native forest remaining dominated by carbon dense Eucalypt species trees. Aquatic surface area is approximately 0.5 km2 in contrast to the terrestrial surface area of 35 km2. This system is an ideal model to investigate drivers behind greenhouse cycling in a relatively undisturbed catchment. A comprehensive field survey was conducted to estimate the major pools of carbon including terrestrial above and belowground fractions as well as the aquatic sediment and water column fractions. Greenhouse rates of emissions and sequestration were monitored over an annual cycle; parameters included tree growth rates, soil respiration, forest litter fall rates and aquatic methane and nitrous oxide fluxes. Results demonstrated the terrestrial carbon pool exceeded the aquatic pool by at least 2 orders of magnitude. When emission and sequestration rates were expressed as CO2 equivalents per unit area catchment sequestration was approximately double that of catchment and storage emissions. When rates were

  6. 78 FR 19605 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... AGENCY 40 CFR Part 98 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request... published a direct final rule, Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method... petroleum and natural gas systems source category of the Greenhouse Gas Reporting Rule are required...

  7. 76 FR 37300 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... AGENCY 40 CFR Part 98 RIN 2060-AP99 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas... available monitoring methods in regulations for Petroleum and Natural Gas Systems of the Greenhouse Gas...-HQ-OAR- 2011-0417, Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems....

  8. The Role of Nuclear Power in Reducing Greenhouse Gas Emissions

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge As this chapter will point out, nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to gr...

  9. Predicting greenhouse gas emissions from beef cattle feedyard manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved predictive models for nitrous oxide and methane are crucial for assessing the greenhouse gas (GHG) footprint of beef cattle production. Biochemical process-based models to predict GHG from manure rely on information derived from studies on soil and only limited study has been conducted on m...

  10. Predicting greenhouse gas emissions from beef cattle feedyard manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved predictive models for nitrous oxide and methane are crucial for assessing the greenhouse gas (GHG) footprint of beef cattle production. Biochemical process based models to predict GHG from manure rely on information derived from studies on soil and only limited study has been conducted on m...

  11. PROCEEDINGS: THE 1992 GREENHOUSE GAS EMISSIONS AND MITIGATION RESEARCH SYMPOSIUM

    EPA Science Inventory

    The report documents the 1992 Greenhouse Gas Emissions and Mitigation Research Symposium held in Washington, DC, August 18-20, 1992. The symposium provided a forum for exchange of technical information on global change emissions and potential mitigation technologies. The primary ...

  12. Greenhouse Gas Mitigation Options Database(GMOD)and Tool

    EPA Science Inventory

    Greenhouse Gas Mitigation Options Database (GMOD) is a decision support database and tool that provides cost and performance information for GHG mitigation options for the power, cement, refinery, landfill and pulp and paper sectors. The GMOD includes approximately 450 studies fo...

  13. Assessment and mitigation of greenhouse gas emissions from feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This was an invited 45 minute oral presentation concerning assessment and mitigation of greenhouse gas emissions from feedlots. The audience at the summit (about 60 people) included university professors, environmental regulators, and producers. The presentation included a brief review of environm...

  14. Intertemporal Regulatory Tasks and Responsibilities for Greenhouse Gas Reductions

    ERIC Educational Resources Information Center

    Deason, Jeffrey A.; Friedman, Lee S.

    2010-01-01

    Jurisdictions are in the process of establishing regulatory systems to control greenhouse gas emissions. Short-term and sometimes long-term emissions reduction goals are established, as California does for 2020 and 2050, but little attention has yet been focused on annual emissions targets for the intervening years. We develop recommendations for…

  15. Institutionalizing a Greenhouse Gas Emission Reduction Target at Yale

    ERIC Educational Resources Information Center

    Rauch, Jason N.; Newman, Julie

    2009-01-01

    Purpose: The purpose of this paper is to analyze the development and implementation of how a greenhouse gas GHG reduction target at Yale University has resulted in broad and long-term institutional commitment. Design/methodology/approach: Interviews are conducted with key individuals representing those most directly involved in developing and…

  16. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  17. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  18. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    SciTech Connect

    Biraud, S. C.; Reichl, K.

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  19. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  20. Description of the Use of Greenhouse Facilities by Secondary Agricultural Education Instructors in Arizona

    ERIC Educational Resources Information Center

    Franklin, Edward A.

    2008-01-01

    The purpose of this study was to determine the status and use of greenhouse laboratory facilities by secondary agricultural education instructors in Arizona. Specific objectives were to determine the number of programs with operating greenhouses, types of operating systems, how the facilities are used in the local program, level of preparation of…

  1. Influences of Land Use on Greenhouse Gas Fluxes within Mixed Landscapes

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Contosta, A.; Deng, J.; Lepine, L. C.; Li, C.; Ollinger, S. V.; Ouimette, A.; Tang, J.; Varner, R. K.

    2015-12-01

    Human activities (e.g., urbanization, land use planning) have led to complex patterns of urban, suburban, agricultural, and forested landscapes. Ecosystems within these landscapes play an important role in climate regulation by acting as regulators of CO2 and other greenhouse gases and altering surface albedo and other biophysical properties. The overarching goal of our work is to examine the interactions among carbon cycling, land use, and climate change in a human-dominated, mixed land use region that includes urban, suburban, agriculture, and forest land uses. We combine field measurements of carbon storage and greenhouse gas emissions (CO2, CH4, and N2O), an improved process-based biogeochemical model - DNDC (DeNitrification and DeComposition) designed to predict C fluxes and trace gas emissions, and historical and projected land use change data derived from Landsat imagery and cellular automata/agent-based modeling. Our specific objectives designed to achieve the overarching goal are to: (1) Measure C pools and greenhouse gas emissions (CO2, CH4, and N2O) in urban, suburban, agricultural, and forested landscapes; (2) Improve and parameterize the DNDC (DeNitrification and DeComposition) model and validate model predictions; (3) Develop historical land use change data for the last three decades from Landsat imagery and projections of future land use change; (4) Generate spatially continuous predictions of C pools and greenhouse gas emissions using Urban-DNDC and assess how land use interacts with C cycling and climate change and how future land use change will influence carbon sequestration potential within these complex landscapes. Our results will have implications for crafting effective land management policies that balance C sequestration and climate mitigation with food production, forest resources and many other services that these landscapes provide.

  2. Implications of ethanol-based fuels for greenhouse gas emissions

    SciTech Connect

    Marland, G.; DeLuchi, M.A.; Wyman, C.

    1994-02-14

    The US Environmental Protection Agency has proposed a rule which would mandate that 30% of the oxygen content of reformulated gasoline be provided by renewable oxygenates. The rule would essentially require that biomass-based ethanol, or ETBE derived from ethanol, be used to supply 30% of the oxygen in reformulated gasoline. This short statement addresses the very narrow question, ``Would this rule result in a net decrease in greenhouse gas emissions?`` The challenge then is to determine how much greenhouse gas is emitted during the ethanol fuel cycle, a fuel cycle that is much less mature and less well documented than the petroleum fuel cycle. In the petroleum fuel cycle, most of the greenhouse gas emissions come from fuel combustion. In the ethanol fuel cycle most of the greenhouse gas emissions come from the fuel production processes. Details of corn productivity, fertilizer use, process efficiency, fuel source, etc. become very important. It is also important that the ethanol fuel cycle produces additional products and the greenhouse gas emissions have somehow to be allocated among the respective products. With so many variables in the ethanol fuel cycle, the concern is actually with ethanol-based additives which will be produced in response to the proposed rule, and not necessarily with the average of ethanol which is being produced now. A first important observation is that the difference between standard gasoline and reformulated gasoline is very small so that when differences are drawn against alternative fuels, it makes little difference whether the contrast is against standard or reformulated gasoline. A second observation is that for this base case comparison, emissions of CO{sub 2} alone are roughly 13% less for the ethanol fuel cycle than for the reformulated gasoline cycle.

  3. Greenhouse gas emissions from municipal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    by a person in Germany or Austria (10.6 t CO2e/p/a, UBA, 2016). The results indicate that GHG emissions from WWTP have at global scale a small impact, as also highlighted by the Austrian national inventory report (NIR, 2015), where the estimated CO2e emissions from WWTPs account for only 0.23% of the total CO2e emission in Austria. References IPCC (2006). Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Program, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Anabe K. (eds). Published: IGES, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/. NIR (2015). Austria's National Inventory Report 2015. Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Reports, Band 0552, ISBN: 978-3-99004-364-6, Umweltbundesamt, Wien. Parravicini V., Valkova T., Haslinger J., Saracevic E., Winkelbauer A., Tauber J., Svardal K., Hohenblum P., Clara M., Windhofer G., Pazdernik K., Lampert C. (2015). Reduktionspotential bei den Lachgasemissionen aus Kläranlagen durch Optimierung des Betriebes (ReLaKO). The research project was financially supported by the Ministry for agriculture, forestry, Environment and Water Management. Project leader: TU Wien, Institute for Water Quality, Ressources and Waste Management; Project partner: Umweltbundesamt GmbH. Final report: http://www.bmlfuw.gv.at/service/publikationen/wasser/Lachgasemissionen---Kl-ranlagen.html. UBA (2016). German average carbon footprint. Umweltbundesamt, Januar 2016, http://uba.klimaktiv-co2-rechner.de/de_DE/page/footprint/

  4. Quantifying greenhouse gas mitigation potential of cropland management practices: A review of the GRA croplands research group greenhouse gas network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-national greenhouse gas (GHG) flux networks play a central role facilitating model development and verification while concurrently identifying critical research needs. In 2012, a network was established within Component 1 of the Global Research Alliance (GRA) Croplands Research Group. The ne...

  5. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    ERIC Educational Resources Information Center

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  6. Greenhouse Gas Emissions Model (GEM) for Medium- and Heavy-Duty Vehicle Compliance

    EPA Pesticide Factsheets

    EPA’s Greenhouse Gas Emissions Model (GEM) is a free, desktop computer application that estimates the greenhouse gas (GHG) emissions and fuel efficiency performance of specific aspects of heavy-duty vehicles.

  7. 75 FR 45112 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other... greenhouse gas emissions from bioenergy and other biogenic sources. Inadvertently, incorrect text...

  8. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council on Environmental Quality. ACTION: Notice of Availability, Draft Guidance, ``Federal Greenhouse Gas Accounting and... (GHG) emissions a priority for Federal agencies. Among other provisions, E.O. 13514 requires...

  9. Manure management for greenhouse gas mitigation.

    PubMed

    Petersen, S O; Blanchard, M; Chadwick, D; Del Prado, A; Edouard, N; Mosquera, J; Sommer, S G

    2013-06-01

    Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure environment. Their relative importance depends not only on manure composition and local management practices with respect to treatment, storage and field application, but also on ambient climatic conditions. The diversity of livestock production systems, and their associated manure management, is discussed on the basis of four regional cases (Sub-Saharan Africa, Southeast Asia, China and Europe) with increasing levels of intensification and priorities with respect to nutrient management and environmental regulation. GHG mitigation options for production systems based on solid and liquid manure management are then presented, and potentials for positive and negative interactions between pollutants, and between management practices, are discussed. The diversity of manure properties and environmental conditions necessitate a modelling approach for improving estimates of GHG emissions, and for predicting effects of management changes for GHG mitigation, and requirements for such a model are discussed. Finally, we briefly discuss drivers for, and barriers against, introduction of GHG mitigation measures for livestock production. There is no conflict between efforts to improve food and feed production, and efforts to reduce GHG emissions from manure management. Growth in livestock populations are projected to occur mainly in intensive production systems where, for this and other reasons, the largest potentials for GHG mitigation may be found.

  10. Fractal dimension analysis of landscape scale variability in greenhouse gas production potentials

    NASA Astrophysics Data System (ADS)

    da Silva Bicalho, Elton; Spokas, Kurt; La Scala, Newton, Jr.

    2015-04-01

    Soil greenhouse gas emission is influenced by tillage and management practices that modify soil attributes directly related to the dynamics of soil carbon in the agricultural environment. The aim of this study was to assess the soil CO2 and N2O production potentials and their spatial variability characterized by fractal dimension in different scales, in addition to their correlation with other soil attributes. The quantification of soil CO2 and N2O production was carried out from dry soil samples collected in a grid of 50 × 50 m containing 133 points arranged symmetrically on a sugarcane area under green residue management in southern Brazil. Laboratory incubations were used to analyze greenhouse gas dynamics by gas chromatography. Soil CO2 and N2O production were correlated significantly (P < 0.05) with microbial biomass, silt and clay content, pH, available phosphorus, sum of metal cations (bases), and cation exchange capacity. Similarly, these soil attributes also were correlated with microbial biomass, supporting their role in soil microbial activity and greenhouse gas production. Furthermore, variations in the fractal dimension over the scale indicate that the pattern of the spatial variability structure of soil CO2 production potential was correlated to that observed for microbial biomass, pH, available phosphorus, sum of bases, and cation exchange capacity. On the other hand, only the spatial structure of the clay content, pH and the sum of bases were correlated with the soil N2O production. Therefore, examining the fractal dimension enables the spatially visualization of altering processes across a landscape at different scales, which highlights properties that influence greenhouse gas production and emission in agricultural areas.

  11. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  12. Requirements for a Global Greenhouse Gas Information System

    NASA Astrophysics Data System (ADS)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  13. Greenhouse Gas Emissions from Dairy Manure Management: A Review of Field-based Studies

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Silver, W. L.

    2013-12-01

    Dairy manure is a large potential source of agriculturally-derived greenhouse gases, but few studies have compared source locations or management strategies, nor evaluated how well emissions factors capture actual emission rates. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 approach. Greenhouse gas emissions varied by several orders of magnitude from all sources due to the heterogeneity of surface conditions and manure composition, the length of sampling, and the measurement technique. Anaerobic lagoons were the largest source of methane (1097 × 591 g hd-1 d-1), over twice that from enteric fermentation (~350 g hd-1 d-1). Corrals and manure piles were the largest sources of nitrous oxide. Methane and nitrous oxide emissions from hardstandings and barn floors were negligible. Predicted methane emissions underestimated measured fluxes for slurry tanks, barns, and whole dairies. Predicted nitrous oxide emissions underestimated anaerobic lagoon fluxes but overestimated emissions from slurry tanks and barn floors. Refining these calculations requires: 1) within-site comparisons of measurement techniques, 2) multiple year data sets, 3) within-site comparisons across measurement scales, and 4) better metadata to constrain greenhouse gas emission models.

  14. Greenhouse gas scenario in Indian continent

    NASA Astrophysics Data System (ADS)

    Singh, T. N.

    1999-12-01

    Global climate change depicts energy exchange balance between the earth and atmosphere and the space. The balance is affected by human activities -- burning of fuel -- fossil or biological generating carbon dioxide, nitrous oxide or trace gases. Accumulation of these gases in the atmosphere may follow intensification of green house effect and cause global sea warming. Warming may affect agriculture, forestry, water resources and rising or falling of levels. The burning of fuel is for the generation of commercial energy -- electricity, household energy -- cooking, heating or burning of bushes, waste product and biomass. The world population distribution reveals heavy tilt in terms of growth rate and the cumulative figure. Nearly 80% of the world population is in the developing economy with only 20% resource available to them. The energy demand in five major Asian developing economy for the year 1990 is summarized.

  15. Greenhouse Gas Fluxes from Peatland Pools

    NASA Astrophysics Data System (ADS)

    Turner, E.; Baird, A. J.; Billett, M. F.; Chapman, P. J.; Dinsmore, K. J.; Holden, J.

    2015-12-01

    Peatlands contain around one third of the global soil carbon (C) stock. Understanding the processes in peatland C cycling, and in particular those involved in the release of the greenhouse gases (GHGs) CO2 and CH4 to the atmosphere, is a current research priority. Natural open-water pools are a common feature of many peatlands, and previous research suggests pools can be strong sources of atmospheric GHGs, particularly CH4, and thus have the potential to play an important role in global radiative forcing. The area of open-water in peatlands is rapidly expanding in a warming Arctic (e.g. Walter et al., 2007) while artificially created pools are becoming more commonplace in the recent drive to restore the hydrological functioning of drained peatlands by blocking ditches. We present the results of >2 years of comprehensive field monitoring from pool complexes in the Flow Country of northern Scotland, the largest expanse (c.4000 km2) of blanket bog in Europe. Concentrations and fluxes of CO2 and CH4 are presented from 12 intensively monitored pools and the adjacent terrestrial surface. We examined both natural (n = 6) and artificial (n = 6) pools, which allowed us to quantify how pools created during restoration compare to undisturbed sites. C and hydrology budgets were determined for the study pools and the adjacent terrestrial surface. Dissolved concentrations of GHGs ranged from 0.08-4.68 mg CO2-C L-1 and 0.01-731 µg CH4-C L-1 in natural pools, and 0.29-10.38 mg CO2-C L-1 and 0.04-239 µg CH4-C L-1 in artificial pools. GHG fluxes from natural pool surfaces ranged between -2.47-653 mg CH4 m-2 d-1 and -31.7-14.8 g CO2 m-2 d-1. Artificial pool GHG fluxes were -8.19-581 mg CH4 m-2 d-1 and -7.66-34.9 g CO2 m-2 d-1. We provide more accurate GHG budgets for peatlands with natural pool complexes by considering their relative importance at the landscape-scale, and outline the potential effect on GHG fluxes when creating artificial pools during peatland restoration

  16. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  17. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues like corn stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn residue removal from a no-till, corn-soybean rotation on greenhouse gas (GHG...

  18. Long-term tillage and drainage influences on greenhouse gas fluxes from a poorly-drained soil of central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive tillage practices and poorly-drained soils of Midwestern USA are the prime reasons for greenhouse gas (GHG) fluxes from agriculture. The naturally poorly-drained soils prevalent in this region require subsurface drainage for improved aeration and improved crop productivity. Soil surface GH...

  19. DairyGHG: a tool for evaluating the greenhouse gas emissions and carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on the environment have become important national and international concerns. Dairy production, along with all other animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from our farm...

  20. 75 FR 67059 - Public Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty... to be held for the joint proposed rules ``Greenhouse Gas Emissions Standards and Fuel Efficiency... NHTSA and EPA's proposal for ``Greenhouse Gas Emissions Standards and Fuel Efficiency Standards...

  1. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  2. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  3. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... AGENCY 40 CFR Part 60 Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources... proposed rule, ``Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric... for the proposed Standards of Performance for Greenhouse Gas Emissions for New Stationary...

  4. Influence of Organic Agriculture on the Net Greenhouse Effect in the Red River Valley, Minnesota

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.

