Science.gov

Sample records for agricultural growing seasons

  1. Non-growing season nitrous oxide fluxes from agricultural soils

    NASA Astrophysics Data System (ADS)

    Kariyapperuma Athukoralage, Kumudinie

    A two-year field experiment was conducted at the Arkell Research Station, Ontario, Canada to evaluate composting as a mitigation strategy for greenhouse gases (GHGs). The objectives were to quantify and compare non-growing season nitrous oxide (N2O) fluxes from agricultural soils after fall manure application of composted and untreated liquid swine manure. Nitrous oxide fluxes were measured using a micrometeorological method. Compared to untreated liquid swine manure (LSM), composted swine manure (CSM) resulted in 57% reduction of soil N2O emissions during February to April in 2005, but emissions during the same period in 2006 were not affected by treatments. This effect was related to fall and winter weather conditions with the significant reduction occurring in the year when soil freezing was more pronounced. The DNDC (DeNitrification-DeComposition) model was tested against data measured during the non-growing seasons from 2000 to 2004, for farming with conventional management at the Elora Research Station, Ontario, Canada. The objective was to assess the ability of the DNDC model to simulate non-growing season N2O fluxes from soils in southwestern Ontario. Comparison between model-simulated and measured data indicated that background fluxes were relatively well predicted. The spring thaw N2O flux event was correctly timed by the DNDC model, but was smaller than the measured spring thaw event. Though there was no N2O emission event measured in early May, the DNDC model predicted a large event, simultaneous with the physical release of predicted ice-trapped N2O. Removing the large and late predicted emission peak and increasing the contribution of newly produced N2O due to denitrification to the early spring thaw event were proposed. Three data sets from studies conducted in Ontario, Canada were used to estimate and compare the overall GHG (N2O and methane) emissions from LSM and CSM. Compared to LSM storage, the composting process reduced GHG emissions by 35% (CO

  2. The Effect of Agricultural Growing Season Change on Market Prices in Africa

    NASA Technical Reports Server (NTRS)

    deBeurs, K.M.; Brown, M. E.

    2013-01-01

    Local agricultural production is a key element of food security in many agricultural countries in Africa. Climate change and variability is likely to adversely affect these countries, particularly as they affect the ability of smallholder farmers to raise enough food to feed themselves. Seasonality influences farmers' decisions about when to sow and harvest, and ultimately the success or failure of their crops. At a 2009 conference in the United Kingdom hosted by the Institute of Development Studies, Jennings and Magrath (2009) described farmer reports from East Asia, South Asia, Southern Africa, East Africa and Latin America. Farmers indicate significant changes in the timing of rainy seasons and the pattern of rains within seasons, including: More erratic rainfall, coming at unexpected times in and out of season; Extreme storms and unusually intense rainfall are punctuated by longer dry spells within the rainy season; Increasing uncertainty as to the start of rainy seasons in many areas; Short or transitional second rainy seasons are becoming stronger than normal or are disappearing altogether. These farmer perceptions of change are striking in that they are geographically widespread and are remarkably consistent across diverse regions (Jennings and Magrath, 2009). The impact of these changes on farmers with small plots and few resources is large. Farming is becoming riskier because of heat stress, lack of water, pests and diseases that interact with ongoing pressures on natural resources. Lack of predictability in the start and length of the growing season affects the ability of farmers to invest in appropriate fertilizer levels or improved, high yielding varieties. These changes occur at the same time as the demand for food is rising and is projected to continue to rise for the next fifty years (IAASTD, 2008). Long-term data records derived from satellite remote sensing can be used to verify these reports, providing necessary analysis and documentation required

  3. Rainfall-derived growing season characteristics for agricultural impact assessments in South Africa

    NASA Astrophysics Data System (ADS)

    Ambrosino, Chiara; Chandler, Richard E.; Todd, Martin C.

    2014-02-01

    Precipitation variability imposes significant pressure in areas where agricultural practice is dominated by smallholder farmers who are dependent on subsistence farming. Advances in the understanding of this variability, in both time and space, have an important role to play in increasing the resilience of agricultural systems. The need is particularly pressing in regions of the world such as the African continent, which is already affected by multiple stresses including poverty and economic and political instability. In this paper, we explore the use of generalised linear models (GLMs) for this purpose, via a case study from north-east South Africa. A GLM is used to link the local rainfall variability to large-scale climate drivers identified from previous subcontinental-scale analyses, and the ability of the resulting model to simulate precipitation features that are relevant in agricultural applications is evaluated. We focus in particular on a set of growing season indices, proposed for the investigation of intraseasonal characteristics relevant for maize production in the region. Seven indices were computed from spatially averaged daily rainfall series from nine stations in the study area. As a first attempt to use GLMs for this type of application, the results are encouraging and suggest that the models are able to reproduce a range of agriculture-relevant indices. However, further research into spatial correlation structure is recommended to improve the multisite generation of the rainfall-derived characteristics.

  4. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China.

    PubMed

    Chen, Weiwei; Tong, Daniel; Zhang, Shichun; Dan, Mo; Zhang, Xuelei; Zhao, Hongmei

    2015-12-01

    This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city, China. Ambient air was sampled by filter-based samplers and online PM monitors. The filter samples were analyzed to determine the abundance of ionic/inorganic elements, organic carbon (OC) and elemental carbon (EC). The daily PM10 concentrations varied significantly over the monitoring period, with an average of 168±63 (in the range of 52-277)μg/m(3) during the land preparation/planting period (26 April-15 June), 85±65 (36-228)μg/m(3) during the growing season (16 June-25 September), and 207±88 (103-310)μg/m(3) during the harvest period (26 September-31 October). PM2.5 accounted for 44%, 56% and 66% of atmospheric PM10 during these periods, respectively. The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00 (LST) during the growing and harvesting seasons, while a gradual increase throughout the daytime until 17:00 was observed during tilling season. Mineral dust elements (Al, Ca, Fe, and Mg) dominated the PM10 chemical composition during the tilling season; OC, NO3(-), SO4(2-) and NH4(+) during the growing season; and carbonaceous species (i.e., OC and EC) during the harvesting season. Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region. Therefore, development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling.

  5. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    NASA Astrophysics Data System (ADS)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Although maize is the second most important crop worldwide, and the most important C4 crop, no study on biogenic volatile organic compounds (BVOCs) has yet been conducted on this crop at ecosystem scale and over a whole growing season. This has led to large uncertainties in cropland BVOC emission estimations. This paper seeks to fill this gap by presenting, for the first time, BVOC fluxes measured in a maize field at ecosystem scale (using the disjunct eddy covariance by mass scanning technique) over a whole growing season in Belgium. The maize field emitted mainly methanol, although exchanges were bi-directional. The second most exchanged compound was acetic acid, which was taken up mainly in the growing season. Bi-directional exchanges of acetaldehyde, acetone and other oxygenated VOCs also occurred, whereas the terpenes, benzene and toluene exchanges were small, albeit significant. Surprisingly, BVOC exchanges were of the same order of magnitude on bare soil and on well developed vegetation, suggesting that soil is a major BVOC reservoir in agricultural ecosystems. Quantitatively, the maize BVOC emissions observed were lower than those reported in other maize, crops and grasses studies. The standard emission factors (SEFs) estimated in this study (231 ± 19 µg m-2 h-1 for methanol, 8 ± 5 µg m-2 h-1 for isoprene and 4 ± 6 µg m-2 h-1 for monoterpenes) were also much lower than those currently used by models for C4 crops, particularly for terpenes. These results suggest that maize fields are small BVOC exchangers in north-western Europe, with a lower BVOC emission impact than that modelled for growing C4 crops in this part of the world. They also reveal the high variability in BVOC exchanges across world regions for maize and suggest that SEFs should be estimated for each region separately.

  6. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    NASA Astrophysics Data System (ADS)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Maize is the most important C4 crop worldwide. It is also the second most important crop worldwide (C3 and C4 mixed), and is a dominant crop in some world regions. Therefore, it can potentially influence local climate and air quality through its exchanges of gases with the atmosphere. Among others, biogenic volatile organic compounds (BVOC) are known to influence the atmospheric composition and thereby modify greenhouse gases lifetime and pollutant formation in the atmosphere. However, so far, only two studies have dealt with BVOC exchanges from maize. Moreover, these studies were conducted on a limited range of meteorological and phenological conditions, so that the knowledge of BVOC exchanges by this crop remains poor. Here, we present the first BVOC measurement campaign performed at ecosystem-scale on a maize field during a whole growing season. It was carried out in the Lonzée Terrestrial Observatory (LTO), an ICOS site. BVOC fluxes were measured by the disjunct by mass-scanning eddy covariance technique with a proton transfer reaction mass spectrometer for BVOC mixing ratios measurements. Outstanding results are (i) BVOC exchanges from soil were as important as BVOC exchanges from maize itself; (ii) BVOC exchanges observed on our site were much lower than exchanges observed by other maize studies, even under normalized temperature and light conditions, (iii) they were also lower than those observed on other crops grown in Europe. Lastly (iv), BVOC exchanges observed on our site under standard environmental conditions, i.e., standard emission factors SEF, were much lower than those currently considered by BVOC exchange up-scaling models. From those observations, we deduced that (i) soil BVOC exchanges should be better understood and should be incorporated in terrestrial BVOC exchanges models, and that (ii) SEF for the C4 crop plant functional type cannot be evaluated at global scale but should be determined for each important agronomic and pedo-climatic region

  7. Spatiotemporal variations in growing season exchanges of CO2, H2O,and sensible heat in agricultural fields of the Southern GreatPlains

    SciTech Connect

    Fischer, Marc L.; Billesbach, David P.; Berry, Joseph A.; Riley,William J.; Torn, Margaret S.

    2007-06-13

    Climate, vegetation cover, and management create fine-scaleheterogeneity in unirrigated agricultural regions, with important but notwell-quantified consequences for spatial and temporal variations insurface CO2, water, and heat fluxes. We measured eddy covariance fluxesin seven agricultural fields--comprising winter wheat, pasture, andsorghum--in the U.S. Southern Great Plains (SGP) during the 2001-2003growing seasons. Land-cover was the dominant source of variation insurface fluxes, with 50-100 percent differences between fields planted inwinter-spring versus fields planted in summer. Interannual variation wasdriven mainly by precipitation, which varied more than two-fold betweenyears. Peak aboveground biomass and growing-season net ecosystem exchange(NEE) of CO2 increased in rough proportion to precipitation. Based on apartitioning of gross fluxes with a regression model, ecosystemrespiration increased linearly with gross primary production, but with anoffset that increased near the time of seed production. Because theregression model was designed for well-watered periods, it successfullyretrieved NEE and ecosystem parameters during the peak growing season,and identified periods of moisture limitation during the summer. Insummary, the effects of crop type, land management, and water limitationon carbon, water, and energy fluxes were large. Capturing the controllingfactors in landscape scale models will be necessary to estimate theecological feedbacks to climate and other environmental impactsassociated with changing human needs for agricultural production of food,fiber, and energy.

  8. A complete and continuous pesticide screening during one growing season in five small Swiss rivers with agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Mangold, Simon; Comte, Rahel; Doppler, Tobias; Wittmer, Irene; Moschet, Christoph; Stamm, Christian; Singer, Heinz; Kunz, Manuel

    2016-04-01

    Agricultural pesticides are regularly found in surface waters at concentration levels that raise ecotoxicological concerns. Due to large fluctuations in concentration over time and the potentially high number of pesticides in agricultural watersheds, it is difficult to obtain a comprehensive overview of the actual pollution level. This collaborative project between research and Swiss federal and cantonal authorities aimed for a comprehensive analysis of pesticide pollution in five small agricultural streams to address this knowledge gap. The five rivers are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops, such as grains, vegetables, vineyards and orchards. Urban activities and influences are low. Twelve-hour composite samples were collected continuously from March until the end of August with automatic sampling devices, resulting in 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry (Orbitrap technology), involved a target screening of 248 pesticides including fungicides, herbicides, insecticides, as well as important transformation products. Data on the total number and distribution of pesticides, their detection frequency, crop specific applications and concentration time profiles will be presented. Preliminary results indicate substantial pesticide exposure since at least 20 different compounds were detected in all samples. One sample even contained a mixture of 80 pesticides. The majority of concentrations were in the low ng/L range but concentrations of a few compounds were very high (several micrograms/L) during discharge events as well as during low flow conditions

  9. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    SciTech Connect

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  10. Impact of Seasonal Forecasts on Agriculture

    NASA Astrophysics Data System (ADS)

    Aldor-Noiman, S. C.

    2014-12-01

    More extreme and volatile weather conditions are a threat to U.S. agricultural productivity today, as multiple environmental conditions during the growing season impact crop yields. That's why farmers' agronomic management decisions are dominated by consideration for near, medium and seasonal forecasts of climate. The Climate Corporation aims to help farmers around the world protect and improve their farming operations by providing agronomic decision support tools that leverage forecasts on multiple timescales to provide valuable insights directly to farmers. In this talk, we will discuss the impact of accurate seasonal forecasts on major decisions growers face each season. We will also discuss assessment and evaluation of seasonal forecasts in the context of agricultural applications.

  11. Projected changes in Malawi's growing season

    NASA Astrophysics Data System (ADS)

    Vizy, Edward K.; Cook, Kerry H.; Chimphamba, James; McCusker, Brent

    2015-09-01

    Regional climate model projections at 30-km resolution are used to predict future mid-century and late-century growing season changes over Malawi due to global warming under the Representative Concentration Pathway 8.5 business-as-usual emissions forcing scenario. Three different methods for estimating growing season characteristics are applied and evaluated. All three methods yield reasonable growing season length, onset, and demise date estimates over Malawi given the wide range of uncertainty of the observations. The projections indicate the likelihood for a shorter growing season in the future over Malawi south of 13.5°S. At mid-century the growing season length is predicted to be 20-40 % (20-55 days) shorter over the southernmost districts and 5-20 % (5-30 days) shorter over the central districts. By late-century the length is predicted to be 25-55 % (20-70 days) shorter with significant differences extending into northern Malawi. The shorter growing season is primarily associated with an earlier demise date, as no significant change in the onset date is predicted. Analysis of the regional circulation and horizontal moisture flux transport indicates that the earlier demise is associated with an intensification of the thermal low over the Kalahari Desert to the south and west of Malawi and an expansion of the mid-tropospheric Kalahari anticyclone over southern Africa. The stronger thermal low/anticyclone enhances the moisture flux divergence over Malawi suppressing the convective activity at the end of the wet season.

  12. Growing-season length and climatic variation in Alaska

    SciTech Connect

    Sharratt, B.S.

    1992-03-01

    The growing season has lengthened in the contiguous United States since 1900, coinciding with increasing northern hemispheric air temperatures. Information on growing season trends is needed in arctic regions where projected increases in air temperature are to be more pronounced. The lengths of the growing season at four locations in Alaska were evaluated for characteristic trends between 1917 and 1988. Freeze dates were determined using minimum temperature criteria of O deg and -3 deg C. A shortening of the season was found at Sitka and lengthening of the season at Talkeetna. The growing season shortened at Juneau and Sitka during the period 1940 to 1970, which corresponded with declining northern hemisphere temperature. Change in the growing season length was apparent in the Alaska temperature record, but the regional tendency for shorter or longer season needs further evaluation.

  13. Growing season surface water loading of fecal indicator organisms within a rural watershed.

    PubMed

    Sinclair, A; Hebb, D; Jamieson, R; Gordon, R; Benedict, K; Fuller, K; Stratton, G W; Madani, A

    2009-03-01

    The loading of microbial contaminants was examined within the Thomas Brook watershed, a 784 ha mixed land-use catchment located in the headwaters of the Cornwallis River drainage basin (Nova Scotia, Canada). The objectives were to: (i) examine spatial and temporal characteristics of fecal bacteria loading during the growing season from five subwatersheds, and (ii) develop areal fecal indicator organism export coefficients for rural landscapes. Fecal coliform, Escherichia coli, total suspended solids (TSS) concentrations and stream flow were monitored at five locations in the watershed over six consecutive growing seasons (May-Oct, 2001-2006). A nested watershed monitoring approach was used to determine bacterial loading from distinct source types (residential vs. agricultural) during both baseflow and stormflow periods. Areal bacterial loading rates increased in each nested watershed moving downstream through the watershed and were highest in the three subcatchments dominated by agricultural activities. Upper watershed bacterial loading throughout the growing season from an agricultural subcatchment (Growing Season Avg 8.92 x 10(10) CFU ha(-1)) was consistently higher than a residential subcatchment (Growing Season Avg 8.43 x 10(9) CFU ha(-1)). As expected, annual average stormflow bacterial loads were higher than baseflow loads, however baseflow loads still comprised between 14 and 35% of the growing season bacterial loads in the five subwatersheds. Fecal bacteria loads were greater during years with higher annual precipitation. A positive linear relationship was observed between E. coli and TSS loading during the 2005 and 2006 growing seasons when both parameters were monitored, indicating that the processes of sediment transport and bacterial transport are linked. It is anticipated that computed areal microbial loading coefficients will be useful in developing watershed management plans. More intensive sampling during stormflow events is recommended for

  14. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  15. Elevated CO2 further lengthens growing season under warming conditions.

    PubMed

    Reyes-Fox, Melissa; Steltzer, Heidi; Trlica, M J; McMaster, Gregory S; Andales, Allan A; LeCain, Dan R; Morgan, Jack A

    2014-06-12

    Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

  16. Seasonal Climate Forecasts and Adoption by Agriculture

    NASA Astrophysics Data System (ADS)

    Garbrecht, Jurgen; Meinke, Holger; Sivakumar, Mannava V. K.; Motha, Raymond P.; Salinger, Michael J.

    2005-06-01

    Recent advances in atmospheric and ocean sciences and a better understanding of the global climate have led to skillful climate forecasts at seasonal to interannual timescales, even in midlatitudes. These scientific advances and forecasting capabilities have opened the door to practical applications that benefit society. The benefits include the reduction of weather/climate related risks and vulnerability, increased economic opportunities, enhanced food security, mitigation of adverse climate impacts, protection of environmental quality, and so forth. Agriculture in particular can benefit substantially from accurate long-lead seasonal climate forecasts. Indeed, agricultural production very much depends on weather, climate, and water availability, and unexpected departures from anticipated climate conditions can thwart the best laid management plans. Timely climate forecasts offer means to reduce losses in drought years, increase profitability in good years, deal more effectively with climate variability, and choose from targeted risk-management strategies. In addition to benefiting farmers, forecasts can also help marketing systems and downstream users prepare for anticipated production outcomes and associated consequences.

  17. Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season

    NASA Technical Reports Server (NTRS)

    Campbell, J. Elliott; Carmichael, Gregory R.; Chai, T.; Mena-Carrasco, M.; Tang, Y.; Blake, D. R.; Blake, N. J.; Vay, Stephanie A.; Collatz, G. James; Baker, I.; Berry, J. A.; Montzka, S. A.; Sweeney, C.; Schnoor, J. L.; Stanier, Charles O.

    2008-01-01

    Climate models incorporate photosynthesis-climate feedbacks, yet we lack robust tools for large-scale assessments of these processes. Recent work suggests that carbonyl sulfide (COS), a trace gas consumed by plants, could provide a valuable constraint on photosynthesis. Here we analyze airborne observations of COS and carbon dioxide concentrations during the growing season over North America with a three-dimensional atmospheric transport model. We successfully modeled the persistent vertical drawdown of atmospheric COS using the quantitative relation between COS and photosynthesis that has been measured in plant chamber experiments. Furthermore, this drawdown is driven by plant uptake rather than other continental and oceanic fluxes in the model. These results provide quantitative evidence that COS gradients in the continental growing season may have broad use as a measurement-based photosynthesis tracer.

  18. "Something good can grow here": chicago urban agriculture food projects.

    PubMed

    Hatchett, Lena; Brown, Loretta; Hopkins, Joan; Larsen, Kelly; Fournier, Eliza

    2015-01-01

    Food security is a challenge facing many African-American low-income communities nationally. Community and university partners have established urban agriculture programs to improve access to high quality affordable fruits and vegetables by growing, distributing, and selling food in urban neighborhoods. While the challenge of food security is within communities of color, few studies have described these urban agriculture programs and documented their impact on the crew members who work in the programs and live in the low-income communities. More information is needed on the program impact for crew and community health promotion. Using a survey and focus group discussion from the crew and staff we describe the program and activities of four Chicago Urban Agriculture programs. We summarized the impact these programs have on crew members' perception of urban agriculture, health habits, community engagement, and community health promotion in low-income African-American neighborhoods.

  19. "Something good can grow here": chicago urban agriculture food projects.

    PubMed

    Hatchett, Lena; Brown, Loretta; Hopkins, Joan; Larsen, Kelly; Fournier, Eliza

    2015-01-01

    Food security is a challenge facing many African-American low-income communities nationally. Community and university partners have established urban agriculture programs to improve access to high quality affordable fruits and vegetables by growing, distributing, and selling food in urban neighborhoods. While the challenge of food security is within communities of color, few studies have described these urban agriculture programs and documented their impact on the crew members who work in the programs and live in the low-income communities. More information is needed on the program impact for crew and community health promotion. Using a survey and focus group discussion from the crew and staff we describe the program and activities of four Chicago Urban Agriculture programs. We summarized the impact these programs have on crew members' perception of urban agriculture, health habits, community engagement, and community health promotion in low-income African-American neighborhoods. PMID:25898220

  20. Estimating the Sensitivity of CLM-Crop to Plant Date and Growing Season Length

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Kotamarthi, V. R.

    2012-12-01

    The Community Land Model (CLM), the land component of the Community Earth System Model (CESM), is designed to estimate the land surface response to climate through simulated vegetation phenology and soil carbon and nitrogen dynamics. Since human influences play a significant role shaping the land surface, the vegetation has been expanded to include agriculture (CLM-Crop) for three crop types: corn, soybean, and spring wheat. CLM-Crop parameters, which define crop phenology, are optimized against AmeriFlux observations of gross primary productivity, net ecosystem exchange, and stored biomass and carbon, for two sites in the U.S. growing corn and soybean. However, there is uncertainty in the measurements and using a small subset of data to determine model parameters makes validation difficult. In order to account for the differences in plant behavior across climate zones, an input dataset is used to define the planting dates and the length of the growing season. In order to improve model performance, and to understand the impacts of uncertainty from the input data, we evaluate the sensitivity of crop productivity and production against planting date and the length of the growing season. First, CLM-Crop is modified to establish plant date based on temperature trends for the previous 10-day period, constrained against the range of observed planting dates. This new climate-based model is compared with the standard fixed plant dates to determine how sensitive the model is to when seeding occurs, and how comparable the climate calculated plant dates are to the fixed dates. Next, the length of the growing season will be revised to account for an alternative climate. Finally, both the climate-based planting and new growth season will be simulated together. Results of the different model runs will be compared to the standard model and to observations to determine the importance of planting date and growing season length on crop productivity and yield.

  1. Responses of Scots pine to waterlogging during growing season

    NASA Astrophysics Data System (ADS)

    Repo, Tapani; Launiainen, Samuli; Lehto, Tarja; Sutinen, Sirkka; Ruhanen, Hanna; Heiskanen, Juha; Laurén, Ari; Silvennoinen, Raimo; Vapaavuori, Elina; Finér, Leena

    2016-04-01

    For the future management and sustainable use of boreal forests it is crucial to consider the rate and strength of tree responses to an elevated water table and the concurrent oxygen limitations, especially in peatlands. We examined the response dynamics of 7-year-old Scots pine (Pinus sylvestris L.) seedlings to a five-week waterlogging (WL) during a growing season in a root lab experiment. WL took place after shoot elongation had ended whereas growth of the trunk diameter was still in progress. We monitored shoots and roots before, during and after WL treatment. Relations between the shoot and root responses, the latter being the primary target of the WL stress, will be discussed. We hypothesize that root responses, in terms of growth by minirhizotron imaging, will appear with delay as compared with the first symptoms in physiology of above-ground organs.

  2. The seasonal timing of warming that controls onset of the growing season.

    PubMed

    Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl

    2014-04-01

    Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models.

  3. The seasonal timing of warming that controls onset of the growing season.

    PubMed

    Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl

    2014-04-01

    Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. PMID:24115181

  4. Growing season methane budget of an Inner Mongolian steppe

    NASA Astrophysics Data System (ADS)

    Liu, Chunyan; Holst, Jirko; Yao, Zhisheng; Brüggemann, Nicolas; Butterbach-Bahl, Klaus; Han, Shenghui; Han, Xingguo; Tas, Bart; Susenbeth, Andreas; Zheng, Xunhua

    We present a methane (CH 4) budget for the area of the Baiyinxile Livestock Farm, which comprises approximately 1/3 of the Xilin river catchment in central Inner Mongolia, P.R. China. The budget calculations comprise the contributions of natural sources and sinks as well as sources related to the main land-use in this region (non-nomadic pastoralism) during the growing season (May-September). We identified as important CH 4 sources floodplains (mean 1.55 ± 0.97 mg CH 4-C m -2 h -1) and domestic ruminants, which are mainly sheep in this area. Within the floodplain significant differences between investigated positions were detected, whereby only positions close-by the river or bayous emitted large amounts of CH 4 (mean up to 6.21 ± 1.83 mg CH 4-C m -2 h -1). Further CH 4 sources were sheepfolds (0.08-0.91 mg CH 4-C m -2 h -1) and pasture faeces (1.34 ± 0.22 mg CH 4-C g -1 faeces dry weight), but they did not play a significant role for the CH 4 budget. In contrast, dung heaps were not a net source of CH 4 (0.0 ± 0.2 for an old and 0.0 ± 0.3 μg CH 4-C kg -1 h -1 for a new dung heap). Trace gas measurements along two landscape transects (volcano, hill slope) revealed expectedly a mean CH 4 uptake (volcano: 76.5 ± 4.3; hill: 28.3 ± 5.3 μg CH 4-C m -2 h -1), which is typical for the aerobic soils in this and other steppe ecosystems. The observed fluxes were rarely influenced by topography. The CH 4 emissions from the floodplain and the sheep were not compensated by the CH 4 oxidation of aerobic steppe soils and thus, this managed semi-arid grassland did not serve as a terrestrial sink, but as a source for this globally important greenhouse gas. The source strength amounted to 1.5-3.6 kg CH 4-C ha -1 during the growing season, corresponding to 3.5-8.7 kg C ha -1 yr -1.

  5. Excess growing-season water limits lowland black spruce productivity

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.

    2015-12-01

    The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.

  6. 317/319 phytoremediation site monitoring report - 2003 growing season.

    SciTech Connect

    Negri, M. C.; Gopalakrishnan, G.; Hamilton, C.; Energy Systems

    2004-02-20

    In 1999, Argonne National Laboratory-East (ANL-E) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by hydraulic control of the contaminated plume by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems Division (ES) in the growing season of 2003. ES was tasked with the biomonitoring of the plantation to determine contaminant uptake and groundwater contact. VOCs were found in plant tissue both at the French Drain and the Hydraulic Control locations in varying concentrations, and tritium levels in transpirate was found to continue a trend of higher concentrations compared to the background in the ANL-E area.

  7. 317/319 phytoremediation site monitoring report - 2005 growing season.

    SciTech Connect

    Negri, M. C.; Gopalakrishnan, G.; Energy Systems

    2006-03-31

    In 1999, Argonne National Laboratory (ANL) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by hydraulic control of the contaminated plume by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems Division (ES) in the growing season of 2005. Monitoring of the planted trees began soon after the trees were installed in 1999 and has been conducted every summer since then. As the trees grew and consolidated their growth into the contaminated soil and groundwater, their exposure to the contaminants was progressively shown through tissue sampling. However, as trees grow larger, some of the findings obtained in the early years when trees were much smaller may not hold true now and need to be verified again. During the 2005 sampling campaign, data from the French Drain area confirmed the results obtained in 2004 and earlier, and the previously found correlation between soil and branch concentrations. During the 2005 summer, studies under controlled conditions (cartridges) have shown a generally linear dose response of PCE uptake, and have also shown that tree concentrations of PCE decrease after flushing with clean water in short times when trees are exposed to low levels of the contaminant. This data proves that tree concentrations are transient, and that with proper time levels can return close to background

  8. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  9. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  10. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McNally, A.; Husak, G.; Funk, C.

    2014-03-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993-2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is

  11. Fertilizer application timing influences greenhouse gas fluxes over a growing season.

    PubMed

    Phillips, Rebecca L; Tanaka, Donald L; Archer, David W; Hanson, Jon D

    2009-01-01

    Microbial production and consumption of greenhouse gases (GHG) is influenced by temperature and nutrients, especially during the first few weeks after agricultural fertilization. The effect of fertilization on GHG fluxes should occur during and shortly after application, yet data indicating how application timing affects both GHG fluxes and crop yields during a growing season are lacking. We designed a replicated (n = 5) field experiment to test for the short-term effect of fertilizer application timing on fluxes of methane (CH(4)), carbon dioxide (CO(2)), and nitrous oxide (N(2)O) over a growing season in the northern Great Plains. Each 0.30-ha plot was planted to maize (Zea mays L.) and treated similarly with the exception of fertilizer timing: five plots were fertilized with urea in early spring (1 April) and five plots were fertilized with urea in late spring (13 May). We hypothesized time-integrated fluxes over a growing season would be greater for the late-spring treatment, resulting in a greater net GHG flux, as compared to the early-spring treatment. Data collected on 59 dates and integrated over a 5-mo time course indicated CO(2) fluxes were greater (P < 0.0001) and CH(4) fluxes were lower (P < 0.05) for soils fertilized in late spring. Net GHG flux was also significantly affected by treatment, with 0.84 +/- 0.11 kg CO(2) equivalents m(-2) for early spring and 1.04 +/- 0.13 kg CO(2) equivalents m(-2) for late spring. Nitrous oxide fluxes, however, were similar for both treatments. Results indicate fertilizer application timing influences net GHG emissions in dryland cropping systems.

  12. Changing water availability during the African maize-growing season, 1979-2010

    NASA Astrophysics Data System (ADS)

    Estes, Lyndon D.; Chaney, Nathaniel W.; Herrera-Estrada, Julio; Sheffield, Justin; Caylor, Kelly K.; Wood, Eric F.

    2014-07-01

    Understanding how global change is impacting African agriculture requires a full physical accounting of water supply and demand, but accurate, gridded data on key drivers (e.g., humidity) are generally unavailable. We used a new bias-corrected meteorological dataset to analyze changes in precipitation (supply), potential evapotranspiration ({{E}_{p}}, demand), and water availability (expressed as the ratio P/{{E}_{p}}) in 20 countries (focusing on their maize-growing regions and seasons), between 1979 and 2010, and the factors driving changes in {{E}_{p}}. Maize-growing areas in Southern Africa, particularly South Africa, benefitted from increased water availability due in large part to demand declines driven primarily by declining net radiation, increasing vapor pressure, and falling temperatures (with no effect from changing windspeed), with smaller increases in supply. Sahelian zone countries in West Africa, as well as Ethiopia in East Africa, had strong increases in availability driven primarily by rainfall rebounding from the long-term Sahelian droughts, with little change or small reductions in demand. However, intra-seasonal supply variability generally increased in West and East Africa. Across all three regions, declining net radiation contributed downwards pressure on demand, generally over-riding upwards pressure caused by increasing temperatures, the regional effects of which were largest in East Africa. A small number of countries, mostly in or near East Africa (Tanzania and Malawi) experienced declines in water availability primarily due to decreased rainfall, but exacerbated by increasing demand. Much of the reduced water availability in East Africa occurred during the more sensitive middle part of the maize-growing season, suggesting negative consequences for maize production.

  13. Impacts of climate change on the growing season in the United States

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Understanding the effects of climate change on the vegetative growing season is key to quantifying future hydrologic water budget conditions. The U.S. Geological Survey modeled changes in future growing season length at 14 basins across 11 states. Simulations for each basin were generated using five general circulation models with three emission scenarios as inputs to the Precipitation-Runoff Modeling System (PRMS). PRMS is a deterministic, distributed-parameter, watershed model developed to simulate the effects of various combinations of precipitation, climate, and land use on watershed response. PRMS was modified to include a growing season calculation in this study. The growing season was examined for trends in the total length (annual), as well as changes in the timing of onset (spring) and the end (fall) of the growing season. The results showed an increase in the annual growing season length in all 14 basins, averaging 27–47 days for the three emission scenarios. The change in the spring and fall growing season onset and end varied across the 14 basins, with larger increases in the total length of the growing season occurring in the mountainous regions and smaller increases occurring in the Midwest, Northeast, and Southeast regions. The Clear Creek basin, 1 of the 14 basins in this study, was evaluated to examine the growing season length determined by emission scenario, as compared to a growing season length fixed baseline condition. The Clear Creek basin showed substantial variation in hydrologic responses, including streamflow, as a result of growing season length determined by emission scenario.

  14. Long-term variations in phenological phases and growing season indexes in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Mozny, M.; Potop, V.; Hajkova, L.; Bares, D.; Stalmacher, M.; Trnka, M.; Bartosova, L.; Zalud, Z.

    2012-04-01

    Phenological phases reflect weather conditions immediately prior to their onset and are therefore very important documentary record of the impact of climate on plants in a particular region. We analyze the results of phenological observations in the Czech Republic in the years 1931-2010. Air temperature increases were associated with an earlier onset of phenological phases; not just the beginning of the growing season but also the interval between successive phenological phases was shorter. Spatial variability of average phenophase onset were executed by GIS methods, the maps use horizontal resolutions of 500 meters. To quantify the rate and timing of changes in canopy development was utilized Growing Season Index (GSI), which was calculated from conventional meteorological measurements. Finally, we used the GSI index for producing global maps that distinguish regional differences in the current phenological development in the Czech Republic. GSI index can be used in modeling of CO2 exchange at the interface of biosphere and atmosphere. We gratefully acknowledge the support of the Ministry of education, youth and sports project OC10010, LD11401 and National Agency for Agriculture Research project Q191C054.

  15. Growing season carbon dioxide exchange in flooded non-mulching and non-flooded mulching cotton.

    PubMed

    Li, Zhi-guo; Zhang, Run-hua; Wang, Xiu-jun; Chen, Fang; Tian, Chang-yan

    2012-01-01

    There is much interest in the role that agricultural practices might play in sequestering carbon to help offset rising atmospheric CO₂ concentrations. However, limited information exists regarding the potential for increased carbon sequestration of different management strategies. The objective of this study was to quantify and contrast carbon dioxide exchange in traditional non-mulching with flooding irrigation (TF) and plastic film mulching with drip irrigation (PM) cotton (Gossypium hirsutum L.) fields in northwest China. Net primary productivity (NPP), soil heterotrophic respiration (R(h)) and net ecosystem productivity (NEP) were measured during the growing seasons in 2009 and 2010. As compared with TF, PM significantly increased the aboveground and belowground biomass and the NPP (340 g C m⁻² season⁻¹) of cotton, and decreased the R(h) (89 g C m⁻² season⁻¹) (p<0.05). In a growing season, PM had a higher carbon sequestration in terms of NEP of ∼ 429 g C m⁻² season⁻¹ than the TF. These results demonstrate that conversion of this type of land use to mulching practices is an effective way to increase carbon sequestration in the short term in cotton systems of arid areas.

  16. Effects of seasonal snow on the growing season of temperate vegetation in China.

    PubMed

    Yu, Zhen; Liu, Shirong; Wang, Jingxin; Sun, Pengsen; Liu, Weiguo; Hartley, Damon S

    2013-07-01

    Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm yr(-1) (P = 0.07) during the period 1982-1998, and decreased at a rate of 0.36 cm yr(-1) (P = 0.09) during the period 1998-2005. Correspondingly, the SGS advanced at a rate of 0.68 day yr(-1) (P < 0.01) during 1982-1998, and delayed at a rate of 2.13 day yr(-1) (P = 0.07) during 1998-2005, against a warming trend throughout the entire study period of 1982-2005. Spring air temperature strongly regulated the SGS of both deciduous broad-leaf and coniferous forests, whereas the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. In addition, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation's SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the underground thermal conditions.

  17. Effects of seasonal snow on the growing season of temperate vegetation in China.

    PubMed

    Yu, Zhen; Liu, Shirong; Wang, Jingxin; Sun, Pengsen; Liu, Weiguo; Hartley, Damon S

    2013-07-01

    Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm yr(-1) (P = 0.07) during the period 1982-1998, and decreased at a rate of 0.36 cm yr(-1) (P = 0.09) during the period 1998-2005. Correspondingly, the SGS advanced at a rate of 0.68 day yr(-1) (P < 0.01) during 1982-1998, and delayed at a rate of 2.13 day yr(-1) (P = 0.07) during 1998-2005, against a warming trend throughout the entire study period of 1982-2005. Spring air temperature strongly regulated the SGS of both deciduous broad-leaf and coniferous forests, whereas the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. In addition, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation's SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the underground thermal conditions. PMID:23532953

  18. Spatiotemporal properties of growing season indices during 1961-2010 and possible association with agroclimatological regionalization of dominant crops in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Ci, Hui; Zhang, Qiang; Singh, Vijay P.; Xiao, Mingzhong; Liu, Lin

    2016-08-01

    Variations of frost days and growing season length (GSL) have been drawing increasing attention due to their impact on agriculture. The Xinjiang region in China is climatically an arid region and plays an important role in agriculture development. In this study, the GSL and frost events are analyzed in both space and time, based on the daily minimum, mean and maximum air surface temperature data covering a period of 1961-2010. Results indicate that: (1) a significant lengthening of GSL is detected during 1961-2010 in Xinjiang, China. The increasing rate of GSL over Xinjiang is about 2.5 days per decade. Besides, the starting time of growing season is 0.7 days earlier per decade and the ending time is 1.6 days later per decade. Generally, GSL in southern Xinjiang has larger increasing magnitude when compared to other regions of Xinjiang; (2) longer GSL and larger changing magnitude of growing season start (GSS), growing season end (GSE) and GSL in southern Xinjiang implies higher sensitivity of the growing season response to climate warming. Besides, GSL is in close relation with latitude, and higher latitude usually corresponds to later start and earlier end of growing season, and hence shorter GSL. In general, a northward increase of 1° latitude triggers an 8-day delay of the starting time of growing season, 6-day advance of the ending time of growing season, and thus the GSL is 14 days shorter; (3) GSL under different rates can reflect light and heat resources over Xinjiang. The GSL related to 80 % guarantee rate is 5-14 days shorter than the long-term annual mean GSL; (4) Lengthening of GSL has the potential to increase agricultural production. However, negative influences by climate warming, such as enhanced evapotranspiration, increasing weeds, insects, and pathogen-mediated plant diseases, should also be considered in planning, management and development of agriculture in Xinjiang.

  19. A comparison of growing season indices for the Greater Baltic Area.

    PubMed

    Walther, A; Linderholm, H W

    2006-11-01

    Predictions of the effects of global warming suggest that climate change may have large impacts on ecosystems. The length of the growing season is predicted to increase in response to increasing global temperatures. The object of this study was to evaluate different indices used for calculating the thermal growing season for the Greater Baltic Area (GBA). We included established indices of growing season start, end and length, as well as new and modified indices. Based on the results, the GBA can be divided into a maritime western part and a more continental eastern part, with the western part reacting more sensitively to the use of different indices. The eastern part is more stable, but even here the index-to-index differences are large. It was found that including or excluding a frost criterion had a significant influence on the initiation of the growing season in the western, maritime, parts of the GBA. Frost has not the same importance for the end of the growing season. However, some end indices can result in a "never ending" growing season. When looking at twentieth century trends in growing season parameters, it was found that, when averaged over the whole GBA, there was little difference in trends depending on the indices used. The general mean trend in the GBA for the twentieth century discloses an earlier onset of c. 12 days, a delayed end of c. 8 days and consequently a lengthening of the growing season of about 20 days.

  20. 317/319 phytoremediation site monitoring report - 2004 growing season.

    SciTech Connect

    Negri, M. C.; Gopalakrishnan, G.; Bogner, J.; Energy Systems

    2009-02-21

    In 1999, Argonne National Laboratory (ANL) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by hydraulic control of the contaminated plume by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems Division (ES) in the growing season of 2004. Monitoring of the planted trees began soon after the trees were installed in 1999 and has been conducted every summer since then. As the trees grew and consolidated their growth into the contaminated soil and groundwater, their exposure to the contaminants was progressively shown through tissue sampling. Since the inception of the project, significant progress was made in the refinement and testing of the analytical method (for which no official method is available), the determination of the optimal tissue for sampling, and of the variability of the concentrations within a specific tree. An understanding has also been developed on background concentrations of VOCs, and how to discriminate between VOCs that are associated with plant tissue because of aerial or of soil/groundwater uptake pathways. Also, during the 2003 sampling campaign, core samples from tree trunks were collected for the first time (the trees were large enough to stand the procedure). Data collected from the French Drain area last year supported the hypothesis that a correlation was present between

  1. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.

    PubMed

    Qin, Zhangcai; Zhuang, Qianlai; Zhu, Xudong; Cai, Ximing; Zhang, Xiao

    2011-12-15

    Using marginal agricultural lands to grow energy crops for biofuel feedstocks is a promising option to meet the biofuel needs in populous China without causing further food shortages or environmental problems. Here we quantify the effects of growing switchgrass and Miscanthus on Chinese marginal agricultural lands on biomass production and carbon emissions with a global-scale biogeochemical model. We find that the national net primary production (NPP) of these two biofuel crops are 622 and 1546 g C m(-2) yr(-1), respectively, whereas the NPP of food crops is about 600 g C m(-2) yr(-1) in China. The net carbon sink over the 47 Mha of marginal agricultural lands across China is 2.1 Tg C yr(-1) for switchgrass and 5.0 Tg C yr(-1) for Miscanthus. Soil organic carbon is estimated to be 10 kg C m(-2) in both biofuel ecosystems, which is equal to the soil carbon levels of grasslands in China. In order to reach the goal of 12.5 billion liters of bioethanol in 2020 using crop biomass as biofuel feedstocks, 7.9-8.0 Mha corn grain, 4.3-6.1 Mha switchgrass, or 1.4-2.0 Mha Miscanthus will be needed. Miscanthus has tremendous potential to meet future biofuel needs, and to benefit CO(2) mitigation in China.

  2. Likely changes in growing season indices under a climate change scenario for crop production in South Africa

    NASA Astrophysics Data System (ADS)

    Ambrosino, C.; Chandler, R. E.; Todd, M. C.

    2011-12-01

    Agriculture is still the major source of income and livelihood for most of South Africa's population, and cereals and grains are among the country's most important crops. In particular, the largest locally produced field crop and the most important source of carbohydrates in South Africa is maize (Zea mays L.). As well as extensive monoculture, maize production also dominates the smallholder farming system in areas such as the Limpopo District in north-east South Africa. It is therefore critical to understand the year-to-year changes in the planting season and rainfall characteristics in order to introduce management decision and mitigation measures in the agricultural sector (e.g. planting of drought-resistant crops or the choice between long and short-season cultivars). Indeed, one of the strategies that may be easily introduced by farmers is shifting the crop planting dates to adjust to changes in the rainfall regimes. The study presented here aims to characterise the inter-annual growing season variability through the use of 7 indices derived from daily precipitation, considered the most critical factor in rain-fed agriculture, having an impact on maize production. A statistical model is developed to generate daily rainfall sequences for the study area driven by large scale climate controls. An independent validation period is chosen to evaluate the performance of the statistical model in the rainfall generation process. Onset, length and cessation of the growing season, as well as indices representing the length of the mean and maximum dry spell during the season are derived from the area average daily simulated precipitation values. The fraction of rainy days and total precipitation during the growing season are also calculated. Finally, the projected change of the growing season indices between two investigated periods in the 20th and 21st centuries is investigated under a climate change scenario (a1b; e.g.: Fig.1). The outputs of this study may be used to

  3. Reflectance and internal structure of leaves from several crops during a growing season.

    NASA Technical Reports Server (NTRS)

    Sinclair, T. R.; Hoffer, R. M.; Schreiber, M. M.

    1971-01-01

    Measurements of spectral reflectance characteristics during a growing season of leaves from six crops are reported. These crops include soybeans, wheat, oats, sorghum, corn, and sudangrass. The characteristics measured are related to changes in leaf structure and water content.

  4. Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.

    PubMed

    Najar, Ahmed; Landhäusser, Simon M; Whitehill, Justin G A; Bonello, Pierluigi; Erbilgin, Nadir

    2014-01-01

    Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios.

  5. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient.

    PubMed

    Blume-Werry, Gesche; Wilson, Scott D; Kreyling, Juergen; Milbau, Ann

    2016-02-01

    There is compelling evidence from experiments and observations that climate warming prolongs the growing season in arctic regions. Until now, the start, peak, and end of the growing season, which are used to model influences of vegetation on biogeochemical cycles, were commonly quantified using above-ground phenological data. Yet, over 80% of the plant biomass in arctic regions can be below ground, and the timing of root growth affects biogeochemical processes by influencing plant water and nutrient uptake, soil carbon input and microbial activity. We measured timing of above- and below-ground production in three plant communities along an arctic elevation gradient over two growing seasons. Below-ground production peaked later in the season and was more temporally uniform than above-ground production. Most importantly, the growing season continued c. 50% longer below than above ground. Our results strongly suggest that traditional above-ground estimates of phenology in arctic regions, including remotely sensed information, are not as complete a representation of whole-plant production intensity or duration, as studies that include root phenology. We therefore argue for explicit consideration of root phenology in studies of carbon and nutrient cycling, in terrestrial biosphere models, and scenarios of how arctic ecosystems will respond to climate warming.

  6. Meteorological determinants of growing season onset in grassland

    NASA Astrophysics Data System (ADS)

    Orescanin, B.; Denning, S.; Baker, I. T.; Hanan, N. P.

    2012-12-01

    The exchange of the trace gases between the land and atmosphere is highly influenced by vegetation. Therefore, the representation of phenological properties in global carbon models plays a key role in understanding and predicting the global carbon cycle. Phenological parameters such as Leaf Area Index (LAI) and fraction of photosynthetically active radiation absorbed (fPAR) are often calculated or estimated based on remote sensing measurements, which can be biased by clouds, aerosols, or snow. Alternatively, we can prognose vegetation phenology through the use of models that predict vegetation status based on meteorological conditions. Here our goal is to provide better understanding of carbon dynamics as a function of phenological parameters and their dependence on meteorological forcing and also in the future we plan to estimate these parameters using data assimilation methodology. We evaluate phenological characteristics and their influence on carbon dynamics at Kruger National Park grassland site. Modeled carbon flux, as a function of prognosed phenological state is confronted with data from flux tower. By re-evaluating and better adjusting specific contributors to the growth season index (GSI) equation, we develop better understanding for prognostic phenology. These differences in phenology are reflected in modeled fluxes of energy, moisture, and carbon.

  7. Calculating High Resolution CWSI Maps for Entire Growing Season of a Cultivated Barley Field with UAV-Collected Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Jensen, R.; Nieto Solana, H.; Friborg, T.; Thomsen, A.

    2015-12-01

    With agriculture as the largest consumer of freshwater and an overall increasing pressure on water resources, developing more efficient irrigation systems is important. Combining the crop water stress index (CWSI) with unmanned aerial vehicles (UAVs) enables detection of which specific areas within a cultivated field that requires irrigation to ensure healthy growing plants. In this study remotely sensed, high resolution surface temperatures are collected with a thermal camera onboard an UAV. Temperatures are used to calculate spatially distributed, high resolution CWSI maps over a barley field during growing seasons 2014 and 2015. In early stages of the barley growing season, surface temperatures are an ensemble of both soil and canopy temperatures. Canopy temperatures are extracted using leaf area index and the two source energy balance modelling scheme. This approach enables CWSI calculations for homogeneous and evenly distributed crops (such as barley) during early as well as late stages of a growing season. CWSI maps are calculated using both an empirical and an analytical approach and are compared and validated against modelled canopy conductance and transpiration rates.

  8. Warming and elevated CO2 lead to longer growing season in temperate grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Observational data over time suggest that as climate has warmed the growing season has lengthened, although experimental warming shortens early-growing species’ life cycles. Are other plant species living longer? We found that experimental warming in a temperate, semi-arid grassland led to earlier l...

  9. Increased photosynthesis compensates for shorter growing season in subarctic tundra - seven years of snow accumulation manipulations

    NASA Astrophysics Data System (ADS)

    Bosiö, Julia; Johansson, Margareta; Njuabe, Herbert; Christensen, Torben R.

    2013-04-01

    This study was initiated to analyze the effect of snow cover on photosynthesis and plant growth in subarctic mires underlain by permafrost. Due to their narrow environmental window these raised bogs, often referred to as palsa mires, are highly sensitive to climatic changes. In Fennoscandia palsa mires are currently subjected to climate related thawing and shift in vegetational and hydrological patterns. Yet, we know little of how these subarctic permafrost mires react and feed back to such changes. By using snow fences to hinder snow drift the accumulation of snow was increased in six plots (10x20 m) in a snow manipulation experiment on a subarctic permafrost mire in northern Sweden. The thicker snow pack prolongs the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season. By measuring incoming and reflected photosynthetic active radiation (PAR) we wanted to address the question whether the increased snow thickness and associated delay of the growing season start affected the absorbed PAR and the accumulated gross primary production (GPP) over the season. The reflected PAR was measured at twelve plots where six of the plots experienced increased snow accumulation (treatment), and remaining six plots were untreated (control). Minikin QT sensors with integrated data loggers logged incoming and reflected PAR hourly throughout the growing seasons of 2011 and 2012. In July - September 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased accumulation of snow prolonged the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season in the treated plots. The end of the growing season was not affected by the snow manipulation. The delay of the growing season start and hence overall shortening of the growing season in the treatment plots was 18 days in 2011 and 3

  10. Pan-Arctic linkages between snow accumulation and growing season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-01-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the response of northern environments to changes in snow and growing season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG (growing season air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing season land surface characteristics, these associations were analyzed using the modern non-parametric technique of Alternating Conditional Expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and shading. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended

  11. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McNally, A.; Husak, G.; Funk, C.

    2014-10-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agropastoral management decisions, support optimal allocation of the region's water resources, and mitigate socioeconomic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's (FEWS NET) science team. We evaluate this forecast system for a region of equatorial EA (2° S-8° N, 36-46° E) for the March-April-May (MAM) growing season. This domain encompasses one of the most food-insecure, climatically variable, and socioeconomically vulnerable regions in EA, and potentially the world; this region has experienced famine as recently as 2011. To produce an "agricultural outlook", our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios describing the upcoming season. First, we forced the VIC model with high-quality atmospheric observations to produce baseline soil moisture (SM) estimates (here after referred as SM a posteriori estimates). These compared favorably (correlation = 0.75) with the water requirement satisfaction index (WRSI), an index that the FEWS NET uses to estimate crop yields. Next, we evaluated the SM forecasts generated by this system on 5 March and 5 April of each year between 1993 and 2012 by comparing them with the corresponding SM a posteriori estimates. We found that initializing SM forecasts with start-of-season (SOS) (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month and, in some cases, 3-month lead times. Similarly, when the forecast was initialized with midseason (i.e., 5

  12. [Effects of cropping systems on nitrous oxide emissions from paddy soils during the rice-growing season].

    PubMed

    Xiong, Zhengqin; Xing, Guangxi; Shi, Shulian; Du, Lijuan

    2003-10-01

    Cropping systems influence nitrous oxide (N2O) emissions from agricultural soils. Effects of 3 rice-based cropping systems on N2O emissions from paddy soils in pot experiment were investigated with closed chambers in triplicate. The results demonstrated that the seasonal N2O emission rate of the rice pot under rice-wheat cropping system was obviously higher than that of the early rice pot under double rice-wheat system, being 4.21 and 2.17 kg.hm-2, respectively. No distinct difference was observed between the seasonal average fluxes, which were 116.9 and 117.6 micrograms.m-2.h-1 respectively. Both of above mentioned seasonal average fluxes were greatly higher than that of the late rice pot under early rice-late rice-wheat cropping system and of rice pot under rice-flooding fallow system, being 67.0 and 42.1 micrograms.m-2.h-1 respectively. More than 91% of the seasonal emission was focused on the first half growing period both in the rice season in rice-wheat system and in the early rice season in double rice-wheat system in which the previous cropping was upland wheat. 91% of the seasonal emission was focused on the water drainage period including the mid-season aeration and final drainage in the late rice season in double rice-wheat system in which the previous cropping was lowland rice. The results implied that cropping system and water status of previous cropping impacted N2O emission from paddy soil. PMID:14986383

  13. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    PubMed

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-01

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (p<0.01). Persistence of E. coli in spring was correlated with higher maximum and minimum temperatures in this season, and more regular rainfall. The survival model gave very good fits for the progression of E. coli concentrations in the phyllosphere over time (R(2)=0.88 ± 0.12). In the spring season, decline rates of E. coli counts were faster (2013 p=0.18; 2014 p<0.005) for the bare ground-cultivated lettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (p<0.005). Bacteria fluctuated more, and persisted longer, in soil compared to lettuce phyllosphere, and mulch type was a factor for fecal coliform levels (p<0.05), with higher counts retrieved under plastic mulches in all trials, and higher enterococci

  14. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    PubMed

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-01

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (p<0.01). Persistence of E. coli in spring was correlated with higher maximum and minimum temperatures in this season, and more regular rainfall. The survival model gave very good fits for the progression of E. coli concentrations in the phyllosphere over time (R(2)=0.88 ± 0.12). In the spring season, decline rates of E. coli counts were faster (2013 p=0.18; 2014 p<0.005) for the bare ground-cultivated lettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (p<0.005). Bacteria fluctuated more, and persisted longer, in soil compared to lettuce phyllosphere, and mulch type was a factor for fecal coliform levels (p<0.05), with higher counts retrieved under plastic mulches in all trials, and higher enterococci

  15. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps.

