Science.gov

Sample records for agricultural headwater catchment

  1. Transport and attenuation of chloroacetanilides in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain

    2015-04-01

    Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for

  2. How agricultural landscape features control the transfer of nutrient and eutrophication risk in headwater catchments?

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Delmas, Magalie; Dorioz, Jean-Marcel; Garnier, Josette; Moatar, Florentina; Gascuel-Odoux, Chantal

    2014-05-01

    The degradation of surface water quality due to nitrogen and phosphorus pollution is a major concern for drinking water quality and ecosystems health. Numerous studies have demonstrated that headwater catchments are large contributors of nutrient loads to downstream waters bodies. In terms of scientific understanding of the processes controlling nutrient transfers, headwater catchments are relevant spatial units to study the role of landscape features because of the relatively low contribution of point sources and in-stream processes compared to larger river networks. This paper presents an analysis of the variability in space and time of observed N and P loads for a dataset of 160 headwater catchments at a national level (France). A multivariate statistical analysis was performed to relate observed N and P loads to spatial attributes describing agricultural landscapes and the physical characteristics of the catchments: climate, topography, soils, etc. We identified factors controlling N and P loads and N:P:Si ratios in freshwaters; and specifically spatially described factors, by considering river corridors and interaction between soils and land use attributes. The same catchment dataset is used to calibrate the Nutting model, i.e. a statistical model developed to estimate nutrient emission to surface water, using readily available data in France (Dupas et al., 2013). Nutting is a statistical model linking N/P sources and catchment land and river attributes to estimate mean interannual nitrate-N, total-N, dissolved-P and total-P loads. It allows to extrapolate nutrient loads in unmonitored catchments at a national level and to estimate the risk of eutrophication in freshwaters considering Redfield's (1963) N:P:Si ratios. Results show that N is in excess over silica in 93% of French headwater bodies, and that phosphorus is in excess over silica in 26%-65% of French headwater catchments. This means that between 26% and 63% of French headwaters are at risk of

  3. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; Buda, Anthony R.; Elliott, Herschel A.; Hamlett, James; Boyer, Elizabeth W.; Schmidt, John P.

    2014-04-01

    Shallow groundwater dynamics play a critical role in determining the chemistry and movement of nitrogen (N) in the riparian zone. In this study, we characterized N concentration variability and hydrologic transport pathways in shallow groundwater draining areas of a riparian area with and without emergent groundwater seeps. The study was conducted in FD36, an agricultural headwater catchment in the Ridge and Valley physiographic region of central Pennsylvania, USA. Three seep and adjacent non-seep areas were each instrumented with a field of 40 piezometers installed in a grid pattern (1.5-m spacing) at both 20- and 60-cm depths. Piezometers were monitored seasonally for approximately two years (October 2010-May 2012). Results showed that hydraulic head within seep areas was variable and some regions exhibited upward vertical hydraulic gradients of 0.18-0.27. Non-seep areas were characterized by uniform hydraulic head levels and were relatively hydrostatic. Nitrate-N (NO3-N) concentrations in seep areas were significantly greater than those in the non-seep areas at two of the three study sites. A two-component mixing model using chloride as a conservative tracer indicated that shallow groundwater in seep areas was primarily (53-75%) comprised of water from a shallow fractured aquifer, which had elevated NO3-N concentrations (5.7 mg L-1). Shallow groundwater in non-seep areas, however, was comprised (58-82%) of perched water on top of the fragipan that was likely recharged locally in the riparian zone and had low NO3-N concentrations (0.6 mg L-1). Higher NO3-N concentrations, variable hydraulic head, and groundwater emergence onto the land surface in seep areas provided evidence for preferential flow paths as an important conduit for water and N movement in these areas of the riparian zone. We conclude that the potential for N delivery to the stream in FD36 was much greater from seep areas compared to non-seep areas. Targeted management of seeps should be a priority

  4. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  5. Spatio-temporal variability of the molecular fingerprint of soil dissolved organic matter in a headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard

    2013-04-01

    Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were

  6. Hydrologic controls on the export dynamics of dissolved and particulate phosphorus in a lowland, headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Grimaldi, Catherine; Gruau, Gérard; Gascuel-Odoux, Chantal

    2014-05-01

    Phosphorus (P) availability controls eutrophication in freshwater ecosystems, since P is generally the limiting nutrient to algal development. The contribution of diffuse P emission to surface waters is significant in intensively livestock farmed catchments as a result of high application rates of P-rich animal waste and subsequent enrichment of soils. This study investigates the transport dynamics of particulate phosphorus (PP), suspended sediments (SS), and dissolved phosphorus (DP) with the aim of elucidating the relationship between PP and DP transport mechanisms and water dynamics in lowland, headwater catchments. The selected catchment (Kervidy-Naizin catchment, France) is particularly suitable for this purpose as it benefits of a 5 years, high-frequency monitoring of PP and DP concentrations at its outlet, including data recovered both during base flow and storm periods, with the monitoring of more than 50 storm flow events. The data analysis includes interpretation of concentration-discharge relationships at the annual time scale and on an event basis, seasonal analysis of flood characteristics and empirical modeling. Annual DP and PP concentration-discharge relationships of interflood samples display a hysteretic pattern, with higher concentrations during the autumn and spring periods, and progressive decrease during winter. No hysteretic pattern is visible for interflood SS concentration, which follows a classical C=a*Qb relationship. During floods, the dynamic of PP export is similar to that of SS during most of the events: the concentration peak occurs during the rising limb of the hydrogram (clockwise hysteresis), suggesting a source close to or within the stream. The amplitude and the hysteresis' loop size for SS and PP are a function of maximum discharge and rate of change in discharge. On the contrary, there is a strong decoupling between DP and SS (and thus PP) during most of the floods (no significant correlation), with DP concentration peaks

  7. Ecosystem Services Derived from Headwater Catchments

    EPA Science Inventory

    We used data from the USEPA’s wadeable streams assessment (WSA), US Forest Service’s forest inventory and analysis (FIA), and select USFS experimental forests (EF) to investigate potential ecosystems services derived from headwater catchments. C, N, and P inputs to these catchmen...

  8. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment.

    PubMed

    Exner-Kittridge, Michael; Strauss, Peter; Blöschl, Günter; Eder, Alexander; Saracevic, Ernis; Zessner, Matthias

    2016-01-15

    Our study examines the source aquifers and stream inputs of the seasonal water and nitrogen dynamics of a headwater agricultural catchment to determine the dominant driving forces for the seasonal dynamics in the surface water nitrogen loads and concentrations. We found that the alternating aquifer contributions throughout the year of the deep and shallow aquifers were the main cause for the seasonality of the nitrate concentration. The deep aquifer water typically contributed 75% of the total outlet discharge in the summer and 50% in the winter when the shallow aquifer recharges due to low crop evapotranspiration. The shallow aquifer supplied the vast majority of the nitrogen load to the stream due to the significantly higher total nitrogen concentration (11 mg-N/l) compared to the deep aquifer (0.50 mg-N/l). The main stream input pathway for the shallow aquifer nitrogen load was from the perennial tile drainages providing 60% of the total load to the stream outlet, while only providing 26% of the total flow volume. The diffuse groundwater input to the stream was the largest input to the stream (39%), but only supplied 27% to the total nitrogen load as the diffuse water was mostly composed of deep aquifer water. PMID:26562340

  9. Guiding soil conservation strategy in headwater mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Ben Slimane, Abir; Raclot, Damien; Evrard, Olivier; Sanaa, Mustapha; Lefèvre, Irène; Le Bissonnais, Yves

    2016-04-01

    Reservoir siltation due to water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. In order to reduce water erosion, this study aimed to design a methodology for guiding the implementation of efficient conservation strategies by identifying the dominant sediment sources in Mediterranean context. To this end, a fingerprinting method was combined with long-term field monitoring of catchment sediment yield in five headwater catchments (0.1-10 km2) equipped with a small reservoir between 1990 and 1995. The five catchments were chosen to cover the large diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. The fingerprinting techniques based on measurements of cesium-137 and Total Organic Carbon within the catchments and in reservoir sediment deposits successfully identified the contribution of rill/interrill and gully/channel erosion to sediment yield at the outlet of five small headwater catchments during the last 15-20 years. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. This demonstrates that the dominant erosion process in the Mediterranean regions highly depends on the local environmental context. The lowest rill/interrill erosion contribution (2.2 Mg ha-1 yr-1) in the five catchments remained significantly higher than the tolerable soil loss indicating the severe levels reached by soil erosion along the Tunisian Ridge and in the Cape Bon region. This study also showed that although the implementation of improved topsoil management measures greatly reduced rill

  10. Analysis of groundwater flow in mountainous, headwater catchments with permafrost

    NASA Astrophysics Data System (ADS)

    Evans, Sarah G.; Ge, Shemin; Liang, Sihai

    2015-12-01

    Headwater catchments have a direct impact on the water resources of downstream lowland regions as they supply freshwater in the form of surface runoff and discharging groundwater. Often, these mountainous catchments contain expansive permafrost that may alter the natural topographically controlled groundwater flow system. As permafrost could degrade with climate change, it is imperative to understand the effect of permafrost on groundwater flow in headwater catchments. This study characterizes groundwater flow in mountainous headwater catchments and evaluates the effect of permafrost in the context of climate change on groundwater movement using a three-dimensional, finite element, hydrogeologic model. The model is applied to a representative headwater catchment on the Qinghai-Tibet Plateau, China. Results from the model simulations indicate that groundwater contributes significantly to streams in the form of baseflow and the majority of groundwater flow is from the shallow aquifer above the permafrost, disrupting the typical topographically controlled flow pattern observed in most permafrost-free headwater catchments. Under a warming scenario where mean annual surface temperature is increased by 2°C, reducing the areal extent of permafrost in the catchment, groundwater contribution to streamflow may increase three-fold. These findings suggest that, in headwater catchments, permafrost has a large influence on groundwater flow and stream discharge. Increased annual air temperatures may increase groundwater discharge to streams, which has implications for ecosystem health and the long-term availability of water resources to downstream regions.

  11. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  12. Runoff generation mechanism at two distinct headwater catchments - isotopic evidence

    NASA Astrophysics Data System (ADS)

    Dohnal, Michal; Votrubová, Jana; Šanda, Martin; Tesař, Miroslav; Vogel, Tomáš; Dušek, Jaromír

    2016-04-01

    Data from two headwater catchments indicate considerably different runoff formation mechanisms. The contributions of different surface and subsurface runoff mechanisms to the catchment discharge formation at these two small forested headwater catchments are studied with help of the natural isotopic signatures of the observed fluxes. The Uhlirska catchment (1.78 sq. km, Jizera Mts., Czech Republic) is situated in headwater area of Cerna Nisa stream. Deluviofluvial granitic sediments in the valley bottom areas (riparian zones/wetlands) are surrounded by gentle hillslopes with shallow soils developed on crystalline bedrock. The Liz catchment (0.99 sq. km, Bohemian Forest, Czech Republic) belongs to hillslope-type catchments without riparian zones situated in headwater area of Volynka River. The soil at Liz is developed on biotite paragneiss bedrock. Autocorrelation analysis of the measured catchment discharge rates reveals different hydrograph characteristics for each of the two catchments. Estimated autocorrelation lengths differ by an order of magnitude. Variations of oxygen-18 isotope concentrations in precipitation, groundwater and streamflow were analyzed. Several significant rainfall-runoff events at each of the two catchments were analyzed in detail. These events exhibit substantial difference in isotopic compositions of event and pre-event water, which facilitates hydrograph separation. Clockwise and counterclockwise hysteretic relationships between the stream discharge and its isotope concentration were identified. Results were confronted with the previously published concepts of the runoff formation at the catchments under study. The research was funded by the Czech Science Foundation, project No. 14-15201J.

  13. Boulder distribution in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Golly, Antonius; Turowski, Jens; Badoux, Alexandre; Hovius, Niels

    2016-04-01

    Headwater catchments are usually transport limited fluvial systems meaning that large amounts of sediments are stored in the channel over long time periods until transport capacity rises during flood events. Available sediment fractions include small, frequently mobile grains and large, rarely mobile clasts or boulders that have a number of functions in the fluvial system. Often, large clasts build channel-spanning forms, bear most of the shear stress and contribute to the channel's resistance and stability. Boulders often induce steps (key-stone hypothesis) where grain diameters determine the step height. Although the effects of single boulders are well studied in various lab and field experiments, extensive analysis of boulder distributions along channel reaches are rare due to the lack of observational data. Here, we analyze a large dataset of boulders in the Erlenbach, Switzerland, a mountain stream with a mean slope of 17%. Data on size, orientation and location have been collected for more than 350 boulders with a grain diameter greater 50cm (b-axis) along a 550m channel reach. In addition, channel geometry - long-profile and channel width - has been surveyed precisely with a total station. From the long-profile steps are identified with an automated algorithm. We find that the spatial distribution of the boulders along the study reach is not uniform but follows a clustered pattern. We compare the location of the boulders to various channel measures (local slope, average gradient, channel width) to find valuable proxies. Furthermore, we determine the appearance of the boulders with respect to the identified steps.

  14. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    NASA Astrophysics Data System (ADS)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  15. Biotic controls on solute distribution and transport in headwater catchments

    NASA Astrophysics Data System (ADS)

    Herndon, E. M.; Dere, A. L.; Sullivan, P. L.; Norris, D.; Reynolds, B.; Brantley, S. L.

    2015-01-01

    Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of headwater catchments underlain by shale in Pennsylvania, USA (Shale Hills) and Wales, UK (Plynlimon), dissimilar concentration-discharge behaviors are best explained by contrasting landscape distributions of soil solution chemistry - especially dissolved organic carbon (DOC) - that have been established by patterns of vegetation. Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic "bioactive" behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where soil organic matter (SOM) is dominantly in lowlands (e.g., Shale Hills), bioactive elements are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), bioactive elements are released later during rainfall events. The distribution of vegetation and SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.

  16. A synoptic survey of ecosystem services from headwater catchments in the United States- webinar

    EPA Science Inventory

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...

  17. A synoptic survey of ecosystem services from headwater catchments in the United States (presentation)

    EPA Science Inventory

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...

  18. Hydrogeomorphic paradigm of stormflow generation in headwater catchments

    NASA Astrophysics Data System (ADS)

    Sidle, Roy C.

    2015-04-01

    Over the past century, different paradigms have emerged to explain the processes of stormflow generation in steep, vegetated headwater catchments. These headwaters are important source areas of flood waters, sediments, nutrients, and biota that affect larger basins and coastal waters. Headwater systems exhibit unique and complex hydrogeomorphic processes from hillslopes to stream channels as well as linkages to downstream reaches. Through the 1960's, stormflow generation was largely attributed to Hortonian overland flow mechanisms. While numerous studies indicated the significance of saturated and unsaturated subsurface flow, it was not until the mid-1960's that the variable source area concept of streamflow generation emerged invoking a dynamic riparian source area that shrinks and expands in response to precipitation and fluctuating water tables. However, this concept does not specify flow mechanisms or pathways functioning at different spatial scales within the catchment. Based on extensive studies in nested, headwater catchment components in Japan, a conceptual hydrogeomorphic model has been developed to more explicitly explain stormflow pathways and response. The conceptual model recognizes the close coupling of hillslope and channel hydrological processes and the unique contributions of geomorphic features such as riparian corridors, geomorphic hollows, and linear hillslopes. During the driest conditions, catchment water yield is very low and runoff occurs as saturated overland flow from the narrow riparian corridors and via direct channel interception. For slightly wetter conditions, subsurface flow from the soil matrix augments stormflow. As wetness increases, two significant non-linear hydrologic responses occur: (1) response from geomorphic hollows (zero-order basins) after a threshold of shallow groundwater accumulates; and (2) self-organization and expansion of preferential flow pathways that facilitate significant amounts of subsurface drainage. The

  19. Comparison of subsurface connectivity in Alpine headwater catchments

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Rinderer, Michael; van Meerveld, Ilja; Penna, Daniele; Borga, Marco

    2016-04-01

    Saturation at the soil-bedrock interface or the rise of shallow groundwater into more permeable soil layers results in subsurface stormflow and can lead to hillslope-stream connectivity. Despite the importance of subsurface connectivity for streamflow and streamwater chemistry, the factors controlling its spatial and temporal variability are still poorly understood. This study takes advantage of networks of spatially-distributed piezometers in five small (<14 ha) headwater catchments in the Italian Dolomites and the Swiss pre-Alps to i) quantify and compare the spatial and temporal variability of subsurface connectivity and its relation to streamflow, and ii) assess whether the differences in connectivity between the catchments are related to climatological or morphological characteristics of the catchments (e.g. the presence of a riparian zone). Shallow groundwater levels were measured for two years from spring to fall in 16 and 12 piezometers in the 14 and 3.3 ha catchments in the Italian Dolomites, and for four years from spring to fall in 7-8 piezometers in three <1 ha Swiss pre-alpine catchments. Subsurface connectivity was quantified by a graph-theory approach, considering linear connections (edges) between the piezometers (nodes). A node was considered to be connected to the stream when shallow groundwater was observed in the piezometer and it was connected by the edges to the stream. Weights were given to each piezometer based on Thiessen polygons to determine the area of the catchment that was connected to the stream. For the Swiss pre-alpine catchments the duration that nodes were connected to the stream was significantly correlated to the local and upslope site characteristics, such as the topographic wetness index, local slope and curvature. For the dolomitic catchment with the largest riparian zone, the time that nodes were connected to the stream was correlated with downslope site characteristics, such as the vertical distance to the nearest stream

  20. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  1. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  2. Before and after integrated catchment management in a headwater catchment: changes in water quality.