    2004-12-01

    Fluxes for the suite of biologically-produced greenhouse gases (CH4, N2O and CO2) are strongly influenced by agriculture, yet the influence of organic agriculture on all three gases, which comprise the net greenhouse effect (GHE), is not clear in the context of large-scale agricultural production. Greenhouse gas mitigation potential will depend upon the net balance for all three gases [GHE balance (CO2 equiv.)= CO2 flux+ 23CH4flux + 296N2Oflux]. On-farm, field-scale experiments were performed to test the hypothesis that the net GHE at the soil-atmosphere interface is reduced under organic wheat production, compared with conventional, and that effects vary inter-seasonally. Trace gas fluxes were measured at the soil-atmosphere interface for organic and conventional wheat farms in the Red River Valley, Minnesota, one of the most productive agricultural regions in the US. We utilized 40-60 ha field pairs planted with hard red spring wheat (Triticum aestivum L.). Treatment pairs were located 6km apart and consisted of fields continuously cropped for wheat/soybean/sugar beet production for over 20 yr. Ten random, permanent points were generated for each 8.1 ha sub-plot nested inside each field. Each field pair was similar with respect to crop, climate, cultivation history, tillage, rotation, soil texture, pH, macronutrients, bulk density, and water holding capacity. Differences between treatments for the last five years were soil amendments (compost or urea) and herbicide/fungicide application versus mechanical weed control. We collected gas fluxes at each of the 41 points from April (wheat emergence) until the end of July (maturity) to determine the hourly and seasonally integrated net GHE for each management practice, given similar soil/plant/climatic conditions. Moreover, we analyzed inter-seasonal variability to determine the relationship between wheat phenology and flux under field conditions for soil temperature and moisture (water-filled pore space). The net GHE

  5. Towards European organisation for integrated greenhouse gas observation system

    NASA Astrophysics Data System (ADS)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  6. Effect of different agronomic practises on greenhouse gas emissions, especially N2O and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2014-05-01

    In order to achieve a reduction of greenhouse gas emissions, management practises need to be adapted by implementing sustainable land use. At first, reliable field data are required to assess the effect of different farming practises on greenhouse gas budgets. The conducted field experiment covers and compares two main aspects of agricultural management, namely an organic farming system and an integrated farming system, implementing additionally the effects of diverse tillage systems and fertilisation practises. Furthermore, the analysis of the alterable biological, physical and chemical soil properties enables a link between the impact of different management systems on greenhouse gas emissions and the monitored cycle of matter, especially the nitrogen cycle. Measurements were carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then, parcels in a field (each around 0,2-0,4 ha) with a particular interior plot set-up have been conducted. So the 20 years impacts of different tillage and fertilisation practises on soil properties including trace gases were examined. Fluxes of CH4, N2O and CO2 are monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (per point: 4 chambers, each covering 0,4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit (Flessa et al. 2002). Each chamber is sampled 3-4 times in 24 hours. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas fluxes as influenced by management practice events (fertilisation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods

  7. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-10-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  8. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  9. Towards a Global Greenhouse Gas Information System (GHGIS)

    NASA Astrophysics Data System (ADS)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  10. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  11. Recent and future trends in synthetic greenhouse gas radiative forcing

    NASA Astrophysics Data System (ADS)

    Rigby, M.; Prinn, R. G.; O'Doherty, S.; Miller, B. R.; Ivy, D.; Mühle, J.; Harth, C. M.; Salameh, P. K.; Arnold, T.; Weiss, R. F.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Young, D.; Simmonds, P. G.

    2014-04-01

    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m-2 in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to "no HFC policy" projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m-2 by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.

  12. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  13. Optimization of wastewater treatment plant operation for greenhouse gas mitigation.

    PubMed

    Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C

    2015-11-01

    This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation.

  14. Agriculture, greenhouse, wetland and other beneficial uses of geothermal fluids and heat

    SciTech Connect

    Schmitt, R.C.

    1981-04-05

    The status for related beneficial uses including agriculture, greenhousing, and geothermal wetlands is presented. Data published for the geothermal fluids found in areas of China have been examined and compared with the geothermal fluids used in the agriculture evaluations in the United States. This comparison indicates that the geothermal fluids found in parts of China are similar to those used in the US agriculture experiments. Greenhousing is addressed largely from the standpoint of hardware systems and technology being employed or being proposed in the United States.

  15. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    NASA Astrophysics Data System (ADS)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The

  16. Greenhouse Gas Emissions from Stored Dairy Slurry from Multiple Farms.

    PubMed

    Le Riche, Etienne L; VanderZaag, Andrew C; Wood, Jeffrey D; Wagner-Riddle, Claudia; Dunfield, Kari; Ngwabie, N Martin; McCabe, John; Gordon, Robert J

    2016-11-01

    A significant need exists to improve our understanding of the extent of greenhouse gas emissions from the storage of livestock manure to both improve the reliability of inventory assessments and the impact of beneficial management practice adoption. Factors affecting the extent and variability of greenhouse gas emissions from stored dairy manure were investigated. Emissions from six slurries stored in clean concrete tanks under identical "warm-season" conditions were monitored consecutively over 173 d (18°C average air temperature). Methane (CH) emissions varied considerably among the manures from 6.3 to 25.9 g m d and accounted for ∼96% of the total CO equivalent greenhouse gas emissions. The duration of the lag period, when methane emissions were near baseline levels, varied from 30 to 90 d from the beginning of storage. As a result, CH emissions were poorly correlated with air temperature prior to the time of peak emissions (i.e., the initial 48 to 108 d of storage) but improved afterward. The air temperature following the time of the peak CH flux and the length of the active methanogenesis period (i.e., when the daily CH emissions ≥ 7.6 g m d) were highly correlated with CH emissions ( = 0.98, < 0.01). Methane conversion factors (MCFs) ranged from 0.08 to 0.52 for the different manures. The MCFs generated from existing CH emission models were correlated ( = 0.68, = 0.02) to MCFs calculated for the active methanogenesis period for manure containing wood bedding. A temperature component was added that improved the accuracy ( = 0.82, < 0.01). This demonstrated that an improved understanding of lag period dynamics will enhance stored dairy manure greenhouse gas emission inventory calculations.

  17. Research on Greenhouse-Gas-Induced Climate Change

    SciTech Connect

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  18. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  19. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  20. Impact of greenhouse gas emissions reduction in Indonesia: NO2

    NASA Astrophysics Data System (ADS)

    Susandi, A.

    2004-12-01

    In this study, we develop scenarios of total air pollution from fossil fuel consumption and its impacts for the 21st century, using an inter-temporal general equilibrium model MERGE. The Model for Evaluating the Regional and Global Effects of greenhouse gas reduction policies (MERGE) is used to project energy consumption and production. We use the base scenarios from IPCC (2000). These scenarios assume that no measures are undertaken to control greenhouse gas emissions. We extend the IPCC scenarios with mitigation scenarios, estimating the air pollution impacts of greenhouse gas emission reduction. The MERGE model was extended to analyze emissions of nitrogen dioxide (NO2), their concentrations, impacts on human health, and economic valuation. To estimate of nitrogen dioxide (NO2) impacts on respiratory symptoms, we calculated the NO2 concentration as derived from nitrogen oxide (NOx). In the baseline scenario, the concentrations of NO2 are rising to 2,263 μg/m3 in 2100. If the Organisation for Economic Co-operation and Development (OECD) countries reduce their emissions, respiratory symptoms among adult's associated with NO2 case would reach the highest to 65,741% of adult population cases by the end of century. If all countries reduce their emission in the future, the total health problem cost associated with NO2 will lower 35% of GDP than in the baseline scenario during the century.

  1. Greenhouse-gas payback times for crop-based biofuels

    NASA Astrophysics Data System (ADS)

    Elshout, P. M. F.; van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; van der Velde, M.; Huijbregts, M. A. J.

    2015-06-01

    A global increase in the demand for crop-based biofuels may be met by cropland expansion, and could require the sacrifice of natural vegetation. Such land transformation alters the carbon and nitrogen cycles of the original system, and causes significant greenhouse-gas emissions, which should be considered when assessing the global warming performance of crop-based biofuels. As an indicator of this performance we propose the use of greenhouse-gas payback time (GPBT), that is, the number of years it takes before the greenhouse-gas savings due to displacing fossil fuels with biofuels equal the initial losses of carbon and nitrogen stocks from the original ecosystem. Spatially explicit global GPBTs were derived for biofuel production systems using five different feedstocks (corn, rapeseed, soybean, sugarcane and winter wheat), cultivated under no-input and high-input farm management. Overall, GPBTs were found to range between 1 and 162 years (95% range, median: 19 years) with the longest GPBTs occurring in the tropics. Replacing no-input with high-input farming typically shortened the GPBTs by 45 to 79%. Location of crop cultivation was identified as the primary factor driving variation in GPBTs. This study underscores the importance of using spatially explicit impact assessments to guide biofuel policy.

  2. Why New Zealand must rapidly halve its greenhouse gas emissions.

    PubMed

    Metcalfe, Scott; Woodward, Alistair; Macmillan, Alexandra; Baker, Michael; Howden-Chapman, Philippa; Lindsay, Graeme; Hales, Simon; Sinclair, David; Jaine, Richard; Springford, Liz; Holmes, Andrew; Laking, George; Jones, Rhys; Carr, Harriette; Edwards, Richard; Shaw, Caroline; Wells, Susan; Hosking, Jamie; Forde, Andrea; Bismark, Marie; Palmer, Stephen; Keating, Gay; Simpson, Jenny; Highton, Rachel; Dhar, Divya; Kane, Penny

    2009-10-09

    New Zealand must commit to substantial decreases in its greenhouse gas emissions, to avoid the worst impacts of climate change on human health, both here and internationally. We have the fourth highest per capita greenhouse gas emissions in the developed world. Based on the need to limit warming to 2 degrees C by 2100, our cumulative emissions, and our capability to mitigate, New Zealand should at least halve its greenhouse gas emissions by 2020 (i.e. a target of at least 40% less than 1990 levels). This target has a strong scientific basis, and if anything may be too lenient; reducing the risk of catastrophic climate change may require deeper cuts. Short-term economic costs of mitigation have been widely overstated in public debate. They must also be balanced by the far greater costs caused by inertia and the substantial health and social benefits that can be achieved by a low emissions society. Large emissions reductions are achievable if we mobilise New Zealand society and let technology follow the signal of a responsible target.

  3. Environmental impacts of food trade via resource use and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-03-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio-economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required.

  4. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  5. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  6. The greenhouse gas balance of the Province of Siena.

    PubMed

    Ridolfi, R; Kneller, M; Donati, A; Pulselli, R M

    2008-01-01

    There is a profound debate over how to assign greenhouse gas (GHG) responsibilities; therefore, we have decided to follow IPCC guidelines, as they offer the only standardized method. We have identified each type of greenhouse emission and its level of absorption. We have studied the province and its districts and municipalities. We have determined that the energy sector is that with the highest level of emissions, even if the per capita emissions of the Province of Siena are very low. This is caused by a very low level of industrialization and the presence of a local geothermal production of energy. In order to highlight this aspect, we have considered scenarios both with and without geothermal production. Our research was then focused on single districts (groups of homogenous municipalities) and municipalities, where we found great differences among the greenhouse emissions of the areas. We have constructed a map of the greenhouse emissions of the whole province. It has been interesting to note that there are 14 municipalities with net negative emissions, seven with low positive emissions, 12 with medium positive emissions and three with elevated positive emissions. These latter correspond to the main city and to two of the most industrialized municipalities.

  7. Characteristics of WWTP sludge after drying in greenhouse for agricultural purposes.

    PubMed

    Lima, Márcia Regina Pereira; Zandonade, Eliana; Sobrinho, Pedro Alem

    2012-01-01

    The sludge generated by sewage treatment which meets regulatory standards can be used in agriculture. With this understanding, the focus of this study is the evaluation of the agricultural characteristics and inorganic substances in excess activated sludge, which was subjected to drying in a greenhouse. The variables (factor) evaluated during the drying process were: type of sludge (digested or not digested), addition of lime to the sludge, and the physical layout and rotation of sludge in the greenhouse. The parameters monitored for this assessment were moisture, volatile solids and pH. The greenhouse cover and sides were made of translucent plastic to allow the penetration of solar radiation and prevent water from entering. A impermeable floor was used. The sludge was generated in sewage treatment plants located in the metropolitan region of Grande Vitória, Espírito Santo, Brazil. The solar drying of wastewater sludge in a greenhouse presented satisfactory results.

  8. 75 FR 43889 - Proposed Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Mandatory Greenhouse Gas Reporting Rule AGENCY: Environmental Protection Agency (EPA). ACTION: Supplemental... Data Required under the Mandatory Greenhouse Gas Reporting Rule and Proposed Amendment to Special Rules...: Revision of Certain Provisions of the Mandatory Reporting of Greenhouse Gases Rule,'' also signed...

  9. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  10. Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation.

    PubMed

    Kim, Sunghyun; Lee, Seunghoon; McCormick, Melissa; Kim, Jae Geun; Kang, Hojeong

    2016-10-01

    The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.

  11. Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas.

    PubMed

    de Ruiter, Henri; Macdiarmid, Jennie I; Matthews, Robin B; Kastner, Thomas; Smith, Pete

    2016-01-01

    Producing sufficient, healthy food for a growing world population amid a changing climate is a major challenge for the twenty-first century. Agricultural trade could help alleviate this challenge by using comparative productivity advantages between countries. However, agricultural trade has implications for national food security and could displace environmental impacts from developed to developing countries. This study illustrates the global effects resulting from the agricultural trade of a single country, by analysing the global cropland and greenhouse gas impacts of the UK's food and feed supply. The global cropland footprint associated with the UK food and feed supply increased by 2022 kha (+23%) from 1986 to 2009. Greenhouse gas emissions (GHGE) associated with fertilizer and manure application, and rice cultivation remained relatively constant at 7.9 Mt CO2e between 1987 and 2008. Including GHGE from land-use change, however, leads to an increase from 19.1 in 1987 to 21.9 Mt CO2e in 2008. The UK is currently importing over 50% of its food and feed, whereas 70% and 64% of the associated cropland and GHGE impacts, respectively, are located abroad. These results imply that the UK is increasingly reliant on external resources and that the environmental impact of its food supply is increasingly displaced overseas.

  12. Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas

    PubMed Central

    Macdiarmid, Jennie I.

    2016-01-01

    Producing sufficient, healthy food for a growing world population amid a changing climate is a major challenge for the twenty-first century. Agricultural trade could help alleviate this challenge by using comparative productivity advantages between countries. However, agricultural trade has implications for national food security and could displace environmental impacts from developed to developing countries. This study illustrates the global effects resulting from the agricultural trade of a single country, by analysing the global cropland and greenhouse gas impacts of the UK's food and feed supply. The global cropland footprint associated with the UK food and feed supply increased by 2022 kha (+23%) from 1986 to 2009. Greenhouse gas emissions (GHGE) associated with fertilizer and manure application, and rice cultivation remained relatively constant at 7.9 Mt CO2e between 1987 and 2008. Including GHGE from land-use change, however, leads to an increase from 19.1 in 1987 to 21.9 Mt CO2e in 2008. The UK is currently importing over 50% of its food and feed, whereas 70% and 64% of the associated cropland and GHGE impacts, respectively, are located abroad. These results imply that the UK is increasingly reliant on external resources and that the environmental impact of its food supply is increasingly displaced overseas. PMID:26740576

  13. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  14. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models?

    NASA Astrophysics Data System (ADS)

    Kraus, David; Weller, Sebastian; Janz, Baldur; Klatt, Steffen; Santabárbara, Ignacio; Haas, Edwin; Werner, Christian; Wassmann, Reiner; Kiese, Ralf; Butterbach-Bahl, Klaus

    2016-04-01

    Paddy rice cultivation is increasingly challenged by physical and economic irrigation water scarcity. This already results in the trend of converting paddy rice to upland crop cultivation (e.g., maize, aerobic rice) in large parts of South East Asia. Such land management change from flooded lowland systems to well-aerated upland systems drastically affects soil C and N cycling and related emissions of greenhouse gases. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will most likely increase. In addition to such fast evolving 'pollution swapping' it is expected that on longer time scales significant amounts of soil organic carbon (SOC) stocks will be lost in form of carbon dioxide (CO2). Within the DFG-funded research unit ICON (Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water cycles), we investigated environmental impacts of land management change from historical paddy rice cultivation to the upland crops maize and aerobic rice at experimental sites at the International Rice Research Institute (IRRI), the Philippines. To present, more than three years of continuous measurement data of CH4 and N2O emissions under different fertilization regimes have been collected. In addition, measurements of SOC contents and bulk densities in different soil horizons allow for an overall very good characterization of the environmental impacts of mentioned land management change. In this contribution we will show how well mentioned land management change effects in tropical agricultural systems can be represented and thus better understood by the help of process-based biogeochemical models. Seasonal emissions of CH4 and N2O are simulated with r2 values of 0.85 and 0.78 and average underestimations of 15 and 14 %, respectively. These underestimations predominantly originate from treatments in which no fertilizer is applied (CH4) as well as uncertainties of soil hydrology (N2O). Long

  15. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation.

  16. Measuring Greenhouse-Gas Emissions from a Synthetic Tracer Source

    NASA Astrophysics Data System (ADS)

    Wang, W.; Liu, W.; Zhang, T.; Lu, Y.

    2014-05-01

    This paper describes a controlled tracer-release experiment in which methane was released from a synthetic source at known rates. An open-path Fourier transform infrared (OP-FTIR) spectroscopy system was used to measure line-averaged methane concentrations downwind of the source. A Lagrangian stochastic (LS) dispersion model was employed to infer emission rates from downwind gas concentrations. The main purpose of our study was to investigate the ability of our open-path FTIR system combined with the LS dispersion model to accurately measure greenhouse gas emissions. In our study, the average ratio of the estimated emissions to actual release rates QLS/Q for CH4 was about 0.86 (σQLS/Q = 0.2, n = 6) and 0.84 (σQLS/Q = 0.22, n = 3) after data fi ltering for a 15- and a 30- min period, respectively. Although there is a limited amount of data in this experiment, the results demonstrate the potential of the measurement system for accurate quantifi cation of greenhouse gas emissions.

  17. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  18. Preparing US community greenhouse gas inventories for climate action plans

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael; Matthews, H. Scott; Sharrard, Aurora L.; Hendrickson, Chris T.; Lima Azevedo, Inês

    2011-07-01

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  19. The challenge of identifying greenhouse gas-induced climatic change

    NASA Technical Reports Server (NTRS)

    Maccracken, Michael C.

    1992-01-01

    Meeting the challenge of identifying greenhouse gas-induced climatic change involves three steps. First, observations of critical variables must be assembled, evaluated, and analyzed to determine that there has been a statistically significant change. Second, reliable theoretical (model) calculations must be conducted to provide a definitive set of changes for which to search. Third, a quantitative and statistically significant association must be made between the projected and observed changes to exclude the possibility that the changes are due to natural variability or other factors. This paper provides a qualitative overview of scientific progress in successfully fulfilling these three steps.

  20. Greenhouse gas emissions control by economic incentives: Survey and analysis

    SciTech Connect

    South, D.W.; Kosobud, R.F.; Quinn, K.G.