    PubMed

    Moser, Lea; Fonti, Patrick; Büntgen, Ulf; Esper, Jan; Luterbacher, Jürg; Franzen, Julia; Frank, David

    2010-02-01

    The 2007 European larch (Larix decidua Mill.) growing season was monitored along two elevational transects in the Lötschental valley in the Swiss Alps. Phenological observations and weekly microcore sampling of 28 larch trees were conducted between April and October 2007 at seven study sites regularly spaced from 1350 to 2150 m a.s.l. on northwest- and southeast-facing slopes. The developmental stages of nearly 75,000 individual cells assessed on 1200 thin sections were used to investigate the links between the trees' thermal regimes and growth phases including the beginning and ending of cell enlargement, wall thickening and maturation of the stem wood. Needles appeared approximately 3-4 weeks earlier than stem growth. The duration of ring formation lasted from mid-May to the end of October, with the length of the growing season decreasing along elevation from 137 to 101 days. The onset of the different growing seasons changed by 3-4 days per 100 m elevation; the ending of the growing season, however, appeared minimally related to altitude. If associated with the monitored altitudinal lapse rate of -0.5 degrees C per 100 m, these results translate into a lengthening of the growing season by approximately 7 days per degree Celsius. This study provides new data on the timing and duration of basic growth processes and contributes to quantification of the impacts of global warming on tree growth and productivity.

  16. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).

    PubMed

    Ueyama, Masahito; Iwata, Hiroki; Harazono, Yoshinobu; Euskirchen, Eugénie S; Oechel, Walter C; Zona, Donatella

    2013-12-01

    To better understand the spatial and temporal dynamics of CO2 exchange between Arctic ecosystems and the atmosphere, we synthesized CO2 flux data, measured in eight Arctic tundra and five boreal ecosystems across Alaska (USA) and identified growing season and spatial variations of the fluxes and environmental controlling factors. For the period examined, all of the boreal and seven of the eight Arctic tundra ecosystems acted as CO2 sinks during the growing season. Seasonal patterns of the CO2 fluxes were mostly determined by air temperature, except ecosystem respiration (RE) of tundra. For the tundra ecosystems, the spatial variation of gross primary productivity (GPP) and net CO2 sink strength were explained by growing season length, whereas RE increased with growing degree days. For boreal ecosystems, the spatial variation of net CO2 sink strength was mostly determined by recovery of GPP from fire disturbance. Satellite-derived leaf area index (LAI) was a better index to explain the spatial variations of GPP and NEE of the ecosystems in Alaska than were the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Multiple regression models using growing degree days, growing season length, and satellite-derived LAI explained much of the spatial variation in GPP and net CO2 exchange among the tundra and boreal ecosystems. The high sensitivity of the sink strength to growing season length indicated that the tundra ecosystem could increase CO2 sink strength under expected future warming, whereas ecosystem compositions associated with fire disturbance could play a major role in carbon release from boreal ecosystems.

  17. Nitrogen and phosphorus leaching from growing season versus year-round application of wastewater on seasonally frozen lands.

    PubMed

    Zvomuya, Francis; Rosen, Carl J; Gupta, Satish C

    2006-01-01

    Land application of wastewater has become an important disposal option for food-processing plants operating year-round. However, there are concerns about nutrient leaching from winter wastewater application on frozen soils. In this study, P and N leaching were compared between nongrowing season application of tertiary-treated wastewater plus growing season application of partially treated wastewater (NGS) vs. growing season application of partially treated wastewater (GS) containing high levels of soil P. As required by the Minnesota Pollution Control Agency (MPCA), the wastewater applied to the NGS fields during October through March was treated such that it contained < or =6 mg L(-1) total phosphorus (TP), < or =10 mg L(-1) NO3-N, and < or =20 mg L(-1) total Kjeldahl nitrogen (TKN). The only regulation for wastewater application during the growing season (April through September) was that cumulatively it did not exceed the agronomic N requirements of the crop in any sprayfield. Application of tertiary-treated wastewater during the nongrowing season plus partially treated wastewater during the growing season did not significantly increase NO3-N leaching compared with growing season application of nonregulated wastewater. However, median TP concentration in leachate was significantly higher from the NGS (3.56 mg L(-1)) than from the GS sprayfields (0.52 mg L(-1)) or nonirrigated sites (0.52 mg L(-1)). Median TP leaching loss was also significantly higher from the NGS sprayfields (57 kg ha(-1)) than from the GS (7.4 kg ha(-1)) or control sites (6.9 kg ha(-1)). This was mainly due to higher hydraulic loading from winter wastewater application and limited or no crop P uptake during winter. Results from this study indicate that winter application of even low P potato-processing wastewater to high P soils can accelerate P leaching. We conclude that the regulation of winter wastewater application on frozen soils should be based on wastewater P concentration and

  18. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    SciTech Connect

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970

  19. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.

    PubMed

    Zeng, Ning; Zhao, Fang; Collatz, George J; Kalnay, Eugenia; Salawitch, Ross J; West, Tristram O; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in

  20. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    NASA Astrophysics Data System (ADS)

    Zeng, Ning; Zhao, Fang; Collatz, George J.; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-01

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 +/- 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in 1961

  1. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.

    PubMed

    Zeng, Ning; Zhao, Fang; Collatz, George J; Kalnay, Eugenia; Salawitch, Ross J; West, Tristram O; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in

  2. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  3. Time constraints in temperate-breeding species: influence of growing season length on reproductive strategies

    USGS Publications Warehouse

    Gurney, K. E. B.; Clark, Russell G.; Slattery, Stuart; Smith-Downey, N. V.; Walker, Jordan I.; Armstrong, L.M.; Stephens, S.E.; Petrula, Michael J.; Corcoran, R.M.; Martin, K.; Degroot, K.A.; Brook, Rodney W.; Afton, Alan; Cutting, K.; Warren, J.M.; Fournier, M.; Koons, David N.

    2011-01-01

    Organisms that reproduce in temperate regions have limited time to produce offspring successfully, and this constraint is expected to be more pronounced in areas with short growing seasons. Information concerning how reproductive ecology of endotherms might be influenced by growing season length (GSL) is rare, and species that breed over a broad geographic range provide an opportunity to study the effects of time constraints on reproductive strategies. We analyzed data from a temperate-breeding bird, the lesser scaup Aythya affinis; hereafter scaup, collected at eight sites across a broad gradient of GSL to evaluate three hypotheses related to reproductive compensation in response to varying time constraints. Clutch initiation date in scaup was unaffected by GSL and was unrelated to latitude; spring thaw dates had a marginal impact on timing of breeding. Clutch size declined during the nesting season, as is reported frequently in bird species, but was also unaffected by GSL. Scaup do not appear to compensate for shorter growing seasons by more rapidly reducing clutch size. This study demonstrates that this species is remarkably consistent in terms of timing of breeding and clutch size, regardless of growing season characteristics. Such inflexibility could make this species particularly sensitive to environmental changes that affect resource availabilities.

  4. Time constraints in temperate-breeding species: Influence of growing season length on reproductive strategies

    USGS Publications Warehouse

    Gurney, K. E. B.; Clark, R.G.; Slattery, S.M.; Smith-Downey, N. V.; Walker, J.; Armstrong, L.M.; Stephens, S.E.; Petrula, M.; Corcoran, R.M.; Martin, K.H.; Degroot, K.A.; Brook, Rodney W.; Afton, A.D.; Cutting, K.; Warren, J.M.; Fournier, M.; Koons, D.N.

    2011-01-01

    Organisms that reproduce in temperate regions have limited time to produce offspring successfully, and this constraint is expected to be more pronounced in areas with short growing seasons. Information concerning how reproductive ecology of endotherms might be influenced by growing season length (GSL) is rare, and species that breed over a broad geographic range provide an opportunity to study the effects of time constraints on reproductive strategies. We analyzed data from a temperate-breeding bird, the lesser scaup Aythya affinis; hereafter scaup, collected at eight sites across a broad gradient of GSL to evaluate three hypotheses related to reproductive compensation in response to varying time constraints. Clutch initiation date in scaup was unaffected by GSL and was unrelated to latitude; spring thaw dates had a marginal impact on timing of breeding. Clutch size declined during the nesting season, as is reported frequently in bird species, but was also unaffected by GSL. Scaup do not appear to compensate for shorter growing seasons by more rapidly reducing clutch size. This study demonstrates that this species is remarkably consistent in terms of timing of breeding and clutch size, regardless of growing season characteristics. Such inflexibility could make this species particularly sensitive to environmental changes that affect resource availabilities. ?? 2011 The Authors. Ecography ?? 2011 Ecography.

  5. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    PubMed

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.

  6. Determination of Spring Onset and Growing Season Duration using Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Min, Q.; Lin, Bing

    2006-01-01

    An integrated approach to retrieve microwave emissivity difference vegetation index (EDVI) over land regions has been developed from combined multi-platform/multi-sensor satellite measurements, including SSM/I measurements. A possible relationship of the remotely sensed EDVI and the leaf physiology of canopy is exploited at the Harvard Forest site for two growing seasons. This study finds that the EDVI is sensitive to leaf development through vegetation water content of the crown layer of the forest canopy, and has demonstrated that the spring onset and growing season duration can be determined accurately from the time series of satellite estimated EDVI within uncertainties about 3 and 7 days for spring onsets and growing season duration, respectively, compared to in-situ observations. The leaf growing stage may also be quantitatively monitored by a normalized EDVI. Since EDVI retrievals from satellite are generally possible during both daytime and nighttime under non-rain conditions, the EDVI technique studied here may provide higher temporal resolution observations for monitoring the onset of spring and the duration of growing season compared to currently operational satellite methods.

  7. Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season.

    PubMed

    Paiva, J A P; Garnier-Géré, P H; Rodrigues, J C; Alves, A; Santos, S; Graça, J; Le Provost, G; Chaumeil, G; Da Silva-Perez, D; Bosc, A; Fevereiro, P; Plomion, C

    2008-01-01

    The seasonal effect is the most significant external source of variation affecting vascular cambial activity and the development of newly divided cells, and hence wood properties. Here, the effect of edapho-climatic conditions on the phenotypic and molecular plasticity of differentiating secondary xylem during a growing season was investigated. Wood-forming tissues of maritime pine (Pinus pinaster) were collected from the beginning to the end of the growing season in 2003. Data from examination of fibre morphology, Fourier-transform infrared spectroscopy (FTIR), analytical pyrolysis, and gas chromatography/mass spectrometry (GC/MS) were combined to characterize the samples. Strong variation was observed in response to changes in edapho-climatic conditions. A genomic approach was used to identify genes differentially expressed during this growing season. Out of 3512 studied genes, 19% showed a significant seasonal effect. These genes were clustered into five distinct groups, the largest two representing genes over-expressed in the early- or late-wood-forming tissues, respectively. The other three clusters were characterized by responses to specific edapho-climatic conditions. This work provides new insights into the plasticity of the molecular machinery involved in wood formation, and reveals candidate genes potentially responsible for the phenotypic differences found between early- and late-wood.

  8. The effect of timing of growing season drought on flowering of a dominant C4 grass.

    PubMed

    Dietrich, John D; Smith, Melinda D

    2016-06-01

    Timing of precipitation is equally important as amount for determining ecosystem function, especially aboveground net primary productivity (ANPP), in a number of ecosystems. In tallgrass prairie of the Central Plains of North America, grass flowering stalks of dominant C4 grasses, such as Andropogon gerardii, can account for more than 70 % of ANPP, or almost none of it, as the number of flowering stalks produced is highly variable. Although growing season precipitation amount is important for driving variation in flowering stalk production, it remains unknown whether there are critical periods within the growing season in which sufficient rainfall must occur to allow for flowering. The effect of timing of rainfall deficit (drought) on flowering of A. gerardii, was tested by excluding rainfall during three periods within the growing season (starting in mid-April, mid-May and mid-June). Mid-summer drought (starting in mid-June) strongly reduced the flowering rate (e.g., density and biomass) of A. gerardii (e.g., as high as 94 % compared to the control), suggesting flowering is highly sensitive to precipitation at this time. This effect appeared to be related to plant water status at the time of flowering stalk initiation, rather than an indirect consequence of reduced C assimilation. Our results suggest that increased frequency of growing season drought forecast with climate change could reduce sexual reproduction in this dominant grass species, particularly if it coincides with timing of flowering stalk initiation, with important implications for ecosystem functioning.

  9. USDA Cranberry Entomology Laboratory (CEL) research priorities in the 2016 growing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research priorities during the 2016 growing season will be focused on 1) discovery and screening of native WI nematodes as bio-control agents, and 2) continued refinement of the drone-deployed mating disruption system. Extramural funding will be needed for both, and the degree of funding will dictat...

  10. Impacts of climate change on corn yield and the length of corn growing season in U.S. Corn Belt

    NASA Astrophysics Data System (ADS)

    Niyogi, D.; Liu, X.; Takle, E. S.; Anderson, C.; Andresen, J.; Alagarswamy, G.; Gramig, B. M.; Doering, O.

    2015-12-01

    This study is a result of a USDA sponsored project titled Useful to Usable (U2U): "Transforming Climate Variability and Change Information for Cereal Crop Producers". The objective of this project is to improve farm resilience and profitability in the U.S. Corn Belt region by transforming existing meteorological dataset into usable knowledge and tools for the agricultural community. In this study, we conducted the Hybrid-Maize corn growth simulation model at 18 sites across the U.S. Corn Belt with 5 CMIP5 (Coupled Model Intercomparison Project) climate models. The crop model was running for two time periods: 1981-2010 ('current') and 2041-2070 ('future'). We also developed a "delta" method, which combines the current climate variability with the "mean" model projected climate change. The results indicate that under the 'future' climate, growing degree days (GDD) projected corn growing season (from planting date reach to maturity required GDD) are shortened due to the increasing of mean temperature. Compare to the contemporary simulations, the shorter growing season under "future" scenario brings lower attainable yields if farmers using the same cultivar. This presentation will focus on the details about the model simulations, the interactive process employed in developing the simulations, the implications of the results, the uncertainties, and the lessons learned.

  11. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  12. [Quantifying direct N2O emissions from paddy fields during rice growing season in China: model establishment].

    PubMed

    Zou, Jian-Wen; Qin, Yan-Mei; Liu, Shu-Wei

    2009-02-15

    Various water management regimes, such as continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding-moist intermittent irrigation but without water logging (F-D-F-M), are currently practiced in paddy rice production in China. These water regimes have incurred a sensitive change in direct N2O emission from rice paddy fields. In order to establish statistical models quantifying the country-specific emission factor and background emission of N2O in paddy fields during the rice growing season, we compiled and statistically analyzed field data on 71 N2O measurements from 17 field studies that were published in peer-reviewed Chinese and English journals. For each field study, we documented the seasonal N2O emission, the type and amount of organic amendment and fertilizer nitrogen application, the water management regime, the drainage duration, the field location and cropping season. Seasonal total N2O was, on average, equivalent to 0.02% of the nitrogen applied in the continuous flooding rice paddies. Under the water regime of F-D-F or the F-D-F-M, seasonal N2O emissions increased with N fertilizer applied in rice paddies. Applying an Ordinary Least Square (OLS) linear regression model resulted in an emission factor of 0.42% for N2O, and in unpronounced background N2 O emission under the water regime of F-D-F. Under the F-D-F-M water regime, N2O emission factor and N2O-N background emission were estimated to be 0.73% and 0.79 kg x hm(-2) during the paddy rice growing season, respectively. After considering three different water regimes in rice paddies in China, the emission factor of N for N2O and N2O-N background emission averaged 0.54% and 0.43 kg x hm(-2). The results of this study suggest that paddy rice relative to upland crop production could have contributed to mitigating N2O emissions from agriculture in China. The emission factor of N for N2O and its background emissions can be directly adopted to develop

  13. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.

    PubMed

    Faure, Sebastien; Turner, Adrian S; Gruszka, Damian; Christodoulou, Vangelis; Davis, Seth J; von Korff, Maria; Laurie, David A

    2012-05-22

    The circadian clock is an autonomous oscillator that produces endogenous biological rhythms with a period of about 24 h. This clock allows organisms to coordinate their metabolism and development with predicted daily and seasonal changes of the environment. In plants, circadian rhythms contribute to both evolutionary fitness and agricultural productivity. Nevertheless, we show that commercial barley varieties bred for short growing seasons by use of early maturity 8 (eam8) mutations, also termed mat-a, are severely compromised in clock gene expression and clock outputs. We identified EAM8 as a barley ortholog of the Arabidopsis thaliana circadian clock regulator EARLY FLOWERING3 (ELF3) and demonstrate that eam8 accelerates the transition from vegetative to reproductive growth and inflorescence development. We propose that eam8 was selected as barley cultivation moved to high-latitude short-season environments in Europe because it allowed rapid flowering in genetic backgrounds that contained a previously selected late-flowering mutation of the photoperiod response gene Ppd-H1. We show that eam8 mutants have increased expression of the floral activator HvFT1, which is independent of allelic variation at Ppd-H1. The selection of independent eam8 mutations shows that this strategy facilitates short growth-season adaptation and expansion of the geographic range of barley, despite the pronounced clock defect.

  14. Soil microbial biomass alterations during the maize silage growing season relative to tillage method

    SciTech Connect

    Staley, T.E.

    1999-12-01

    Tillage method can significantly alter soil microbial populations and activities. Although considerable literature exists on microbial and soil chemical alterations under various tillage methods, little information exists on soil microbial biomass C (SMB) alterations during the growing season, and especially on the relationship of SMB to crop N use. The objective of this study was to determine the effect of notillage (NT) or conventional tillage (CT), and soil location, on SMB during the growing season. A maize (Zea mays L.) silage/{sup 15}N field experiment, under NT or CT for 3 yr before this study, was used during the fourth growing season. Averaged over sampling times and location (within-row or between-row), SMB in the 0- to 3.8-cm and 3.8- to 7.5-cm soil layers under NT was 87 and 33% greater, respectively, than under CT. Linear regression of soil surface layer (0--3.8 cm) SMB on day-of-year revealed a significant (P {le} 0.10) relationship only within-row and under NT, with a 29% SMB decrease during the growing season. Similar regressions for the other layers and treatments were significant (P > 0.10) or had small seasonal differences. SMB was consistently higher in the between-row locations under both tillage methods. Despite substantial tillage method-induced differences in SMB (50% overall, accompanied by small differential seasonal differences) in the more surficial layers, these alterations appear to have been of little practical consequence, since previous work on these plots revealed essentially no differences in silage utilization of either fertilizer N or soil N relative to tillage method. Thus, the importance of SMB in significantly affecting crop N use in this within-row, banded, maize silage system is questioned.

  15. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.

    PubMed

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2016-02-01

    Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4 ) in boreal peatlands. In this study, we investigated the short-term (1-3 years) vs. long-term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004-2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation-mediated effects on CH4 exchange.

  16. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.

    PubMed

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2016-02-01

    Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4 ) in boreal peatlands. In this study, we investigated the short-term (1-3 years) vs. long-term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004-2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation-mediated effects on CH4 exchange. PMID:26452333

  17. Seasonal trends of whitefly populations in a Mediterranean tomato growing area.

    PubMed

    Nannini, M; Foddi, F; Murgia, G; Pisci, R; Sanna, F; Testa, M

    2009-01-01

    The whiteflies Bemisia tabaci and Trialeurodes vaporariorum and their associated viruses constitute a major threat to tomato crops in the Mediterranean region. Continuous host availability and mild climate are thought to be among the factors contributing to the outbreaks of whitefly-related problems in this area. We carried out a year-long survey to investigate the relative contribution of different plants, agricultural and not, and indoor/outdoor crops as hosts of the two whiteflies and the tomato yellow leaf curl disease (TYLCD) in a multi-crop system typical of tomato growing areas in southern Sardinia (S. Margherita di Pula, Cagliari, Italy). For this purpose, during 2005 we monitored whitefly population trends in different plots of a horticulture farm, evaluated seasonal changes in the infestation density of the two pests on the most represented host species and assessed the incidence of TYLCD on tomato crops and susceptible weeds. Whitefly catches on yellow sticky traps were found to be higher inside et along the external perimeter of greenhouses compared to open field crops or uncultivated areas, thus suggesting significant adult movement between indoor and outdoor patches. In most plots flight activity increased between late spring and late summer, peaking in July. The number of immatures of the two whitefly species showed similar dynamics, but while T. vaporariorum reached the highest densities in greenhouse tomato crops in June, peak levels of 8. tabaci were recorded between July and August in outdoor horticultural crops and weeds. The occurrence of TYLCD was detected all year round on weed hosts, but the highest number of infected plants was observed in June on long cycle tomato crops. The present survey has demonstrated the contribution of non-agricultural plants the maintenance of tomato yellow leaf curl disease in the study site. However, tomato crops established in summer as major reservoirs of TYLCD-associated viruses and presumably played a key

  18. Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages.

    PubMed

    Bennett, Alison Elizabeth; Daniell, Tim John; Öpik, Maarja; Davison, John; Moora, Mari; Zobel, Martin; Selosse, Marc-André; Evans, Darren

    2013-01-01

    To date, few analyses of mutualistic networks have investigated successional or seasonal dynamics. Combining interaction data from multiple time points likely creates an inaccurate picture of the structure of networks (because these networks are aggregated across time), which may negatively influence their application in ecosystem assessments and conservation. Using a replicated bipartite mutualistic network of arbuscular mycorrhizal (AM) fungal-plant associations, detected using large sample numbers of plants and AM fungi identified through molecular techniques, we test whether the properties of the network are temporally dynamic either between different successional stages or within the growing season. These questions have never been directly tested in the AM fungal-plant mutualism or the vast majority of other mutualisms. We demonstrate the following results: First, our examination of two different successional stages (young and old forest) demonstrated that succession increases the proportion of specialists within the community and decreases the number of interactions. Second, AM fungal-plant mutualism structure changed throughout the growing season as the number of links between partners increased. Third, we observed shifts in associations between AM fungal and plant species throughout the growing season, potentially reflecting changes in biotic and abiotic conditions. Thus, this analysis opens up two entirely new areas of research: 1) identifying what influences changes in plant-AM fungal associations in these networks, and 2) what aspects of temporal variation and succession are of general importance in structuring bipartite networks and plant-AM fungal communities.

  19. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. PMID:24796872

  20. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season.

    PubMed

    Baptist, F; Flahaut, C; Streb, P; Choler, P

    2010-09-01

    Climate change effects on snow cover and thermic regime in alpine tundra might lead to a longer growing season, but could also increase risks to plants from spring frost events. Alpine snowbeds, i.e. alpine tundra from late snowmelt sites, might be particularly susceptible to such climatic changes. Snowbed communities were grown in large monoliths for two consecutive years, under different manipulated snow cover treatments, to test for effects of early (E) and late (L) snowmelt on dominant species growth, plant functional traits, leaf area index (LAI) and aboveground productivity. Spring snow cover was reduced to assess the sensitivity of snowbed alpine species to severe early frost events, and dominant species freezing temperatures were measured. Aboveground biomass, productivity, LAI and dominant species growth did not increase significantly in E compared to L treatments, indicating inability to respond to an extended growing season. Edapho-climatic conditions could not account for these results, suggesting that developmental constraints are important in controlling snowbed plant growth. Impaired productivity was only detected when harsher and more frequent frost events were experimentally induced by early snowmelt. These conditions exposed plants to spring frosts, reaching temperatures consistent with the estimated freezing points of the dominant species ( approximately -10 degrees C). We conclude that weak plasticity in phenological response and potential detrimental effects of early frosts explain why alpine tundra from snowbeds is not expected to benefit from increased growing season length.

  1. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  2. Seasonal sap flow of four Salix varieties growing on the Solvay wastebeds in Syracuse, NY, USA.

    PubMed

    Mirck, Jaconette; Volk, Timothy A

    2010-01-01

    Sap flow of four shrub willow varieties was measured to study their potential use as an evapotranspiration (ET) cover on the Solvay wastebeds to reduce deep percolation and leaching of chloride. Stem and stand-level sap flow and crop coefficients (K(c)) were different among four willow varieties measured between early June and mid November 2006. Diameter and cross sectional area had a significant impact on stand level sap flow. Peak stand-level sap flow of 7 mm d(-1) occurred in June, due to coupling of the willow with the atmosphere, and not in July or August when peak LAI was measured. The coupling also resulted in high K(c) values of 3 in June and above 2 in October with an average of 1.1-1.3 for the entire season. Our measurements confirmed the potentials of shrub willow in ET cover applications in the northeastern USA. Total transpiration for the growing season ranged between 494 mm and 533 mm, which was about 45% of the precipitation in 2006. Our calculations showed a significant difference between peak season sap flow in June, July and August and sap flow over the course of the whole growing season, which showed the need for long-term measurements.

  3. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    PubMed

    Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping

    2014-01-01

    Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  4. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    PubMed

    Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping

    2014-01-01

    Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models. PMID:25279567

  5. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    NASA Astrophysics Data System (ADS)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined

  6. Changes of the spruce forest stand aerodynamic properties during ten growing seasons

    NASA Astrophysics Data System (ADS)

    Hurtalova, T.; Matejka, F.; Janous, D.; Czerny, R.

    2009-04-01

    Objective of this study was to quantify the influence of a young spruce forest stand on airflow and its aerodynamic characteristics during ten growing seasons. With this aim the wind speed profiles measured in and above investigated spruce stand during growing seasons, from May to October, 1998-2007 were analysed. Experimental site is situated on a mild slope with SW orientation in the locality Bílý Kříž (49o30'17'' N, 18o32'28'' E, 898-908 m a.s.l.), which is in the highest part of the Moravian-Silesian Beskydy Mts, Czech Republic. The experimental site consisting of two plots Fd and Fs with different tree density is created by the monoculture of young Norway spruce stand (Picea abies L., Karst) with age of 17 years in 1998. Each of these plots has the area of 2500 m2, density of 2600 trees/ha in Fd plot and 2400 trees/ha in Fs plot in 1998, and gradually 1652 trees/ha (Fd) and 1428 trees/ha (Fs) in 2007. The aerodynamic characteristics can be described by the roughness length (z0) and the zero plane displacement (d). The presented study aims to analyse the changes in d and z0 values for a young spruce forest stand during ten consecutive growing seasons, and to relate the aerodynamic properties of an air layer affected by this stand to its growth parameters. It is known, that the local terrain and structure of forest stand influenced the direction and power of the airflow, as well as the structure of vertical wind speed profiles. From the wind speed profile analysis it follows, that the investigated spruce stand was in an aerodynamic unsteady state and then d and z0 values vary also with the wind speed. During investigated seasons the mean seasonal z0 values ranged between 0.48 m and 1.32 m in Fd and the corresponding values in Fs plot varied between 0.41 m and 1.36 m. The mean seasonal d values varied between 0.60h and 0.76h in Fd, and 61h and 0.76h in Fs, h is mean stand height.

  7. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981-1989

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Newcomb, W. W.; Los, S. O.; Prince, S. D.

    1991-01-01

    Images are presented that show the mean and coefficient of variation of nine years (1981-1989) of NOAA AVHRR normalized difference vegetation index (NDVI) data for the growing season (July-October) in Africa, north of the equator. The variation in the growing season NDVI is represented by the coefficient of variation image that shows the large variation in the Sahelian growing season between years. It is concluded that these images illustrate some aspects of the perspective being brought to regional and continental scale processes by coarse resolution satellite sensors and the potential of these sensors to provide consistent, long-term datasets.

  8. Does the start and end of the biological growing season respond independently to a changing climate?

    NASA Astrophysics Data System (ADS)

    Bolmgren, Kjell

    2016-04-01

    Adaptation of the biological growing season to a changing climatic requires that plants can adapt their phenology plastically or genetically to new conditions. Physiological and evolutionary constraints may, however, hamper such adaptations. Here, we study correlations between leafing out and autumn coloration phenology, that is, the start and end of the green growing season. In temperate, deciduous tree species the period with green leaves is more or less the same as the individual leaf's life span. General plant ecological strategy schemes suggest that the individual leaf's life span is one of the major dimensions evolutionary associated with other leaf and plant characteristics, including expensive investments in leaf nutrient content and leaf morphology. Leaf life span is thus considered highly conserved within evolutionary lineages. At the same time, local adaptation of leaf phenology to the length of the climatic growing season is common, both when it comes to leafing out cues and autumn senescence cues, suggesting that there are strong selection pressures and adaptability (plastic and/or genetic) to make use of the climatically defined growing season. We used a data set from a Swedish, national phenology network where volunteer observers recorded the start of leafing out defined as 'when the tree looks green from a distance' and the start of autumn leaf coloration as 'when 1/3 of the tree canopy had attained autumn colors'. In the subset used observations were made at 489 sites/farms between 1873-1922. We only included data when the observer at a site and year had recorded both spring leafing and autumn leaf coloration phenology on the same species. In total, the data set comprised 25'099 observations of 17 species. As the participants in the phenology monitoring network were volunteers, the data matrix has lots of missing data and unbalanced representation from different sites. We used linear mixed model analyses, including year as random factor, to analyse

  9. Migrant and Seasonal Agricultural Areas. Methodology for Designating High Impact.

    ERIC Educational Resources Information Center

    HCR, Washington, DC.

    This report describes a method to estimate the number of migrant and seasonal farmworkers present in a prescribed area during crop harvest, and to pinpoint areas of high need for health and social services. The collection of health clinic and federal program data on migrant and seasonal farmworkers in Florida, northwestern Ohio, and Maryland's…

  10. Growing season ecosystem and leaf-level gas exchange of an exotic and native semiarid bunchgrass.

    PubMed

    Hamerlynck, Erik P; Scott, Russell L; Moran, M Susan; Keefer, Timothy O; Huxman, Travis E

    2010-07-01

    The South African grass, Lehmann lovegrass (Eragrostis lehmanniana), may alter ecosystem processes across extensive semiarid grasslands and savannahs of western North America. We compared volumetric soil moisture (theta), total and green tissue leaf area index (LAI), ecosystem (i.e. whole-plant and soil), and leaf-level gas exchange of Lehmann lovegrass and the native bush muhly (Muhlenbergia porteri) over the 2008 monsoon season in a semiarid savanna in southern Arizona, USA, to see if these were consistent with high productivity associated with lovegrass invasive success. theta across 0-5 and 0-25 cm was higher while evapotranspiration (ET) was similar between lovegrass and bush muhly plots, except shortly after rainfall, when ET was 32-81% higher in lovegrass plots. Lehmann lovegrass had lower, quickly developing LAI with greater leaf proportions than bush muhly. When early season theta was high, net ecosystem CO(2) exchange (NEE) was similar, but as storm frequency and theta declined, NEE was more negative in lovegrass (-0.69 to -3.00 micromol m(-2) s(-1)) than bush muhly (+1.75 to -1.55 micromol m(-2) s(-1)). Ecosystem respiration (R (eco)) responded quickly to monsoon onset and late-season rains, and was lower in lovegrass (2.44-3.74 micromol m(-2) s(-1)) than bush muhly (3.60-5.3 micromol m(-2) s(-1)) across the season. Gross ecosystem photosynthesis (GEP) was greater in Lehmann lovegrass, concurrent with higher leaf-level photosynthesis and stomatal conductance. We conclude that canopy structure facilitates higher theta under Lehmann lovegrass, reducing phenological constraints and stomatal limitations to whole-plant carbon uptake through the short summer monsoon growing season.

  11. Using knowledge of agricultural practices to enhance through-the-season interpretation of Landsat data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Pestre, C. R.

    1984-01-01

    Landsat data contain features that can be interpreted to produce information about crops, in support of crop estimation procedures. This paper considers ways in which detailed knowledge of agricultural practices and events might increase and improve the utilization of Landsat data in both the predictive and observational or measurement components of such procedures. Landsat observables related to agricultural practices and events throughout the cropping season are listed. Agricultural fields are identified as the preferred observational units for incorporating refined agricultural understanding, such as crop rotation patterns, into machine procedures. Uses of Landsat data from both prior seasons and the current season are considered, as is use of predictive models of crop appearance. The investigation of knowledge engineering systems tailored to through-the-season estimation problems is recommended for long range development.

  12. Temporal evolution of the macropore network and saturated hydraulic conductivity in an arable, clayey topsoil during one growing season

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Köstel, Johannes; Jarvis, Nicholas; Larsbo, Mats

    2015-04-01

    Soil macropore networks and thus hydraulic properties at and close to saturation vary considerably with time, as a result of the dynamic nature of a diverse range of interacting soil structure-forming and degrading factors such as tillage and traffic events, faunal and plant root activity, swell/shrink arising from wetting and drying cycles, freeze-thaw etc. These properties are nevertheless treated as constants in most hydrological modelling studies. This is mostly justified by a lack of understanding of the processes driving these changes. Temporal variations of saturated and near-saturated hydraulic conductivity have been studied in the field (e.g. by tension disc infiltrometer), but these measurements only indirectly reflect the characteristics of the macropore network. In this study, we used non-destructive X-ray tomography to investigate the temporal changes in the macropore network characteristics occurring in the harrowed layer of a conventionally-tilled agricultural field over one growing season. Undisturbed soil cores (60-70 mm height, 68 mm diameter) were sampled on five different occasions. Changes in the geometric and topological properties of the X-ray imaged macropore system (voxel resolution = 120 µm) were compared with variations in saturated hydraulic conductivity measured on the same samples. Image analysis showed that total porosity, specific surface area, average pore diameter and the connectivity of the pore system in the uppermost 60-70 mm of ploughed and harrowed soil decreased from the first sampling occasion shortly after seedbed preparation and sowing until the middle of the growing season after which it slightly increased again. Separate analysis of the total porosity of the top 5 mm showed a marked decrease between the first two sampling occasions, followed by a gradual increase. Despite these structural changes in the macropore system, saturated hydraulic conductivity was only weakly correlated with macropore network characteristics.

  13. Season of testing and its effect on feed intake and efficiency in growing beef cattle.

    PubMed

    Mujibi, F D N; Moore, S S; Nkrumah, D J; Wang, Z; Basarab, J A

    2010-12-01

    This study sought to assess whether residual feed intake (RFI) calculated by regressing feed intake (DMI) on growth rate (ADG) and metabolic mid-BW in 3 different ways led to similar estimates of genetic parameters and variance components for young growing cattle tested for feed intake in fall and winter seasons. A total of 378 beef steers in 5 cohorts were fed a typical high energy feedlot diet and had free-choice access to feed and water. Feed intake data were collected in fall or winter seasons. Climate data were obtained from the University of Alberta Kinsella meteorological station and Vikings AGCM station. Individual animal RFI was obtained by either fitting a regression model to each test group separately (RFI(C)), fitting a regression model to pooled data consisting of all cohorts but including test group as a fixed effect (RFI(O)), or fitting a regression to pooled data with test group as a fixed effect but within seasonal (fall-winter or winter-spring) groups (RFI(S)). Two animal models (M1 and M2) that differed by the inclusion of fixed effects of test group or season, respectively, were used to evaluate RFI measurements. Feed intake was correlated with air temperature, relative humidity, solar radiation, and wind speed (-0.26, 0.23, 0.30, -0.14 for fall-winter and 0.31, -0.04, 0.14, 0.16 for winter-spring, respectively), but the nature and magnitude of the correlations were different for the 2 seasons. Single trait direct heritability, model likelihood, direct genetic variance, and EBV accuracy estimates were greatest for RFI(C) and least for RFI(O) for both M1 and M2 models. A significant genetic correlation was also observed between RFI(O) and ADG, but not for RFI(C) and RFI(S). Including a season effect (M2) in the genetic evaluation of RFI(O) resulted in the smallest heritability, model LogL, EBV accuracy, and largest residual variance estimates. These results, though not conclusive, suggest a possible effect of seasonality on feed intake and thus

  14. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Slayback, D. A.; Pinzon, J. E.; Los, S. O.; Myneni, R. B.; Taylor, M. G.

    2001-01-01

    Normalized difference vegetation index data from the polar-orbiting National Oceanic and Atmospheric Administration meteorological satellites from 1982 to 1999 show significant variations in photosynthetic activity and growing season length at latitudes above 35 degrees N. Two distinct periods of increasing plant growth are apparent: 1982-1991 and 1992-1999, separated by a reduction from 1991 to 1992 associated with global cooling resulting from the volcanic eruption of Mt. Pinatubo in June 1991. The average May to September normalized difference vegetation index from 45 degrees N to 75 degrees N increased by 9% from 1982 to 1991, decreased by 5% from 1991 to 1992, and increased by 8% from 1992 to 1999. Variations in the normalized difference vegetation index were associated with variations in the start of the growing season of -5.6, +3.9, and -1.7 days respectively, for the three time periods. Our results support surface temperature increases within the same period at higher northern latitudes where temperature limits plant growth.

  15. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    PubMed Central

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  16. The Interannual Variability of the Onset of the Maize Growing Season over South Africa and Zimbabwe.

    NASA Astrophysics Data System (ADS)

    Tadross, M. A.; Hewitson, B. C.; Usman, M. T.

    2005-08-01

    Subsistence farmers within southern Africa have identified the onset of the maize growing season as an important seasonal characteristic, advance knowledge of which would aid preparations for the planting of rain-fed maize. Onset over South Africa and Zimbabwe is calculated using rainfall data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Computing Center for Water Research (CCWR). The two datasets present similar estimates of the mean, standard deviation, and trend of onset for the common period (1979-97) over South Africa. During this period, onset has been tending to occur later in the season, in particular over the coastal regions and the Limpopo valley. However, the CCWR data (1950-97) indicate that this is part of long-term (decadal) variability.Characteristic rainfall patterns associated with late and early onset are estimated using a self-organizing map (SOM). Late onset is associated with heavier rainfall over the subcontinent. When onset is early over Zimbabwe, there is an increased frequency of more intense rainfall over northeast Madagascar during the preceding August. Accompanying these intense events is an increased frequency of positive 500-hPa geopotential height anomalies to the southeast of the continent. Similar positive height anomalies are also frequently present during early onset. The study indicates that onset variability is partly forced by synoptic conditions, and the successful use of general circulation models to estimate onset will depend on their simulation of the zonally asymmetric component of the westerly circulation.

  17. A multi-refuge study to evaluate the effectiveness of growing-season and dormant-season burns to control cattail

    USGS Publications Warehouse

    Gleason, Robert A.; Tangen, Brian A.; Laubhan, Murray K.; Lor, Socheata

    2012-01-01

    Proliferation of invasive cattails (for example, Typha x glauca, T. angustifolia) is a concern of wetland managers across the country, and numerous methods have been used to control the spatial extent and density of the plant. To date, however, no single method has proven widely or consistently effective at reducing the long-term growth and spread of these species. We performed a multi-refuge study to evaluate the relative effects of growing-season and dormant-season prescribed burns on cattail production and to gain insight on variables such as soil moisture, groundwater, and biomass that affect the efficacy of burning as a control method. Results indicate total cattail cover recovers to pre-burn levels within 1 year regardless of whether the controlled burn was implemented during the growing season or dormant season. Growing-season burns, however, did result in lower aboveground and belowground cattail biomass 1-year post-burn, whereas no significant change in biomass was detected for dormant-season burns. Study results support the premise that burns implemented during the growing season should have a greater effect on nutrient reserves and cattail re-growth. Results from this and other studies suggest long-term research that incorporates multiple management strategies will be required to evaluate the potential of prescribed burning as a method to control cattail.

  18. Seasonality in birth defects, agricultural production and urban location.

    PubMed

    McKinnish, Terra; Rees, Daniel I; Langlois, Peter H

    2014-12-01

    This paper tests whether the strength of the "spring spike" in birth defects is related to agricultural production and urban location using Texas Birth Defects Registry data for the period 1996-2007. We find evidence of a spike in birth defects among children conceived in the spring and summer, but it is more pronounced in urban non-agricultural counties than in other types of counties. Furthermore, the spike lasts longer in urban non-agricultural counties as compared to other types of counties.

  19. Scaling foliar respiration to the stand level throughout the growing season in a Quercus rubra forest.

    PubMed

    Xu, Cheng-Yuan; Griffin, Kevin L

    2008-04-01

    Stand-level, canopy foliar carbon loss (R(can)) was modeled for a virtual Quercus rubra L. monoculture at two sites differing in soil water availability in a northeastern deciduous forest (USA) throughout the 2003 growing season. Previously reported foliar respiratory temperature responses of Q. rubra were used to parameterize a full distributed physiology model that estimates R(can) by integrating the effects of season, site and canopy position, and represents the best estimation of R(can). Model sensitivity to five simplified parameterization scenarios was tested, and a reasonable procedure of simplification was established. Neglecting effects of season, site or canopy position on respiration causes considerable relative error in R(can) estimation. By contrast, assuming a constant E(0) (a temperature response variable of the respiration model), or a constant night temperature (mean nighttime temperature) caused only a small relative error (< 10%) compared with the full model. From June 8 to October 28, 2003, modeled R(can) of the virtual Q. rubra monoculture was, on average, 45.3 mmol CO(2) m(-2) night(-1) on a ground-area basis (or 334 mmol CO(2) kg(-1) night(-1) on a biomass basis) and 101 mmol CO(2) m(-2) night(-1) (or 361 mmol CO(2) kg(-1) night(-1)) at the drier site and the more mesic site, respectively. To model R(can) of Q. rubra (or other Quercus species with similar respiratory properties), variations in the base respiration rate across season, site and canopy position need to be fully accounted for, but E(0) may be assumed constant. Modeling R(can) at the mean nighttime temperature would not strongly affect estimated canopy carbon loss.

  20. Scaling foliar respiration to the stand level throughout the growing season in a Quercus rubra forest.

    PubMed

    Xu, Cheng-Yuan; Griffin, Kevin L

    2008-04-01

    Stand-level, canopy foliar carbon loss (R(can)) was modeled for a virtual Quercus rubra L. monoculture at two sites differing in soil water availability in a northeastern deciduous forest (USA) throughout the 2003 growing season. Previously reported foliar respiratory temperature responses of Q. rubra were used to parameterize a full distributed physiology model that estimates R(can) by integrating the effects of season, site and canopy position, and represents the best estimation of R(can). Model sensitivity to five simplified parameterization scenarios was tested, and a reasonable procedure of simplification was established. Neglecting effects of season, site or canopy position on respiration causes considerable relative error in R(can) estimation. By contrast, assuming a constant E(0) (a temperature response variable of the respiration model), or a constant night temperature (mean nighttime temperature) caused only a small relative error (< 10%) compared with the full model. From June 8 to October 28, 2003, modeled R(can) of the virtual Q. rubra monoculture was, on average, 45.3 mmol CO(2) m(-2) night(-1) on a ground-area basis (or 334 mmol CO(2) kg(-1) night(-1) on a biomass basis) and 101 mmol CO(2) m(-2) night(-1) (or 361 mmol CO(2) kg(-1) night(-1)) at the drier site and the more mesic site, respectively. To model R(can) of Q. rubra (or other Quercus species with similar respiratory properties), variations in the base respiration rate across season, site and canopy position need to be fully accounted for, but E(0) may be assumed constant. Modeling R(can) at the mean nighttime temperature would not strongly affect estimated canopy carbon loss. PMID:18244949

  1. Impacts of intra-seasonal agricultural decision-making and forecast information on maize production in Zambia

    NASA Astrophysics Data System (ADS)

    Tian, D.; Estes, L. D.; Evans, T. P.; Caylor, K. K.; Sheffield, J.; Wood, E. F.

    2015-12-01

    Maize is the most important food staple in sub-Saharan Africa. Climate change and rainfall variability pose great risks on maize production in this region. Intra-seasonal adaptive management combined with more skillful weather forecasts has the potential to improve the resilience of agricultural systems. Our aim is to understand the extent to which within-season agricultural management decisions can mitigate weather risks to maize production, and the degree to which this mitigation varies as a function of when the decision is made and the trajectory of weather. Using Zambia as a test case, we conducted crop-modeling experiments to determine which crop and water management decisions (typical of smallholder farmers) are most effective in mitigating rainfall-driven yield reductions under three precipitation scenarios (below normal, normal, and above normal). Yields were simulated using the DSSAT CERES-Maize model driven by an ensemble of historical weather data. Potential maize yields under different management options were simulated from different forecast points during the growing season, starting at planting and then in successive two-week intervals through the grain-filling period. The yield distributions were constructed as a function of the weather conditions and the management options, with results indicating which decision options provide the most mitigation in relation to a) the particular point in the growing season at which they are made, and b) the potential rainfall scenario. This study will help to understand how smallholder farmers in semi-arid systems may increase their resilience to highly variable weather by using typical within-season management options, and which decisions are most robust to forecast uncertainty.

  2. Effects of chronic doses of ozone on loblolly pine: Photosynthetic characteristics in the third growing season

    SciTech Connect

    Sasek, T.W.; Richardson, C.J. )

    1989-09-01

    Gas exchange characteristics of loblolly pine seedlings were measured in the third growing season of ozone fumigations to determine the effects of long-term ozone exposure on photosynthetic capacity. Light and CO{sub 2} response curves indicated significant decreases of 21% and 27%, respectively, in light-saturated and CO{sub 2}-saturated photosynthetic capacities at 2 {times} ambient ozone compared to charcoal-filtered (CF) air, approximately 0.5 {times} ambient ozone. Differences in the response curves suggest changes in light-harvesting and biochemical efficiencies as well as changes in the activity of RuBP carboxylase and the regeneration rate of RuBP. Chlorophyll and carotenoid conditions per unit leaf area were decreased at the high ozone treatment in older flushes. Stomatal resistance limited photosynthesis by about 29% in both CF and 2 {times} ambient ozone treated plants, suggesting that chronic ozone exposure did not affect stomatal control in loblolly pine.

  3. The net exchange of methane with high Arctic landscapes during the summer growing season

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.; St. Louis, V. L.; Lehnherr, I.; Humphreys, E. R.; Rydz, E.; Kosolofski, H. R.

    2014-06-01

    High Arctic landscapes are essentially vast cold deserts interspersed with streams, ponds and wetlands. These landscapes may be important consumers and sources of the greenhouse gas methane (CH4), though few measurements exist from this region. To quantify the flux of CH4 (FCH4) between the atmosphere and high Arctic landscapes on northern Ellesmere Island, Canada, we made static chamber measurements over five and three growing seasons at a desert and wetland, respectively, and eddy covariance (EC) measurements at a wetland in 2012. Chamber measurements revealed that, during the growing season, desert soils consumed CH4 (-1.37 ± 0.06 mg-CH4 m-2 d-1), whereas the wetland margin emitted CH4 (+0.22 ± 0.14 mg-CH4 m-2 d-1). Desert CH4 consumption rates were positively associated with soil temperature among years, and were similar to temperate locations, likely because of suitable landscape conditions for soil gas diffusion. Wetland FCH4 varied closely with stream discharge entering the wetland and hence extent of soil saturation. Landscape-scale FCH4 measured by EC was +1.27 ± 0.18 mg-CH4 m-2 d-1 and varied with soil temperature and carbon dioxide flux. FCH4 measured using EC was higher than using chambers because EC measurements incorporated a larger, more saturated footprint of the wetland. Using EC FCH4 and quantifying the mass of CH4 entering and exiting the wetland in stream water, we determined that methanogenesis within wetland soils was the dominant source of FCH4. Low FCH4 at the wetland was likely due to a shallow organic soil layer, and thus limited carbon resources for methanogens. Considering the prevalence of dry soils in the high Arctic, our results suggest that these landscapes cannot be overlooked as important consumers of atmospheric CH4.

  4. The net exchange of methane with high Arctic landscapes during the summer growing season

    NASA Astrophysics Data System (ADS)

    St Louis, V. L.; Emmerton, C. A.; Lehnherr, I.; Humphreys, E.; Rydz, E.; Kosolofski, H.

    2014-12-01

    High Arctic landscapes are essentially vast cold deserts interspersed with streams, ponds and wetlands. These landscapes may be important consumers and sources of the greenhouse gas methane (CH4), though few measurements exist from this region. To quantify the flux of CH4 (FCH4) between the atmosphere and high Arctic landscapes on northern Ellesmere Island, Canada, we made static chamber measurements over five and three growing seasons at a desert and wetland, respectively, and eddy covariance (EC) measurements at a wetland in 2012. Chamber measurements revealed that, during the growing season, desert soils consumed CH4 (-1.37±0.06 mg- CH4 m-2 d-1), whereas the wetland margin emitted CH4 (+0.22±0.14 mg- CH4 m-2 d-1). Desert CH4 consumption rates were positively associated with soil temperature among years, and were similar to temperate locations, likely because of suitable landscape conditions for soil gas diffusion. Wetland FCH4 varied closely with stream discharge entering the wetland and hence extent of soil saturation. Landscape-scale FCH4 measured by EC was +1.27±0.18 mg- CH4 m-2 d-1 and varied with soil temperature and carbon dioxide flux. FCH4 measured using EC was higher than using chambers because EC measurements incorporated a larger, more saturated footprint of the wetland. Using EC FCH4 and quantifying the mass of CH4 entering and exiting the wetland in stream water, we determined that methanogenesis within wetland soils was the dominant source of FCH4. Low FCH4 at the wetland was likely due to a shallow organic soil layer, and thus limited carbon resources for methanogens. Considering the prevalence of dry soils in the high Arctic, our results suggest that these landscapes cannot be overlooked as important consumers of atmospheric CH4.

  5. Forest phenology and a warmer climate - Growing season extension in relation to climatic provenance

    SciTech Connect

    Gunderson, Carla A; Edwards, Nelson T; Walker, Ashley V; O'Hara, Keiran H; Campion, Christina M; Hanson, Paul J

    2012-01-01

    Predicting forest responses to warming climates relies on assumptions about niche and temperature sensitivity that remain largely untested. Observational studies have related current and historical temperatures to phenological shifts, but experimental evidence is sparse, particularly for autumn responses. A five-year field experiment exposed four deciduous forest species from contrasting climates (Liquidambar styraciflua, Quercus rubra, Populus grandidentata, and Betula alleghaniensis) to air temperatures 2 and 4 C above ambient controls. Impacts of year-round warming on bud burst (BB), senescence and abscission were evaluated in relation to thermal provenance. Leaves emerged earlier in all species, by an average of 6-9 days at +2 and +4 C. Magnitude of advance varied with species and year, but was larger for the first 2 C increment than the second. The effect of warming increased with early BB, favoring Liquidambar, from the warmest climate, but even BB in northern species advanced, despite temperatures well beyond those of the realized niche. Treatment differences in BB were poorly explained by temperature sums, which increased with treatment. In autumn, chlorophyll was retained an average of 4 and 7 days longer in +2 and +4 C treatments, and abscission delayed by 8 and 13 days. Species differences in autumn responses were marginally significant. Growing seasons in the warmer atmospheres were 6 - 28 days longer, with the least impact in Quercus. Results are compared with a 16-year record of canopy onset and offset in a nearby upland deciduous forest, where BB showed similar responsiveness to spring temperatures (2 - 4 days C-1). Offset dates in the stand tracked August-September temperatures, except when late summer drought caused premature senescence. The common garden-like experimental approach provides evidence that warming alone extends the growing season, at both ends, even if stand-level impacts are complicated by other environmental factors.

  6. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-11-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier

  7. Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season.

    PubMed

    Wang, Yafei; Bakker, Frank; de Groot, Rudolf; Wörtche, Heinrich; Leemans, Rik

    2015-12-01

    This study analyzed how the variations of plant area index (PAI) and weather conditions alter the influence of urban green infrastructure (UGI) on microclimate. To observe how diverse UGIs affect the ambient microclimate through the seasons, microclimatic data were measured during the growing season at five sites in a local urban area in The Netherlands. Site A was located in an open space; sites B, C, and D were covered by different types and configurations of green infrastructure (grove, a single deciduous tree, and street trees, respectively); and site E was adjacent to buildings to study the effects of their façades on microclimate. Hemispherical photography and globe thermometers were used to quantify PAI and thermal comfort at both shaded and unshaded locations. The results showed that groves with high tree density (site B) have the strongest effect on microclimate conditions. Monthly variations in the differences of mean radiant temperature (∆Tmrt) between shaded and unshaded areas followed the same pattern as the PAI. Linear regression showed a significant positive correlation between PAI and ∆Tmrt. The difference of daily average air temperature (∆T a ) between shaded and unshaded areas was also positively correlated to PAI, but with a slope coefficient below the measurement accuracy (±0.5 °C). This study showed that weather conditions can significantly impact the effectiveness of UGI in regulating microclimate. The results of this study can support the development of appropriate UGI measures to enhance thermal comfort in urban areas.

  8. Growing degree-days for the `Niagara Rosada' grapevine pruned in different seasons

    NASA Astrophysics Data System (ADS)

    Scarpare, Fábio Vale; Scarpare Filho, João Alexio; Rodrigues, Alessandro; Reichardt, Klaus; Angelocci, Luiz Roberto

    2012-09-01

    Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the `Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, São Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.

  9. Growing degree-days for the 'Niagara Rosada' grapevine pruned in different seasons.

    PubMed

    Scarpare, Fábio Vale; Scarpare Filho, João Alexio; Rodrigues, Alessandro; Reichardt, Klaus; Angelocci, Luiz Roberto

    2012-09-01

    Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, São Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.

  10. Growing degree-days for the 'Niagara Rosada' grapevine pruned in different seasons.

    PubMed

    Scarpare, Fábio Vale; Scarpare Filho, João Alexio; Rodrigues, Alessandro; Reichardt, Klaus; Angelocci, Luiz Roberto

    2012-09-01

    Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, São Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates. PMID:21866380

  11. Seasonal and migrant agricultural workers: a neglected work force.

    PubMed

    Culp, Kennith; Umbarger, Michelle

    2004-09-01

    A desperate need exists to provide occupational health services to migrant and seasonal farm workers in the United States. There are unique challenges related to this endeavor, and the authors have attempted to explain some of the issues that have not been previously discussed in a forthright manner. In doing so, it is likely that some controversy related to the topic has been introduced. PMID:15469136

  12. Longer growing seasons shift grassland vegetation towards more-productive species

    NASA Astrophysics Data System (ADS)

    Fridley, Jason D.; Lynn, Josh S.; Grime, J. P.; Askew, A. P.