    PubMed

    Hughes, Andrew O; Quinn, John M

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures. PMID:25228091

  3. Before and after integrated catchment management in a headwater catchment: changes in water quality.

    PubMed

    Hughes, Andrew O; Quinn, John M

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  4. Carbon fluxes in an acid rain impacted boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m-2 yr-1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42- accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  5. Carbon fluxes in an acid rain impacted boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m‑2 yr‑1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42‑ accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  6. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  7. Mean transit times in contrasting headwater catchments from southeast Australia determined using Tritium

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Morgenstern, Uwe; Irvine, Dylan

    2016-04-01

    Headwater streams contribute a significant proportion of the total discharge of many river systems. However, despite their importance, the time taken for rainfall to pass through the catchment into the streams (the transit time) in headwater catchments is largely unknown as are the catchment characteristics (such as drainage density, topography, landuse, or geology) that determine variations in transit times. Because the peak in Tritium activities in rainfall produced by atmospheric nuclear tests in the1950's and 1960's (the "bomb-pulse") was several orders of magnitude lower in the southern hemisphere than in the northern hemisphere, Tritium activities of remnant bomb pulse water in the southern hemisphere have decayed below those of modern rainfall. This allows mean transit times to be estimated from single Tritium measurements. Here we use Tritium to estimate transit times of water contributing to perennial streams in the adjacent upper catchments of the Yarra and Latrobe Rivers (southeast Australia). Samples were collected at varying flow from six headwater tributary sites in the Latrobe catchment, which is largely forested and four tributaries in the Yarra catchment which has been extensively cleared for dryland agriculture. The lowest Tritium activities were recorded during summer baseflow conditions and are between 1.25 and 1.75 TU, these are significantly below the Tritium activity of local rainfall (~2.8 TU). Mean transit times calculated using an exponential-piston flow lumped parameter model are 21 to 47 years. Tritium activities during the recession periods following winter high flows are higher (1.54 to 2.1 TU), which may reflect either the dilution of a baseflow component with recent surface runoff or mobilisation of different stores of water with different residence times (e.g., from the soils or the regolith) from within the catchment. The variation of major ion concentrations with discharge suggests it is more likely that that different stores of

  8. Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen.

    PubMed

    Heinz, Marlen; Graeber, Daniel; Zak, Dominik; Zwirnmann, Elke; Gelbrecht, Joerg; Pusch, Martin T

    2015-02-17

    Agricultural management practices promote organic matter (OM) turnover and thus alter both the processing of dissolved organic matter (DOM) in soils and presumably also the export of DOM to headwater streams, which intimately connect the terrestrial with the aquatic environment. Size-exclusion chromatography, in combination with absorbance and emission matrix fluorometry, was applied to assess how agricultural land use alters the amount and composition of DOM, as well as dissolved organic nitrogen (DON) forms in headwater streams, including temporal variations, in a temperate region of NE Germany. By comparing six agriculturally and six forest-impacted headwater streams, we demonstrated that agriculture promotes increased DOC and DON concentrations, entailing an even more pronounced effect on DON. The major part of DOC and DON in agricultural and forest reference streams is exported in the form of humic-like material with high molecular weight, which indicates terrestrial, i.e., allochthonous sources. As an obvious difference in agricultural streams, the contribution of DOC and particularly DON occurring in the form of nonhumic high-molecular-weight, presumably proteinous material is clearly elevated. Altogether, DOM in agricultural headwaters is mainly complex-soil-derived and aromatic material with a low C:N ratio, which is more microbial processed than its counterpart from forest reference catchments. Our results emphasize the importance of agricultural land use on DOM loss from soils and identify agricultural soils as important DOC and particularly DON sources to headwater streams. PMID:25594834

  9. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These

  10. Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations

    USGS Publications Warehouse

    McGlynn, B.L.; McDonnell, Jeffery J.; Seibert, J.; Kendall, C.

    2004-01-01

    [1] The effects of catchment size and landscape organization on runoff generation are poorly understood. Little research has integrated hillslope and riparian runoff investigation across catchments of different sizes to decipher first-order controls on runoff generation. We investigated the role of catchment sizes on riparian and hillslope dynamics, based on hydrometric and tracer data observed at five scales ranging from trenched hillslope sections (55-285 m 2) to a 280-ha catchment at Maimai on the west coast of the South Island, New Zealand. The highly organized landscape is comprised of similar headwater catchments, regular geology, steep highly dissected topography, relatively consistent soil depths, and topographically controlled shallow through flow. We found a strong correlation between riparian zone groundwater levels and runoff for the headwaters, whereas the water tables in the valley bottom of the larger catchments were uncorrelated to runoff for 14 months of record. While there was no clear relationship between catchment size and new water contribution to runoff in the two storms analyzed in detail, lag times of tracer responses increased systematically with catchment size. The combination of hydrometric and tracer data allowed assessment of the runoff contributions from different parts of the landscape. Runoff was generated consistently in headwater riparian zones. This agreed also with the observed variations of tracer (18O and silica) responses for the different catchments. During wetter antecedent conditions or during larger events (>30 mm under dry antecedent conditions) hillslope and valley bottom floodplains did contribute to event runoff directly. We propose that analysis of landscape-scale organization and the distribution of dominant landscape features provide a structure for investigation of runoff production and solute transport, especially as catchment-scale increases from headwaters to the mesoscale.

  11. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    EPA Science Inventory

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  12. Implications of fish-habitat relationships for designing restoration projects within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized headwater streams are common throughout agricultural watersheds in the Midwestern United States. Management of these streams focuses on drainage without consideration of the other ecosystem services they are capable of providing. Restoration of channelized agricultural headwater stream...

  13. Estimation of pesticide and transformation product export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Olsson, Oliver; Stamm, Christian; Weiler, Markus; Lange, Jens; Kümmerer, Klaus

    2014-05-01

    Following their application, pesticide residues are exported towards rivers along several hydrological pathways in agricultural areas. The importance of each pathway is influenced by the substances' physico-chemical characteristics, mainly sorption and degradation. Incomplete mineralization results in the formation of transformation products (TPs) which have generally different environmental fate characteristics than their parent compounds (PCs). Therefore, the export pathways of pesticides and their transformation products towards rivers may also be different. In order to investigate this hypothesis, we extended a distributed process-based hydrological model (ZIN-AgriTra) by the environmental fate of pesticides and their TPs. The process-based nature of the model allowed for an analysis of PC and TP export pathways including overland flow, lateral preferential flow in soils and soil water flow to tile drains. The model was applied to a Swiss headwater catchment using three pesticides and their TPs as test substances. It was successfully calibrated to three sampling stations in the catchment. At the end of the simulated three-months period, most of the applied pesticides were either fully mineralized or incompletely transformed. Less than 2% of each pesticide was exported to the river as PC or TP. Although all three pesticides could be classified as slightly mobile they remained in the top soil layer during the whole period, whereas the more mobile TPs were additionally leached through the soil towards tile drains. Accordingly, PCs were exported largely by surface runoff, while a larger share of TPs was exported via tile drains. Additionally, the delayed formation and degradation of TPs led to an export under different hydrological conditions resulting in an increased subsurface export of TPs towards the end of the simulation period. A consequence of the different export pathways of PCs and TPs could be shown by an assessment of critical source areas (CSA) in the

  14. A synoptic survey of ecosystem services from headwater catchments in the United States

    EPA Science Inventory

    We combined data collected from 568 headwater streams as a part of the US Environmental Protection Agency’s National Rivers and Streams Assessment (NRSA) with catchment attributes related to the production of the ecosystem services of water supply, carbon, nitrogen, and phosphoru...

  15. Understanding drivers of the export of dissolved organic carbon from a German headwater catchment using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Musolff, Andreas; Tittel, Jörg

    2016-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of nitrate stimulated the microbial reduction of ferric iron soil minerals and the mobilisation of DOC. Forested catchments are relatively unaffected by agricultural and urban nitrate inputs. In these catchments, decreasing depositions often resulted in a reduced availability of nitrate, which are preferred electron acceptors in microbial decomposition processes. As ferric iron minerals act as efficient sorbents of organic compounds in soils its reduction may cause a release of humic substances and hence an export of DOC. To test this hypothesis, time series of DOC, dissolved iron and nitrate from a forested headwater catchment in Germany were examined using Generalised Additive Models. We found that rising DOC concentrations most likely resulted from a reductive dissolution of iron(III) minerals in soils and the associated mobilisation of adsorbed organic carbon. Phosphate, which can trigger undesired algal growth and is also known to be adsorbed by particulate iron(III), was released as well.

  16. Influence of catchment land cover on stoichiometry and stable isotope compositions of basal resources and macroinvertebrate consumers in headwater streams

    EPA Science Inventory

    Anthropogenic land use affects aquatic landscapes. For example, landscape-level conversion to urban or agricultural land can heavily influence nutrient cycles in headwater streams via increased nutrient loading and altered hydrologic patterns. Recent studies in headwater streams ...

  17. Chemical weathering and runoff chemistry in a steep headwater catchment

    NASA Astrophysics Data System (ADS)

    Anderson, Suzanne Prestrud; Dietrich, William E.

    2001-07-01

    We present here deductions about the location, rate, and mechanisms of chemical weathering in a small catchment based on a catchment-scale sprinkling experiment. In this experiment demineralized water was applied at an approximately steady rate in the CB1 catchment in the Oregon Coast Range to reach and maintain a quasi-steady discharge for a period of 4 days. Because of nearly steady flow conditions within the catchment, the contribution to solute fluxes from soil and bedrock could be partitioned. One half of the solute flux from the catchment derived from colluvial soil, and one half from weathering in bedrock. This implies more intense weathering in the thin colluvium mantling the catchment than in the thick underlying weathered bedrock. The annual solute flux from the catchment, scaled to the annual runoff from the catchment, is 32 +/- 10 t km-2 year-1, equivalent to published chemical denudation rates for nearby rivers with drainage areas 106 times greater than the experiment site. Soil waters sampled during the sprinkling experiment had steady compositions following a period of transient water flow conditions, implying steady-state chemical evolution in the soil. The waters leached organic anions from shallow depths in the soil, which solubilized aluminium and iron, indicating that podzolization is occurring in these soils. Carbonate dissolution appears to be an important source of solutes from the bedrock, despite being present as only a minor phase in the rock. Water balance suggests that the residence time of water in the catchment is about 2 months, and that typical 24 h storms displace only a fraction of the stored water. A consequence is that runoff chemistry is dominated by old water, which imposes strong limits on the variability of runoff composition.

  18. Influence of catchment characteristics on the spatio-temporal dynamics of streamwater temperatures in montane headwaters

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Soulsby, Chris

    2014-05-01

    Streamwater temperature is an important physical parameter in riverine ecosystems. It governs many processes; from water quality to biogeochemical dynamics, and is thus essential to consider when producing river basin management plans. The thermal regimes of streams are determined by a complex series of inter-linkages which can be categorised in one of the three groups: atmospheric conditions, terrestrial controls and stream geomorphology. The climatic conditions are the most important factors as they are the drivers of the processes of heat fluxes at the air-surface interface, however terrestrial and aquatic factors such as elevation, aspect and vegetation are the main modulators of the atmospheric processes. Here we will couple spatially distributed streamwater, groundwater and riparian wetland surface water temperatures to provide insight into dynamics and controls of thermal dynamics at different spatial and temporal scales. The study is located in a 3.2 km2 upland watershed in the North East Scottish Highlands, and covers an 18 month period of measurements. The objectives are to characterise the streamwater thermal fingerprints of the three different headwaters with contrasting landscape description units (fen dominated, steep valley and a wetland dominated corrie), and infer the controls on the spatial and temporal patterns of water temperature throughout the catchment stream network. Results indicate that the temperature of the stream represents the energy balance of the source areas when the riparian zone is connected with the stream network and not just the energy balance of the stream network alone. There are significant differences between the characteristically different headwaters with a significant reduction in the diurnal temperature variability in the largest headwater catchment. The headwater catchment also contains the greatest percentage of wetland soils suggesting groundwater contributions act in the dampening of streamwater temperatures

  19. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the

  20. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  1. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments.

    PubMed

    Perks, M T; Owen, G J; Benskin, C McW H; Jonczyk, J; Deasy, C; Burke, S; Reaney, S M; Haygarth, P M

    2015-08-01

    Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the

  2. Investigation of Biogeochemical Functional Proxies in Headwater Streams Across a Range of Channel and Catchment Alterations

    NASA Astrophysics Data System (ADS)

    Berkowitz, Jacob F.; Summers, Elizabeth A.; Noble, Chris V.; White, John R.; DeLaune, Ronald D.

    2014-03-01

    Historically, headwater streams received limited protection and were subjected to extensive alteration from logging, farming, mining, and development activities. Despite these alterations, headwater streams provide essential ecological functions. This study examines proxy measures of biogeochemical function across a range of catchment alterations by tracking nutrient cycling (i.e., inputs, processing, and stream loading) with leaf litter fall, leaf litter decomposition, and water quality parameters. Nutrient input and processing remained highest in second growth forests (the least altered areas within the region), while recently altered locations transported higher loads of nutrients, sediments, and conductivity. Biogeochemical functional proxies of C and N input and processing significantly, positively correlated with rapid assessment results (Pearson coefficient = 0.67-0.81; P = 0.002-0.016). Additionally, stream loading equations demonstrate that N and P transport, sediment, and specific conductivity negatively correlated with rapid assessment scores (Pearson coefficient = 0.56-0.81; P = 0.002-0.048). The observed increase in stream loading with lower rapid assessment scores indicates that catchment alterations impact stream chemistry and that rapid assessments provide useful proxy measures of function in headwater ecosystems. Significant differences in nutrient processing, stream loading, water quality, and rapid assessment results were also observed between recently altered (e.g., mined) headwater streams and older forested catchments (Mann-Whitney U = 24; P = 0.01-0.024). Findings demonstrate that biogeochemical function is reduced in altered catchments, and rapid assessment scores respond to a combination of alteration type and recovery time. An analysis examining time and economic requirements of proxy measurements highlights the benefits of rapid assessment methods in evaluating biogeochemical functions.

  3. Reach-scale geomorphic differences between headwater streams draining mountaintop mined and unmined catchments

    NASA Astrophysics Data System (ADS)

    Jaeger, Kristin L.

    2015-05-01

    Mountaintop surface mining (MTM) is a controversial coal extraction method commonly practiced in the central and southern Appalachian Mountains, USA, that drastically reengineers previously steep, forested landscapes and alters sediment and water delivery processes to and along headwater channels draining mined areas. Although sediment delivery and hydrologic response from MTM operations remain highly variable and poorly resolved, the inherent close coupling between hillslopes and headwater channels is expected to result in geomorphic differences in stream channels draining MTM landscapes relative to unmined landscapes. Dedicated geomorphic studies are severely lacking in comparison to extensive research on water quality impacts of MTM. This study reports moderate geomorphic differences between headwater (catchment area <~ 6 km2) stream channels draining MTM and unmined catchments in tributaries of the Mud River in southern West Virginia. Univariate and multivariate analyses indicate that MTM streams are characterized by deeper maximum channel depths, smaller width-to-depth ratios, increased bedrock exposure along the streambed, and increased frequency of very fine silt and sand deposition relative to channels draining unmined catchments. Geomorphic differences are most pronounced for streams draining the smallest catchment areas (< 3.5 km2). Collectively, geomorphic differences provide evidence for relatively rapid channel adjustment of accelerated bedrock incision attributed to potential increased hydraulic driving forces and altered sediment regimes in MTM channels, notably sustained delivery of very fine sediment and potentially reduced coarse sediment delivery. More rapid delivery and transfer of water in addition to excess delivery of very fine sediments to and through headwater channels will have consequences to flooding and water quality in the short term and landscape evolution processes over longer time scales. Given the extent of MTM operations in this

  4. Unraveling soil moisture responses to storms and relationships to runoff in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2015-12-01

    Soil moisture exhibits complex spatiotemporal patterns, both laterally across landscapes and vertically within soil profiles. These patterns of soil moisture can have strong influences on runoff generation, especially in catchments having large capacities for soil water storage and transmission. The body of literature on runoff generation is expansive, yet we still have a great deal to learn about how the spatial and temporal heterogeneity of soil moisture influences catchment-scale hydrologic responses to storm events. With this in mind, we investigated soil moisture responses to storm events across several landscape positions in a steep, forested headwater catchment. We measured volumetric water content (VWC) continuously for two years at 45 points representing different combinations of landscape position and soil depth within a 13 ha catchment at Coweeta Hydrologic Laboratory in the Southern Appalachian Mountains. We also monitored shallow groundwater levels at six locations within the catchment along with runoff at the catchment outlet. To investigate soil moisture response during events, we assessed absolute change in magnitude of VWC (Δs) and lag time (Δt) between peak VWC and peak precipitation for 39 events during the two-year study period. Our results showed that storm depth and antecedent moisture explained some of the spatiotemporal patterns of Δs; however, the explanatory power varied with the hillslope and season. Furthermore, we did not detect topographic control of Δs or Δt at most of the locations monitored. By evaluating the sequence of Δt, groundwater response, and runoff response for each storm, we characterized the hydrologic behavior of the study hillslopes for the 39 storm events.The characterization of hydrologic behavior reveals interrelationships between soil moisture and shallow groundwater, and their combined influence on runoff at the catchment outlet. This work provides new insights on links between the spatiotemporal variability

  5. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  6. Relative importance of water chemistry and habitat to fish communities in headwater streams influenced by agricultural land use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized headwater streams are common throughout agricultural watersheds in the Midwestern United States. Understanding the relative impacts of agricultural contaminants and habitat degradation on the aquatic biota within agricultural headwater streams will provide information that can assist wi...