    1991-01-01

    This paper presents a survey of issues and concerns raised in recent literature on the application of market-based approaches to greenhouse effect policy with an emphasis on tradeable emission permits. The potential advantages of decentralized decision-making -- cost-effectiveness or allocation efficiency, stimulation of innovations, and political feasibility are discussed. The potential difficulties of data recording, monitoring, enforcement, and of creating viable emission permit contracts and markets are examined. Special attention is given to the problem of designing a greenhouse effect policy that is cost-effective over time, a problem that has been given little attention to date. Proposals to reduce or stabilize greenhouse gas emission (especially CO{sub 2}) in the short run require high carbon tax rates or permit prices and impose heavy adjustment costs on the fossil fuel industry. A more cost-effective time path of permit prices is proposed that achieves the same long-run climate change stabilization goals. 21 refs., 3 figs.

  1. Greenhouse gas emissions control by economic incentives: Survey and analysis

    SciTech Connect

    South, D.W.; Kosobud, R.F.; Quinn, K.G.

    1991-12-31

    This paper presents a survey of issues and concerns raised in recent literature on the application of market-based approaches to greenhouse effect policy with an emphasis on tradeable emission permits. The potential advantages of decentralized decision-making -- cost-effectiveness or allocation efficiency, stimulation of innovations, and political feasibility are discussed. The potential difficulties of data recording, monitoring, enforcement, and of creating viable emission permit contracts and markets are examined. Special attention is given to the problem of designing a greenhouse effect policy that is cost-effective over time, a problem that has been given little attention to date. Proposals to reduce or stabilize greenhouse gas emission (especially CO{sub 2}) in the short run require high carbon tax rates or permit prices and impose heavy adjustment costs on the fossil fuel industry. A more cost-effective time path of permit prices is proposed that achieves the same long-run climate change stabilization goals. 21 refs., 3 figs.

  2. Emergence of the global research alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing human population pressure on the Earth is of great concern and a key reason why agricultural and natural resource sciences must be fully engaged to develop solutions for a sustainable future. Increasing population puts pressure on the demand for food, clean water, healthy soil, and a sta...

  3. A new Masters program in Greenhouse Gas Management and Accounting at Colorado State University

    NASA Astrophysics Data System (ADS)

    Conant, R. T.; Ogle, S. M.

    2015-12-01

    Management guru Peter Drucker said that "what gets measured gets managed." But the unstated implication is that what doesn't get measured doesn't get managed. Accurate quantification of greenhouse gas mitigation efforts is central to the clean technology sector. Very soon professionals of all kinds (business people, accountants, lawyers) will need to understand carbon accounting and crediting. Over the next few decades food production is expected to double and energy production must triple in order to meet growing global demands; sustainable management of land use and agricultural systems will be critical. The food and energy supply challenges are inextricably linked to the challenge of limiting anthropogenic impacts on climate by reducing the concentration of greenhouse gases (GHG) in the atmosphere. To avoid serious disruption of the climate system and stabilize GHG concentrations, society must move aggressively to avoid emissions of CO2, CH4, and N2O and to actively draw down CO2 already in the atmosphere. A new cadre of technically adept professionals is needed to meet these challenges. We describe a new professional Masters degree in greenhouse gas management and accounting at Colorado State University. This effort leverages existing, internationally-recognized expertise from across campus and partners from agencies and industry, enabling students from diverse backgrounds to develop the skills needed to fill this emerging demand.

  4. 75 FR 74457 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...EPA is promulgating a regulation to require monitoring and reporting of greenhouse gas emissions from petroleum and natural gas systems. This action adds this source category to the list of source categories already required to report greenhouse gas emissions. This action applies to sources with carbon dioxide equivalent emissions above certain threshold levels as described in this regulation.......

  5. Greenhouse gas emission associated with sugar production in southern Brazil

    PubMed Central

    2010-01-01

    Background Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern. Here we analyze some data characterizing various activities of two sugarcane mills during the harvest period of 2006-2007 and quantify the carbon footprint of sugar production. Results According to our calculations, 241 kg of carbon dioxide equivalent were released to the atmosphere per a ton of sugar produced (2406 kg of carbon dioxide equivalent per a hectare of the cropped area, and 26.5 kg of carbon dioxide equivalent per a ton of sugarcane processed). The major part of the total emission (44%) resulted from residues burning; about 20% resulted from the use of synthetic fertilizers, and about 18% from fossil fuel combustion. Conclusions The results of this study suggest that the most important reduction in greenhouse gas emissions from sugarcane areas could be achieved by switching to a green harvest system, that is, to harvesting without burning. PMID:20565736

  6. Greenhouse Gas Emissions from Arctic Freshwaters: Approaches for Scaling UP

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Cortés, A.; Cooke, M.; Sadro, S.; Kushner, P. J.

    2015-12-01

    Turbulence moderates emissions of greenhouse gases on a number of scales, and it, in turn, is moderated by processes which govern the stability of boundary layers. On the smallest scale, it mediates the fluxes of gases across the air-water interface; at intermediate scales, that is, the size of within lake eddies, it brings gases to the air-water interface; on a larger scale, eddies in the unstable atmospheric boundary layers transport gases away from water bodies and maintain concentration gradients and further, help sustain fluxes by inducing within lake turbulence. The winds and cooling which induce within-lake turbulence and over-lake boundary layers are moderated by weather patterns dependent on even larger scale physical processes. Using time series measurements of lake temperatures, surface meteorology, and profiles of temperature-gradient microstructure in Alaskan arctic lakes ranging from 0.1 to 150 ha in surface area, we quantify the dependency of turbulence in the water column and at the air-water interface on surface meteorology and lake size. We show the lake size dependent variability in the stability of atmospheric boundary layers. We illustrate the resulting lake-size and weather dependent variability in gas transfer coefficients and within lake mixing. Using cluster analysis, we identify dominant weather patterns in the Alaskan Arctic Region and link them to within lake mixing dynamics. We then illustrate the dependency of greenhouse gas emissions on variability in local weather, lake size, and weather patterns.

  7. Are greenhouse gas emissions from international shipping a type of marine pollution?

    PubMed

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution.

  8. Greenhouse gas emissions in the state of Morelos, Mexico: a first approximation for establishing mitigation strategies.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Sánchez-Salinas, Enrique; Castrejón-Godínez, María Luisa; Ortiz-Hernández, Ma Laura

    2013-11-01

    In this study, the authors report the first greenhouse gas emission inventory of Morelos, a state in central Mexico, in which the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have been identified using the Intergovernmental Panel on Climate Change (IPCC) methodology. Greenhouse gas (GHG) emissions were estimated as CO2 equivalents (CO2 eq) for the years 2005, 2007, and 2009, with 2005 being treated as the base year. The percentage contributions from each category to the CO2 eq emissions in the base year were as follows: 38% from energy, 30% from industrial processes, 23% from waste, 5% from agriculture, and 4% from land use/land use change and forestry (LULUCF). As observed in other state inventories in Mexico, road transportation is the main source of CO2 emissions, wastewater handling and solid waste disposal are the main sources of CH4 emissions, and agricultural soils are the source of the most significant N2O emissions. The information reported in this inventory identifies the main emission sources. Based on these results, the government can propose public policies specifically designed for the state of Morelos to establish GHG mitigation strategies in the near future.

  9. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation].

    PubMed

    Tian, Zhan; Niu, Yi-long; Sun, Lai-xiang; Li, Chang-sheng; Liu, Chun-jiang; Fan, Dong-li

    2015-03-01

    In contrast to a large body of literature assessing the impact of agriculture greenhouse gas (GHG) emissions on climate change, there is a lack of research examining the impact of climate change on agricultural GHG emissions. This study employed the DNDC v9.5, a state-of-art biogeochemical model, to simulate greenhouse gas emissions in China' s rice-growing fields during 1971-2010. The results showed that owing to temperature rising (on average 0.49 °C higher in the second 20 years than in the first 20 year) and precipitation increase (11 mm more in the second 20 years than in the first 20 years) during the rice growing season, CH4 and N2O emissions in paddy field increased by 0.25 kg C . hm-2 and 0.25 kg N . hm-2, respectively. The rising temperature accelerated CH4 emission and N2O emission increased with precipitation. These results indicated that climate change exerted impact on the mechanism of GHG emissions in paddy field.

  10. How Much Leakage Renders the Greenhouse Gas Footprint of Natural Gas Equivalent to Coal?

    NASA Astrophysics Data System (ADS)

    Sanchez, N., II; Mays, D. C.

    2015-12-01

    Under ideal circumstances, generating electricity from natural gas releases approximately half the carbon dioxide-equivalent emissions of coal. However, because the primary component of natural gas (i.e., methane) is a potent greenhouse gas, accounting for leakage is crucial when considering natural gas as a bridge fuel. This presentation answers the question: How much leakage renders the greenhouse gas (GHG) footprint of natural gas equivalent to coal? To answer this question, we present a simple model that assumes the GHG footprint for each fuel is the sum of emissions from (1) electricity generation and (2) natural gas leakage. Emissions resulting from electricity generation are taken from published life-cycle assessments (LCAs). Emissions from natural gas leakage are estimated assuming that natural gas is 80% methane, which is converted to carbon dioxide-equivalent emissions using the Intergovernmental Panel on Climate Change's (IPCC's) global warming potential (GWP). One complication in using the GWP is its dependence on time horizon, where shorter time horizons penalize methane emissions more, and longer time horizons less. Specifically, the IPCC considers time horizons of 20, 100 and 500 years for comparison between the differing greenhouse gases. To explicitly account for the effect of time horizon, the results presented here are shown on a straightforward plot of GHG footprint versus time horizon for natural gas leakage rates of 0, 1, 2, 4, and 8%. This plot shows that natural gas leakage of 2.0% or 4.8% eliminates half of natural gas's GHG footprint advantage over coal at 20- or 100-year time horizons, respectively. Leakage of 3.9% or 9.1% completely eliminates the GHG footprint advantage over coal at 20- and 100-year time horizons, respectively. Results indicate that leakage control is essential for the electricity generated from the combustion of natural gas to create a smaller GHG footprint than the electricity generated from the combustion of coal.

  11. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  12. 75 FR 18607 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...EPA is proposing a supplemental rule to require reporting of greenhouse gas (GHG) emissions from petroleum and natural gas systems. Specifically, the proposed supplemental rulemaking would require emissions reporting from the following industry segments: Onshore petroleum and natural gas production, offshore petroleum and natural gas production, natural gas processing, natural gas transmission......

  13. Greenhouse gas emissions from septic systems in New York State

    NASA Astrophysics Data System (ADS)

    Truhlar, A. M.; Rahm, B. G.; Brooks, R. A.; Nadeau, S. A.; Walter, M. T.

    2015-12-01

    Onsite septic systems are a practical way to treat wastewater in rural or less-densely populated areas. Septic systems utilize microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). At each of nine septic systems, we measured fluxes of CH4, CO2, and N2O from the soil over the leach field and sand filter, and from the roof outlet vent. These are the most likely locations for gas emissions during normal operation of the septic system. The majority of all septic system gas emissions were released from the roof vent. However, our comparisons of the gas fluxes from these locations suggest that biological processes in the soil, especially the soil over the leach field, can influence the type and quantity of gas that is released from the system. The total vent, sand filter, and leach field GHG emissions were 0.12, 0.045, and 0.046 tonne CO2e capita-1 year-1, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the US.

  14. Quantification of greenhouse gas emissions from sludge treatment wetlands.

    PubMed

    Uggetti, Enrica; García, Joan; Lind, Saara E; Martikainen, Pertti J; Ferrer, Ivet

    2012-04-15

    Constructed wetlands are nowadays successfully employed as an alternative technology for wastewater and sewage sludge treatment. In these systems organic matter and nutrients are transformed and removed by a variety of microbial reaction and gaseous compounds such as methane (CH(4)) and nitrous oxide (N(2)O) may be released to the atmosphere. The aim of this work is to introduce a method to determine greenhouse gas emissions from sludge treatment wetlands (STW) and use the method in a full-scale system. Sampling and analysing techniques used to determine greenhouse gas emissions from croplands and natural wetlands were successfully adapted to the quantification of CH(4) and N(2)O emissions from an STW. Gas emissions were measured using the static chamber technique in 9 points of the STW during 13 days. The spatial variation in the emission along the wetland did not follow some specific pattern found for the temporal variation in the fluxes. Emissions ranged from 10 to 5400 mg CH(4)/m(2)d and from 20 to 950 mgN(2)O/m(2)d, depending on the feeding events. The comparison between the CH(4) and N(2)O emissions of different sludge management options shows that STW have the lowest atmospheric impact in terms of CO(2) equivalent emissions (Global warming potential with time horizon of 100 years): 17 kg CO(2) eq/PE y for STW, 36 kg CO(2) eq/PE y for centrifuge and 162 kg CO(2) eq/PE y for untreated sludge transport, PE means Population Equivalent.

  15. Do Agricultural Soils of California have the Potential to Sequester Carbon and Mitigate Greenhouse Gases?

    NASA Astrophysics Data System (ADS)

    Suddick, E. C.; Scow, K. M.; Six, J. W.

    2008-12-01

    Agricultural ecosystems play a major role in the global carbon cycle and can be both sources of carbon emissions to the atmosphere and also carbon sinks which may be used to offset any future greenhouse gas (GHG) emissions. In California, climate change predictions indicate major impacts and substantial alterations of agricultural systems over the next decades. In 2006, California passed the California Global Warming Solutions Act of 2006 (AB 32) that requires reduction of the three major GHG's (CO2, N2O and CH4) to 1990 levels by 2020. We surveyed and synthesized available data from recent studies describing the potential to sequester carbon and reduce other GHG emissions in California agricultural soils. The studies evaluated various management practices in both annual row and perennial cropping systems, with other studies focusing upon biogeochemical model predictions for carbon sequestration and GHG mitigation calibrated towards California agriculture. Management practices considered included minimum or no tillage, cover cropping, organic residue (low and high inputs) and nitrogen fertilizer management. Though practices involving inputs of carbon, such as cover cropping and organic amendments, were often associated with increases in soil organic carbon (SOC) in the top soil layer (0-20 cm), results were not consistent across farming systems. Several studies indicated that conservation tillage, alone, increased above-ground biomass, especially when used with a cover crop. However, the reduced soil disturbance from conservation tillage merely resulted in a redistribution of the soil carbon rather than an overall accumulation, when compared with standard tillage and cover cropping practices together. Predictions from biogeochemical models indicated that increased inputs of manure and increased organic residues led to substantial carbon sequestration but did not consistently reduce non-CO2 related GHG emissions. The most effective way to reduce non-CO2 GHG

  16. Inventory of US greenhouse gas emissions and sinks: 1990-2004

    SciTech Connect

    2006-04-15

    The document provides information on greenhouse gas sources and sinks and estimates of emissions and removals for the United States for 1990-2000 as well as the methods used to calculate these estimates and the uncertainties associated with them. Emissions are given by gas and source category, the latter groups being energy, industrial processes, solvent use, agriculture, land-use change and forestry, and waste. Annexes provide additional information on methodologies for estimating emissions from various sources, global warming potentials, ozone depleting substance emissions, sulphur dioxide emissions and IPCC reference approach for estimating CO{sub 2} emissions from fossil fuel combustion. The report found that US emissions rose by 15.8% from 1990 to 2004 and spiked almost 2% in 2004. CO{sub 2} makes up the bulk of GHGs, and most is released by energy producers, followed by transportation and industrial sources. However, EPA calculates that the country's global warming potential decreased because the economy grew. 7 annexes.

  17. The dynamics of grazed woodlands in southwest Queensland, Australia and their effect on greenhouse gas emissions.

    PubMed

    Moore, J L; Howden, S M; McKeon, G M; Carter, J O; Scanlan, J C

    2001-09-01

    This study outlines the development of an approach to evaluate the sources, sinks, and magnitudes of greenhouse gas emissions from a grazed semiarid rangeland dominated by mulga (Acacia aneura) and how these emissions may be altered by changes in management. This paper describes the modification of an existing pasture production model (GRASP) to include a gas emission component and a dynamic tree growth and population model. An exploratory study was completed to investigate the likely impact of changes in burning practices and stock management on emissions. This study indicates that there is a fundamental conflict between maintaining agricultural productivity and reducing greenhouse gas emissions on a given unit of land. Greater agricultural productivity is allied with the system being an emissions source while production declines and the system becomes a net emissions sink as mulga density increases. Effective management for sheep production results in the system acting as a net source (approximately 60-200 kg CO2 equivalents/ha/year). The magnitude of the source depends on the management strategies used to maintain the productivity of the system and is largely determined by starting density and average density of the mulga over the simulation period. Prior to European settlement, it is believed that the mulga lands were burnt almost annually. Simulations indicate that such a management approach results in the system acting as a small net sink with an average net absorption of greenhouse gases of 14 kg CO2 equivalents/ha/year through minimal growth of mulga stands. In contrast, the suppression of fire and the introduction of grazing results in thickening of mulga stands and the system can act as a significant net sink absorbing an average of 1000 kg CO2 equivalents/ha/year. Although dense mulga will render the land largely useless for grazing, land in this region is relatively inexpensive and could possibly be developed as a cost-effective carbon offset for

  18. Emissions of greenhouse gases from agriculture, land-use change, and forestry in the Gambia.

    PubMed

    Jallow, B P

    1995-01-01

    The Gambia has successfully completed a national greenhouse gas emissions inventory based on the results of a study funded by the United Nations Environment Programme (UNEP)/Global Environment Facility (GEF) Country Case Study Program. The concepts of multisectoral, multidisciplinary, and interdisciplinary collaboration were most useful in the preparation of this inventory. New data were gathered during the study period, some through regional collaboration with institutions such as Environment and Development in the Third World (ENDA-TM) Energy Program and the Ecological Monitoring Center in Dakar, Senegal, and some through national surveys and the use of remote sensing techniques, as in the Bushfires Survey. Most of the data collected are used in this paper. The Intergovernmental Panel on Climate Change/Organisation for Economic Co-operation and Development/International Energy Agency (IPCC/OECD/IEA) methodology is used to calculate greenhouse gas emissions. Many of the default data in the IPCC/OECD/IEA methodology have also been used. Overall results indicate that in the biomass sectors (agriculture, forestry, and land-use change) carbon dioxide (CO2) is emitted most, with a total of 1.7 Tg. This is followed by methane (CH4), 22.3 Gg; carbon monoxide (CO), 18.7 Gg; nitrogen oxides (NOx), 0.3 Gg; and nitrous oxide (N2O), 0.014 Gg. The Global Warming Potential (GWP) was used as an index to describe the relative effects of the various gases reported here. Based on the emissions in The Gambia in 1993, it was found that CO2 will contribute 75%, CH4 about 24.5%, and N2O 0.2% of the warming expected in the 100-year period beginning in 1993. The results in this analysis are limited by the shortcomings of the IPCC/OECD/IEA methodology and scarce national data. Because the methodology was developed outside of the developing world, most of its emissions factors and coefficients were developed and tested in environments that are very different from The Gambia. This is likely

  19. Spatially-Explicit Estimates of Greenhouse Gas Emissions from Fire and Land-Use Change in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Spera, S. A.; Coe, M. T.; Costa, C., Jr.