    2016-09-01

    Despite advances in plant functional ecology that provide a framework for predicting the responses of vegetation to environmental change, links between plant functional strategies and elevated temperatures are poorly understood. Here, we analyse the response of a species-rich grassland in northern England to two decades of temperature and rainfall manipulations in the context of the functional attributes of 21 coexisting species that represent a large array of resource-use strategies. Three principal traits, including body size (canopy height), tissue investment (leaf construction cost), and seed size, varied independently across species and reflect tradeoffs associated with competitiveness, stress tolerance, and colonization ability. Unlike past studies, our results reveal a strong association between functional traits and temperature regime; species favoured by extended growing seasons have taller canopies and faster assimilation rates, which has come at the expense of those species of high tissue investment. This trait-warming association was three times higher in deep soils, suggesting species shifts have been strongly mediated by competition. In contrast, vegetation shifts from rainfall manipulations have been associated only with tissue investment. Functional shifts towards faster growing species in response to warming may be responsible for a marginal increase in productivity in a system that was assumed to be nutrient-limited.

  13. Growing Food for Space and Earth: NASA's Contributions to Vertical Agriculture

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2015-01-01

    Beginning in the 1980s with NASA's Controlled Ecological Life Support System (CELSS) Program and later the 1990s and early 2000s with the Advanced Life Support Project, NASA conducted extensive testing with crops in controlled environment conditions. One series of tests conducted at Kennedy Space Center used a large chamber with vertically stacked shelves to support hydroponic growing trays, with a bank of electric lamps above each shelf. This is essentially the same approach that has become popular for use in so-called vertical agriculture systems, which attempts to optimize plant production in a fixed volume. Some of the findings and commonalities of NASA's work during this period and how it overlaps with current interests in vertical agriculture will be presented in the talk.

  14. Response of phyllosphere bacterial communities to elevated CO2 during rice growing season.

    PubMed

    Ren, Gaidi; Zhang, Huayong; Lin, Xiangui; Zhu, Jianguo; Jia, Zhongjun

    2014-11-01

    The phyllosphere, the aerial parts of terrestrial plants, represents the largest biological interface on Earth. This habitat is colonized by diverse microorganisms that affect plant health and growth. However, the community structure of these phyllosphere microorganisms and their responses to environmental changes, such as rising atmospheric CO2, are poorly understood. Using a massive parallel pyrosequencing technique, we investigated the feedback of a phyllosphere bacterial community in rice to elevated CO2 (eCO2) at the tillering, filling, and maturity stages under nitrogen fertilization with low (LN) and high application rates (HN). The results revealed 9,406 distinct operational taxonomic units that could be classified into 8 phyla, 13 classes, 26 orders, 59 families, and 120 genera. The family Enterobacteriaceae within Gammaproteobacteria was the most dominant phylotype during the rice growing season, accounting for 61.0-97.2 % of the total microbial communities. A statistical analysis indicated that the shift in structure and composition of phyllosphere bacterial communities was largely dependent on the rice growing stage. eCO2 showed a distinct effect on the structure of bacterial communities at different growth stages, and the most evident response of the community structure to eCO2 was observed at the filling stage. eCO2 significantly increased the relative abundance of the most dominant phylotype (Enterobacteriaceae) from 88.6 % at aCO2 (ambient CO2) to 97.2 % at eCO2 under LN fertilization at the filling stage, while it significantly decreased the total relative abundance of other phylotypes from 7.48 to 1.35 %. Similarly, higher value for the relative abundance of the most dominant family (Enterobacteriaceae) and lower value for the total relative abundance of other families were observed under eCO2 condition at other growth stages and under different N fertilizations, but the difference was not statistically significant. No consistent response pattern

  15. The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain.

    PubMed

    Wu, Jianjun; Liu, Ming; Lü, Aifeng; He, Bin

    2014-11-01

    The North China Plain (NCP) is one of the main agricultural areas in China. However, it is also widely known for its water shortages, especially during the winter wheat growing season. Recently, climate change has significantly affected the water environment for crop growth. Analyzing the changes in the water deficit, which is only affected by climate factor, will help to improve water management in the NCP. In this study, the Decision Support System for Agrotechnology Transfer (DSSAT) was used to investigate the variations in the water deficit during the winter wheat growing season from 1961 to 2010 in 12 selected stations in the NCP. To represent the changes in the water deficit without any artificial affection, the rainfed simulation was used. Over the past 50 years, the average temperature during the winter wheat growing season increased approximately 1.42 °C. The anthesis date moved forward approximately 7-10 days and to late April, which increased the water demand in April. Precipitation in March and May showed a positive trend, but there was a negative trend in April. The water deficit in late April and early May became more serious than before, with an increasing trend of more than 0.1 mm/year. In addition, because the heading stage, which is very important to crop yield of winter wheat, moved forward, the impact of water deficit in late April was more serious to crop yield. PMID:24531705

  16. The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun; Liu, Ming; Lü, Aifeng; He, Bin

    2014-02-01

    The North China Plain (NCP) is one of the main agricultural areas in China. However, it is also widely known for its water shortages, especially during the winter wheat growing season. Recently, climate change has significantly affected the water environment for crop growth. Analyzing the changes in the water deficit, which is only affected by climate factor, will help to improve water management in the NCP. In this study, the Decision Support System for Agrotechnology Transfer (DSSAT) was used to investigate the variations in the water deficit during the winter wheat growing season from 1961 to 2010 in 12 selected stations in the NCP. To represent the changes in the water deficit without any artificial affection, the rainfed simulation was used. Over the past 50 years, the average temperature during the winter wheat growing season increased approximately 1.42 °C. The anthesis date moved forward approximately 7-10 days and to late April, which increased the water demand in April. Precipitation in March and May showed a positive trend, but there was a negative trend in April. The water deficit in late April and early May became more serious than before, with an increasing trend of more than 0.1 mm/year. In addition, because the heading stage, which is very important to crop yield of winter wheat, moved forward, the impact of water deficit in late April was more serious to crop yield.

  17. The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain.

    PubMed

    Wu, Jianjun; Liu, Ming; Lü, Aifeng; He, Bin

    2014-11-01

    The North China Plain (NCP) is one of the main agricultural areas in China. However, it is also widely known for its water shortages, especially during the winter wheat growing season. Recently, climate change has significantly affected the water environment for crop growth. Analyzing the changes in the water deficit, which is only affected by climate factor, will help to improve water management in the NCP. In this study, the Decision Support System for Agrotechnology Transfer (DSSAT) was used to investigate the variations in the water deficit during the winter wheat growing season from 1961 to 2010 in 12 selected stations in the NCP. To represent the changes in the water deficit without any artificial affection, the rainfed simulation was used. Over the past 50 years, the average temperature during the winter wheat growing season increased approximately 1.42 °C. The anthesis date moved forward approximately 7-10 days and to late April, which increased the water demand in April. Precipitation in March and May showed a positive trend, but there was a negative trend in April. The water deficit in late April and early May became more serious than before, with an increasing trend of more than 0.1 mm/year. In addition, because the heading stage, which is very important to crop yield of winter wheat, moved forward, the impact of water deficit in late April was more serious to crop yield.

  18. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Gallego-Sala, A. V.; Yu, Z.

    2012-02-01

    High-latitude peatlands contain about one third of the world's soil organic carbon, most of which is derived from partly decomposed Sphagnum (peat moss) plants. We conducted a meta-analysis based on a global dataset of Sphagnum growth measurements collected from published literature to investigate the effects of bioclimatic variables on Sphagnum growth. Analysis of variance and general linear models were used to relate Sphagnum magellanicum and S. fuscum growth rates to photosynthetically active radiation integrated over the growing season (PAR0) and a moisture index. We found that PAR0 was the main predictor of Sphagnum growth for the global dataset, and effective moisture was only correlated with moss growth at continental sites. The strong correlation between Sphagnum growth and PAR0 suggests the existence of a global pattern of growth, with slow rates under cool climate and short growing seasons, highlighting the important role of temperature and growing season length in explaining peatland biomass production. Large-scale patterns of cloudiness during the growing season might also limit moss growth. Although considerable uncertainty remains over the carbon balance of peatlands under a changing climate, our results suggest that increasing PAR0 as a result of global warming and lengthening growing seasons could promote Sphagnum growth. Assuming that production and decomposition have the same sensitivity to temperature, this enhanced growth could lead to greater peat-carbon sequestration, inducing a negative feedback to climate change.

  19. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Gallego-Sala, A. V.; Yu, Z.

    2012-07-01

    High-latitude peatlands contain about one third of the world's soil organic carbon, most of which is derived from partly decomposed Sphagnum (peat moss) plants. We conducted a meta-analysis based on a global data set of Sphagnum growth measurements collected from published literature to investigate the effects of bioclimatic variables on Sphagnum growth. Analysis of variance and general linear models were used to relate Sphagnum magellanicum and S. fuscum growth rates to photosynthetically active radiation integrated over the growing season (PAR0) and a moisture index. We found that PAR0 was the main predictor of Sphagnum growth for the global data set, and effective moisture was only correlated with moss growth at continental sites. The strong correlation between Sphagnum growth and PAR0 suggests the existence of a global pattern of growth, with slow rates under cool climate and short growing seasons, highlighting the important role of growing season length in explaining peatland biomass production. Large-scale patterns of cloudiness during the growing season might also limit moss growth. Although considerable uncertainty remains over the carbon balance of peatlands under a changing climate, our results suggest that increasing PAR0 as a result of global warming and lengthening growing seasons, without major change in cloudiness, could promote Sphagnum growth. Assuming that production and decomposition have the same sensitivity to temperature, this enhanced growth could lead to greater peat-carbon sequestration, inducing a negative feedback to climate change.

  20. Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types.

    PubMed

    Zadworny, Marcin; McCormack, M Luke; Rawlik, Katarzyna; Jagodziński, Andrzej M

    2015-06-01

    Patterns of root traits among different root orders and their variation across seasons are of considerable importance for soil resource acquisition and partitioning in forest ecosystems. We evaluated whether morphological, anatomical and biochemical traits varied among root orders of Quercus robur (L.) sampled across spring, summer and fall seasons and growing in two different soil types with contrasting site fertility. We found no consistent differences in root diameter and specific root length in relation to soil type or growing season. There was, however, a strong seasonal variation in patterns of nitrogen (N) concentration among root orders. During spring and summer, N concentration was highest in the most distal, absorptive portion of the root system. At the end of the growing season, we observed a sharp decline in the N concentration of these lower-order, absorptive roots and an increase in N concentration of the higher-order, transport roots. The specific mechanisms driving the seasonally changing N concentration remain unclear but are likely related to different functions of lower-order roots for absorption and higher-order roots for structure and storage. Future work should identify how common the observed seasonal changes in N concentration are across species and determine what specific environmental cues plants or roots use to trigger shifts in resource allocation within the root branching hierarchy.

  1. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality

    USGS Publications Warehouse

    Alpers, Charles N.; Fleck, Jacob A.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Stephenson, Mark; Taylor, Howard E.

    2014-01-01

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37 ng L−1 unfiltered; 0.04 to 7.3 ng L−1 filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4 2 −/Cl− ratio, and δ34S in aqueous sulfate. These relationships suggest that microbial reduction of SO4 2−, Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting.

  2. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality.

    PubMed

    Alpers, Charles N; Fleck, Jacob A; Marvin-DiPasquale, Mark; Stricker, Craig A; Stephenson, Mark; Taylor, Howard E

    2014-06-15

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37ngL(-1) unfiltered; 0.04 to 7.3ngL(-1) filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate-limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4(2-)/Cl(-) ratio, and δ(34)S in aqueous sulfate. These relationships suggest that microbial reduction of SO4(2-), Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting. PMID:24332791

  3. A Simulation of the Importance of Length of Growing Season and Canopy Functional Properties on the Seasonal Gross Primary Production of Temperate Alpine Meadows

    PubMed Central

    Baptist, Florence; Choler, Philippe

    2008-01-01

    Background and Aims Along snowmelt gradients, the canopies of temperate alpine meadows differ strongly in their structural and biochemical properties. Here, a study is made of the effects of these canopy dissimilarities combined with the snow-induced changes in length of growing season on seasonal gross primary production (GPP). Methods Leaf area index (LAI) and community-aggregated values of leaf angle and leaf nitrogen content were estimated for seven alpine plant canopies distributed along a marked snowmelt gradient, and these were used as input variables in a sun–shade canopy bulk-photosynthesis model. The model was validated for plant communities of early and late snowmelt sites by measuring the instantaneous CO2 fluxes with a canopy closed-chamber technique. A sensitivity analysis was conducted to estimate the relative impact of canopy properties and environmental factors on the daily and seasonal GPP. Key Results Carbon uptake was primarily related to the LAI and total canopy nitrogen content, but not to the leaf angle. For a given level of photosynthetically active radiation, CO2 assimilation was higher under overcast conditions. Sensitivity analysis revealed that increase of the length of the growing season had a higher effect on the seasonal GPP than a similar increase of any other factor. It was also found that the observed greater nitrogen content and larger LAI of canopies in late-snowmelt sites largely compensated for the negative impact of the reduced growing season. Conclusions The results emphasize the primary importance of snow-induced changes in length of growing season on carbon uptake in alpine temperate meadows. It was also demonstrated how using leaf-trait values of the dominants is a useful approach for modelling ecosystem carbon-cycle-related processes, particularly when continuous measurements of CO2 fluxes are technically difficult. The study thus represents an important step in addressing the challenge of using a plant functional

  4. Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season.

    PubMed

    Wang, Yafei; Bakker, Frank; de Groot, Rudolf; Wörtche, Heinrich; Leemans, Rik

    2015-12-01

    This study analyzed how the variations of plant area index (PAI) and weather conditions alter the influence of urban green infrastructure (UGI) on microclimate. To observe how diverse UGIs affect the ambient microclimate through the seasons, microclimatic data were measured during the growing season at five sites in a local urban area in The Netherlands. Site A was located in an open space; sites B, C, and D were covered by different types and configurations of green infrastructure (grove, a single deciduous tree, and street trees, respectively); and site E was adjacent to buildings to study the effects of their façades on microclimate. Hemispherical photography and globe thermometers were used to quantify PAI and thermal comfort at both shaded and unshaded locations. The results showed that groves with high tree density (site B) have the strongest effect on microclimate conditions. Monthly variations in the differences of mean radiant temperature (∆Tmrt) between shaded and unshaded areas followed the same pattern as the PAI. Linear regression showed a significant positive correlation between PAI and ∆Tmrt. The difference of daily average air temperature (∆T a ) between shaded and unshaded areas was also positively correlated to PAI, but with a slope coefficient below the measurement accuracy (±0.5 °C). This study showed that weather conditions can significantly impact the effectiveness of UGI in regulating microclimate. The results of this study can support the development of appropriate UGI measures to enhance thermal comfort in urban areas. PMID:26547322

  5. Early and late seasonal carbon sequestration and allocation in larch trees growing on permafrost in Central Siberia

    NASA Astrophysics Data System (ADS)

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2014-05-01

    Despite large geographic extent of deciduous conifer species Larix gmelinii, its seasonal photosynthetic activity and translocation of photoassimilated carbon within a tree remain poorly studied. To get better insight into productivity of larch trees growing on permafrost soils in Siberian larch biome we aimed to analyze dynamics of foliage parameters (i.e. leaf area, biomass, %N, %P etc.), seasonal dynamics of photosynthetic activity and apply whole tree labeling by 13CO2, which is powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree (Kagawa et al., 2006; Keel et al., 2012). Experimental plot has been established in mature 105 year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64o17'13" N, 100o11'55" E, 148 m a.s.l.). Trees selected for experiments represented mean tree of the stand. Measurements of seasonal photosynthetic activity and foliar biomass sampling were arranged from early growing season (June 8, 2013) until yellowing and senescence of needles on September 17, 2013. Labeling by 13C in whole tree chamber was conducted by three pulses ([CO2]max ≤ 2,500 ppmv, 13CO2 (30% v/v)) at the early (June) and late (August) phase of growing season for different trees in 3 replicates each time. Both early season and late season labeling experiments demonstrated high rate of 13CO2 assimilation and respective enrichment of needle tissues by 13C: δ13C increased from -28.7 up to +670‰ just after labeling. However, there was distinct post-labeling dynamics of needle δ13C among two seasonal experiments. At the early season 13C depletion in labeled needles was slower, and δ13C approached after 40 days ca. +110 ‰ and remained constant till senescence. In the late season (August) needles were losing labeled C with much faster rate and approached only +1.5 ‰ upon senescence (28 days exposition). These findings suggest that in early season ca. 20% of

  6. Seasonality on the rainfall partitioning of a fast-growing tree plantation under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    molina, antonio; llorens, pilar; biel, carme

    2014-05-01

    Studies on rainfall interception in fast-growing tree plantations are less numerous than those in natural forests. Trees in these plantations are regularly distributed, and the canopy cover is clumped but changes quickly, resulting on high variability in the volume and composition of water that reach the soil. In addition, irrigation supply is normally required in semiarid areas to get optimal wood production; consequently, knowing rainfall interception and its yearly evolution is crucial to manage the irrigation scheme properly. This work studies the rainfall partitioning seasonality in a cherry tree (Prunus avium) plantation orientated to timber production under Mediterranean conditions. The monitoring design started on March 2012 and consists of a set of 58 throughfall tipping buckets randomly distributed (based on a 1x1 m2 grid) in a plot of 128 m2 with 8 trees. Stemflow is measured in all the trees with 2 tipping buckets and 6 accumulative collectors. Canopy cover is regularly measured throughout the study period, in leaf and leafless periods, by mean of sky-orientated photographs taken 50 cm above the center of each tipping bucket. Others tree biometrics are also measured such as diameter and leaf area index. Meteorological conditions are measured at 2 m above the forest cover. This work presents the first analyses describing the rainfall partitioning and its dependency on canopy cover, distance to tree and meteorological conditions. The modified Gash' model for rainfall interception in dispersed vegetation is also preliminary evaluated.

  7. Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan.

    PubMed

    Doi, Hideyuki

    2012-09-01

    Changes in leaf phenology lengthen the growing season length (GSL, the days between leaf budburst and leaf fall) under the global warming. GSL and the leaf phenology response to climate change is one of the most important predictors of climate change effect on plants. Empirical evidence of climatic effects on GSL remains scarce, especially at a regional scale and the latitudinal pattern. This study analyzed the datasets of leaf budburst and fall phenology in Morus bombycis (Urticales), which were observed by the agency of the Japan Meteorological Agency (JMA) from 1953 to 2005 over a wide range of latitudes in Japan (31 to 44° N). In the present study, single regression slopes of leaf phenological timing and air temperature across Japan were calculated and their spatial patterns using general linear models were tested. The results showed that the GSL extension was caused mainly by a delay in leaf fall phenology. Relationships between latitude and leaf phenological and GSL responses against air temperature were significantly negative. The response of leaf phenology and GSL to air temperature at lower latitudes was larger than that at higher latitudes. The findings indicate that GSL extension should be considered with regards to latitude and climate change.

  8. Variation in peak growing season net ecosystem production across the Canadian Arctic.

    PubMed

    Lafleur, Peter M; Humphreys, Elyn R; St Louis, Vincent L; Myklebust, May C; Papakyriakou, Tim; Poissant, Laurier; Barker, Joel D; Pilote, Martin; Swystun, Kyle A

    2012-08-01

    Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 μmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 μmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.

  9. Simulated water fluxes during the growing season in semiarid grassland ecosystems under severe drought conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Liu, Chengyu

    2014-05-01

    To help improve understanding of how changes in climate and land cover affect water fluxes, water budgets, and the structure and function of regional grassland ecosystems, the Grassland Landscape Productivity Model (GLPM) was used to simulate spatiotemporal variation in primary water fluxes. The study area was a semiarid region in Inner Mongolia, China, in 2002, when severe drought was experienced. For Stipa grandis steppe, Leymus chinensis steppe, shrubland, and croplands, the modeled total, daily and monthly averaged, and maximum evapotranspiration during the growing season and the modeled water deficits were similar to those measured in Inner Mongolia under similar precipitation conditions. The modeled temporal variations in daily evaporation rate, transpiration rate, and evapotranspiration rate for the typical steppes also agreed reasonably well with measured trends. The results demonstrate that water fluxes varied in response to spatiotemporal variations in environmental factors and associated changes in the phenological and physiological characteristics of plants. It was also found that transpiration and evapotranspiration (rather than precipitation) were the primary factors controlling differences in water deficit among land cover types. The results also demonstrate that specific phenomena occur under severe drought conditions; these phenomena are considerably different to those occurring under normal or well-watered conditions. The findings of the present study will be useful for evaluating day-scale water fluxes and their relationships with climate change, hydrology, land cover, and vegetation dynamics.

  10. Soil nitrogen transformations under elevated atmospheric CO2 and O3 during the soybean growing season

    PubMed Central

    Pereira, Engil Isadora Pujol; Chung, Haegeun; Scow, Kate; Sadowsky, Michael J.; van Kessel, Chris; Six, Johan

    2012-01-01

    We investigated the influence of elevated CO2 and O3 on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O3 decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO2 did not alter the parameters evaluated and both elevated CO2 and O3 showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO2 may have limited effects on N transformations in soybean agroecosystems. However, elevated O3 can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues. PMID:21115216

  11. 317/319 Phytoremediation site monitoring report - 2009 growing season : final report.

    SciTech Connect

    Negri, C .N.; Benda, P. L.; Gopalakrishnan, G.; Energy Systems

    2010-02-10

    In 1999, Argonne National Laboratory (Argonne) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems (ES) Division in the growing season of 2009. Monitoring of the planted trees began soon after the trees were installed in 1999 and has been conducted every summer since then. As the trees grew and consolidated their growth into the contaminated soil and groundwater, their exposure to the contaminants was progressively shown through tissue sampling. During the 2009 sampling campaign, VOC concentrations found in the French Drain area were in general consistent with or slightly lower than the 2008 results. Additionally, closely repeated, stand wide analyses showed contaminant fluctuations that may indicate short-term contaminant depletion in the area of interest of roots. This data will be useful to determine short-term removal rate by the trees. As in previous years, levels in the Hydraulic Control Area were close to background levels except for a few exceptions.

  12. Non-growing season soil CO2 efflux patterns in five land-use types in northern China

    NASA Astrophysics Data System (ADS)

    Pan, Zhanlei; Johnson, Douglas A.; Wei, Zhijun; Ma, Lei; Rong, Yuping

    2016-11-01

    Heavy grazing and unsuitable farming practices have led to grassland degradation in northern China. This study examined soil CO2 efflux (Fc) from five land-use types during the non-growing season on the southeastern edge of the Mongolian Plateau in China. The land-use types included three native vegetation steppes subjected to differing stocking rates [ungrazed (UG), moderately grazed (MG) and heavily grazed (HG)], a fertilized annual cropland (CL) and a perennial pasture (PP) used for haying and winter grazing. Values of Fc were measured at 3-day to 2-week intervals during the non-growing season in two contrasting hydrological years (2012-13 and 2013-14) using closed chambers. The Fc during 1 Oct. 2013 to 30 April 2014 averaged 475 mg C m-2 for all sites compared to a significantly (P < 0.05) lower Fc (102 mg C m-2) during 1 Oct. 2012 to 30 April 2013. The seasonal Fc patterns followed the same trend during the two non-growing seasons with greater Fc observed in the autumn and spring freeze-thaw periods compared to the winter permanently frozen period, which accounted for 4.8% of accumulated total non-growing season Fc. The heavily grazed site showed less soil CO2 efflux compared to UG, MG, PP and CL land-use types due to a larger reduction in gross primary productivity (GPP) compared to ecosystem respiration. Grazing reduced Fc by 23% for MG and 32% for HG compared to UG. Soil CO2 efflux from the PP land-use type, which was grazed during the non-growing season, was 23% greater than that from the UG and CL land-use types. Air temperature during the non-growing season was the main factor controlling soil CO2 efflux (R2 = 0.40, P < 0.001), although soil water content also played a role. Precipitation received during the growing season had a large legacy effect on Fc. Annual weather variation overshadowed the influence of land-use types on Fc.

  13. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Semenchuk, Philipp R.; Christiansen, Casper T.; Grogan, Paul; Elberling, Bo; Cooper, Elisabeth J.

    2016-05-01

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78°N) and a low-arctic site in the Northwest Territories, Canada (64°N), for 5 and 9 years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2 years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5 years at the high-arctic site and after 8-9 years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of "legacy" effects on ER rates during the following growing seasons.

  14. Mercury cycling in agricultural and managed wetlands of California: seasonal influences of vegetation on mercury methylation, storage, and transport

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Kakouros, Evangelos; Agee, Jennifer L.; Kieu, Le H.; Stricker, Craig A.; Fleck, Jacob A.; Ackerman, Joshua T.

    2013-01-01

    Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~ 3 months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio = 27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2 ng gdw- 1, respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r = 0.90, p < 0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through

  15. Early Season Goose Grazing Has a Greater Effect Than Advancement of the Growing Season on Net Ecosystem Exchange in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Leffler, A. J.; Choi, R. T.; Beard, K. H.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    The wetlands of the Yukon-Kuskokwim Delta in western Alaska are important breeding areas for geese and are experiencing rapid climate change. Growing seasons now begin earlier but geese have not advanced their breeding enough to match the advancement of spring. Consequently, geese enter a greener system that may be less nutritious than in the past because grasses and sedges have highest nutrient density shortly following emergence. One consequence of this changing phenology is that vegetation consumed by geese and returned as feces may have a different carbon to nitrogen ratio than in the past, which may influence net ecosystem exchange (NEE). We examine the effect of the advancement of the growing season and different arrival times by Brant Geese on NEE. Our study consists of six experimental blocks, each with nine plots. Half of the plots are warmed to advance the growing season. Two plots each receive early, mid, and late season grazing; the remaining two plots are not grazed and there is one control plot. In one block, we monitor NEE hourly with an automatic gas exchange system. In the other blocks, survey measurements of NEE and ecosystem respiration (ER) are made periodically with a portable system. Geese remove considerable vegetation from the system and maintain "grazing lawns" <1 cm tall of high quality forage. Plots grazed in the early summer were net sources of C to the atmosphere, releasing ca. 2-4 g m-2 d-1. Non-grazed plots were C sinks of similar magnitude. Grazing had little effect on ER but an advanced growing season enhanced ER in the plots by ca. 0.5 μmol m-2 s-1. We observed a similar advanced growing season effect on NEE that we attribute to enhanced ER. Consequently, the larger influence on NEE in the system is grazing and this influence is through removal of photosynthetic tissue. Grazing by Brant Geese shifts large areas of this coastal wetland to a C source while advanced growing season only reduces the strength of the C sink.

  16. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke; Ovesen, Niels; Gelbrecht, Jörg; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Jeppesen, Erik; Kronvang, Brian

    2014-05-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two years and measured DOC and DON concentration, as well as molecular composition by size-exclusion chromatography. We used absorbance, fluorescence and parallel factor analysis to gather additional information on the sources and composition of the DOM. The results were coupled to measurements of precipitation, water temperature, discharge, water residence time and physicochemical data measured at each study site to investigate the effects these environmental variables have on the amount and composition of DOM in the streams. Average annual DOM concentration and seasonality were highest in the stream with intensive agriculture in Uruguay and lowest in the stream with extensive agriculture in Denmark. In all streams, the molecular-size composition of DOC and DON were similar and most DOC and DON were exported as humic substances with low C:N ratio, which indicates high bioavailability. Moreover, DON was of higher relative importance in the Uruguayan streams than in the Danish streams, as can be seen from the lower dissolved inorganic to total dissolved nitrogen

  17. Algonquin Portrait: A Study of the Rapid Lake Seasonal Agricultural Worker.

    ERIC Educational Resources Information Center

    King, Paul R.

    The study's purpose was to compile descriptive information about a small band of Algonquin Indian seasonal agricultural workers from Quebec, Canada who migrate annually into Ontario County, New York to work on the fur and poultry farms. Although these Indians have worked in the State since 1945, no "serious" study had been made which included…

  18. HEALTH CONDITIONS AND SERVICES FOR DOMESTIC SEASONAL AGRICULTURAL WORKERS AND THEIR FAMILIES IN CALIFORNIA.

    ERIC Educational Resources Information Center

    California State Dept. of Public Health, Berkeley.

    FIELD INTERVIEWS WERE HELD WITH COMMUNITY LEADERS AND WITH SEVERAL HUNDRED WORKERS' FAMILIES. THE ACQUIRED INFORMATION SUPPLEMENTED A SURVEY OF PAST AND PRESENT CONDITIONS AND ASSISTED IN FORMULATING RECOMMENDATIONS FOR ACTION TO MEET THE ACUTE HEALTH NEEDS OF CALIFORNIA'S SEASONAL AGRICULTURAL WORKERS. THE HEALTH PROBLEM CAN BE MET BY LOCAL…

  19. SEASONAL VARIATIONS OF NITRIC OXIDE FLUX FROM AGRICULTURAL SOILS IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Fluxes of nitric oxide (NO) were measured from the summer of 1994 to the spring of 1995 from an intensively managed agricultural soil using a dynamic flow through chamber technique in order to study the seasonal variability in the emissions of NO. The measurements were made on a ...

  20. Seasonal and cumulative loblolly pine development under two stand density and fertility levels through four growing seasons. Forest Service research paper

    SciTech Connect

    Haywood, J.D.

    1994-06-01

    A loblolly pine (Pinus taeda) plantation was subjected to two cultural treatments to examine seasonal cumulative pine development in the 9th through 12th growing seasons: (1) pine stocking was either reduced by thinning to 303 trees per acre at a 12- by 12-ft spacing or the plots were left uncut with an original density of 1,210 trees per acre at a 6- by 6-ft spacing, and (2) either no fertilizer was applied or diammonium phosphate was broadcast at 134 lb of phosphorus and 120 lb of nitrogen per acre. Competing vegetation was controlled on all plots. Thinning resulted in less spring height growth in the 9th and 10th growing seasons that not cutting, but thinning increased diameter growth each year. Beginning in the 10th growing season, fertilization increased height, diameter, and basal area per acre growth, with the effect of fertilization on diameter growth being most pronounced on the thinned plots. Therefore, fertilization of thinned plots was more beneficial than thinning alone, and thinning alone resulted in less height and basal area per acre growth than the other treatment combinations for the 4-year period.

  1. Non-growing season soil CO2 efflux patterns in five land-use types in northern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overgrazing and unsuitable farming practices have led to grassland degradation in northern China. This studhy examined soil CO2 efflux (Fc) from five land-use types during the non-growing season on the southeastern edge of the Mongolian Plateau in China. The land-use types included three native v...

  2. Earlier growing seasons and changes in migration timing influence carbon uptake and plant production in Arctic coastal wetlands

    NASA Astrophysics Data System (ADS)

    Leffler, A. J.; Beard, K. H.; Kelsey, K.; Choi, R. T.; Welker, J. M.

    2015-12-01

    The wetlands of the Yukon-Kuskokwim Delta in western Alaska are important breeding areas for geese and are experiencing rapid climate change, specifically earlier onset of the growing season. Consequently, geese arrive 'later' in the growing season than in the past, potentially setting up a phenological mismatch with consequences for their nutrition, plant growth, and C and N processes in the ecosystem. We examined the interactive effects between the start of the growing season and Black Brant arrival time on these processes in a manipulative experiment. Advancing the growing season had a modest influence on CO2 exchange and plant growth. An early growing season shifted the rate of net ecosystem exchange (NEE) by 1-1.5 µmol m-2 s-1 toward a carbon (C) source. This change was driven by an increase in the rate of ecosystem respiration (ER). The advanced growing season nearly doubled the rate of leaf elongation in the early summer and this difference persisted as taller vegetation later in the year; belowground biomass was not affected. Timing of grazing had greater influence on CO2 exchange and plant growth. Grazing early in the season shifted the system to a carbon source by ca. 2 μmol m-2 s-1 while delaying grazing enhanced the carbon sink by 1 μmol m-2 s-1. Here, the influence was not through ER, but through reducing and enhancing standing leaf area, respectively. Early grazing also reduced season-long root production by over 50% while delayed grazing enhanced root production by 30%. Although delaying grazing enhanced C uptake and promoted plant growth in this ecosystem, leaf tissue in delayed-grazing plots had C:N of 16.7 compared to 14.2 in the typical-grazing plots, potentially reducing the digestibility of goose forage and slowing rates of decomposition. Biotic forcing in arctic tundra can thus be major drivers of ecosystem function and need to be considered as tundra system respond to changing conditions.

  3. n-Alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis

    NASA Astrophysics Data System (ADS)

    Newberry, Sarah L.; Kahmen, Ansgar; Dennis, Paul; Grant, Alastair

    2015-09-01

    Compound-specific δ2H values of leaf wax n-alkanes have emerged as a potentially powerful paleohydrological proxy. Research suggests terrestrial plant n-alkane δ2H values are strongly correlated with meteoric water δ2H values, and may provide information on temperature, relative humidity, evaporation, and precipitation. This is based upon several assumptions, including that biosynthetic fractionation of n-alkanes during synthesis is constant within a single species. Here we present a multi-isotope study of the n-alkanes of riparian Salix viminalis growing in Norwich, UK. We measured n-alkane δ2H, leaf water δ2H, xylem water δ2H, and bulk foliar δ13C and evaluated the variability of n-alkane δ2H values and net biosynthetic fractionation (εlw-wax) over a whole growing season. S. viminalis n-alkane δ2H values decreased by 40‰ between the start of the growing season in April and the time when they stabilized in July. Variation in leaf and xylem water δ2H did not explain this variability. εlw-wax varied from -116‰ during leaf expansion in April to -156‰ during the stable phase. This suggests that differential biosynthetic fractionation was responsible for the strong seasonal trends in S. viminalis n-alkane δ2H values. We suggest that variability in εlw-wax is driven by seasonal differences in the carbohydrate source and thus the NADPH used in n-alkane biosynthesis, with stored carbohydrates utilized during spring and recent occurring growing season assimilates used later in the season. This is further supported by bulk foliar δ13C values, which are 13C-enriched during the period of leaf flush, relative to the end of the growing season. Our results challenge the assumption that biosynthetic fractionation is constant for a given species, and suggest that 2H-enriched stored assimilates are an important source for n-alkane biosynthesis early in the growing season. These findings have implications for the interpretation of sedimentary n-alkanes and call

  4. The net exchange of methane with high Arctic landscapes during the summer growing season

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.; St. Louis, V. L.; Lehnherr, I.; Humphreys, E. R.; Rydz, E.; Kosolofski, H. R.

    2014-01-01

    High Arctic landscapes are essentially vast cold deserts interspersed with streams, ponds and wetlands. These landscapes may be important consumers and sources of the greenhouse gas methane (CH4), though few measurements exist from this region. To quantify the flux of CH4 (FCH4) between the atmosphere and desert and wetland landscapes on northern Ellesmere Island, Canada, we made static chamber measurements at both locations over five growing seasons and eddy covariance (EC) measurements at the wetland in 2012. Chamber measurements revealed that desert soils consumed CH4 (-1.37 ± 0.10 mg-CH4 m-2 d-1) whereas the wetland emitted CH4 (+0.22 ± 0.19 mg-CH4 m-2 d-1). Desert CH4 consumption rates were positively correlated with soil temperature among years, and were similar to temperate locations, likely because of suitable landscape conditions for soil gas diffusion. Wetland FCH4 varied closely with stream discharge entering the wetland and hence extent of soil saturation. Landscape-scale FCH4 measured by EC was +1.27± 0.18 mg-CH4 m-2 d-1 and varied with soil temperature and carbon dioxide flux. FCH4 measured using EC was higher than using chambers because EC incorporated a arger, more saturated footprint of the wetland. Using EC FCH4 and quantifying the mass of CH4 entering and exiting the wetland in stream water, we determined that methanogenisis within wetland soils was the dominant source of FCH4. Low FCH4 at the wetland was likely due to a shallow organic soil layer, and thus limited carbon resources for methanogens. Considering the prevalence of dry soils in the high Arctic, our results suggest that these landscapes cannot be overlooked as important consumers of atmospheric CH4.

  5. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition.

  6. Sensitivity study of reference crop evapotranspiration during growing season in the West Liao River basin, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhendong; He, Junshi; Dong, Kebao; Bian, Xiaodong; Li, Xiang

    2016-05-01

    We have analyzed the trends of reference crop evapotranspiration (ET0) through the Penman-Monteith model and climate factors in the West Liao River basin using the Mann-Kendall test after removing the effect of significant lag-1 serial correlation from the time series of the data by trend-free pre-whitening. The changing characteristics of the sensitivity coefficients and the spatial distribution during growing season are investigated, and the correlation between the sensitivity coefficients with elevation and the key climate factors by relative contribution and stepwise regression methods are evaluated. A significant overall increase in air temperature, and a significant decrease in wind speed, solar radiation, sunshine duration, relative humidity, and a slight decrease in ET0 are observed. Sensitivity analysis shows that ET0 is most sensitive to solar radiation, followed by relative humidity. In contrast, ET0 is least sensitive to the average air temperature. The sensitivity coefficients for the maximum and minimum air temperature and relative humidity have a significant negative correlation with elevation, while the coefficients for other variables are not strongly correlated with elevation. The spatial distribution of the sensitivity coefficients for wind speed and solar radiation is opposite, i.e., in regions where the sensitivity coefficients for wind speed are high; the sensitivity coefficients for solar radiation are low and vice versa. The sensitivity for relative humidity and average air temperature is region specific in the plain area. However, ET0 is most sensitive to the climate change in regions of high elevation. Wind speed is the most dominant contributor followed by solar radiation. Average air temperature contributes the least. The stepwise regression analysis indicates that wind speed is the foremost dominant variable influencing ET0. Relative contribution and stepwise regression analysis can be used to determine the main variables affecting ET0

  7. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods. PMID:26497559

  8. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.

  9. Climate-dependent costs of reproduction: survival and fecundity costs decline with length of the growing season and summer temperature.

    PubMed

    Sletvold, Nina; Ågren, Jon

    2015-04-01

    Costs of reproduction are expected to vary with environmental conditions thus influencing selection on life-history traits. Yet, the effects of habitat conditions and climate on trade-offs among fitness components remain poorly understood. For 2-5 years, we quantified costs of experimentally increased reproduction in two populations (coastal long-season vs. inland short-season) of two long-lived orchids that differ in natural reproductive effort (RE; 30 vs. 75% fruit set). In both species, survival costs were found only at the short-season site, whereas growth and fecundity costs were evident at both sites, and both survival and fecundity costs declined with increasing growing season length and/or summer temperature. The results suggest that the expression of costs of reproduction depend on the local climate, and that climate warming could result in selection favouring increased RE in both study species.

  10. Growing season temperature and precipitation variability and extremes in the U.S. Corn Belt from 1981 to 2012

    NASA Astrophysics Data System (ADS)

    Dai, S.; Shulski, M.

    2013-12-01

    Climate warming and changes in rainfall patterns and increases in extreme events are resulting in higher risks of crop failures. A greater sense of urgency has been induced to understand the impacts of past climate on crop production in the U.S. As one of the most predominant sources of feed grains, corn is also the main source of U.S. ethanol. In the U.S. Corn Belt, region-scale evaluation on temperature and precipitation variability and extremes during the growing season is not well-documented yet. This study is part of the USDA-funded project 'Useful to Usable: Transforming climate variability and change information for cereal crop producers'. The overall goal of our work is to study the characteristics of average growing season conditions and changes in growing season temperature- and precipitation-based indices that are closely correlated with corn grain yield in the U.S. Corn Belt. The research area is the twelve major Corn Belt states, including IL, IN, IA, KS, MI, MN, MO, NE, OH, SD, ND, and WI. Climate data during 1981-2010 from 132 meteorological stations (elevation ranges from 122 m to 1,202 m) are used in this study, including daily minimum, maximum, and mean temperature, and daily precipitation. From 1981 to 2012, beginning date (BD), ending date (ED), and growing season length (GSL) in the climatological corn growing season are studied. Especially, during the agronomic corn growing season, from Apr to Oct, temperature- and precipitation-based indices are analyzed. The temperature-based indices include: number of days with daily mean temperature below 10°C, number of days with daily mean temperature above 30°C, the sum of growing degree days (GDD) between 10°C to 30°C (GDD10,30, growth range for corn), the sum of growing degree days above 30°C (GDD30+, exposure to harmful warming for corn), the sum of growing degree days between 0°C and 44°C (GDD0,44, survival range limits for corn), the sum of growing degree days between 5°C and 35°C (GDD5

  11. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season

    PubMed Central

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-01-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets. PMID:23467719

  12. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season.

    PubMed

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-02-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.

  13. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    PubMed

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites. PMID:15059771

  14. Temporal disparity in leaf chlorophyll content and leaf area index across a growing season in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Zhang, Y.

    2014-12-01

    Spatial and temporal variations in canopy structure and leaf biochemistry have considerable influence on fluxes of CO2, water and energy and nutrient cycling in vegetation. Two vegetation indices (VI), NDVI and Macc01, were used to model the spatio-temporal variability of broadleaf chlorophyll content and leaf area index (LAI) across a growing season. Ground data including LAI, hyperspectral leaf reflectance factors (400-2500 nm) and leaf chlorophyll content were measured across the growing season and satellite-derived canopy reflectance data was acquired for 33 dates at 1200 m spatial resolution. Key phenological information was extracted using the TIMESAT software. Results showed that LAI and chlorophyll start of season (SOS) dates were at day of year (DOY) 130 and 157 respectively, and total season duration varied by 57 days. The spatial variability of chlorophyll and LAI phenology was also analyzed at the landscape scale to investigate phenological patterns over a larger spatial extent. Whilst a degree of spatial variability existed, results showed that chlorophyll SOS lagged approximately 20-35 days behind LAI SOS, and the end of season (EOS) LAI dates were predominantly between 20 and 30 days later than chlorophyll EOS. The large temporal differences between VI-derived chlorophyll content and LAI has important implications for biogeochemical models using NDVI or LAI to represent the fraction of photosynthetically active radiation absorbed by a canopy, in neglecting to account for delays in chlorophyll production and thus photosynthetic capacity.

  15. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    PubMed

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  16. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    PubMed

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  17. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011).

    PubMed

    Garonna, Irene; de Jong, Rogier; de Wit, Allard J W; Mücher, Caspar A; Schmid, Bernhard; Schaepman, Michael E

    2014-11-01

    Land Surface Phenology (LSP) is the most direct representation of intra-annual dynamics of vegetated land surfaces as observed from satellite imagery. LSP plays a key role in characterizing land-surface fluxes, and is central to accurately parameterizing terrestrial biosphere-atmosphere interactions, as well as climate models. In this article, we present an evaluation of Pan-European LSP and its changes over the past 30 years, using the longest continuous record of Normalized Difference Vegetation Index (NDVI) available to date in combination with a landscape-based aggregation scheme. We used indicators of Start-Of-Season, End-Of-Season and Growing Season Length (SOS, EOS and GSL, respectively) for the period 1982-2011 to test for temporal trends in activity of terrestrial vegetation and their spatial distribution. We aggregated pixels into ecologically representative spatial units using the European Landscape Classification (LANMAP) and assessed the relative contribution of spring and autumn phenology. GSL increased significantly by 18-24 days decade(-1) over 18-30% of the land area of Europe, depending on methodology. This trend varied extensively within and between climatic zones and landscape classes. The areas of greatest growing-season lengthening were the Continental and Boreal zones, with hotspots concentrated in southern Fennoscandia, Western Russia and pockets of continental Europe. For the Atlantic and Steppic zones, we found an average shortening of the growing season with hotspots in Western France, the Po valley, and around the Caspian Sea. In many zones, changes in the NDVI-derived end-of-season contributed more to the GSL trend than changes in spring green-up, resulting in asymmetric trends. This underlines the importance of investigating senescence and its underlying processes more closely as a driver of LSP and global change.

  18. The growing season, but not the farming system, is a food safety risk determinant for leafy greens in the mid-Atlantic region of the United States.

    PubMed

    Marine, Sasha C; Pagadala, Sivaranjani; Wang, Fei; Pahl, Donna M; Melendez, Meredith V; Kline, Wesley L; Oni, Ruth A; Walsh, Christopher S; Everts, Kathryne L; Buchanan, Robert L; Micallef, Shirley A

    2015-04-01

    Small- and medium-size farms in the mid-Atlantic region of the United States use varied agricultural practices to produce leafy greens during spring and fall, but the impact of preharvest practices on food safety risk remains unclear. To assess farm-level risk factors, bacterial indicators, Salmonella enterica, and Shiga toxin-producing Escherichia coli (STEC) from 32 organic and conventional farms were analyzed. A total of 577 leafy greens, irrigation water, compost, field soil, and pond sediment samples were collected. Salmonella was recovered from 2.2% of leafy greens (n = 369) and 7.7% of sediment (n = 13) samples. There was an association between Salmonella recovery and growing season (fall versus spring) (P = 0.006) but not farming system (organic or conventional) (P = 0.920) or region (P = 0.991). No STEC was isolated. In all, 10% of samples were positive for E. coli: 6% of leafy greens, 18% of irrigation water, 10% of soil, 38% of sediment, and 27% of compost samples. Farming system was not a significant factor for levels of E. coli or aerobic mesophiles on leafy greens but was a significant factor for total coliforms (TC) (P < 0.001), with higher counts from organic farm samples. Growing season was a factor for aerobic mesophiles on leafy greens (P = 0.004), with higher levels in fall than in spring. Water source was a factor for all indicator bacteria (P < 0.001), and end-of-line groundwater had marginally higher TC counts than source samples (P = 0.059). Overall, the data suggest that seasonal events, weather conditions, and proximity of compost piles might be important factors contributing to microbial contamination on farms growing leafy greens.

  19. The Growing Season, but Not the Farming System, Is a Food Safety Risk Determinant for Leafy Greens in the Mid-Atlantic Region of the United States

    PubMed Central

    Marine, Sasha C.; Pagadala, Sivaranjani; Wang, Fei; Pahl, Donna M.; Melendez, Meredith V.; Kline, Wesley L.; Oni, Ruth A.; Walsh, Christopher S.; Everts, Kathryne L.; Buchanan, Robert L.

    2015-01-01

    Small- and medium-size farms in the mid-Atlantic region of the United States use varied agricultural practices to produce leafy greens during spring and fall, but the impact of preharvest practices on food safety risk remains unclear. To assess farm-level risk factors, bacterial indicators, Salmonella enterica, and Shiga toxin-producing Escherichia coli (STEC) from 32 organic and conventional farms were analyzed. A total of 577 leafy greens, irrigation water, compost, field soil, and pond sediment samples were collected. Salmonella was recovered from 2.2% of leafy greens (n = 369) and 7.7% of sediment (n = 13) samples. There was an association between Salmonella recovery and growing season (fall versus spring) (P = 0.006) but not farming system (organic or conventional) (P = 0.920) or region (P = 0.991). No STEC was isolated. In all, 10% of samples were positive for E. coli: 6% of leafy greens, 18% of irrigation water, 10% of soil, 38% of sediment, and 27% of compost samples. Farming system was not a significant factor for levels of E. coli or aerobic mesophiles on leafy greens but was a significant factor for total coliforms (TC) (P < 0.001), with higher counts from organic farm samples. Growing season was a factor for aerobic mesophiles on leafy greens (P = 0.004), with higher levels in fall than in spring. Water source was a factor for all indicator bacteria (P < 0.001), and end-of-line groundwater had marginally higher TC counts than source samples (P = 0.059). Overall, the data suggest that seasonal events, weather conditions, and proximity of compost piles might be important factors contributing to microbial contamination on farms growing leafy greens. PMID:25616798

  20. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  1. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011.

    PubMed

    Barichivich, Jonathan; Briffa, Keith R; Myneni, Ranga B; Osborn, Timothy J; Melvin, Thomas M; Ciais, Philippe; Piao, Shilong; Tucker, Compton

    2013-10-01

    We combine satellite and ground observations during 1950-2011 to study the long-term links between multiple climate (air temperature and cryospheric dynamics) and vegetation (greenness and atmospheric CO(2) concentrations) indicators of the growing season of northern ecosystems (>45°N) and their connection with the carbon cycle. During the last three decades, the thermal potential growing season has lengthened by about 10.5 days (P < 0.01, 1982-2011), which is unprecedented in the context of the past 60 years. The overall lengthening has been stronger and more significant in Eurasia (12.6 days, P < 0.01) than North America (6.2 days, P > 0.05). The photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn when factors such as light and moisture limitation may constrain photosynthesis. The autumnal extension of the photosynthetic growing season since 1982 appears to be about half that of the thermal potential growing season, yielding a smaller lengthening of the photosynthetic growing season (6.7 days at the circumpolar scale, P < 0.01). Nevertheless, when integrated over the growing season, photosynthetic activity has closely followed the interannual variations and warming trend in cumulative growing season temperatures. This lengthening and intensification of the photosynthetic growing season, manifested principally over Eurasia rather than North America, is associated with a long-term increase (22.2% since 1972, P < 0.01) in the amplitude of the CO(2) annual cycle at northern latitudes. The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO(2) uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO(2) to the atmosphere. These contrasting responses may be critical in determining the impact of continued warming on northern terrestrial ecosystems and the

  2. Agriculture modifies the seasonal decline of breeding success in a tropical wild bird population

    PubMed Central

    Cartwright, Samantha J; Nicoll, Malcolm A C; Jones, Carl G; Tatayah, Vikash; Norris, Ken

    2014-01-01

    Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography, but the mechanisms have yet to be explored fully in wild populations. Here, we investigate the mechanisms linking agricultural land use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus, a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall) and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture, it would significantly under-estimate breeding success in dry (early) springs and over-estimate breeding success in wet (late) springs. Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will

  3. [Foreign agricultural proletariat and seasonal migrations: Haitian workers in the Dominican agriculture].

    PubMed

    Lozano, W

    1992-01-01

    The effects of the massive entry of Haitian agricultural workers into rice, coffee, and other agricultural production in the Dominican Republic over the past 15 years are analyzed using data from surveys conducted in 1985 and 1987. Unlike the classic Latin American cases of labor migration, the movement of Haitian workers to the Dominican Republic crosses national borders and involves a landless proletariat rather than peasant farmers seeking to supplement their subsistence. Most of the Haitians finding work in coffee and rice cultivation were former sugar cane workers with several years of residence in the Dominican Republic who were forced out of sugar cane cutting by the collapse of the industry in the 1980s. Although Haitians have been employed in Dominican agriculture since the early 1900s, their massive movement to crops of great labor demand other than sugar began in the 1980s. Most of the Haitian workers in rice and coffee are illiterate men with no more than 3 years of primary education. Their average age is 28.4 years for coffee and 29.1 for rice workers. 40% of coffee workers and 53% of rice workers had children. The survey found a greater proportion of migrants from the North zone of Haiti than have previous studies, probably because of the accelerating crisis in the peasant economy in the North and the curtailment of movement to the Bahamas. The technical and social organization of agricultural work goes far in explaining migratory flows. Rice cultivation has heavy labor demands year round, while demand for labor in coffee cultivation is concentrated between August-December. The more complex and better paying jobs in rice cultivation are performed primarily by Dominican workers, who have formed a landless agricultural proletariat in place for at least 2 generations. Dominican workers thus meet the condition of staying in place all year that is not completely possible for Haitian workers. No such ethnic separation occurs in the coffee harvest, and

  4. Consumption of eelgrass (Zostera marina L.) by the isopod idotea chelipes (pallas) in lake Grevelingen, after the growing season

    NASA Astrophysics Data System (ADS)

    Groenendijk, A. M.

    Autumn and winter consumption of eelgrass ( Zostera marina L.) by the isopod Idotea chelipes (Pallas) was calculated by means of estimating biomass of both Idotea and eelgrass in the field, and consumption experiments in the laboratory. During the research period, September 1978 to March 1979, Idotea was found to be most abundant (in terms of biomass) invertebrate species in the eelgrass beds of Lake Grevelingen. Calculations show that Idotea can only play a minor role in the breakdown of eelgrass after the growing season: only between 2.9 and 5.8% (maximally) of the standing crop of eelgrass at the 3 permanent plots was consumed by this invertebrate. The fast decline of the standing eelgrass crop after the growing season in mainly due to transport of large leaf fragments (>10 cm) from the eelgrass beds by wind and wave action.

  5. Transcriptome profiling in fast versus slow-growing rainbow trout across seasonal gradients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Circannual rhythms in vertebrates can influence a wide variety of physiological processes. Some notable examples include annual reproductive cycles and for poikilotherms, seasonal changes modulating growth. Increasing water temperature elevates growth rates in fishes, but increases i...

  6. Growing Season Length as a Key Factor of Cumulative Net Ecosystem Exchange Over the Pine Forest Ecosystems in Europe

    NASA Astrophysics Data System (ADS)

    Danielewska, Alina; Urbaniak, Marek; Olejnik, Janusz

    2015-04-01

    The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.

  7. Seasonal Dynamics in Runoff Generation, Flowpaths and Phosphorus Mobilization From Reduced-till Agricultural Fields in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; van Esbroeck, C.; Brunke, R.; McKague, K.