  7. Rapid decomposition of maize detritus in agricultural headwater streams.

    PubMed

    Griffiths, Natalie A; Tank, Jennifer L; Royer, Todd V; Rosi-Marshall, Emma J; Whiles, Matt R; Chambers, Catherine P; Frauendorf, Therese C; Evans-White, Michelle A

    2009-01-01

    Headwater streams draining agricultural landscapes receive maize leaves (Zea mays L.) via wind and surface runoff, yet the contribution of maize detritus to organic-matter processing in agricultural streams is largely unknown. We quantified decomposition and microbial respiration rates on conventional (non-Bt) and genetically engineered (Bt) maize in three low-order agricultural streams in northwestern Indiana, USA. We also examined how substrate quality and in-stream nutrient concentrations influenced microbial respiration on maize by comparing respiration on maize and red maple leaves (Acer rubrum) in three nutrient-rich agricultural streams and three low-nutrient forested streams. We found significantly higher rates of microbial respiration on maize vs. red maple leaves and higher rates in agricultural vs. forested streams. Thus both the elevated nutrient status of agricultural streams and the lability of maize detritus (e.g., low carbon-to-nitrogen ratio and low lignin content) result in a rapid incorporation of maize leaves into the aquatic microbial food web. We found that Bt maize had a faster decomposition rate than non-Bt maize, while microbial respiration rates did not differ between Bt and non-Bt maize. Decomposition rates were not negatively affected by genetic engineering, perhaps because the Bt toxin does not adversely affect the aquatic microbial assemblage involved in maize decomposition. Additionally, shredding caddisflies, which are known to have suppressed growth rates when fed Bt maize, were depauperate in these agricultural streams, and likely did not play a major role in maize decomposition. Overall, the conversion of native vegetation to row-crop agriculture appears to have altered the quantity, quality, and predictability of allochthonous carbon inputs to headwater streams, with unexplored effects on stream ecosystem structure and function. PMID:19323178

  8. Examining the effects of forest thinning on runoff responses at different catchments scales in forested headwaters

    NASA Astrophysics Data System (ADS)

    Dung, B. X.; Gomi, T.; Onda, Y.; Kato, H.; Hiraoka, M.

    2012-12-01

    We conducted field observation in nested headwater catchments draining Japanese cypress (Chamaecyparis obtusa) and cedar (Cryptomeria japonica) forests at Tochigi prefectures for examining the effects of forest thinning on runoff generation at different catchment scales. 50% of the stems was removed with line thinning in catchment K2 (treatment catchment), while catchment K3 remained untreated as a control. We also monitored nested catchments within K2-1 (17.1 ha) as K2-2 (10.2 ha), K2-3 (3.7 ha) and K2-4 (5.1 ha), and within K3-1 (8.9 ha) as K3-2 (3.0 ha). Runoff from the catchments was monitored during the pre-thinning (from April, 2010 to May 2011), and the post-thinning periods (from June 2011 to July 2012). Paired-catchment and hydrograph separation analysis were used to evaluate the effects of forest thinning on runoff generation at different catchment scales. We developed the pre-thinning calibration equation for predicting post-thinning responses. Paired-catchment analysis revealed that annual catchment runoff increased 648 mm in K2-1, 414 mm in K2-2, 517 mm in K2-3 and 487 mm in K2-4 after the thinning. Both quick and delayed runoff components only increased significantly in the larger catchments of K2-1 and K2-2, while only delayed runoff components of smaller catchments (K2-3 and K2-4) increased significantly during the post-thinning period. Increases of quick runoff in large catchments could be associated with quick runoff response to soil surface compaction by line thinning and skid trail installation. Increases of delayed runoff in small catchment may be associated with increase in net precipitation and decrease in evapotranspiration. Our finding showed that changes in internal hydrological flow pathways and associated changes in runoff components due to forest harvesting differ depending on the catchment sizes.

  9. Characteristics of instream wood within channelized agricultural headwater streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instre...

  10. Importance of instream wood characteristics for developing restoration designs for channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instr...

  11. The Role of Bedrock Groundwater in Rainfall-Runoff Process at Hillslope and Catchment Scales in a Headwater Catchment with Sub-Humid Climate

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, F.; Hu, H.; Tie, Q.

    2014-12-01

    Recent studies have suggested that bedrock groundwater can exert considerable influence on rainfall-runoff process in headwater catchments. However, study of the role of bedrock groundwater on rainfall-runoff process in a headwater catchment is still challenged due to limited direct observation data of bedrock groundwater. In this study, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with semi-humid climate. We selected a headwater catchment of Miyun Reservoir, which is an important drinking water source of Beijing, as study area. The catchment bedrock is mainly consists of fractured granite. Major chemical constituents and stable isotopic compositions (δ18O, δD) were analyzed roughly monthly from July 2013 to July 2014 for rainwater, spring water and groundwater in the study area and neighboring catchment. Eleven wells with depth ranged from 5 to 26 m were drilled in three slopes to monitor the bedrock water table. Two soil moisture observation locations were arranged in one hillslope, and a weather station was installed to measure soil moisture and rainfall with 10-mintue interval. The recharge mechanism of bedrock groundwater is explored by combined use of hydrometric and hydrochemical approaches.

  12. Effects of evapotranspiration on baseflow in a tropical headwater catchment

    NASA Astrophysics Data System (ADS)

    Cadol, Daniel; Kampf, Stephanie; Wohl, Ellen

    2012-09-01

    SummaryDiel cycles in stream discharge during baseflow periods in a headwater stream in La Selva Biological Station, Costa Rica, a tropical wet forest site, appear to be associated with groundwater withdrawal by the forest for evapotranspiration (ET). Analysis of the cycles indicates a strong correlation of stage change with ET demand, similar to the variation found in riparian water table elevation by previous researchers. Links between daily forest ET demand cycles and stream discharge cycles have been reported in temperate humid and semi-arid regions, but the frequent flood hydrographs of the wet tropics tend to obscure this daily signal. This study modifies and combines two established empirical methods for analyzing the diel ET signal in streamflow which lead to estimates of riparian ET derived from groundwater (ETG) at hourly time scales and spatial extent of the riparian area. The model has a direct dependence on the estimate of specific yield, a difficult to constrain parameter, which we estimate from previously published soil analyses. For the six baseflow periods analyzed, the model estimates groundwater ET losses ranging from 1.8 to 3.9 mm/day within the riparian area. These estimates are 52-81% of the total ET estimated with the Penman-Monteith equation (ETPM). The signal of ETG in the stream lags ETPM by 1.5-3 h, with apparent peak decay and signal duration lengthening during propagation. Model results indicate that the area of the riparian zone that influences streamflow by means of ET withdrawal increases with stream stage and ranges from 2.5% to 6.6% of the total basin area. Variations in the rate of change of nightly stream stage recovery suggest possible variations in the relative importance of subsurface hydraulic properties. At high stages, the rate of stream stage recovery from ET losses decreases throughout the night, whereas at low stages the rate of stream stage recovery increases throughout the night. Future work with numerical models could

  13. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].

    PubMed

    Yang, Yong-Gang; Li, Cai-Mei; Qin, Zuo-Dong; Zou, Song-Bing

    2014-06-01

    There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.

  14. Landscape heterogeneity drives contrasting concentration-discharge relationships in shale headwater catchments

    NASA Astrophysics Data System (ADS)

    Herndon, E. M.; Dere, A. L.; Sullivan, P. L.; Norris, D.; Reynolds, B.; Brantley, S. L.

    2015-08-01

    Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration-discharge (C-Q) behaviors are best explained by contrasting landscape distributions of soil solution chemistry - especially dissolved organic carbon (DOC) - that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration-discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in

  15. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  16. Annual and seasonal differences in pesticide mixtures within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a limited amount of information on pesticide mixtures within agricultural headwater streams is available. A greater understanding of the characteristics of pesticide mixtures and their spatial and temporal trends within agricultural headwater streams is needed to evaluate the risks of pesticid...

  17. The role of groundwater in streamflow in a headwater catchment with sub-humid climate

    NASA Astrophysics Data System (ADS)

    Liu, Yaping; Tian, Fuqiang; Hu, Hongchang; Tie, Qiang

    2015-04-01

    Recent studies have suggested that bedrock groundwater can exert considerable influence on streamflow in headwater catchments under humid climate. However, study of the role of bedrock groundwater is still challenged due to limited direct observation data. In this study, by utilizing observed hydrometric and hydrochemical data, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with sub-humid climate. We selected Xitaizi catchment with area of 6.7 km in the earth-rock mountain region, which located in the north of Beijing, China, as study area. The catchment bedrock is mainly consist of fractured granite. Four weather stations were installed to observe the weather condition and soil volumetric water content (VWC) at depth of 10-60 cm with 10-minute interval. Five wells with depth of 10 m were drilled in two slopes to monitor the bedrock water table by pneumatic water gauge. At slope 1, the soil VWC at depth of 10-80 cm were also observed by soil moisture sensors, and surface/subsurface hillslope runoff at three different layers (0-20cm, 20-80cm, 80-300cm) was observed by three recording buckets. Field works were conducted from July 2013 to November 2014. During the period, precipitation, river, spring and groundwater were sampled nearly monthly. Water temperature, electrical conductivity (EC) and pH were measured in site with portable instruments. In addition, the precipitation, river and groundwater were also sampled intensively during two storm events. All the samples were subjected to stable isotope analysis, the samples taken monthly during the period from July 2013 to July 2014 were subjected to hydrochemistry analysis. Our results show that: (1) the bedrock groundwater is the dominant component of streamflow in the headwater catchment with sub-humid climate; (2) stream is recharged by groundwater sourcing from different mountains with different hydrochemistry characteristics

  18. Examining the effects of forest thinning on hydrological processes at different catchment scales in forested headwater

    NASA Astrophysics Data System (ADS)

    Dung, Bui Xuan; Gomi, Takashi; Onda, Yuichi; Kato, Hiroaki; Hiraoka, Marino

    2013-04-01

    We conducted field observation in nested headwater catchments draining Japanese cypress (Chamaecyparis obtusa) and cedar (Cryptomeria japonica) forests at Tochigi prefecture for examining the effects of forest thinning on hydrological processes at different catchment scales. 50% of the stems was removed with line thinning in catchment K2 (treatment catchment), while catchment K3 remained untreated as a control. We monitored nested catchment within K2-1 (17.1 ha) as K2-2 (10.2 ha), K2-3 (3.7 ha) and K2-4 (5.1 ha), and within K3-1 (8.9 ha) as K3-2 (3.0 ha). Runoff from the catchments was monitored during the pre-thinning (from April, 2010 to May 2011), and the post-thinning periods (from June 2011 to December 2012). Paired-catchment and hydrograph separation analysis were used to evaluate the effects of forest thinning on hydrological processes at different catchment scales. We developed the pre-thinning calibration equation for predicting post-thinning behaviors. Paired catchment analysis revealed that annual catchment runoff increased 648 mm in K2-1, 414 mm in K2-2, 528 mm in K2-3, and 566 mm in K2-4 during the post-thinning period. Greater increase of flow in largest catchment (K2-1) was be due to the contribution of increased delayed flow from infiltrated water, reappearing as surface flow (i.e., quick flow) in the lower parts of the catchment, caused by harvested activities (logging, road, skid trail). Because both quick and delayed flows increased significantly in the larger catchments of K2-1 and K2-2, while only delayed flow of smaller catchments (K2-3 and K2-4) increased significantly during the post-thinning period. Delayed flow also increased greater in K2-3 and K2-4, smaller in K2-2 but greatest in K2-1. Moreover, the increasing contributions to runoff from deeper groundwater sources that are recharged in upslope subcatchments caused increase amount of flow. This was explained when increase of annual base flow (i.e., bedrock flow) of zero-order catchments

  19. Assessing the Success of Regional Measures for Lowering Agricultural Nutrient Pollution in Headwater Streams.

    PubMed

    Barry, C D; Foy, R H

    2016-07-01

    Lowland waters in Northern Ireland experience elevated agricultural phosphorus (P) inputs, and in response a variety of control measures targeting farm nutrient management have been implemented. Their efficacy in lowering nitrogen (N) and P exports and improving water quality is examined in 40 headwater streams from 1990 to 2009, and to 2014 for 24 of these. Over this period manure production in the study catchments declined by 7%, but regional chemical fertilizer inputs declined by 37% for N and 79% for P, and the regional nutrient surplus was lowered by 18% for N and 49% for P. Diminished pollution by organic wastes meant that 85% of streams exhibited chemistry suitable for salmonids in 2009 compared to 40% in 1990. Flow-weighted mean concentrations (FWMCs) of nutrients declined between 1990 and 2009, and their correlations with catchment stocking rates became stronger over time. For catchments with manure inputs <16.6 kg P ha, total P and nitrate FWMCs declined from 123 ± 19 μg P L and 1.92 ± 0.5 mg N L in 1990 at rates of 2.2 ± 0.5 and 30 ± 10 μg L yr, respectively. For catchments with higher manure inputs the respective rates of decline were greater at 5.8 ± 1.0 μg P L yr and 160 ± 20 μg N L yr from 1990 concentrations of 270 ± 25 μg P L and 5.99 ± 0.4 mg N L. Although now lower, P concentrations in the more highly stocked catchments still exceed regional nutrient standards so that the identification of further factors impinging on nutrient losses is critical if such standards are to be achieved. PMID:27380082

  20. Similarities in fish-habitat relationships within channelized agricultural headwater streams in Ohio and Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are common throughout agricultural watersheds in the Midwestern United States. Understanding the fish-habitat relationships within these streams will provide information that can assist with developing restoration strategies for these degraded streams. We...

  1. Incorporating preferential flow into a 3D model of a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Jackisch, Conrad; Hopp, Luisa; Pfister, Laurent; Klaus, Julian

    2016-04-01

    Preferential flow plays an important role for water flow and solute transport. The inclusion of preferential flow, for example with dual porosity or dual permeability approaches, is a common feature in transport simulations at the plot scale. But at hillslope and catchment scales, incorporation of macropore and fracture flow into distributed hydrologic 3D models is rare, often due to limited data availability for model parameterisation. In this study, we incorporated preferential flow into an existing 3D integrated surface subsurface hydrologic model (HydroGeoSphere) of a headwater region (6 ha) of the forested Weierbach catchment in western Luxembourg. Our model philosophy was a strong link between measured data and the model setup. The model setup we used previously had been parameterised and validated based on various field data. But existing macropores and fractures had not been considered in this initial model setup. The multi-criteria validation revealed a good model performance but also suggested potential for further improvement by incorporating preferential flow as additional process. In order to pursue the data driven model philosophy for the implementation of preferential flow, we analysed the results of plot scale bromide sprinkling and infiltration experiments carried out in the vicinity of the Weierbach catchment. Three 1 sqm plots were sprinkled for one hour and excavated one day later for bromide depth profile sampling. We simulated these sprinkling experiments at the soil column scale, using the parameterisation of the base headwater model extended by a second permeability domain. Representing the bromide depth profiles was successful without changing this initial parameterisation. Moreover, to explain the variability between the three bromide depth profiles it was sufficient to adapt the dual permeability properties, indicating the spatial heterogeneity of preferential flow. Subsequently, we incorporated the dual permeability simulation in the

  2. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-12-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  3. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-07-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  4. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  5. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  6. Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Hunsaker, C. T.

    2015-12-01

    In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. <25%), and a well-developed drainage network with drainage density ranging from 4.6 to 10.1 km/km2. Bull catchments, on average, have higher runoff than the Providence catchments across all hydrologic signatures extracted from daily hydrographs. Mean annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW's four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment

  7. Prediction of glacier melt and runoff for a high-altitude headwater catchment in Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Kinouchi, T.; Mendoza, J.; Asaoka, Y.

    2013-12-01

    In Andes, retreat of tropical glaciers is rapid, thus water resources currently available from glacierized catchments would be changed in its volume and temporal variations due to climate change and glacier shrinkage. Water resources in La Paz and El Alto, Bolivia, strongly depend on the runoff from glacierized headwater catchments in the Cordillera Real, Andes, which is a combined contribution from glacier and snow melts in glacierized areas and surface and subsurface runoff due to snowmelt and rainfall in non-glacierized areas. To predict long-term availability of water resources from glacierized catchments in the Cordillera Real, we developed a semi-distributed conceptual glacio-hydrological model applicable for the partially glacierized catchments in high mountains by considering different phases of precipitation, various runoff components from glacierized and non-glacierized areas, the retarding effect by lakes and wetlands, and the change of glacierized areas based on the area-volume relationship. The model was successfully applied to the Huayna West headwater catchment located in the Cordillera Real, Bolivian Andes, for the period of June 2011 to May 2013, after calibrating by observed meteorological and hydrological conditions. Our results indicate that the glacier melt is enhanced during two transition periods, i.e. from the dry to wet season (October to early December) and the wet to dry season (March to May), while the surface runoff from snowmelt and subsurface runoff are more dominant between the two periods from December to February. It was found that the simulated runoff was highly sensible to spatial and temporal variation of air temperature, and smoothed by the subsurface flow and retarding processes in lakes and wetlands. We predicted the change of glacierized area and runoff until 2050 under different climate scenarios, which indicates that the glacier continues to shrink by 2050 resulting in the areal reduction ranging from 65% to 73% and

  8. Determining surface water sources using spatial and temporal variation in stream chemistry in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; Bailey, S. W.; McGuire, K. J.; Bullen, T. D.