    2014-12-01

    Understanding the multiple types of land-use changes that can occur within an ecosystem provides a comprehensive picture of the human's impact on natural systems. We use the Cerrado (savanna) of Brazil to examine the primary and secondary impacts of land-use change on greenhouse gas emissions. The primary land-use changes include fires for land-clearing, conversions to pasture and row-crop agriculture, and shifting management practices of agricultural lands. Secondary land-use changes include savanna degradation due to fires that escape from intended burn areas. These escape fires typically have a lower combustion completion coefficient than clearing fires, so it is important to distinguish them to correctly estimate the regional greenhouse gas budget. We have created a first-order spatio-temporal model of greenhouse gas emissions that can be easily modified for other savanna regions using globally available data products as inputs. Our data inputs are derived from publically available remote sensing imagery. Initial biomass is estimated by Baccini et al. 2012, which is derived from LiDAR and MODIS imagery. All other input data sets give annual estimates. Clearing of the savanna is documented by LAPIG of Universidade Federal de Goias using MODIS (MOD13Q1), LANDSAT and CBERS images. MODIS burned area products delineate annual fires; in combination with the savanna clearing database we determine primary and escape fires. Pastures and row-crop agriculture are documented by LAPIG and Spera et al. 2014, respectively. The row-crop agriculture dataset enables us to estimate greenhouse gas emissions associated with specific crops (e.g., soy or maize) and management (e.g., fertilizer use). Recent contributions to the literature have provided many in situ measurements from the land-use changes of interest needed to estimate a regional greenhouse gas budget, including combustion coefficients of savanna sub-types, carbon emission soil stocks, nitrogen emissions from fertilizer

  20. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  1. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  2. Adapting a weather forecast model for greenhouse gas simulation

    NASA Astrophysics Data System (ADS)

    Polavarapu, S. M.; Neish, M.; Tanguay, M.; Girard, C.; de Grandpré, J.; Gravel, S.; Semeniuk, K.; Chan, D.

    2015-12-01

    The ability to simulate greenhouse gases on the global domain is useful for providing boundary conditions for regional flux inversions, as well as for providing reference data for bias correction of satellite measurements. Given the existence of operational weather and environmental prediction models and assimilation systems at Environment Canada, it makes sense to use these tools for greenhouse gas simulations. In this work, we describe the adaptations needed to reasonably simulate CO2 with a weather forecast model. The main challenges were the implementation of a mass conserving advection scheme, and the careful implementation of a mixing ratio defined with respect to dry air. The transport of tracers through convection was also added, and the vertical mixing through the boundary layer was slightly modified. With all these changes, the model conserves CO2 mass well on the annual time scale, and the high resolution (0.9 degree grid spacing) permits a good description of synoptic scale transport. The use of a coupled meteorological/tracer transport model also permits an assessment of approximations needed in offline transport model approaches, such as the neglect of water vapour mass when computing a tracer mixing ratio with respect to dry air.

  3. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  4. Greenhouse gas emissions in Canada and Japan: sector-specific estimates and managerial and economic implications.

    PubMed

    Hayami, Hitoshi; Nakamura, Masao

    2007-10-01

    Many firms generate large amounts of carbon dioxide and other greenhouse gases when they burn fossil fuels in their production processes. In addition, production of raw materials and other inputs the firms procure for their operations also generates greenhouse gases indirectly. These direct and indirect greenhouse gas emissions occur in many sectors of our economies. In this paper, we first present sector-specific estimates for such greenhouse gas emissions. We then show that estimates for such sector-specific greenhouse gas emissions are often required for various types of corporate as well as public policy analyses in both domestic and international contexts. Measuring greenhouse gas emissions resulting from firms' multi-stage production processes in a multi-sector context is relevant for policies related to the Kyoto protocol, an international agreement to limit global greenhouse gas emissions. For example, since the protocol allows firms to engage in trading and offsetting of their greenhouse gas emissions across national borders, provided that emissions are correctly measured, the firms can take advantage of such trading schemes by placing their energy-intensive production facilities globally and strategically. We present several case studies which illustrate the importance of this and other aspects of greenhouse gas emissions in firms' environmental management. We also argue that our modeling and estimation methods based on input-output analyses are suitable for the types of research goals we have in this paper. Our methods are applied to data for Canada and Japan in a variety of environmental management circumstances.

  5. Greenhouse Gas Emissions within Seasonally Flooded Tropical River Deltas

    NASA Astrophysics Data System (ADS)

    Salvador, A. K.; Schaefer, M.; Roberts, K. A.; Fendorf, S. E.; Benner, S. G.

    2015-12-01

    Soils contain the largest terrestrial carbon pool on Earth, and approximately one-third of soil carbon is stored in the tropics. Gas exchange between soil and the atmosphere occurs largely as a result of microbial degradation (mineralization) of organic carbon. The rate of soil organic matter (SOM) mineralization is determined by a combination of climatic factors and soil ecosystem properties, which dictate the dominant metabolic pathway(s) within soil at a given time; major changes in metabolic rate are particularly pronounced between aerobic and anaerobic mineralization. Here we assessed the impact of soil moisture, a major factor determining soil anaerobiosis, on greenhouse gas fluxes in a tropical, seasonally flooded wetland in the Mekong Delta. We monitored CO2, CH4, and N2O gas fluxes, porewater chemistry, and soil moisture content in a seasonal wetland. Additionally, we collected wetland soil cores (10 cm diameter) and manipulated them in the laboratory, allowing us to control soil moisture and drying rates, and to simulate multiple periods of wetting and drying. During drying, CH4 fluxes within the wetland initially increase to a maximum before decreasing as soil moisture decreases and oxygen diffusion into the soil increases. Maximum CH4 fluxes vary with moisture content, but the wettest sites produced fluxes >1000 mg C m-2 d-1 for short periods of time. As drying continues, CH4 fluxes decrease to nearly zero, and N2O fluxes begin to increase to ~3 mg N m-2 d-1 but do not appear to have reached a maximum before sampling ceased. Gas flux from soil core incubations (n=5) exhibit trends and values similar to field measurements. CH4 fluxes initially increase and reach >1000 mg C m-2 d-1 in cores while N2O fluxes reach up to 10 mg N m-2 d-1 and decrease with continued drying. CO2 fluxes in both field and laboratory are sustained until near desiccated conditions. Seasonal wetlands are characteristic of large tropical deltas. Our findings provide a means to

  6. Beyond Hammers and Nails: Mitigating and Verifying Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin Robert

    2013-05-01

    One of the biggest challenges to future international agreements on climate change is an independent, science-driven method of verifying reductions in greenhouse gas emissions (GHG) [Niederberger and Kimble, 2011]. The scientific community has thus far emphasized atmospheric measurements to assess changes in emissions. An alternative is direct measurement or estimation of fluxes at the source. Given the many challenges facing the approach that uses "top-down" atmospheric measurements and recent advances in "bottom-up" estimation methods, I challenge the current doctrine, which has the atmospheric measurement approach "validating" bottom-up, "good-faith" emissions estimation [Balter, 2012] or which holds that the use of bottom-up estimation is like "dieting without weighing oneself" [Nisbet and Weiss, 2010].

  7. Interactions between greenhouse gas policies and acid rain control strategies

    SciTech Connect

    Klein, D.E.; Kane, R.L.; Mansueti, L.

    1997-12-31

    Conventional wisdom and much of the public policy debate have usually drawn a clean delineation between acid rain issues and global warming concerns. This traditional approach of evaluating one policy at a time is too simplistic to serve as a framework for electric utilities making major capital investment and fuel procurement decisions to comply with various environmental requirements. Potential Climate change regulation can affect acid rain compliance decisions, and acid rain compliance decisions will affect future GHG emissions. This paper explores two categories of linkages between these different environmental issues. First, the assumptions one makes regarding future climate change policies can have a profound impact on the economic attractiveness of various acid rain compliance strategies. Second, decisions regarding acid rain compliance strategy can have greenhouse gas implications that might prove more or less difficult to address in future climate change legislation.

  8. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  9. A design for a relational database for the calculation and storage of greenhouse gas emissions.

    PubMed

    Newcomb, T M

    2001-10-01

    The Intergovernmental Panel on Climate Change (IPCC) has published guidelines for the development of national greenhouse gas-emissions inventories and recommendations for collecting data necessary to calculate greenhouse gas emissions. Many regional and local jurisdictions will be performing inventories of greenhouse gas emissions and estimating the benefits of mitigation strategies to reduce emissions. This article advocates the development of relational databases to calculate and store emissions estimates based on IPCC guidelines and quantities of precursors of greenhouse gases. Specific examples of tables and queries are used to illustrate calculation methods and formulae, the choice of database keys, and the choice of methods for joining tables to construct queries.

  10. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller.

  11. Greenhouse gas emissions from forestry operations: a life cycle assessment.

    PubMed

    Sonne, Edie

    2006-01-01

    Most forest carbon assessments focus only on biomass carbon and assume that greenhouse gas (GHG) emissions from forestry activities are minimal. This study took an in-depth look at the direct and indirect emissions from Pacific Northwest (PNW) Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco] forestry activities to support or deny this claim. Greenhouse gas budgets for 408 "management regimes" were calculated using Life Cycle Assessment (LCA) methodology. These management regimes were comprised of different combinations of three types of seedlings (P + 1, 1 + 1, and large plug), two types of site preparation (pile and burn, and chemical), 17 combinations of management intensity including fertilization, herbicide treatment, pre-commercial thinning (PCT), commercial thinning (CT), and nothing, and four different rotation ages (30, 40, 50, and 60 yr). Normalized to 50 yr, average direct GHG emissions were 8.6 megagrams (Mg) carbon dioxide equivalents (CO2e) ha(-1), which accounted for 84% of total GHG emissions from the average of 408 management regimes. Harvesting (PCT, CT, and clear cutting) contributed the most to total GHG emissions (5.9 Mg CO2e per 700 m3 harvested timber), followed by pile and burn site preparation (4.0 Mg CO2e ha(-1) or 32% of total GHG emissions) and then fertilization (1.9 Mg CO2e ha(-1) or 15% of total GHG emissions). Seedling production, seedling transportation, chemical site preparation, and herbicide treatment each contributed less than 1% of total GHG emissions when assessed per hectare of planted timberland. Total emissions per 100 m3 averaged 1.6 Mg CO2e ha(-1) over all 408 management regimes. An uncertainty analysis using Monte Carlo simulations revealed that there are significant differences between most alternative management regimes.

  12. Greenhouse gas emissions from heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Rideout, Greg; Rosenblatt, Deborah; Hendren, Jill

    This paper summarizes greenhouse gas (GHG) emissions measurements obtained during several recent studies conducted by Environment Canada, Emissions Research and Measurement Division (ERMD). A variety of heavy-duty vehicles and engines operating on a range of different fuels including diesel, biodiesel, compressed natural gas (CNG), hythane (20% hydrogen, 80% CNG), and liquefied natural gas (LNG), and with different advanced aftertreatment technologies were studied by chassis dynamometer testing, engine dynamometer testing or on-road testing. Distance-based emission rates of CO 2, CH 4, and N 2O are reported. Fuel consumption calculated by carbon balance from measured emissions is also reported. The measurement results show, for heavy-duty diesel vehicles without aftertreatment, that while CO 2 emissions dominate, CH 4 emissions account for between 0% and 0.11% and N 2O emissions account for between 0.16% and 0.27% of the CO 2-equivalent GHG emissions. Both of the aftertreatment technologies (diesel oxidation catalyst and active regeneration diesel particle filter) studied increased N 2O emissions compared to engine out emissions while CH 4 emissions remain essentially unchanged. No effect on tailpipe GHG emissions was found with the use of up to 20% biodiesel when the engine was equipped with an oxidation catalyst. Biodiesel use did show some reductions in tailpipe GHG emissions as compared to ULSD without aftertreatment and with the use of a diesel particle filter. Natural gas and hythane also offer decreased GHG emissions (10-20%) at the tailpipe when compared with diesel. Emission factors (g L -1 fuel) for CH 4 and N 2O are suggested for heavy-duty vehicles fueled with diesel-based fuels and natural gas. These emission factors are substantially lower than those recommended for use by IPCC methodologies for developing national inventories.

  13. Overview of Production Sector in the Greenhouse Gas Inventory- September 2012 Workshop

    EPA Pesticide Factsheets

    View a presentation on the production sector in the GHG inventory, presented at the Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas (GHG) Emissions and Sinks on Thursday, September 13, 2012.

  14. Coupling above and below ground gas measurements to understand greenhouse gas production in the soil profile

    NASA Astrophysics Data System (ADS)

    Nickerson, Nick; Creelman, Chance

    2016-04-01

    Natural and anthropogenic changes in climate have the potential to significantly affect the Earth's natural greenhouse gas balances. To understand how these climatic changes will manifest in a complex biological, chemical and physical system, a process-based understanding of the production and consumption of greenhouse gases in soils is critical. Commonly, both chamber methods and gradient-based approaches are used to estimate greenhouse gas flux from the soil to the atmosphere. Each approach offers benefits, but not surprisingly, comes with a list of drawbacks. Chambers are easily deployed on the surface without significant disturbance to the soil, and can be easily spatially replicated. However the high costs of automated chamber systems and the inability to partition fluxes by depth are potential downfalls. The gradient method requires a good deal of disturbance for installation, however it also offers users spatiotemporally resolved flux estimates at a reasonable price point. Researchers widely recognize that the main drawback of the gradient approach is the requirement to estimate diffusivity using empirical models based on studies of specific soils or soil types. These diffusivity estimates can often be off by several orders of magnitude, yielding poor flux estimates. Employing chamber and gradient methods in unison allows for in-situ estimation of the diffusion coefficient, and therefore improves gradient-based estimates of flux. A dual-method approach yields more robust information on the temporal dynamics and depth distribution of greenhouse gas production and consumption in the soil profile. Here we present a mathematical optimization framework that allows these complimentary measurement techniques to yield more robust information than a single technique alone. We then focus on how it can be used to improve the process-based understanding of greenhouse gas production in the soil profile.

  15. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  16. INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS 1990-2011

    EPA Science Inventory

    The Environmental Protection Agency submits the U.S. greenhouse gas inventory as an annual reporting requirement under UNFCCC, which the United States and other developed countries signed June 1992 at the Rio Earth Summit. The EPA has submitted the greenhouse gas inventory to the...

  17. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Innovative technology credits and adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  18. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family...

  19. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family...

  20. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Innovative technology credits and adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  1. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family...

  2. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Innovative technology credits and adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  3. 76 FR 30781 - Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ...This action finalizes the confidentiality determinations for certain data elements required to be reported under the Mandatory Greenhouse Gas Reporting Rule. This action also finalizes amendments to the special rules governing certain information obtained under the Clean Air Act, which authorizes EPA to release or withhold as confidential reported data under the Mandatory Greenhouse Gas......

  4. 78 FR 51724 - California State Motor Vehicle Pollution Control Standards; Tractor-Trailer Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Tractor-Trailer Greenhouse Gas...: The California Air Resources Board (CARB) has notified EPA that it has adopted a tractor-trailer greenhouse gas emission regulation applicable to new and in-use 53-foot and longer box-type trailers and...

  5. 77 FR 22312 - Access by EPA Contractors to Confidential Business Information Related to the Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... AGENCY Access by EPA Contractors to Confidential Business Information Related to the Greenhouse Gas Reporting Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA's Office of... to EPA under the Greenhouse Gas Reporting ] Program that may be designated or claimed as...

  6. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council On... Accounting and Reporting''. SUMMARY: On October 5, 2009, President Obama signed Executive Order (EO) 13514... greenhouse gas (GHG) emissions a priority for Federal agencies. Among other provisions, EO 13514...

  7. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... QUALITY Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council on... other provisions, E.O. 13514 requires agencies to measure, report, and reduce their GHG emissions. It... agency operations. This Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting,'' is...

  8. Estimation of net greenhouse gas balance using crop- and soil-based approaches: two case studies.

    PubMed

    Huang, Jianxiong; Chen, Yuanquan; Sui, Peng; Gao, Wansheng

    2013-07-01

    The net greenhouse gas balance (NGHGB), estimated by combining direct and indirect greenhouse gas (GHG) emissions, can reveal whether an agricultural system is a sink or source of GHGs. Currently, two types of methods, referred to here as crop-based and soil-based approaches, are widely used to estimate the NGHGB of agricultural systems on annual and seasonal crop timescales. However, the two approaches may produce contradictory results, and few studies have tested which approach is more reliable. In this study, we examined the two approaches using experimental data from an intercropping trial with straw removal and a tillage trial with straw return. The results of the two approaches provided different views of the two trials. In the intercropping trial, NGHGB estimated by the crop-based approach indicated that monocultured maize (M) was a source of GHGs (-1315 kg CO₂(-eq)ha(-1)), whereas maize-soybean intercropping (MS) was a sink (107 kg CO₂(-eq)ha(-1)). When estimated by the soil-based approach, both cropping systems were sources (-3410 for M and -2638 kg CO₂(-eq)ha(-1) for MS). In the tillage trial, mouldboard ploughing (MP) and rotary tillage (RT) mitigated GHG emissions by 22,451 and 21,500 kg CO₂(-eq)ha(-1), respectively, as estimated by the crop-based approach. However, by the soil-based approach, both tillage methods were sources of GHGs: -3533 for MP and -2241 kg CO₂(-eq)ha(-1) for RT. The crop-based approach calculates a GHG sink on the basis of the returned crop biomass (and other organic matter input) and estimates considerably more GHG mitigation potential than that calculated from the variations in soil organic carbon storage by the soil-based approach. These results indicate that the crop-based approach estimates higher GHG mitigation benefits compared to the soil-based approach and may overestimate the potential of GHG mitigation in agricultural systems.

  9. Effort Optimization in Minimizing Food Related Greenhouse Gas Emissions, a look at "Organic" and "Local"

    NASA Astrophysics Data System (ADS)

    Bowen, E.; Martin, P. A.; Eshel, G.

    2008-12-01

    The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a

  10. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  11. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods.

  12. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.

    PubMed

    Mosier, Arvin R; Halvorson, Ardell D; Reule, Curtis A; Liu, Xuejun J

    2006-01-01

    The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha(-1). Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer.

  13. Greenhouse gas emissions from on-site wastewater treatment systems

    NASA Astrophysics Data System (ADS)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  14. Greenhouse gas mitigation options in the forestry sector of The Gambia: Analysis based on COMAP model

    SciTech Connect

    Jallow, B.P.