    2014-12-01

    Reduced tillage systems used in agriculture have been shown to decrease losses of particulate phosphorus (P), but may increase the risk of dissolved P transport in some landscapes. Most of our knowledge of P losses from agricultural systems is based on observations made during the frost-free season and little is known about winter processes. Given the magnitude of the spring freshet in many regions, it is important to characterize P dynamics during this period. Discharge and P transport in overland flow and subsurface (tile) drainage were monitored at three reduced-till fields in southern Ontario, Canada for 18 months to (1) quantify runoff and P loads from fields; (2) characterize seasonality in the relative contributions of tile drainage and overland flow to runoff and P loads, and (3) demonstrate variable responses among different event types. Transport pathways were active throughout the non-growing season (NGS) and this period accounted for the majority of annual P loads over the study period. Drainage tiles were the dominant hydrologic pathway from fields throughout the study period, but were a small source of P when compared to P loss in overland flow. Overland flow was predominantly observed during winter thaws when ground frost was present. However, the magnitude and speciation of P losses during individual winter events were variable, and, were governed by a combination of antecedent conditions and precipitation characteristics. Given the importance of the NGS to annual P losses, we suggest that management steps should be taken to minimize the risk of losses during this period.

  8. Multi-trait Analysis of Agroclimate Variations During the Growing Season in East-Central Poland (1971-2005)

    NASA Astrophysics Data System (ADS)

    Radzka, Elżbieta; Rymuza, Katarzyna

    2015-04-01

    The work is based on meteorological data recorded by nine stations of the Institute of Meteorology and Water Management located in east-central Poland from 1971 to 2005. The region encompasses the North Podlasian Lowland and the South Podlasian Lowland. Average values of selected agroclimate indicators for the growing season were determined. Moreover, principal component analysis was conducted to indicate elements that exerted the greatest influence on the agroclimate. Also, cluster analysis was carried out to select stations with similar agroclimate. Ward method was used for clustering and the Euclidean distance was applied. Principal component analysis revealed that the agroclimate of east-central Poland was predominantly affected by climatic water balance, number of days of active plant growth, length of the farming period, and the average air temperature during the growing season (Apr-Sept). Based on the analysis, the region of east-central Poland was divided into two groups (areas) with different agroclimatic conditions. The first area comprized the following stations: Szepietowo and Białowieża located in the North Podlasian Lowland and Biała Podlaska situated in the northern part of the South Podlasian Lowland. This area was characterized by shorter farming periods and a lower average air temperature during the growing season. The other group included the remaining stations located in the western part of both the Lowlands which was warmer and where greater water deficits were recorded.

  9. Anhydrous Ammonia Injection Depth Does Not Affect Nitrous Oxide Emissions in a Silt Loam over Two Growing Seasons.

    PubMed

    Maharjan, Bijesh; Venterea, Rodney T

    2014-09-01

    Anhydrous ammonia (AA) is a major fertilizer source in North America that can promote greater emissions of nitrous oxide (NO) than other nitrogen (N) fertilizers. Previous studies found that injection of AA at a shallow depth (0.1 m) decreased NO in a rainfed clay loam but increased NO in an irrigated loamy sand compared with the standard injection depth of 0.2 m. The objective of this study was to evaluate the effects of AA injection depth in a silt loam soil used for corn ( L.) production and managed under two contrasting tillage regimes over two consecutive growing seasons (2010 and 2011) in Minnesota. In contrast with previous studies, AA placement depth did not affect NO emissions in either tillage system or in either growing season. Tillage by itself affected NO emissions only in the drier of two seasons, during which NO emissions under no tillage (NT) exceeded those under conventional tillage (CT) by 55%. Soil moisture content under NT was also greater than under CT only in the drier of the two seasons. Effects of AA placement depth and long-term tillage regime on NO emissions exhibit intersite as well as interannual variation, which should be considered when developing NO mitigation strategies. Further study is needed to identify specific soil, climate, or other factors that mediate the contrasting responses to management practices across sites.

  10. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data

    NASA Astrophysics Data System (ADS)

    Park, Taejin; Ganguly, Sangram; Tømmervik, Hans; Euskirchen, Eugénie S.; Høgda, Kjell-Arild; Rune Karlsen, Stein; Brovkin, Victor; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2016-08-01

    Monitoring and understanding climate-induced changes in the boreal and arctic vegetation is critical to aid in prognosticating their future. We used a 33 year (1982-2014) long record of satellite observations to robustly assess changes in metrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity. Particular attention was paid to evaluating the accuracy of these metrics by comparing them to multiple independent direct and indirect growing season and productivity measures. These comparisons reveal that the derived metrics capture the spatio-temporal variations and trends with acceptable significance level (generally p < 0.05). We find that LOS has lengthened by 2.60 d dec-1 (p < 0.05) due to an earlier onset of SOS (-1.61 d dec-1, p < 0.05) and a delayed EOS (0.67 d dec-1, p < 0.1) at the circumpolar scale over the past three decades. Relatively greater rates of changes in growing season were observed in Eurasia (EA) and in boreal regions than in North America (NA) and the arctic regions. However, this tendency of earlier SOS and delayed EOS was prominent only during the earlier part of the data record (1982-1999). During the later part (2000-2014), this tendency was reversed, i.e. delayed SOS and earlier EOS. As for seasonal total productivity, we find that 42.0% of northern vegetation shows a statistically significant (p < 0.1) greening trend over the last three decades. This greening translates to a 20.9% gain in productivity since 1982. In contrast, only 2.5% of northern vegetation shows browning, or a 1.2% loss of productivity. These trends in productivity were continuous through the period of record, unlike changes in growing season metrics. Similarly, we find relatively greater increasing rates of productivity in EA and in arctic regions than in NA and the boreal regions. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern

  11. Agriculture--Ornamental Horticulture. Building Model Greenhouse and Growing Plants. Kit No. 41. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Carter, Wesley

    An instructor's manual and student activity guide on building a model greenhouse and growing plants are provided in this set of prevocational education materials which focuses on the vocational area of agriculture (ornamental horticulture). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven…

  12. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.

    PubMed

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations. PMID:25627826

  13. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.

    PubMed

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  14. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  15. Monitoring seasonal progress of rice stubble burning in major rice growing districts of Haryana, India, using multidate AWiFS data

    NASA Astrophysics Data System (ADS)

    Yadav, M.; Prawasi, R.; Jangra, S.; Rana, P.; Kumari, K.; Lal, S.; Jakhar, K.; Sharma, S.; Hooda, R. S.

    2014-11-01

    The present paper describes the methodology and results of assessment of seasonal progress of rice stubble burning for 10 major rice growing districts of Haryana state in India. These 10 districts contribute about 84 per cent of total rice area of the state. As the rice fields are immediately required to be vacated for the sowing of next crop the farmers opt for mechanized harvesting and easy way out of burning the stubbles in the field. Such burning result in release of polluting gases and aerosols. Besides, the heating of the soil kills the useful micro-flora of the soil causing soil degradation. Multi-date AWiFS data from Resourcesat 1 and 2 satellites acquired between October 16, 2013 to November 26, 2013 were used for estimating paddy stubble burning areas at different intervals for the year 2013 crop growing season. In season collected ground truth data using hand held GPS along with field photographs were used to identify paddy stubble burning areas and other land features. Complete enumeration approach and Iterative Self-organizing Data Analysis Technique (ISODATA) unsupervised classifier was used for digital analysis. Normalized Difference Vegetation Index (NDVI) of each date was also used with other spectral bands of temporal images. To improve the classification accuracy the non-agricultural areas were masked out. The area was estimated by computing pixels under the classified image mask. Progress of paddy stubble burning was estimated at different intervals for the year 2013 using available cloud free multi-date IRS-P6 AWiFS data to identify the crucial period when stubbles burning takes place in major area so that preventive measures can be taken to curb the menace.

  16. Impacts and uses of seasonal and intraseasonal predictions in the business community with an emphasis on the energy and agricultural industries

    NASA Astrophysics Data System (ADS)

    Streit, D.; Murnane, R.

    2003-04-01

    Almost any industry can benefit financially from accurate seasonal and intraseasonal predictions by determining threats to profits and taking out derivative insurance. However, the energy and agricultural industries stand to gain from these forecasts in many more ways and are therefore already using them in their decision support systems. Earth Satellite Corporation is one of the leading companies providing seasonal and intraseasonal forecasts to customers in these communities. The end users in both can be broadly divided into producers and traders, each with specific needs and applications. In this presentation, we describe those needs and applications based on our 30 years of experience. The basic difference between traders and producers in both groups is that traders will use a long-range forecast to define their overall trading strategy for a season, while producers will use the forecast more in a tactical sense to either cut their losses or maximize their profits. For example, agricultural producers will change the crops to be planted if they know a dry growing season is expected. In the energy industry, the amount of natural gas or heating oil stored by producers for the upcoming heating season is driven by forecasts. Traders in both industries will apply a more aggressive or cautious approach to the positions they take based on the forecasts. The rest of the presentation will describe other several other applications in retail, transportation, and the housing industry.

  17. Effects of leaf display on light interception and apparent photosynthesis in two contrasting Populus cultivars during their second growing season.

    PubMed

    Dickmann, D. I.; Michael, D. A.; Isebrands, J. G.; Westin, S.

    1990-12-01

    Effects of the contrasting leaf display of poplar cultivars Eugenei (Populus x euramericana) and Tristis (P. tristis x P. balsamifera) on light interception and photosynthesis were studied in the second year of growth in an irrigated plantation near Rhinelander, Wisconsin, USA (lat. 45 degrees N). Leaves on the current terminal (CT) and on proleptic branches were measured between 0900 and 1500 h on five clear days from June to September 1980. Leaf orientation-based differences between these cultivars were evident as the second growing season progressed and the crowns of the trees in the plantation grew together. Leaves of Eugenei are erectophile or tilted from the horizontal. In this cultivar light penetrated throughout the crown; many leaves on the lowest branches were illuminated as fully as those on the upper CT and had higher photosynthetic rates than equivalent leaves in Tristis. However, by early September many of the lower branches on Eugenei trees had abscised. In the planophile Tristis, adaxial photon flux densities (PPFD) of leaves on the lower portion of the CT and on branches were only a fraction of those measured on the upper CT. This pattern became more extreme as the season progressed. Few of the lower branches of Tristis abscised during the growing season. Photosynthesis rates, especially on a whole-leaf basis, were closely related to incident PPFDs in both cultivars. The ecological significance of these results are discussed, as well as the hypothesized effect of leaf inclination on crop productivity.

  18. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate.

    PubMed

    Xu, Changmou; Zhang, Yali; Zhu, Lei; Huang, Yu; Lu, Jiang

    2011-02-23

    The influence of growing season (winter vs summer) on the synthesis and accumulation of phenolic compounds and antioxidant properties was studied in five grape cultivars for three consecutive years. Four phenolic compound parameters (total phenols, flavonoids, flavan-3-ols, and anthocyanins) and three antioxidant property parameters [2,2-diphenyl-1-picrylhydrazyl radical scavenging, 2,2-azinobis(3-ethylbenzothiazolinesulfonic acid) radical scavenging, and ferric reducing antioxidant power] were investigated. Results showed that both phenolic compounds and antioxidant properties in the seed and skin of winter berries were significantly (p < 0.05) higher than those of summer berries for all of the cultivars investigated. The anthocyanin profiles of berry skins appeared to be extremely consistent in different years for the same crop, whereas they varied greatly between the two crops within the same year (winter vs summer). Winter berries contained richer glucosides of delphinidin, cyanidin, peonidin, and malvidin than summer berries. These seasonal variations of phenolic compounds and antioxidant properties on grape berries were largely contributed by climatic factors such as temperature, solar radiation, rainfall, and hydrothermic coefficient between different growing seasons.

  19. High-Frequency Measurements of Methane Ebullition Over a Growing Season at a Temperate Peatland Site

    NASA Technical Reports Server (NTRS)

    Goodrich, Jordan P.; Varner, Ruth K.; Frolking, Steve; Duncan, Bryan N.; Crill, Patrick M.

    2011-01-01

    Bubbles can contribute a significant fraction of methane emissions fr om wetlands; however the range of reported fractions is very large an d accurate characterization of this pathway has proven difficult. Her e we show that continuous automated flux chambers combined with an in tegrated cavity output spectroscopy (ICOS) instrument allow us to qua ntify both CH4 ebullition rate and magnitude. For a temperate poor f en in 2009, ebullition rate varied on hourly to seasonal time scales. A diel pattern in ebullition was identified with peak release occurr ing between 20:00 and 06:00 local time, though steady fluxes (i.e., t hose with a linear increase in chamber headspace CH4 concentration) d id not exhibit diel variability. Seasonal mean ebullition rates peake d at 843.5 +/- 384.2 events m(exp -2)/d during the summer, with a me an magnitude of 0.19 mg CH4 released in each event.

  20. Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Wang, Dingbao; Cai, Ximing

    2010-03-01

    This study explores the long-term trends of low flow magnitude and the slopes and shapes of the recession curves during winter and summer seasons under climatic and human factors. Four watersheds in the American Midwest are selected for the analysis, including two urban watersheds (Salt Creek and Des Plaines) and two agricultural watersheds (Embarras and Kankakee). The results show that the long-term baseflow recession slope trends in all the watersheds are primarily induced by human interferences. In the urban watersheds, the recession slopes decrease over time in both winter and summer due to effluent discharges. In the Kankakee watershed with irrigation, the recession slopes decrease in winter but increase in summer, and the opposite winter and summer trends are caused by the seasonal water use regime of irrigated agriculture. In the Embarras watershed with rainfed agriculture, the recession slopes decrease over time in winter but display no change in summer. Sources of water withdrawal (groundwater versus surface water) also have different impacts on the recession process. This long-term analysis of recession rates, in conjunction with the changes in low flow magnitude, offers valuable insight on human interferences to hydrologic processes. Beyond the specific case studies, this paper documents how a scientific approach based on existing streamflow observation can be applied to improving our understanding of the impact of human and climatic influences on baseflow and low flow processes.

  1. Where the Grass Grows Again: Knowledge Exchange in the Sustainable Agriculture Movement.

    ERIC Educational Resources Information Center

    Hassanein, Neva; Kloppenburg, Jack R., Jr.

    1995-01-01

    Intensive rotational grazing by Wisconsin dairy farmers represents a local expression of the sustainable agriculture movement. Contrary to interpretations that view local knowledge in agriculture as idiosyncratic, these graziers use horizontal forms of organizing and information exchange to overcome the limits of personal experience and share…

  2. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests

    USGS Publications Warehouse

    Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D.

    2012-01-01

    The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field-based and remote-sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium-resolution remote sensing data, organized by day of year, to explore the influence of climate-related landscape factors on the timing of spring and autumn leaf-area trajectories in mid-Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape-scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.

  3. Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates

    NASA Astrophysics Data System (ADS)

    Real, António C.; Borges, José; Cabral, J. Sarsfield; Jones, Gregory V.

    2015-08-01

    Temperature and water status profiles during the growing season are the most important factors influencing the ripening of wine grapes. To model weather influences on the quality and productivity of the vintages, it is necessary to partition the growing season into smaller growth intervals in which weather variables are evaluated. A significant part of past and ongoing research on the relationships between weather and wine quality uses calendar-defined intervals to partition the growing season. The phenology of grapevines is not determined by calendar dates but by several factors such as accumulated heat. To examine the accuracy of different approaches, this work analyzed the difference in average temperature and accumulated precipitation using growth intervals with boundaries defined by means of estimated historical phenological dates and intervals defined by means of accumulated heat or average calendar dates of the Douro Valley of Portugal. The results show that in situations where there is an absence of historical phenological dates and/or no available data that makes the estimation of those dates possible, it is more accurate to use grapevine heat requirements than calendar dates to define growth interval boundaries. Additionally, we analyzed the ability of the length of growth intervals with boundaries based on grapevine heat requirements to differentiate the best from the worst vintage years with the results showing that vintage quality is strongly related to the phenological events. Finally, we analyzed the variability of growth interval lengths in the Douro Valley during 1980-2009 with the results showing a tendency for earlier grapevine physiology.

  4. [Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest].

    PubMed

    Wang, Ning; Wang, Mei-ju; Li, Shi-lan; Wang, Nan-nan; Feng, Fu-juan; Han, Shi-jie

    2015-05-01

    Broadleaved Korean pine mixed forest is the zonal climax vegetation in Northeast China and it plays a significant role in maintaining the ecological security. Changbai Mountains is a suitable region to study the positive and negative feedback mechanisms of temperate forest for precipitation variation. This study analyzed responses of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN) to precipitation variation (± 30%) in original broadleaved Korean pine mixed forest of Changbai Mountains. The results showed that, during the growing seasons (from May to September), the averages of SMBC and SMBN were 879.09 and 100.03 mg · kg(-1), respectively. Moreover, both of these two parameters gradually decreased with the soil depth. The contents of SMBC and SMBN all increased with the increasing precipitation, and the changes of SMBC and SMBN in the 0-5 cm soil layer were stronger than in the 5-10 cm soil layer. The value of SMBC/SMBN declined with the increase of precipitation. The precipitation variation significantly influenced the means of SMBC and SMBN. Compared with precipitation reduction, precipitation enhancement affected the indices much significantly. Both SMBC and SMBN showed similar seasonal patterns, which were the lowest in May, and after that, they increased and then decreased and increased again, showing 1-2 peaks in the growing season. However, the value and occurring time of the peaks varied with the precipitation and soil layer, and the seasonal variations of SMBC and SMBN in the 0-5 cm soil layer were higher than in the 5-10 cm soil layer. SMBC and SMBN had significant positive correlation with organic matter and total nitrogen content. The variances of soil physical and chemical properties caused by precipitation variation were closely related with the difference in spatial-temporal patterns of the soil microbial biomass in the forest. In conclusion, the precipitation variations could cause the change of the soil microbial

  5. [Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest].

    PubMed

    Wang, Ning; Wang, Mei-ju; Li, Shi-lan; Wang, Nan-nan; Feng, Fu-juan; Han, Shi-jie

    2015-05-01

    Broadleaved Korean pine mixed forest is the zonal climax vegetation in Northeast China and it plays a significant role in maintaining the ecological security. Changbai Mountains is a suitable region to study the positive and negative feedback mechanisms of temperate forest for precipitation variation. This study analyzed responses of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN) to precipitation variation (± 30%) in original broadleaved Korean pine mixed forest of Changbai Mountains. The results showed that, during the growing seasons (from May to September), the averages of SMBC and SMBN were 879.09 and 100.03 mg · kg(-1), respectively. Moreover, both of these two parameters gradually decreased with the soil depth. The contents of SMBC and SMBN all increased with the increasing precipitation, and the changes of SMBC and SMBN in the 0-5 cm soil layer were stronger than in the 5-10 cm soil layer. The value of SMBC/SMBN declined with the increase of precipitation. The precipitation variation significantly influenced the means of SMBC and SMBN. Compared with precipitation reduction, precipitation enhancement affected the indices much significantly. Both SMBC and SMBN showed similar seasonal patterns, which were the lowest in May, and after that, they increased and then decreased and increased again, showing 1-2 peaks in the growing season. However, the value and occurring time of the peaks varied with the precipitation and soil layer, and the seasonal variations of SMBC and SMBN in the 0-5 cm soil layer were higher than in the 5-10 cm soil layer. SMBC and SMBN had significant positive correlation with organic matter and total nitrogen content. The variances of soil physical and chemical properties caused by precipitation variation were closely related with the difference in spatial-temporal patterns of the soil microbial biomass in the forest. In conclusion, the precipitation variations could cause the change of the soil microbial

  6. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  7. The variation of methane flux rates from boreal tree species at the beginning of the growing season

    NASA Astrophysics Data System (ADS)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2016-04-01

    Boreal forests are considered as net sink for atmospheric methane (CH4) because of the CH4 oxidizing bacteria in the aerobic soil layer. However, within the last decades it has become more evident that trees play an important role in the global CH4 budget by offering pathways for anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may also act as independent sources of CH4. To confirm magnitude, variability and the origin of the tree mediated CH4 emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured tree stem and shoot CH4 exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in southern Finland (61° 51'N, 24° 17'E, 181 asl). The fluxes were measured from silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation and forest structure by using the static chamber technique. Scaffold towers were used for measurements at multiple stem heights and shoots. The aim was to study the vertical profile of CH4 fluxes at stem and shoot level and compare these fluxes among the studied species, and to observe temporal changes in CH4 flux over the beginning of the growing season. We found that all the trees emitted CH4 from their stems and shoots. Overall, the birches showed higher emissions compared to the spruces. The emission rates were considerably larger in the lower parts of the birch stems than upper parts, and these emissions increased during the growing season. The spruces had more variation in the stem CH4 flux, but the emission rates of the upper parts of the stem exceeded the birch emissions at the same height. The shoot fluxes of all the studied trees indicated variable CH4 emissions without a clear pattern regarding the vertical profile and

  8. Exploring the correlation between Southern Africa NDVI and Pacific sea surface temperatures: Results for the 1998 maize growing season

    USGS Publications Warehouse

    Verdin, J.; Funk, C.; Klaver, R.; Roberts, D.

    1999-01-01

    Several studies have identified statistically significant correlations between Pacific sea surface temperature anomalies and NDVI anomalies in Southern Africa. The potential predictive value of the relationship was explored for the 1998 maize growing season. Cross-validation techniques suggested a more useful relationship for regions of wet anomaly than for regions of dry anomaly. Observed 1998 NDVI anomaly patterns were consistent with this result. Wet anomalies were observed as expected, but wide areas of expected dry anomalies exhibited average or above-average greeness.

  9. Evaluation of the onset and length of growing season to define planting date—`a case study for Mali (West Africa)'

    NASA Astrophysics Data System (ADS)

    Akinseye, F. M.; Agele, S. O.; Traore, P. C. S.; Adam, M.; Whitbread, A. M.

    2016-05-01

    The agroecological zones (AEZ) of Mali fall within the semi-arid climate, the ability to determine efficiently or predict accurately the onset of growing season (OGS), and length of growing season (LGS) cannot be over-emphasized due to highly variable rainfall pattern and the dependence of smallholder farmers practising on rainfed farming agriculture. In this study, we determined the most suitable method for predicting the onset date of rainfall across AEZ that fitted with the planting windows of major cereal crops (maize, millet, and sorghum). Using long-term daily rainfall records from 22 meteorological stations spread across AEZ of Mali, four (4) known methods were applied to determine the onset dates of the rain. The mean onset dates were statistically compared with the farmer's planting window for the selected weather stations to determine the suitable dates of OGS and LGS. The hypothesis considered a time lag minimum of 7 days between the mean onset date and traditional farmer sowing dates for the crops. Then, the preferred method was used to estimate OGS based on early, normal and late dates respectively across the stations. Also, the estimated LGS according to each zone was evaluated using probability distribution chart with duration to maturity for varieties of the same crops. The results showed that Def_4 was found appropriate for Sahelian and Sudano-Sahelian zones; Def_3 satisfied the criteria and exhibited superior capacity into farmer's average planting date over Sudanian and Guinea Savannah zones. These results have an important application in cropping systems in order to prevent crop failure and ensure a better choice of crop variety according to LGS under climate variability and change being experienced across Mali.

  10. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season.

    PubMed

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5-6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  11. Steers grazing blue grama rangeland throughout the growing season. II. Site and extent of digestion and microbial protein synthesis.

    PubMed

    Funk, M A; Galyean, M L; Branine, M E

    1987-11-01

    Effects of advancing forage maturity and drought-induced summer dormancy on site and extent of digestion and microbial protein synthesis in beef steers grazing native blue grama rangeland were evaluated in four sampling periods. Five steers (avg initial wt 227 kg) fitted with ruminal, duodenal and ileal cannulae and three steers cannulated at the esophagus freely grazed a 12-ha study pasture. Sampling periods lasted 11 d and started June 2, which was during the early growing season (EGS); June 22, during early summer dormancy (ESD); July 21, during late summer dormancy (LSD); and August 25, 1985, during the late growing season (LGS). Dietary N content was lower (P less than .05) in ESD and LSD than in EGS and LGS. Neutral detergent fiber (NDF) content was lower (P less than .05) in EGS than in other sampling periods. Ruminal organic matter (OM) digestion was lower (P less than .05) in ESD than in EGS, probably because of increased dietary NDF and lower N content. Ruminal OM digestion was greater (P less than .05) in LSD and LGS than in ESD because of increased fiber digestion. Neutral detergent fiber and acid detergent fiber (ADF) digestion occurring in the rumen was greater (P less than .05) in LSD and LGS than in EGS and ESD. Organic matter digestion in the small intestine and OM, NDF and ADF digestion in the hindgut were similar for all sampling periods. Over 90% of the fiber digestion occurred ruminally.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season

    PubMed Central

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  13. Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen

    NASA Astrophysics Data System (ADS)

    Koebsch, Franziska; Jurasinski, Gerald; Koch, Marian; Hofmann, Joachim; Glatzel, Stephan

    2014-05-01

    Temperature and phenology trigger seasonal variation of CH4 emissions in many ecosystems. However, ecosystem CH4 exchange varies also considerably on smaller temporal scales such as days or weeks. Indeed, we are aware of many processes that control CH4 emissions on the local soil-plant-atmosphere continuum, but their interaction on ecosystem level is not well understood yet. We used a quasi-continuous Eddy Covariance CH4 flux time series and wavelet analysis to describe the temporal variation of ecosystem CH4 exchange within the growing season of a permanently inundated temperate fen. Moreover, we assigned time scale-specific controls and investigated whether their impact changes during the course of the growing season. Water/soil temperature correlated with ecosystem CH4 exchange at time scales of 6-11 and 22 days which exceeds the time scales that are typically associated with the passage of weather fronts. The low response time might be due to the high heat capacity of the water column. On a daily scale, shear-induced turbulence (presented by friction velocity) and plant activity (presented by canopy photosynthesis) caused a diurnal variation of ecosystem CH4 exchange with peak time around noon. However, this pattern was apparent only at the beginning of the growing season (April/May). In the following, convective mixing of the water column (presented by the water temperature gradient) gradually gained importance and caused high night-time CH4 emissions, thereby levelling off the diurnal CH4 emission pattern. Our study highlights the need for multi-scale approaches that consider the non-stationarity of the underlying processes to adequately describe the complexity of ecosystem CH4 exchange. Moreover, we show that CH4 release processes such as convective mixing of the water column which has been mainly known from aquatic ecosystems until recently (Godwin et al. 2013), might be also of importance in shallowly flooded terrestrial ecosystems. Citation: Godwin CM, Mc

  14. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  15. Improving crop biomass through asynchronous assimilation of LAI and soil moisture during multiple growing seasons of corn

    NASA Astrophysics Data System (ADS)

    Bongiovanni, T. E.; Nagarajan, K.; Jones, J. W.; Monsivais Huertero, A.; Judge, J.

    2010-12-01

    Crop biomass is an important indicator of the health of a plant and is also critical for various remote sensing algorithms. In addition, it determines water uptake by the roots, affecting the root zone soil moisture (RZSM). Typically, crop models are used to simulate growth and development in a growing season and estimate biomass and yield. However large uncertainties in these estimates occur over time due to errors in computation, initialization conditions, forcings, and model parameters. Such uncertainties can be significantly reduced by assimilating in situ and/or remotely sensed observations. Satellite-based LAI and near-surface soil moisture (SM) are available weekly and 3 days, respectively. In this study, an EnKF-based assimilation algorithm was implemented to improve crop biomass using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. In situ observations of weekly LAI and every 3-day SM were assimilated asynchronously to update model estimates of LAI, RZSM, and crop biomass. The in situ observations were obtained from intensive field experiments during three seasons of sweet corn grown in North Central Florida. The impact of different assimilation scenarios for crop biomass was determined by the root mean squared difference and the standard deviation between the model estimates and observations during the seasons.

  16. Investigating the Persistence of a Snowpack Sublimation Stable Isotope Signal in Tree Xylem Water during the Growing Season

    NASA Astrophysics Data System (ADS)

    Schulze, E. S.; Bowling, D. R.

    2014-12-01

    Previous work identified a riparian meadow in the Rocky Mountains where streamside box elder (Acer negundo) trees did not use stream water, the most reliable and readily available source. A follow-up study showed that the water used by trees appears to be more evaporatively enriched than all available measured sources, including stream water, precipitation-derived soil water, and groundwater. While it is unlikely that there is a missing pool of water these trees are accessing, they may be tapping into a distinct subset of the bulk soil water available, possibly derived from much colder and older snowmelt. In this study, we investigated whether snowpack sublimation and subsequent melt water may impart an enriched isotopic signature that persists throughout the following growing season in less-mobile soil water pools. Profile samples of the snowpack, bulk melt water, and early season soil lysimeter water were collected throughout the winter and analyzed for hydrogen and oxygen stable isotopes. As snow began to melt in the spring, water samples for isotope analysis were taken from soil profiles, stream water, groundwater, and stems. Although sublimation likely occurred at the site, such processes did not impart an evaporative isotope enrichment on the snowpack throughout the season. Both snow pack and melt water remained closely tied to the local meteoric water line as they infiltrated soil. These findings suggest that snowpack sublimation processes preceding melt water infiltration are not the source of evaporative enrichment in tree water at our site.

  17. A comparative synoptic climatology of cool-season rainfall in major grain-growing regions of southern Australia

    NASA Astrophysics Data System (ADS)

    Pook, Michael J.; Risbey, James S.; McIntosh, Peter C.

    2014-08-01

    Two distinct synoptic weather systems, cut-off lows and fronts, deliver most of the cool-season rainfall to the cropping regions of southern Australia. A comparative synoptic climatology of daily rainfall events over approximately five decades reveals both spatial and temporal variations of the dominant synoptic types. The rainfall characteristics and associated large-scale drivers differ between the two synoptic types. Understanding regional rainfall depends on understanding these differences. Cut-off lows contribute one half of growing season rainfall in southeast Australia, while frontal systems associated with Southern Ocean depressions contribute about a third. The proportions are reversed in the Central Wheat Belt (CWB) of Western Australia where Southern Ocean fronts are the dominant source of growing season rainfall. In the southern island state of Tasmania, topography strongly influences the outcome with cut-off lows contributing about half the rainfall near the east coast and fronts dominating a short distance to the west. Cut-off lows generally contribute their highest proportion of rainfall in the austral autumn and spring while frontal rainfall is at its maximum in late winter. Cut-off low rainfall contributes more strongly in percentage terms to the recent decline in rainfall. The distribution of synoptic types is explained by the dominant long-wave structure in the winter half of the year. The major trough near Western Australia favours frontogenesis to the southwest of the CWB but fronts moving out of the region encounter a persistent meridional ridge in the Tasman Sea where there is a high frequency of blocking events.

  18. Effects of grazing on ecosystem CO₂ exchange in a meadow grassland on the Tibetan Plateau during the growing season.

    PubMed

    Chen, Ji; Shi, Weiyu; Cao, Junji

    2015-02-01

    Effects of human activity on ecosystem carbon fluxes (e.g., net ecosystem exchange (NEE), ecosystem respiration (R(eco)), and gross ecosystem exchange (GEE)) are crucial for projecting future uptake of CO2 in terrestrial ecosystems. However, how ecosystem that carbon fluxes respond to grazing exclusion is still under debate. In this study, a field experiment was conducted to study the effects of grazing exclusion on R(eco), NEE, and GEE with three treatments (free-range grazing (FG) and grazing exclusion for 3 and 5 years (GE3 and GE5, respectively)) in a meadow grassland on the Tibetan Plateau. Our results show that grazing exclusion significantly increased NEE by 47.37 and 15.84%, and R eco by 33.14 and 4.29% under GE3 and GE5 plots, respectively, although carbon sinks occurred in all plots during the growing season, with values of 192.11, 283.12, and 222.54 g C m(-2) for FG, GE3, and GE5, respectively. Interestingly, grazing exclusion increased temperature sensitivity (Q10) of R eco with larger increases at the beginning and end of growing season (i.e., May and October, respectively). Soil temperature and soil moisture were key factors on controlling the diurnal and seasonal variations of R(eco), NEE, and GEE, with soil temperature having a stronger influence. Therefore, the combined effects of grazing and temperature suggest that grazing should be taken into consideration in assessing global warming effects on grassland ecosystem CO2 exchange.

  19. Effects of grazing on ecosystem CO₂ exchange in a meadow grassland on the Tibetan Plateau during the growing season.

    PubMed

    Chen, Ji; Shi, Weiyu; Cao, Junji

    2015-02-01

    Effects of human activity on ecosystem carbon fluxes (e.g., net ecosystem exchange (NEE), ecosystem respiration (R(eco)), and gross ecosystem exchange (GEE)) are crucial for projecting future uptake of CO2 in terrestrial ecosystems. However, how ecosystem that carbon fluxes respond to grazing exclusion is still under debate. In this study, a field experiment was conducted to study the effects of grazing exclusion on R(eco), NEE, and GEE with three treatments (free-range grazing (FG) and grazing exclusion for 3 and 5 years (GE3 and GE5, respectively)) in a meadow grassland on the Tibetan Plateau. Our results show that grazing exclusion significantly increased NEE by 47.37 and 15.84%, and R eco by 33.14 and 4.29% under GE3 and GE5 plots, respectively, although carbon sinks occurred in all plots during the growing season, with values of 192.11, 283.12, and 222.54 g C m(-2) for FG, GE3, and GE5, respectively. Interestingly, grazing exclusion increased temperature sensitivity (Q10) of R eco with larger increases at the beginning and end of growing season (i.e., May and October, respectively). Soil temperature and soil moisture were key factors on controlling the diurnal and seasonal variations of R(eco), NEE, and GEE, with soil temperature having a stronger influence. Therefore, the combined effects of grazing and temperature suggest that grazing should be taken into consideration in assessing global warming effects on grassland ecosystem CO2 exchange. PMID:25355630

  20. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  1. Seasonal energy requirements and thermoregulation of growing pouched mice, Saccostomus campestris (Cricetidae)

    NASA Astrophysics Data System (ADS)

    Ellison, G. T. H.; Skinner, J. D.

    1991-06-01

    Pouched mice ( Saccostomus campestris) were born in captivity during January and March and subsequently maintained under long photoperiod (14 h light: 10 h dark) at 25°C. During their first winter (July) and the following summer (January) the pouched mice were exposed to natural photoperiod in an unheated laboratory for 3 weeks prior to measurement. The pouched mice continued to grow during the study, and were significantly heavier after summer exposure than after winter exposure 6 months earlier. Although this increase in body mass would result in a decline in their surface area to volume ratio there was no significant decline in minimal thermal conductance ( C m) and winter-exposed pouched mice had a relatively lower C m than expected. Meanwhile the smaller, winter-exposed animals displayed a significantly higher capacity for non-shivering thermogenesis, together with higher levels of basal metabolism than summer individuals. These differences were not solely attributable to the contrasting body mass of each group and it is therefore clear that S. campestris can increase thermoregulatory heat production, and modify heat loss following exposure to short photoperiod and cold during their first winter. Despite the significant increase in metabolism, the overall energy requirements of small, winter-exposed animals were significantly lower than those for heavier pouched mice following exposure to summer conditions. These results suggest that growing pouched mice can effectively adapt to lower temperature conditions during their first winter, yet accrue considerable overall savings in total energy requirements as a result of their smaller body mass.

  2. Integrating ground observations of phenology with remotely sensed measurements: A 2007 growing season experiment at Sevilleta LTER

    NASA Astrophysics Data System (ADS)

    Bradley, B.; Wetherill, K.; Vanderbilt, K.; Nickeson, J.

    2007-12-01

    The use of satellites to monitor land surface phenology is important for understanding local and regional ecosystem variability, identifying change over time, and potentially predicting ecosystem response to short and long-term changes in climate. However, the relationship between how phenology is expressed on the ground and how it is interpreted from satellites is poorly understood because phenological stages do not always correspond well to changes in spectral reflectance. Rather than focusing on phenological stages (e.g., first leaf, first flower), the ground measurements in this study focus on changes in ecosystem greenness during the 2007 growing season. We collected bi-monthly measurements of community greenness in two perennial grasslands at the Sevilleta National Wildlife Refuge in central New Mexico, a Long Term Ecological Research (LTER) site. One site is dominated by blue grama grass (Bouteloua gracilis); the other is dominated by black grama grass (Bouteloua eriopoda). Grama grasses grow during the summer/fall time period, with onset of greenness typically occurring mid-July and peak greenness occurring in September. Bi-monthly ground measurements were collected from July 2, 2007 - October 4, 2007 within systematically arrayed 30x30 cm quadrats. Within each quadrat, we recorded percent green cover (grass or forb), percent non- photosynthetic cover, and percent soil. A nadir oriented digital photograph was also taken of each quadrat, from which a greenness index was calculated. Field sampling was timed within two days of an ASTER satellite image acquisition. Here, we compare three greenness measurements from ground sampling, digital photography, and ASTER satellite imagery for the 2007 growing season. We show the degree of correlation between the three measurements through time and draw inferences about how satellite imagery can be used to assess ecosystem phenology. This study is an important first step in furthering the linkage between remotely sensed

  3. Injury to apical meristem of cranberry by Dasineura oxycoccana (Diptera: Cecidomyiidae) reduces production of floral-units in the next growing season.

    PubMed

    Tewari, S; Buonaccorsi, J P; Averill, A L

    2012-08-01

    Cranberry tipworm, Dasineura oxycoccana Johnson (a gall-making fly), disrupts normal growth of cranberry (Vaccinium macrocarpon Aiton) by injuring the apical meristem of shoots or uprights. The impact of larval feeding injury on reproductive parameters of cranberry was determined, from one growing season to next, at upright (Maine and Massachusetts, 2008-2009) and plot levels (Massachusetts, 2009-2010 and 2010-2011). We also estimated the proportions of uprights injured because of tipworm feeding at several cranberry production sites (Massachusetts and Maine) and the proportions of uprights that produced flowers and fruits in the next growing season. Tipworm-injured uprights tagged at the end of the growing season did not produce floral-units (following year) across sites in both Massachusetts and Maine. There was significant variation among the sampled sites in the proportions of tipworm-injured uprights and also in the proportions of uprights with flowers in the next growing season (Massachusetts and Maine). A trend was apparent wherein sites with higher tipworm injury levels had relatively lower flowering proportions in the next growing season. However, sites in Massachusetts did not differ in the proportions of uprights that set fruit and in a replicated study, significant reduction in tipworm injury at plot level (using insecticide) did not impact flower and fruit production in the next growing season.

  4. Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?

    PubMed

    Blinova, Ilona; Chmielewski, Frank-Michael

    2015-06-01

    Anomalies in the timing of the thermal growing season have become obvious in the NE part of Fennoscandia since 2000. They are in accordance with climatic changes reported for Europe and Fennoscandia. The actual length of the growing season reached 120 days on average, onset on 30 May and ending on 27 September (1981-2010). Shifts in the timing of the growing season and its mean prolongation by 18.5 days/62a are demonstrated for Murmansk Region (1951-2012). In this period, the onset of the growing season advanced by 7.1 days/62a, while the end was extended by 11.4 days/62a. The delay in the end of the growing season is similar to the entire Fennoscandian pattern but it has not been detected in the rest of Europe. The regional pattern of climatic regimes in Murmansk Region remained stable in comparison with earlier climatic maps (1971). However, the actual shifts in the timing of the growing season were more pronounced in colder (oceanic and mountainous) parts. Recent climatic trends could influence the retreat of the tundra zone and changes in the forest line. Losses of tundra biodiversity and enrichment of the northern taiga by southern species could be expected from present climatic trends.

  5. Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?

    PubMed

    Blinova, Ilona; Chmielewski, Frank-Michael

    2015-06-01

    Anomalies in the timing of the thermal growing season have become obvious in the NE part of Fennoscandia since 2000. They are in accordance with climatic changes reported for Europe and Fennoscandia. The actual length of the growing season reached 120 days on average, onset on 30 May and ending on 27 September (1981-2010). Shifts in the timing of the growing season and its mean prolongation by 18.5 days/62a are demonstrated for Murmansk Region (1951-2012). In this period, the onset of the growing season advanced by 7.1 days/62a, while the end was extended by 11.4 days/62a. The delay in the end of the growing season is similar to the entire Fennoscandian pattern but it has not been detected in the rest of Europe. The regional pattern of climatic regimes in Murmansk Region remained stable in comparison with earlier climatic maps (1971). However, the actual shifts in the timing of the growing season were more pronounced in colder (oceanic and mountainous) parts. Recent climatic trends could influence the retreat of the tundra zone and changes in the forest line. Losses of tundra biodiversity and enrichment of the northern taiga by southern species could be expected from present climatic trends. PMID:25155187

  6. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  7. Environmental effects of growing short-rotation woody crops on former agricultural lands

    SciTech Connect

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-10-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application.

  8. [Quantifying direct N2O emissions from paddy fields during rice growing season in China: model and input data validation].

    PubMed

    Zou, Jian-Wen; Liu, Shu-Wei; Qin, Yan-Mei; Feng, De-Sheng; Zhu, Hui-Lin; Xu, Yong-Zhong

    2009-04-15

    The models on direct N2O emissions from rice paddies under different water regimes developed by the authors were validated against field measurements in China reported in 2005-2007 and in other regions. In flooding rice paddies (F), N2O emission predicted by the model was consistent with previous reports in other regions. Under the water regime of flooding-midseason drainage-reflooding (F-D-F), the model developed in this study was comparable to that established by using worldwide database. The models also well fitted N2O emissions from rice paddies under the water regime of flooding-midseason drainage-reflooding-moisture but without waterlogging (F-D-F-M) in China. Consistency of rice production data derived from the database of this study with those reported in previous studies suggests that the model input data of rice production had high reliability. The input data showed that water management and nitrogen input regimes have greatly changed in rice paddies since the 1950s. During the 1950s-1970s, about 20%-25% of the rice paddy was continuous water logging, and 75%-80% under the water regime of F-D-F. Since the 1980s, about 12%-16%, 77% and 7%-12% of paddy fields were under the water regimes of F, F-D-F and F-D-F-M, respectively. Total N input during the rice growing season averaged 87.49 kg x hm(-2) in the 1950s and 224.64 kg x hm(-2) in the 1990s. Chemical N input during the rice growing season has increased from 37.4 kg x hm(-2) in the 1950s to 198.8 kg x hm(-2) in the 1990s, accounting for 43% and 88% of the seasonal total N inputs, respectively. Manure N input was applied at stable rate, ranging from 45.2 kg x hm(-2) to 48.2 kg x hm(-2) during the 1950s-1970s, but thereafter it decreased over time. The contribution of manure N to total N inputs has decreased from 52% in the 1950s to 9% in the 1990s. Crop residue N retained during the rice growing season has increased from 4.9 kg x hm(-2) in the 1950s to 6.3 kg x hm(-2) in the 1980s. A high spatial

  9. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    NASA Astrophysics Data System (ADS)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  10. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Cassidy, Alison E.; Christen, Andreas; Henry, Gregory H. R.

    2016-04-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Thermokarst and permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, are present across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season, the undisturbed tundra was a small net sink (NEE = -0.1 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.4 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.8 g C m-2, while the disturbed tundra released 12.5 g C m-2. Before full leaf-out in early July, the undisturbed tundra was a small source of CO2 but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure daytime fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.40 µmol m-2 s-1 and +0.55 µmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.19 µmol m-2 s-1 and +1.04 µmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the majority of the growing season (late June and July).

  11. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Cassidy, A. E.; Christen, A.; Henry, G. H. R.

    2015-12-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming, and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, have increased in frequency and magnitude across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season the undisturbed tundra was a small net sink (NEE = -0.12 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.39 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.84 g C m-2, while the disturbed tundra released 12.48 g C m-2. Before full leaf out in early July, the undisturbed tundra was a small source of CO2, but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.41 μmol m-2 s-1 and +0.50 μmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.21 μmol m-2 s-1 and +1.00 μmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the growing season.

  12. [Effects of nitrogen addition on available nitrogen content and acidification in cold-temperate coniferous forest soil in the growing season].

    PubMed

    Chen, Gao-Qi; Fu, Wa-Li; Luo, Ya-Chen; Gao, Wen-Long; Li, Sheng-Gong; Yang, Hao

    2014-12-01

    Based on a low-level and multi-form N addition control experiment, this study took cold-temperate coniferous forest in Daxing'an Ling as the research object. After long-term and continuous nitrogen addition in situ, the available nitrogen (NH4(+) -N & NO3(-) -N) contents and pH values of the soil (0-10 cm) were measured in the early growing season (May) and the peak growing season (August) in 2010, 2012 and 2013. The results showed that, the available nitrogen in the early and peak growing seasons was mainly NH4(+) -N which accounted for over 96% of the inorganic nitrogen content, while the content of NO3(-) -N was very low. With the time extension of nitrogen addition, the effects of nitrogen addition on the NH4(+) -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH4(+) -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO3(-) -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO3(-) -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO3(-) -N. As time went on, the response of NH4(+) -N and NO3(-) -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0 - 10 cm soil in this cold-temperate coniferous forest was obviously acidified.

  13. Agricultural induced impacts on soil carbon cycling and sequestration in a seasonally saturated wetland

    NASA Astrophysics Data System (ADS)

    Maynard, J. J.; O'Geen, A. T.; Dahlgren, R. A.

    2011-06-01

    The fate of organic carbon (C) lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-yr-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above ground biomass were measured during two contrasting years (vegetated, 2004 vs. non-vegetated, 2005), followed by collection of sediment cores to the antecedent soil layer, representing 13 yr of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13-yr) sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg-1) and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20-35 g kg-1) underlain by C depleted (5-10 g kg-1) sediments and an increasing δ13C signature with depth indicating increasing decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004), fluctuating cycles of flooding and drying maintained the long-term C concentration at the same level as

  14. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff

    NASA Astrophysics Data System (ADS)

    Maynard, J. J.; Dahlgren, R. A.; O'Geen, A. T.

    2011-11-01

    The fate of organic carbon (C) lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004) vs. non-vegetated (2005)), followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr) sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg-1) and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20-35 g kg-1) underlain by C depleted (5-10 g kg-1) sediments and an increasing δ13C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004), fluctuating cycles of flooding and drying maintained the long-term C concentration at the same level as

  15. Utilisation of young and old soil carbon sources by microbial groups differ during the growing season and between experimental treatments in a long-term field experiment

    NASA Astrophysics Data System (ADS)

    Börjesson, Gunnar; Menichetti, Lorenzo; Thornton, Barry; Campbell, Colin; Kätterer, Thomas

    2014-05-01

    Soil organic matter (SOM)is the largest active carbon pool in the terrestrial environment. SOM is a key factor for soil fertility, but is also important for the sequestration of atmospheric CO2. In agricultural soils, management of plant residues and the use of organic fertilisers play important roles for maintaining SOM. Switching from C3 plants to C4 plants such as maize, enables a natural labelling in situ; when coupled with compound specific 13C isotope analysis of phospholipid fatty acids (PLFAs) it allows the proportion of new C (fixed after the switch added to soil from above- and belowground litter and root exudates) and the proportion of old C (fixed prior to the switch derived from turnover of organic matter) utilised by the soil microbial community to be determined. (new paragraph) A field experiment in Sweden, amended with different mineral and organic fertilisers since 1956, was grown with C3 plants, mainly cereals until 1999. From the year 2000 silage maize was grown every year. In 2012, soil from four replicate plots of five experimental treatments, N fertilised, N fertilised amended with straw and sewage sludge, and two controls (bare fallow and cropped unfertilised) were sampled three times, at the start, middle and end of the growing season. Phospholipid fatty acids (PLFAs) were extracted from all soil samples and analysed for concentrations and 13C content. (new paragraph) Total PLFA concentrations and also the PLFA/SOM ratios increased with SOM in the different treatments. Seasonal variation in total PLFA was small except for the most SOM-rich treatment (sewage sludge) where concentrations significantly decreased during the growing season indicating the depletion of a labile SOM pool. Weighted mean values of δ13C in PLFAs show that the plots fertilised with only calcium nitrate had the highest δ13C-values in PLFAs before (-20.24 o) and after the vegetation period (-20.37 o), due to a large input of 13C-enriched plant material. However, during

  16. Irrigated acreage in the Bear River Basin as of the 1975 growing season. [Idaho, Utah, and Wyoming

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Jaynes, R. A.; Landgraf, K. F.; Clark, L. D., Jr. (Principal Investigator)

    1982-01-01

    The irrigated cropland in the Bear River Basin as of the 1975 growing season was inventoried from satellite imagery. LANDSAT color infrared images (scale 1:125,000) were examined for early, mid, and late summer dates, and acreage was estimated by use of township/section overlays. The total basin acreage was estimated to be 573,435 acres, with individual state totals as follows: Idaho 234,370 acres; Utah 265,505 acres; and Wyoming 73,560 acres. As anticipated, wetland areas intermingled among cropland appears to have produced an over-estimation of irrigated acreage. According to a 2% random sample of test sites evaluated by personnel from the Soil Conservation Service such basin-wide over-estimation is 7.5%; individual counties deviate significantly from the basin-wide figure, depending on the relative amount of wetland areas intermingled with cropland.

  17. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons.

    PubMed

    Kolářová, Eva; Nekovář, Jiří; Adamík, Peter

    2014-10-01

    One of the ways to assess the impacts of climate change on plants is analysing their long-term phenological data. We studied phenological records of 18 common tree species and their 8 phenological phases, spanning 65 years (1946-2010) and covering the area of the Czech Republic. For each species and phenophase, we assessed the changes in its annual means (for detecting shifts in the timing of the event) and standard deviations (for detecting changes in duration of the phenophases). The prevailing pattern across tree species was that since around the year 1976, there has been a consistent advancement of the onset of spring phenophases (leaf unfolding and flowering) and subsequent acceleration of fruit ripening, and a delay of autumn phenophases (leaf colouring and leaf falling). The most considerable shifts in the timing of spring phenophases were displayed by early-successional short-lived tree species. The most pronounced temporal shifts were found for the beginning of seed ripening in conifers with an advancement in this phenophase of up to 2.2 days year⁻¹ in Scots Pine (Pinus sylvestris). With regards to the change in duration of the phenophases, no consistent patterns were revealed. The growing season has extended on average by 23.8 days during the last 35 years. The most considerable prolongation was found in Pedunculate Oak (Quercus robur): 31.6 days (1976-2010). Extended growing season lengths do have the potential to increase growth and seed productivity, but unequal shifts among species might alter competitive relationships within ecosystems.

  18. Contribution of grazing to soil atmosphere CH4 exchange during the growing season in a continental steppe

    NASA Astrophysics Data System (ADS)

    Tang, Shiming; Wang, Chengjie; Wilkes, Andreas; Zhou, Pei; Jiang, Yuanyuan; Han, Guodong; Zhao, Mengli; Huang, Ding; Schönbach, Philipp

    2013-03-01

    Degradation of steppes induced by overgrazing may affect the uptake of atmospheric methane (CH4) by soil sinks. However, uncertainty is associated with the very limited knowledge of gas fluxes in rapidly degrading steppe. In this study, we investigated the effects of grazing on CH4 uptake during the growing season in three types of steppe (meadow steppe, typical steppe and desert steppe and) in Inner Mongolia, China, to quantify and compare CH4 uptake in steppe ecosystems under different grazing management conditions. The CH4 fluxes were measured using an automatic cavity ring-down spectrophotometer at three steppe locations that differed primarily in grazing intensity. The results indicated that steppe soils were CH4 sinks throughout the growing season. CH4 uptake at all sites averaged 7.98 kg CH4-C ha-1 yr-1 (ranging from 1.53 to 18.74 kg CH4-C ha-1 yr-1), of which approximately 43.8% occurred in the desert steppe. CH4 uptake in the desert steppe increased 20.4% and 51.2% compared with the typical steppe and meadow steppe, respectively. Light grazing (LG) of steppe did not significantly change CH4 uptake compared with un-grazed (UG) steppe, but moderate and heavy grazing (MG, HG) reduced CH4 uptake significantly (by 6.8-37.9%, P < 0.05). These findings imply that reducing the grazing pressure on steppe would help increase the atmospheric CH4 sinks in steppe soils. Our results suggest that HG exerts a considerable negative impact on CH4 uptake in a continental steppe. Further studies involving year-round, intensive measurements of CH4 uptake are needed.

  19. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons

    NASA Astrophysics Data System (ADS)

    Kolářová, Eva; Nekovář, Jiří; Adamík, Peter

    2014-10-01

    One of the ways to assess the impacts of climate change on plants is analysing their long-term phenological data. We studied phenological records of 18 common tree species and their 8 phenological phases, spanning 65 years (1946-2010) and covering the area of the Czech Republic. For each species and phenophase, we assessed the changes in its annual means (for detecting shifts in the timing of the event) and standard deviations (for detecting changes in duration of the phenophases). The prevailing pattern across tree species was that since around the year 1976, there has been a consistent advancement of the onset of spring phenophases (leaf unfolding and flowering) and subsequent acceleration of fruit ripening, and a delay of autumn phenophases (leaf colouring and leaf falling). The most considerable shifts in the timing of spring phenophases were displayed by early-successional short-lived tree species. The most pronounced temporal shifts were found for the beginning of seed ripening in conifers with an advancement in this phenophase of up to 2.2 days year-1 in Scots Pine ( Pinus sylvestris). With regards to the change in duration of the phenophases, no consistent patterns were revealed. The growing season has extended on average by 23.8 days during the last 35 years. The most considerable prolongation was found in Pedunculate Oak ( Quercus robur): 31.6 days (1976-2010). Extended growing season lengths do have the potential to increase growth and seed productivity, but unequal shifts among species might alter competitive relationships within ecosystems.

  20. Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season.

    PubMed

    Davison, John; Öpik, Maarja; Zobel, Martin; Vasar, Martti; Metsis, Madis; Moora, Mari

    2012-01-01

    Despite the important ecosystem role played by arbuscular mycorrhizal fungi (AMF), little is known about spatial and temporal variation in soil AMF communities. We used pyrosequencing to characterise AMF communities in soil samples (n = 44) from a natural forest ecosystem. Fungal taxa were identified by BLAST matching of reads against the MaarjAM database of AMF SSU rRNA gene diversity. Sub-sampling within our dataset and experimental shortening of a set of long reads indicated that our approaches to taxonomic identification and diversity analysis were robust to variations in pyrosequencing read length and numbers of reads per sample. Different forest plots (each 10 × 10 m and separated from one another by 30 m) contained significantly different soil AMF communities, and the pairwise similarity of communities decreased with distance up to 50 m. However, there were no significant changes in community composition between different time points in the growing season (May-September). Spatial structure in soil AMF communities may be related to the heterogeneous vegetation of the natural forest study system, while the temporal stability of communities suggests that AMF in soil represent a fairly constant local species pool from which mycorrhizae form and disband during the season.