    2010-12-01

    Fine scale sampling of a first order headwater catchment at Hubbard Brook Experimental Forest, NH, USA showed similar spatial variation in stream chemistry to other studies of fifth order catchments in the area. We sampled on five dates representing varying flow conditions at 110 surface water locations in Watershed 3, the 41-ha hydrologic reference catchment at Hubbard Brook. Samples were collected at 50 meter intervals along the stream network and at discrete groundwater seeps, and were analyzed for concentrations of major and trace ions. In order to determine catchment characteristics controlling stream chemistry, we evaluated surface and subsurface catchment structure. Surface structure was analyzed with topographic indices describing land surface patterns, which were derived from terrain analysis of a LiDAR based 5 m DEM. Subsurface structure, such as soil horizon development and type of parent material, was investigated through soil profiles along transects of wells established in seven distinct soil types. Height and duration of water table were measured with capacitance water level recorders and samples were taken to characterize groundwater chemistry. Spatial patterns in chemistry and timing of water table response to rain events were used to infer subsurface flowpaths. Four potential sources and mechanisms controlling surface water characteristics were identified: discrete soil horizons, drainage from distinct soil types, riparian zone and near stream exchanges, and isolated seeps as distinct groundwater inputs. Sub-catchments west of the main stream had relatively high concentrations of silicon, calcium and sodium as well as more persistent stream flow and groundwater seeps, suggesting deep flowpaths through the soils. Sub-catchments east of the main stream had low pH and high concentrations of DOC and aluminum, as well as more ephemeral flow and a lack of seeps, suggesting shallow flowpaths through the soils. Upslope accumulated area, distance from the

  9. Reconciling stream dissolved organic matter with snowmelt-driven subsurface flowpaths in a montane, headwater catchment.

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Burns, M. A.; McKnight, D. M.; Gabor, R. S.; Brooks, P. D.

    2014-12-01

    Dissolved organic matter (DOM) transport is a key biogeochemical link across the terrestrial-aquatic interface in headwater catchments, and therefore is intimately linked with the hydrologic connectivity of the catchment to the stream. This study evaluated the mobility of specific chemical constituents of DOM during snowmelt in a montane, semi-arid catchment in the Boulder Creek CZO. Dissolved organic matter quality was monitored using fluorescence spectroscopy on a daily basis from water sampled from the soil (10 - 25 cm depth) via tension lysimeters and from the stream during snowmelt and was compared to approximately bi-monthly groundwater samples (~18 m depth). In the stream, a transition occurred from fluorescent DOM (FDOM) being dominated by protein-like material to FDOM being dominated by more humic-like material. The FDOM in the interstitial water of the soils and the groundwater did not change in character. Thus, the stream transition is indicative of an engagement of DOM originating from hillslope soils during snowmelt. Dissolved organic carbon (DOC) normalization of these fluorescent loadings suggest that the peak in DOC concentration seen in the stream is mainly controlled by the non-fluorescent fraction of DOM. These results indicate that shifts in hydrologic connectivity of different watershed units to the stream are a major control on DOM export from the watershed.

  10. Relative influence of different habitat factors on creek chub population structure within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Creek chubs (Semotilus atromaculatus) are commonly found within channelized agricultural headwater streams within the Midwestern United States. Understanding the relationships of this headwater fish species with different habitat factors will provide information that can assist with developing resto...

  11. Differences in instream wood characteristics between channelized and unchannelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...

  12. The importance of instream habitat modifications for restoring channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Science based information on the influence of restoration practices on fishes within channelized agricultural headwater streams in the Midwestern United States is currently lacking. Understanding fish-habitat relationships and fish responses to specific restoration practices will provide informatio...

  13. Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Leith, F. I.; Dinsmore, K. J.; Wallin, M. B.; Billett, M. F.; Heal, K. V.; Laudon, H.; Öquist, M. G.; Bishop, K.

    2015-03-01

    Headwater streams export CO2 as lateral downstream export and vertical evasion from the stream surface. CO2 in boreal headwater streams generally originates from adjacent terrestrial areas, so determining the sources and rate of CO2 transport along the hillslope-riparian-stream continuum could improve estimates of CO2 export via the aquatic pathway, especially by quantifying evasion at higher temporal resolutions. Continuous measurements of dissolved CO2 concentrations and water table were made along the hillslope-riparian-stream continuum in the Västrabäcken sub-catchment of the Krycklan catchment, Sweden. Daily water and CO2 export from the hillslope and riparian zone were estimated over one hydrological year (October 2012-September 2013) using a flow-concentration model and compared with measured lateral downstream CO2 export. Total water export over the hydrological year from the hillslope was 230 mm yr-1 compared with 270 mm yr-1 from the riparian zone. This corresponds well (proportional to the relative upslope contributing area) to the annual catchment runoff of 265 mm yr-1. Total CO2 export from the riparian zone to the stream was 3.0 g CO2-C m-2 yr-1. A hotspot for riparian CO2 export was observed at 30-50 cm depth (accounting for 71 % of total riparian export). Seasonal variability was high with export peaks during the spring flood and autumn storm events. Downstream lateral CO2 export (determined from stream water dissolved CO2 concentrations and discharge) was 1.2 g CO2-C m-2 yr-1. Subtracting downstream lateral export from riparian export (3.0 g CO2-C m-2 yr-1) gives 1.8 g CO2-C m-2 yr-1 which can be attributed to evasion losses (accounting for 60 % of export via the aquatic pathway). The results highlight the importance of terrestrial CO2 export, especially from the riparian zone, for determining catchment aquatic CO2 losses and the importance of the CO2 evasion component to carbon export via the aquatic conduit.

  14. Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Leith, F. I.; Dinsmore, K. J.; Wallin, M. B.; Billett, M. F.; Heal, K. V.; Laudon, H.; Öquist, M. G.; Bishop, K.

    2014-11-01

    Headwater streams export CO2 as lateral downstream export and vertical evasion from the stream surface. CO2 in boreal headwater streams generally originates from adjacent terrestrial areas, so determining the sources and rate of CO2 transport along the hillslope-riparian-stream continuum could improve estimates of CO2 export via the aquatic pathway, especially by quantifying evasion at higher temporal resolutions. Continuous measurements of dissolved CO2 concentrations and water table were made along the hillslope-riparian-stream continuum in the Västrabäcken sub-catchment of the Krycklan Catchment, Sweden. Daily water and CO2 export from the hillslope and riparian zone were estimated over one hydrological year (October 2012-September 2013) using a flow-concentration model and compared with measured lateral downstream CO2 export. Total water export over the hydrological year from the hillslope was 230 mm yr-1 compared with 270 mm yr-1 from the riparian zone. This corresponds well (proportional to the relative upslope contributing area) to the annual catchment runoff of 265 mm yr-1. Total CO2 export from the riparian zone to the stream was 3.0 g CO2-C m-2 yr-1. A hotspot for riparian CO2 export was observed at 30-50 cm depth (accounting for 71% of total riparian export). Seasonal variability was high with export peaks during the spring flood and autumn storm events. Downtream lateral CO2 export (determined from stream water dissolved CO2 concentrations and discharge) was 1.2 g CO2-C m-2 yr-1. Subtracting downstream lateral export from riparian export (3.0 g CO2-C m-2 yr-1) gives 1.8 g CO2-C m-2 yr-1 which can be attributed to evasion losses (accounting for 60% of export via the aquatic pathway). The results highlight the importance of terrestrial CO2 export, especially from the riparian zone, for determining catchment aquatic CO2 losses and the importance of the CO2 evasion component to carbon export via the aquatic conduit.

  15. Sources of stream sulphate in headwater catchments in Otter Creek Wilderness, West Virginia, USA

    NASA Astrophysics Data System (ADS)

    Fitzhugh, Ross D.; Furman, Tanya; Korsak, Andrea K.

    2001-03-01

    Upland forested catchments in the Appalachian Plateau region receive among the greatest rates of atmospheric sulphur (S) deposition in the eastern USA, although coal mines and S-bearing minerals in bedrock may also contribute to stream acidity in this region. Watershed mass balance and stable S isotopic values (34S) of sulphate (SO42-) were used to assess the contributions to stream SO42- from atmospheric and lithogenic sources at Yellow Creek (YC), a headwater catchment on the Appalachian Plateau in West Virginia. Oxygen isotopic values (18O) of water were used to study catchment hydrology. Stream output of SO42- was c. 60% of atmospheric S deposition during a relatively dry year, whereas atmospheric S input was nearly balanced by stream output during a year with above normal amounts of precipitation. The temporal patterns and values of 34S were similar between bulk precipitation and stream water at two upper elevation sites. At the lowest elevation site, stream 34S values were similar to bulk precipitation values during the dormant season but were slightly lower than precipitation during the low-flow summer, probably as the result of a greater proportion of stream water being derived from deep hydrological flowpaths that have contacted S-bearing minerals with low 34catchment containing abandoned coal prospects and having a greater amount of S-bearing minerals than YC. Results suggested that lithogenic S is a relatively minor source and that atmospheric deposition is the principal source of stream SO

  16. DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.

    2007-01-01

    Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel

  17. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2014-09-01

    This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.

  18. Heterogeneity in sensitivity and response to drought in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Geris, J.; Tetzlaff, D.; Soulsby, C.

    2014-12-01

    Soils are of critical importance in modulating the response of catchment water storage and flux dynamics under changing hydrological conditions. We explored the short term impacts of an extreme drought on the water storage and transmission dynamics of different hydropedological units, and the role of their spatial organisation on the runoff generation at the integrated catchment scale in a northern environment. Soil types included poorly drained histosols in riparian zones and freely draining podzols on steeper hillslopes in a northern headwater catchment (3.2 km2) in the Scottish Highlands. We employed an integrated monitoring approach of hydrometric data and stable water isotopes in precipitation, stream, soil, and groundwater, to characterise the spatio-temporal storage and runoff dynamics before, during and after a drought period. We found high spatial variability in the storage resistance and resilience to drought impacts, associated with the distribution of the different soil types, and exacerbated by land use. For example, storage changes in the riparian histosols were remarkably small (<40 mm) during the dry period, compared to those in hillslope moorland (~100 mm) and forest (~200mm) covered podzols. However, results showed that during events, there was consistent threshold behaviour in all soil units and their integrated response at the catchment scale, which appeared not to be affected by relative drying or wetting conditions. The data analyses indicated that during dry periods, large parts of the catchment were disconnected from the river network and runoff was generated mainly from the permanently wet riparian histosols. However, during events there was a quasi-continuous connection of the upper hillslopes that recharged the wetland and stream, which did not appear to have been affected by the drought. This caused a strong recovery and resilience of the catchment in its integrated runoff response. Nevertheless, as future climate projections for

  19. Origin of particulate organic matter exported during storm events in a forested headwater catchment.

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.

    2016-04-01

    and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.

  20. Fate and Transport of Polycyclic Aromatic Hydrocarbons in Upland Irish Headwater Lake Catchments

    PubMed Central

    Scott, Heidi E. M.; Aherne, Julian; Metcalfe, Chris D.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a concern due to their carcinogenicity and propensity for transboundary atmospheric transport. Ireland is located on the western periphery of Europe and assumed to receive clean Atlantic air. As such, it has been used as an atmospheric reference for comparison to other regions. Nonetheless, few studies have evaluated concentrations of PAHs within the Irish environment. In the current study, PAHs were measured at five upland (500–800 masl) headwater lake catchments in coastal regions around Ireland, remote from industrial point source emissions. Semipermeable membrane devices were deployed in lakes for a 6-month period in July 2009, and topsoils were sampled from each catchment during October 2010. The concentrations of PAHs were low at most study sites with respect to other temperate regions. Homologue groups partitioned between lake and soil compartments based on their molecular weight were: “lighter” substances, such as Phenanthrene and Fluorene, were found in higher proportions in lakes, whereas “heavier” compounds, such as Chrysene and Benz[a]anthracene, were more prominent in soils. Concentrations of PAHs were highest at the east coast sites, potentially due to contributions from historical transboundary and regional combustion sources. PMID:23346024

  1. Model‐based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments

    PubMed Central

    Wagener, Thorsten; McGlynn, Brian

    2015-01-01

    Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197

  2. Comparing runoff on 11 poorly-gauged headwater catchments using a soft monitoring approach

    NASA Astrophysics Data System (ADS)

    Colin, F.; Crabit, A.; Moussa, R.

    2012-04-01

    Catchments in many parts of the world are either ungauged or poorly gauged, and the dominant processes governing their streamflow response are still poorly understood. The analysis of runoff coefficients provides essential insight into catchment response, particularly if both range of catchments and a range of events are compared. An original soft water level sensor is proposed to characterize rainfall and stream flows on agricultural catchments. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimised in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Innovative work has been performed under controlled experimental conditions to estimate Manning's coefficient values for the different cover types observed in studied streams: non-aquatic vegetations (giant reed, bramble and thistle), grass and coarse granular deposits. The results show that estimates derived using roughness coefficients differ from those previously established for larger streams with aquatic vegetation. Based on these results, water discharge with a given uncertainty and hence runoff volume were estimated at the event and the annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels, ...) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology (Crabit et al., in Sensors 11, 2011). This device were

  3. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment

    USGS Publications Warehouse

    McGlynn, B.L.; McDonnell, Jeffery J.; Shanley, J.B.; Kendall, C.

    1999-01-01

    The hydrology of the near-stream riparian zone in upland humid catchments is poorly understood. We examined the spatial and temporal aspects of riparian flowpaths during snowmelt in a headwater catchment within the Sleepers River catchment in northern Vermont. A transect of 15 piezometers was sampled for Ca, Si, DOC, other major cations, and ??18O. Daily piezometric head values reflected variations in the stream hydrograph induced by melt and rainfall. The riparian zone exhibited strong upward discharge gradients. An impeding layer was identified between the till and surficial organic soil. Water solute concentrations increased toward the stream throughout the melt. Ca concentrations increased with depth and DOC concentrations decreased with depth. The concentrations of Ca in all piezometers were lower during active snowmelt than during post-melt low flow. Ca data suggest snowmelt infiltration to depth; however, only upslope piezometers exhibited snowmelt infiltration and consequent low ??18O values, while ??18O values varied less than 0.5% in the deep riparian piezometers throughout the study period. Ca and ??18O values in upslope piezometers during low streamflow were comparable to Ca and ??18O in riparian piezometers during high streamflow. The upland water Ca and ??18O may explain the deep riparian Ca dilution and consistent ??18O composition. The temporal pattern in Ca and ??18O indicate that upland water moves to the stream via a lateral displacement mechanism that is enhanced by the presence of distinct soil/textural layers. Snowmelt thus initiates the flux of pre-melt, low Ca upland water to depth in the riparian zone, but itself does not appear at depth in the riparian zone during spring melt. This is despite the coincident response of upland groundwater and stream discharge.The hydrology of the near-stream riparian zone in upland humid catchments is poorly understood. We examined the spatial and temporal aspects of riparian flowpaths during snowmelt in a

  4. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    NASA Astrophysics Data System (ADS)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  5. Non-linearity of runoff generation processes in an alpine headwater catchment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Tromp van-Meerveld, H. J.; Gobbi, Alberto; Borga, Marco

    2010-05-01

    Hydrological systems are often characterized by non-linear behaviours. Particularly, threshold effects due to the complex interactions of many physical controls are frequently observed at the hillslope and catchment scale. The presence of such non-linear behaviours at different scales can reduce our prediction capabilities of hydrological responses. Therefore, investigating the occurrence of hydrological thresholds can help to improve our understanding of the phenomenon and increase our ability to make reliable predictions. In this study we analyzed the runoff response of the small Bridge Creek Catchment (BBC, 0.11 km², North-Eastern Italian Alps). This headwater catchment consists of hillslopes and a distinctive, relatively narrow, riparian zone and is characterized by a fast runoff response. As such, BBC can be considered a representative catchment of the Dolomitic region. Forty rainfall-runoff events occurred between June to mid-October 2005 and 2006 were analyzed. In addition to precipitation and stream discharge measurements, soil moisture at 0-30 cm depth and water table level in 9 piezometers were monitored in two experimental hillslopes located in the lower part of the catchment. In this work we address the following questions: i) what is the dominant control on the threshold in runoff response at BBC? ii) what is the contribution of the hillslopes and riparian zone to the storage and release of water? iii) what controls do soil moisture and precipitation exert on the runoff volume? iv) what influence do soil moisture and precipitation have on the water table variations and the hysteretic relationship between streamflow and groundwater level? Results highlight the strong control exerted by soil moisture on runoff in this catchment: a sharp threshold exists in the relationship between soil water content and runoff coefficient, streamflow, and basin-averaged depth to water table. Low runoff ratios were related to the fast response of the nearly saturated

  6. Active Stream Length Dynamics in Headwater Catchments Spanning Physiographic Provinces in the Appalachian Highlands

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2015-12-01

    One of the most basic descriptions of streams is the presence of channelized flow. However, this seemingly simple query goes unanswered for the majority of headwater networks, as stream length expands and contracts with the wetness of catchments seasonally, interannually, and in response to storm events. Although streams are known to grow and shrink, a lack of information on longitudinal dynamics across different geographic regions precludes effective management. Understanding the temporal variation in temporary network length over a broad range of settings is critical for policy decisions that impact aquatic ecosystem health. This project characterizes changes in active stream length for forested headwater catchments spanning four physiographic provinces of the Appalachian Highlands: the New England at Hubbard Brook Experimental Forest, New Hampshire; Valley and Ridge at Poverty Creek and the North Fork of Big Stony Creek in Jefferson National Forest, Virginia; Blue Ridge at Coweeta Hydrologic Laboratory, North Carolina; and Appalachian Plateau at Fernow Experimental Forest, West Virginia. Multivariate statistical analysis confirms these provinces exhibit characteristic topographies reflecting differences in climate, geology, and environmental history and, thus, merit separate consideration. The active streams of three watersheds (<45 ha) in each study area were mapped six times to capture a variety of moderate flow conditions that can be expected most of the time (i.e., exceedance probabilities between 25 to 75%). The geomorphic channel and channel heads were additionally mapped to determine how active stream length variability relates to the development of the geomorphic network. We found that drainage density can vary up to four-fold with discharge. Stream contraction primarily proceeds by increasing disconnection and disintegration into pools, while the number of flow origins remains constant except at high and low extremes of discharge. This work demonstrates

  7. Nitrate removal and denitrification in headwater agricultural streams of the Pacific Northwest

    EPA Science Inventory

    Headwater streams can serve as important sites for nitrogen (N) removal in watersheds. Here we examine the influence of agricultural streams on watershed N export in the Willamette River Basin of western Oregon, USA, a region with mixed agricultural, urban and forestry land uses...