    1996-12-31

    Results of the 1993 Greenhouse Gas Emissions Inventory of The Gambia showed net CO{sub 2} emissions of over (1.66 x 10{sup 6} tons) and 1% was due to uptake by plantations (0.01 x 10{sup 6} tons). This is a clear indication that there is need to identify changes in the land-use policy, law and tenure that discourages forest clearing at the same time significantly influencing the sustainable distribution of land among forestry, rangeland and livestock, and agriculture. About 11% of the total area of The Gambia is either fallow or barren flats that once supported vegetation and hence is still capable of supporting vegetation. The US Country Study Programme has provided the Government of The Gambia through the National Climate Committee funds to conduct Assessment of Mitigation Options to Reduce Greenhouse Gas Emissions. The Forestry Sector is one area for which assessment is being conducted. The assessment is expected to end in September 1996. The Comprehensive Mitigation Analysis Process (COMAP) is one of the Models supplied to the National Climate Committee by the Lawrence Berkeley Laboratory, on behalf of the US Country Study Programme, and is being used to conduct the analysis in The Gambia.

  15. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in

  16. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2012-10-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to

  17. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  18. Development of Greenhouse Gas Mitigation Options for Alberta's Energy Sector

    NASA Astrophysics Data System (ADS)

    Subramanyam, Veena

    Alberta is the third largest economy in Canada and is expected to grow significantly in the coming decade. The energy sector plays a major role in Alberta's economy. The objective of this research is to develop various greenhouse gas (GHG) mitigations scenarios in the energy demand and supply sectors for the Province of Alberta. This is done through an energy-environment planning and forecasting tool called Long Range Energy Alternative Planning system model (LEAP). By using LEAP, a sankey diagram for energy and emission flows for the Province of Alberta has been developed. A reference case also called as business-as-usual scenario was developed for a study period of 25 years (2005-2030). The GHG mitigation scenarios encompassed various demand and supply side scenarios. In the energy conversion sector, mitigation scenarios for renewable power generation and inclusion of supercritical, ultra-supercritical and integrated gasification combined cycle (IGCC) plants were investigated. In the oil and gas sector, GHG mitigation scenarios with carbon capture and sequestration (CCS) option were considered. In Alberta's residential and commercial sector 4-6 MT of CO2 equivalents per year of GHG mitigation could be achieved with efficiency improvement. In the industrial sector up to 40 MT of CO2 equivalents per year of GHG reduction could be achieved with efficiency improvement. In the energy conversion sector large GHG mitigation potential lies in the oil and gas sector and also in power plants with carbon capture and storage (CCS) option. The total GHG mitigation possible in the supply side option is between 20--70 MT CO2 equivalents per year.

  19. Anthropogenic greenhouse gas contribution to UK autumn flood risk

    NASA Astrophysics Data System (ADS)

    Pall, Pardeep; Aina, Tolu; Stone, Dáithí; Stott, Peter; Nozawa, Toru; Hilberts, Arno; Lohmann, Dag; Allen, Myles

    2010-05-01

    Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing[1]. Yet climate models typically used for studying the attribution problem do not resolve weather at scales causing damage[2]. Here we present the first multi-step study that attributes increasing risk of a damaging regional weather-related event to global anthropogenic greenhouse gas emissions. The event was the UK flooding of October and November 2000, occurring during the wettest autumn in England & Wales since records began in 1766[3] and inundating several river catchments[4]. Nearly 10,000 properties were flooded and transport services and power supplies severely disrupted, with insured losses estimated at £1.3bn[5,6]. Though the floods were deemed a ‘wake up call' to the impacts of climate change[7], anthropogenic drivers cannot be blamed for this individual event: but they could be blamed for changing its risk[8,9]. Indeed, typically quoted thermodynamic arguments do suggest increased probability of precipitation extremes under anthropogenic warming[10]. But these arguments are too simple[11,12,13] to fully account for the complex weather[4,14] associated with the flooding. Instead we use a Probabilistic Event Attribution framework, to rigorously estimate the contribution of anthropogenic greenhouse gas emissions to England & Wales Autumn 2000 flood risk. This involves comparing an unprecedented number of daily river runoff realisations for the region, under Autumn 2000 scenarios both with and without the emissions. These realisations are produced using publicly volunteered distributed computing power to generate several thousand seasonal forecast resolution climate model simulations[15,16] that are then fed into a precipitation-runoff model[17,18]. Autumn 2000 flooding is characterised by realisations exceeding the highest daily river runoff for that period, derived from the observational-based ERA-40 re-anaylsis[19]. We find that our

  20. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  1. Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil: an undisturbed soil column study.

    PubMed

    Muñoz-Leoz, Borja; Antigüedad, Iñaki; Garbisu, Carlos; Ruiz-Romera, Estilita

    2011-01-15

    Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO(2) and N(2)O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO₃⁻L⁻¹ solution (rate: 90 mL day⁻¹) for 125 days at two different temperatures (10 and 20°C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO₃⁻concentration, NH(4)(+) concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO₂ and N₂O) were determined in the undisturbed soil columns. The A horizon at 20°C showed the highest rates of NO₃⁻ removal (1.56 mg N-NO₃⁻kg⁻¹ DW soil day⁻¹) and CO₂ and N₂O production (5.89 mg CO₂ kg⁻¹ DW soil day⁻¹ and 55.71 μg N-N₂O kg⁻¹ DW soil day⁻¹). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO₃⁻ha⁻¹ year⁻¹, and potential greenhouse gas emissions of 5620 kg CO₂ ha⁻¹ year⁻¹ and 240 kg N-N₂O ha⁻¹ year⁻¹.

  2. Role of organic amendment application on greenhouse gas emission from soil.

    PubMed

    Thangarajan, Ramya; Bolan, Nanthi S; Tian, Guanglong; Naidu, Ravi; Kunhikrishnan, Anitha

    2013-11-01

    Globally, substantial quantities of organic amendments (OAs) such as plant residues (3.8×10(9) Mg/yr), biosolids (10×10(7) Mg/yr), and animal manures (7×10(9) Mg/yr) are produced. Recycling these OAs in agriculture possesses several advantages such as improving plant growth, yield, soil carbon content, and microbial biomass and activity. Nevertheless, OA applications hold some disadvantages such as nutrient eutrophication and greenhouse gas (GHG) emission. Agriculture sector plays a vital role in GHG emission (carbon dioxide- CO2, methane- CH4, and nitrous oxide- N2O). Though CH4 and N2O are emitted in less quantity than CO2, they are 21 and 310 times more powerful in global warming potential, respectively. Although there have been reviews on the role of mineral fertilizer application on GHG emission, there has been no comprehensive review on the effect of OA application on GHG emission in agricultural soils. The review starts with the quantification of various OAs used in agriculture that include manures, biosolids, and crop residues along with their role in improving soil health. Then, it discusses four major OA induced-GHG emission processes (i.e., priming effect, methanogenesis, nitrification, and denitrification) by highlighting the impact of OA application on GHG emission from soil. For example, globally 10×10(7) Mg biosolids are produced annually which can result in the potential emission of 530 Gg of CH4 and 60 Gg of N2O. The article then aims to highlight the soil, climatic, and OA factors affecting OA induced-GHG emission and the management practices to mitigate the emission. This review emphasizes the future research needs in relation to nitrogen and carbon dynamics in soil to broaden the use of OAs in agriculture to maintain soil health with minimum impact on GHG emission from agriculture.

  3. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  4. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  5. Energy, greenhouse gas, and cost reductions for municipal recycling systems.

    PubMed

    Chester, Mikhail; Martin, Elliot; Sathaye, Nakul

    2008-03-15

    Curbside recycling programs can be more cost-effective than landfilling and lead to environmental benefits from the recovery of materials. Significant reductions in energy and emissions are derived from the decrease of energy-intensive production with virgin materials. In many cities, competing priorities can lead to limited consideration given to system optimal collection and processing strategies that can drive down costs and increase revenue while simultaneously reducing system energy consumption and greenhouse gas (GHG) emissions. We evaluate three alterations to a hypothetical California city's recycling network to discern the conditions under which the changes.constitute system improvements to cost, energy, and emissions. The system initially operates with a collection zoning scheme that does not mitigate the impact of seasonal variations in consumer tonnage. In addition, two collection organizations operate redundantly, collecting recyclables from different customer types on the same street network. Finally, the system is dual stream, meaning recyclables are separated at the curbside. In some scenarios, this practice can limit the consumer participation rate leading to lower collection quantities. First, we evaluate a "business as usual" (BAU) scenario and find that the system operates at a $1.7 M/yr loss but still avoids a net 18.7 GJ and 1700 kg of greenhouse gas equivalent (GGE) per ton of material recycled. Second, we apply an alternative zoning scheme for collection that creates a uniform daily pickup demand throughout the year reducing costs by $0.2 M/yr, energy by 30 MJ/ton, and GHG emissions by 2 kg GGE/ton. Next, the two collection organizations are consolidated into a single entity further reducing vehicle fleet size and weekly vehicle miles traveled resulting in savings from BAU of $0.3 M/yr, 100 MJ/ton, and 8 kg GGE/ton. Lastly, we evaluate a switch to a single-stream system (where recyclables are commingled). We showthat single-stream recycling

  6. Greenhouse Gas Exchange and Biogeochemistry of Fertilized Canadian Plantation Forests

    NASA Astrophysics Data System (ADS)

    Basiliko, N.; Grayston, S. J.; Roy, R.; Mohn, W. W.; Yolova, V.; Prescott, C.

    2005-12-01

    Canada's ratification of the Kyoto Protocol in 2002 has raised questions of the role of ecosystem management as a tool to temporarily reduce the net greenhouse gas burden of the forestry industry and potentially generate emission offset credits. We examined growing season methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes, soil nutrient chemistry, and microbial biomass and CH4-oxidizing bacterial communities in 20-year-old sub-boreal lodgepole pine and maritime hemlock plantations under control conditions and simulated operational fertilization with N (200kg urea-N per ha, applied twice) and N, P, K, and micronutrients. CH4 uptake was significantly greater in the lodgepole pine site than in the hemlock site (152-221 and 57-81 micrograms CH4 consumed per square meter per hour), and there were no significant differences among treatments at either site. Among sites, treatments, and sampling times, CH4 uptake correlated positively with NH4 concentrations and negatively with extractable organic N:P quotients, indicating that this process may potentially be limited by nutrient availability to the CH4-oxidizing bacteria. N2O efflux was measured sporadically at a few flux collars, but was not significantly different from zero at any site, treatment, or time. Soil respiration (CO2 efflux) rates were faster in the hemlock than lodgepole pine site (243-409 and 100-266 milligrams CO2 per square meter per hour), and significant treatment differences were observed at individual times, though with fertilized plots exhibiting both faster and slower rates than controls. Soil respiration correlated significantly with microbial biomass C and N and NO3. Within each site, soil respiration, but not CH4 uptake, was positively correlated with soil temperature. New experiments examining the short-term effects of fertilization on greenhouse gas exchanges are underway, and both short and long-term effects will be evaluated in relation to changes in C storage in plant biomass

  7. Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete River Estuary (SW Spain).

    PubMed

    Burgos, M; Sierra, A; Ortega, T; Forja, J M

    2015-01-15

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Dissolved concentrations of CH4 and N2O have been measured seasonally during 2013 in the Guadalete River Estuary, which flows into the Cadiz Bay (southwestern Spanish coast). It has been intensely contaminated since 1970. Currently it receives wastewater effluents from cities and direct discharges from nearby agriculture crop. Eight sampling stations have been established along 18 km of the estuary. CH4 and N2O were measured using a gas chromatograph connected to an equilibration system. Additional parameters such as organic matter, dissolved oxygen, nutrients and chlorophyll were determinate as well, in order to understand the relationship between physicochemical and biological processes. Gas concentrations increased from the River mouth toward the inner part, closer to the wastewater treatment plant discharge. Values varied widely within 21.8 and 3483.4 nM for CH4 and between 9.7 and 147.6 nM for N2O. Greenhouse gas seasonal variations were large influenced by the precipitation regime, masking the temperature influence. The Guadatete Estuary acted as a greenhouse gas source along the year, with mean fluxes of 495.7 μmol m(-2)d(-1) and 92.8 μmol m(-2)d(-1) for CH4 and N2O, respectively.

  8. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity

    PubMed Central

    Lubbers, Ingrid M.; Jan van Groenigen, Kees; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-01-01

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488

  9. Bridging the data gap: engaging developing country farmers in greenhouse gas accounting

    NASA Astrophysics Data System (ADS)

    Paustian, Keith

    2013-06-01

    For many developing countries, the land use sector, particularly agriculture and forestry, represents a large proportion of their greenhouse gas (GHG) emissions, making this sector a priority for GHG mitigation activities. Previous global surveys (e.g., IPCC 2000) as well as the most recent IPCC assessment report clearly indicate that the greatest technical potential for carbon sequestration and reductions of non-CO2 GHG emissions from the land use sector is in developing countries. Estimates that consider economic feasibility suggest that agriculture and forestry together provide among the greatest opportunities for short-term and low-cost mitigation measures across all sectors of the global economy1 (IPCC 2007). In addition, it is widely recognized that the ecosystem changes entailed by most mitigation practices, i.e., building soil organic matter, reducing losses and tightening nutrient cycles, more efficient production systems and preserving native vegetation, are well aligned with goals of increasing food security and rural development as well as buffering land use systems against climate change (Lal 2004). Hence, there is growing interest in jump-starting the capacity for broad-based engagement in agriculturally-based GHG mitigation projects in developing countries. Against this favorable background, there are a number of significant challenges—in addition to the fundamental need for comprehensive mandatory reduction policies—to accelerating the involvement of agriculture in GHG mitigation. As detailed by articles in this special issue, quantifying emissions and emission reductions/sequestration of agricultural sources of CO2,N2O and CH4 is difficult. Emissions and C sequestration are distributed across the landscape, with high spatial and temporal variability and with multiple and interacting climate, soil and management factors that affect rates. In most cases, this makes instrument-based measurement of fluxes and C stock changes in agricultural

  10. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  11. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.

  12. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-05

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  13. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE)

    NASA Astrophysics Data System (ADS)

    Dobler, Jeremy; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Tim; Botos, Chris

    2016-06-01

    Exelis has recently developed a novel laser-based instrument to aid in the autonomous real-time monitoring and mapping of CO2 concentration over a two-dimensional area. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) instrument uses two transceivers and a series of retroreflectors to continuously measure the differential transmission over a number of overlapping lines of sight or "chords", forming a plane. By inverting the differential transmission measurements along with locally measured temperature (T), pressure (P) and relative humidity (RH) the average concentration of CO2 along each chord can be determined and, based on the overlap between chords, a 2D map of CO2 concentration over the measurement plane can be estimated. The GreenLITE system was deployed to the Zero Emissions Research and Technology (ZERT) center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions, while utilizing a controlled release of CO2 into a segmented underground pipe [1]. The system demonstrated the ability to identify persistent CO2 sources at the test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, instrument design, and results from the deployment to the ZERT site.

  14. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  15. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  16. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  17. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  18. Greenhouse gas emissions from home composting in practice.

    PubMed

    Ermolaev, Evgheni; Sundberg, Cecilia; Pell, Mikael; Jönsson, Håkan

    2014-01-01

    In Sweden, 16% of all biologically treated food waste is home composted. Emissions of the greenhouse gases CH4 and N2O and emissions of NH3 from home composts were measured and factors affecting these emissions were examined. Gas and substrate in the compost bins were sampled and the composting conditions assessed 13 times during a 1-year period in 18 home composts managed by the home owners. The influence of process parameters and management factors was evaluated by regression analysis. The mean CH4 and N2O concentration was 28.1 and 5.46 ppm (v/v), respectively, above the ambient level and the CH4:CO2 and N2O:CO2 ratio was 0.38% and 0.15%, respectively (median values 0.04% and 0.07%, respectively). The home composts emitted less CH4 than large-scale composts, but similar amounts of N2O. Overall NH3 concentrations were low. Increasing the temperature, moisture content, mixing frequency and amount of added waste all increased CH4 emissions.

  19. Drivers of the growth in global greenhouse gas emissions.

    PubMed

    Arto, Iñaki; Dietzenbacher, Erik

    2014-05-20

    Greenhouse gas emissions increased by 8.9 Gigatons CO2 equivalent (Gt) in the period 1995-2008. A phenomenon that has received due attention is the upsurge of emission transfers via international trade. A question that has remained unanswered is whether trade changes have affected global emissions. For each of five factors (one of which is trade changes) in 40 countries we quantify its contribution to the growth in global emissions. We find that the changes in the levels of consumption per capita have led to an enormous growth in emissions (+14.0 Gt). This effect was partly offset by the changes in technology (-8.4 Gt). Smaller effects are found for population growth (+4.2 Gt) and changes in the composition of the consumption (-1.5 Gt). Changes in the trade structure had a very moderate effect on global emissions (+0.6 Gt). Looking at the geographical distribution, changes in the emerging economies (Brazil, Russia, India, Indonesia and China) have caused 44% of emission growth whereas the increase in their national emissions accounted for 59% of emission growth. This means that 15% (1.4 Gt) of all extra GHG emissions between 1995 and 2008 have been emitted in emerging countries but were caused by changes in other countries.

  20. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol.

  1. Reducing greenhouse gas emissions for climate stabilization: framing regional options

    SciTech Connect

    Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

  2. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  3. Income-Based Greenhouse Gas Emissions of Nations.

    PubMed

    Liang, Sai; Qu, Shen; Zhu, Zeqi; Guan, Dabo; Xu, Ming

    2017-01-03

    Accounting for greenhouse gas (GHG) emissions of nations is essential to understanding their importance to global climate change and help inform the policymaking on global GHG mitigation. Previous studies have made efforts to evaluate direct GHG emissions of nations (a.k.a. production-based accounting method) and GHG emissions caused by the final consumption of nations (a.k.a. consumption-based accounting method), but overlooked downstream GHG emissions enabled by primary inputs of individual nations and sectors (a.k.a. income-based accounting method). Here we show that the income-based accounting method reveals new GHG emission profiles for nations and sectors. The rapid development of mining industries drives income-based GHG emissions of resource-exporting nations (e.g., Australia, Canada, and Russia) during 1995-2009. Moreover, the rapid development of sectors producing basic materials and providing financial intermediation services drives income-based GHG emissions of developing nations (e.g., China, Indonesia, India, and Brazil) during this period. The income-based accounting can support supply side policy decisions and provide additional information for determining GHG emission quotas based on cumulative emissions of nations and designing policies for shared responsibilities.

  4. Managed grasslands: A greenhouse gas sink or source?

    NASA Astrophysics Data System (ADS)

    Leahy, Paul; Kiely, Ger; Scanlon, Todd M.

    2004-10-01

    We describe a unique, one year investigation of CO2 and N2O fluxes over a fertilized grassland in Ireland using two eddy covariance systems. As the global warming potential (GWP) of N2O is 296 (100 year time horizon), relatively small N2O emissions have a potentially large impact on overall radiative forcing. Therefore nitrogen fertilizer application practices may possibly turn a site with a net CO2 uptake into a net radiative forcing source. We observed a net annual uptake of 9.45 T CO2 ha-1. N2O emissions equivalent to 5.42 T ha-1 CO2 GWP counteracted 57% of the effect of the CO2 uptake. Estimated methane emissions from ruminants (3.74 T ha-1 CO2 GWP) further counteract the CO2 uptake, making the overall GWP nearly neutral. This delicate balance of the greenhouse gas fluxes underscores the significance of fertilizer application strategies in determining whether a managed grassland is a net GWP source or sink.