  1. Downscaling 250-m MODIS growing season NDVI based on multiple-date landsat images and data mining approaches

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.

  2. Separation of agroclimatic areas for optimal crop growing within the framework of the natural-agricultural zoning of Russia

    NASA Astrophysics Data System (ADS)

    Bulgakov, D. S.; Rukhovich, D. I.; Shishkonakova, E. A.; Vil'chevskaya, E. V.

    2016-09-01

    The separation of agroclimatic areas for optimal crop growing within is suggested within the framework of the natural-agricultural zoning of Russia developed under the supervision of I. Karmanov. Overall, 64 agroclimatic areas have been separated in Russia. They are specified by the particular soil and agroclimatic conditions and by the particular crops recommended for cultivation. The biological potential of these crops should correspond to the soil potential of the given area. A combined scheme of the natural-agricultural zoning of Russia and the separated agroclimatic areas is presented. It is argued that the information contained in this scheme can be used for developing landscape-adaptive farming systems, land cadaster, and land valuation; it is also helpful for terrain and remote sensing monitoring of soil fertility on arable lands and for soilecological monitoring.

  3. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  4. The effects of season and agriculture on nitrous oxide production in headwater streams.

    PubMed

    Beaulieu, J J; Arango, C P; Tank, J L

    2009-01-01

    Streams and rivers are a globally significant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, there remains much uncertainty in the magnitude of N(2)O emissions from these sources, partly due to an incomplete understanding of the factors that control microbial N(2)O production in lotic sediments. During 2004-2005 we measured sediment N(2)O production in 12 headwater streams across an agricultural land use gradient. Stream water nitrate (NO(3)(-)) concentrations were positively related to the proportion of agricultural land use in the basin and frequently exceeded 20 mg N L(-1) in the stream draining the most agricultural basin. Stream sediments were nearly always a net source of N(2)O, and production rates were positively related to stream water NO(3)(-) concentrations and sediment carbon content. There were no seasonal patterns in N(2)O production rates during 2004, but stream water NO(3)(-) and N(2)O production both peaked during the winter of 2005. The spike in NO(3)(-) concentrations likely resulted from winter rain and snowmelt that flushed NO(3)(-) from the soils following a dry summer and fall. In turn, the elevated stream water NO(3)(-) concentrations stimulated in-stream N(2)O production rates. Overall, we were only able to explain 29% of the variation in N(2)O production rates on a log scale. The unexplained variation may be due to differences in the fraction of denitrified NO(3)(-) that is converted to N(2)O among the study sites, or that our measures of substrate availability in the water column were not reflective of substrate availability in the porewater used by denitrifiers.

  5. Pesticide residues in some herbs growing in agricultural areas in Poland.

    PubMed

    Malinowska, Elżbieta; Jankowski, Kazimierz

    2015-12-01

    The aim of this paper was to assess residue content of plant protection products in selected herbs: Achillea millefolium L., Cichorium intybus L., Equisetum arvense L., Polygonum persicaria L., Plantago lanceolata L., and Plantago major L. The study comprises herbs growing in their natural habitat, 1 and 10 m away from crop fields. The herbs, 30 plants of each species, were sampled during the flowering stage between 1 and 20 July 2014. Pesticide residue content was measured with the QuECHERS method in the dry matter of leaves, stalks, and inflorescence, all mixed together. Out of six herb species growing close to wheat and maize fields, pesticide residues were found in three species: A. millefolium L., E. arvense L., and P. lanceolata L. Most plants containing the residues grew 1 m away from the wheat field. Two active substances of fungicides were found: diphenylamine and tebuconazole, and one active substance of insecticides: chlorpyrifos-ethyl. Those substances are illegal to use on herbal plants. Samples of E. arvense L. and P. lanceolata L. contained two active substances each, which constituted 10% of all samples, while A. millefolium L. contained one substance, which is 6.6% of all samples. PMID:26612566

  6. Pesticide residues in some herbs growing in agricultural areas in Poland.

    PubMed

    Malinowska, Elżbieta; Jankowski, Kazimierz

    2015-12-01

    The aim of this paper was to assess residue content of plant protection products in selected herbs: Achillea millefolium L., Cichorium intybus L., Equisetum arvense L., Polygonum persicaria L., Plantago lanceolata L., and Plantago major L. The study comprises herbs growing in their natural habitat, 1 and 10 m away from crop fields. The herbs, 30 plants of each species, were sampled during the flowering stage between 1 and 20 July 2014. Pesticide residue content was measured with the QuECHERS method in the dry matter of leaves, stalks, and inflorescence, all mixed together. Out of six herb species growing close to wheat and maize fields, pesticide residues were found in three species: A. millefolium L., E. arvense L., and P. lanceolata L. Most plants containing the residues grew 1 m away from the wheat field. Two active substances of fungicides were found: diphenylamine and tebuconazole, and one active substance of insecticides: chlorpyrifos-ethyl. Those substances are illegal to use on herbal plants. Samples of E. arvense L. and P. lanceolata L. contained two active substances each, which constituted 10% of all samples, while A. millefolium L. contained one substance, which is 6.6% of all samples.

  7. Compositional equivalence of insect-protected glyphosate-tolerant soybean MON 87701 × MON 89788 to conventional soybean extends across different world regions and multiple growing seasons.

    PubMed

    Berman, Kristina H; Harrigan, George G; Nemeth, Margaret A; Oliveira, Wladecir S; Berger, Geraldo U; Tagliaferro, Fabio S

    2011-11-01

    The soybean product MON 87701 × MON 89788 expresses both the cry1Ac gene derived from Bacillus thuringiensis and the cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene derived from Agrobacterium sp. strain CP4. Each biotechnology-derived trait confers specific benefits of insect resistance and glyphosate tolerance, respectively. The purpose of this study was to compare the composition of seed and forage from this combined-trait product to those of conventional soybean grown in geographically and climatically distinct regions. Field trials were conducted in the United States during the 2007 growing season, in Argentina during the 2007-2008 growing season, and in the northern and southern soybean regions of Brazil during the 2007-2008 and 2008-2009 growing seasons. Results demonstrated that the compositional equivalence of MON 87701 × MON 89788 to the conventional soybean extended across all regions and growing seasons. Further evaluation of the data showed that natural variation (region and growing season) contributed more to compositional variability in soybean, particularly for such components as isoflavones, fatty acids, and vitamin E, than transgene insertion.

  8. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol.

    PubMed

    Ge, Xumeng; Zhang, Ningning; Phillips, Gregory C; Xu, Jianfeng

    2012-11-01

    Duckweed (Lemna minor) was grown in swine lagoon wastewater and Schenk & Hildebrandt medium with a growth rate of 3.5 and 14.1 g m(-2)day(-1) (dry basis), respectively detected. The rapid accumulation of starch in duckweed biomass (10-36%, w/w) was triggered by nutrient starvation or growing in dark with addition of glucose. The harvested duckweed biomass (from culture in wastewater) contained 20.3% (w/w) total glucan, 32.3% (w/w) proteins, trace hemicellulose and undetectable lignin. Without prior thermal-chemical pretreatment, up to 96.2% (w/w) of glucose could be enzymatically released from both the cellulose and starch fractions of duckweed biomass. The enzymatic hydrolysates could be efficiently fermented by two yeast strains (self-flocculating yeast SPSC01 and conventional yeast ATCC 24859) with a high ethanol yield of 0.485 g g(-1) (glucose).

  9. Nitrous oxide emissions from a maize field during two consecutive growing seasons in the north China plain.

    PubMed

    Zhang, Yuanyuan; Liu, Junfeng; Mu, Yujing; Xu, Zhu; Pei, Shuwei; Lun, Xiaoxiu; Zhang, Ying

    2012-01-01

    Nitrous oxide (N2O) emissions from a maize field in the North China Plain (Wangdu County, Hebei Province, China) were investigated using static chambers during two consecutive maize growing seasons in the 2008 and 2009. The N2O pulse emissions occurred with duration of about 10 days after basal and additional fertilizer applications in the both years. The average N20 fluxes from the CK (control plot, without crop, fertilization and irrigation), NP (chemical N fertilizer), SN (wheat straw returning plus chemical N fertilizer), OM-1/2N (chicken manure plus half chemical N fertilizer) and OMN (chicken manure plus chemical N fertilizer) plots in 2008 were 8.51, 72.1, 76.6, 101, 107 ng N/(m2 x sec), respectively, and in 2009 were 33.7, 30.0 and 35.0 ng N/(m2 x sec) from CK, NP and SN plots, respectively. The emission factors of the applied fertilizer as N20-N (EFs) were 3.8% (2008) and 1.1% (2009) for the NP plot, 3.2% (2008) and 1.2% (2009) for the SN plot, and 2.8% and 2.2% in 2008 for the OM-1/2N and OMN plots, respectively. Hydromorphic properties of the investigated soil (with gley) are in favor of denitrification. The large differences of the soil temperature and water-filled pore space (WFPS) between the two maize seasons were suspected to be responsible for the significant yearly variations. Compared with the treatments of NP and SN, chicken manure coupled with compound fertilizer application significantly reduced fertilizer loss rate as N2O-N. PMID:22783628

  10. Temperature drives inter-annual variability of growing season CO2 and CH4 fluxes of Siberian lowland tundra

    NASA Astrophysics Data System (ADS)

    Kutzbach, Lars; Wille, Christian; Runkle, Benjamin; Schreiber, Peter; Sachs, Torsten; Langer, Moritz; Boike, Julia; Pfeiffer, Eva-Maria

    2015-04-01

    Due to the logistic and technical difficulties associated with experimental work in high latitudes, long-term measurements of CO2 and CH4 fluxes from arctic ecosystems are still rare, and published trace gas balances often rely on measurements from one or few growing seasons. The inter-annual variability of environmental conditions such as temperature, precipitation, snow cover, and timing of snow melt can be high in the Arctic, especially for regions which are influenced by both continental and maritime climates, such as the Siberian arctic lowlands. For these ecosystems, we must also expect a great inter-annual variability in the balance of trace gases. Multi-annual data sets are needed to investigate this variability and its drivers. Here we present multi-annual late summer CO2 and CH4 flux data from the Lena River Delta in the Siberian Arctic (72° N, 126° E). The study site Samoylov Island is characterized by polygonal lowland tundra, a vegetation dominated by mosses and sedges, a soil complex of Glacic, Turbic and Histic Cryosols, and an active layer depth of on average 0.5 m. Seasonal flux measurements were carried out with the eddy covariance technique during the 13-year period 2002 - 2014. Within this period, CO2 flux data overlaps during 37 days (20 July - 25 August) for 12 years, and CH4 flux data overlaps during 25 days (28 July - 21 August) for 9 years. Cumulative net ecosystem CO2 exchange (NEE) during the late summer overlap period is fairly consistent for 9 out of 12 years with a CO2 uptake of 1.9 ± 0.1 mol m-2. Three years show a clearly smaller uptake of

  11. Steers grazing blue grama rangeland throughout the growing season. I. Dietary composition, intake, digesta kinetics and ruminal fermentation.

    PubMed

    Funk, M A; Galyean, M L; Branine, M E; Krysl, L J

    1987-11-01

    Four sampling periods on blue grama rangeland in northeastern New Mexico evaluated effects of advancing forage maturity and drought-induced dormancy on dietary nutrient and botanical composition, intake, digesta kinetics and ruminal fermentation in grazing beef steers. Six ruminally cannulated and three esophageally cannulated steers freely grazed a 12-ha pasture during the study. Sampling periods lasted 11 d and started June 2, during the early growing season (EGS); June 22, during early summer dormancy (ESD); July 21, during late summer dormancy (LSD); and August 25, 1985, during the late growing season (LGS). Forage availability was not limiting in any sampling period. Steers consumed a greater (P less than .05) percentage in forbs and lower percentage of grasses in EGS and ESD than in LSD and LGS. Dietary in vitro organic matter digestibility was lower (P less than .05) in ESD than in EGS, LSD and LGS. Dietary N content was higher (P less than .05) in EGs and LGS than in ESD and LSD. Neutral detergent fiber content was lower (P less than .05) in EGS than in other sampling periods, while dietary lignin contents were similar for all sampling periods. Voluntary organic matter intake was similar for all sampling periods; however, estimated gastrointestinal tract fill was greater (P less than .05) in ESD and LSD than in EGS and LGS. Particulate passage rate was slower (P less than .05) and total mean retention time longer (P less than .05) in LSD than in other sampling periods. Rate and lag time of neutral detergent fiber digestion were not different among sampling periods. Ruminal pH was greater (P less than .05) at 3 and 6 h after sunrise in ESD than in other sampling periods. Ruminal ammonia concentrations were lower (P less than .05) in ESD and LSD than in EGS and LGS at 3 and 6 h after sunrise. Total volatile fatty acid concentrations were lower (P less than .05) in ESD than in EGS and LSD at 3 h after sunrise and lower (P less than .10) than EGS and LGS at 9 h

  12. 78 FR 32460 - Comment Request for Information Collection for ETA Form 232, Domestic Agricultural In-Season Wage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Federal or State minimum wage, whichever is higher.'' The collection is also required by regulations for... legal federal or State minimum wage rate, whichever is highest unless special procedures apply to the... Agricultural In-Season Wage Report and ETA Form 232-A, Wage Survey Interview Record, Extension with...

  13. 1961 ACTIVITIES IN CALIFORNIA DIRECTED TOWARD THE IMPROVEMENT OF HEALTH AMONG DOMESTIC SEASONAL AGRICULTURAL WORKERS AND THEIR FAMILIES.

    ERIC Educational Resources Information Center

    1961

    A PROGRAM INSTITUTED IN 1961 TO IMPROVE THE HEALTH OF DOMESTIC SEASONAL AGRICULTURAL WORKERS IN CALIFORNIA AND THEIR FAMILIES WAS GIVEN. IT SOUGHT TO HELP LOCAL HEALTH AGENCIES BY PROVIDING--TECHNICAL ASSISTANCE TO COUNTIES TRYING TO DEVELOP FACILITIES AND SERVICES, EARLY DEVELOPMENT OF POLICIES AND PROCEDURES FOR USE OF STATE FUNDS BY LOCAL…

  14. Leaching techniques for saline wastes composts used as growing media in organic agriculture: assessment and modelling.

    PubMed

    Illera-Vives, Marta; López-Mosquera, María Elvira; Salas-Sanjuan, María Del Carmen; López-Fabal, Adolfo

    2015-05-01

    The purpose of this work was to examine solute release by the effect of leaching of a saline compost with two main objectives: (1) to identify the most efficient method for this purpose, in order to minimize the environmental impact of this process in terms of water consumption and (2) to study the composition of the leachates to manage them properly and avoid possible contamination. A laboratory method involving column leaching with distilled water (CL) and two field methods involving saturation leaching (SL) and drip leaching (DL) were compared to this end. In order to more accurately assess nutrient release and compare the three leaching techniques, the cumulative amounts of ions leached were processed by using an exponential growth model. All target ions fitted properly, and so did the curve for the ions as a whole. Salts were removed mainly by effect of the leaching of major ions in the substrate (Na(+), Cl(-), inorganic N, SO4 (2-) and K(+)). SL and CL proved similarly efficient and reduced the salt content of the substrate to an electrical conductivity below 2 dS m(-1) in the saturation extract, which is the optimum level for nursery crops. By contrast, the DL method provided poor results: salt contents were reduced to an electrical conductivity of only 8 dS m(-1) in the saturation extract, so the resulting substrate can only be useful to grow highly salt-tolerant crops. PMID:25471718

  15. Seasonal fluctuations of bacterial community diversity in agricultural soil and experimental validation by laboratory disturbance experiments.

    PubMed

    Meier, Christoph; Wehrli, Bernhard; van der Meer, Jan Roelof

    2008-08-01

    Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to

  16. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, A.D.; Kicklighter, D.W.; Zhuang, Q.; Clein, J.S.; Dargaville, R.J.; Dye, D.G.; Kimball, J.S.; McDonald, K.C.; Melillo, J.M.; Romanovsky, V.E.; Smith, N.V.

    2006-01-01

    In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960-2100 in extratropical regions (30-90??N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with National Oceanic and Atmospheric Administration satellite observations collected between the years 1972 and 2000, with Pearson rank correlation coefficients between 0.58 and 0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2-4 days from 1988 to 2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5 and 8 days earlier. In both, the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil C and increases in vegetation C, with greatest losses of soil C occurring in those areas with more vegetation, but simulations also suggest that

  17. Development of the Seasonal Migrant Agricultural Worker Stress Scale in Sanliurfa, Southeast Turkey.

    PubMed

    Simsek, Zeynep; Ersin, Fatma; Kirmizitoprak, Evin

    2016-01-01

    Stress is one of the main causes of health problems, especially mental disorders. These health problems cause a significant amount of ability loss and increase cost. It is estimated that by 2020, mental disorders will constitute 15% of the total disease burden, and depression will rank second only after ischemic heart disease. Environmental experiences are paramount in increasing the liability of mental disorders in those who constantly face sustained high levels of stress. The objective of this study was to develop a stress scale for seasonal migrant agricultural workers aged 18 years and older. The sample consisted of 270 randomly selected seasonal migrant agricultural workers. The average age of the participants was 33.1 ± 14, and 50.7% were male. The Cronbach alpha coefficient and test-retest methods were used for reliability analyses. Although the factor analysis was performed for the structure validity of the scale, the Kaiser-Meyer-Olkin coefficient and Bartlett test were used to determine the convenience of the data for the factor analysis. In the reliability analyses, the Cronbach alpha coefficient of internal consistency was calculated as .96, and the test-retest reliability coefficient was .81. In the exploratory factor analysis for validity of the scale, four factors were obtained, and the factors represented workplace physical conditions (25.7% of the total variance), workplace psychosocial and economic factors (19.3% of the total variance), workplace health problems (15.2% of the total variance), and school problems (10.1% of the total variance). The four factors explained 70.3% of the total variance. As a result of the expert opinions and analyses, a stress scale with 48 items was developed. The highest score to be obtained from the scale was 144, and the lowest score was 0. The increase in the score indicates the increase in the stress levels. The findings show that the scale is a valid and reliable assessment instrument that can be used in

  18. Development of the Seasonal Migrant Agricultural Worker Stress Scale in Sanliurfa, Southeast Turkey.

    PubMed

    Simsek, Zeynep; Ersin, Fatma; Kirmizitoprak, Evin

    2016-01-01

    Stress is one of the main causes of health problems, especially mental disorders. These health problems cause a significant amount of ability loss and increase cost. It is estimated that by 2020, mental disorders will constitute 15% of the total disease burden, and depression will rank second only after ischemic heart disease. Environmental experiences are paramount in increasing the liability of mental disorders in those who constantly face sustained high levels of stress. The objective of this study was to develop a stress scale for seasonal migrant agricultural workers aged 18 years and older. The sample consisted of 270 randomly selected seasonal migrant agricultural workers. The average age of the participants was 33.1 ± 14, and 50.7% were male. The Cronbach alpha coefficient and test-retest methods were used for reliability analyses. Although the factor analysis was performed for the structure validity of the scale, the Kaiser-Meyer-Olkin coefficient and Bartlett test were used to determine the convenience of the data for the factor analysis. In the reliability analyses, the Cronbach alpha coefficient of internal consistency was calculated as .96, and the test-retest reliability coefficient was .81. In the exploratory factor analysis for validity of the scale, four factors were obtained, and the factors represented workplace physical conditions (25.7% of the total variance), workplace psychosocial and economic factors (19.3% of the total variance), workplace health problems (15.2% of the total variance), and school problems (10.1% of the total variance). The four factors explained 70.3% of the total variance. As a result of the expert opinions and analyses, a stress scale with 48 items was developed. The highest score to be obtained from the scale was 144, and the lowest score was 0. The increase in the score indicates the increase in the stress levels. The findings show that the scale is a valid and reliable assessment instrument that can be used in

  19. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  20. Phenological and water-use patterns underlying maximum growing season length at the highest elevations: implications under climate change.

    PubMed

    Linares, Juan Carlos; Covelo, Felisa; Carreira, José Antonio; Merino, José Ángel

    2012-02-01

    Consequences of climate change on tree phenology are readily observable, but little is known about the variations in phenological sensitivity to drought between populations within a species. In this study, we compare the phenological sensitivity to temperature and water availability in Abies pinsapo Boiss., a drought-sensitive Mediterranean fir, across its altitudinal distribution gradient. Twig growth and needle fall were related to temperature, precipitation and plant water status on a daily scale. Stands located at the top edge of the distributional range showed the most favourable water balance, maximum growth rates and little summer defoliation. Towards higher elevations, the observed delay in budburst date due to lower spring temperatures was overcome by a stronger delay in growth cessation date due to the later onset of strong water-deficit conditions in the summer. This explains an extended growing season and the greatest mean growth at the highest elevation. Conversely, lower predawn xylem water potentials and early partial stomatal closure and growth cessation were found in low-elevation A. pinsapo trees. An earlier and higher summer peak of A. pinsapo litterfall was also observed at these water-limited sites. Our results illustrate the ecophysiological background of the ongoing altitudinal shifts reported for this relict tree species under current climatic conditions.

  1. Positive effects of night warming on physiology of coniferous trees in late growing season: Leaf and root

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Yin, Chunying; Wang, Yujie; Sun, Yuyu; Liu, Qing

    2016-05-01

    Previous studies about the effects of experimental warming on tree species have focused primarily on response of morphology and physiology in leaf and biomass allocation in the growing season, and a few studies considered the importance of roots. Based on the available evidence, it is unclear whether photosynthesis rate is enhanced by night warming in late autumn an issue that deserves further investigation. Thus, we exposed two coniferous species, Picea asperata and Abies faxoniana, to night warming continued throughout the year to investigate morphological and physiological responses of roots and leaves in the autumn. The results showed that night warming caused significant increases in net influxes of NH4+ and NO3- in P. asperata seedlings corresponding well with net H+ efflux and net influx of O2. Meanwhile, night warming had a positive effect on foliar gas exchange such as net photosynthesis rate, apparent quantum efficiency, dark respiration rate and maximum quantum efficiency of PS II, and nitrate reductase activity of roots. Additionally, root morphology such as total roots length, surface area, specific root area and specific root length was also stimulated by night warming. In contrast, night warming decreased concentrations of non-structural carbohydrate in leaves and roots of both species in autumn. The present study demonstrates that night warming would enhance late autumn leaf photosynthetic rate, and increase N uptake capacity of roots.

  2. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO42− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3−–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3−–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3−–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  3. Wavelength shifts in fluorescence maxima of stressed and non-stressed Norway spruce needles over the growing season

    NASA Technical Reports Server (NTRS)

    Banninger, Cliff; Chappelle, E.

    1991-01-01

    Laboratory fluorescence measurements of first and third year metal stressed and non stressed Norway spruce needles collected in May, Jul. Sep. and Nov. display significant wavelength shifts in the intensity maxima in the blue, green, red, and near infrared spectral regions, with the largest shifts occurring in the blue spectral region for both first and third year needles from Nov. Smaller, but the otherwise significant shifts also take place in the blue spectral region for first year needles from Sep. in the red spectral region for third year neddles from May, Jul. and Sep. and in the near infrared spectral region for first and third year needles from Jul. and Sep. Wavelength shifts in needle fluorescence maxima over the growing season are greatest in the blue and to a lesser extent, greenspectral regions from Sep. to Nov. but are also significant in the red and near infrared spectral regions from Jul. to Sep. and Sep. to Nov., and in the near infrared spectral region also from May to Jul.

  4. Nerves as embodied metaphor in the Canada/Mexico seasonal agricultural workers program.

    PubMed

    Mysyk, Avis; England, Margaret; Gallegos, Juan Arturo Avila

    2008-01-01

    This article examines nerves among participants in the Canada/Mexico Seasonal Agricultural Workers Program (C/MSAWP). Based on in-depth interviews with 30 Mexican farm workers in southwestern Ontario, we demonstrate that nerves embodies the distress of economic need, relative powerlessness, and the contradictions inherent in the C/MSAWP that result in various life's lesions. We also explore their use of the nerves idiom as an embodied metaphor for their awareness of the breakdown in self/society relations and, in certain cases, of the lack of control over even themselves. This article contributes to that body of literature that locates nerves at the "normal" end of the "normal/abnormal" continuum of popular illness categories because, despite the similarities in symptoms of nerves among Mexican farm workers and those of anxiety and/or mood disorders, medicalization has not occurred. If nerves has not been medicalized among Mexican farm workers, neither has it given rise to resistance to their relative powerlessness as migrant farm workers. Nonetheless, nerves does serve as an effective vehicle for expressing their distress within the context of the C/MSAWP.

  5. Nerves as embodied metaphor in the Canada/Mexico seasonal agricultural workers program.

    PubMed

    Mysyk, Avis; England, Margaret; Gallegos, Juan Arturo Avila

    2008-01-01

    This article examines nerves among participants in the Canada/Mexico Seasonal Agricultural Workers Program (C/MSAWP). Based on in-depth interviews with 30 Mexican farm workers in southwestern Ontario, we demonstrate that nerves embodies the distress of economic need, relative powerlessness, and the contradictions inherent in the C/MSAWP that result in various life's lesions. We also explore their use of the nerves idiom as an embodied metaphor for their awareness of the breakdown in self/society relations and, in certain cases, of the lack of control over even themselves. This article contributes to that body of literature that locates nerves at the "normal" end of the "normal/abnormal" continuum of popular illness categories because, despite the similarities in symptoms of nerves among Mexican farm workers and those of anxiety and/or mood disorders, medicalization has not occurred. If nerves has not been medicalized among Mexican farm workers, neither has it given rise to resistance to their relative powerlessness as migrant farm workers. Nonetheless, nerves does serve as an effective vehicle for expressing their distress within the context of the C/MSAWP. PMID:18958786

  6. Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season

    NASA Astrophysics Data System (ADS)

    Tao, Minghui; Chen, Liangfu; Wang, Zifeng; Tao, Jinhua; Su, Lin

    2013-11-01

    Durative haze clouds with unusual yellow color appeared in East China in agricultural burning period during June 8-12 in 2012, causing extreme air pollution in densely populated regions including Jiangsu, Hubei, and the Yangtze River Delta. The spatial variation, vertical structure, optical properties, as well as formation process, were investigated using combined multiple satellite observations, ground measurements, and meteorological data. Different from previous studies, our analysis reveals that the yellow haze clouds were caused by mixing and interaction among airborne dust, fire emissions, and urban pollution under humid conditions. The pollution layers were 3-5 km thick, and their vertical structures were very inhomogeneous, with dust mostly distributed in the upper part and mixing of fires smoke and urban haze concentrated near surface. Compared with fire smoke, the dust-like haze clouds exhibited different optical properties with higher volume depolarization ratio and notable increase in coarse mode aerosols. Although fire emissions and urban pollution may play a more important role in surface pollution, we conclude that dust transport and high humidity were the main reason that the haze pollution was much heavier than that in previous years. In addition, regional concentrated fires only occurred in several days, and fire count was inconsistent with regional average aerosol loading. The long-range transport of fire emissions can be overestimated. In order to avoid such regional pollution event, our results also suggest that the strict measures in fire management should be extended from special periods to normal season.

  7. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  8. Climate change trade-offs in the side-blotched lizard (Uta stansburiana): effects of growing-season length and mild temperatures on winter survival.

    PubMed

    Zani, Peter A

    2008-01-01

    An expanding body of literature has demonstrated that global climate change continues to adversely affect many populations, species, and ecosystems. However, life-history theory also predicts possible benefits from longer growing seasons and less severe winters, particularly for ectotherms. To test the idea that climate change will have benefits as well as costs, I studied the impacts of growing-season length on growth and overwintering conditions on survival time using side-blotched lizards (Uta stansburiana). Experiments in replicate field enclosures revealed that fall growing-season length has a direct effect on overwintering body size. Laboratory experiments revealed that both size and overwintering temperature have direct effects on winter survival time. Larger lizards are more likely to survive longer regardless of winter temperature. Furthermore, animals in colder (but still mild) winter microenvironments are more likely to survive longer than those in warmer winter environments. These results indicate that warmer winters caused by global climate change have the potential to negatively affect ectotherm populations. However, longer growing seasons may offset losses by allowing additional growth and energy storage. Thus, environmental alterations associated with climate change may be simultaneously beneficial and detrimental, and the long-term persistence of certain organisms may depend on the relative strength of their effects.

  9. Field evaluation of green and red leaf lettuce cultivars in the Imperial, San Joaquin, and Salinas Valleys of California for heat tolerance and extension of the growing seasons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming poses serious threats and challenges to the production of leafy vegetables. Being a cool-season crop, lettuce is vulnerable to heat-stress. To adapt to climate change, this study was conducted to evaluate the performance of leaf lettuce genotypes for heat tolerance by growing them in ...

  10. Impacts of agricultural irrigation on nearby freshwater ecosystems: the seasonal influence of triazine herbicides in benthic algal communities.

    PubMed

    Lorente, Carmen; Causapé, Jesús; Glud, Ronnie N; Hancke, Kasper; Merchán, Daniel; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2015-01-15

    A small hydrological basin (Lerma, NE Spain), transformed from its natural state (steppe) to rain-fed agriculture and recently to irrigation agriculture, has been monitored across four seasons of an agricultural year. The goal of this study was to assess how and whether agricultural activities impacted the nearby freshwater ecosystems via runoff. Specifically, we assessed the toxicity of three triazine herbicides, terbuthylazine, atrazine and simazine on the photosynthetic efficiency and structure of algal benthic biofilms (i.e., phototropic periphyton) in the small creek draining the basin. It was expected that the seasonal runoff of the herbicides in the creek affected the sensitivity of the periphyton in accord with the rationale of the Pollution Induced Community Tolerance (PICT): the exposure of the community to pollutants result in the replacement of sensitive species by more tolerant ones. In this way, PICT can serve to establish causal linkages between pollutants and the observed biological impacts. The periphyton presented significantly different sensitivities against terbuthylazine through the year in accord with the seasonal application of this herbicide in the crops nowadays. The sensitivity of already banned herbicides, atrazine and simazine does not display a clear seasonality. The different sensitivities to herbicides were in agreement with the expected exposures scenarios, according to the agricultural calendar, but not with the concentrations measured in water, which altogether indicates that the use of PICT approach may serve for long-term monitoring purposes. That will provide not only causal links between the occurrence of chemicals and their impacts on natural communities, but also information about the occurrence of chemicals that may escape from traditional sampling methods (water analysis). In addition, the EC50 and EC10 of periphyton for terbuthylazine or simazine are the first to be published and can be used for impact assessments.

  11. N2O and CH4 emissions from a Chinese wheat-rice cropping system under different tillage practices during the wheat-growing season

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    The annual wheat (Triticum aestivum L.)-rice (Oryza sativa L.) cropping system is the most important cereal production system in the Yangtze River Valley of China, in which various tillage systems are currently implemented during the wheat-growing season. The emissions of nitrous oxide (N2O) and methane (CH4) from the different tillage systems in this system remain unclear. We conducted a 3-year field experiment in a wheat-rice cropping system in a silt clay loam soil to investigate the effects of the type of tillage employed during the wheat-growing season (no-tillage (NT), reduced tillage (RT) or conventional tillage (CT)) on the emissions of N2O and CH4 using the static chamber method over three annual rotation cycles from the 2008 wheat season to the 2011 rice season. The results revealed that the adoption of an NT system during the wheat-growing season significantly increased CH4 emissions during both the wheat-growing season and the following rice-growing season. Over the three annual rotation cycles studied, the annual N2O emissions from the NT (2.24 kg N2O-N ha-1) and CT (2.01 kg N2O-N ha-1) treatments were similar to each other and significantly higher than those from the RT treatment (1.73 kg N2O-N ha-1); the annual CH4 emissions were significantly higher from the NT (100.1 kg CH4-C ha-1) than the CT (83.7 kg CH4-C ha-1) and RT (73.9 kg CH4-C ha-1) systems. The overall results regarding the net global warming potential associated with annual N2O and CH4 emissions indicate that the conversion of conventional tillage to no-tillage systems during the wheat-growing season would intensify the radiative forcing in wheat-rice cropping systems in China.

  12. Phenology Shifts at Start vs. End of Growing Season in Temperate Vegetation Over the Northern Hemisphere for the Period 1982-2008

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Ho, Chang-Hoi; Gim, Hyeon-Ju; Brown, Molley E.

    2011-01-01

    Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982 2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. Keywords: climate change, growing season, NDVI (normalized difference vegetation index), Northern Hemisphere, phenology,

  13. Effect of soil frost on growing season nitrogen uptake by fine roots of mature trees in northern hardwood forests of the United States

    NASA Astrophysics Data System (ADS)

    Socci, A. M.; Templer, P. H.

    2010-12-01

    Forests of the northeastern United States are predicted to experience a decrease in the depth and duration of the winter snowpack over the next 100 years. Even when coupled with warmer winter air temperatures, the absence of snow as insulation can increase soil frost during the winter months. Past research has determined that there are species-level effects of soil frost on dominant forest trees. For example, in stands dominated by sugar maple (Acer saccharum), induced soil frost led to increased fine root mortality and soil nitrate leaching. Soil frost also increased fine root mortality in stands dominated by yellow birch (Betula allegheniensis), but there was no significant change in leaching of soil nitrate. We hypothesized that greater nitrogen (N) losses from stands dominated by sugar maple may be due to reduced N uptake by fine roots of this tree species. To determine the impact of increased soil freezing on fine root uptake of N, we established a snow manipulation experiment in mixed sugar maple/American beech (Fagus grandifolia) forests at the Hubbard Brook Experimental Forest in New Hampshire (n=4 paired snow-removal and reference plots; each 13m X 13m). Snow removal occurred during the first six weeks of winter over two years. During each growing season following snow removal, we used the N depletion technique to measure in situ rates of uptake of ammonium and nitrate by fine roots of sugar maple during the early, peak and late growing season. Among all sampling dates and plots, we observed significantly lower uptake of N as nitrate compared to ammonium. During the first growing season, at moderate ammonium availability (35 μM N) we observed significantly less uptake of ammonium by fine roots of sugar maple in the snow removal plots relative to the reference plots during the early growing season (April-May), with no significant differences in uptake of ammonium during the peak (July) and late (September) growing season. We observed no differences in

  14. Effect of environmental stress factors on ecophysiological traits and susceptibility to pathogens of five Populus clones throughout the growing season.

    PubMed

    Fernàndez-Martínez, Jordi; Zacchini, Massimo; Elena, Georgina; Fernández-Marín, Beatriz; Fleck, Isabel

    2013-06-01

    The variability of ecophysiological traits associated with productivity (e.g., water relations, leaf structure, photosynthesis and nitrogen (N) content) and susceptibility to fungal and insect infection were investigated in five poplar clones (Populus deltoides Batr.-Lux clone; Populus nigra L.-58-861 clone and Populus × canadensis Mönch.-Luisa Avanzo, I-214 and Adige clones) during their growing season. The objective of the study was to determine their physiological responses under summer constraints (characteristic of the Mediterranean climate) and to propose clone candidates for environmental restoration activities such as phytoremediation. Relative water content, the radiometric water index and (13)C isotope discrimination (Δ(13)C) results reflected improved water relations in Adige and Lux during summer drought. Leaf structural parameters such as leaf area, leaf mass per area, density (D) and thickness (T) indicated poorer structural adaptations to summer drought in clone 58-861. Nitrogen content and Δ(13)C results pointed to a stomatal component as the main limitant of photosynthesis in all clones. Adige and Lux showed enhanced photoprotection as indicated by the size and the de-epoxidation index of the xanthophyll-cycle pool, and also improved antioxidant defence displayed by higher ascorbate, reduced glutathione, total phenolics and α-tocopherol levels. Photoprotective and antioxidative responses allowed all clones to maintain a high maximum quantum yield of PSII (Fv/Fm) with the exception of Luisa Avanzo and 58-861 which experienced slight photoinhibition in late spring. The study of susceptibility to rust (Melampsora sp.) and lace bug (Monosteira unicostata Muls. and Rey) infections showed Adige and Lux to be the most tolerant. Overall, these two clones presented high adaptability to summer conditions and improved resistance to abiotic and biotic stress, thereby making them highly commendable clones for use in environmental remediation programmes.

  15. Dietary copper supplementation improves pelt characteristics of female silver fox (Vulpes fulva) during the winter fur-growing season.

    PubMed

    Zhong, Wei; Liu, Hanlu; Luo, Guoliang; Chang, Zhongjuan; Liu, Fenghua; Zhao, Jingbo; Li, Danli; Yue, Zhigang; Zhang, Haihua; Li, Guangyu

    2014-07-01

    Copper has an essential role in normal fur pigmentation and fur quality. This study evaluated the effects of cupric citrate (CuCit) supplementation on growth, nutrients metabolism and pelt characteristics of the female silver fox (Vulpes fulva). Fifty age-matched female silver foxes with similar body weights were randomly divided into five dietary groups for 58 days during the winter fur-growing season. The basal diet contained 4.92 mg/kg copper. Groups I-V were supplemented with 6, 30, 60, 90 or 150 mg Cu from CuCit per 1 kg dry matter basal diet. Serum alkaline phosphatase activity was significantly higher (P<0.05) in those fed 90 mg/kg Cu than those fed 150 mg/kg Cu. Pelt total thickness was significantly higher (P<0.05) in those fed 30 mg/kg Cu than foxes fed 6 mg/kg Cu supplemented diet, but were similar to the other groups. Length of guard hair was significantly lower (P<0.05) in those fed 90 mg/kg Cu than fed 6 mg/kg Cu and 30 mg/kg Cu, but were similar to the other groups. Length of underhair was significantly higher (P<0.05) in those fed 6 mg/kg Cu than those fed 90 mg/kg Cu, but was similar to the other groups. Considering decreasing environmental contamination and improving pelt performance, supplementing 30 mg/kg Cu from CuCit (actual copper 35 mg/kg dry matter) is appropriate for female silver fox.

  16. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau.

    PubMed

    Zhao, Yeyi; Wu, Fuzhong; Yang, Wanqin; Tan, Bo; He, Wei

    2016-01-01

    Bacterial communities are the primary engineers during litter decomposition and related material cycling, and they can be strongly controlled by seasonal changes in temperature and other environmental factors. However, limited information is available on changes in the bacterial community from winter to the growing season as litter decomposition proceeds in cold climates. Here, we investigated the abundance and structure of bacterial communities using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE) during a 2-year field study of the decomposition of litter of 4 species in the winter and growing seasons of an alpine forest of the eastern Tibetan Plateau. The abundance of the bacterial 16S rRNA gene was relatively high during decomposition of cypress and birch litter in the first winter, but for the other litters 16S rRNA abundance during both winters was significantly lower than during the following growing season. A large number of bands were observed on the DGGE gels, and their intensities and number from the winter samples were lower than those from the growing season during the 2-year decomposition experiment. Eighty-nine sequences from the bands of bacteria that had been cut from the DGGE gels were affiliated with 10 distinct classes of bacteria and an unknown group. A redundancy analysis indicated that the moisture, mass loss, and elemental content (e.g., C, N, and P) of the litter significantly affected the bacterial communities. Collectively, the results suggest that uneven seasonal changes in climate regulate bacterial communities and other decomposers, thus affecting their contribution to litter decomposition processes in the alpine forest.

  17. Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images.

    PubMed

    Shutova, E; Wielgolaski, F E; Karlsen, S R; Makarova, O; Berlina, N; Filimonova, T; Haraldsson, E; Aspholm, P E; Flø, L; Høgda, K A

    2006-11-01

    The phenophases first greening (bud burst) and yellowing of Nordic mountain birch (Betula pubescens ssp.tortuosa, also called B. p. ssp. czerepanovii) were observed at three sites on the Kola Peninsula in northernmost Europe during the period 1964-2003, and at two sites in the trans-boundary Pasvik-Enare region during 1994-2003. The field observations were compared with satellite images based on the GIMMS-NDVI dataset covering 1982-2002 at the start and end of the growing season. A trend for a delay of first greening was observed at only one of the sites (Kandalaksha) over the 40 year period. This fits well with the delayed onset of the growing season for that site based on satellite images. No significant changes in time of greening at the other sites were found with either field observations or satellite analyses throughout the study period. These results differ from the earlier spring generally observed in other parts of Europe in recent decades. In the coldest regions of Europe, e.g. in northern high mountains and the northernmost continental areas, increased precipitation associated with the generally positive North Atlantic Oscillation in the last few decades has often fallen as snow. Increased snow may delay the time of onset of the growing season, although increased temperature generally causes earlier spring phenophases. Autumn yellowing of birch leaves tends towards an earlier date at all sites. Due to both later birch greening and earlier yellowing at the Kandalaksha site, the growing season there has also become significantly shorter during the years observed. The sites showing the most advanced yellowing in the field throughout the study period fit well with areas showing an earlier end of the growing season from satellite images covering 1982-2002. The earlier yellowing is highly correlated with a trend at the sites in autumn for earlier decreasing air temperature over the study period, indicating that this environmental factor is important also for

  18. The warming-induced increase of growing-season freezing event and its effect on the survival and growth of treeline seedlings in the Sergyemla Mountains, Southeast Tibet

    NASA Astrophysics Data System (ADS)

    Shen, W.; Zhang, L.; Liu, X.; Luo, T.

    2013-12-01

    Seedling establishment is important to the formation and dynamics of alpine treeline. How can we understand the limitation to the survival and growth of seedlings at and above treeline under a warmer climate? In this study, we conducted a 4-yr reciprocal transplant experiment of seed-based fir and root-sprouting juniper seedlings on opposite slopes of a valley in the Sergyemla Mountains, where annual mean air-temperature differed by 0.5-2.1 K and annual precipitation was similar. We aim to test the hypotheses that the warmer climate on the south-facing slope generally has more severe growing-season freezing events, and the seed-based fir seedlings are especially vulnerable to the warming-induced increase of freezing days in the early growing season. The frequency, intensity and duration of the growing-season freezing events across site habitats generally increased from north- to south-facing slopes. The freezing days in the early growing season (April-June) were mainly determined by daily minimum net radiation and relative humidity, and positively correlated with annual mean air-temperature across sites and years. The survival rates of transplanted fir seedlings on the south-facing slope greatly decreased by <60% in forested habitat and by <40% in non-forested habitat, while their survival rates on the north-facing slope did not change in forested habitat and slowly decreased by 85% in non-forested habitat. The survival rates of transplanted juniper seedlings decreased by 68%-84% with unclear change trends among different slopes and habitats. In pooled data across sites and years, annual top-shoot growth rates decreased in fir seedlings but varied little in juniper seedlings with increasing freezing days in the early growing season. The data supported our hypotheses. The warming-enhanced difficulty of seedling establishment above treeline can explain why the fir treeline position did not advance with climatic warming in past 200 years.

  19. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    NASA Astrophysics Data System (ADS)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  20. Using Very High Resolution Remotely Sensed Imagery to Estimate Agricultural Production: A comparison of food insecure and secure growing areas in Kenya

    NASA Astrophysics Data System (ADS)

    Grace, K.; Husak, G. J.; Bogle, S.

    2013-12-01

    Determining the amount of food produced in a food insecure, isolated, subsistence farming community can be used to help identify households or communities who may be in need of additional food resources. Measuring annual food production in developing countries, much less at a sub-national level, is complicated by lack of data. It can be difficult and costly to access all of the farming households engaged in subsistence farming. However, recent research has focused on the use of remotely sensed data to aid in the estimation of area under cultivation and because food production is the measure of yield (production per hectare) multiplied by area (number of hectares), we can use the area measure to reduce uncertainty in food production estimates. One strategy for estimating cultivated area relies on a fairly time intensive manual interpretation of very high resolution data. Due to the availability of very high resolution data it is possible to construct estimates of cultivated area, even in communities where fields are small. While this strategy has been used to effectively estimate cultivated area in a timely manner, questions remain about the spatial and temporal generalizability of this approach. The purpose of this paper is to produce and compare estimates of cultivated area in two very different agricultural areas of Kenya, a highly food insecure country in East Africa, during two different agricultural seasons. The areas selected represent two different livelihood zones: a marginal growing area where poor farmers rely on inconsistent rainfall and a lush growing area near the mountainous region of the middle-West area of the country where rainfall is consistent and therefore more suited to cultivation. The overarching goal is to determine the effectiveness of very high resolution remotely sensed imagery in calculating estimates of cultivated area in areas where food production strategies are different. Additionally the results of this research will explore the

  1. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.

    PubMed

    Khorsand Rosa, Roxaneh; Oberbauer, Steven F; Starr, Gregory; Parker La Puma, Inga; Pop, Eric; Ahlquist, Lorraine; Baldwin, Tracey

    2015-12-01

    Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis-idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species-specific and growth form-specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover

  2. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.

    PubMed

    Khorsand Rosa, Roxaneh; Oberbauer, Steven F; Starr, Gregory; Parker La Puma, Inga; Pop, Eric; Ahlquist, Lorraine; Baldwin, Tracey

    2015-12-01

    Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis-idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species-specific and growth form-specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover

  3. Leaf Tissue C:N and Soil N are Modified by Growing Season and Goose Grazing Phenology in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Choi, R. T.; Beard, K. H.; Leffler, A. J.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    Climate change in Arctic wetlands is resulting in a widening phenological mismatch between the onset of the growing season and the arrival and hatch date of migratory geese, the primary consumers in the system. During the past three decades, the growing season has advanced but geese have not advanced arrival or hatch date at the same rate. Geese now arrive into a system that has been growing longer than in the past with potential changes in forage quality because sedges have their highest nutrient density shortly following emergence. One potential concomitant result of this phenological gap is altered carbon to nitrogen ratio (C:N) of leaf tissue being returned to the ecosystem as feces that is more N-poor. Altering the C:N of these inputs can further influence C and N cycling in the system. We examine the influence of advanced growing season and different arrival times by black brant on leaf and soil C:N ratio and soil N-form. Our experiment consists of six blocks with nine study plots each. Half the plots are warmed to advance the growing season. Two plots each receive early, typical, late, and no grazing; one plot is a control that is not warmed and grazing is natural. Leaf tissue was collected to determine C and N concentration using an elemental analyzer. Anion and cation exchange membranes were used to monitor inorganic N forms in soil; samples were analyzed via fluorescence following extraction. Soil water collected from lysimeters was analyzed for organic N. Warming advanced plant growth between one and two weeks and resulted in higher C:N of leaf tissue Geese maintained 'grazing lawns', areas of exceptionally short vegetation, where plants had high N compared to non-grazed areas. Grazing early in the season promoted higher N content of leaves and soil while grazing late had little influence on N. The timing of the growing season and grazing both have important implications for C and N in this system.

  4. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest

    PubMed Central

    He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong

    2015-01-01

    Aims The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Methods Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Important findings Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze–thaw cycles in winter and appropriate hydrothermal conditions during

  5. Effects of water regime during rice-growing season on annual direct N(2)O emission in a paddy rice-winter wheat rotation system in southeast China.

    PubMed

    Liu, Shuwei; Qin, Yanmei; Zou, Jianwen; Liu, Qiaohui

    2010-01-15

    Annual paddy rice-winter wheat rotation constitutes one of the typical cropping systems in southeast China, in which various water regimes are currently practiced during the rice-growing season, including continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding and moisture but without waterlogging (F-D-F-M). We conducted a field experiment in a rice-winter wheat rotation system to gain an insight into the water regime-specific emission factors and background emissions of nitrous oxide (N(2)O) over the whole annual cycle. While flooding led to an unpronounced N(2)O emission during the rice-growing season, it incurred substantial N(2)O emission during the following non-rice season. During the non-rice season, N(2)O fluxes were, on average, 2.61 and 2.48 mg N(2)O-Nm(-)(2) day(-1) for the 250 kg N ha(-1) applied plots preceded by the F and F-D-F water regimes, which are 56% and 49% higher than those by the F-D-F-M water regime, respectively. For the annual rotation system experienced by continuous flooding during the rice-growing season, the relationship between N(2)O emission and nitrogen input predicted the emission factor and background emission of N(2)O to be 0.87% and 1.77 kg N(2)O-Nha(-1), respectively. For the plots experienced by the water regimes of F-D-F and F-D-F-M, the emission factors of N(2)O averaged 0.97% and 0.85%, with background N(2)O emissions of 2.00 kg N(2)O-Nha(-1) and 1.61 kg N(2)O-Nha(-1) for the annual rotation system, respectively. Annual direct N(2)O-N emission was estimated to be 98.1 Gg yr(-1) in Chinese rice-based cropping systems in the 1990s, consisting of 32.3 Gg during the rice-growing season and 65.8 Gg during the non-rice season, which accounts for 25-35% of the annual total emission from croplands in China.

  6. Ten Years of Growing Season Water, Energy and Carbon Exchange From an Oil sands Reclamation Site, Fort McMurray, Alberta

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Drewitt, G. B.

    2013-12-01

    The oil sands mining industry in Canada has made a commitment to restore disturbed areas to an equivalent capability to that which existed prior to mining. Certification requires successful reclamation, which can in part be evaluated through long-term ecosystem studies. A reclamation site, informally named South Bison Hill (SBH) has had growing season water, energy and carbon fluxes measured via the eddy covariance method for 10 years since establishment. SBH was capped with a 0.2 m peat-glacial till mixture overlying 0.8 m of reworked glacial till soil. The site was seeded to barley cultivar (Hordeum spp.) in the summer of 2002 and later planted to white spruce (Picea glauca) and aspen (Populus spp.) in the summer/fall of 2004. Since 2007, the major species atop SBH has been aspen, and by 2012 was on average ~ 4 m in height. Climatically, mean growing temperature did not vary greatly, yet there was considerable difference in rainfall among years, with 2012 having the greatest rainfall at 321 mm, whereas 2011 and 2007 were notably dry at 180 and 178 mm, respectively. The partitioning of energy varied among years, but the fraction of latent heat as a portion of net radiation increased with the establishment of aspen, along with concomitant increases in LAI and growing season net ecosystem exchange (NEE). Peat growing season ET was smallest in 2004 at 2.3 mm/d and greatest in 2010 at ~3.9 mm/d. ET rates showed a marked increase in 2008 corresponding with the increase in LAI attributed to the aspen cover. Since the establishment of a surface cover and vegetation in 2003, SBH has been a growing season sink for carbon dioxide. Values of NEE follow similar patterns to those of ET, with values gradually becoming more negative (greater carbon uptake) as the aspen forest established. Comparison with other disturbed and undisturbed boreal aspen stands show that SBH exhibits similar water, energy and carbon flux patterns during the growing season.

  7. Annual and seasonal differences in pesticide mixtures within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a limited amount of information on pesticide mixtures within agricultural headwater streams is available. A greater understanding of the characteristics of pesticide mixtures and their spatial and temporal trends within agricultural headwater streams is needed to evaluate the risks of pesticid...

  8. Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest.

    PubMed

    Menzel, Annette; Estrella, Nicole; Heitland, Werner; Susnik, Andreja; Schleip, Christoph; Dose, Volker

    2008-01-01

    A recent lengthening of the growing season in mid and higher latitudes of the northern hemisphere is reported as a clear indicator for climate change impacts. Using data from Germany (1951-2003) and Slovenia (1961-2004), we study whether changes in the start, end, and length of the growing season differ among four deciduous broad-leaved tree species and countries, how the changes are related to temperature changes, and what might be the confounding effects of an insect attack. The functional behaviour of the phenological and climatological time series and their trends are not analysed by linear regression, but by a new Bayesian approach taking into account different models for the functional description (one change-point, linear, constant models). We find advanced leaf unfolding in both countries with the same species order (oak > horse chestnut, beech, and birch). However, this advance is non linear over time and more apparent in Germany with clear change-points in the late 1970s, followed by marked advances (on average 3.67 days decade(-1) in the 2000s). In Slovenia, we find a more gradual advance of onset dates (on average 0.8 days decade(-1) in the 2000s). Leaf colouring of birch, beech, and oak has been slightly delayed in the last 3 decades, especially in Germany, however with no clear functional behaviour. Abrupt changes in leaf colouring dates of horse chestnut with recent advancing onset dates can be linked across countries to damage by a newly emerging pest, the horse chestnut leaf-miner (Cameraria ohridella). The lengthening of the growing season, more distinct in Germany than in Slovenia (on average 4.2 and 1.0 days decade(-1) in the 2000s, respectively), exhibits the same species order in both countries (oak > birch > beech). Damage by horse chestnut leaf-miner leads to reduced lengthening (Germany) and drastic shortening (Slovenia) of the horse chestnut growing season (-12 days decade(-1) in the 2000s). Advanced spring leaf unfolding and lengthening

  9. Seasonal Variation in Hydrology Driving Shifts in Sources of Nitrate in an Agricultural Dominant Semi-arid Watershed

    NASA Astrophysics Data System (ADS)

    Moon Nielsen, L. G.; Orr, C. H.