  8. Terrestrial and in-stream influences on the spatial variability of nitrate in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Scanlon, Todd M.; Ingram, Spencer M.; Riscassi, Ami L.

    2010-06-01

    A vast majority of monitoring programs designed to assess nutrient fluxes from headwater systems rely upon temporally intensive sampling at a single position within the stream network, essentially measuring the integrated response of the catchment. Missing from such an approach is spatial information related to how nutrient availability varies throughout the network, where freshwater biota live and where biogeochemical processes ultimately shape the downstream water chemistry. Here, we examine the spatial distribution of nitrate (NO3-) concentrations within the Paine Run catchment, a forested headwater catchment in Shenandoah National Park, Virginia. Nitrate concentrations throughout the stream network were measured as part of synoptic surveys conducted in 1992-1994, in the aftermath of region-wide gypsy moth defoliation that caused dramatic increases in stream water NO3- concentrations. A follow-up synoptic survey was conducted in 2007, when the stream water NO3- concentrations had returned to predefoliation levels. Common to each of the eight synoptic surveys were observations of multiple-fold declines in NO3- concentration along the main stem of the stream network from the headwaters to the catchment outlet. A portion of this decline was caused by dilution, as water input by tributaries at the lower elevations of the catchment tended to have lower NO3- concentrations. A stream network model was applied to determine the relative contributions of terrestrial versus in-stream processes to the spatial variability of the NO3- concentrations. Model results suggest that even though nitrate removal within the stream network can be substantial, terrestrial factors that determine the NO3- inputs to streams account for the vast majority of the spatial variability in stream water NO3- concentrations.

  9. Dissolved Carbon Flux and Mass Balance From a Wetland-Dominated Karstic Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Duval, T. P.; Waddington, J. M.; Branfireun, B. A.

    2009-05-01

    The stream-borne dissolved carbon efflux of peatland-draining catchments is dominated by organic carbon, whereas inorganic carbon dominates the flux from calcareous bedrock catchments. The export of dissolved carbon from calcareous bedrock catchments with significant wetland coverage has not previously been determined. This study documents the spatiotemporal variability of dissolved carbon (inorganic + organic) along a headwater stream in southern Ontario, Canada, as it drains three distinct wetland types: a calcareous fen, a riparian cedar swamp, and a cattail marsh. Upon emergence from the groundwater seeps, the spring water contained 28 times more CO2 than in equilibrium with the atmosphere. This supersaturation decreased to just 5 times equilbrium as the stream leaves the catchment through the marsh, representing a decrease in CO2 concentration of 11 mg L-1, lost to the atmosphere as exsolution. The groundwater seeps contained an average of 1.25±0.75 mg L-1 of dissolved organic carbon (DOC) from May to November 2007, one of the driest years on record in the region. At the catchment outlet through the marsh, DOC concentrations were slightly higher and more variable during the same period at 2.27±1.29 mg L-1, as a fall flushing event resulted in concentrations > 7 mg L-1. This DOC concentration is small compared to the 58.72±3.9 mg L-1 of dissolved inorganic carbon (DIC, as bicarbonate ion) contained within the water leaving the catchment. At 0.21 and 0.17 g m-2 d-1 from May-July and August-November 2007, respectively, the DIC dominated the carbon flux out of the watershed, compared with 0.007 and 0.008 g m- 2 d-1 DOC and 0.015 and 0.009 g m-2 d-1 CO2 exsolution during the same period. Results of the 2007 season will be contrasted to the 2008 season, one of the wettest on record. The watershed is underlain by Silurian dolomite that exhibits karst fractures, resulting in a complex subsurface hydrogeology that influences carbon transport and mass balances

  10. Hydrological modelling of an artificial headwater catchment using the model system WaSiM-ETH

    NASA Astrophysics Data System (ADS)

    Hölzel, H.; Diekkrüger, B.

    2009-04-01

    The hydrological headwater catchment Chicken Creek (6.5 ha) was constructed in a lignite open-cast mine by Cottbus (Germany) to study initial processes of ecosystem development. The catchment has been intensively monitored for more than three years. Thereby, it is well suited to test and develop hydrological models. The construction of a clay layer in the basement simplifies the balancing of the water cycle since lateral inflows and vertical outflows can be neglected. For modelling purposes all basic input data were given, but neither discharge nor soil moisture measurements were provided. Hence, no high model quality can be feigned by fitting simulated results on observed output data. To compare the ability of different models and modellers to describe the hydrological behaviour of that catchment, a model competition was declared, on which several international scientists take part, all specialised in hydrological modelling. The contest is conducted in different levels, whereupon the knowledge of modellers concerning the investigated catchment will be increased stepwise. All modellers use the same database and results will be evaluated by an independent observer group. Thereby, the comparability between different model applications is guaranteed. We applied the process-based distributed Water balance Simulation Model (WaSiM-ETH) by Schulla & Jasper (2007) to simulate the first three years since the catchment construction was finished (Sep. 2005 - Aug. 2008). For the first modelling exercise important initial conditions (e.g. soil moisture) were unknown. Due to the lack of field experiences, effects of a constructed lake were disregarded. Therefore, the results of the first level were far away from being perfect, e.g. discharge was simulated from the beginning which was not observed because in reality soil water and lake storages were filled up first. The biggest differences occurred between simulated and observed surface runoff. In reality, surface runoff is the

  11. Understanding drivers of the export of dissolved organic carbon from headwater catchments in Germany using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Tittel, Jörg; Musolff, Andreas

    2015-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early to mid 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of both nitrate and sulfate stimulated the reduction of ferric iron soil minerals and the mobilisation of DOC. Decreasing depositions often resulted in a reduced availability of both nitrate and sulphate, which are preferred electron acceptors in microbial decomposition processes. As iron minerals act as efficient sorbents of organic compounds in soils its reduction may have caused a release of humic substances and hence an increasing export of DOC from headwater catchments. To test this hypothesis, time series of DOC, dissolved iron, sulfate and nitrate from several German headwater catchments were examined using Generalised Additive Models. Using this modelling technique, discharge corrected time series of concentrations were represented as a sum of a seasonal and a non-linear trend component. Both, the computed trends and seasonalities supported the redox hypothesis.

  12. A Mechanistic Assessment of a Near-stream Saturated Area Dynamics in a Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Frentress, J.; Pfister, L.; McDonnell, J.

    2015-12-01

    Saturation excess overland flow generated in near-stream saturated areas is a mixture of rainfall and exfiltrating sub-surface water that can be quickly transported to the stream network during rainfall events. While many isotope hydrograph separation studies have demonstrated generally the dominance of pre-event water in the channel hydrograph, the mixing processes within the saturated area itself are poorly understood. Here, we isolated and measured discharge generated within a 100-m2 saturated area of a headwater reach of the 45-ha Weierbach catchment (Luxembourg). We quantified surface saturation using ground-based thermal infrared imagery and in-site piezometers throughout a series of rainfall events. This, combined with isotope and geochemical tracing enabled us to assess the role of surface saturation dynamics on mixing and storm hydrograph response. Surprisingly, our detailed analysis showed that surface saturation dynamics were weakly correlated to discharge and precipitation; cumulative rainfall on near-stream saturated areas alone was unable to explain the flow generated within this reach. Streamflow isotopic response was essentially unchanging within the 5-week monitoring period (-55 to -58 δ2D and -8.5 to -9 for δ18O ‰) suggesting that well-mixed streamflow sources that were little affected by rainfall sources. While Na+, Mg2+, and Ca2+ show slight flushing and dilution responses, riparian and streamflow sources responded differently across the event. Overall, groundwater exfiltration within the saturated area appeared to generate streamflow throughout the reach, effectively erasing any rainfall onto saturated area signal.

  13. Freshwater transport forms of Na, Mg, and Ca in streams of adjacent headwater catchments composed of differing vegetation

    NASA Astrophysics Data System (ADS)

    Terajima, T.; Moriizumi, M.

    2012-04-01

    To understand the freshwater transport forms of major metals, concentrations of Na, Mg, Ca, Si, and fulvic acid-like materials (FAM) were measured in streams of headwater catchments with differing vegetation (coniferous and deciduous forests). The proportion of non-ionic forms (NIF) relative to total elements in the coniferous and deciduous catchments ranged from 0% to 40% and from 0% to 70%, respectively, in baseflows, and from 5% to 60% and from 20% to 60%, respectively, in stormflows. In the baseflows, NIF and total Si (T-Si) were highly correlated (r > 0.9) in both catchments. In contrast, in the stormflows, T-Si and FAM showed a good correlation (r > 0.8) in both catchments, implying that stormflow may have enhanced organic-inorganic binding. However, in the coniferous catchment, good correlations (r > 0.8) between NIF and T-Si or FAM were associated with only the rising limb of the hydrograph, whereas in the deciduous catchment, good correlations (r > 0.8) were associated with both the rising and falling limbs. These results indicate that: (1) under low-flow conditions, major metals may form binding with clay minerals and thus be transported as NIF, (2) storm events may enhance the binding of clay minerals with humic substances, (3) in the coniferous catchment, the complexation of NIF with the organic-inorganic binding and their transport in stormflows are associated with the rising limb of the storm hydrograph, whereas NIF transport during the falling limb may reflect the effect of other materials, and (4) in the deciduous catchment, NIF transport may occur mainly in association with organic-inorganic binding throughout a storm event. These findings show that active binding of Na, Mg, and Ca in freshwater environments with organic and inorganic substances, under the effect of differing vegetation on that binding, should be carefully examined in studies of chemical hydrology in headwater catchments. Key words: fulvic acid, major metal, complexation, humic

  14. Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment

    USGS Publications Warehouse

    Gannon, John P; Bailey, Scott W.; McGuire, Kevin J.; Shanley, James B.

    2015-01-01

    We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM) at the catchment outlet and the predicted spatial extent of shallow groundwater in soils throughout the catchment. While near-stream soils are generally considered a DOC source in forested catchments, DOC concentrations in near-stream groundwater were low (mean = 2.4 mg/L, standard error = 0.6 mg/L), less than hillslope groundwater farther from the channel (mean = 5.7 mg/L, standard error = 0.4 mg/L). Furthermore, water tables in near-stream soils did not rise into the carbon-rich upper B or O horizons even during events. In contrast, soils below bedrock outcrops near channel heads where lateral soil formation processes dominate had much higher DOC concentrations. Soils immediately downslope of bedrock areas had thick eluvial horizons indicative of leaching of organic materials, Fe, and Al and had similarly high DOC concentrations in groundwater (mean = 14.5 mg/L, standard error = 0.8 mg/L). Flow from bedrock outcrops partially covered by organic soil horizons produced the highest groundwater DOC concentrations (mean = 20.0 mg/L, standard error = 4.6 mg/L) measured in the catchment. Correspondingly, stream water in channel heads sourced in part by shallow soils and bedrock outcrops had the highest stream DOC concentrations measured in the catchment. Variation in FDOM concentrations at the catchment outlet followed water table fluctuations in shallow to bedrock soils near channel heads. We show that shallow hillslope soils receiving runoff from organic matter-covered bedrock outcrops may be a major source of DOC in headwater catchments in forested mountainous regions

  15. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  16. Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill Mountains, U.S.A.

    USGS Publications Warehouse

    Ashby, J.A.; Bowden, W.B.; Murdoch, Peter S.

    1998-01-01

    Denitrification in riparian soils is thought to be an important factor that reduces hydrologic export of nitrate from forested and agricultural catchments. A 2-y study to identify the soil factors most closely associated with denitrification in riparian soils in headwater catchments within the Catskill Mountains of New York, included field surveys of surface and subsurface denitrification rates, and an amendment experiment to assess the relative effects of increases in available carbon and substrate NO-/3 on denitrification rates. Denitrification rates were measured by acetylene inhibition during incubation of intact soil cores from eight soil types representing a range of drainage classes. Soil cores were analyzed for organic matter, total P, extractable NO-/3-N and NH+/4-N, organic N, pH, moisture, porosity, and water-filled pore space, to determine which of these factors were most closely associated with denitrification. The distribution of denitrification rates found during the field surveys was highly skewed, with many low or zero values and few high values. Denitrification rates were positively associated with high soil organic matter, total P, and water-filled pore space, and were highest in seep (poorly-drained) soils, toeslope (seasonally-drained) soils, and stream-edge (poorly- to moderately well-drained) soils in which these three soil characteristics were typically high. Denitrification rates in these wet locations were also positively associated with soil NH+/4-N concentration and pH, but not with NO-/3-N concentration, suggesting that the rate of NO-/3 supply (via nitrification or hydrologic transport) was more important than the instantaneous concentration of NO-/3-N in the soils. The amendment experiment indicated that denitrification in soil types studied was most responsive to added glucose alone or with NO-/3. Thus, in these soils, a combination of slow rates of NO-/3 supply and low available carbon appears to limit denitrification. Annual

  17. Examining responses of suspended sediment transports after intense thinning in a forested headwater catchment using nested monitoring

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Onda, Y.; Hiraoka, M.; Dung, B. X.; Kato, H.

    2014-12-01

    We examined responses of suspended sediment (SS) transports after 50% intense thinning in a 17 ha forested headwater catchment using nested 4 to 10 ha gauging stations. Strip thinning of 13- to 45-yr Japanese cedar (Cryptomeriajaponica) and cypress (Chamaecyparisobtusa) was conducted by cable dragging to skid trails in the entire watershed including nested sub-catchments. The skid trails density varied from 0 to 134 m/ha, followed by 4 m/ha. Peak SS yields monitored by turbidity sensor at the catchment outlet was 10-folds greater after the first year of thinning by comparing the pre-thinning conditions, while these values became 2-folds in the third year after thinning. This changes of peak SS concentrations suggested that recovery of vegetation cover on disturbed soil reduced peak concentrations of SS. We also confirmed changes in SS yields and recovery using paired-catchment analysis. Integrated SS yields including periods during thinning operation from August to October, 2011 varied from 0.03 to 0.06 kg. Integrated SS yields in the catchment outlet (0.05 kg) were corresponded to 5.0 kg/ha in SS yields. Organic matter content of integrated SS samples in one sub-catchment was low (0%), while the other catchments contained 0.08 and 0.13% of organic matter. 210Pbex activity in the sub-catchment (181 Bq/kg) with low organic matter content was the highest among the other nested catchments from 36 to 59 Bq/kg. Because mean 210Pbex activity from < 10 cm soil surface depth along hillslopes transects was 124 ± 83 Bq/kg, soil surface erosion from < 10 cm depth on the soil surface can be contributed to fine sediment supplies for the sub-catchments with high 210Pbex activity. In contrast, 210Pbex activity on the skid trails was low, because soil disturbance became deep with > 10 cm. Therefore, fine sediment with low 210Pbex activity on the skid trails can be transported to the catchment outlet. These characteristics were also confirmed by 137Cs activity with various

  18. Using artificial fluorescent particles as tracers of livestock wastes within an agricultural catchment.

    PubMed

    Granger, Steve J; Bol, Roland; Hawkins, Jane M B; White, Sue M; Naden, Pamela S; Old, Gareth H; Marsh, Jon K; Bilotta, Gary S; Brazier, Richard E; Macleod, Christopher J A; Haygarth, Philip M

    2011-02-15

    Evidence for the movement of agricultural slurry and associated pollutants into surface waters is often anecdotal, particularly with relation to its 'particulate' components which receive less attention than 'bio-available' soluble phases. To assess the extent of movement of slurry particles artificial fluorescent particles were mixed with slurry and applied to a field sub-catchment within a headwater catchment. Particles were 2-60 μm in diameter and two different densities, 2.7 and 1.2 g cm(-3) representing 'inorganic' and 'organic' material. Water samples from the field and catchment outlet were collected during two storm events following slurry application and analysed for particle and suspended sediment concentrations (SSC). SSC from the field and catchment outlet always formed clockwise hysteresis loops indicating sediment exhaustion and particles of the two densities were always found to be positively correlated. Particles from the field formed clockwise hysteresis loops during the first discharge event after slurry application, but anti-clockwise hysteresis loops during the second monitored event which indicated a depletion of readily mobilisable particles. Particles from the catchment outlet always formed anticlockwise hysteresis loops. Particle size became finer spatially, between field and catchment outlet, and temporally, between successive storm events. The results indicate that slurry particles may be readily transported within catchments but that different areas may contribute to pollutant loads long after the main peak in SSC has passed. The density of the particles did not appear to have any effect on particle transport however the size of the particles may play a more important role in the 2-60 μm range.