  5. Greenhouse gas emissions from naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E.

    2015-02-01

    Greenhouse gas (GHG) emissions from two naturally-ventilated dairy freestall barns measured for a total of 21 d, one week each in May, July, and September 2009, are presented in this article. The holding capacity of Barn 1 (B1) was 400 Holstein cows, while that for Barn 2 (B2) was 850 cows. Air samples were taken from inlets and outlets of the barns via a custom made multiplexer gas sampling system for measurement of gas concentrations using a photoacoustic infrared multigas analyzer. Barn ventilation rates were based on air velocity measured with arrays of 3-D ultrasonic anemometers at inlets and outlets. Gas concentrations (10 min means) in the barns ranged from: 443-789 ppm for CO2, 0.0-39.4 ppm for CH4, and 0.25-0.39 ppm for N2O; with mean concentrations ranging from 6 to 20%, 0 to 4%, and 26 to 180% above the average background concentrations for CO2, N2O, and CH4, respectively. The correlations between CO2 and CH4 enhanced concentrations were relatively stronger (R of 0.67-0.74) than between CO2 and N2O enhanced concentrations (R of 0.10-0.20). Environmental conditions did not significantly (p = 0.46) impact the enhanced concentrations of N2O in the barns. All three parameters (T, RH, and v) had significant (p < 0.01) influences on CO2 enhanced concentrations; while only T (p < 0.01) and v (p < 0.01) had significant influences on CH4 enhanced concentrations. Enhanced concentrations of CO2 and CH4 correlated negatively with all three parameters. The influence of the temperature-humidity index (THI) on CO2 enhanced concentrations was higher than that of v; while the effect v had on CH4 enhanced concentrations was slightly higher than that of the temperature-humidity index. The average emissions, based on hourly means, ranged from 5.3 to 10.7 kg d-1 AU-1 for CO2; 0.3 to 2.5 g d-1 AU-1 for N2O; and between 67 and 252 g d-1 AU-1 for CH4. Nitrous oxide emissions from the smaller barn, B1 (0.4-2.5 g d-1 AU-1), were significantly higher than from the larger barn, B2

  6. Greenhouse Gas Balance in a Restored and Natural Wetland

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Jaffe, P. R.; Morin, T. H.; Bohrer, G.

    2015-12-01

    The greenhouse gas balance of natural and restored wetlands is an important consideration when assessing ecosystem services, structure and function and restoration success of wetlands. Fast methane (CH4) gas analyzers such as the LI7700 are now enabling continuous ecosystem scale (eddy flux) measurements and assessment in conjunction with CO2 measurements. Here, we have set up two locations, one in a natural and one in a restored tidal salt marsh in the Meadowlands of New Jersey (MNJ) USA, in order to compare ecosystem level methane and carbon dioxide fluxes. Continuous methane fluxes were measured at the ecosystem level over three growing seasons at the restored site and two growing seasons at the natural wetland site concomitant to carbon dioxide fluxes. Methane and carbon dioxide emissions were highly variable in space and time over the three years of investigation (2012-2014). The temporal dynamics of methane and carbon dioxide fluxes in each of the sites suggest small-scale site-specific controls on methane emissions, but ubiquitous, non-specific controls on carbon dioxide uptake and release. Methane emissions increased at the restored site from 2012 to 2013, despite no corresponding increases in carbon dioxide uptake. In contrast, methane emission decreased at the natural wetlands site over the same time with concomitant increase in carbon dioxide uptake (more negative net ecosystem exchange). In 2014, the trend continued at the natural and the restored wetland sites with decreasing methane emission and increasing CO2 uptake. The influence of temperature and phenology on the observed patterns will be discussed.

  7. Greenhouse Gas Emission Evaluation of the GTL Pathway.

    PubMed

    Forman, Grant S; Hahn, Tristan E; Jensen, Scott D

    2011-10-15

    Gas to liquids (GTL) products have the potential to replace petroleum-derived products, but the efficacy with which any sustainability goals can be achieved is dependent on the lifecycle impacts of the GTL pathway. Life cycle assessment (LCA) is an internationally established tool (with GHG emissions as a subset) to estimate these impacts. Although the International Standard Organization's ISO 14040 standard advocates the system boundary expansion method (also known as the "displacement method" or the "substitution method") for life-cycle analyses, application of this method for the GTL pathway has been limited until now because of the difficulty in quantifying potential products to be displaced by GTL coproducts. In this paper, we use LCA methodology to establish the most comprehensive GHG emissions evaluation to date of the GTL pathway. The influence of coproduct credit methods on the GTL GHG emissions results using substitution methodology is estimated to afford the Well-to-Wheels (WTW) greenhouse gas (GHG) intensity of GTL Diesel. These results are compared to results using energy-based allocation methods of reference GTL diesel and petroleum-diesel pathways. When substitution methodology is used, the resulting WTW GHG emissions of the GTL pathway are lower than petroleum diesel references. In terms of net GHGs, an interesting way to further reduce GHG emissions is to blend GTL diesel in refineries with heavy crudes that require severe hydrotreating, such as Venezuelan heavy crude oil or bitumen derived from Canadian oil sands and in jurisdictions with tight aromatic specifications for diesel, such as California. These results highlight the limitation of using the energy allocation approach for situations where coproduct GHG emissions reductions are downstream from the production phase.

  8. The Effect of Natural Gas Supply on US Renewable Energy and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Shearer, C.; Bistline, J.; Inman, M.; Davis, S. J.

    2014-12-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that more abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall energy use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-2055 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable energy, more abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  9. Federal, state and utility roles in reducing new building greenhouse gas emissions

    SciTech Connect

    Johnson, J.A.; Shankle, D.; Boulin, J.

    1995-03-01

    This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

  10. Greenhouse gas emissions from green waste composting windrow.

    PubMed

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76gCday(-1) dry weight (DW) Mg(-1) and lowest average N2O emission of 152±21mgNday(-1) DW Mg(-1)compared to the other seasonal piles. The highest N2O emissions (342±41mgNday(-1) DW Mg(-1)) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.

  11. Microtrap assembly for greenhouse gas and air pollution monitoring

    DOEpatents

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  12. Greenhouse gas fluxes from no-till rotated corn in the Upper Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined soil surface fluxes of greenhouse gases (carbon dioxide, nitrous oxide, methane) from no-till, dryland corn (Zea mays L.) in eastern South Dakota and tested the effect of rotation on greenhouse gas fluxes from corn. The corn was grown within a randomized, complete block study that incl...

  13. The impact of seasonality and elevation on dissolved greenhouse gas concentrations in a northeastern Wyoming watershed

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Bettigole, C.; Raymond, P. A.; Glick, H.; Seegmiller, L.; Oliver, C.; Khadka, A.; Routh, D.

    2014-12-01

    Quantification of river and stream contributions to global carbon emission budgets using field-based measurements is key to understanding how freshwater streams act as conduits between terrestrial and atmospheric carbon pools. In order to better characterize drivers of this process, this study quantifies: a) emissions of carbon dioxide and methane from a semi-arid, high plains riverine system with montaine headwaters in order to establish baseline data for the watershed; b) the impact of stream order, seasonality and elevation on dissolved gas concentrations to better understand the spatial and temporal heterogeneity of dissolved carbon gases. To achieve the latter objective, we conducted field surveys in first and second order streams in the Clear Creek drainage of the Powder River Basin watershed. We took direct measurements of stream gases using headspace sampling at thirty sites along an elevation gradient ranging from 1,203-3,346 meters. We also intensely monitored five transects throughout the descending limb of spring runoff (June 8th-August 12th) to investigate how temperature and discharge volume impact greenhouse gas concentrations. Clear Creek, located in northeastern Wyoming, is approximately 118.4 km long with a drainage area of 2,968 km2. The creek flows east out of Bighorn National Forest where it turns northeast to converge with the Powder River about ten miles before the Montana border. The stream straddles the Middle Rockies and Northwestern Great Plains ecoregions and experiences an abrupt shift in soil type, riparian vegetation, underlying geology and stream geometry as the stream exits the mountains and enters the agricultural alluvial floodplain. These site specific biological and physical changes along the elevation gradient affect dissolved greenhouse gas concentrations.

  14. Mitigation of Greenhouse Gas Emissions by the Energy Grass, Miscanthus.

    NASA Astrophysics Data System (ADS)

    Jones, M.; Styles, D.; Clifton Brown, J.

    2008-12-01

    A life-cycle approach was used to quantify the major GHG emission sources associated with the production of useful heat or electricity (kWh), per hectare cultivated and per annum, from pelleted Miscanthus fired in domestic boilers and chopped Miscanthus co-fired in peat power stations respectively. Fuel chain GHG emissions attributable to Miscanthus are between 70% and 88% lower than those for oil, gas and electric heating fuel chains, and 86% lower than for the peat-electricity fuel chain. However, long-term soil C sequestration when Miscanthus is grown on either grassland or tillage land exceeds cultivation emissions, and, along with possible displacement of marginal agricultural production, could result in electricity and heat production better than C-neutral. With life-cycle GHG reductions of between 9.68 and 37.15 t CO2 eq. ha-1 a-1, Miscanthus electricity and heat production represent highly efficient land-use options for GHG mitigation. Furthermore, Miscanthus cultivation has good potential to complement, rather than compete with, existing food crop production, and enhance agricultural ecosystems (e.g. by improving soil quality, and by reducing erosion and nutrient losses).

  15. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  16. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.

    PubMed

    Laurenzi, Ian J; Jersey, Gilbert R

    2013-05-07

    We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.

  17. Characterization of bacterial communities from Masseiras, a unique Portuguese greenhouse agricultural system.

    PubMed

    Becerra-Castro, Cristina; Lopes, Ana Rita; Teixeira, Sara; Silva, M Elisabete F; Pimenta, Elisabete; Manaia, Célia M; Nunes, Olga C

    2017-02-02

    "Masseiras" is an ancient Portuguese agriculture system, where soil was developed from sand dunes enriched with seaweeds over more than a century. Due to the importance for the local economy, this system evolved for greenhouse structures. In this study we compared the bacterial community composition and structure of "Masseiras" soil, aiming at assessing the potential impact of different agricultural practices. The bulk soil of two greenhouses (following or not the recommended agriculture good practices, FGP and NFGP, respectively) was compared based on their physicochemical properties and bacterial community. In both FGP and NFGP, Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Gemmatimonadetes were in a proportion of 5:1:1:1:1:1. However, the bacterial community of soil FGP was richer and more diverse than that of soil NFGP. Members of the classes Bacilli and Gemm-1, with higher relative abundance in NFGP and FGP, respectively, were those contributing most for distinguishing the bacterial communities of both soils. The differences in the structure of the bacterial communities correlated (Mantel test) with some soil physicochemical properties, such as electrical conductivity and nitrate and Zn contents, which were significantly higher in soil NFGP than in soil FGP.

  18. The impact of landfilling and composting on greenhouse gas emissions--a review.

    PubMed

    Lou, X F; Nair, J

    2009-08-01

    Municipal solid waste is a significant contributor to greenhouse gas emissions through decomposition and life-cycle activities processes. The majority of these emissions are a result of landfilling, which remains the primary waste disposal strategy internationally. As a result, countries have been incorporating alternative forms of waste management strategies such as energy recovery from landfill gas capture, aerobic landfilling (aerox landfills), pre-composting of waste prior to landfilling, landfill capping and composting of the organic fraction of municipal solid waste. As the changing global climate has been one of the major environmental challenges facing the world today, there is an increasing need to understand the impact of waste management on greenhouse gas emissions. This review paper serves to provide an overview on the impact of landfilling (and its various alternatives) and composting on greenhouse gas emissions taking into account streamlined life cycle activities and the decomposition process. The review suggests greenhouse gas emissions from waste decomposition are considerably higher for landfills than composting. However, mixed results were found for greenhouse gas emissions for landfill and composting operational activities. Nonetheless, in general, net greenhouse gas emissions for landfills tend to be higher than that for composting facilities.

  19. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  20. Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses

    EPA Pesticide Factsheets

    Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.

  1. Executive Summary: EPA's Waiver Decision on California's Greenhouse Gas Emission Standards for New Motor Vehicles

    EPA Pesticide Factsheets

    This letter from EPA Administrator Stephen Johnson to Governor Schwarzenegger denies California's request for a waiver of Federal preemption for motor vehicle greenhouse gas emission standards submitted by the California Air Resources Board (CARB).

  2. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  3. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  4. Development of Greenhouse Gas Emissions Model (GEM) for Heavy- & Medium-Duty Vehicle Compliance

    EPA Science Inventory

    A regulatory vehicle simulation program was designed for determining greenhouse gas (GHG) emissions and fuel consumption by estimating the performance of technologies, verifying compliance with the regulatory standards and estimating the overall benefits of the program.

  5. THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES

    EPA Science Inventory

    Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...

  6. Greenhouse gas flux from managed grasslands in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managed grasslands are increasingly looked upon to serve as cost-effective sinks for mitigating climate change. Assurances of effective greenhouse gas mitigation strategies require detailed understanding of carbon dioxide, methane, and nitrous oxide flux for rangelands and pasturelands. Summarizat...

  7. The importance of goods and services consumption in household greenhouse gas calculators.

    PubMed

    Lenzen, M

    2001-11-01

    Despite the fact that lifestyles, in particular goods and services consumption, play a key role for global inequity and unsustainability of greenhouse gas emissions, these issues are often inadequately addressed in information and education materials such as household greenhouse gas calculators. Often, only limited individual responsibility for climate change can be concluded, and this is restricted to the reader's immediate surroundings such as the household and the private car, while goods and services consumption are almost always ignored. As a consequence, recommendations for reducing personal emissions concentrate on the relatively minor aspect of electricity and fuel use, while missing the more important issue of reducing goods and services consumption as an efficient way to abate climate change. These shortcomings are illustrated using the example of a recently published household greenhouse gas emissions questionnaire. An example for a comprehensive greenhouse gas calculator is also presented.

  8. CAAAC Greenhouse Gas Standards for Power Plants Webinar Meeting Minutes and Presentation

    EPA Pesticide Factsheets

    Greenhouse Gas Standards for Power Plants webinar, regarding modified and restructured standards for Section 111. This section of the Act establishes a mechanism for controlling air pollution from stationary sources.

  9. EPA Takes First Steps to Address Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) is proposing to find under the Clean Air Act that greenhouse gas (GHG) emissions from commercial aircraft contribute to the pollution that causes climate change endangering the health and welfare

  10. EPA Science Matters Newsletter: Breaking Through? Evaluating Technologies for Greenhouse Gas Mitigation (Published April 2014)

    EPA Pesticide Factsheets

    Read about the MARKet ALlocation (MARKAL) model that Dan Loughlin and his research colleagues created to help researchers to identify technologies that can make a true difference in reducing Greenhouse Gas (GHG) emissions.

  11. Spatial and temporal variability in greenhouse gas abundance of urban streams: The role of urban infrastructure

    EPA Science Inventory

    Background/Question/MethodsStreams and rivers are significant sources of greenhouse gas emissions globally. Water quality and watershed management, are likely to influence GHG emissions regionally. In urban-impacted watersheds, increased nitrogen loading, organic matter, and war...

  12. How to Use the Efficient Producer Lifecycle Greenhouse Gas Calculator, Version 1.1

    EPA Pesticide Factsheets

    Instructions for version 1.1 of the Efficient Producer Lifecycle Greenhouse Gas Calculator, a spreadsheet tool available for download through the EPA’s website for the U.S. Renewable Fuel Standard (RFS) program.

  13. EPA GROUP VERIFIES PERFORMANCE OF GREENHOUSE GAS EMISSIONS-MITIGATION TECHNOLOGIES

    EPA Science Inventory

    The Greenhouse Gas Technology Verification Center (the Center) is one of 12 independently operated environmental technology verification organizations established by the U.S. Environmental Protection Agency (EPA). The Center provides third-party performance data to industry and o...

  14. Sustainability of Switchgrass for Cellulosic Ethanol: Evaluating Net Energy, Greenhouse Gas Emissions, and Feedstocks Costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial herbaceous plants such as switchgrass are being evaluated as cellulosic bioenergy crops. Sustainability concerns with switchgrass (Panicum virgatum L.) and similar energy crops have been about net energy efficiency, potential greenhouse gas (GHG) emissions, and economic feasibility grown ...

  15. Greenhouse gas fluxes in mountain grassland differing in land use

    NASA Astrophysics Data System (ADS)

    Ladreiter-Knauss, Thomas; Schmitt, Michael; Butterbach-Bahl, Klaus; Kienzl, Sandra; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael

    2013-04-01

    Mountain grassland covers large areas, thus influences the global greenhouse gas (GHG) balance and is strongly affected by changes in land use. Effects of such changes on the GHG-balance have so far not been well documented. As a contribution to the EU-project GHG Europe we are studying the net ecosystem exchange (NEE) of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) on a mountain meadow, an adjacent and an abandoned pasture at 1820-1970m a.s.l. in the Austrian Central Alps. The GHG balance is estimated from manual and auto-chamber measurements, combined with already published CO2-NEE over almost a decade. Winter CO2-fluxes, primarily soil respiration underneath the snowpack, are estimated with solid state CO2-sensors using a validated diffusion model. We found that abandon the management decreases the NEE of CO2 while its component, soil respiration (Rs), increases. The decrease is explained by differences in leaf area index, biomass and leaf-area-independent changes that were likely related to photosynthetic physiology. The increase in Rs can be explained by higher belowground carbon input due to missing grazing or mowing. The abandoned pasture showed the highest uptake rates of CH4 and a slight uptake of N2O, possibly due to better soil aeration. Spring freeze-thaw events caused slight CH4 emissions in the managed grassland. The meadow and pasture had just low emission rates of N2O even at freeze-thaw cycles and organic fertilization. These results suggest that in mountain grassland the main contributor to the GHG balance are CO2 fluxes that can largely be influenced by land use changes.

  16. Understanding the Canadian oil sands industry's greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Charpentier, Alex D.; Bergerson, Joule A.; MacLean, Heather L.