    2010-12-01

    In the South Fork Palouse River in the semi-arid region of Eastern Washington State, surface water hydrology is driven by seasonal variation in precipitation, with peak surface water flow and highest Nitrate values observed from January to April, and lowest surface flows and corresponding lower Nitrate concentrations observed from June to August. Land-use in the watershed is predominantly non-irrigated cropland (82%) fertilized by synthetic fertilizer, with an additional 8% of land in urban areas. Due to the prevalence of anthropogenically influenced land in the watershed, Nitrate concentrations measured in streams here are chronically elevated above natural levels. Typically in an area that is dominated by agriculture, the source of Nitrate in surface waters draining agricultural land would be predicted to be synthetic fertilizer. However it is important to consider the impacts seasonal hydrological conditions can have upon Nitrate sources and flow paths. We investigated how Nitrate sources in Palouse streams and rivers changed seasonally to address the hypothesis that seasonal variation in precipitation shifts the dominant sources of Nitrate in surface waters. We based our determination of nitrogen source on the results from dual stable isotope analysis of Nitrate using the denitrifier method. Sampling was done at 7 locations of increasing catchment area along the South Fork Palouse River and tributary streams. Sampling site catchment area varied one order of magnitude from 70.9 to 717.4 km2. Surface waters at yearly low flow during the summer season indicated δ15N-Nitrate and δ18O-Nitrate ranging within generally accepted values to indicate Nitrate derived from animal and human waste. These can be attributed to waste water discharge from the urban areas in the watershed. Yearly hydrologic data suggests that during the winter season, increased precipitation causes a shift in δ15N-Nitrate and δ18O-Nitrate to values typically observed in sources derived from

  10. Effect of Season on the Persistence of Bacterial Pathogens in Runoff from Agricultural Plots

    EPA Science Inventory

    Runoff from agricultural fields undergoing manure applications may carry a variety of chemical and microbial contaminants that compromise water quality and increase the possibility of human exposure to pathogenic microorganisms when recreational waters are impacted. A series of r...

  11. Sensory and chemical flavor analyses of tomato genotypes grown in Florida during three different growing seasons in multiple years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-eight tomato genotypes were analyzed for sensory attributes “sweet”, “sour” and “overall flavor” over seven years, one to three seasons per year (March, June and December) as well as for physical and chemical flavor-related attributes including color, sugars, acids and aroma volatiles (6-7 ye...

  12. Soil Bacterial Community Response to Differences in Agricultural Management along with Seasonal Changes in a Mediterranean Region

    PubMed Central

    Bevivino, Annamaria; Paganin, Patrizia; Bacci, Giovanni; Florio, Alessandro; Pellicer, Maite Sampedro; Papaleo, Maria Cristiana; Mengoni, Alessio; Ledda, Luigi; Fani, Renato; Benedetti, Anna; Dalmastri, Claudia

    2014-01-01

    Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil

  13. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    PubMed

    Bevivino, Annamaria; Paganin, Patrizia; Bacci, Giovanni; Florio, Alessandro; Pellicer, Maite Sampedro; Papaleo, Maria Cristiana; Mengoni, Alessio; Ledda, Luigi; Fani, Renato; Benedetti, Anna; Dalmastri, Claudia

    2014-01-01

    Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil

  14. Cherry tomatoes metabolic profile determined by ¹H-High Resolution-NMR spectroscopy as influenced by growing season.

    PubMed

    Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

    2014-11-01

    The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3 years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were α-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

  15. Connecting Seasonal Riparian Buffer Metrics and Nitrogen Concentrations in a Pulse-Driven Agricultural System

    EPA Science Inventory

    Riparian buffers have been well studied as best management practices for nutrient reduction at field scales yet their effectiveness for bettering water quality at watershed scales has been difficult to determine. Seasonal dynamics of the stream network are often overlooked when ...

  16. Seasonal atrazine contamination of drinking water in pig-breeding farm surroundings in agricultural and industrial areas of Croatia.

    PubMed

    Gojmerac, T; Kartal, B; Bilandzic, N; Roic, B; Rajkovic-Janje, R

    1996-02-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) a s-triazine herbicide, has been widely used in Croatian agriculture. Due to atrazine extensive use and its biodegradation in nature within at least one year (Klassen and Kodoum 1979), atrazine residues are found in ground, surface, drain and drinking water (Vidacek et al. 1994; Gojmerac et al. 1994). Groundwater downgradient from atrazine treated fields may show seasonal concentration peaks which could exceed the safe level (Wehtje et al. 1983). Therefore, the use of atrazine includes permanent control of its residues in water, particularly in relation to its use as a herbicidal chemical and groundwater contamination (Graham 1991). Furthermore, the presence of atrazine in the environment and its possible ingestion via the water, food and feed chain, may present a risk for the animal and human health. The analysis of atrazine residues in soil can be performed by either colorimetry or high performance liquid chromatography (HPLC) (Vickrey et al. 1980), and in water, soil and food by immunoassay in comparison with HPLC or gas chromatography/mass spectrometry (GS-MS) (Bushway et al. 1988; Bushway et al. 1989; Bushway et al. 1992; Thurman et al. 1990). We describe the use of enzyme-linked immunosorbent assay (ELISA) for one-year seasonal monitoring of atrazine residues in drinking water from two differently situated pig-breeding farms (agricultural and industrial areas) in Croatia. Results obtained by ELISA were compared to those produced by HPLC.

  17. Climate change, growing season water deficit and vegetation activity along the north-south transect of eastern China from 1982 through 2006

    NASA Astrophysics Data System (ADS)

    Sun, P.; Yu, Z.; Liu, S.; Wei, X.; Wang, J.; Zegre, N.; Liu, N.

    2012-10-01

    Considerable work has been done to examine the relationship between environmental constraints and vegetation activities represented by the remote sensing-based normalized difference vegetation index (NDVI). However, the relationships along either environmental or vegetational gradients are rarely examined. The aim of this paper was to identify the vegetation types that are potentially susceptible to climate change through examining their interactions between vegetation activity and evaporative water deficit. We selected 12 major vegetation types along the north-south transect of eastern China (NSTEC), and tested their time trends in climate change, vegetation activity and water deficit during the period 1982-2006. The result showed significant warming trends accompanied by general precipitation decline in the majority of vegetation types. Despite that the whole transect increased atmospheric evaporative demand (ET0) during the study period, the actual evapotranspiration (ETa) showed divergent trends with ET0 in most vegetation types. Warming and water deficit exert counteracting controls on vegetation activity. Our study found insignificant greening trends in cold temperate coniferous forest (CTCF), temperate deciduous shrub (TDS), and three temperate herbaceous types including the meadow steppe (TMS), grass steppe (TGS) and grassland (TG), where warming exerted more effect on NDVI than offset by water deficit. The increasing growing season water deficit posed a limitation on the vegetation activity of temperate coniferous forest (TCF), mixed forest (TMF) and deciduous broad-leaved forest (TDBF). Differently, the growing season brownings in subtropical or tropical forests of coniferous (STCF), deciduous broad-leaved (SDBF), evergreen broad-leaved (SEBF) and subtropical grasslands (STG) were likely attributed to evaporative energy limitation. The growing season water deficit index (GWDI) has been formulated to assess ecohydrological equilibrium and thus indicating

  18. Environmental factors controlling forest evapotranspiration and surface conductance on a multi-temporal scale in growing seasons of a Siberian larch forest

    NASA Astrophysics Data System (ADS)

    Yoshida, Megumi; Ohta, Takeshi; Kotani, Ayumi; Maximov, Trofim

    2010-12-01

    SummaryThe water and energy fluxes in forests fluctuate on different temporal scales, reflecting the impact of environmental factors. We examined the temporal fluctuation of the turbulent fluxes, surface conductance ( Gs), and four environmental factors (photosynthetic photon flux density [ Q], vapour pressure deficit [ D], air temperature [ T], and volumetric soil water content [ θ]) in a Siberian larch forest, using wavelet power spectra. The responses of the latent heat flux ( λE) and Gs to the environmental factors were analysed using the wavelet scale-wise correlation coefficient (SWCC) on multiple temporal scales. The observation site is characterised by underlying permafrost and a relatively short growing season. Analysis was conducted from May to September in each of 8 years during 1998-2007. The relationships between Gs and the environmental factors were evaluated with restrictive functions of a Jarvis-type surface conductance model because Gs usually has non-linear relationships to ambient factors. According to the power spectra of each factor, the largest variation was seen on a diurnal timescale for λE, the sensible heat flux ( H), Gs, and Q, whereas D and T fluctuated from diurnal to inter-seasonal timescales, and θ varied significantly over periods longer than the inter-seasonal timescales. The SWCC indicated that λE and Gs respond differently to the same ambient factors due to their respective processes; namely, λE is affected by both atmospheric demand and land surface regulation, whereas Gs is affected only by the latter. λE correlated well with Q at all timescales, as well as with D and T on intra-seasonal to interannual scales and with θ on inter-seasonal to interannual timescales. The SWCC of Gs and Q showed two peaks, on diurnal and inter-seasonal to interannual timescales, reflecting the physiological processes of plants, and D affected Gs only on an intra-seasonal timescale, which is related to meteorological changes. T and

  19. Application of seasonal climate forecasts in agricultural crop monitoring in Brazil

    NASA Astrophysics Data System (ADS)

    de Avila, A. M. H.; Pereira, V. R.; Lopes, F. A.

    2014-12-01

    This work is investigating the contribution of seasonal climate forecasts of Eta regional climate model to support crops in Brazil. The weather conditions are directed related with the crop yield, being a basic parameter for its forecast. The southern region has a subtropical climate and is the major national producer of rice and wheat and also is the second one for soybean, bean and corn. The Eta seasonal forecast model data for southern Brazil was evaluated from 2001 to 2010. Observed data from National and state meteorological agencies were used to evaluate the monthly model performance. The model performance was evaluated by calculating two parameters. The Root Mean Square Error (RMSE) was used to evaluate the monthly forecast averages and the observed precipitation standard deviation. The Skill Score Climatology (SSC) was used to compare the accuracy between the forecast and the climatology. The RMSE showed that in some locations the predicted values by the model were closer to the observed. The SSC showed a systematic error for the predicted values by the Eta seasonal model. This behavior indicates that the climatological analysis is more accurate to predict the monthly climate than the ETA model forecast. Also the consecutive negative bias was observed in some locations that can be corrected removing the systematic error.

  20. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons.

    PubMed

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-06-01

    Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method

  1. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons.

    PubMed

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-06-01

    Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method

  2. Deconvolution of pigment and physiologically related photochemical reflectance index variability at the canopy scale over an entire growing season.

    PubMed

    Hmimina, G; Merlier, E; Dufrêne, E; Soudani, K

    2015-08-01

    The sensitivity of the photochemical reflectance index (PRI) to leaf pigmentation and its impacts on its potential as a proxy for light-use efficiency (LUE) have recently been shown to be problematic at the leaf scale. Most leaf-to-leaf and seasonal variability can be explained by such a confounding effect. This study relies on the analysis of PRI light curves that were generated at the canopy scale under natural conditions to derive a precise deconvolution of pigment-related and physiologically related variability in the PRI. These sources of variability were explained by measured or estimated physiologically relevant variables, such as soil water content, that can be used as indicators of water availability and canopy chlorophyll content. The PRI mainly reflected the variability in the pigment content of the canopy. However, the corrected PRI, which was obtained by subtracting the pigment-related seasonal variability from the PRI measurement, was highly correlated with the upscaled LUE measurements. Moreover, the sensitivity of the PRI to the leaf pigment content may mask the PRI versus LUE relationship or result in an artificial relationship that reflects the relationship of chlorophyll versus LUE, depending on the species phenology.

  3. Determining of the Effect of Lysine:calorie Ratio on Growth Performance and Blood Urea Nitrogen of Growing Barrows and Gilts in Hot Season and Cool Season in a Commercial Environment.

    PubMed

    Zhang, Z F; Kim, I H

    2013-03-01

    Two experiments were conducted to determine an optimum Lys:calorie ratio (g of total dietary Lys/Mcal of DE) for growing barrows and gilts in cool and hot seasons in a commercial environment. In Exp. 1, 96 barrows and 96 gilts were randomly allocated in 1 of 4 dietary treatments (2.7, 3.0, 3.3, 3.6 g of Lys/Mcal of DE). Each treatment had 12 replicate pens with 4 pigs per pen. The experiment lasted for 34 d in the cool season (March 12th to April 15th). Diets were based on corn-wheat-soybean meal. Lys:calorie ratio were attained by adjusting the amount of corn and soybean and supplementation of crystalline Lys. Total Lys intake and available Lys intake were increased (p<.05) as dietary Lys:calorie ratio increased. The BUN concentration on d 34 for barrows, and BUN change for barrows and gilts linearly increased (p<0.05) in response to increasing dietary Lys:calorie ratio. For gilts, back fat was decreased and then increased (Quadratically, p<0.05) as increasing dietary lys:calorie ratio. Exp. 2 had a similar design as Exp. 1 with the exception that Exp. 2 was conducted in hot season (June 30th to September 11th) for 42 d. Diet of Exp. 2 was the same as Exp. 1. Total Lys intake and available Lys intake increased (p<0.05) as dietary Lys:calorie increased. On d 42, the BUN concentration increased (p<0.05) in response to the increasing dietary Lys:calorie ratio. In conclusion, dietary Lys:calorie ratio of 2.7 g of Lys/Mcal of DE could satisfy the requirement of 25 to 50 kg growing pigs. Increasing dietary Lys:calorie ratio could increase BUN concentration in growing pigs.

  4. The application Of Fourier Prediction Models To Schedule Paddy Growing Season With High Resolution For Upgrading Farm Capacity Building (Case Study in Indramayu Regency)

    NASA Astrophysics Data System (ADS)

    Martuani Siregar, Plato

    2016-08-01

    Indonesian government still has obstacles in the production of annual paddy harvest and planting which causes a decrease 20 percent drop in National production. The failure of one of them caused by weather patterns and climate change that makes farmers difficult to plan future activities with good crop calender. That is because the coming of the rainy season at this moment cannot be predicted precisely. To that end, the role of technology in model and estimate the precise rainfall (high resolution) becomes very important. The developing Fourier prediction models to become agriculture information system was user friendly for instructor/extension officers and farmers who can overcome this problem. The agriculture information models are developed to determine the time of crop calendar weighted maps with rice terraces whom government services, scout and farmers at Indramayu regency easily wears it. The sum of sinus models is used alternatively to predict deciles futures and monthly rainfalls for one year ahead produce a 0.97 correlation with the observed data in Indramayu region. The residue of the sum of sinus models became anomalous rainfall for instan ENSO can cause forward and late in rainfall season. Basically by using a method of curve fitting Sum of Sine results turned out to be related to the monsoon event and climate classification that indicate to distribute annual. While residue model shows cycles of 28.89,61.79 and 80.9 months. These frequencies are related to ENSO event. The Schmidt & Ferguson climate classification of rainfalls and wind monthly conclude Indramayu Regency dominate by type of wet and dry monthly. Map early in the season prediction and map early the planting of rice that have been tested since the start built 2008 is currently being updated with a system software, so that will make it easier for farmers and extension officers as well as related service to apply it on crop calendar.

  5. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard.

    PubMed

    Greer, Dennis H; Weedon, Mark M

    2012-05-01

    High-light intensities and temperatures of the warm climate regions of Australia and elsewhere have a major effect on the growth and development of grapevines (Vitis vinifera L.). The objective of this research was to assess interactions between the light and seasonal temperatures by shading some vines and comparing these with vines exposed to high-light intensities. Canopy temperatures were monitored using infrared radiometers and budbreak, phenology, growth, yield, berry ripening and gas exchange determined over three growing seasons. Results showed canopies were generally about 4 °C cooler than air and shading extended this cooling. Irradiance, irrespective of seasonal temperatures, had no effect on time of budbreak, shoot phenology, stem growth, yield and bunch fresh weights while bunch and leaf dry weights were reduced in low-light. Bunch ripening was initially delayed by low-light but thereafter the ripening process was highly temperature-dependent. Rates increased linearly with increasing temperature in both low and high-light and were optimal at about 35 °C. Maximum photosynthetic capacity was impaired by low irradiance, in accordance with shade leaf attributes, and attributable to stomatal closure. No effects of the low photosynthetic capacity apparently carried-over to sugar accumulation, consistent with the strong sink capacity of bunches.

  6. Determination of insecticidal Cry1Ab protein in soil collected in the final growing seasons of a nine-year field trial of Bt-maize MON810.

    PubMed

    Gruber, Helga; Paul, Vijay; Meyer, Heinrich H D; Müller, Martin

    2012-02-01

    Cultivation of genetically modified maize (Bt-maize; event MON810) producing recombinant δ-endotoxin Cry1Ab, leads to introduction of the insecticidal toxin into soil by way of root exudates and plant residues. This study investigated the fate of Cry1Ab in soil under long-term Bt-maize cultivation in an experimental field trial performed over nine growing seasons on four South German field sites cultivated with MON810 and its near isogenic non Bt-maize variety. Cry1Ab protein was quantified in soil (<2 mm size) using an in-house validated ELISA method. The assay was validated according to the criteria specified in European Commission Decision 2002/657/EC. The assay enabled quantification of Cry1Ab protein at a decision limit (CCα) of 2.0 ng Cry1Ab protein g(-1) soil with analytical recovery in the range 49.1-88.9%, which was strongly correlated with clay content. Cry1Ab protein was only detected on one field site at concentrations higher than the CCα, with 2.91 and 2.57 ng Cry1Ab protein g(-1) soil in top and lower soil samples collected 6 weeks after the eighth growing season. Cry1Ab protein was never detected in soil sampled in the spring before the next farming season at any of the four experimental sites. No experimental evidence for accumulation or persistence of Cry1Ab protein in different soils under long-term Bt-maize cultivation can be drawn from this field study.

  7. Effect of species of cool-season annual grass interseeded into Bermudagrass sod on the performance of growing calves.

    PubMed

    Beck, P A; Stewart, C B; Phillips, J M; Watkins, K B; Gunter, S A

    2007-02-01

    Two experiments were conducted to evaluate the effect of species of cool-season annual grass on the growth of stocker cattle over 3 yr. In Exp. 1, the small grains (SG) oat (O), rye (R), and wheat (W), or combinations of SG and annual ryegrass (RG), were interseeded into Bermudagrass sod in a completely randomized design with a 3 x 2 factorial arrangement of treatments. In Exp. 2, RG was planted alone or with O, R, triticale (T), or W in a completely randomized design. Pastures were planted in late October of each year, and seeding rates were 134.4 and 22.4 kg/ha for SG and RG, respectively. In Exp. 1, grazing was initiated on December 18. In Exp. 2, grazing was initiated on December 23 for SG pastures and January 21 or February 16 for RG pastures in yr 1 and on December 8 for all pastures in yr 2. Grazing was managed using the put-and-take method, in which additional calves were added as needed to maintain equal grazing pressure among pastures. In Exp. 1, no interactions (P > or = 0.28) were detected, so the main effects of SG species and RG addition are discussed. From December 18 to March 12, there were no differences in ADG (P > or = 0.17), whereas during the spring (from March 12 to May 7), addition of RG increased (P = 0.05) ADG. Using RG increased (P < or = 0.01) animal grazing-days/hectare and BW gain/hectare. Wheat tended (P = 0.08) to increase BW gain/hectare compared with the other SG, and O tended (P = 0.09) to produce less BW gain/hectare than the other SG. The treatment x year interaction was significant (P < or = 0.05) in Exp. 2. In yr 1, no differences (P = 0.25) were observed for ADG from December 23 to March 8, but during the spring grazing period (from March 8 to May 5), ADG of calves grazing TRG was less (P < or = 0.04) than that of those grazing RG, RRG, or WRG. The RRG combination produced more (P < or = 0.03) BW gain/hectare than ORG, RG, or TRG and tended (P = 0.06) to produce more BW gain/hectare than WRG. The WRG combination produced more

  8. White-faced monkey (Cebus capucinus) ecology and management in neotropical agricultural landscapes during the dry season.

    PubMed

    Williams, H E; Vaughan, C

    2001-01-01

    Habitat use by a C. capucinus troop was studied in an agricultural landscape during late dry season (March-April 1994) in northwest Costa Rica. Riparian forests, palm canals and living fence rows accounted for 82% of observations, significantly more than the other six habitats present. The study troop consumed 24 species of plants and five animals. Feeding concentrated on the introduced African oil palm (Elaeis guineensis) (33.6%) and mango (Mangifera indica) (27.2%), found mostly in palm canals and mango orchards respectively. The troop rested between 0930-1330 hr and fed and moved between 0530-0930 hr and 1330-1730 hr. Living fence rows were used as travel routes or corridors and less intensively for other activities.

  9. The contribution of soil biogenic NO emissions from a managed hyper-arid ecosystem to the regional NO2 emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Badawy, M.; Behrendt, T.; Meixner, F. X.; Wagner, T.

    2015-12-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyper-arid ecosystem in NW-China to the regional NO2 emissions during growing season. Soil biogenic NO emissions were quantified by laboratory incubation of corresponding soil samples. We have developed the Geoscience General Tool Package (GGTP) to obtain soil temperature, soil moisture and biogenic soil NO emission at oasis scale. Bottom-up anthropogenic NO2 emissions have been scaled down from annual to monthly values to compare mean monthly soil biogenic NO2 emissions. The top-down emission estimates have been derived from satellite observations compared then with the bottom-up emission estimates (anthropogenic and biogenic). The results show that the soil biogenic emissions of NO2 during the growing period are (at least) equal until twofold of the related anthropogenic sources. We found that the grape soils are the main summertime contributor to the biogenic NO emissions of study area, followed by cotton soils. The top-down and bottom-up emission estimates were shown to be useful methods to estimate the monthly/seasonal cycle of the total regional NO2 emissions. The resulting total NO2 emissions show a strong peak in winter and a secondary peak in summer, providing confidence in the method. These findings provide strong evidence that biogenic emissions from soils of managed drylands (irrigated and fertilized) in the growing period can be much more important contributors to the regional NO2 budget (hence to regional photochemistry) of dryland regions than thought before.

  10. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    USGS Publications Warehouse

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  11. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone.

    PubMed

    Bachand, P A M; Bachand, S; Fleck, J; Anderson, F; Windham-Myers, L

    2014-06-15

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment-water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  12. Seasonal analysis of Rickettsia species in ticks in an agricultural site of Slovakia.

    PubMed

    Špitalská, Eva; Stanko, Michal; Mošanský, Ladislav; Kraljik, Jasna; Miklisová, Dana; Mahríková, Lenka; Bona, Martin; Kazimírová, Mária

    2016-03-01

    Many rickettsiae of the spotted fever group are emerging pathogens causing serious diseases associated with vertebrate hosts. Ixodidae ticks are known as their vectors. Investigation of the relative abundance of questing Ixodes ricinus and their infection with Rickettsia spp. in an agricultural site comprising a game reserve in Slovakia was the aim of this study. In total, 2198 I. ricinus (492 larvae, 1503 nymphs and 203 adults) were collected by flagging the vegetation along 100 m(2) transects in Rozhanovce (eastern Slovakia): 334, 595 and 1269 in 2011, 2012 and 2013, respectively. Considering questing nymphs and adults, the highest relative density of 81 individuals/100 m(2) was observed in May 2013, the lowest of 0.3 individuals/100 m(2) in March 2012. A total of 1056 ticks (853 nymphs, 100 females and 103 males; 2011: n = 329, 2012: n = 509 and 2013: n = 218) were individually screened by PCR-based methods for the presence of Rickettsia spp. The overall prevalences were 7.3% for nymphs, 15% for females, 7.8% for males; 7.0% in 2011, 8.4% in 2012, and 8.7% in 2013. The maximum prevalences were observed in July in nymphs and in May in adults. Sequencing showed infection with R. helvetica in 73 ticks (72.6% nymphs, 16.4% females, 11% males) and with R. monacensis in 11 ticks (8 nymphs, 3 females). The results showed the circulation of pathogenic Rickettsia species in the agricultural site and a potential risk for humans to encounter infected ticks.

  13. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    SciTech Connect

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  14. Effect of corn dry distiller grains plus solubles supplementation level on performance and digestion characteristics of steers grazing native range during forage growing season.

    PubMed

    Martínez-Pérez, M F; Calderón-Mendoza, D; Islas, A; Encinias, A M; Loya-Olguín, F; Soto-Navarro, S A

    2013-03-01

    Two experiments were conducted to evaluate effects of corn dry distiller grains plus condensed solubles (DDGS) supplementation level on performance digestion characteristics of steers grazing native range during the forage growing season. In the performance study, 72 (206 ± 23.6 kg; 2008) and 60 (230 ± 11.3 kg; 2009) English crossbred steer calves were used in a randomized complete block design replicated over 2 yr. The grazing periods lasted 56 and 58 d and started on August 11 and 18 for 2008 and 2009, respectively. Each year, steers were blocked by BW (light, medium, and heavy), stratified by BW within blocks, and randomly assigned to 1 of 4 grazing groups. Each grazing group (6 steers in 2008 and 5 in 2009) was assigned to a DDGS supplementation levels (0, 0.2, 0.4, and 0.6% BW). Grazing group served as the experimental unit with 12 groups per year receiving 1 of 4 treatments for 2 yr (n = 6). In the metabolism study, 16 English crossbred steers (360 ± 28.9 kg) fitted with ruminal cannulas grazing native range during the summer growing season were used in a completely randomized design to evaluate treatment effects on forage intake and digestion. The experiment was conducted during the first and second weeks of October 2008. Steers were randomly assigned to supplement level (0, 0.2, 0.4, and 0.6% BW; n = 4) and grazed a single native range pasture with supplements offered individually once daily at 0700 h. In the performance study, ADG (0.64, 0.75, 0.80, and 0.86 ± 0.03 kg/d for 0, 0.2, 0.4, and 0.6% BW, respectively) increased linearly (P = 0.01) with increasing DDGS supplementation level. In the metabolism study, forage OM, NDF, CP, and ether extract (EE) intake decreased (P ≤ 0.05) linearly with increasing DDGS supplementation level. Total CP and EE intake increased (P ≤ 0.002) with increasing DDGS supplementation level. Digestibility of OM, NDF, and EE increased (linear; P ≤ 0.008) whereas the soluble CP fraction of forage masticate sample

  15. The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, Buhalqem; Meixner, Franz X.; Behrendt, Thomas; Badawy, Moawad; Wagner, Thomas

    2016-08-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyperarid ecosystems in NW China to the regional NOx emissions during the growing season. Soil biogenic net potential NO fluxes were quantified by laboratory incubation of soil samples from the three dominating ecosystems (desert, cotton, and grape fields). Regional biogenic NO emissions were calculated bottom-up hourly for the entire growing season (April-September 2010) by considering corresponding land use, hourly data of soil temperature, gravimetric soil moisture, and fertilizer enhancement factors. The regional HONO emissions were estimated using the ratio of the optimum condition ((FN,opt(HONO) to FN,opt (NO)). Regional anthropogenic NOx emissions were calculated bottom-up from annual statistical data provided by regional and local government bureaus which have been downscaled to monthly value. Regional top-down emission estimates of NOx were derived on the monthly basis from satellite observations (OMI) of tropospheric vertical NO2 column densities and prescribed values of the tropospheric NOx lifetime. In order to compare the top-down and bottom-up emission estimates, all emission estimates were expressed in terms of mass of atomic nitrogen. Consequently, monthly top-down NOx emissions (total) were compared with monthly bottom-up NOx emissions (biogenic + anthropogenic) for the time of the satellite overpass (around 13:00 LT) with the consideration of the diurnal cycle of bottom-up estimates. Annual variation in total Tohsun Oasis NOx emissions is characterized by a strong peak in winter (December-February) and a secondary peak in summer (June-August). During summer, soil biogenic emissions were from equal to double that of related anthropogenic emissions, and grape soils were the main contributor to soil biogenic emissions, followed by cotton soils, while emissions from the desert were negligible. The top-down and bottom

  16. Deeper winter snow reduces ecosystem C losses but increases the global warming potential of Arctic tussock tundra over the growing season.

    NASA Astrophysics Data System (ADS)

    Blanc-Betes, E.; Welker, J. M.; Gomez-Casanovas, N.; Gonzalez-Meler, M. A.

    2015-12-01

    Arctic winter precipitation is projected to increase globally over the next decades, spatial variability encompassing areas with increases and decreases in winter snow. Changes in winter precipitation strongly affect C dynamics in Arctic systems and may lead to major positive climate forcing feedbacks. However, impacts of predicted changes in snowfall and accumulation on the rate and form of C fluxes (CO2 and CH4) and associated forcing feedbacks from Arctic tundra remain uncertain. We investigated how changes in winter precipitation affect net ecosystem CO2 and CH4 fluxes and budgets of moist acidic tundra in an 18-yrs snow fence experiment over a complete growing season at Toolik Lake, AK. Arctic tundra under ambient winter precipitation (CTL) was a net source of CO2 and CH4, yielding net C losses over the growing season. Reduced snow (-15-30% snow depth; RS) switched the system to a net CO2 sink mostly by limiting SOC decomposition within colder soils. Snow additions progressively reduced net ecosystem CO2 losses compared to CTL, switching the system into a weaker net CO2 source with medium additions (+20-45% snow depth; MS) and into a small net CO2 sink with high additions (+70-100% snow depth; HS). Increasingly wetter soils with snow additions constrained the temperature sensitivity of aerobic decomposition and favored the anaerobic metabolism, buffering ecosystem CO2 losses despite substantial soil warming. Accordingly, Arctic tundra switched from a sustained CH4 sink at RS site to an increasingly stronger CH4 source with snow additions. Accounting for both CO2 and CH4, the RS site became a net C sink over the growing season, overall reducing the global warming potential (CO2 equiv.; GWP) of the system relative to CTL. Snow additions progressively reduced net C losses at the MS site compared to CTL and the system transitioned into a net C sink at HS plots, partly due to the slower metabolism of anaerobic decomposition. However, given the greater radiative

  17. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth?

    PubMed

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North

  18. Isoprene Emissions from Downy Oak under Water Limitation during an Entire Growing Season: What Cost for Growth?

    PubMed Central

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North

  19. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth?

    PubMed

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North

  20. Seasonal OVOC fluxes from an agricultural field planted with sugar beet

    NASA Astrophysics Data System (ADS)

    Custer, T. G.; Schade, G. W.

    2005-12-01

    Although agricultural crops are generally not strong isoprenoid emitters, they do emit a variety of other atmospherically significant species collectively known as oxygenated VOCs (OVOCs), such as methanol, acetaldehyde, or various hexenal and hexenol compounds. Many OVOCs have longer atmospheric lifetimes than isoprenoid compounds and can affect the atmosphere's oxidative potential at higher elevations and far from sources. We performed selected OVOC flux measurements for select species above an agricultural field planted with sugar beets ( B. vulgaris) in northern Germany in 2004 to better understand the magnitude and controls over these OVOC emissions. Virtual disjunct eddy covariance was used to measure fluxes beginning immediately following seeding and continuing until past harvest. A commercial PTR-MS provided mixing ratios of methanol (m/z 33), acetaldehyde (m/z 45), acetone (m/z 59), and the sum of the isoprene oxidation products methacrolein and methyl vinyl ketone (m/z 71) while 3D wind velocities were measured using a Gill R3 sonic anemometer. Here, we compare the fluxes of methanol and acetone over the growth cycle of sugar beet to plant development as measured by the leaf area index. Methanol fluxes ranged from approximately -0.05 to 0.15 mg C m-2 h-1 (mixing ratios from ~1 to 15 ppbv) and showed a clear diurnal cycle after the sugar beets established a significant leaf area. Acetone fluxes ranged from approximately -0.2 to 0.2 mg C m-2 h-1 (mixing ratios from ~0.2 to 3 ppb). Higher specific emissions were found during earlier growth stages. Methanol flux correlated strongly with latent heat flux (or alternatively, with canopy conductance derived from the latent heat flux), while acetone flux did not. Acetone flux was small compared to methanol flux and sugar beet is likely not a significant acetone emitter. Weekly measurements of soil OVOC exchange using a flux chamber showed that the soil may have contributed significantly to the overall flux values

  1. Is health a labour, citizenship or human right? Mexican seasonal agricultural workers in Leamington, Canada.

    PubMed

    Barnes, Nielan

    2013-07-01

    Post-North American Free Trade Agreement (NAFTA) trade liberalisation combined with post-9/11 border securitisation means North America increasingly relies on pools of temporary foreign labour, particularly in the agricultural and service sectors. Despite being temporary, these workers often spend most of their years on foreign soil, living and working in isolated rural communities, far from their own families and communities. Migrants' mental and physical health suffers due to hazardous and stressful working conditions, sub-standard housing, lack of social support and limited access to health and social welfare services. Assuming access to health is a basic human right, who is responsible for the health of temporary foreign migrant workers? Is it the nation-state? or the Employers and/or unions? or Civil society? Research and practice show that a combined multisector approach is best; however, such initiatives are often uneven due to questions of sovereignty and citizenship rights. Community-based organisations (CBOs) have emerged to advocate for and serve migrants' social and welfare needs; analysis of CBO projects reveals an uneven application of rights to migrants. Using a comparative case study from Canada, this project contributes to understanding how civil-society helps to activate different types of health care rights for migrants, and to create an informed policy that provides migrant workers with access to a wider range of human and health rights.

  2. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Houborg, R.; Izaurralde, R. C.

    2014-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  3. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Izaurralde, R. C.; Sahajpal, R.; Houborg, R.; Milla, Z.

    2013-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  4. Is health a labour, citizenship or human right? Mexican seasonal agricultural workers in Leamington, Canada.

    PubMed

    Barnes, Nielan

    2013-07-01

    Post-North American Free Trade Agreement (NAFTA) trade liberalisation combined with post-9/11 border securitisation means North America increasingly relies on pools of temporary foreign labour, particularly in the agricultural and service sectors. Despite being temporary, these workers often spend most of their years on foreign soil, living and working in isolated rural communities, far from their own families and communities. Migrants' mental and physical health suffers due to hazardous and stressful working conditions, sub-standard housing, lack of social support and limited access to health and social welfare services. Assuming access to health is a basic human right, who is responsible for the health of temporary foreign migrant workers? Is it the nation-state? or the Employers and/or unions? or Civil society? Research and practice show that a combined multisector approach is best; however, such initiatives are often uneven due to questions of sovereignty and citizenship rights. Community-based organisations (CBOs) have emerged to advocate for and serve migrants' social and welfare needs; analysis of CBO projects reveals an uneven application of rights to migrants. Using a comparative case study from Canada, this project contributes to understanding how civil-society helps to activate different types of health care rights for migrants, and to create an informed policy that provides migrant workers with access to a wider range of human and health rights. PMID:23672480

  5. Seasonal and diurnal variation in CO fluxes from an agricultural bioenergy crop

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Rannik, Üllar; Haapanala, Sami; Peltola, Olli; Shurpali, Narasinha; Martikainen, Pertti J.; Lind, Saara; Hyvönen, Niina; Virkajärvi, Perttu; Zahniser, Mark; Mammarella, Ivan

    2016-10-01

    Carbon monoxide (CO) is an important reactive trace gas in the atmosphere, while its sources and sinks in the biosphere are poorly understood. Soils are generally considered as a sink of CO due to microbial oxidation processes, while emissions of CO have been reported from a wide range of soil-plant systems. We measured CO fluxes using the micrometeorological eddy covariance method from a bioenergy crop (reed canary grass) in eastern Finland from April to November 2011. Continuous flux measurements allowed us to assess the seasonal and diurnal variability and to compare the CO fluxes to simultaneously measured net ecosystem exchange of CO2, N2O and heat fluxes as well as to relevant meteorological, soil and plant variables in order to investigate factors driving the CO exchange.The reed canary grass (RCG) crop was a net source of CO from mid-April to mid-June and a net sink throughout the rest of the measurement period from mid-June to November 2011, excluding a measurement break in July. CO fluxes had a distinct diurnal pattern with a net CO uptake in the night and a net CO emission during the daytime with a maximum emission at noon. This pattern was most pronounced in spring and early summer. During this period the most significant relationships were found between CO fluxes and global radiation, net radiation, sensible heat flux, soil heat flux, relative humidity, N2O flux and net ecosystem exchange. The strong positive correlation between CO fluxes and radiation suggests abiotic CO production processes, whereas the relationship between CO fluxes and net ecosystem exchange of CO2, and night-time CO fluxes and N2O emissions indicate biotic CO formation and microbial CO uptake respectively. The study shows a clear need for detailed process studies accompanied by continuous flux measurements of CO exchange to improve the understanding of the processes associated with CO exchange.

  6. Evaluation of growth potential of Crimean juniper (Juniperus excelsa Bieb.) seedlings for the first growing season under Tekir forest nursery conditions in Kahramanmaras, Turkey.

    PubMed

    Avsar, Mahmut D; Tonguc, Fatih

    2003-04-01

    In this study, growth potential of Crimean juniper (Juniperus excelsa Bieb.) seedlings for the first growing season under Tekir Forest Nursery conditions in Kahramanmaras was evaluated. The height growth of Crimean juniper seedlings was relatively close to that of Lebanon cedar (Cedrus libani A. Rich.) seedlings produced in the same nursery, but their root collar diameters were fairly lower than that of Lebanon cedar seedlings. According to coniferous seedling standards of Turkish Standards Institute, the height growth of Crimean juniper seedlings was fairly good, but their root collar diameters were slightly small. In this respect, that 2+0 or 1+1 Crimean juniper seedlings are used in reforestation activities in the region would be more useful than 1+0 seedlings.

  7. A cardinal plan for transforming arid areas; scientists of Chinese Academy of Agricultural Sciences stress significance of growing grass, trees in northwest

    SciTech Connect

    Not Available

    1983-08-23

    This article proposes that the key to ecological equilibrium in such arid areas as northwestern China lies in the growing of grass and trees. One of the main causes of low agricultural output from arid land in the north is the low fertility of soil. It is indicated that by planting grass and trees, barren mountains can be converted into the ''four storages'' of water storage (reservoir), fertilizer storage, fuel storage and timber storage, and can supply the ''four materials'' consisting of wood material (timber), fertilizing material, feeding materials (fodders) and burning material (fuel). A progressive spiral of trees, grass, cattle, fertilizers and grain will be formed. The four major advantages of growing grass are the increase in vegetation and prevention of soil erosion; climate regulation and reduction of disastrous weather; the development of animal husbandry, an increase in the production and supply of meat and milk, and a change in people's diet patterns; and an increase in fertilizers and grain output.

  8. Ultra-high Resolution Carbon Isotope Records in Tree Rings: Indicators of Carbon Allocation and Growing Season Precipitation/Temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Jahren, A.; Schubert, B.

    2010-12-01

    The rapidity and ease of carbon stable isotope measurements on organic substrates has opened the possibility of ultra-high resolution δ13C analyses within tree rings at < 30 to 100 micron increments. We present such measurements for 80 individual tree rings, from 10 trees spanning the last 55 million years in age from arctic, temperate, and tropical environments. Morphological features such as growth rings and resin canals were not preserved in some ancient specimens making identification of annual rings via standard techniques impossible. However, the annual patterns observed in ultra-high resolution δ13C records allowed for characterization of these unknown specimens as evergreen or deciduous. A combination of our data with that published in the literature showed a strong correlation between the amplitude of the δ13C pattern and growing season precipitation/temperature in > 90% of modern evergreen trees examined to date. Ultra-high resolution δ13C analyses of ancient, non-permineralized, evergreen trees could therefore provide quantitative estimates of past climate at annual or seasonal resolution.

  9. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  10. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    PubMed

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter.

  11. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    PubMed

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter. PMID:26562808

  12. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    PubMed

    Pittman, H Tyler; Krementz, David G

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (<5 cm ground diameter) and large trees (>20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter

  13. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    PubMed

    Pittman, H Tyler; Krementz, David G

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (<5 cm ground diameter) and large trees (>20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter

  14. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America

    PubMed Central

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (<5 cm ground diameter) and large trees (>20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5cm ground diameter) but

  15. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  16. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data*

    PubMed Central

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-01-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  17. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  18. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils.

    PubMed

    Cid, Carolina Vergara; Rodriguez, Judith Hebelen; Salazar, María Julieta; Blanco, Andrés; Pignata, María Luisa

    2016-09-01

    Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments. PMID:26940382

  19. Make Summer Your Growing Season.

    ERIC Educational Resources Information Center

    Simons, Harriet

    1982-01-01

    Describes the opportunities available in summer workshops and graduate programs for music teachers. The impact of the workshops and programs on improving teacher effectiveness is evaluated. Criteria are included for evaluating program offerings for their usefulness to teachers. The author offers suggestions to workshop planners to improve the…

  20. Identifying the spatial and temporal variability of economic opportunity costs to promote the adoption of alternative land uses in grain growing agricultural areas: an Australian example.

    PubMed

    Lyle, G; Bryan, B A; Ostendorf, B

    2015-05-15

    Grain growers face many future challenges requiring them to adapt their land uses to changing economic, social and environmental conditions. To understand where to make on ground changes without significant negative financial repercussions, high resolution information on income generation over time is required. We propose a methodology which utilises high resolution yield data collected with precision agriculture (PA) technology, gross margin financial analysis and a temporal standardisation technique to highlight the spatial and temporal consistency of farm income. On three neighbouring farms in Western Australia, we found non-linear relationships between income and area. Spatio-temporal analysis on one farm over varying seasons found that between 37 and 49% (1082-1433ha) of cropping area consistently produced above the selected income thresholds and 43-32% (936-1257ha) regularly produced below selected thresholds. Around 20% of area showed inconsistent temporal variation in income generation. Income estimated from these areas represents the income forgone if a land use change is undertaken (the economic opportunity cost) and the average costs varied spatially from $190±114/ha to $560±108/ha depending on what scenario was chosen. The interaction over space and time showed the clustering of areas with similar values at a resolution where growers make input decisions. This new evidence suggests that farm area could be managed with two strategies: (a) one that maximises grain output using PA management in temporally stable areas which generate moderate to high income returns and (b) one that proposes land use change in low and inconsistent income returning areas where the financial returns from an alternative land use may be comparable. The adoption of these strategies can help growers meet the demand for agricultural output and offer income diversity and adaptive capacity to deal with the future challenges to agricultural production.

  1. Identifying the spatial and temporal variability of economic opportunity costs to promote the adoption of alternative land uses in grain growing agricultural areas: an Australian example.

    PubMed

    Lyle, G; Bryan, B A; Ostendorf, B

    2015-05-15

    Grain growers face many future challenges requiring them to adapt their land uses to changing economic, social and environmental conditions. To understand where to make on ground changes without significant negative financial repercussions, high resolution information on income generation over time is required. We propose a methodology which utilises high resolution yield data collected with precision agriculture (PA) technology, gross margin financial analysis and a temporal standardisation technique to highlight the spatial and temporal consistency of farm income. On three neighbouring farms in Western Australia, we found non-linear relationships between income and area. Spatio-temporal analysis on one farm over varying seasons found that between 37 and 49% (1082-1433ha) of cropping area consistently produced above the selected income thresholds and 43-32% (936-1257ha) regularly produced below selected thresholds. Around 20% of area showed inconsistent temporal variation in income generation. Income estimated from these areas represents the income forgone if a land use change is undertaken (the economic opportunity cost) and the average costs varied spatially from $190±114/ha to $560±108/ha depending on what scenario was chosen. The interaction over space and time showed the clustering of areas with similar values at a resolution where growers make input decisions. This new evidence suggests that farm area could be managed with two strategies: (a) one that maximises grain output using PA management in temporally stable areas which generate moderate to high income returns and (b) one that proposes land use change in low and inconsistent income returning areas where the financial returns from an alternative land use may be comparable. The adoption of these strategies can help growers meet the demand for agricultural output and offer income diversity and adaptive capacity to deal with the future challenges to agricultural production. PMID:25836353

  2. Hydroclimatic Controls on the Seasonal and Inter-Annual Variability of Dissolved Phosphorus Concentration in a Lowland Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Grimaldi, C.; Gruau, G.

    2014-12-01

    We investigated soluble reactive phosphorus (SRP) at the outlet of a lowland agricultural catchment (Kervidy-Naizin, France) to identify the hydroclimatic controls on the seasonal and inter-annual variability in concentrations. Six years of stream data have been used, including a regular 6-daily sampling and high-frequency monitoring of 52 floods. Both on an annual basis and during flood events, distinct export dynamics for SRP and particulate phosphorus (PP) revealed that SRP transport mechanism was independent from PP (Dupas et al., submitted). During most flood events, discharge-SRP hystereses were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P-rich soil horizons. SRP concentrations were highest in the beginning of the hydrological year (period A), when the stream started to flow again after the dry summer season and water table fluctuated in the wetland domain. Thus, wetland soils seemed to be a major source of SRP. Concentrations during period A were higher after a long summer period than after a short one, which suggest that a pool of labile P was constituted in soils during the dry summer period. During winter (period B), SRP concentration generally decreased compared to period A, both during floods and interflood. This could be due to depletion of a soil P pool in the wetland domain and/or dilution by deep groundwater with low P concentration from the upland domain. Concentration during period B barely decreased compared to A during wet years, probably due to increased connectivity with soils from the upland domain in wet conditions. During spring (period C), SRP concentration increased during baseflow periods. The possible mechanisms causing the release of SRP could involve reduction of Fe oxide-hydroxides in wetland soils or in-stream processes. At the same time, SRP

  3. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin.

    PubMed

    Rajmohan, N; Prathapar, S A; Jayaprakash, M; Nagarajan, R

    2014-09-01

    The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I(geo)), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I(geo) values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87%. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC

  4. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin.

    PubMed

    Rajmohan, N; Prathapar, S A; Jayaprakash, M; Nagarajan, R

    2014-09-01

    The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I(geo)), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I(geo) values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87%. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC

  5. Spatio-temporal distribution of the timing of start and end of growing season along vertical and horizontal gradients in Japan.

    PubMed

    Nagai, Shin; Saitoh, Taku M; Nasahara, Kenlo Nishida; Suzuki, Rikie

    2015-01-01

    We detected the spatio-temporal variability in the timing of start (SGS) and end of growing season (EGS) in Japan from 2003 to 2012 by analyzing satellite-observed daily green-red vegetation index with a 500-m spatial resolution. We also examined the characteristics of SGS and EGS timing in deciduous broadleaf and needleleaf forests along vertical and horizontal gradients and then evaluated the relationship between their timing and daily mean air temperature. We found that for the timing of SGS and EGS, changes along the vertical gradient in deciduous broadleaf forest tended to be larger than those in deciduous needleleaf forest. For both forest types, changes along the vertical and horizontal gradients in the timing of EGS tended to be smaller than those of SGS. Finally, in both forest types, the sensitivity of the timing of EGS to air temperature was much less than that of SGS. These results suggest that the spatio-temporal variability in the timing of SGS and EGS detected by satellite data, which may be correlated with leaf traits, photosynthetic capacity, and environment conditions, provide useful ground-truthing information along vertical and horizontal gradients.

  6. Effect of storage on the content of polyphenols of minimally processed skin-on apple wedges from ten cultivars and two growing seasons.

    PubMed

    Rössle, Christian; Wijngaard, Hilde H; Gormley, Ronan T; Butler, Francis; Brunton, Nigel

    2010-02-10

    In this study, the polyphenolic composition of skin-on apple wedges from ten cultivars was examined during chill storage and over two growing seasons. Individual polyphenol compounds were measured using HPLC resulting in the total polyphenolic index (TPI). Total phenolic content (TPC) was quantified using the Folin-Ciocalteu assay. Chilled storage had a significant effect (P < 0.001) on the polyphenol composition of all ten cultivars grown in 2007 and 2008. Total phenolic indices (sum of individual polyphenols) and TPCs of nine of the ten cultivars significantly decreased (P < 0.001) after 5 days of storage at 2-4 degrees C. These indices increased in case of Shampion apples over the same storage period. Changes in the most abundant compounds (-)-epicatechin, procyanidins and chlorogenic acid were largely responsible for changes in overall TPI. Percentage loss was higher for compounds such as phloridzin with a degradation of up to 100%. Irrespective of the different starting level of specific polyphenols in each year; storage resulted in a similar percentage loss/gain for each cultivar.

  7. Nitrogen Cycle Modeling: a Mechanistic Estimate of N-losses From Agricultural Fields Over the Seasonal Time Period

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Gu, C.; Venterea, R.; Riley, W.; Oldenburg, C.

    2007-12-01

    The biogeochemical cycle of nitrogen and production of NO, N2O, and CO2 gas and NO2- and NO3- ions in nutrient-enriched agricultural fields is mediated by soil microbial activity, the hydrological cycle, plant dynamics, and climatic forcing. Understanding how NO, N2O, CO2 gases and NO2- and NO3- ions are released from agricultural fields to the environment is a key factor in controlling the green-house effect and water contamination, and assumes ever greater importance in view of the foreseen increase in biofuel, food, and fiber production. To address these issues we have developed a mechanistic model (TOUGHREACT-N) for various nitrification and denitrification pathways, multiple microbial biomass dynamics, heat and water flows, and various chemical reactions at local and kinetic equilibrium. The soil column is represented in a 1D framework, with hydraulic properties described by a water tension-saturation model. Biotic and abiotic reactions are assumed to follow Michaelis-Menten kinetics, while a consortium of several micro-organismal strains is assumed to follow multiple Monod growth kinetics accounting for electron donor, electron acceptor, and inhibitor concentrations. Water flow is modeled with the Darcy-Richards equation, while nutrient transport is modeled by Fickian advective and diffusive processes in both gaseous and liquid phases. Heat flow is modeled with the Fourier equation. Plant dynamics is taken into account by coupling TOUGHREACT-N with CERES to determine water and nutrient uptake, and soil carbon accumulation. TOUGHREACT-N was calibrated against field measurements to assess pathways of N losses following fertilization. A good agreement between field observations and model predictions was found. We identified two dominant time scales in the system response that depended on plants dynamics. Before plants have substantial impact on soil nutrients and moisture content, N losses are characterized by rapid increases as a function of water application

  8. Rate of Nitrogen Application during the Growing Season and Spraying Plants with Urea in the Autumn Alters Uptake of other Nutrients by Deciduous and Evergreen Container-Grown Rhododendron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of N rate during the growing season and spraying plants with urea in the autumn on the uptake of other nutrients was assessed using container-grown rhododendron (Rhododendron 'H-1 P.J.M') and azalea (Rhododendron 'Cannon’s Double'). Plants were grown with a complete fertilizer containi...

  9. Influence of organic and conventional growing conditions on the nutrient contents of white head cabbage (Brassica oleracea var. capitata) during two successive seasons.

    PubMed

    Citak, Sedat; Sonmez, Sahriye

    2010-02-10

    Organically and conventionally grown white head cabbage (Brassica oleracea var. capitata) plants were cultivated during two successive seasons (spring and autumn) to evaluate the effects of the applications on the nutrient content of the edible part of cabbage plants. Seventeen different organic applications containing farmyard manure (FM), chicken manure (CM), and blood meal (BM) and 1 chemical fertilizer and 1 control, collectively 19 treatments, were examined under the open-field conditions. Recommendations of the best results obtained should be divided into groups in the following order regarding the mineral contents and also the seasons: 0.6 BM + 7.5 FM in the spring season, and 3.5 CM in the autumn season for N, P, and K content of cabbage. For Ca and Mg, the group division should be 1.7 CM + 0.6 BM in the spring season and 10.0 FM + 1.2 CM in the autumn season. The optimum recommendations for the micronutrients could be 5.0 FM + 1.0 BM in the spring season and 0.9 BM + 0.85 CM in the autumn season for Fe and Cu and 15.0 FM in the spring season, and 10.0 FM + 0.4 BM in the autumn season for Mn and Zn. FM and CM could be used in high rates in producing organic cabbage and could be substituted for chemical fertilizer especially in the spring season.

  10. The Characterization of Extreme Episodes of Wet and Dry Deposition of Pollutants on an Above Cloud-Base Forest during its Growing Season.

    NASA Astrophysics Data System (ADS)

    Defelice, T. P.; Saxena, V. K.

    1991-11-01

    An analysis of a 3-yr database (1986-88) acquired new Mount Mitchell (35°4405N, 82°1715W, 2038 m MSL) where the forest consists primarily of Fraser fir and some red spruce stands is presented. The site was immersed in clouds for 28%-41% of the time during each of the three growing seasons (15 May-15 September). This study only investigated extreme episodes of wet (cloud-water pH% .3:1)and dry (eg., an ozone concentration 70 ppb) acidic deposition. Extreme wet events occasionally relieved periods of high ozone ( 70 ppb) exposures during the final field intensive. Extreme wet and dry events could activate the decline mechanism in any above cloud-base forest, especially if the trees are exposed to such events during very early or very late stages of their Lives. The exposure of the forest to natural climatic stress, such as drought condition wintertime temperatures during the growing season, snow storm during early spring, etc., would also subject the forest to a stressful period during which the exposure to the aforementioned episodes of pollutant deposition might trigger a decline.On the average, one of three cloud events that traverse this site is extreme. These extreme events usually last about 4 h. form during periods of high atmospheric pressure, have a liquid water content of 0.10 g m3, and contain cloud droplets of mean diameter around 8.0 m. During the dissipating stages, such cloud events result in maximum acidic deposition. When such events are preceded by very high ozone ( 100 ppb), they may prove oven more detrimental to forest health. A precipitating cloud event (pH = 4.4 on the average) preceded by periods of very high ozone concentrations will become an extreme episode. Extreme acidic events can occur in association with 1) an 850-mb closed low, situated just north of Montreal, Canada, that advances southward into New York State, and 2) an 850-mb high extending over the Gulf of Mexico (between Florida and Louisiana) to over eastern Kansas. In

  11. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons

    PubMed Central

    Stumpf, R.; dos Santos, J.; Gomes, L.B.; Silva, C.N.; Tessmann, D.J.; Ferreira, F.D.; Machinski, M.; Del Ponte, E.M.