  19. Daily anomalous high flow (DAHF) of a headwater catchment over the East River basin in South China

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Niu, Jun; Sivakumar, Bellie

    2014-11-01

    This study develops a new method for analyzing the terrestrial hydrologic responses to precipitation through using level-based daily anomalous high flow (DAHF) occurrence in a catchment. The objectives of this study are twofold: (1) to explore the DAHF features over a headwater catchment; and (2) to evaluate the performance of a hydrologic model for DAHF simulation. In this study, DAHF is defined as the daily streamflow on a given day, whose deseasonalised daily streamflow is larger than a given multiplier of the standard deviation (STD) of the long-term deseasonalised streamflow series. Streamflow observations of a headwater catchment over the period of 1952-1972 (i.e., before reservoir operation) at the Longchuan station in the East River basin in South China are studied. The macro-scale Variable Infiltration Capacity (VIC) model is used for streamflow simulation in the catchment, and wavelet analysis is performed to explore the DAHF variability. The study reveals that the percentages of the number of days with the first and second levels of DAHFs are 4.2% and 1%, respectively, for the observed streamflows, while the corresponding percentages for the VIC model-simulated streamflow are 5% and 1.3%, respectively. Application of the Kolmogorov-Smirnov goodness-of-fit test indicates that these two levels of DAHFs can be described by two probability distribution functions, namely the Lognormal distribution and Generalized Extreme Value Type II distribution, respectively. The variability spectrum of the first level DAHF is basically consistent with that of antecedent precipitation, but not for the second level DAHF, as revealed by the wavelet analysis. The VIC model has better performance on the variability simulation of the first level of DAHF.

  20. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    NASA Astrophysics Data System (ADS)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  1. Contrasting controls on the phosphorus concentration of suspended particulate matter under baseflow and storm event conditions in agricultural headwater streams.

    PubMed

    Cooper, Richard J; Rawlins, Barry G; Krueger, Tobias; Lézé, Bertrand; Hiscock, Kevin M; Pedentchouk, Nikolai

    2015-11-15

    Whilst the processes involved in the cycling of dissolved phosphorus (P) in rivers have been extensively studied, less is known about the mechanisms controlling particulate P concentrations during small and large flows. This deficiency is addressed through an analysis of large numbers of suspended particulate matter (SPM) samples collected under baseflow (n=222) and storm event (n=721) conditions over a 23-month period across three agricultural headwater catchments of the River Wensum, UK. Relationships between clay mineral and metal oxyhydroxide associated elements were assessed and multiple linear regression models for the prediction of SPM P concentration under baseflow and storm event conditions were formulated. These models, which explained 71-96% of the variation in SPM P concentration, revealed a pronounced shift in P association from iron (Fe) dominated during baseflow conditions to particulate organic carbon (POC) dominated during storm events. It is hypothesised this pronounced transition in P control mechanism, which is consistent across the three study catchments, is driven by changes in SPM source area under differing hydrological conditions. In particular, changes in SPM Fe-P ratios between small and large flows suggest there are three distinct sources of SPM Fe; surface soils, subsurface sediments and streambed iron sulphide. Further examination of weekly baseflow data also revealed seasonality in the Fe-P and aluminium oxalate-dithionate (Alox-Aldi) ratios of SPM, indicating temporal variability in sediment P sorption capacity. The results presented here significantly enhance our understanding of SPM P associations with soil derived organic and inorganic fractions under different flow regimes and has implications for the mitigation of P originating from different sources in agricultural catchments.

  2. Contrasting controls on the phosphorus concentration of suspended particulate matter under baseflow and storm event conditions in agricultural headwater streams.

    PubMed

    Cooper, Richard J; Rawlins, Barry G; Krueger, Tobias; Lézé, Bertrand; Hiscock, Kevin M; Pedentchouk, Nikolai

    2015-11-15

    Whilst the processes involved in the cycling of dissolved phosphorus (P) in rivers have been extensively studied, less is known about the mechanisms controlling particulate P concentrations during small and large flows. This deficiency is addressed through an analysis of large numbers of suspended particulate matter (SPM) samples collected under baseflow (n=222) and storm event (n=721) conditions over a 23-month period across three agricultural headwater catchments of the River Wensum, UK. Relationships between clay mineral and metal oxyhydroxide associated elements were assessed and multiple linear regression models for the prediction of SPM P concentration under baseflow and storm event conditions were formulated. These models, which explained 71-96% of the variation in SPM P concentration, revealed a pronounced shift in P association from iron (Fe) dominated during baseflow conditions to particulate organic carbon (POC) dominated during storm events. It is hypothesised this pronounced transition in P control mechanism, which is consistent across the three study catchments, is driven by changes in SPM source area under differing hydrological conditions. In particular, changes in SPM Fe-P ratios between small and large flows suggest there are three distinct sources of SPM Fe; surface soils, subsurface sediments and streambed iron sulphide. Further examination of weekly baseflow data also revealed seasonality in the Fe-P and aluminium oxalate-dithionate (Alox-Aldi) ratios of SPM, indicating temporal variability in sediment P sorption capacity. The results presented here significantly enhance our understanding of SPM P associations with soil derived organic and inorganic fractions under different flow regimes and has implications for the mitigation of P originating from different sources in agricultural catchments. PMID:26150307

  3. Channel and Catchment Morphology, Spatial Intermittency, and Carbon Chemistry of a Headwater Stream

    NASA Astrophysics Data System (ADS)

    O'Donnell, B.; Wondzell, S. M.; Serchan, S. P.; Haggerty, R.; Ward, A. S.; Schmadel, N. M.

    2015-12-01

    We investigated carbon dynamics in a steep, forested, headwater stream in the Cascade Mountains of western Oregon, USA. Measurements from a continuously recording pCO2 probe located near the mouth of the catchment showed that the stream was always super saturated with CO2 with respect to atmospheric concentrations, ranging from 500 ppm in mid-winter to as much as 3,500 ppm in late summer. Continuous measurements of pCO2 from a hyporheic well suggested that the hyporheic zone was a likely source of the super-saturated stream water because the hyporheic concentrations of CO2 ranged from a mid-winter low of 4,000 ppm to a late summer high of 16,000 ppm. Here, we investigate the causes for the large seasonal changes in pCO2 in the stream water. We conducted longitudinal synoptic surveys of flow and carbon chemistry over the period of baseflow recession during summer 2015. The channel is narrow and steep with occasional bedrock segments. However, debris flow deposits in the lower portions of the studied reach create wider valley floors where hyporheic exchange can capture 100% of the streamflow when discharge is very low. At the beginning of the summer when discharge was relatively high, flow was spatially continuous, but by mid-summer, stream flow became spatially discontinuous. Upwelling hyporheic water in these locations appears to be super saturated with CO2. In early summer, the amount of upwelling hyporheic water was small relative to stream discharge so that hyporheic exchange had only a modest influence on stream pCO2. Later in the summer, when discharge was much smaller relative to hyporheic exchange, we observed much greater spatial variability in CO2, which averaged 2720 ppm downstream of dry segments longer than 5 m but only averaged 980 ppm in wet segments and below shorter dry segments. Over the intervening wet segments, CO2 appears to be evaded from the stream as concentrations decreased rapidly. Also, upslope accumulated area appears to control lateral

  4. Forest management for water: a hydro-ecological modeling exercise of headwater catchments in the mixed-conifer belt of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Ray, R. L.

    2011-12-01

    Hydro-ecological modeling provides a cost-effective method for evaluating the effects of vegetation change on water cycling within a catchment. In mountain watersheds, change in forest vegetation not only has direct effects on transpiration rates, but also energy exchanges that influence patterns of snow ablation. In this study, treatment scenarios were implemented using the Regional Hydro-Ecological Simulation System (RHESSys) to estimate impacts on key elements of the hydrologic cycle affected by forest harvesting - snowpack accumulation, ablation, transpiration, and streamflow. Twelve headwater catchments (0.5 - 2.6 km2, 1460 - 2450m) in the mixed-conifer zone of the central Sierra Nevada, within the Sierra and Tahoe National Forests, were included for analysis. These research sites are part of the Sierra Nevada Adaptive Management Project (SNAMP), located in the headwaters of the American and Merced Rivers, and the Southern Sierra Critical Zone Observatory (CZO) in the Kings River basin. Two methods of forest harvesting were simulated in the study watersheds: 1) uniform canopy thinning, through reduction of Leaf Area Index (LAI) values and 2) strip-cut treatments, suggested as the best method for retaining snowpack. Results from this study compare the influence of vegetation on water cycle dynamics through the two harvesting treatments, initial vegetation densities, and individual catchment size. Model simulations for pre-treatment snow depth, soil moisture, and streamflow were validated with SNAMP and CZO in-situ measurements. Preliminary results show that a linear reduction of forest canopy reduces transpiration accordingly, but produces a non-linear increase in streamflow. Peak discharges also increased, occurring earlier in the spring and having more pronounced effects in the smaller catchments. Based on these results, harvesting thresholds required for obtaining increases in water yield are evaluated. Investigating the impact of forest management on these

  5. Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands.

    PubMed

    Rozemeijer, J C; Klein, J; Broers, H P; van Tol-Leenders, T P; van der Grift, B

    2014-12-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/l per decade for total nitrogen (N-tot) and -0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies. PMID:25236957

  6. Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands.

    PubMed

    Rozemeijer, J C; Klein, J; Broers, H P; van Tol-Leenders, T P; van der Grift, B

    2014-12-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/l per decade for total nitrogen (N-tot) and -0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.

  7. The Impact of Enhanced Summer Thaw, Hillslope Disturbances, and Late Season Rainfall on Solute Fluxes from High Arctic Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Lafreniere, M. J.; Lamoureux, S. F.

    2011-12-01

    This study examines variations in the composition and total seasonal fluxes of dissolved solutes in several small High Arctic headwater catchments at the Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Nunavut (74°54'N, 109°35'W) over multiple snowmelt seasons (2007, 2008, 2009) with contrasting climate and permafrost active layer conditions. Climate warming in the High Arctic will affect a number processes that will alter the hydrological and biogeochemical exports from the landscape. Climate change is projected to alter precipitation regimes, resulting in increases in both winter and summer precipitation in the High Arctic, thereby altering hydrological regimes. Warming will result in thickening of the seasonal active layer, which will alter hydrological flow paths and water and solute sources. Additionally, active layer thickening and permafrost warming is also project to enhance the development of thermokarst features, including hillslope disturbances, such as active layer detachment slides and retrogressive thaw slumps. This research compares the flux of inorganic and organic solutes emanating from a group of catchments that were subject to a range hillslope disturbances, or active layer detachment slides (ALDs), at the end of summer 2007. One of the catchments, Goose, was not subject to any disturbance, while active layer slides covered between 6% and 46% of the catchment area in the disturbed catchments. It was hypothesised that solute fluxes would increase primarily with increasing extent and degree of disturbance. This however, was not observed. Rather, comparing five sites with varying degrees of disturbance in 2009 illustrates that on a specific area and specific volume of runoff basis, solute fluxes were unrelated to disturbance extent. Comparing two catchments that were monitored from 2007 (pre-disturbance) through to 2009 (2 yrs post disturbance), shows that both catchments were subject to solute flux increases, however the solute

  8. Hydro-climatic control of stream dissolved organic carbon in headwater catchment

    NASA Astrophysics Data System (ADS)

    Humbert, Guillaume; Jaffrezic, Anne; Fovet, Ophélie; Gruau, Gérard; Durand, Patrick

    2014-05-01

    Dissolved organic matter (DOM) is a key form of the organic matter linking together the water and the carbon cycles and interconnecting the biosphere (terrestrial and marine) and the soil. At the landscape scale, land use and hydrology are the main factors controlling the amount of DOM transferred from soils to the stream. In an intensively cultivated catchment, a recent work using isotopic composition of DOM as a marker has identified two different sources of DOM. The uppermost soil horizons of the riparian wetland appear as a quasi-infinite source while the topsoil of the hillslope forms a limited one mobilized by water-table rise and exported to the stream across the upland-riparian wetland-stream continuum. In addition to the exportation of DOM via water fluxes, climatic factors like temperature and precipitation regulate the DOM production by influencing microbial activity and soil organic matter degradation. The small headwater catchment (5 km²) of Kervidy-Naizin located in Brittany is part of the Environment Research Observatory (ORE) AgrHys. Weather and the hydro-chemistry of the stream, and the groundwater levels are daily recorded since 1993, 2000 and 2001 respectively. Over 13 contrasted hydrological years, the annual flow weighted mean concentration of dissolved organic carbon (DOC) is 5.6 mg.L-1 (sd = 0.7) for annual precipitation varying from 488mm to 1327mm and annual mean temperatures of 11°C (sd = 0.6). Based on this considerable dataset and this annual variability, we tried to understand how the hydro-climatic conditions determinate the stream DOC concentrations along the year. From the fluctuations of water table depth, each hydrologic year has been divided into three main period: i) progressive rewetting of the riparian wetland soils, ii) rising and holding high of the water table in the hillslope, iii) drawdown of the water-table, with less and less topsoil connected to the stream. Within each period base flow and storm flow data were first

  9. Melt Energetics of 25-years of Distributed, Physically Based Snowcover Simulations in a Small Headwater Semiarid Mountain Catchment (Invited)

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Marks, D. G.; Winstral, A. H.; Kumar, M.

    2013-12-01

    Water in the western US is over-allocated due to both urban and rural demands. Over the last 20-30 years climate warming in western North America has resulted in a critical shift in patterns of snow deposition and melt. A carefully collected, processed, and validated meteorological dataset for the 1984 - 2008 water years was assembled for a headwater catchment within the Reynolds Creek Experimental Watershed in the Owyhee Mountains of Idaho. Data from this catchment are representative of conditions across a large region of the interior western US. These data are used to simulate patterns of snow deposition and melt over the catchment for the 25-year period. The simulation period includes both the wettest (1984) and driest (1992) water years, along with a high degree of inter-annual variability. Energetics of six landcover zones and the average within the catchment are compared. Two of these zones are characterized by wind exposure (drift, scour), and four others by general vegetation cover vegetation (fir/conifer, aspen/willow, big sage, mid-sage). Energetics are compared and analyzed to understand how site characteristics moderate the climatic and atmospheric conditions, which control the establishment, development and ablation of the seasonal snowcover.

  10. A neglected riverine carbon transfer: The importance of coarse particulate organic matter for carbon export from a headwater catchment

    NASA Astrophysics Data System (ADS)

    Turowski, Jens; Hilton, Robert

    2013-04-01

    Erosion in mountain uplands can mobilize particulate organic matter (POM) from vegetation and soil and input carbon to headwater streams and rivers. The resulting lateral flux of atmospheric CO2 is thought to be of global importance. While sampling of mountain rivers has provided improved constraint on the transport of POM in fine grained suspended load (typically <500 μm) and the dissolved load, we lack information on the erosion and riverine transport of coarse POM (CPOM), particles with a diameter larger than 1 mm up to meter-sized logs and whole trees, which escape most sampling protocols. Carbon budgets of headwater streams are thus incomplete and we cannot fully assess how the fate of CPOM impacts net carbon transfers from the atmosphere. . Here we have calculated a decadal organic carbon budget for the Erlenbach, a pre-Alpine headwater stream, using a novel sampling protocol that recovers transported CPOM. We find that the rate of CPOM transport increases in a strongly non-linear manner with water discharge, meaning that flood events dominate the CPOM transport. Rating curves for CPOM, suspended load POM and dissolved organic carbon show that in the Erlenbach, CPOM carbon may contribute up to 90% of the total organic carbon export from the headwater catchment We also find that much of the CPOM load is water-logged and therefore supplied to larger fluvial networks as bedload. Subsequent grinding by clastic material may result in important contributions of CPOM to the finer grained sediment export in these systems, an important in-stream source of POM that has so far been overlooked.