    2009-01-01

    The magnitude of Canada's oil sands reserves, their rapidly expanding and energy intensive production, combined with existing and upcoming greenhouse gas (GHG) emissions regulations motivate an evaluation of oil sands-derived fuel production from a life cycle perspective. Thirteen studies of GHG emissions associated with oil sands operations are reviewed. The production of synthetic crude oil (SCO) through surface mining and upgrading (SM&Up) or in situ and upgrading (IS&Up) processes is reported to result in emissions ranging from 62 to 164 and 99 to 176 kgCO2eq/bbl SCO, respectively (or 9.2-26.5 and 16.2-28.7 gCO2eq MJ-1 SCO, respectively), compared to 27-58 kgCO2eq/bbl (4.5-9.6 gCO2eq MJ-1) of crude for conventional oil production. The difference in emissions intensity between SCO and conventional crude production is primarily due to higher energy requirements for extracting bitumen and upgrading it into SCO. On a 'well-to-wheel' basis, GHG emissions associated with producing reformulated gasoline from oil sands with current SM&Up, IS&Up, and in situ (without upgrading) technologies are 260-320, 320-350, and 270-340 gCO2eq km-1, respectively, compared to 250-280 gCO2eq km-1 for production from conventional oil. Some variation between studies is expected due to differences in methods, technologies studied, and operating choices. However, the magnitude of the differences presented suggests that a consensus on the characterization of life cycle emissions of the oil sands industry has yet to be reached in the public literature. Recommendations are given for future studies for informing industry and government decision making.

  17. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied

  18. Designing optimal greenhouse gas monitoring networks for Australia

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  19. Greenhouse gas emission from covered windrow composting with controlled ventilation.

    PubMed

    Ermolaev, Evgheni; Pell, Mikael; Smårs, Sven; Sundberg, Cecilia; Jönsson, Håkan

    2012-02-01

    Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH(4)), nitrous oxide (N(2)O) and carbon dioxide (CO(2)) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH(4) concentrations (CH(4):CO(2) ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH(4) displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N(2)O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH(4) and N(2)O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics.

  20. Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE)

    SciTech Connect

    Dobler, Jeremy; Zaccheo, T. Scott; Blume, Nathan; Pernini, Timothy; Braun, Michael; Botos, Christopher

    2016-03-31

    This report describes the development and testing of a novel system, the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE), for Monitoring, Reporting and Verification (MRV) of CO2 at Geological Carbon Storage (GCS) sites. The system consists of a pair of laser based transceivers, a number of retroreflectors, and a set of cloud based data processing, storage and dissemination tools, which enable 2-D mapping of the CO2 in near real time. A system was built, tested locally in New Haven, Indiana, and then deployed to the Zero Emissions Research and Technology (ZERT) facility in Bozeman, MT. Testing at ZERT demonstrated the ability of the GreenLITE system to identify and map small underground leaks, in the presence of other biological sources and with widely varying background concentrations. The system was then ruggedized and tested at the Harris test site in New Haven, IN, during winter time while exposed to temperatures as low as -15 °CºC. Additional testing was conducted using simulated concentration enhancements to validate the 2-D retrieval accuracy. This test resulted in a high confidence in the reconstruction ability to identify sources to tens of meters resolution in this configuration. Finally, the system was deployed for a period of approximately 6 months to an active industrial site, Illinois Basin – Decatur Project (IBDP), where >1M metric tons of CO2 had been injected into an underground sandstone basin. The main objective of this final deployment was to demonstrate autonomous operation over a wide range of environmental conditions with very little human interaction, and to demonstrate the feasibility of the system for long term deployment in a GCS environment.

  1. 78 FR 11619 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category AGENCY... deadline by which owners or operators of facilities subject to the petroleum and natural gas systems source... facilities subject to the petroleum and natural gas systems source category, subpart W, of the Greenhouse...

  2. 76 FR 59533 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... AGENCY 40 CFR Part 98 RIN 2060-AP99 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas... use of best available monitoring methods for the Petroleum and Natural Gas Systems source category of... operators of petroleum and natural gas systems. Regulated categories and entities may include those...

  3. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    EIA Publications

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  4. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  5. A model of greenhouse gas emissions from the management of turf on two golf courses.

    PubMed

    Bartlett, Mark D; James, Iain T

    2011-03-15

    An estimated 32,000 golf courses worldwide (approximately 25,600 km(2)), provide ecosystem goods and services and support an industry contributing over $ 124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1Mg CO(2)e ha(-1)y(-1); Parkland 0.7 ± 0.2Mg CO(2)e ha(-1)y(-1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 ± 0.9 Mg CO(2e) ha(-1)y(-1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2Mg CO(2e) ha(-1)y(-1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range

  6. A model of greenhouse gas emissions from the management of turf on two golf courses.

    PubMed

    Bartlett, Mark D; James, Iain T

    2011-11-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant–soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links −2.2 ± 0.4 Mg CO2e ha(−1) y(−1); Parkland − 2.0 ± 0.4 Mg CO2e ha(−1) y(−1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of −5.4 ± 0.9 Mg CO2e ha(−1) y(−1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of −1.6 ± 0.3 Mg CO2e ha(−1) y(−1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of

  7. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    {sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{sub 2} capture on an existing air-fired CFB plant. ALSTOM received a contract award from the DOE to conduct a project entitled 'Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control', under Cooperative Agreement DE-FC26-04NT42205 that is the subject of this topical report.

  8. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.

    PubMed

    Adler, Paul R; Del Grosso, Stephen J; Parton, William J

    2007-04-01

    Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.

  9. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems.

    PubMed

    Linquist, Bruce A; Anders, Merle M; Adviento-Borbe, Maria Arlene A; Chaney, Rufus L; Nalley, L Lanier; da Rosa, Eliete F F; van Kessel, Chris

    2015-01-01

    Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1-13%; water-use efficiency was improved by 18-63%, global warming potential (GWP of CH4 and N2 O emissions) reduced by 45-90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2 O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield-scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade-offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales.

  10. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils.

    PubMed

    Zheng, Jiyong; Stewart, Catherine E; Cotrufo, M Francesca

    2012-01-01

    Biochar (BC) application to agricultural soils could potentially sequester recalcitrant C, increase N retention, increase water holding capacity, and decrease greenhouse gas (GHG) emissions. Biochar addition to soils can alter soil N cycling and in some cases decrease extractable mineral N (NO and NH) and NO emissions. These benefits are not uniformly observed across varying soil types, N fertilization, and BC properties. To determine the effects of BC addition on N retention and GHG flux, we added two sizes (>250 and <250 µm) of oak-derived BC (10% w/w) to two soils (aridic Argiustoll and aquic Haplustoll) with and without N fertilizer and measured extractable NO and NH and GHG efflux (NO, CO, and CH) in a 123-d laboratory incubation. Biochar had no effect on NO, NH, or NO in the unfertilized treatments of either soil. Biochar decreased cumulative extractable NO in N fertilized treatments by 8% but had mixed effects on NH. Greenhouse gas efflux differed substantially between the two soils, but generally with N fertilizer BC addition decreased NO 3 to 60%, increased CO 10 to 21%, and increased CH emissions 5 to 72%. Soil pH and total treatment N (soil + fertilizer + BC) predicted soil NO flux well across these two different soils. Expressed as CO equivalents, BC significantly reduced GHG emissions only in the N-fertilized silt loam by decreasing NO flux. In unfertilized soils, CO was the dominant GHG component, and the direction of the flux was mediated by positive or negative BC effects on soil CO flux. On the basis of our data, the use of BC appears to be an effective management strategy to reduce N leaching and GHG emissions, particularly in neutral to acidic soils with high N content.

  11. Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.

    2008-12-01

    Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.

  12. Flue gas desulfurization gypsum agricultural network alabama (cotton)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that can be beneficially used in agriculture. Research was conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration wi...

  13. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ..., such as liquefied natural gas, compressed natural gas, propane, hydrogen and electricity. \\8\\ POP... National Highway Traffic Safety Administration 49 CFR Part 535 RIN 2127-AK74 Greenhouse Gas Emissions... purpose of reducing greenhouse gas (GHG) emissions because the GHG standards fundamentally regulate...

  14. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.

    PubMed

    Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave

    2017-03-29

    Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.

  15. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation.

    PubMed

    Cohn, Avery S; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O'Hare, Michael; Obersteiner, Michael

    2014-05-20

    This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.

  16. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation

    PubMed Central

    Cohn, Avery S.; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O’Hare, Michael; Obersteiner, Michael

    2014-01-01

    This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection. PMID:24778243

  17. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    PubMed

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  18. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the eastern United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.; Zhu, Zhi-Liang; Reed, Bradley C.

    2014-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  19. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  20. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  1. Multiyear greenhouse gas balances at a rewetted temperate peatland.

    PubMed

    Wilson, David; Farrell, Catherine A; Fallon, David; Moser, Gerald; Müller, Christoph; Renou-Wilson, Florence

    2016-12-01

    Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long-term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2 ), methane (CH4 ) and nitrous oxide (N2 O) calculated for a 5-year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2-year data set), and with ten long-term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco ) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2 O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5-year mean of annual balances) for the rewetted site were (±SD) -104 ± 80 g CO2 -C m(-2)  yr(-1) (i.e. CO2 sink) and 9 ± 2 g CH4 -C m(-2)  yr(-1) (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100-year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.

  2. Greenhouse Gas Emissions Reporting through Integrated Business Solutions

    NASA Astrophysics Data System (ADS)

    Smith, D.

    2010-12-01

    Given the risks posed by global climate change, it is important that society as a whole responds in order to reduce the emission of greenhouse gas (GHG) into the atmosphere. Whether you are an environmentalist, a small-to-medium business owner, or a corporate risk manager - the need to act is now in order to reduce future environmental damage. While this sounds overwhelming, it’s really quite simple. Carbon Management is the process of understanding where your commercial activities generate GHG emissions, so that you can reduce those emissions in a planned, financially responsible way. Specifically, governments have the capacity to lead in this area and reduce these costs throughout their cities. Village Green Global develops and manages demonstration projects for the government that act as exemplar models to assist in gathering verifiable GHG reporting within selected regions and cities. This model highlights opportunities for the capture of conservation and energy credit commodities for local financial markets to use in global trading. Information gathered will prepare government for the ongoing changing global requirements and mitigate risk of unnecessary market exposure and cost; allow government to take a measured, responsible approach to its environmental responsibilities; reduce operational costs, improving the government’s asset utilization and more effectively streamlining its operations; and establish the government as responsible and proactive due to its creative approach to environmental challenges. Village Green Global’s government partnership model aims to deliver new jobs and technologies in the emerging “green economy;” a linkage to education at both at College and University levels, then assisting industry and community needs; and the involvement of industry leaders ensures training is targeted to job creation and local capacity building opportunities, in turn creating new skills and career pathways for the displaced workforce from the

  3. Idaho National Laboratory’s FY14 Greenhouse Gas Report

    SciTech Connect

    Frerichs, Kimberly Irene

    2015-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were

  4. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  5. Effect of different agronomic management practices on greenhouse gas emissions and nutrient cycling in a long-term field trial

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2015-04-01

    In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental

  6. The Mexico greenhouse gases emissions inventory: Results and methodology contributions on agriculture and land use change

    SciTech Connect

    Ruiz-Suarez, L.G.; Gonzalez, E.; Masera, O.

    1996-12-31

    The 1990 Preliminary Greenhouse Gases Emissions Inventory was released in October 1995. It was carried out with sponsorship of the US CSSP and UNEP. It was the product of a partnership between government and academic institutions. Total emissions of CO{sub 2} are 433,721 Gg. Land use change emissions of CO{sub 2} are 111,784 Gg which accounts for 25.8% of the national total. Methane is the second largest greenhouse gas, 3,801 Gg. When its warming potential is accounted for, it is equivalent to 18% of total greenhouse gases emissions. Livestock is the source of 51.3% of these emissions. Methane emissions from cattle and CO{sub 2} emissions from land use change are strongly associated. Besides the results on emission estimates, the inventory work allowed them to use and to improve on IPCC methodologies. Serious miscalculations may result from straightforward application of Tier 1 or even and even of Tier 2 IPPC methodologies for methane emissions from cattle. The need for nation specific forest categories and for more detailed information on the dynamics of land use change was shown. An analysis of emission trends shows the possibility of associated mitigation options for methane and CO{sub 2} from these two sources. A comparative analysis for mitigation potential of methane emissions from large and small scale cattle raising is under way.

  7. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

    SciTech Connect

    Liu, Zhen; Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; van Bloemen Waanders, Bart Gustaaf; LaFranchi, Brian W.; Ivey, Mark D.; Schrader, Paul E.; Michelsen, Hope A.; Bambha, Ray P.

    2014-09-01

    In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF

  8. Landscape-level variation in greenhouse gas emissions in vineyards of central California

    NASA Astrophysics Data System (ADS)

    Berbeco, M.; Steenwerth, K. L.; Jackson, L. E.; Higgins, C.; Yu, O.; Greenhut, R. F.; O'Geen, T.

    2011-12-01

    Greenhouse gas emissions from agricultural soils can differ greatly across the landscape depending on soil type, landscape formation and management, making the implementation of mitigation practices challenging. In our study, we evaluated the carbon dioxide and nitrous oxide emissions from vineyard soils across a broad landscape in the Lodi Wine-grape District representing three soil types of different geologic history and under varying conventional management systems in the Central Valley of California. Soils of the District vary in space as a result of the depositional history of the parent materials from which the soils formed and subsequent weathering. The nature of the deposition of these materials has resulted in systematic patterns of soils in space. We sampled the following soils from this soil sequence over the larger landscape: 1) Slightly weathered granitic alluvium with low clay content located on the southern side of the district; 2) Intermediately weathered soils derived from granitic alluvium with high clay content located on the northern side of the district; and, 3) Highly weathered soils derived from metavolcanic and metasedimentary alluvium with intermediate clay content and rocky soils located on the eastern side of the district. The climate is Mediterranean with cool, moist winters and hot, dry summers. Initial results indicated that under wet conditions, the soils had similar carbon dioxide emissions with little variation between management or landscape formation. However, carbon dioxide emissions were typically higher in the alley than in the vine row. Nitrous oxide emissions were more variable in the higher clay soils as compared to sandier soils (0-180 g N/ha/day and 0-20 g N/ha/day, respectively). Nitrous oxide emissions were similar from the soil in the alley and vine row. We expect to see similar variability for carbon dioxide emissions under drier conditions later in the summer, but predict that it will differ by landscape position

  9. Stable Isotopes in Evaluation of Greenhouse Gas Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...

  10. 40 CFR 1036.108 - Greenhouse gas emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perflurocarbons... this paragraph (a)(1). The applicable test cycle for measuring CO2 emissions differs depending on the..., measure CO2 emissions using the steady-state duty cycle specified in 40 CFR 86.1362 (referred to as...

  11. Estimating greenhouse gas emissions from a waste lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cost-effective approach was used to investigate the relationship between emission of the greenhouse gases (GHG) CO2, CH4, and N2O and energy fluxes from a swine waste lagoon. Energy fluxes were calculated using the Penman method. The energy fluxes showed a diurnal pattern as expected of such flux...

  12. High temporal frequency measurements of greenhouse gas emissions from soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency,...

  13. GLOBAL GREENHOUSE GAS EMISSIONS FROM RESERVOIRS: A MATTER OF METHANE

    EPA Science Inventory

    More than a decade ago, St. Louis et al. demonstrated that, collectively, manmade reservoirs play an important role in the global balance of greenhouse gases (GHGs). To update and build upon this important seminal work, we compiled reservoir CO2, CH4, and N2O flux estimates from...

  14. Mitigating greenhouse gas emissions from beef cattle housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  15. RE: Request for Correction, Technical Support Document, Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    EPA Pesticide Factsheets

    The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

  16. Smallholder African farms in western Kenya have limited greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Pelster, D. E.; Rufino, M. C.; Rosenstock, T.; Mango, J.; Saiz, G.; Diaz-Pines, E.; Baldi, G.; Butterbach-Bahl, K.

    2015-09-01

    Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems resulting in high uncertainty for national inventories. We provide here the most comprehensive study in Africa to date, examining annual CO2, CH4 and N2O emissions from 59 plots, across different vegetation types, field types and land classes in western Kenya. The study area consists of a lowland area (approximately 1200 m a.s.l.) rising approximately 600 m to a highland plateau. Cumulative annual fluxes ranged from 2.8 to 15.0 Mg CO2-C ha-1, -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1. Management intensity of the plots did not result in differences in annual fluxes for the GHGs measured (P = 0.46, 0.67 and 0.14 for CO2, N2O and CH4 respectively). The similar emissions were likely related to low fertilizer input rates (≤ 20 kg ha-1). Grazing plots had the highest CO2 fluxes (P = 0.005); treed plots were a larger CH4 sink than grazing plots (P = 0.05); while N2O emissions were similar across vegetation types (P = 0.59). This case study is likely representative for low fertilizer input, smallholder systems across sub-Saharan Africa, providing critical data for estimating regional or continental GHG inventories. Low crop yields, likely due to low inputs, resulted in high (up to 67 g N2O-N kg-1 aboveground N uptake) yield-scaled emissions. Improving crop production through intensification of agricultural production (i.e. water and nutrient management) may be an important tool to mitigate the impact of African agriculture on climate change.

  17. Greenhouse gas emission from soil amended with biochar made from hydrothermally carbonizing swine solids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar made from hydrothermally carbonizing swine solids was mixed with a 50/50 mixture of Norfolk Ap and E horizon at a rate of 20 g/kg. During the incubation period of 54 days, greenhouse gas (CO2 and N2O) emission fluxes were calculated by nonlinearly regressing time-series headspace gas concent...

  18. Calculating the detection limits of chamber-based greenhouse gas flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamber-based measurement of greenhouse gas emissions from soil is a common technique. However, when changes in chamber headspace gas concentrations are small over time, determination of the flux can be problematic. Several factors contribute to the reliability of measured fluxes, including: samplin...

  19. Greenhouse-gas exchange of croplands worldwide: a process-based model simulation

    NASA Astrophysics Data System (ADS)

    Inatomi, M.; Ito, A.

    2009-12-01

    Croplands cover about 15% of the land surface, and play unique roles in global biogeochemical cycles. Especially, greenhouse gas budget of croplands is important for climate projection in the future and for mitigation toward climate stabilization. Sustainable cropland is carbon-neutral (i.e., neither a sink nor a source of CO2 for a long time), but those in developed countries consume fossil fuels for agricultural operations and releases CO2 as revealed by LCAs. Paddy field is one of the substantial sources of CH4, and cropland may be the largest anthropogenic source of N2O. However, these features have not been evaluated and discussed using a spatial-explicit comprehensive framework at the global scale. This study applies a process-based terrestrial ecosystem model (VISIT) to worldwide croplands. Exchange of CO2 is simulated as a difference between photosynthesis and respiration, each of which is calculated in a biogeochemical carbon cycle scheme. Net carbon budget accounts for carbon flows by planting, compost input, and harvest. Exchange of CH4 is simulated as a difference between oxidation by aerobic soils and production by anaerobic soils, each of which is calculated using mechanistic schemes. Emission of N2O from nitrification and denitrification is simulated with a semi-mechanistic scheme on the basis of leaky-pipe concept. We are also validating the model through comparison with chamber and tower flux measurements. Global simulations were conducted during a period from 1901 to 2100 on the basis of historical and projected climate and land-use conditions, at a spatial resolution of 0.5 x 0.5 degree. Cropland type and distribution was derived from SAGE-HYDE dataset and country-base fertilizer input was obtained from FAOSTAT. Our preliminary simulation for the 1990s estimated that croplands are a net sink of CO2 by 1.1 Gt C/yr; this sink is offset by emission by food consumption. Paddy fields are estimated to release CH4 by 46 Tg CH4/yr, and croplands

  20. Holocene Changes in Land Cover and Greenhouse-gas Concentrations: Rethinking Natural vs Anthropogenic Causation

    NASA Astrophysics Data System (ADS)

    Roberts, C.