    2013-01-01

    Ear rots caused by Fusarium spp. are among the main fungal diseases that contribute to poor quality and the contamination of maize grains with mycotoxins. This study aimed to determine the visual incidence of fungal-damaged kernels (FDKs), the incidence of two main Gibberella (a teleomorph of Fusarium) complexes (G. fujikuroi and G. zeae) associated with maize using a seed health blotter test, and the fumonisin levels, using high performance liquid chromatography, in samples of maize grains grown across 23 municipalities during the 2008/09 and 2009/10 growing seasons. Additionally, 104 strains that were representative of all of the analysed samples were identified to species using PCR assays. The mean FDK was seven per cent, and only six of the samples had levels greater than six per cent. Fusarium spp. of the G. fujikuroi complex were present in 96% of the samples, and G. zeae was present in 18% of the samples (5/27). The mean incidence of G. fujikuroi was 58%, and the incidence of G. zeae varied from 2 to 6%. FB1 was found in 58.6%, FB2 in 37.9%, and both toxins in 37.9% of the samples. The FB1 and FB2 levels were below the quantification limits for 41.3% of the samples, and the mean FB1 levels (0.66 μg/g) were higher than the mean FB2 levels (0.42 μg/g). The PCR identification separated the 104 isolates into three of the G. fujikuroi complex: F. verticillioides (76%), F. subglutinans (4%) and F. proliferatum (2%); and G. zeae (anamorph = F. graminearum) (18%). Our results confirmed the dominance of F. verticillioides, similar to other regions of Brazil, but they differed due to the relatively higher incidence of F. graminearum. Total fumonisin levels were below the maximum limit determined by current Brazilian regulations. PMID:24159288

  12. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons.

    PubMed

    Stumpf, R; Dos Santos, J; Gomes, L B; Silva, C N; Tessmann, D J; Ferreira, F D; Machinski, M; Del Ponte, E M

    2013-05-31

    Ear rots caused by Fusarium spp. are among the main fungal diseases that contribute to poor quality and the contamination of maize grains with mycotoxins. This study aimed to determine the visual incidence of fungal-damaged kernels (FDKs), the incidence of two main Gibberella (a teleomorph of Fusarium) complexes (G. fujikuroi and G. zeae) associated with maize using a seed health blotter test, and the fumonisin levels, using high performance liquid chromatography, in samples of maize grains grown across 23 municipalities during the 2008/09 and 2009/10 growing seasons. Additionally, 104 strains that were representative of all of the analysed samples were identified to species using PCR assays. The mean FDK was seven per cent, and only six of the samples had levels greater than six per cent. Fusarium spp. of the G. fujikuroi complex were present in 96% of the samples, and G. zeae was present in 18% of the samples (5/27). The mean incidence of G. fujikuroi was 58%, and the incidence of G. zeae varied from 2 to 6%. FB1 was found in 58.6%, FB2 in 37.9%, and both toxins in 37.9% of the samples. The FB1 and FB2 levels were below the quantification limits for 41.3% of the samples, and the mean FB1 levels (0.66 μg/g) were higher than the mean FB2 levels (0.42 μg/g). The PCR identification separated the 104 isolates into three of the G. fujikuroi complex: F. verticillioides (76%), F. subglutinans (4%) and F. proliferatum (2%); and G. zeae (anamorph = F. graminearum) (18%). Our results confirmed the dominance of F. verticillioides, similar to other regions of Brazil, but they differed due to the relatively higher incidence of F. graminearum. Total fumonisin levels were below the maximum limit determined by current Brazilian regulations.

  13. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest

    PubMed

    White; Running; Thornton

    1999-02-01

    Recent research suggests that increases in growing-season length (GSL) in mid-northern latitudes may be partially responsible for increased forest growth and carbon sequestration. We used the BIOME-BGC ecosystem model to investigate the impacts of including a dynamically regulated GSL on simulated carbon and water balance over a historical 88-year record (1900-1987) for 12 sites in the eastern USA deciduous broadleaf forest. For individual sites, the predicted GSL regularly varied by more than 15 days. When grouped into three climatic zones, GSL variability was still large and rapid. There is a recent trend in colder, northern sites toward a longer GSL, but not in moderate and warm climates. The results show that, for all sites, prediction of a long GSL versus using the mean GSL increased net ecosystem production (NEP), gross primary production (GPP), and evapotranspiration (ET); conversely a short GSL is predicted to decrease these parameters. On an absolute basis, differences in GPP between the dynamic and mean GSL simulations were larger than the differences in NEP. As a percentage difference, though, NEP was much more sensitive to changes in GSL than were either GPP or ET. On average, a 1-day change in GSL changed NEP by 1.6%, GPP by 0.5%, and ET by 0.2%. Predictions of NEP and GPP in cold climates were more sensitive to changes in GSL than were predictions in warm climates. ET was not similarly sensitive. First, our results strongly agree with field measurements showing a high correlation between NEP and dates of spring growth, and second they suggest that persistent increases in GSL may lead to long-term increases in carbon storage.

  14. Projections of the advance in the start of the growing season during the 21st century based on CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Xia, Jiangjiang; Yan, Zhongwei; Jia, Gensuo; Zeng, Heqing; Jones, Philip Douglas; Zhou, Wen; Zhang, Anzhi

    2015-06-01

    It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season (SOS) across the globe during the 20th century. Projections of further changes in the SOS for the 21st century under certain emissions scenarios (Representative Concentration Pathways, RCPs) are useful for improving understanding of the consequences of global warming. In this study, we first evaluate a linear relationship between the SOS (defined using the normalized difference vegetation index) and the April temperature for most land areas of the Northern Hemisphere for 1982-2008. Based on this relationship and the ensemble projection of April temperature under RCPs from the latest state-of-the-art global coupled climate models, we show the possible changes in the SOS for most of the land areas of the Northern Hemisphere during the 21st century. By around 2040-59, the SOS will have advanced by -4.7 days under RCP2.6, -8.4 days under RCP4.5, and -10.1 days under RCP8.5, relative to 1985-2004. By 2080-99, it will have advanced by -4.3 days under RCP2.6, -11.3 days under RCP4.5, and -21.6 days under RCP8.5. The geographic pattern of SOS advance is considerably dependent on that of the temperature sensitivity of the SOS. The larger the temperature sensitivity, the larger the date-shift-rate of the SOS.

  15. Preliminary Study on Norovirus, Hepatitis A Virus, Escherichia coli and their Potential Seasonality in Shellfish from Different Growing and Harvesting Areas in Sardinia Region

    PubMed Central

    Fattaccio, Maria Caterina; Salza, Sara; Canu, Antonella; Marongiu, Edoardo; Pisanu, Margherita

    2014-01-01

    Edible lamellibranch molluscs can be involved in foodborne disease and infections of varying severity. They are filter feeding animals able to retain and concentrate in their organism bacteria, parasites, viruses and biotoxins marine algae present in their external environment. Major shellfish harvesting and relaying areas from different areas in Sardinia region were defined and studied by analysing different physicochemical parameters in the water and the levels of Escherichia coli (E. coli), Norovirus (NoVs) genogroup I (NoVGI), NoVs genogroup II (NoVGII) and hepatitis A virus (HAV) in the shellfish harvested and farmed from 2009 to 2011. During that period the identification of the viral agents was carried out by one step real-time reverse transcriptase-polymerase chain reaction and Escherichia coli according to ISO TS 16649-3:2005 standard method. A total of 1266 shellfish samples were tested for NoVGI, NoVGII, HAV and faecal indicators. Norovirus contamination was found in 337 samples (26.6%); only one sample of mussels was positive for HAV (0.08%); while E. coli prevalence was 3.8% in shellfish. The probability of observing shellfish samples positive for NoVs, HAV and E. coli presence was associated with harvesting, growing and relaying areas, period of sampling, environmental parameters, animal species (P<0.05). Although the higher prevalence rate of human enteropathogenic viruses was found in the winter period, we did not observe a significant relationship between the effect of seawater temperature (seasonality) and NoVs presence all over the study period; in fact, according to statistical analysis, the presence of human enteric viruses does not appear to be related to water temperature. PMID:27800328

  16. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Song, Yu; Mao, Yi; Mao, Zhichun; Wu, Yusheng; Li, Mengmeng; Huang, Xin; He, Qichao; Hu, Min

    2014-08-01

    To determine the contribution of the open burning of wheat straw residues to local PM2.5 during the harvest season of June 2013, PM2.5 was sampled in an agricultural region in eastern China. The sampling site was approximately 1 km from the nearest wheat field. Chemical compositions were analyzed, and source apportionment was undertaken using the positive matrix factorization model. The average PM2.5 concentration was 110.7 μg/m3, containing 36.4 μg/m3 organics, 7.3 μg/m3 EC, 6.0 μg/m3 potassium (K) and 4.9 μg/m3 chloride ion (Cl-). The sampling period was divided into three phases: the pre-local-burning phase (Phase 1), the local-burning phase (Phase 2) and the post-local-burning phase (Phase 3). In Phase 2, the concentrations of PM2.5 and the organics, EC, K and Cl- in PM2.5 were 163.6 μg/m3, 59.0 μg/m3, 12.2 μg/m3, 11.0 μg/m3 and 10.8 μg/m3, respectively, which were all remarkably higher than in both Phase 1 and Phase 3. Eight sources of PM2.5 were determined, including two types of wheat residue burning sources, which showed a significant difference in Cl- content. The atmospheric relative humidity (RH) and the aging process of PM2.5 might be the causes: only fresh particulate emissions from wheat residue burning could feature high-concentration Cl- under high RH conditions. In Phase 2, wheat residue burning contributed 51.3% of PM2.5, 75.8% of OC, 74.5% of EC, 90.1% of K and 104.1% of Cl-. These percentages were lower in Phases 1 and 3 than in Phase 2. Wheat residue burning caused such severe air pollution that it's necessary to prohibit the open burning of crop residues in order to protect public health and the environment.

  17. Investigating the implications of meteorological indicators of seasonal rainfall performance on maize yield in a rain-fed agricultural system: case study of Mt. Darwin District in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mushore, Terence; Manatsa, Desmond; Pedzisai, Ezra; Muzenda-Mudavanhu, Chipo; Mushore, Washington; Kudzotsa, Innocent

    2016-06-01

    The study focuses on the impacts of climate variability and change on maize yield in Mt. Darwin District. The rainfall and temperature data for the period under study that is from 1992 to 2012 were obtained from Meteorological Services Department of Zimbabwe at daily resolution while crop yield data were obtained from Department of Agricultural, Technical and Extension Services (AGRITEX) and Zimbabwe Statistics Agency (ZIMSTAT) at seasonal/yearly resolution. In order to capture full rainfall seasons, a year was set to begin on 1 June and end on 31 July the next year. Yearly yield, temperature and rainfall data were used to compute time series analysis of rainfall, temperature and yield. The relationship between temperature, rainfall, quality of season (start, cessation, dry days, wet days and length) and yield was also investigated. The study also investigated the link between meteorological normal and maize yield. The study revealed that temperature is rising while rainfall is decreasing with time hence increasing risk of low maize yield in Mt. Darwin. Correlation between maize yield was higher using a non-linear (R 2 = 0.630) than a linear regression model (R 2 = 0.173). There was a very high correlation between maize yield and number of dry days (R = -0.905) as well as between maize yield and length of season (R = 0.777). We also observed a strong correlation between percentage normal rainfall and percentage normal maize yield (R 2 = 0.753). This was also agreed between rainfall tessiles and maize yield tessiles as 50 % of the seasons had normal and above normal rainfall coinciding with normal and above normal maize yield. Of the 21 seasons considered, only one season had above normal rainfall while maize yield was below normal. The study concluded that there is a strong association between meteorological normal and maize yield in a rain-fed agricultural system. Climate information remains crucial to agricultural productivity hence the need to train farmers to

  18. Seasonal exposure of fish to neurotoxic pesticides in an intensive agricultural catchment, Uma-oya, Sri Lanka: linking contamination and acetylcholinesterase inhibition.

    PubMed

    Sumith, Jayakody A; Hansani, P L Chamila; Weeraratne, Thilini C; Munkittrick, Kelly R

    2012-07-01

    The annual cultivation pattern in the Uma-oya catchment in Sri Lanka is characterized by Yala and Maha rainfall periods and associated cropping. Two cultivation seasons were compared for pesticide residues: base flow, field drainage, and the runoff and supplementary sediment data for three sites in the catchment. Organophosphate and N-methyl carbamate pesticide analysis confirmed a higher concentration in the Yala season with low-flow conditions. Acetylcholinesterase (AChE) activity was measured by standard spectrometry in the brain, muscle, and eye tissues of three freshwater cyprinid fishes, Garra ceylonensis, Devario malabaricus, and Rasbora daniconius from three study sites during months overlapping two seasons in 2010 (December) and 2011 (July). Baseline AChE data were measured from fish samples from a forested reserve in the Knuckles. A 73% inhibition in muscle AChE activity in G. ceylonensis was associated with intense pesticide exposure months in the Yala season. The AChE inhibition more than 70% in G. ceylonensis eyes in both Yala (76%) and Maha (72.5%) seasons indicates particular sensitivity of eye tissue to inhibitors. The less dramatic AChE inhibition in the eye tissues in D. malabaricus and R. daniconius in both seasons indicates exemplary protective capacity of muscle AChE in fish. The highest inhibition of AChE (up to 60% in brain and up to 56% in muscle AChE activity in R. daniconius and up to 47.8% in brain and up to 64.6% in muscle AChE activity in D. malabaricus) occurred during the Yala season. Tissue AChE activity and physiological activity in fish were correlated. The results collectively indicate that AChE is a consistent biomarker for diffused contaminant exposure in agricultural catchments.

  19. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    PubMed

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season.

  20. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    PubMed

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. PMID:21839679

  1. Genetic diversity and insecticide resistance during the growing season in the green peach aphid (Hemiptera: Aphididae) on primary and secondary hosts: a farm-scale study in Central Chile.

    PubMed

    Rubiano-Rodríguez, J A; Fuentes-Contreras, E; Figueroa, C C; Margaritopoulos, J T; Briones, L M; Ramírez, C C

    2014-04-01

    The seasonal dynamics of neutral genetic diversity and the insecticide resistance mechanisms of insect pests at the farm scale are still poorly documented. Here this was addressed in the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Central Chile. Samples were collected from an insecticide sprayed peach (Prunus persica L.) orchard (primary host), and a sweet-pepper (Capsicum annum var. grossum L.) field (secondary host). In addition, aphids from weeds (secondary hosts) growing among these crops were also sampled. Many unique multilocus genotypes were found on peach trees, while secondary hosts were colonized mostly by the six most common genotypes, which were predominantly sensitive to insecticides. In both fields, a small but significant genetic differentiation was found between aphids on the crops vs. their weeds. Within-season comparisons showed genetic differentiation between early and late season samples from peach, as well as for weeds in the peach orchard. The knock-down resistance (kdr) mutation was detected mostly in the heterozygote state, often associated with modified acetylcholinesterase throughout the season for both crops. This mutation was found in high frequency, mainly in the peach orchard. The super-kdr mutation was found in very low frequencies in both crops. This study provides farm-scale evidence that the aphid M. persicae can be composed of slightly different genetic groups between contiguous populations of primary and secondary hosts exhibiting different dynamics of insecticide resistance through the growing season. PMID:24484894

  2. Genetic diversity and insecticide resistance during the growing season in the green peach aphid (Hemiptera: Aphididae) on primary and secondary hosts: a farm-scale study in Central Chile.

    PubMed

    Rubiano-Rodríguez, J A; Fuentes-Contreras, E; Figueroa, C C; Margaritopoulos, J T; Briones, L M; Ramírez, C C

    2014-04-01

    The seasonal dynamics of neutral genetic diversity and the insecticide resistance mechanisms of insect pests at the farm scale are still poorly documented. Here this was addressed in the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Central Chile. Samples were collected from an insecticide sprayed peach (Prunus persica L.) orchard (primary host), and a sweet-pepper (Capsicum annum var. grossum L.) field (secondary host). In addition, aphids from weeds (secondary hosts) growing among these crops were also sampled. Many unique multilocus genotypes were found on peach trees, while secondary hosts were colonized mostly by the six most common genotypes, which were predominantly sensitive to insecticides. In both fields, a small but significant genetic differentiation was found between aphids on the crops vs. their weeds. Within-season comparisons showed genetic differentiation between early and late season samples from peach, as well as for weeds in the peach orchard. The knock-down resistance (kdr) mutation was detected mostly in the heterozygote state, often associated with modified acetylcholinesterase throughout the season for both crops. This mutation was found in high frequency, mainly in the peach orchard. The super-kdr mutation was found in very low frequencies in both crops. This study provides farm-scale evidence that the aphid M. persicae can be composed of slightly different genetic groups between contiguous populations of primary and secondary hosts exhibiting different dynamics of insecticide resistance through the growing season.

  3. The ever-increasing CO2 seasonal cycle amplitude: contributions from high latitude warming, CO2 fertilization, and the agricultural Green Revolution

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Martin, C.; Zhao, F.; Collatz, G. J.; Kalnay, E.; Salawitch, R. J.; West, T. O.; Guanter, L.

    2014-12-01

    Human activities has tranformed the Earth's surface in complex ways. Here we show that not only land cover change, but also the management intensity, namely the intensification of agriculture through the Green Revolution has had a profound impact on the carbon cycle. A long-standing puzzle in the global carbon cycle is the increase in the amplitude of the seasonal cycle of atmospheric CO2. This increase likely reflects enhanced biological activity in the Northern Hemisphere (NH). It has been hypothesized that vegetation growth may have been stimulated by higher concentrations of CO2 as well as warming in recent decades, but the role of such specific mechanisms has not been quantified and they have been unable to explain the full range and magnitude of observations. Here we suggest another potential driver of the increased seasonal amplitude: the intensification of agriculture from the Green Revolution to feed a rising population, that led to a 3-fold increase in world crop production over the last 5 decades. Our analysis of CO2 data and atmospheric inversions shows a robust 15% long-term increase in CO2 seasonal amplitude from 1961 to 2010 that is punctuated by large decadal and interannual variations. The three pillars of the Green Revolution, consisting of high yield cultivars, fertilizer use, and irrigation, are represented in a terrestrial carbon cycle model. The results reveal that the long-term increase in CO2 seasonal amplitude arises from two major regions in the NH: the mid-latitude cropland between 25N-60N that encompasses the world's major agriculture zones in Asia, Europe and North America, and the high-latitude natural vegetation between 50N-70N that includes much of the Northern boreal forests, tundra and some deciduous forests. The long-term trend of seasonal amplitude is 0.3% per year, of which sensitivity experiments attribute 43% to land use change, 31% to climate variability and change, and 26% to CO2 fertilization. Our results suggest that human

  4. SPATIAL AND TEMPORAL PATTERNS OF THE MOVEMENT OF SEASONAL AGRICULTURAL MIGRANT CHILDREN INTO WISCONSIN, EDUCATIONAL PROGRAMS FOR CHILDREN OF MIGRATORY AGRICULTURAL WORKERS IN WISCONSIN, REPORT 2.

    ERIC Educational Resources Information Center

    LINDSEY, HERBERT H.; AND OTHERS

    USEFUL MEANS OF ANTICIPATING THE MOVEMENTS OF MIGRANT CHILDREN INCLUDE ANALYSIS OF CROPS, THE HARVESTING OF WHICH REQUIRES OUT-OF-STATE WORKERS, DISTRIBUTIONAL MAPS OF CROP ACREAGE, NORMAL TIME SCHEDULES FOR CROPS, AND INFORMATION ON AGRICULTURAL DEVELOPMENTS. SUCH INFORMATION ASSISTS IN THE PLANNING OF SCHOOL PROGRAMS. IN WISCONSIN, MOST MIGRANT…

  5. Year-round high physical activity levels in agropastoralists of Bolivian Andes: results from repeated measurements of DLW method in peak and slack seasons of agricultural activities.

    PubMed

    Kashiwazaki, Hiroshi; Uenishi, Kazuhiro; Kobayashi, Toshio; Rivera, Jose Orias; Coward, William A; Wright, Antony

    2009-01-01

    By the repeated use of the doubly labeled water method (DLW), this study aimed to investigate (1) the extent of changes in energy expenditure and physical activity level (PAL) in response to increased agricultural work demands, and (2) whether the seasonal work demands induce the changes in the fairly equitable division of work and similarity of energy needs between men and women observed in our previous study (Phase 1 study; Kashiwazaki et al., 1995: Am J Clin Nutr 62: 901-910). In a rural small agropastoral community of the Bolivian Andes, we made the follow-up study (Phase 2, 14 adults; a time of high agricultural activity) of the Phase 1 study (12 adults; a time of low agricultural activity). In the Phase 2 study, both men and women showed very high PAL (mean+/-SD), but there was no significant difference by sex (men; 2.18 +/- 0.23 (age; 64 +/- 11 years, n = 7), women; 2.26 +/- 0.25 (63 +/- 10 years, n = 7)). The increase of PAL by 11% (P = 0.023) in the Phase 2 was equally occurred in both men and women. The factorial approach underestimated PAL significantly by approximately 15% (P < 0.05). High PAL throughout the year ranging on average 2.0 and 2.2 was attributable to everyday tasks for subsistence and domestic works undertaking over 9-11 h (men spent 2.7 h on agricultural work and 4.7 h on animal herding, whereas women spent 7.3 h almost exclusively on animal herding). The seasonal increase in PAL was statistically significant, but it was smaller than those anticipated from published reports. A flexible division of labor played an important role in the equitable energetic increase in both men and women.

  6. Integrating GRACE and multi-source data sets to quantify the seasonal groundwater depletion in mega agricultural regions

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Wang, D.; Zhu, T.; Ringler, C.; Sun, A. Y.

    2015-12-01

    It is challenging to quantify the groundwater depletion in the mega basins owing to the huge spatial scale and the intensive anthrophonic activities (e.g. dams and reservoirs). Recently, the satellite Gravity Recovery and Climate Experiment (GRACE) data provides an opportunity to monitor large-scale groundwater depletion. However, the data is only available after 2002, limiting the understanding of inter-annual variability of seasonal groundwater depletion. In this study, a simple model with two parameters is developed, based on the seasonal Budyko framework for quantifying the seasonal groundwater depletion. The model is applied to the Indus and Ganges River basin in South Asia and the High Plain/Ogallala aquifer in United States. The parameters of the model are estimated by integrating GRACE and other multi-source data sets. Total water storage changes before 2003 are reconstructed based on the developed model with available data of evaporation, precipitation, and potential evaporation.

  7. Climate Variability is Influencing Agricultural Expansion and Output in a Key Agricultural Region of Brazil

    NASA Astrophysics Data System (ADS)

    Spera, S. A.; Cohn, A.; VanWey, L.; Mustard, J. F.

    2013-12-01

    Over the last decade, the Brazilian state of Mato Grosso has both expanded and intensified its agricultural production to become the country's leading producer of soy, corn, and cotton. Yet this increase in agricultural production may be threatened due to changes in the region's climate stemming from deforestation caused by the agricultural expansion itself. The sensitivity of Mato Grosso's agriculture to climate variability has important implications for both climate change mitigation and climate adaptation. The vast bulk of research on the drivers of land use change in the region has examined economic and institutional drivers. Leveraging a novel remote sensing-derived dataset classifying shifts between single (cultivating one commercial crop per growing season) and double cropping (cultivating two commercial crops per growing season), we investigated the influence of climate variability on land use change during the period 2000 to 2011. Over the past decade, over half of Mato Grosso's farm area transitioned from single cropping to double cropping. We used regression analysis (controlling for space and time fixed effects) to show monthly rainfall, monthly temperature, agricultural commodity prices, and agricultural revenue to be the main drivers of adoption of double cropping and reversion to single cropping in the region. The influence of climate varies as much as five orders of magnitude across these outcomes, with both temperature and precipitation exhibiting the largest climatic influence on the transition from single to double cropping. Temperature consistently proves to be more important, explaining three times more of the variance than precipitation for each outcome. Months at the beginning of a given first crop season, the end of that first crop season, and middle of the subsequent second crop season are particularly important for planting decisions in the subsequent growing year. Fitting our land transition models using remote-sensing derived

  8. Seasonal dynamics in photosynthesis of woody plants at the northern limit of Asian tropics: potential role of fog in maintaining tropical rainforests and agriculture in Southwest China.

    PubMed

    Zhang, Yong-Jiang; Holbrook, N Michele; Cao, Kun-Fang

    2014-10-01

    The lowland tropical rainforests in Xishuangbanna, Southwest (SW) China, mark the northern limit of Asian tropics. Fog has been hypothesized to play a role in maintaining rainforests and tropical crop production in this region, but the physiological mechanism has not been studied. The goals of this study were to characterize the seasonal dynamics in photosynthesis and to assess the potential for fog to mitigate chilling-induced photodamage for tropical trees and crops in Xishuangbanna. We measured seasonal dynamics in light-saturated net photosynthetic rate (Aa), stomatal conductance (gs), intercellular CO2 concentration, quantum yield of Photosystem II (Fv/Fm) and maximum P700 changes (Pm; indicates the amount of active PSI complex), as well as chilling resistance and fog (light/shading) effects on low temperature-induced decline in Fv/Fm and Pm for native tree and introduced lower latitude tree or woody shrub species grown in a tropical botanical garden. Despite significant decreases in Aa, gs, Pm and Fv/Fm, most species maintained considerably high Aa during the cool season (2.51-14.6 μmol m(-2) s(-1)). Shaded leaves exposed to seasonal low temperatures had higher Fv/Fm than sun-exposed leaves in the cool season. All species could tolerate 1.4 °C in the dark, whereas a combined treatment of low temperature and high light caused a distinctly faster decline in Pm and Fv/Fm compared with low temperature treatment alone. Because fog persistence avoids or shortens the duration of high light condition in the morning when the temperatures are still low, our results provide support for the hypothesis that fog reduces chilling damage to tropical plants in this region and thus plays a role in maintaining tropical rainforests and agriculture in SW China.

  9. Effect of gender on meat quality in lamb from extensive and intensive grazing systems when slaughtered at the end of the growing season.

    PubMed

    Lind, Vibeke; Berg, Jan; Eilertsen, Svein Morten; Hersleth, Margrethe; Eik, Lars Olav

    2011-06-01

    In Norway, most lambs are slaughtered at the end of the grazing season in September. An increased demand for fresh meat during the off-season may change this pattern. Castration of male lambs is not permitted, and off-season slaughtering may affect the acceptability of the meat. The objective of this study was to determine the effect of gender and the interaction between gender and diet on meat quality from Norwegian White Sheep lambs slaughtered in September. In two different experiments, 22 and 29 males compared with 22 and 46 female lambs, respectively, were used. Loin samples of M. Longissimus dorsi were analysed for sensory profile and fatty acid composition. Meat from male lambs in Experiment 2 had higher scores for cloying and rancid flavour, and lower scores for sour and sweet taste compared to meat from female lambs. It is concluded that even at the normal slaughtering time in September, significant differences between genders may occur.

  10. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment.

    PubMed

    Exner-Kittridge, Michael; Strauss, Peter; Blöschl, Günter; Eder, Alexander; Saracevic, Ernis; Zessner, Matthias

    2016-01-15

    Our study examines the source aquifers and stream inputs of the seasonal water and nitrogen dynamics of a headwater agricultural catchment to determine the dominant driving forces for the seasonal dynamics in the surface water nitrogen loads and concentrations. We found that the alternating aquifer contributions throughout the year of the deep and shallow aquifers were the main cause for the seasonality of the nitrate concentration. The deep aquifer water typically contributed 75% of the total outlet discharge in the summer and 50% in the winter when the shallow aquifer recharges due to low crop evapotranspiration. The shallow aquifer supplied the vast majority of the nitrogen load to the stream due to the significantly higher total nitrogen concentration (11 mg-N/l) compared to the deep aquifer (0.50 mg-N/l). The main stream input pathway for the shallow aquifer nitrogen load was from the perennial tile drainages providing 60% of the total load to the stream outlet, while only providing 26% of the total flow volume. The diffuse groundwater input to the stream was the largest input to the stream (39%), but only supplied 27% to the total nitrogen load as the diffuse water was mostly composed of deep aquifer water. PMID:26562340

  11. Dealing with Climate Change and Variability in the Growing Season: a U2U Decision Support Tool for Central United States Corn Producers Based on Corn Growing Degree Days

    NASA Astrophysics Data System (ADS)

    Angel, J. R.; Todey, D.; Massey, R.; Widhalm, M.; Biehl, L. L.; Andresen, J.

    2014-12-01

    Climate extremes are a major challenge for corn producers in the central United States. Among those extremes are wet springs that lead to planting delays, late spring and early fall frosts that can damage crops, and extreme summer temperatures either too warm or too cool. A newly-operational corn growing degree-day (CGDD) tool helps producers manage and adapt to these extremes. For example, a challenge in recent years has been exceptionally wet springs that have led to significant planting delays. Producers have been forced to re-assess their planting strategies on short notice, such as switching to a faster-growing but lower-yielding hybrids. With this pattern of wetter springs projected to continue or worsen in the central United States, the problem will remain and likely get worse. Another example is helping producers identify the risk of early or late frost/freezes. The CGDD tool puts current conditions into a 30-year historical perspective and offers trend projections (based on climatology or forecasts) through the end of the calendar year. Corn, or sometimes called modified, growing degree-days use a temperature base of 10 C (50 F) and a ceiling of 30 C (86 F) and is strongly correlated with the development of the corn crop. This tool was developed as part of USDA-supported U2U Useful to Usable Project for transforming climate variability and change information for cereal crop producers.

  12. Taiwan: growing, growing, gone.

    PubMed

    Hanson, R

    1979-10-01

    Accommodation between Taiwan and the People's Republic of China may not be inconceivable as trade contacts (though officially disallowed) grow. Because of Taiwan's well-established success and the pressing need in China to industrialize, it appears, however, that such an accommodation will occur only after China becomes more like Taiwan. Taiwan owes its success, first, to land reform and then, in the 1960s, to steady industrialization. Besides broad controls over money supply and capital designed to ward off inflationary pressures when needed, and the grand outlines for development, another factor in the island's economic success is that the government has interfered little with private enterprise. The economy has an underpinning of small to medium size businesses. There are more than 10,000 trading companies. This diverse foundation has given the economy as a whole a flexible buffer on which more sophisticated industires can be formed. PMID:12278253

  13. Using a model and forecasted weather to predict forage and livestock production for making stocking decisions in the coming growing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forecasting peak standing crop (PSC) for the coming grazing season can help ranchers make appropriate stocking decisions to reduce enterprise risks. Previously developed PSC predictors were based on short-term experimental data (<15 yr) and limited stocking rates (SR) without including the effect of...

  14. The stress of growing old: sex- and season-specific effects of age on allostatic load in wild grey mouse lemurs.

    PubMed

    Hämäläinen, Anni; Heistermann, Michael; Kraus, Cornelia

    2015-08-01

    Chronic stress [i.e. long-term elevation of glucocorticoid (GC) levels] and aging have similar, negative effects on the functioning of an organism. Aged individuals' declining ability to regulate GC levels may therefore impair their ability to cope with stress, as found in humans. The coping of aged animals with long-term natural stressors is virtually unstudied, even though the ability to respond appropriately to stressors is likely integral to the reproduction and survival of wild animals. To assess the effect of age on coping with naturally fluctuating energetic demands, we measured stress hormone output via GC metabolites in faecal samples (fGCM) of wild grey mouse lemurs (Microcebus murinus) in different ecological seasons. Aged individuals were expected to exhibit elevated fGCM levels under energetically demanding conditions. In line with this prediction, we found a positive age effect in the dry season, when food and water availability are low and mating takes place, suggesting impaired coping of aged wild animals. The age effect was significantly stronger in females, the longer-lived sex. Body mass of males but not females correlated positively with fGCM in the dry season. Age or body mass did not influence fGCM significantly in the rainy season. The sex- and season-specific predictors of fGCM may reflect the differential investment of males and females into reproduction and longevity. A review of prior research indicates contradictory aging patterns in GC regulation across and even within species. The context of sampling may influence the likelihood of detecting senescent declines in GC functioning.

  15. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors

    NASA Astrophysics Data System (ADS)

    Dobbie, K. E.; McTaggart, I. P.; Smith, K. A.

    1999-11-01

    Emissions of nitrous oxide from intensively managed agricultural fields were measured over 3 years. Exponential increases in flux occurred with increasing soil water- filled pore space (WFPS) and temperature; increases in soil mineral N content due to fertilizer application also stimulated emissions. Fluxes were low when any of these variables was below a critical value. The largest fluxes occurred when WFPS values were very high (70-90%), indicating that denitrification was the major process responsible. The relationships with the driving variables showed strong similarities to those reported for very different environments: irrigated sugar cane crops, pastures, and forest in the tropics. Annual emissions varied widely (0.3-18.4 kg N2O-N ha-1). These variations were principally due to the degree of coincidence of fertilizer application and major rainfall events. It is concluded therefore that several years' data are required from any agricultural ecosystem in a variable climate to obtain a robust estimate of mean N2O fluxes. The emissions from small-grain cereals (winter wheat and spring barley) were consistently lower (0.2-0.7 kg N2O-N per 100 kg N applied) than from cut grassland (0.3-5.8 kg N2O- N per 100 kg N). Crops such as broccoli and potatoes gave emissions of the same order as those from the grassland. Although these differences between crop types are not apparent in general data comparisons, there may well be distinct regional differences in the relative and absolute emissions from different crops, due to local factors relating to soil type, weather patterns, and agricultural management practices. This will only be determined by more detailed comparative studies.

  16. Seasonal variation in biological oxygen demand levels in the main stem of the Fraser River, British Columbia and an agriculturally impacted tributary

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Fraser, H.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Voss, B. M.; Marcotte, D.; Fanslau, J.; Epp, A.; Bennett, M.; Hanson-Carson, J.; Luymes, R.

    2012-12-01

    The Fraser River basin is one of British Columbia's most diverse and valuable ecosystems. Water levels and temperatures along the Fraser are seasonally variable, with high flow during the spring freshet and low flow during winter months. In the Fraser River, dissolved oxygen (DO) concentrations impact many aquatic species. Biological oxygen demand (BOD) measures the amount of oxygen consumed by bacteria during the decomposition of organic matter and is an indicator of water quality in freshwater environments. We compared BOD, DO, and pH during winter (November 2011) and summer (July 2012) in the main stem of the Fraser River at Fort Langley and a tributary in an agricultural area of the Fraser Valley, Nathan Creek. In November the BOD of the main stem of the Fraser River was 2.36 mg/L, pH 7.26, and DO 9.13 mg/L. BOD and DO of Nathan Creek was not significantly lower at 1.68 mg/L and DO 8.28 mg/L, however, the pH was significantly lower (p=0.001) at 6.75. In July, the Fraser River had significantly higher BOD levels than in winter at 4.43 mg/L, but no significant change in pH and DO. Nathan Creek BOD was significantly higher than it was in winter and higher than the main stem at 7.34 mg/L, with no significant change in pH and DO. There were strong seasonal differences in BOD in the Fraser River and Nathan Creek, with the highest levels seen in July. The higher BOD seen in Nathan Creek in July may be an indication of agricultural impact. Although all BOD values fell in the range of 1-8 mg/L and are considered to be relatively unpolluted.

  17. Multi-Season Regional Analysis of Multi-Species Occupancy: Implications for Bird Conservation in Agricultural Lands in East-Central Argentina

    PubMed Central

    Goijman, Andrea Paula; Conroy, Michael. J.; Bernardos, Jaime Nicolás; Zaccagnini, María Elena

    2015-01-01

    Rapid expansion and intensification of agriculture create challenges for the conservation of biodiversity and associated ecosystem services. In Argentina, the total row crop planted area has increased in recent decades with the expansion of soybean cultivation, homogenizing the landscape. In 2003 we started the first long-term, large-scale bird monitoring program in agroecosystems of central Argentina, in portions of the Pampas and Espinal ecoregions. Using data from this program, we evaluated the effect of land use and cover extent on birds between 2003-2012, accounting for imperfect detection probabilities using a Bayesian hierarchical, multi-species and multi-season occupancy model. We tested predictions that species diversity is positively related to habitat heterogeneity, which in intensified agroecosystems is thought to be mediated by food availability; thus the extent of land use and cover is predicted to affect foraging guilds differently. We also infer about ecosystem services provisioning and inform management recommendations for conservation of birds. Overall our results support the predictions. Although many species within each guild responded differently to land use and native forest cover, we identified generalities for most trophic guilds. For example, granivorous gleaners, ground insectivores and omnivores responded negatively to high proportions of soybean, while insectivore gleaners and aerial foragers seemed more tolerant. Habitat heterogeneity would likely benefit most species in an intensified agroecosystem, and can be achieved with a diversity of crops, pastures, and natural areas within the landscape. Although most studied species are insectivores, potentially beneficial for pest control, some guilds such as ground insectivores are poorly represented, suggesting that agricultural intensification reduces ecological functions, which may be recovered through management. Continuation of the bird monitoring program will allow us to continue to

  18. Multi-Season Regional Analysis of Multi-Species Occupancy: Implications for Bird Conservation in Agricultural Lands in East-Central Argentina.

    PubMed

    Goijman, Andrea Paula; Conroy, Michael J; Bernardos, Jaime Nicolás; Zaccagnini, María Elena

    2015-01-01

    Rapid expansion and intensification of agriculture create challenges for the conservation of biodiversity and associated ecosystem services. In Argentina, the total row crop planted area has increased in recent decades with the expansion of soybean cultivation, homogenizing the landscape. In 2003 we started the first long-term, large-scale bird monitoring program in agroecosystems of central Argentina, in portions of the Pampas and Espinal ecoregions. Using data from this program, we evaluated the effect of land use and cover extent on birds between 2003-2012, accounting for imperfect detection probabilities using a Bayesian hierarchical, multi-species and multi-season occupancy model. We tested predictions that species diversity is positively related to habitat heterogeneity, which in intensified agroecosystems is thought to be mediated by food availability; thus the extent of land use and cover is predicted to affect foraging guilds differently. We also infer about ecosystem services provisioning and inform management recommendations for conservation of birds. Overall our results support the predictions. Although many species within each guild responded differently to land use and native forest cover, we identified generalities for most trophic guilds. For example, granivorous gleaners, ground insectivores and omnivores responded negatively to high proportions of soybean, while insectivore gleaners and aerial foragers seemed more tolerant. Habitat heterogeneity would likely benefit most species in an intensified agroecosystem, and can be achieved with a diversity of crops, pastures, and natural areas within the landscape. Although most studied species are insectivores, potentially beneficial for pest control, some guilds such as ground insectivores are poorly represented, suggesting that agricultural intensification reduces ecological functions, which may be recovered through management. Continuation of the bird monitoring program will allow us to continue to

  19. Multi-Season Regional Analysis of Multi-Species Occupancy: Implications for Bird Conservation in Agricultural Lands in East-Central Argentina.

    PubMed

    Goijman, Andrea Paula; Conroy, Michael J; Bernardos, Jaime Nicolás; Zaccagnini, María Elena

    2015-01-01

    Rapid expansion and intensification of agriculture create challenges for the conservation of biodiversity and associated ecosystem services. In Argentina, the total row crop planted area has increased in recent decades with the expansion of soybean cultivation, homogenizing the landscape. In 2003 we started the first long-term, large-scale bird monitoring program in agroecosystems of central Argentina, in portions of the Pampas and Espinal ecoregions. Using data from this program, we evaluated the effect of land use and cover extent on birds between 2003-2012, accounting for imperfect detection probabilities using a Bayesian hierarchical, multi-species and multi-season occupancy model. We tested predictions that species diversity is positively related to habitat heterogeneity, which in intensified agroecosystems is thought to be mediated by food availability; thus the extent of land use and cover is predicted to affect foraging guilds differently. We also infer about ecosystem services provisioning and inform management recommendations for conservation of birds. Overall our results support the predictions. Although many species within each guild responded differently to land use and native forest cover, we identified generalities for most trophic guilds. For example, granivorous gleaners, ground insectivores and omnivores responded negatively to high proportions of soybean, while insectivore gleaners and aerial foragers seemed more tolerant. Habitat heterogeneity would likely benefit most species in an intensified agroecosystem, and can be achieved with a diversity of crops, pastures, and natural areas within the landscape. Although most studied species are insectivores, potentially beneficial for pest control, some guilds such as ground insectivores are poorly represented, suggesting that agricultural intensification reduces ecological functions, which may be recovered through management. Continuation of the bird monitoring program will allow us to continue to

  20. Xylogenesis: Coniferous Trees of Temperate Forests Are Listening to the Climate Tale during the Growing Season But Only Remember the Last Words!

    PubMed

    Cuny, Henri E; Rathgeber, Cyrille B K

    2016-05-01

    The complex inner mechanisms that create typical conifer tree-ring structure (i.e. the transition from large, thin-walled earlywood cells to narrow, thick-walled latewood cells) were recently unraveled. However, what physiological or environmental factors drive xylogenesis key processes remain unclear. Here, we aim to quantify the influence of seasonal variations in climatic factors on the spectacular changes in the kinetics of wood cell differentiation and in the resulting tree-ring structure. Wood formation was monitored in three sites over 3 years for three coniferous species (Norway spruce [Picea abies], Scots pine [Pinus sylvestris], and silver fir [Abies alba]). Cell differentiation rates and durations were calculated and related to tracheid final dimensions and corresponding climatic conditions. On the one hand, we found that the kinetics of cell enlargement and the final size of the tracheids were not explained by the seasonal changes in climatic factors. On the other hand, decreasing temperatures strongly constrained cell wall deposition rates during latewood formation. However, the influence of temperature was permanently written into tree-ring structure only for the very last latewood cells, when the collapse of the rate of wall deposition was no longer counterbalanced by the increase of its duration. Our results show that the formation of the typical conifer tree-ring structure, in normal climatic conditions, is only marginally driven by climate, suggesting strong developmental control of xylogenesis. The late breakage of the compensatory mechanism at work in the wall deposition process appears as a clue to understand the capacity of the maximum latewood density to record past temperature conditions. PMID:27208048

  1. Historical warnings of future food insecurity with unprecedented seasonal heat.

    PubMed

    Battisti, David S; Naylor, Rosamond L

    2009-01-01

    Higher growing season temperatures can have dramatic impacts on agricultural productivity, farm incomes, and food security. We used observational data and output from 23 global climate models to show a high probability (>90%) that growing season temperatures in the tropics and subtropics by the end of the 21st century will exceed the most extreme seasonal temperatures recorded from 1900 to 2006. In temperate regions, the hottest seasons on record will represent the future norm in many locations. We used historical examples to illustrate the magnitude of damage to food systems caused by extreme seasonal heat and show that these short-run events could become long-term trends without sufficient investments in adaptation.

  2. Historical warnings of future food insecurity with unprecedented seasonal heat.

    PubMed

    Battisti, David S; Naylor, Rosamond L

    2009-01-01

    Higher growing season temperatures can have dramatic impacts on agricultural productivity, farm incomes, and food security. We used observational data and output from 23 global climate models to show a high probability (>90%) that growing season temperatures in the tropics and subtropics by the end of the 21st century will exceed the most extreme seasonal temperatures recorded from 1900 to 2006. In temperate regions, the hottest seasons on record will represent the future norm in many locations. We used historical examples to illustrate the magnitude of damage to food systems caused by extreme seasonal heat and show that these short-run events could become long-term trends without sufficient investments in adaptation. PMID:19131626

  3. Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season.

    PubMed

    Rantakari, Miitta; Heiskanen, Jouni; Mammarella, Ivan; Tulonen, Tiina; Linnaluoma, Jessica; Kankaala, Paula; Ojala, Anne

    2015-10-01

    The air-water exchange of carbon dioxide (CO2) and methane (CH4) is a central process during attempts to establish carbon budgets for lakes and landscapes containing lakes. Lake-atmosphere diffusive gas exchange is dependent on the concentration gradient between air and surface water and also on the gas transfer velocity, often described with the gas transfer coefficient k. We used the floating-chamber method in connection with surface water gas concentration measurements to estimate the gas transfer velocity of CO2 (kCO2) and CH4 (kCH4) weekly throughout the entire growing season in two contrasting boreal lakes, a humic oligotrophic lake and a clear-water productive lake, in order to investigate the earlier observed differences between kCO2 and kCH4. We found that the seasonally averaged gas transfer velocity of CH4 was the same for both lakes. When the lakes were sources of CO2, the gas transfer velocity of CO2 was also similar between the two study lakes. The gas transfer velocity of CH4 was constantly higher than that of CO2 in both lakes, a result also found in other studies but for reasons not yet fully understood. We found no differences between the lakes, demonstrating that the difference between kCO2 and kCH4 is not dependent on season or the characteristics of the lake.

  4. Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season.

    PubMed

    Rantakari, Miitta; Heiskanen, Jouni; Mammarella, Ivan; Tulonen, Tiina; Linnaluoma, Jessica; Kankaala, Paula; Ojala, Anne

    2015-10-01

    The air-water exchange of carbon dioxide (CO2) and methane (CH4) is a central process during attempts to establish carbon budgets for lakes and landscapes containing lakes. Lake-atmosphere diffusive gas exchange is dependent on the concentration gradient between air and surface water and also on the gas transfer velocity, often described with the gas transfer coefficient k. We used the floating-chamber method in connection with surface water gas concentration measurements to estimate the gas transfer velocity of CO2 (kCO2) and CH4 (kCH4) weekly throughout the entire growing season in two contrasting boreal lakes, a humic oligotrophic lake and a clear-water productive lake, in order to investigate the earlier observed differences between kCO2 and kCH4. We found that the seasonally averaged gas transfer velocity of CH4 was the same for both lakes. When the lakes were sources of CO2, the gas transfer velocity of CO2 was also similar between the two study lakes. The gas transfer velocity of CH4 was constantly higher than that of CO2 in both lakes, a result also found in other studies but for reasons not yet fully understood. We found no differences between the lakes, demonstrating that the difference between kCO2 and kCH4 is not dependent on season or the characteristics of the lake. PMID:26359720

  5. National Office for Migrant and Seasonal Farmworkers: Hearings Before the Subcommittee on Agricultural Labor of the Committee on Education and Labor, House of Representatives, 93rd Congress, 2nd Session on H.R. 12257, September 26, 1974.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    Categorical programs presently delivering services to migrant and seasonal farmworkers are diffusely spread throughout several departments and agencies of the Federal Government. On September 26, 1974, the House of Representatives Subcommittee on Agricultural Labor of the Committee on Education and Labor met to hear testimony on H.R. 12257 and…

  6. 7 CFR 916.15 - Marketing season.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Marketing season. 916.15 Section 916.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 916.15 Marketing season. Marketing season means the period beginning...

  7. 7 CFR 916.15 - Marketing season.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Marketing season. 916.15 Section 916.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 916.15 Marketing season. Marketing season means the period beginning...

  8. Intake, digestibility, nitrogen efficiency, and animal performance of growing and finishing beef cattle fed warm-season legume (Stylosanthes capitata plus Stylosanthes macrocephala) silage replacing corn silage.

    PubMed

    Souza, W F; Pereira, O G; Ribeiro, K G; Santos, S A; Valadares Filho, S C

    2014-09-01

    It was hypothesized that Stylosanthes cv. Campo Grande (ES) silage could be used as the single source of dietary forage for beef cattle and that performance on ES would be similar to corn silage (CS) at a 50:50 forage:concentrate. The objectives of this study were to evaluate intake, total and partial digestibility of nutrients, ruminal pH, ruminal ammonia, and productive performance in growing beef cattle fed diets with varying proportions of ES silage replacing CS. Treatments consisted of diets with ratios of 0:100, 25:75, 50:50, 75:25, and 100:0% ES:CS. Two experiments were conducted simultaneously. In the first experiment, 10 crossbred Holstein-Zebu bulls with an average initial weight of 272 ± 86 kg were used. The bulls were rumen and abomasums fistulated. An experimental design of two 5 × 5 Latin squares (Exp. 1) was used. The second experiment used 40 Nellore bulls with an average BW of 386 ± 30 kg in a completely randomized design (Exp. 2). Results showed a linear increase in CP intake (P < 0.05) in response to increased dietary ES. An increase in the proportion of ES in the diet had a negative linear effect on TDN. Apparent ruminal digestibility of CP increased linearly, and apparent intestinal digestibility of nonfibrous carbohydrates increased with the addition of ES to the diet (P < 0.05). Intestinal digestibility of DM exhibited a quadratic response (P < 0.05). Nitrogen balance, excretion of urinary urea, and plasma urea nitrogen did not respond to the inclusion of ES in the diet (P > 0.05). There was also no effect (P > 0.05) of ES inclusion on animal performance. Ruminal pH was not affected by an increased proportion of ES in the diet (P > 0.05), but ruminal pH was affected (P < 0.05) by the time of collection, for which a cubic model fit the data. There was an interaction (P < 0.05) between treatment and collection time for ruminal ammonia nitrogen concentration. It can be concluded that ES silage can be used as a source of roughage in the diet

  9. Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Keppens, E.; Claeys, P.

    2014-10-01

    Speleothems provide paleoclimate information on multimillennial to decadal scales in the Holocene. However, seasonal or even monthly resolved records remain scarce. Such records require fast-growing stalagmites and a good understanding of the proxy system on very short timescales. The Proserpine stalagmite from the Han-sur-Less cave (Belgium) displays well-defined/clearly visible darker and lighter seasonal layers of 0.5 to 2 mm thickness per single layer, which allows a measuring resolution at a monthly scale. Through a regular cave monitoring, we acquired a good understanding of how δ18O and δ13C signals in modern calcite reflect climate variations on the seasonal scale. From December to June, outside temperatures are cold, inducing low cave air and water temperature, and bio-productivity in the soil is limited, leading to lower pCO2 and higher δ13C values of the CO2 in the cave air. From June to December, the measured factors display an opposite behavior. The absence of epikarst water recharge between May and October increases prior calcite precipitation (PCP) in the vadose zone, causing drip water to display increasing pH and δ13C values over the summer months. Water recharge of the epikarst in winter diminishes the effect of PCP and as a result the pH and δ13C of the drip water gradually decrease. The δ18O and δ13C signals of fresh calcite precipitated on glass slabs also vary seasonally and are both reflecting equilibrium conditions. Lowest δ18O values occur during the summer, when the δ13C values are high. The δ18O values of the calcite display seasonal variations due to changes in the cave air and water temperature. The δ13C values reflect the seasonal variation of the δ13CDIC of the drip water, which is affected by the intensity of PCP. This same anticorrelation of the δ18O versus the δ13C signals is seen in the monthly resolved speleothem record that covers the period between 1976 and 1985 AD. Dark layers display lower δ18O and higher δ13C

  10. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases

  11. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry?

    PubMed

    Bonanno, Giuseppe; Cirelli, Giuseppe Luigi; Toscano, Attilio; Lo Giudice, Rosa; Pavone, Pietro

    2013-05-01

    One of the greatest current challenges is to find cost-effective and eco-friendly solutions to the ever increasing needs of modern society. Some plant species are suitable for a multitude of biotechnological applications such as bioenergy production and phytoremediation. A sustainable practice is to use energy crops to clean up polluted lands or to treat wastewater in constructed wetlands without claiming further arable land for biofuel production. However, the disposal of combustion by-products may add significant costs to the whole process, especially when it deals with toxic waste. This study aimed to investigate the possibility of recycling ash from energy biomass as a fertilizer for agriculture and forestry. In particular, the concentrations of Cd, Cr, Cu, Mn, Pb and Zn were analyzed in the plant tissues and corresponding ash of the grasses Phragmites australis and Arundo donax, collected in an urban stream affected by domestic sewage. Results showed that the metal concentration in ash is 1.5-3 times as high as the values in plant tissues. However, metal enriched ash showed much lower element concentrations than the legal limits for ash reutilization in agriculture and forestry. This study found that biomass ash from constructed wetlands may be considered as a potential fertilizer rather than hazardous waste. Energy from biomass can be a really sustainable and clean option not only through the reduction of greenhouse gas emissions, but also through ash recycling for beneficial purposes, thus minimizing the negative impacts of disposal.

  12. Responses to Global Warming Over the Eastern and Central Tibetan Plateau as Reflected in Day-time and Night-time Temperatures, Extreme Temperature Events, and Growing Season Length During 1961-2003

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Liu, X.; Shao, X.

    2006-12-01

    This study examines the trends and variation patterns in daily maximum (day-time) and minimum (night-time) temperatures (hereafter referred to as Tm and Tn), extreme events, and growing season lengths over the eastern and central Tibetan Plateau (TP), in comparison with the results from other regions. Data during the period 1961-2003 from 66 weather stations over the eastern and central TP with elevations above 2000 m are used in this study, after going through rigorous quality assessment/quality control procedures. Statistically significant warming trends are identified in various measures of the temperature regime, especially in night- time temperatures, extreme warm/cold events, and diurnal temperature range (DTR). We find that the trends in Tn and Tm display distinct spatial patterns in the study region. The warming trends in winter night-time temperatures are among the highest when compared with studies conducted in other regions. Our results also confirm the asymmetric pattern of greater warming trends in minimum or night-time temperatures as compared to the day-time temperatures, which reduces the DTR in the region. Based on the time-varying percentiles of Tn and Tm, prominent warming trends are found in Tn during cold season months across the relative temperature scale of both warm and cold events. The warming in night-time temperatures causes the number of frost days to decrease significantly and the number of warm days to increase. The mean length of growing season has increased by approximately 17 days during the 43-year study period for the region. Most of the record-setting months for cold events are found in the earlier part of the study period, while that of the warm events have occurred mostly in the later half, especially since the 1990s. The changes in the temperature regime in this region may have brought regional-specific impacts on the ecosystems. It is found that grain production in Qinghai Province, located in the northeastern part of the

  13. Translocation and bioaccumulation of metals in Oryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India.

    PubMed

    Kumar, Adarsh; Maiti, Subodh Kumar

    2014-10-01

    The present study involves the assessment of metals (Cr, Ni, Pb and Cd) in contaminated agricultural soil (CAS) and abandoned chromite-asbestos waste (CW). High concentrations of Cr and Ni were found in CW (1,121-2,802 mg Cr kg(-1); 985-1,720 mg Ni kg(-1)), which CAS (1,058-1,242 mg Cr kg(-1); 1,002-1,295 mg Ni kg(-1)). Zea mays and Oryza sativa showed significant amounts of metals in root and aerial parts. The primary factors only consider the changes in metal concentrations in soil and plant, while dynamic factor includes both changes in metal concentration and environmental processes. In spite of the high concentration of Cr present in contaminated soils and crops, significant translocation of metals (>1) were found only for Pb and Ni, when primary factor was used. When dynamic factor was used, higher translocation (>1) and bioaccumulation (>1) were found for Cr along with Pb and Ni. The current study concludes that assessment of metal toxicity in CAS and crops could be better evaluated by using both primary and dynamic factors.