  11. Response of sap flow to environmental factors in the headwater catchment of Miyun Reservoir in subhumid North China

    NASA Astrophysics Data System (ADS)

    Tie, Qiang; Hu, Hongchang; Tian, Fuqiang; Liu, Yaping; Xu, Ran

    2015-04-01

    Since the headwater catchment of Miyun Reservoir is the main drinking water conservation area of Beijing, its water cycle is of importance for the regional water resource. Transpiration is an important component of water cycle, which can be estimated by sap flow. In this study, the dynamics of sap flow and its response to environmental factors and relationship with leaf area index (LAI) were analyzed. The field study was conducted in the Xitaizi Experimental Catchment, located in the headwater catchment of Miyun Reservoir in subhumid North China. The Aspen (Populus davidiana) and Epinette (Larix gmelinii) are the two dominant tree species. Sap flow in 15 Aspen (Populus davidiana) trees was monitored using thermal dissipation probes (TDP) during the growing season of 2013 and 2014, and sap flow in another 3 Epinette (Larix gmelinii) trees was also monitored during September and October in 2014 for comparative analysis. Physiological and biometric parameters of the selected trees and the environmental factors, including meteorological variables, soil moisture content and groundwater table depth were measured. Vapor pressure deficit (VPD), variable of transpiration (VT) and reference crop evapotranspiration (ET0) were calculated using the measured environmental factors. The LAI, which is used to characterize phenophase, was calculated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product (MCD15A3). Correlation analysis for daily sap flow and air temperature, relative humidity, precipitation, wind speed, solar radiation, VPD, VT and ET0 under different soil moisture and groundwater table depth conditions was performed. Diurnal course and hysteresis of sap flow were analyzed as a function of air temperature, solar radiation, VPD and VT on the typical sunny, cloudy and rainy days under different soil moisture conditions. Correlation analysis between daily sap flow and LAI showed that LAI and phenophase significantly influence sap flow and restrict

  12. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  13. Using microbiological tracers to assess the impact of winter land use restrictions on the quality of stream headwaters in a small catchment.

    PubMed

    Flynn, Raymond M; Deakin, Jenny; Archbold, Marie; Cushnan, Hugh; Kilroy, Kate; O'Flaherty, Vincent; Misstear, Bruce D

    2016-01-15

    Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17 km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.

  14. Using microbiological tracers to assess the impact of winter land use restrictions on the quality of stream headwaters in a small catchment.

    PubMed

    Flynn, Raymond M; Deakin, Jenny; Archbold, Marie; Cushnan, Hugh; Kilroy, Kate; O'Flaherty, Vincent; Misstear, Bruce D

    2016-01-15

    Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17 km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality. PMID:26470010

  15. Thresholds in Subsurface Flow Generation: An Intercomparison of Three Different Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Hjerdt, K. N.; McGlynn, B.; Tromp-van Meerveld, I.; McDonnell, J. J.; Hooper, R. P.

    2001-12-01

    Dynamic thresholds in catchment response and subsurface stormflow initiation are poorly understood. This remains a problem for the generalization and transferability of hydrologic models, as well as for the simulation of catchment response under variable antecedent and input conditions. Threshold processes appear to operate both spatially and temporally within a catchment and introduce non-linearity to the system response function. We present a catchment intercomparison to illustrate the common features of threshold dynamics at the hillslope and catchment scales. While our overall goal is to generalize a model structure to work in humid areas where storm response is dominated by subsurface flow, cross-comparing internal catchment dynamics is a necessary prerequisite in order to define first order controls on the generation of subsurface stormflow across different landscape types. We analyzed physical data series collected from three catchments with extremely diverse climatic and physical characteristics: (1) Sleepers River Research Watershed in northeastern Vermont, USA; (2) Panola Mountain Research Watershed in central Georgia, USA; and (3) Maimai Watershed on the South Island of New Zeeland. The physical data series included continuous runoff, soil moisture probes, wells, piezometers and, for some catchments, tensiometers and hillslope trench flow. We calculated indices that characterized the timing, magnitude and duration of subsurface response in relation to stream discharge for a large number of events within each catchment. Analysis of these indices across space and time revealed distinguishable patterns of threshold behavior in the different catchments and our presentation will demonstrate the value of catchment intercomparision in this regard.

  16. Influence of vegetation on water isotope partitioning across different northern headwater catchments

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; Mitchell, C. P. J.; McNamara, J. P.; Soulsby, C.

    2014-12-01

    The hydrology of high latitude catchments is sensitive to small changes in temperature, and likely to be impacted by changes in climate. Vegetation water usage can play a large role in catchment hydrologic pathways, affecting how water is stored, released, and partitioned within a landscape. Thus a better understanding of how vegetation impacts water partitioning in northern catchments can help us understand how climate change will impact high-latitude hydrology. As part of the VeWa project, five catchments were chosen between 44oN and 64oN in Europe and North America, to compare the role of vegetation in the movement of water across northern landscapes. These catchments vary in aspect as well as extent of snowpack and their vegetative landscapes include heather moorland, coniferous and deciduous forests, mixed grass, and tundra landscapes. Importantly, all the catchments have records of stable isotopes in different waters of the system. An initial comparison of the water isotopes in these catchments demonstrates variation between the catchments, with the lower latitude sites showing more fractionation suggestive of evapotranspiration. While all catchments show a depletion of heavy isotopes in the spring, the depletion is most evident in catchments with a heavier snowpack. The vegetative growing season during the summer months shows the greatest impact of evapotranspiration on isotopes, indicating that an increased summer in a warmer climate would likely alter water partitioning and storage dynamics in these regions.

  17. Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gannon, John P.; Bailey, Scott W.; McGuire, Kevin J.

    2014-11-01

    A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were characterized by their median and interquartile range of depth, proportion of time water table was present in the solum, and storage-discharge behavior of subsurface flow. Statistically significant differences in median, interquartile range, and presence of water table were detected among soil units. Threshold responses were identified in storage-discharge relationships of subsurface flow, with thresholds varying among soil units. These results suggest that soil horizonation is indicative of distinct groundwater flow regimes. The spatial distribution of water table across the catchment showed variably connected/disconnected active areas of runoff generation in the solum. The spatial distribution of water table and therefore areas contributing to stormflow is complex and changes depending on catchment storage.

  18. An Investigation into Groundwater Recharge Dynamics and Hydrologic Connectivity in an Alpine/Subalpine Mountainous Headwater Catchment, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dailey, K. R.; Hughes, H.; Williams, M. W.

    2015-12-01

    Geochemical surface and groundwater data were used to examine groundwater recharge dynamics and hydrologic connectivity in the dominantly subalpine Como Creek headwater catchment within the Boulder Creek Watershed in the Colorado Front Range. Streamwater chemistry along an elevational gradient of Como Creek showed strong responses to variations in precipitation inputs spanning 2011-2014. Elevation effects on δ18O were apparent, with more depleted values indicative of snowmelt influence observed at the higher elevation sites. Results from one-way ANOVA indicated that the highest elevation stream site, situated right below treeline, was significantly different from the lower three sites with regards to DOC, δ18O, and Ca2+ (p < 0.05) over May-October 2011-2014. Additionally, the second highest site in elevation was found to be significantly different from all other sites with respect to Ca2+ concentrations. Soil moisture sensor and geochemical data from soil tension lysimeters co-located with subalpine groundwater wells revealed a disconnect between soil and surface water chemistry during snowmelt and that of deeper, underlying groundwater. The initial results of this study provide insight on where groundwater recharge and discharge may be occurring in the catchment and help us to evaluate the large September 2013 rain event in the Colorado Front Range, a once in a 1000 year event. Water isotopes were enriched, Ca2+ decreased, and DOC was enriched, showing that new event water had flowed through near-surface soils but not deeper, recharging groundwater, with all values returning to normal within six months. The event was also observable compared to a long-term geochemical and stream stage record at the stream site near the catchment outlet, with the most enriched δ18O value on record of -13.41‰ corresponding to the flood. Remaining questions concerning groundwater dynamics in the catchment include constraining the tradeoffs between forest ET, groundwater recharge

  19. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments

    USGS Publications Warehouse

    Brooks, P.D.; McKnight, Diane M.; Bencala, K.E.

    1999-01-01

    Dissolved organic carbon (DOC) from terrestrial sources forms the major component of the annual carbon budget in many headwater streams. In high-elevation catchments in the Rocky Mountains, DOC originates in the upper soil horizons and is flushed to the stream primarily during spring snowmelt. To identify controls on the size of the mobile soil DOC pool available to be transported during the annual melt event, we measured soil DOC production across a range of vegetation communities and soil types together with catchment DOC export in paired watersheds in Summit County, Colorado. Both surface water DOC concentrations and watershed DOC export were lower in areas where pyrite weathering resulted in lower soil pH. Similarly, the amount of DOC leached from organic soils was significantly smaller (p < 0.01) at sites having low soil p H. Scaling point source measurements of DOC production and leaching to the two basins and assuming only vegetated areas contribute to DOC production, we calculated that the amount of mobile DOC available to be leached to surface water during melt was 20.3 g C m-2 in the circumneutral basin and 17.8 g C m-2 in the catchment characterized by pyrite weathering. The significant (r2 = 0.91 and p < 0.05), linear relationship between overwinter CO2 flux and the amount of DOC leached from upper soil horizons during snowmelt suggests that the mechanism for the difference in production of mobile DOC was heterotrophic processing of soil carbon in snow-covered soil. Furthermore, this strong relationship between over-winter heterotrophic activity and the size of the mobile DOC pool present in a range of soil and vegetation types provides a likely mechanism for explaining the interannual variability of DOC export observed in high-elevation catchments.

  20. Hydrograph separation in headwater catchments of the Andes using water isotope composition

    NASA Astrophysics Data System (ADS)

    Roa Garcia, C.; Weiler, M.

    2009-04-01

    Water isotopes have been used in hydrology for two purposes: 1) identify the age of water when it leaves a catchment, both for baseflow and for individual storms; and 2) identify the source of water that leaves the catchment during and after a precipitation event, (e.g. whether it comes from rain or from particular water reservoirs within the catchment). This knowledge has been used to understand the interactions between precipitation and catchments and as a proxy for the capacity of a catchment to store water and regulate its flow, which is particularly relevant for water managers. This study has taken three small neighboring catchments and one sub-catchment in each of them containing a wetland, to analyze their baseflow and discharge response to rain events using TRANSEP. The objectives of this study are: 1) to compare the hydrological response of the six units to test the hypothesis that connected units of the landscape e.g. wetlands have a large influence on catchment yield; 2) to analyze the effect of land use on water yield during rain events; and 3) to analyze the effects of land use on baseflow. Results indicate that for B1, the catchment with 68% of area in forest, discharge is predominantly quickflow (70%), whereas for the other two catchments, it comes from around 50% of both the quickflow reservoir and the persistent reservoir. The big influence from wetlands is seen in two results: 1) the higher proportion of baseflow discharge for BB, the catchment with a 6% of total area in wetlands, since wetlands could be contributing to groundwater recharge; 2) the mean transit time of water in BB, 172 days compared with 97 days for B1 (the forested catchment) and 28 days for B2 (the catchment with 69% in grasslands) influenced by the longer transit time for BBW and B2W. The larger proportion of discharge coming from the slow quickflow in wetlands B2 and BB, and their mean transit times, indicate that the water stored in wetlands, despite constituting surface

  1. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  2. The use of novel wooden structures to manage flooding and coarse sediment problems in responsive upland headwater catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Watson, Helen; Stutter, Marc

    2014-05-01

    Over the past decade economic losses from floods have greatly increased, with sediment related impacts as a key feature of such events. Impacts include changes in river channel course, scour of river banks, sedimentation of infrastructure (e.g. bridges), and deposition of sand and gravel on farmland. Sediment deposition can in turn reduce conveyance capacity and lead to further increased flood risk. The EU Water Framework Directive and Floods Directive highlights that sustainable approaches to flood risk reduction should be used alongside and, where possible, replace traditional structural flood defences and activities that address sediment problems. Natural Flood Management(NFM) is promoted as a method that can reduce flood risk and manage sediment by incorporating natural hydrological and morphological processes. As such, NFM measures are designed to use these fluvial processes to manage the sources and pathways of flood waters and sediments. Techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes. Here we aim to assess the effectiveness of novel flood mitigation measures for reducing flood risk and capturing coarse sediment in rapidly responding headwater catchments. We present preliminary research findings from a densely instrumented research site (Bowmont catchment, Scotland (85km2)) which regularly experiences flood events with associated coarse sediment problems. NFM measures have been installed to capture course sediment and to store water more effectively on the flood plains during these flood events. For example, novel engineered wooden structures ('bar apex log jams') constructed in the river corridor are designed to trap sediment and log bank protection structures have been installed to stop bank erosion. Within a tributary catchment of the Bowmont (0.7km2), new flow restrictors have been installed on a

  3. Groundwater head controls nitrate export from an agricultural lowland catchment

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H.

    2016-10-01

    Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale.

  4. Long-term changes of water and chemical budgets after clear-cutting of a small headwater catchment in Japan

    NASA Astrophysics Data System (ADS)

    Oda, T.; Egusa, T.; Ohte, N.; Takeda, M.; Suzuki, M.

    2014-12-01

    To understand the mechanisms of hydrological and biogeochemical processes of forest ecosystems, long term monitoring of changes in water and chemical budgets after forest disturbance is important. Previous studies have generally focused on changes in stream runoff and water chemistry. However, the long term changes in forest-canopy ecosystems such as rainfall partitioning and the chemical budget of the canopy have not been sufficiently considered. Therefore, the objectives of this study were to evaluate the long-term changes of input and output budgets of water and chemistry after clear-cutting of forest catchment. The study was conducted in a pair of small headwater catchments, one of which was clear-cut in 1999 and then planted with the same species in 2000; the other served as a control. After forest cutting, annual runoff increased 200-300 mm/yr and the higher runoff still remained 14 years later. The interception ratio in the clear-cut catchment was less than 10% of precipitation, whereas that in the control catchment was 20-24% of precipitation. Interception rate was still lower in the young forest compared with the mature forest, despite similar transpiration rate. With regard to chemistry, Cl- and SO42- concentrations in stream water decreased after cutting and remained lower 14 years later. On the other hand, NO3- concentration increased and finally returned to its pre-cut level. The atmospheric deposition inputs, such as those of Cl-, Na+, and SO42-, remained lower in the clear-cut catchment than in the control. On the other hand, input of K+, Mg2+, and Ca2+ originating from canopy leaching became significantly higher in the clear-cut catchment compared with those in the control. These results suggest that not only the biological processes such as water and chemical uptake by plants, but also changes in canopy physical processes such as canopy interception and chemical scavenging, affected the long-term response of stream runoff and chemistry following

  5. Temporal and spatial dynamics of carbon and nitrogen in headwater snow-dominated catchments, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Dannemann, F. K.; Zapata, X.; McIntosh, J. C.; Perdrial, J. N.; Brooks, P. D.; Chorover, J.; Lohse, K. A.; Fricke, H. C.

    2011-12-01

    The concentration and availability of stream nutrients, particularly dissolved organic carbon (DOC) and nitrogen species, determine aquatic system productivity, and are important indicators of catchment hydrobiogeochemical processes. In semi-arid montane areas, such as the Valles Caldera National Preserve located within the Jemez River Basin, NM, an understanding of the relationship between discharge and nutrient concentrations is particularly important. Although the annual hydrograph is dominated (~40%) by spring snowmelt, similar to well studies sites in the northern Rockies, the JRB region receives a much larger percentage of precipitation associated with summer rainfall, and consequently may provide insight into how more northerly catchments will respond to changing climate. This study focuses on four headwater catchments: History Grove, La Jara, Upper Jaramillo and Upper Redondo, over two water years (2009 to 2011) to examine how nutrient concentrations vary as a function of hillslope aspect, catchment hydrologic responses, seasonality, and discharge. Stream water grab samples were collected on a monthly to weekly basis from 2009 to 2011 and analyzed for inorganic carbon (DIC), dissolved organic carbon (DOC) and nitrogen species (total dissolved nitrogen (DN), NO3, NO2, NH4). DOC and DN concentrations in stream waters from all 4 catchments are positively correlated, indicating a tight coupling of carbon and nitrogen. During dry periods (September to February) stream waters have high DIC (4.8-7.6 mg/L), and low DOC (1.6-2.7 mg/L) and DN (<0.3 mg/L) concentrations, indicating that stream water is dominated by groundwater inputs. In contrast, during spring snowmelt (March-May) stream waters have high DOC (2.9-6.2 mg/L) and DN (0.2-0.5mg/L) concentrations and low DIC (3.1-4.5mg/L) values; the majority of DN is comprised of organic-N. These results suggest flushing of shallow soil waters during snowmelt periods. High DIC (5.8-6.3mg/L), and low DOC (1.7-4.0mg/L) and

  6. Mineral-organic matter associations in eroding hillslopes: findings from headwater catchments in the Southern Sierra Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Berhe, A.; Stacy, E.; McCorkle, E. P.; Johnson, D. W.; Hunsaker, C. T.; Hart, S. C.

    2013-12-01

    Mineral-organic matter (OM) associations--physical encapsulation of OM inside soil aggregates and chemical bonding and complexation of organic functional groups with soil minerals--determine the proportion of soil organic matter (SOM) that is redistributed and mineralized during and after erosional transport of sediments downhill, as well as the stability of the eroded SOM post-deposition. The susceptibility of SOM to decomposition and its stabilization mechanisms can change during and after erosion as a result of: aggregate breakdown or detachment due to kinetic energy of raindrops and/or shearing during lateral transport, and reconfiguration of mineral-OM associations through formation of new and strengthening of existing mineral-OM associations in depositional environments that are enriched in carbon (C) and reactive soil minerals. The goal of this study was to determine how concentration, nature and distribution of SOM in soil fractions vary between eroding slopes and sediments exported from eroding catchments. Free organic particles exported from eroding watersheds typically represent <30% of total carbon mobilized by erosion, compared to <20% mobilized as aggregate protected C and <30% as C complexed with Fe and Al oxides. Our results show that there is large variability in nature of exported material across eight headwater catchments that is not directly related to watershed size or climatic variability. In addition, we quantified the rate at which different OM fractions are preferentially transported and can be potentially lost through decomposition during lateral transport.