    2008-12-01

    The Holocene has witnessed a switch from a nature-dominated to a human-dominated Earth system. Although globally-significant human impacts (wildfire, megafaunal extinctions) occurred during the late Pleistocene, it was the advent of agriculture that led to the progressive transformation of land cover, and which distinguishes the Holocene from previous interglacial periods. A wide array of data provide clear evidence of local-to-regional human disturbance from ~5 ka BP, in some cases earlier. There is more uncertainty about when the anthropogenic "footprint" became detectable at a global scale, and there has consequently been debate about how much of the pre-industrial increase in atmospheric greenhouse gas concentrations is attributable to human causation, linked to processes such as deforestation (CO2) and wet rice cultivation (CH4). Although there has been recent progress in developing quantitative methods for translating pollen data into palaeo-land cover, such as the REVEALS model of Sugita (Holocene 2007) coupled to GIS, this has yet to be widely applied to existing data bases, and most pollen-based land-use reconstructions remain qualitative or semi-quantitative. Lake trophic status, sediment flux / soil erosion, and microcharcoal records of biomass burning provide alternative proxies that integrate regional-scale landscape disturbance. These proxy data along with documentary sources imply that globally-significant changes in land cover occurred prior to ~250 BP which must have altered atmospheric greenhouse gas concentrations by this time. The polarised debate for and against early anthropogenic impact on global carbon cycling mirrors our industrial-era division between nature and society, both conceptually (e.g. Cartesian dualism) and on the ground (e.g. demarcating land between monoculture agriculture and wilderness). However, for the period before ~1750 AD, this likely represents a false dichotomy, because pre-industrial societies more often formed part

  1. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level.

    PubMed

    Vanhala, Pekka; Bergström, Irina; Haaspuro, Tiina; Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78tCO2eqkm(-2) and 2.8tCO2eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250tCO2eqkm(-2) and 9.2tCO2eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions.

  2. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    NASA Astrophysics Data System (ADS)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  3. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL

  4. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the

  5. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  6. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation.

  7. On the potential for alternative greenhouse gas equivalence metrics to influence sectoral mitigation patterns

    NASA Astrophysics Data System (ADS)

    Brennan, Mark E.; Zaitchik, Benjamin F.

    2013-03-01

    Equivalence metrics used to quantify the relative climate impacts of different atmospheric forcers serve an essential function in policy and economic discussions about global climate change. The 100-year global warming potential (GWP-100), the most established greenhouse gas (GHG) equivalence metric, is used within the Kyoto Protocol, and in most emissions inventory, trading and offset mechanisms, to assign the mitigation value of non-carbon dioxide greenhouse gases relative to carbon dioxide. In recent literature the GWP-100 and alternative metrics have been used to compare various anthropogenic climate forcers with respect to a wide range of environmental and economic goals. Building on this work, we examine how 16 different static and time-varying CO2-equivalence schemes might influence GHG mitigation across sectors and gases in a perfect and fluid global mitigation regime. This mitigation regime is guided by achieving a global mean radiative forcing (RF) of 5.7 Wm-2 in 2100 from 1765 levels through a mitigation policy of prescribed emissions reductions in each decade. It was found that static metrics defined on 20- instead of 100-year time horizons favor mitigation strategies that maximize the abatement of short-lived gases (e.g. methane), on average resulting in an RF from methane in 2100 of 0.5 Wm-2 instead of 1.1 Wm-2 from 100-year metrics. Similarly, metrics that consider integrated rather than end-point climate impacts imply mitigation strategies that maximize mitigation of shorter-lived GHGs, resulting in higher abatement of agriculture and waste emissions. Comparing extreme scenarios, these mitigation shifts across gases and sectors result in a nearly 30% difference in the representation of methane in global cumulative emissions reductions. This shift across gases and sectors to mitigate shorter-lived GHGs, in lieu of longer-lived GHGs like carbon dioxide, has implications for the long-term warming commitment due to 21st century emissions.

  8. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    PubMed Central

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  9. Measurement of gas and aerosol agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  10. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengxia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, Kranti

    2012-06-01

    We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of US beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO2-equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally.

  11. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent efforts have been placed on trying to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research was conducted to assess the influence of cropping systems management on nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissio...

  12. Reducing greenhouse gas emissions, water use and grain arsenic levels in rice systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is faced with the challenge of providing healthy food for a growing population while minimizing environmental consequences. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhous...

  13. Greenhouse gas emissions from natural, restored, and prior-converted wetlands of the Mid-Atlantic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrologic restoration of drained agricultural wetlands may impact greenhouse gases, particularly nitrous oxide emissions. Assessment of this impact was part of the Natural Resource Conservation Service Mid-Atlantic Regional Conservation Effects Assessment Program (MIAR-CEAP), with sample sites ...

  14. Greenhouse Gas Emissions from Soils as Affected by Addition of Biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) and carbon dioxide (CO2) are two major greenhouse gases that are emitted during agricultural and industrial activities. High concentrations of those gases in the stratospheric ozone layer are believed to be responsible for global climate change. Processing biomass by pyrolysis an...

  15. Greenhouse Operation and Management. Instructor Guide and Student Reference. Missouri Agricultural Education. Volume 21, Number 3.

    ERIC Educational Resources Information Center

    Wells, Judith A.; And Others

    These student and instructor materials for a one-semester course intended for high school juniors and seniors teach the following 24 lessons: (1) the scope and development of greenhouse production; (2) the economic importance of greenhouse crops; (3) careers in greenhouse operation and management; (4) greenhouse parts, structures, and coverings;…

  16. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romeijn, P.; Comer, S.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2015-12-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  17. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romejn, Paul; Comer, Sophie; Gooddy, Daren; Ullah, Sami; Hannah, David; Krause, Stefan

    2016-04-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  18. Long-term trends and opportunities for managing regional water supply and wastewater greenhouse gas emissions.

    PubMed

    Hall, Murray R; West, Jim; Sherman, Bradford; Lane, Joe; de Haas, David

    2011-06-15

    Greenhouse gas emissions are likely to rise faster than growth in population and more than double for water supply and wastewater services over the next 50 years in South East Queensland (SEQ), Australia. New sources of water supply such as rainwater tanks, recycled water, and desalination currently have greater energy intensity than traditional sources. In addition, direct greenhouse gas emissions from reservoirs and wastewater treatment and handling have potentially the same magnitude as emissions from the use of energy. Centralized and decentralized water supply and wastewater systems are considered for a scenario based upon a government water supply strategy for the next 50 years. Many sources of data have large uncertainties which are estimated following the IPCC Good Practice Guidelines. Important sources of emissions with large uncertainties such as rainwater tanks and direct emissions were identified for further research and potential mitigation of greenhouse gas emissions.

  19. Striking the balance between nutrient removal, greenhouse gas emissions, receiving water quality, and costs.

    PubMed

    Falk, Michael W; Reardon, David J; Neethling, J B; Clark, David L; Pramanik, Amit

    2013-12-01

    This Water Environment Research Foundation study considered the relationship between varying nutrient-removal levels at wastewater treatment plants, greenhouse gas emissions, receiving water quality (measured by potential algal production), and costs. The effluent nutrient concentrations required by some U.S. permits are very low, approaching the technology-best-achievable performance. This study evaluated five different treatment levels at a nominal 40 ML/d (10 mgd) flow. Greenhouse gas emissions and costs increase gradually up to the technologies' best-achievable performance, after which they increase exponentially. The gradual increase is attributed to additional biological treatment facilities, increased energy and chemical use, and additional tertiary nitrogen and phosphorus removal processes. Within the limited focus of this study, the evaluation shows that a point of diminishing return is reached as nutrient-removal objectives approach the technology-best-achievable performance, where greenhouse gas emissions and cost of treatment increases rapidly while the potential for algal growth reduce marginally.

  20. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition.

    PubMed

    Ward, Susan E; Ostle, Nicholas J; Oakley, Simon; Quirk, Helen; Henrys, Peter A; Bardgett, Richard D

    2013-10-01

    Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.

  1. Carbon Geography. The political economy of congressional support for legislation intended to mitigate greenhouse gas production

    SciTech Connect

    CRAGG, MICHAEL I.; ZHOU, YUYU; GURNEY, KEVIN; KAHN, MATTHEW E.

    2012-04-20

    Over the last five years, the U.S Congress has voted on several pieces of legislation intended to sharply reduce the nation’s greenhouse gas emissions. Given that climate change is a world public bad, standard economic logic would predict that the United States would -free rideII and wait for other nations to reduce their emissions. Within the Congress, there are clear patterns to who votes in favor of mitigating greenhouse gas emissions. This paper presents a political economy analysis of the determinants of pro-greenII votes on such legislation. Conservatives consistently vote against such legislation. Controlling for a Representative’s ideology, representatives from richer districts and districts with a lower per-capita carbon dioxide footprint are more likely to vote in favor of climate change mitigation legislation. Representatives from districts where industrial emissions represent a larger share of greenhouse gas emissions are more likely to vote no.

  2. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  3. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    PubMed

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  4. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    USGS Publications Warehouse

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, D.C.; Marcot, B.G.; Durner, G.M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  5. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  6. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    NASA Astrophysics Data System (ADS)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; Mundra, Anupriya

    2015-11-01

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching 17 B under moderate mitigation, but only 7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to 18 B, generating benefits to moderate (stringent) mitigation as large as 26 B (20 B).

  7. Effect of localizing fruit and vegetable consumption on greenhouse gas emissions and nutrition, Santa Barbara County.

    PubMed

    Cleveland, David A; Radka, Corie N; Müller, Nora M; Watson, Tyler D; Rekstein, Nicole J; Wright, Hannah Van M; Hollingshead, Sydney E

    2011-05-15

    The US agrifood system is very productive, but highly centralized and resource intensive with very weak links between production and consumption. This contributes to high levels of malnutrition and greenhouse gas emissions (GHGE). A popular approach to improvement is localization-reducing direct transport (farm to retail distance, or "food miles"). We examined Santa Barbara County (SBC) California, which mirrors the high production, nutritional and environmental problems, and growing localization movement of California. SBC ranks in the top 1% of US counties in value of agricultural products, and >80% of this value is produce (fruits and vegetables). We calculated the amount of produce grown in and consumed in SBC and estimated that >99% of produce grown in SBC is exported from the county, and >95% of produce consumed in SBC is imported. If all produce consumed in SBC was grown in the county (100% localization), it would reduce GHGE from the agrifood system <1%, and not necessarily affect nutrition. While food miles capture only a portion of the environmental impact of agrifood systems, localization could be done in ways that promote synergies between improving nutrition and reducing GHGE, and many such efforts exist in SBC.

  8. An assessment of greenhouse gas emissions from the Australian vegetables industry.

    PubMed

    Maraseni, Tek N; Cockfield, Geoff; Maroulis, Jerry; Chen, Guangnan

    2010-08-01

    Recently, partly due to the increasing carbon consciousness in the electorates and partly due to the imminent introduction of the Australian Government's Carbon Pollution Reduction Scheme (CPRS), estimating carbon footprints is becoming increasingly necessary in agriculture. By taking data from several sources, this study estimates the national greenhouse gas (GHG) emissions from a variety of farm inputs, for the 23 key vegetables crops grown in Australia. For the 121,122 ha of land occupied by vegetable farms, there are 1.1 MtCO(2)e GHG emissions or 9.2 tCO(2)e ha(-1). In total, 65% of total GHG emissions from the vegetable industry are due to electricity use for irrigation and post-harvest on-farm activities, 17% from soil N(2)O emissions due to N fertiliser use, 10% from agrochemicals, 7% through fossils fuels and 1% from on-farm machinery. The top four vegetables (by area), potatoes, lettuce, tomatoes and broccoli account for 29.1%, 7.9%, 5.9% and 7.2% of total GHG emissions from vegetables, respectively. However, the ratio of GHG emissions between the highest and lowest-emitting crops per hectare and per tonne, are different. Therefore, care must be exercised in carbon footprint labelling vegetable products to ensure that the labels reflect carbon emissions on a per tonnage basis.

  9. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  10. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.

    2016-05-01

    Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.

  11. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model.

    PubMed

    Cheng, Kun; Ogle, Stephen M; Parton, William J; Pan, Genxing

    2014-03-01

    Understanding the potential for greenhouse gas (GHG) mitigation in agricultural lands is a critical challenge for climate change policy. This study uses the DAYCENT ecosystem model to predict GHG mitigation potentials associated with soil management in Chinese cropland systems. Application of ecosystem models, such as DAYCENT, requires the evaluation of model performance with data sets from experiments relevant to the climate and management of the study region. DAYCENT was evaluated with data from 350 cropland experiments in China, including measurements of nitrous oxide emissions (N2 O), methane emissions (CH4 ), and soil organic carbon (SOC) stock changes. In general, the model was reasonably accurate with R(2) values for model predictions vs. measurements ranging from 0.71 to 0.85. Modeling efficiency varied from 0.65 for SOC stock changes to 0.83 for crop yields. Mitigation potentials were estimated on a yield basis (Mg CO2 -equivalent Mg(-1) Yield). The results demonstrate that the largest decrease in GHG emissions in rainfed systems are associated with combined effect of reducing mineral N fertilization, organic matter amendments and reduced-till coupled with straw return, estimated at 0.31 to 0.83 Mg CO2 -equivalent Mg(-1) Yield. A mitigation potential of 0.08 to 0.36 Mg CO2 -equivalent Mg(-1) Yield is possible by reducing N chemical fertilizer rates, along with intermittent flooding in paddy rice cropping systems.

  12. An evaluation of the social and private efficiency of adoption: anaerobic digesters and greenhouse gas mitigation.

    PubMed

    Manning, D T; Hadrich, J C

    2015-05-01

    Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions.

  13. Simulating late Holocene climate changes caused by competing forcing of the Earth's orbital and greenhouse gas changes

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.

    2014-12-01

    Decreases in orbitally-forced summer insolation in the Northern Hemisphere have coincided with downward trends in greenhouse gases (GHG) during the late stages of previous interglacials, with both climate forcings acting collectively to reduce the global temperature. In the last several thousand years of the current (Holocene) interglacial, however, while summer insolation has decreased, there was a reversal of the downward trends in CH4 and CO2 concentration around 5,000 to 7,000 years ago. Because this anomalous behavior was presumably due to anthropogenic carbon emissions from early agriculture, the Holocene provides a unique opportunity to evaluate the relative strength of competing climate forcings of orbital and greenhouse gas changes. Here we use the 1-degree, fully coupled Community Climate System Model version 4 (CCSM4) to investigate the climatic response to combined forcing from orbital and GHG changes since the mid-Holocene. Six equilibrium CCSM4 runs, 1,000 years apart, were performed to simulate the climate changes of the past 6,000 years. Our coupled CCSM4 simulations with combined forcing show that the simulated global mean annual surface temperature increases gradually during the past 6,000 years, following the gradual increase of GHG since the middle Holocene. Despite this global warming trend, the simulated Northern Hemisphere annual snow depths increase by over 20%. Orbital forcing causes a pronounced reduction of seasonality in the Northern Hemisphere mid-latitude regions, with increasingly cooler summers and shorter growing seasons likely presenting a challenge for the development of early agriculture. The simulated annual and summer precipitation decreases significantly over the Sahara region, with major reductions occurring between 5,000 and 4,000 years ago. Changes in hydrologic budgets also occur in parts of Europe, the Middle East, and Asia. The mechanisms of these simulated Holocene climate changes due to the competing orbital and

  14. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    NASA Astrophysics Data System (ADS)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  15. Does manure management affect the latent greenhouse gas emitting potential of livestock manures?

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D

    2015-12-01

    With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this.

  16. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  17. Effect of enhanced leachate recirculated (ELR) landfill operation and gas extraction on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Samir, Sonia

    The bioreactor/ enhanced leachate recirculated (ELR) landfill operation with the addition of moisture/ leachate to the landfill, accelerate the process of landfill waste decomposition; and increase the generation of LFG over a shorter period of time. Since emissions from the landfills are directly related to the gas generation, the increase in gas generation might also increase the emission from the landfill. On the contrary, the presence of gas extraction is suggested to mitigate the fugitive emissions from the landfills. Therefore, the motivation of the current study was to evaluate the effect of ELR operation as well as the gas extraction on the greenhouse gas emissions from the landfill. The current study was conducted in the City of Denton Landfill, Texas. Methane emission was investigated using a portable FID and static flux chamber technique from the landfill surface. Emission was measured from an ELR operated cell (cell 2) as well as a conventional cell (cell 0) in the City of Denton Landfill. Methane emission for cell 2 varied from 9544.3 ppm to 0 ppm while for cell 0, it varied from 0 ppm to 47 ppm. High spatial variations were observed during monitoring from both cells 0 and cell 2 which could be recognized as the variation of gas generation below the cover soil. The comparison between emissions from the slope and surface of the landfill showed that more methane emission occurred from the slopes than the top surface. In addition, the average landfill emission showed an increasing trend with increase in temperature and decreasing trend with increasing precipitation. The effect of ELR operation near the recirculation pipes showed a lag period between the recirculation and the maximum emission near the pipe. The emission near the pipe decreased after 1 day of recirculation and after the initial decrease, the emission started to increase and continued to increase up to 7 days after the recirculation. However, approximately after 10 days of recirculation, the

  18. Perfluorinated Compounds in Greenhouse and Open Agricultural Producing Areas of Three Provinces of China: Levels, Sources and Risk Assessment

    PubMed Central

    Zhang, Yanwei; Tan, Dongfei; Geng, Yue; Wang, Lu; Peng, Yi; He, Zeying; Xu, Yaping; Liu, Xiaowei

    2016-01-01

    Field investigations on perfluoroalkyl acid (PFAA) levels in various environmental matrixes were reported, but there is still a lack of PFAA level data for agricultural environments, especially agricultural producing areas, so we collected soil, irrigation water and agricultural product samples from agricultural producing areas in the provinces of Liaoning, Shandong and Sichuan in China. The background pollution from instruments was removed and C4–C18 PFAAs were detected by LC-MS/MS. The concentrations of PFAAs in the top and deep layers of soil were compared, and the levels of PFAAs in different agricultural environments (greenhouses and open agriculture) were analyzed. We found the order of PFAA levels by province was Shandong > Liaoning > Sichuan. A descending trend of PFAA levels from top to deep soil and open to greenhouse agriculture was shown and perfluorobutanoic