  14. Vocational Agriculture in Ponape

    ERIC Educational Resources Information Center

    Dayrit, Ruben S.

    1975-01-01

    The general objectives of agriculture education in both the elementary and secondary schools in Ponape District are to develop interest in agriculture among students and to provide practical and technical skills in growing crops and raising domestic animals. (Author)

  15. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2016-04-01

    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  16. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Fleck, Jacob A.; Alpers, Charles N.; Stricker, Craig A.

    2014-01-01

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible ‘reactive’ mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored

  17. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.

    PubMed

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L; Kakouros, Evangelos; Kieu, Le H; Fleck, Jacob A; Alpers, Charles N; Stricker, Craig A

    2014-06-15

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored

  18. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.

    PubMed

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L; Kakouros, Evangelos; Kieu, Le H; Fleck, Jacob A; Alpers, Charles N; Stricker, Craig A

    2014-06-15

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored

  19. Monitoring and validating the temporal dynamics of interday streamflow from two upland head micro-watersheds with different vegetative conditions during dry periods of the growing season in the Bohemian Massif, Czech Republic.

    PubMed

    Deutscher, Jan; Kupec, Petr

    2014-06-01

    At present, dynamic land use, climate change, and growing needs for fresh water are increasing the demand on the ecosystem effects of forest vegetation. Mountainous areas are at the forefront of scientific interest in European forest ecology and forest hydrology. Although uplands cover a significant area of the Czech Republic and other countries and are often covered with forest formations, they do not receive an appropriate amount of attention. Therefore, two experimental upland head micro-watersheds in the Bohemian Massif were selected for study because they display similar natural conditions, but different vegetative conditions (forest versus meadow). During the 2011 growing season, short-term streamflow measurements were carried out at the discharge profiles of both catchments and were evaluated in relation to climatic data (rainfall and temperature). The basic premise was that the streamflow in a forested catchment must exhibit different temporal dynamics compared to that in treeless areas and that these differences can be attributed to the effects of woody vegetation. These conclusions were drawn from measurements performed during dry periods lasting several days. A decreasing streamflow trend during the day part of the day (0900-1900 hours) was observed in both localities. The decrease reached approx. 44 % of the initial morning streamflow (0.24 dm(3) s(-1) day(-1)) in the treeless catchment and approx. 20 % (0.19 dm(3) s(-1) day(-1)) in the forested catchment. At night (1900-0900 hours), the streamflow in the forested catchment increased back to its initial level, whereas the streamflow in the treeless catchment stagnated or slowly decreased. We attribute these differences to the ecosystem effects of woody vegetation and its capacity to control water loss during the day. This type of vegetation can also function as a water source for the hydrographic network during the night.

  20. The frequency of growing season frost in the subalpine environment (Medicine Bow Mountains, southeastern Wyoming), the interaction of leaf morphology and infrared radiational cooling and the effects of freezing on native vegetation

    SciTech Connect

    Jordan, D.N.

    1995-05-01

    The subalpine environment is characterized by the possibility of frost throughout the summer. The frequency and severity of summertime frost episodes appeared particularly dependent on net losses of infrared energy to a cold night sky (radiation frost), as well as air temperature and wind speed. Longwave radiation minima from the night sky were strongly correlated with the occurrence of leaf temperature minima. Leaf temperatures were modeled using an energy balance simulation that quantified the specific effects of ambient air temperature, wind speed, sky infrared radiation, and sky exposure characteristic of this high-elevation environment. Plants growing in exposed and sheltered habitats have characteristic leaf structures (smaller, thicker leaves in more exposed locations) that have been traditionally associated with the total amount of incident sunlight. However, smaller leaves also appear adaptive for reducing the susceptibility to radiation frosts. Larger, more exposed leaves resulted in colder nocturnal leaf temperatures and greater frost frequencies. Microsite sky radiation, microtopography, plant habit and leaf structure all have important implications for estimating growing season length and plant distribution patterns, especially at higher elevations where summer frosts are common. Radiational frosts at night are typically followed by clear skies and full-sun exposure the next morning. The combination of low temperature stress followed by high light exposure can result in strong photoinhibition of photosynthesis. The morphology of a variety of conifer needles as well as of a broadleaf was modeled to evaluate the effect on incident sunlight intensity. Conifer leaf morphology was found to be particularly adaptive for avoiding high incident light conditions compared to broadleaves.

  1. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  2. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  3. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  4. MAPPING AND SCOUTING CORN PEST INFESTATIONS IN A PRODUCTION AGRICULTURE ENVIRONMENT USING REMOTE SENSING.

    EPA Science Inventory

    Hyperspectral imagery was acquired three times during the 2006 agricultural growing season (late July to mid-September) over 35 corn fields in east central Illinois. The imagery was processed with an emphasis on rapid image product development (turnabround time of less than 24 ho...

  5. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia

    NASA Astrophysics Data System (ADS)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek

    2015-04-01

    The problem of greenhouse gases' concentrations increasing becomes more and more important due to global changes issues. The main component of greenhouse gases is carbon dioxide. The researches focused on its fluxes in natural and anthropogenic modified landscapes can help in this problem solution. Our research has been done with support of the RF Government grants # 11.G34.31.0079 and # 14.120.14.4266 and of FP7 Grant # 603542 LUC4C in the representative for Central Region of Russia field agroecosystems at the Precision Farming Experimental Field of Russian Timiryazev State Agrarian University with cultivated sod podzoluvisols, barley and oats - vetch grass mix (Moscow station of the RusFluxNet). The daily and seasonal dynamics of the carbon dioxide have been studied at the ecosystem level by the Eddy covariance method (2 stations) and at the soil level by the exposition chamber method (40 chambers) with mobile infra red gas analyzer (Li-Cor 820). The primary Eddy covariance monitoring data on CO2 fluxes and water vapor have been processed by EddyPro software developed by LI-COR Biosciences. According to the two-year monitoring data the daily CO2 sink during the vegetation season is usually approximately two times higher than its emission at night. Seasonal CO2 fluxes comparative stabilization has been fixed in case the plants height around 10-12 cm and it usually persist until the wax ripeness phase. There is strong dependence between the soil CO2 emission and the air temperature with the correlation coefficient 0.86 in average (due to strong input of the soil thin top functional subhorizon), but it drops essentially at the end of the season - till 0.38. The soil moisture impact on CO2 fluxes dynamics was less, with negative correlation at the end of the season. High daily dynamics of CO2 fluxes determines the protocol requirements for seasonal soil monitoring investigation with less limitation at the end of the season. The accumulated monitoring data will be

  6. Sensory Profiles and Seasonal Variation of Black Walnut Cultivars.

    PubMed

    Lynch, Catherine; Koppel, Kadri; Reid, William

    2016-03-01

    Black walnut (Juglans nigra L.) is a North American hardwood tree valued for producing nuts and wood. Black walnut cultivars were evaluated by a trained panel over 2 growing seasons to determine the seasonal variation in the sensory profile. Results showed that cultivars were significantly different on 3 appearance (skin color, nutmeat color, and kernel roughness), 1 aroma (black walnut ID), 5 flavor (black walnut ID, banana-like, piny, rancid, and overall nutty), and 2 texture attributes (surface roughness and hardness). These profiles were compared to results collected in 2011 to determine differences between growing seasons. Results showed 4 flavor attributes (black walnut ID, overall nutty, fruity-dark and rancid) had an interaction effect of year and cultivar, while 6 attributes (brown, caramelized, floral/fruity, piny, musty/dusty, and oily) showed a main effect of year. In general, flavor attributes had higher intensities in 2011 than in 2013. These results suggest that seasonal variation may influence flavor profile more than cultivar. Thus, using samples from only 1 growing season when testing agricultural products may not provide adequate information for the long term.

  7. Sensory Profiles and Seasonal Variation of Black Walnut Cultivars.

    PubMed

    Lynch, Catherine; Koppel, Kadri; Reid, William

    2016-03-01

    Black walnut (Juglans nigra L.) is a North American hardwood tree valued for producing nuts and wood. Black walnut cultivars were evaluated by a trained panel over 2 growing seasons to determine the seasonal variation in the sensory profile. Results showed that cultivars were significantly different on 3 appearance (skin color, nutmeat color, and kernel roughness), 1 aroma (black walnut ID), 5 flavor (black walnut ID, banana-like, piny, rancid, and overall nutty), and 2 texture attributes (surface roughness and hardness). These profiles were compared to results collected in 2011 to determine differences between growing seasons. Results showed 4 flavor attributes (black walnut ID, overall nutty, fruity-dark and rancid) had an interaction effect of year and cultivar, while 6 attributes (brown, caramelized, floral/fruity, piny, musty/dusty, and oily) showed a main effect of year. In general, flavor attributes had higher intensities in 2011 than in 2013. These results suggest that seasonal variation may influence flavor profile more than cultivar. Thus, using samples from only 1 growing season when testing agricultural products may not provide adequate information for the long term. PMID:26849318

  8. Expressing the sense of the House of Representatives that specialty crops are a vital part of agriculture in the United States, that the Committee on Agriculture should propose funding for programs that support specialty crops priorities, and that legislation should be passed that includes funding reflecting specialty crops as a growing and important part of United States agriculture.

    THOMAS, 113th Congress

    Rep. DelBene, Suzan K. [D-WA-1

    2013-04-25

    05/03/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. The Use of Uas for Assessing Agricultural Systems in AN Wetland in Tanzania in the - and Wet-Season for Sustainable Agriculture and Providing Ground Truth for Terra-Sar X Data

    NASA Astrophysics Data System (ADS)

    Thamm, H.-P.; Menz, G.; Becker, M.; Kuria, D. N.; Misana, S.; Kohn, D.

    2013-08-01

    The paper describes the assessment of the vegetation and the land use systems of the Malinda Wetland in the Usambara Mountains in Tanzania with the parachute UAS (unmanned aerial system) SUSI 62. The area of investigation was around 8 km2. In two campaigns, one in the wet season and one in the dry season, approximately 2600 aerial photos of the wetland were taken using the parachute UAS SUSI 62; of these images, ortho-photos with a spatial resolution of 20 cm x 20 cm, were computed with an advanced block bundle approach. The block bundles were geo-referenced using control points taken with differential GPS. As well a digital surface model (DSM) of the wetland was created out of the UAS photos. Using the ortho-photos it is possible to assess the different land use systems; the differences in the phenology of the vegetation between wet and dry season can be investigated. In addition, the regionalisation of bio mass samples on smaller test plots was possible. The ortho-photos and the DSM derived from the UAS proved to be a valuable ground truth for the interpretation of Terra-SAR X images. The campaigns demonstrated that SUSI 62 was a suitable, robust tool to obtain the valuable information under harsh conditions.

  10. Seasonal drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; McNally, Amy; Husak, Greg; Funk, Chris

    2014-05-01

    In East Africa, agriculture is mostly rainfed and hence sensitive to interannual rainfall variability, and the increasing food and water demands of a growing population place further stresses on the water resources of this region. Skillful seasonal agricultural drought forecasts for this region can inform timely water and agricultural management decisions, support the proper allocation of the region's water resources, and help mitigate socio-economic losses. Here we describe the development and implementation of a seasonal drought forecast system that is being used for providing seasonal outlooks of agricultural drought in East Africa. We present a test case of the evaluation and applicability of this system for March-April-May growing season over equatorial East Africa (latitude 20 south to 80 North and 360 E to 460E) that encompasses one of the most food insecure and climatically and socio-economically vulnerable regions in East Africa. This region experienced famine as recently as in 2011. The system described here combines advanced satellite and re-analysis as well as station-based long term and real-time observations (e.g. NASA's TRMM, Infra-red remote sensing, Climate Forecast System Reanalysis), state-of-the-art dynamical climate forecast system (NCEP's Climate Forecast System Verison-2) and large scale land surface models (e.g. Variable Infiltration Capacity, NASA's Land Information System) to provide forecasts of seasonal rainfall, soil moisture and Water Requirement Satisfaction Index (WRSI) throughout the season - with an emphasis on times when water is the most critical: start of season/planting and the mid-season/crop reproductive phase. Based on the hindcast assessment of this system, we demonstrate the value of this approach to the US Agency for International Development (USAID)'s efforts to mitigate future losses of lives and economic losses by allowing a proactive approach of drought management that includes early warning and timely action.

  11. Measuring efficiency of rice growing farmers using data envelopment analysis

    NASA Astrophysics Data System (ADS)

    Zaibidi, Nerda Zura; Kasim, Maznah Mat; Ramli, Razamin; Baten, Md. Azizul; Khan, Sahubar Ali Nadhar

    2015-12-01

    Self-sufficiency in rice production has been the main issue in Malaysia agriculture. It is significantly low and does not comply with the current average rice yield of 3.7 tons per ha per season. One of the best options and the most effective way to improve rice productivity is through more efficient utilization of paddy farmers. Getting farmers to grow rice is indeed a challenge when they could very well be making better money doing something else. This paper attempts to study the efficiency of rice growing farmers in Kubang Pasu using Data Envelopment Analysis model. For comparative analysis, three scenarios are considered in this study in measuring efficiency of rice growing farmers. The first scenario considers only fertilizer factor as an input while for the second, the land size is added as another factor. The third scenario considers more details about the inputs such as the type of fertilizer, NPK and mixed and also land tenureship and size. In all scenarios, the outputs are rice yield (tons) and the profit (RM). As expected, the findings show that the third scenario establishes the highest number of efficient rice growing farmers. It reveals that the combination of outputs and inputs chosen has significant contribution in measuring efficiency of rice growing farmers.

  12. Hydrology of a zero-order Southern Piedmont watershed through 45 years of changing agricultural land use. Part 1. Monthly and seasonal rainfall-runoff relationships

    NASA Astrophysics Data System (ADS)

    Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.

    2006-01-01

    Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.

  13. Development of a regionally consistent geospatial dataset of agricultural lands in the Upper Colorado River Basin, 2007-10

    USGS Publications Warehouse

    Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.

    2014-01-01

    Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.

  14. Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed

    NASA Astrophysics Data System (ADS)

    Humbert, G.; Jaffrezic, A.; Fovet, O.; Gruau, G.; Durand, P.

    2015-10-01

    As a phenomenon integrating climate conditions and hydrological control of the connection between streams and terrestrial dissolved organic carbon (DOC) sources, groundwater dynamics control patterns of stream DOC characteristics (concentrations and fluxes). Influence of intra-annual variations in groundwater level, discharge and climatic factors on DOC concentrations and fluxes were assessed over 13 years at the headwater watershed of Kervidy-Naizin (5 km2) in western France. Four seasonal periods were delineated within each year according to groundwater fluctuations (A: rewetting, B: high flow, C: recession, and D: drought). Annual and seasonal base flow versus stormflow DOC concentrations were defined based on daily hydrograph readings. High interannual variability of annual DOC fluxes (5.4-39.5 kg ha-1 yr-1) indicates that several years of data are required to encompass variations in water flux to evaluate the actual DOC export capacity of a watershed. Interannual variability of mean annual DOC concentrations was much lower (4.9-7.5 mg C L-1), with concentrations decreasing within each year from ca. 9.2 mg C L-1 in A to ca. 3.0 mg C L-1 in C. This indicates an intra-annual pattern of stream DOC concentrations controlled by DOC source characteristics and groundwater dynamics very similar across years. Partial least squares regressions combined with multiple linear regressions showed that the dry season characteristics (length and drawdown) determine the mean annual DOC concentration while annual runoff determines the annual flux. Antagonistic mechanisms of production-accumulation and dilution-depletion combined with an unlimited DOC supply from riparian wetland soils can mitigate the response of stream concentrations to global changes and climatic variations.

  15. Conducting an agricultural life cycle assessment: challenges and perspectives.

    PubMed

    Caffrey, Kevin R; Veal, Matthew W

    2013-01-01

    Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463

  16. Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives

    PubMed Central

    Caffrey, Kevin R.; Veal, Matthew W.

    2013-01-01

    Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463

  17. High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Luis Valley, Colorado

    NASA Astrophysics Data System (ADS)

    Reeves, Jessica A.; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.; Shanker Agram, Piyush; Lauknes, Tom R.

    2011-12-01

    In the San Luis Valley (SLV), Colorado legislation passed in 2004 requires that hydraulic head levels in the confined aquifer system stay within the range experienced in the years 1978-2000. While some measurements of hydraulic head exist, greater spatial and temporal sampling would be very valuable in understanding the behavior of the system. Interferometric synthetic aperture radar (InSAR) data provide fine spatial resolution measurements of Earth surface deformation, which can be related to hydraulic head change in the confined aquifer system. However, change in cm-scale crop structure with time leads to signal decorrelation, resulting in low quality data. Here we apply small baseline subset (SBAS) analysis to InSAR data collected from 1992 to 2001. We are able to show high levels of correlation, denoting high quality data, in areas between the center pivot irrigation circles, where the lack of water results in little surface vegetation. At three well locations we see a seasonal variation in the InSAR data that mimics the hydraulic head data. We use measured values of the elastic skeletal storage coefficient to estimate hydraulic head from the InSAR data. In general the magnitude of estimated and measured head agree to within the calculated error. However, the errors are unacceptably large due to both errors in the InSAR data and uncertainty in the measured value of the elastic skeletal storage coefficient. We conclude that InSAR is capturing the seasonal head variation, but that further research is required to obtain accurate hydraulic head estimates from the InSAR deformation measurements.

  18. Developing Earth Observations Requirements for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Becker-Reshef, I.; Vermote, E.; Justice, C. O.

    2013-12-01

    Recognizing the dynamic nature of agricultural cultivation both within and between years and across the globe, the Group on Earth Observations (GEO) is developing an agricultural monitoring (GEO-GLAM) system with the goal of enhancing the availability and use of satellite and in situ Earth observations (EO) for the generation of timely and accurate information on national, regional, and global food supply. One of the key components of the GEO-GLAM system is the coordination of satellite observations so as to ensure sufficient and appropriate data volume and quality for agricultural monitoring. Therefore, it is essential that we develop EO requirements which articulate in a spatially explicit way where, when, how frequently, and at what spatial resolution satellite imagery must be acquired to meet the needs of a variety of agricultural monitoring applications. Accordingly, best-available cropland location information ('where?') in conjunction with ten years of MODIS surface reflectance data have been used to characterize the timing and duration of the agricultural growing season ('when?') in the form of agricultural growing season calendars (GSCs) for all major agricultural areas of the Earth. With respect to temporal resolution, we must first identify the frequency with which we require imagery inputs for monitoring applications such as crop condition, crop type, crop yield estimation, and planted and harvested area estimation. Members of the GEO Agriculture Monitoring Community of Practice - a group of international scientists - have combined their knowledge and expertise to articulate these general requirements. Second, we must determine how cloud cover impacts the ability of optical sensing systems to meet these established temporal resolution requirements. To this end, MODIS Terra (morning; 2000-2011) and Aqua (afternoon; 2002-2011) observations have been analyzed to derive probabilities of a cloud free clear view at different times of day throughout the

  19. Agriculture drought risk assessment of the irrigated agriculture zone in North Henan Plain using HJ-1 and MODIS data

    NASA Astrophysics Data System (ADS)

    He, Haixia; Huang, He; Wang, Ping; Sun, Yinxiang

    2011-12-01

    This paper analyzed the evolution of drought and the spectral response of the crop at different growing seasons focuses on the irrigated agricultural areas of northen Henan using the HJ-1 data and MODIS data,associated with relevant meteologic data, regional geographical data and the social economic data.The Spatial and temporal distribution of the risk of disaster-causing factors and the fragility of the disaster-affected body was conducted and the comprehensive index of agricultral drought risk was built up.Then, trend of the agricultural drought was analyzed and the irrigated agricultural drought risk class was performed and the possible hazard and influence of agricultural drought and the performance of appropriate strategy to reduce agricultral drought have been estimated.At last,verification of the results and improvement of the model have been carried out supported by the historic cases, expert system and the on-site investigation data.

  20. Viewing Seasonality in 8 Megacities at 4 Microns

    NASA Astrophysics Data System (ADS)

    Tomaszewska, M. A.; Kovalskyy, V.; Small, C.; Henebry, G. M.

    2013-12-01

    months and quite low in the winter months at high latitudes, as was expected due to the seasonal cycle of irradiance. The urban land cover showed higher seasonal dynamic range than most other cover types, with the forest 'natural' type showing least seasonal variation and agriculture showing more variation than forest but less than urban. Where the 'natural' type included much exposed soil or dried vegetation (savanna near Nairobi and New Delhi or desert near Cairo), the seasonal dynamic range in the MIR exceeded that of the associated city. However, the interaction of VZA and seasonality was most evident in the agricultural land covers, likely due to exposed cropland soils being gradually covered by the growing canopy when viewed at higher VZAs.

  1. Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa

    2014-04-01

    While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. We combined large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis on its patchily distributed host plant Plantago lanceolata in the Åland Islands. Twelve years of epidemiological data establish the off-season as a crucial stage in pathogen metapopulation dynamics, with c. 40% of the populations going extinct during the off-season. At the end of the growing season, we observed environmentally mediated variation in the production of resting structures, with major consequences for spring infection at spatial scales ranging from single individuals to populations within a metapopulation. Reciprocal transplant experiments further demonstrated that pathogen population of origin and overwintering site jointly shaped infection intensity in spring, with a weak signal of parasite adaptation to the local off-season environment. We conclude that environmentally mediated changes in the distribution and evolution of parasites during the off-season are crucial for our understanding of host-parasite dynamics, with applied implications for combating parasites and diseases in agriculture, wildlife and human disease systems.

  2. Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen

    PubMed Central

    Tack, Ayco JM; Laine, Anna-Liisa

    2014-01-01

    While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. We combined large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis on its patchily distributed host plant Plantago lanceolata in the Åland Islands. Twelve years of epidemiological data establish the off-season as a crucial stage in pathogen metapopulation dynamics, with c. 40% of the populations going extinct during the off-season. At the end of the growing season, we observed environmentally mediated variation in the production of resting structures, with major consequences for spring infection at spatial scales ranging from single individuals to populations within a metapopulation. Reciprocal transplant experiments further demonstrated that pathogen population of origin and overwintering site jointly shaped infection intensity in spring, with a weak signal of parasite adaptation to the local off-season environment. We conclude that environmentally mediated changes in the distribution and evolution of parasites during the off-season are crucial for our understanding of host–parasite dynamics, with applied implications for combating parasites and diseases in agriculture, wildlife and human disease systems. PMID:24372358

  3. Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa

    2014-04-01

    While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. We combined large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis on its patchily distributed host plant Plantago lanceolata in the Åland Islands. Twelve years of epidemiological data establish the off-season as a crucial stage in pathogen metapopulation dynamics, with c. 40% of the populations going extinct during the off-season. At the end of the growing season, we observed environmentally mediated variation in the production of resting structures, with major consequences for spring infection at spatial scales ranging from single individuals to populations within a metapopulation. Reciprocal transplant experiments further demonstrated that pathogen population of origin and overwintering site jointly shaped infection intensity in spring, with a weak signal of parasite adaptation to the local off-season environment. We conclude that environmentally mediated changes in the distribution and evolution of parasites during the off-season are crucial for our understanding of host-parasite dynamics, with applied implications for combating parasites and diseases in agriculture, wildlife and human disease systems. PMID:24372358

  4. Waiting for trees to grow: nest survival, brood parasitism, and the impact of reforestation efforts

    USGS Publications Warehouse

    Hazler, K.R.; Twedt, D.J.; Cooper, R.J.

    2005-01-01

    Of the forested wetlands that once covered the Mississippi Alluvial Valley, only -25% remain due to large-scale conversion to agriculture. Reforestation efforts are currently underway, but tracts planted with slow-growing oaks maintain the structure of a grassland for 5 yr or longer, and will require at least 40 yr to resemble a mature forest. Nonetheless, it is hoped that reforestation, even in early stages, can effectively increase core area in extant tracts of mature forest by reducing higher rates of nest failure and brood parasitism often associated with forest-agriculture interfaces. To test this, we monitored nests of a mature-forest specialist, the Acadian Flycatcher, in extensive bottomland forests adjacent to agricultural fields and reforested tracts (<20 yr-old). We used an information-theoretic approach to evaluate alternative hypotheses regarding the relative impacts of agriculture and reforestation in the landscape. Controlling for year, season, and stand basal area, there was little evidence that landscape context significantly affected nest survival, although survival tended to increase with decreasing amounts of agriculture. The probability of brood parasitism increased with greater proportions of open habitats in the landscape. There was much stronger support for the hypothesis that parasitism rates depended on the sum of agricultural and reforested tracts, rather than on the amount of agriculture alone. Thus, reforested tracts are not expected to have the desired effect of reducing parasitism rates in the adjacent mature forest until several decades have passed.

  5. Soil mutagens are airborne mutagens: variation of mutagenic activities induced in Salmonella typhimurium TA 98 and TA 100 by organic extracts of agricultural and forest soils in dependence on location and season.

    PubMed

    Edenharder, R; Ortseifen, M; Koch, M; Wesp, H F

    2000-12-20

    As our hypothesis was that soil mutagens are airborne mutagens, possibly modified by soil microorganisms, we checked solvent extracts from agricultural and forest soils collected during late summer in the environment of Mainz, a region highly charged by anthropogenic air pollution, or near Bayreuth, a rural low charged region of Germany, or in a remote region of western Corsica without anthropogenic air pollution for the presence of mutagenicity in Salmonella typhimurium. Levels of mutagenic activities were quantified by calculation of revertants/g from the initial slope of dose-response curves applying tester strains S. typhimurium TA 98 and TA 100 in the absence and presence of an activation system from rat liver (S9). Three soils from Corsica did not induce mutagenicity under any test condition. However, most soils from Germany exhibited mutagenic activities, though preferentially in strain TA 98, but no statistically significant differences could be detected between 27 soils from the Mainz and nine soils from the Bayreuth regions. On the other hand, no correlation could be detected between the levels of mutagenic activities at any test condition and agricultural practice - rye growing, viniculture, fruit growing, meadow, and fallow - texture of soils - % composition of clay, slit, and sand - or the contents of organic matter. The only significant difference of mutagenicity was, however, found with S. typhimurium TA 98-S9 between forest soils of pH approximately 4.0 as compared with agricultural soils of pH approximately 7.0. The presence of antimutagens in soil as demonstrated by the course of dose-response curves of the three soils from Corsica may be another possible confounder. Calculation of mean values of mutagenic activities for all soils from Germany gave the following results: S. typhimurium TA 98: 69.7+/-153.2 (-S9); 63.0+/-176.3 (+S9); S. typhimurium TA 100:-144.7+/-399.4 (-S9); 43.3+/-172.0 (+S9) revertants/g of dry soil. In another series of

  6. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  7. A Farming Revolution: Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Klinkenborg, Verlyn

    1995-01-01

    Growing realization of the economic, social, and environmental costs of conventional agriculture has led many U.S. farmers to embrace and become advocates for agricultural practices that limit the need for pesticides and chemical fertilizers, decrease soil erosion, and improve soil health. Some hope that sustainable agriculture can promote smaller…

  8. 1971 Post Season Rural Manpower Report.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Labor, Detroit. Michigan Employment Security Commission.

    The Rural Manpower Service reports on the migrant seasonal labor in Michigan during 1971. Seasonal labor has been declining since it reached its peak of 97,700 in 1962. This report discusses migrant seasonal labor with regard to (1) the wages and earnings of the workers, (2) the recruitment of workers, (3) the agricultural-labor housing, (4) the…

  9. Agricultural activity shapes the communication and migration patterns in Senegal.

    PubMed

    Martin-Gutierrez, S; Borondo, J; Morales, A J; Losada, J C; Tarquis, A M; Benito, R M

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.

  10. Agricultural activity shapes the communication and migration patterns in Senegal

    NASA Astrophysics Data System (ADS)

    Martin-Gutierrez, S.; Borondo, J.; Morales, A. J.; Losada, J. C.; Tarquis, A. M.; Benito, R. M.

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.

  11. Agricultural activity shapes the communication and migration patterns in Senegal.

    PubMed

    Martin-Gutierrez, S; Borondo, J; Morales, A J; Losada, J C; Tarquis, A M; Benito, R M

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country. PMID:27368795

  12. Phone traffic as a measurement of agricultural events

    NASA Astrophysics Data System (ADS)

    Martín, Samuel; Borondo, Javier; Morales, Alfredo; Losada, Juan Carlos; Tarquis, Ana M.; Benito, Rosa Maria

    2015-04-01

    Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behaviour of these systems (1). However, it has been recently when global food system has been seen as a complex web of production, processing, storage and transportation opening new challenges in their analysis. Agricultural activities in developing countries remain as important today as in the 1950s implying seasonal workers mobilization. The proliferation of mobile phones (MPs) offers an unprecedented tool to analyze human activity mapping. We would like to mention that in developed countries, the number of MP subscribers has surpassed the total population, with a penetration rate now reaching 121%, whereas in developing countries, it is as high as 90% and continuing to rise (2). As an example, we have analyzed the impact that agricultural activities, such as the growing of groundnut, have on Senegal. To this end we have analyzed the Normalized Difference Vegetation Index (NDVI) time series of the whole of Senegal and spotted the regions where groundnut is grown to identify the time period when this crop growth. By analyzing phone calls at each region of the country we found that a significant fraction of antennas exhibit two well defined peaks of activity corresponding with the begging and end of the growing season. Antennas located on regions identified as growing regions present this pattern. However, other antennas, located in non growing regions, such as Dakar, also present the two peaks pattern pointing out the synchronization between growing regions and key points in cities that emerges from the agricultural activity. References 1. Marta C. González, César A. Hidalgo and Albert-László Barabási (2008) Understanding individual human mobility patterns. Nature 453, 779-78. 2. International Telecommunication Union (2014) World

  13. Variability of growing degree days in Poland in response to ongoing climate changes in Europe

    NASA Astrophysics Data System (ADS)

    Wypych, Agnieszka; Sulikowska, Agnieszka; Ustrnul, Zbigniew; Czekierda, Danuta

    2016-05-01

    An observed increase in air temperature can lead to significant changes in the phenology of plants and, consequently, changes in agricultural production. The aim of the study was to evaluate the spatial differentiation of thermal resources in Poland and their variability during a period of changing thermal conditions in Europe. Since the variability of thermal conditions is of paramount importance for perennial crops, the study focused on apple, plum, and cherry orchard regions in Poland. The analysis was conducted for the period of 1951-2010 using air temperature daily data. Thermal resources have been defined using the growing degree days (GDD) index calculated independently for the whole year and during in frost-free season for three air temperature thresholds: 0, 5, and 10 °C, which determine the non-winter period, growing season, and the period of full plant growth, respectively. In addition, due to the high significance for perennials in particular, the incidence and intensity of frost during flowering were calculated. In this study, a detailed analysis of the spatial differentiation of thermal resources was first performed, followed by an evaluation of long-term variability and associated change patterns. The obtained results confirmed an increase in thermal resources in Poland as a consequence of the lengthening of the growing season. However, the frequency and intensity of spring frost, especially during flowering or even during ripening of plants, remain a threat to harvests in both the eastern and western parts of the country.

  14. Atmospheric Transport and Deposition of Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Majewski, M. S.; Vogel, J. R.; Capel, P. D.

    2006-05-01

    Concentrations of more than 80 pesticides and select transformation products were measured in atmospheric deposition during two growing seasons in five agricultural areas across the United States. Rainfall samples were collected at study areas in California, Indiana, Maryland, and Nebraska. In the arid Yakima Valley of Washington, dry deposition for the same compounds was estimated using air concentration measurements and depositional models. In the predominantly corn, soybean, and alfalfa growing region of Nebraska, Indiana, and Maryland, the herbicides acetochlor, alachlor, atrazine, and metolachlor where the predominant pesticides detected, and the highest concentrations ranged from 0.64 microgram per liter (ug/L) for metolachlor in a small, predominantly dairy use dominated watershed in Maryland to 6.6 ug/L and 19 ug/L for atrazine in Indiana and Nebraska, respectively. California showed a different seasonal occurrence pattern and suite of detected pesticides because the rainy season occurs during the winter months and a wide variety of crops are grown throughout the year. With the exception of metolachlor (0.23 ug/L, max.), the corn and soybean herbicides were not used to any great extent in the California study area and were not detected. The insecticides diazinon (1.21 ug/L, max.) and chlorpyrifos (0.12 ug/L, max.) were detected in nearly every sample taken in California. The Washington study area was similar to California in terms of the variety of crops grown and the pesticides use, but it receives very little rainfall. Dry deposition was estimated at this site from air concentrations and particle settling velocities. The results of these studies show the importance of the atmosphere as an additional source of pesticide loading to agricultural watersheds.

  15. Relation of pesticide concentrations to season, streamflow, and land use in seven New Jersey streams

    USGS Publications Warehouse

    Reiser, Robert G.

    1999-01-01

    concentrations that exceeded New Jersey Department of Environmental Protection (NJDEP) human health criteria. Individual and total-pesticide concentrations and total numbers of pesticides detected in the samples varied with season and flow conditions. Median and maximum concentrations of most of the pesticides were highest during runoff in the growing season. Pesticide concentrations were typically lower and less variable in the nongrowing season than in the growing season, regardless of changes in hydrologic conditions; however, median concentrations of most pesticides were slightly lower during runoff than during base flow. The median total-pesticide concentration and median total number of pesticides detected were highest and most variable in runoff samples in the growing season. In the nongrowing season, the median total-pesticide concentration was lowest in runoff samples and least variable during base-flow conditions. Median total numbers of pesticides were lowest and least varibale in the nongrowing season during base-flow conditions at most sites. The highest total-pesticide concentrations were detected in samples from the two small agricultural basins (greater than 25 percent of land use is agricultural) during runoff in late spring and early summer. In general, insecticides were detected more frequently and in greater concentrations at urban sites. Concentrations of agricultural herbicides generally decreased with increasing flow at the four sites with less than 10 percent agriculture land use and increased with increasing flow at the three sites with more than 25 percent agricultural land use. Most of the pesticides that correlated positively with streamflow were detected at sites where land use in the basin would indicate the use of those particular pesticides. Most of the pesticides that correlated negatively with streamflow were present at the site in the Coastal Plain or at sites in which the land use in the basin would not indicate heavy u

  16. Agricultural biosecurity.

    PubMed

    Waage, J K; Mumford, J D

    2008-02-27

    The prevention and control of new pest and disease introductions is an agricultural challenge which is attracting growing public interest. This interest is in part driven by an impression that the threat is increasing, but there has been little analysis of the changing rates of biosecurity threat, and existing evidence is equivocal. Traditional biosecurity systems for animals and plants differ substantially but are beginning to converge. Bio-economic modelling of risk will be a valuable tool in guiding the allocation of limited resources for biosecurity. The future of prevention and management systems will be strongly influenced by new technology and the growing role of the private sector. Overall, today's biosecurity systems are challenged by changing national priorities regarding trade, by new concerns about environmental effects of biological invasions and by the question 'who pays?'. Tomorrow's systems may need to be quite different to be effective. We suggest three changes: an integration of plant and animal biosecurity around a common, proactive, risk-based approach; a greater focus on international cooperation to deal with threats at source; and a commitment to refocus biosecurity on building resilience to invasion into agroecosystems rather than building walls around them.

  17. Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels.

    PubMed

    Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv

    2015-06-01

    Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea.

  18. Rapid Intensification of Agriculture in Brazil: Dynamics and Implications of Double Cropping

    NASA Astrophysics Data System (ADS)

    Spera, S. A.; Mustard, J. F.; Rudorff, B.; VanWey, L.; Risso, J.; Adami, M.

    2012-12-01

    Global food production and yield have increased substantially over the past 50 years to keep up with the demands of the world's growing population. At the forefront of some recent developments is Brazil, where Mato Grosso State has contributed to this increase in yield and production by both extensifying (converting forest to pasture or row crops) and intensifying (converting pasture to row crops or one-crop/growing year to two-crops/growing year) large areas of land. Our research reported here is focused on characterizing the land-cover and -use dynamics in this rapidly evolving region. We have developed a new algorithm to quantify both the conversion of land to mechanized agriculture and the character of those crop rotations. We use the systematic MODIS enhanced vegetation index (EVI) product (MODIS13Q1) aggregated from daily observations to a 16-day cloud free measurement. Each pixel's resulting 2000-2011 EVI time series is analyzed with a decision tree-like algorithm created in ENVI+IDL to determine not only the area of agricultural land for each of the past decade's growing seasons, but also the specific crop dynamic of that agricultural land: a soy or cotton single-cropping rotation or a soy/corn or soy/cotton double-cropping rotation. The algorithm is based on analysis of growing season EVI patterns of forest, pasture/cerrado, and annual crops. We define specific thresholds for the magnitude of EVI over the growing season to distinguish between natural vegetation, pasture, and cropland, and then use growing season length and crop calendars to separate specific crop types. Because the intra-annual EVI phenology of forest and pasture/cerrado is relatively constant but cropland shows a large dynamic range, the algorithm uses the standard deviation of a growing season's EVI time series to separate between forest and pasture/cerrado and agricultural land. For pixels identified as agricultural land, the algorithm then uses crop-specific growing season lengths and

  19. The role of nitrogen-efficient cultivars in sustainable agriculture.

    PubMed

    Weisler, F; Behrens, T; Horst, W J

    2001-11-01

    To improve nitrogen (N) efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer, soil, and crop management practices are necessary. This paper reports results of field experiments in which maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars were compared with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at a given N supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant). Under conditions of high N supply, significant differences among maize cultivars were found in shoot N uptake, soil nitrate depletion during the growing season, and the related losses of nitrate through leaching after the growing season. Experiments under conditions of reduced N supply indicated a considerable genotypic variation in reproductive yield formation of both maize and oilseed rape. High agronomic efficiency was achieved by a combination of high uptake and utilization efficiency (maize), or exclusively by high uptake efficiency (rape). N-efficient cultivars of both crops were characterized by maintenance of a relatively high N-uptake activity during the reproductive growth phase. In rape this trait was linked with leaf area and photosynthetic activity of leaves. We conclude that growing of N-efficient cultivars may serve as an important element of integrated nutrient management strategies in both low- and high-input agriculture. PMID:12805782

  20. Growing plants on atoll soils

    SciTech Connect

    Stone, E L; Migvar, L; Robison, W L

    2000-02-16

    year. Except on the driest of atolls, air temperature and humidity range only within limits set by the surrounding sea. There are no cold seasons, no frosts, no cold soils, no dry winds, and no periodic plagues of insects or diseases moving from miles away. Problems of soil drainage or salinity are few and easily recognized. Nor are there problems with acid soils, soil crusting, or erosion that challenge cultivators in many other areas. On the contrary, some of the black soils at the center of wide islands rank with the best soils of Russia and the American Midwest, except for their shortage of potassium and the uncertainties of rainfall. Some of these atoll soils contain more total nitrogen than many of the world's most productive agricultural soils and, in some, the total phosphorus content is so high as to be almost unbelievable--two to five tons of the element per acre. Certainly, problems exist in growing plants on atolls. There are also some special concerns not encountered in other environments, such as the wind and salt spray near shore. The two major physical limitations, however, are inadequate rainfall in some years and in many places, and soil fertility limitations. The alkaline or ''limy'' make-up of atoll soils means that a few plant nutrients, especially iron, limit growth of many introduced plants, and this is difficult to correct. As elsewhere in the world, many--but not all--atoll soils lack enough nitrogen and/or phosphorus for high yield, and all lack sufficient potassium. There is no practical way of overcoming drought except by use of tolerant plants such as coconut (ni) and Pandanus (bob), plus collection and careful use of whatever water is available. There are opportunities to overcome nutritional limitations mentioned above, first, by intensive use of all organic debris and household wastes in small gardens and, second, by use of commercial fertilizers. Imported fertilizers are expensive, certainly, but much less so on a family basis than the

  1. Linking Landsat observations with MODIS derived Land Surface Phenology data to map agricultural expansion and contraction in Russia

    NASA Astrophysics Data System (ADS)

    Caliskan, S.; de Beurs, K.

    2010-12-01

    Direct human impacts on the land surface are especially pronounced in agricultural regions that cover a substantial portion of the global land surface: 12% of the terrestrial surface is under active agricultural management. Crops display phenologies distinct from natural vegetation; the growing seasons are often shifted in time, crop establishment is generally fast and the vegetation is rapidly removed at harvest. Previously we have demonstrated that agricultural land abandonment alters land surface phenology sufficiently to be detectable from a time series of coarse resolution imagery. With land surface phenology models based on accumulated growing degree-days (AGDD) and AVHRR NDVI, we demonstrated that abandoned croplands covered with native grasses and weeds typically greened-up and peaked sooner than active croplands. Here we present an expansion of these analyses for the MODIS time period with the ultimate goal to map agricultural abandonment and expansion in European Russia from 2000 to 2010. We used the 8-day, 1km L3 Land Surface Temperature data (MOD11A2) to generate the accumulated growing degree days and the 16-day L3 Nadir BRDF-Adjusted reflectance data at 500m resolution (MCD43A4) to calculate NDVI. We calculated phenological metrics based on three methods: 1) Double-logistic models such as those applied to produce the standard MODIS phenology product (MOD12Q2); 2) A combination of NDII and NDVI; this method has been shown to provide start/end of season measurement closest to field observations in snowy areas; and 3) A quadratic model linking accumulated growing degree days and vegetation indices which we successfully applied in agricultural areas of Kazakhstan and semi-arid Africa. We selected Landsat imagery for two vastly different regions in Russia and present a Landsat-guided probabilistic detection of abandoned and active croplands for all available years of the MODIS image time series (2000-2010). For each region, we selected at least two images

  2. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  3. Changing Seasons

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    In some ways, there is a season of change at the national level in early childhood. Some things are wrapping up while some developments aim to prepare the "field" for improvements in the next year and beyond, just as a garden plot is readied for the next planting season. Change is in the air, and there's hope of renewal, but what changes and how…

  4. Acidic deposition: Effects on agricultural crops: Final report

    SciTech Connect

    Shriner, D.S.; Johnston, J.W. Jr.; Taylor, G.E. Jr.; Luxmoore, R.J.; McConathy, R.K.; McLaughlin, S.B.; Norby, R.J.; Abner, C.H.; Heagle, A.S.; Dubay, D.T.

    1987-04-01

    During the late 1970's there developed an increasing recognition that attempts to understand the impact of acidic precipitation on vegetation would be difficult to interpret without also being able to understand the relationship between acid precipitation and other, potentially interacting stresses. Important among these other stress factors are the mixture of gaseous pollutants to which vegetation is also exposed during the growing season. The research project described in this report was conceived and developed to address the role and importance of the contribution of wet deposition (acid rain) to crop vegetation growth and yield in the context of the ambient gaseous pollutant environment existing in an agricultural field situation.

  5. Challenge for future agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Future food security will be dependent upon a combination of the stresses imposed by climate change, variability of weather within the growing season, development of cultivars more suited to different conditions, and the ability to develop effective adaptation strategies which allow these cultivars ...

  6. Skilling a Seasonal Workforce: A Way Forward for Rural Regions

    ERIC Educational Resources Information Center

    Kilpatrick, Sue; Bound, Helen

    2005-01-01

    Seasonal work is crucial for the many rural regions reliant on seasonal industries such as agriculture, forestry, aquaculture and tourism. This report examines the diverse nature of the seasonal workforce in two locations and the approaches used in their training. The report finds that the seasonal workforce is diverse and has varied training…

  7. Environmental Impacts of the Annual Agricultural Drawdown in Southern Miami-Dade County

    NASA Astrophysics Data System (ADS)

    Kearns, E. J.; Renshaw, A.; Bellmund, S.

    2008-05-01

    Water managers annually manipulate groundwater storage in Southern Miami-Dade County at the end of the wet season to support agricultural interests. The so-called "agricultural drawdown" in Southern Miami-Dade County involves a 0.8 ft (0.24 m) reduction in groundwater stages via the release of large volumes of water each fall to Biscayne Bay. An average of 21.4 billion gallons (65,800 ac-ft or 8.1x107 m3) of freshwater are released each year from the Biscayne Aquifer via the C-103 and C-102 canals during the drawdown in anticipation of the winter growing season. The side-effects of this groundwater drawdown and loss of stored water are felt primarily by the environment in, and adjacent to, southern Biscayne Bay. Without the rapid drainage of freshwater, these large volumes of water would gradually leak into Biscayne Bay and its low-lying coastal wetlands, providing freshwater flows further into the dry season. The rapid and sudden release of water from the Biscayne Aquifer within a few weeks of the end of the wet season brings about an artificially early start to the dry season. The following dry season is thus unnaturally dry, leading to long periods of dry marshes and high salinities along the shoreline. The result threatens productive estuarine fish and shellfish habitat, enhances predation of nearshore species by marine fish, encourages exotic plant species within the coastal wetland zone, and promotes a loss of wading bird foraging habitat during nesting season. The threat of saltwater intrusion into the Biscayne Aquifer is enhanced by this operational practice as well, since sea levels are at their seasonal maximums in October and November. The effects of the agricultural drawdown, the possible enhancements to the coastal ecosystem that could be realized by its elimination, and its future within the context of the Comprehensive Everglades Restoration Plan's Biscayne Bay Coastal Wetlands project will be explored.

  8. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity.

    PubMed

    Gray, Josh M; Frolking, Steve; Kort, Eric A; Ray, Deepak K; Kucharik, Christopher J; Ramankutty, Navin; Friedl, Mark A

    2014-11-20

    Ground- and aircraft-based measurements show that the seasonal amplitude of Northern Hemisphere atmospheric carbon dioxide (CO2) concentrations has increased by as much as 50 per cent over the past 50 years. This increase has been linked to changes in temperate, boreal and arctic ecosystem properties and processes such as enhanced photosynthesis, increased heterotrophic respiration, and expansion of woody vegetation. However, the precise causal mechanisms behind the observed changes in atmospheric CO2 seasonality remain unclear. Here we use production statistics and a carbon accounting model to show that increases in agricultural productivity, which have been largely overlooked in previous investigations, explain as much as a quarter of the observed changes in atmospheric CO2 seasonality. Specifically, Northern Hemisphere extratropical maize, wheat, rice, and soybean production grew by 240 per cent between 1961 and 2008, thereby increasing the amount of net carbon uptake by croplands during the Northern Hemisphere growing season by 0.33 petagrams. Maize alone accounts for two-thirds of this change, owing mostly to agricultural intensification within concentrated production zones in the midwestern United States and northern China. Maize, wheat, rice, and soybeans account for about 68 per cent of extratropical dry biomass production, so it is likely that the total impact of increased agricultural production exceeds the amount quantified here.

  9. Implications of Growing Bioenergy Crops on Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2012-12-01

    Biomass crops are being included as a large-scale option for providing fuel with low greenhouse gas emissions in some scenarios. In order to judge the merits of biomass crops we must understand the potential impacts of bioenergy crops on hydrological cycles at shorter and longer scales and on regional climate change. In this talk we address potential impacts of land use changes associated with bioenergy crops in the United States. In particular, we examine the directly altered surface energy and water balance using a coupled biophysical, physiological and biogeochemical modeling system. We study the impacts of changes in agriculture lands (crops and pastures) and herbaceous biomes (grasses and shrubs) to two perennial grasses (Miscanthus and Switchgrass). Preliminary results suggest that changing agriculture and herbaceous lands increase evapotranspiration because of the deeper roots and longer growing season of the perennial grasses. This increase in water input to the atmosphere means more water available for local and regional precipitation, which dramatically affects the surface energy balance and changes the sensible and longwave heating of the atmosphere. This may also cause cooling of the surface air temperature, leading to an increase in precipitation.

  10. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination

    NASA Astrophysics Data System (ADS)

    Savard, Martine M.; Somers, George; Smirnoff, Anna; Paradis, Daniel; van Bochove, Eric; Liao, Shawna

    2010-02-01

    SummaryGlobally, fertilizers are identified as principle sources of nitrate in waters of intensely cultivated areas. Here this general concept is appraised on a seasonal basis over a two year period, under temperate climatic conditions. Water ( δ2H and δ18O) and nitrate ( δ15N and δ18O) isotopes in surface water and groundwater suggest that freshwater is acting as a transport vector conducting nitrate from agricultural soils to groundwater and ultimately to surface water. Measured nitrate isotopes of organic and inorganic fertilizers and of nitrate in groundwater are used to constrain a conceptual apportionment model quantifying the relative seasonal N contributions in an area of intense potato production. Source inputs differ strongly between the growing (summer and fall) and non-growing (winter and spring) periods. Chemical fertilizers and soil organic matter equally dominate and contribute to the growing period load, whereas soil organic matter dominates the non-growing period load, and accounts for over half of the overall annual nitrogen charge. These findings reveal the magnitude of nitrogen cycling by soil organic matter, and point to the benefits of controlling the timing of its nitrate release from this organic material. We conclude that strategies to attenuate contamination by nitrate in waters of temperate climate row-cropping regions must consider nitrogen cycling by soil organic matter, including the crucial role of crop residues throughout both the growing and non-growing seasons.

  11. Mercury Cycling in Agricultural and Non-agricultural Wetlands of the Yolo Bypass Wildlife Area, California: Sediment Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Marvin-Dipasquale, M. C.; Windham-Myers, L.; Alpers, C. N.; Agee, J. L.; Cox, M. H.; Kakouros, E.; Wren, S. L.

    2007-12-01

    The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, California. Land use in the YBWA consists of white and wild rice fields, seasonally flooded fallow agricultural fields, and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. A recent assessment of mercury (Hg) and methylmercury (MeHg) loads indicates that the Yolo Bypass is responsible for a high proportion of the aqueous MeHg entering the Delta, and that biota from the Yolo Bypass are considerably elevated in MeHg. The current study examines benthic MeHg production and biogeochemical controls on this process, as a function of YBWA land use, wetland management, and agricultural practices during the 2007 rice growing season (June to October). Preliminary results indicate that in the week following initial flooding of agricultural fields, prior to the establishment of rice plants, the microbial community in the 0-2 cm surface sediment zone exhibited very little potential Hg(II)-methylation activity compared to the permanent wetland habitat (as assessed via the 203Hg(II)- methylation assay). Approximately 1 month after flooding, rice plants were established and the activity of the resident Hg(II)-methylating microbial community had increased substantially in all agricultural fields, although the observed rates of MeHg production were still much lower than those observed in the permanent wetland setting. Ongoing field sampling includes analysis of reactive Hg(II) in sediments and of iron and sulfur redox species in sediments and pore waters.

  12. Performance of Seasonally and Continuously Loaded Constructed Wetlands Treating Dairy Farm Wastewater.

    PubMed

    Wood, Jeffrey D; Gordon, Robert J; Madani, Ali; Stratton, Glenn W; Bromley, Heather M

    2015-11-01

    A 2-yr study compared the performance of seasonally and continuously loaded constructed wetlands treating dairy farm wastewater. One wetland was loaded during the growing season (GS) periods only, while the other was continuously loaded. Weekly samples were analyzed for 5-d biochemical oxygen demand (BOD), total suspended solids (TSS), total Kjeldahl N (TKN), total ammoniacal N (TAN), total P (TP), and . Annual average daily mass removal rates (kg ha) were similar for both wetlands in both years; however, seasonal differences were observed. With the exception of BOD in Year 2, average daily GS areal mass removal rates were higher for the seasonal wetland. However, GS mass exports from the seasonal wetland were higher by 28 to 94%, with the exception of BOD in Year 1. Annual mass reductions (MRs; %) for nutrients were higher for the continuous wetland in both years. Annual MRs were similar for in both years and for TSS in Year 2. Annual mass exports from the seasonal wetland were higher for nutrients and by 14 to 77% in both years. Pollutant MRs generally decreased during the nongrowing season (NGS) for the continuous wetland; however, in Year 2 when lower loading rates were used, the wetland still removed 84 to 99% of the pollutant masses. The continuous wetland also performed better during periods of high flow that occurred during the GS. Although there were minimal differences in annual treatment performance, continuously loaded systems require less additional infrastructure and should require less maintenance and may, therefore, be more attractive for agricultural applications. PMID:26641349

  13. Performance of Seasonally and Continuously Loaded Constructed Wetlands Treating Dairy Farm Wastewater.

    PubMed

    Wood, Jeffrey D; Gordon, Robert J; Madani, Ali; Stratton, Glenn W; Bromley, Heather M

    2015-11-01

    A 2-yr study compared the performance of seasonally and continuously loaded constructed wetlands treating dairy farm wastewater. One wetland was loaded during the growing season (GS) periods only, while the other was continuously loaded. Weekly samples were analyzed for 5-d biochemical oxygen demand (BOD), total suspended solids (TSS), total Kjeldahl N (TKN), total ammoniacal N (TAN), total P (TP), and . Annual average daily mass removal rates (kg ha) were similar for both wetlands in both years; however, seasonal differences were observed. With the exception of BOD in Year 2, average daily GS areal mass removal rates were higher for the seasonal wetland. However, GS mass exports from the seasonal wetland were higher by 28 to 94%, with the exception of BOD in Year 1. Annual mass reductions (MRs; %) for nutrients were higher for the continuous wetland in both years. Annual MRs were similar for in both years and for TSS in Year 2. Annual mass exports from the seasonal wetla