  7. Two water worlds in temperate forests? Partitioning of water sources in two forested headwater catchments in Germany

    NASA Astrophysics Data System (ADS)

    Schmid, Bettina; Dubbert, Maren; Werner, Christiane; Hopp, Luisa

    2016-04-01

    Recent ecohydrological studies using stable isotopes have suggested that water used by plants is largely separated from water that is returned to streams and groundwater. These observations have led to the postulation of a "two water worlds hypothesis" with distinct reservoirs of water in the subsurface that are not well mixed. This has major implications for our understanding of the water cycle and its conceptualization. Most of the studies to date have been conducted in forested catchments located in regions with a pronounced seasonal distribution of precipitation. Here we present findings from a study of the ecological separation of water in two forested headwater catchments in Germany where precipitation is distributed rather evenly throughout the year. Over the course of 18 months we sampled plant water, soil water, groundwater and stream runoff monthly to analyze isotope ratios of 18O and 2H. Plant and soil water were cryogenically extracted, and isotope ratios in the water samples were analyzed using cavity ring-down spectroscopy and isotope-ratio mass spectrometry. The isotope ratios of the different water sources were used to test the hypothesis that separate water worlds also exist in climates that do not exhibit a seasonal distribution of precipitation. First findings indicate distinct differences in isotope ratios between tree species, suggesting complex processes at the biosphere-hydrosphere interface, but otherwise little evidence for the existence of separate water reservoirs.

  8. Seasonal variation of residence time in spring and groundwater evaluated by CFCs and numerical simulation in mountainous headwater catchment

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka

    2016-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring

  9. Factors influencing water transit times in snowmelt-dominated, headwater catchments of the western U.S.

    NASA Astrophysics Data System (ADS)

    Clow, D. W.; Mast, A.

    2015-12-01

    In catchments, water transit times (TTs) refer to the elapsed time between entry of water at the ground surface and exit of water at the catchment outlet. Transit times are an important characteristic of catchments in that they reflect the time available for interaction between water, soil, and biota within the system. Thus, they exert a strong influence on hydrologic resilience to drought and climate change, and on the sensitivity of aquatic ecosystems to atmospheric pollutants. Transit times may vary spatially due to variations in basin characteristics, such as slope, size, and amount and type of soil and vegetation; however, the relative influence of these factors on TTs is poorly known. In this study, we estimate mean transit times (MTTs) for 11 snowmelt-dominated, headwater catchments in the western U.S. using the convolution integral approach, which relies on differences in the magnitude of seasonal variability in δ18O in precipitation and stream water to estimate MTTs. Seasonal variability in δ18O was calculated based on analyses of precipitation and stream water samples collected at weekly to monthly intervals. Results indicate that MTTs ranged from 0.6 to 2.1 years, and were positively influenced by percent of the catchment covered by forest (r2 = 0.56; p = 0.008), and negatively influenced by barren terrain (e.g., bedrock; r2 = 0.48; p = 0.019). MTTs showed a weak negative relation to mean basin slope (r2 = 0.31; p = 0.076) and no relation to basin size or elevation. These results illustrate the importance of soil as a key factor influencing MTTs, with basin slope acting as a secondary influence. Heavily forested basins tend to have deep, well-developed soils with substantial water storage capacity; these soils help maintain baseflow during drought conditions, providing hydrologic resilience to the system, and they are an important location for geochemical and biological processes that neutralize acidity and assimilate atmospherically deposited nitrogen

  10. Implications of the results of colonization experiments for designing riparian restoration projects adjacent to agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams and their riparian habitats in the Midwestern United States have been modified for agricultural drainage. Agricultural drainage often results in reductions of physical habitat diversity, shifts from woody to herbaceous riparian vegetation, and the loss of riparian habitat. T...

  11. Contrasting CO2 concentration discharge dynamics in headwater streams: A multi-catchment comparison

    NASA Astrophysics Data System (ADS)

    Dinsmore, K. J.; Wallin, M. B.; Johnson, M. S.; Billett, M. F.; Bishop, K.; Pumpanen, J.; Ojala, A.

    2013-06-01

    CO2 concentrations are highly variable and strongly linked to discharge, but until recently, measurements have been largely restricted to low-frequency manual sampling. Using new in situ CO2 sensors, we present concurrent, high-frequency (<30 min resolution) CO2 concentration and discharge data collected from five catchments across Canada, UK, and Fennoscandinavia to explore concentration-discharge dynamics; we also consider the relative importance of high flows to lateral aquatic CO2 export. The catchments encompassed a wide range of mean CO2 concentrations (0.73-3.05 mg C L-1) and hydrological flow regimes from flashy peatland streams to muted outflows within a Finnish lake system. In three of the catchments, CO2 concentrations displayed clear bimodal distributions indicating distinct CO2 sources. Concentration-discharge relationships were not consistent across sites with three of the catchments displaying a negative relationship and two catchments displaying a positive relationship. When individual high flow events were considered, we found a strong correlation between both the average magnitude of the hydrological and CO2 response peaks, and the average response lag times. An analysis of lateral CO2 export showed that in three of the catchments, the top 30% of flow (i.e., flow that was exceeded only 30% of the time) had the greatest influence on total annual load. This indicates that an increase in precipitation extremes (greater high-flow contributions) may have a greater influence on the flushing of CO2 from soils to surface waters than a long-term increase in mean annual precipitation, assuming source limitation does not occur.

  12. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large

    NASA Astrophysics Data System (ADS)

    Duethmann, Doris; Menz, Christoph; Jiang, Tong; Vorogushyn, Sergiy

    2016-05-01

    In the Tarim River Basin, water resources from the mountain areas play a key role due to the extremely arid climate of the lowlands. This study presents an analysis of future climate change impacts on glaciers and surface water availability for headwater catchments of the Aksu River, the most important tributary to the Tarim River. We applied a glacio-hydrological model that underwent a comprehensive multivariable and multiobjective model calibration and evaluation, based on daily and interannual discharge variations and glacier mass changes. Transient glacier geometry changes are simulated using the Δh-approach. For the ensemble-based projections, we considered three different emission scenarios, nine global climate models (GCMs) and two regional climate models, and different hydrological model parameters derived from the multiobjective calibration. The results show a decline in glacier area of ‑90% to ‑32% until 2099 (reference ∼2008) (based on the 5–95 percentile range of the ensemble). Glacier melt is anticipated to further increase or stay at a high level during the first decades of the 21st century, but then declines because of decreased glacier extents. Overall discharge in the Aksu headwaters is expected to be increased in the period 2010–2039 (reference 1971–2000), but decreased in 2070–2099. Seasonally, projections show an increase in discharge in spring and early summer throughout the 21st century. Discharge changes in mid to late summer are more variable, with increases or decreases depending on the considered period and GCM. Uncertainties are largely caused by differences between the different GCMs, with further important contributions from different emission scenarios in the second half of the 21st century. Contributions from the hydrological model parameters to the ensemble uncertainty were generally found to be small.

  13. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large

    NASA Astrophysics Data System (ADS)

    Duethmann, Doris; Menz, Christoph; Jiang, Tong; Vorogushyn, Sergiy

    2016-05-01

    In the Tarim River Basin, water resources from the mountain areas play a key role due to the extremely arid climate of the lowlands. This study presents an analysis of future climate change impacts on glaciers and surface water availability for headwater catchments of the Aksu River, the most important tributary to the Tarim River. We applied a glacio-hydrological model that underwent a comprehensive multivariable and multiobjective model calibration and evaluation, based on daily and interannual discharge variations and glacier mass changes. Transient glacier geometry changes are simulated using the Δh-approach. For the ensemble-based projections, we considered three different emission scenarios, nine global climate models (GCMs) and two regional climate models, and different hydrological model parameters derived from the multiobjective calibration. The results show a decline in glacier area of -90% to -32% until 2099 (reference ˜2008) (based on the 5-95 percentile range of the ensemble). Glacier melt is anticipated to further increase or stay at a high level during the first decades of the 21st century, but then declines because of decreased glacier extents. Overall discharge in the Aksu headwaters is expected to be increased in the period 2010-2039 (reference 1971-2000), but decreased in 2070-2099. Seasonally, projections show an increase in discharge in spring and early summer throughout the 21st century. Discharge changes in mid to late summer are more variable, with increases or decreases depending on the considered period and GCM. Uncertainties are largely caused by differences between the different GCMs, with further important contributions from different emission scenarios in the second half of the 21st century. Contributions from the hydrological model parameters to the ensemble uncertainty were generally found to be small.

  14. Carbon Metabolism, Uptake Kinetics, and Export: how Watershed Form Influences Carbon Mobilization and In-Stream Transformations in Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Seybold, E. C.; McGlynn, B. L.

    2014-12-01

    Previous research has demonstrated the highly dynamic nature of hydrologic connectivity, and the vertical and spatial expansion of the active watershed area during wet periods. While activation of variable DOM and solute sources during expansion and contraction periods has been well documented in a number of systems, changes in nutrient loading to streams have rarely been linked explicitly to in-stream function. To this end, we investigated the linkages between terrestrial mobilization of DOC and DIC, in-stream biogeochemical cycling, and downstream transport across scales in two geomorphically contrasting watersheds located in Tenderfoot Creek Experimental Forest, Montana. We deployed a network of in-situ high frequency sensors with a focus on CO2, dissolved oxygen, fluorescent DOM, nitrate, and a suite of supporting chemical constituents every 30 minutes beginning with the onset of snowmelt and through summer baseflow recession. Our results suggest that DOM and DIC fluxes, as well as ecosystem processes such as metabolism, were coupled to watershed scale carbon accumulation and mobilization. In both watersheds, metabolism tracked the temporal trends of DOM loading from the terrestrial landscape, indicating that the streams are actively transforming allochthonous organic materials during transport. Headwater stream reaches in the watershed with more hydrologically connected riparian source areas exhibited elevated metabolism, carbon uptake, and carbon export as compared to streams in the watershed with less riparian connectivity, suggesting that the degree of riparian connectivity may explain spatial variation in metabolism and in-stream carbon cycling within and across stream networks. Ultimately, this study highlights the tight coupling between terrestrial uplands and in-stream ecosystem processes in headwater catchments, and identifies spatio-temporal variation in hydrologic connectivity as a key driver of in-stream metabolic variation. We posit that the

  15. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia

    NASA Astrophysics Data System (ADS)

    Soms, Juris

    2015-04-01

    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic

  16. Development and Application of a Simple Hydrogeomorphic Model for Headwater Catchments

    EPA Science Inventory

    We developed a catchment model based on a hydrogeomorphic concept that simulates discharge from channel-riparian complexes, zero-order basins (ZOB, basins ZB and FA), and hillslopes. Multitank models simulate ZOB and hillslope hydrological response, while kinematic wave models pr...

  17. Temporal variation of nitrate and phosphate transport in headwater catchments: the hydrological controls and land use alteration

    NASA Astrophysics Data System (ADS)

    Lee, T.-Y.; Huang, J.-C.; Kao, S.-J.; Tung, C.-P.

    2013-04-01

    Oceania rivers are hotspots of DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphorus) transport due to humid/warm climate, typhoon-induced episodic rainfall and high tectonic activity that create an environment favorable for high/rapid runoff and soil erosion. In spite of its uniqueness, effects of hydrologic controls and land use on the transport behaviors of DIN and DIP are rarely documented. A 2 yr monitoring study for DIN and DIP from three headwater catchments with different cultivation gradient (0 To 8.9%) was implemented during a ~ 3 day interval with an additional monitoring campaign at a 3 h interval during typhoon periods. Results showed the DIN yields in the pristine, moderately cultivated (2.7%), and intensively cultivated (8.9%) watersheds were 8.3, 26, and 37 kg N ha-1 yr-1, respectively. For the DIP yields, they were 0.36, 0.35, and 0.56 kg P ha-1 yr-1, respectively. Higher year-round DIN concentrations and five times larger in DIN yields in intensively cultivated watersheds indicate DIN is more sensitive to land use changes. The high background DIN yield from the relatively pristine watershed was likely due to high atmospheric nitrogen deposition and large subterranean N pool. The correlations between runoff and concentration reveals that typhoon floods purge out more DIN from the subterranean reservoir, i.e., soil, by contrast, runoff washes off surface soil resulting in higher suspended sediment with higher DIP. Collectively, typhoon runoff contributes 20-70% and 47-80%, respectively, to the annual DIN and DIP exports. The DIN yield to DIP yield ratio varied from 97 to 410, which is higher than the global mean of ~ 18. Such a high ratio indicates a P-limiting condition in stream and the downstream aquatic environment. Based on our field observation, we constructed a conceptual model illustrating different remobilization mechanisms for DIN and DIP from headwaters in a mountainous river, which is analogous to typical Oceania

  18. Spatial and temporal occurrence of preferential flow in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Wiekenkamp, I.; Huisman, J. A.; Bogena, H. R.; Lin, H. S.; Vereecken, H.

    2016-03-01

    The highly dynamic nature of preferential flow in time and space makes it challenging to identify and analyze its occurrence at the catchment scale. Novel analysis methods using soil moisture sensor response times offer an opportunity to investigate catchment-wide controls on preferential flow. The aim of this study was to identify factors that control preferential flow occurrence based on 3-year soil moisture monitoring using a wireless sensor network in the Wüstebach catchment, Germany. At 101 locations, the sensor response times at three depths (5, 20, and 50 cm) were classified into one of four classes: (1) non-sequential preferential flow, (2) velocity-based preferential flow, (3) sequential flow, and (4) no response. A conceptual model, postulating that preferential flow in the Wüstebach catchment is dominated by differences in soil type, landscape position, and rainfall input, was proposed for hypothesis testing. To test the conceptual model, the classification results were combined with spatial and event-based data to understand and identify controlling factors. Spatial parameters consisted of hydrological, topographical, and soil physical and chemical parameters. Temporal factors included precipitation characteristics and antecedent soil moisture conditions. The conceptual model as proposed could only be partly confirmed. Event-based occurrence of preferential flow was highly affected by precipitation amount, with a nearly catchment-wide preferential response during large storm events. During intermediate events, preferential flow was controlled by small-scale heterogeneity, instead of showing catchment-wide patterns. The effect of antecedent catchment wetness on the occurrence of preferential flow was generally less profound, although a clear negative relationship was found for precipitation events with more than 25 mm. It was found that spatial occurrence of preferential flow was however governed by small-scale soil and biological features and local

  19. Effects of a beaver pond on runoff processes: comparison of two headwater catchments

    NASA Astrophysics Data System (ADS)

    Burns, Douglas A.; McDonnell, Jeffrey J.

    1998-03-01

    Natural variations in concentrations of 18O, D, and H 4SiO 4 in two tributary catchments of Woods Lake in the west-central Adirondack Mountains of New York were measured during 1989-1991 to examine runoff processes and their implications for the neutralization of acidic precipitation by calcium carbonate treatment. The two catchments are similar except that one contained a 1.3 ha beaver pond. Evaporation from the beaver pond caused a seasonal decrease in the slope of the meteoric water line in stream water from the catchment with a beaver pond (WO2). No corresponding change in slope of the meteoric water line was evident in stream water from the other catchment (WO4), nor in ground water nor soil water from either catchment, indicating that evaporative fractionation was not significant. Application of a best-fit sine curve to δ18O data indicated that base flow in both catchments had a residence time of about 100 days. Ground water from a well finished in thick till had the longest residence time (160 days); soil water from the O-horizon and B-horizon had residence times of 63 and 80 days, respectively. Water previously stored within each catchment (pre-event water) was the predominant component of streamflow during spring snowmelt and during spring and autumn rainfall events, but the proportion of streamflow that consisted of pre-event water differed significantly in the two catchments. The proportion of event water (rain and snowmelt) in WO2 was smaller than at WO4 early in the spring snowmelt of March 13-17, 1990, but the proportions of source water components for the two catchments were almost indistinguishable by the peak flow on the third day of the melt. The event water was further separated into surface-water and subsurface-water components by utilizing measured changes in H 4SiO 4 concentrations in stream water during the snowmelt. Results indicated that subsurface flow was the dominant pathway by which event water reached the stream except during the peak

  20. Effects of a beaver pond on runoff processes: comparison of two headwater catchments

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.

    1998-01-01

    Natural variations in concentrations of 18O, D, and H4SiO4 in two tributary catchments of Woods Lake in the west-central Adirondack Mountains of New York were measured during 1989–1991 to examine runoff processes and their implications for the neutralization of acidic precipitation by calcium carbonate treatment. The two catchments are similar except that one contained a 1.3 ha beaver pond. Evaporation from the beaver pond caused a seasonal decrease in the slope of the meteoric water line in stream water from the catchment with a beaver pond (WO2). No corresponding change in slope of the meteoric water line was evident in stream water from the other catchment (WO4), nor in ground water nor soil water from either catchment, indicating that evaporative fractionation was not significant. Application of a best-fit sine curve to δ18O data indicated that base flow in both catchments had a residence time of about 100 days. Ground water from a well finished in thick till had the longest residence time (160 days); soil water from the O-horizon and B-horizon had residence times of 63 and 80 days, respectively. Water previously stored within each catchment (pre-event water) was the predominant component of streamflow during spring snowmelt and during spring and autumn rainfall events, but the proportion of streamflow that consisted of pre-event water differed significantly in the two catchments. The proportion of event water (rain and snowmelt) in WO2 was smaller than at WO4 early in the spring snowmelt of March 13–17, 1990, but the proportions of source water components for the two catchments were almost indistinguishable by the peak flow on the third day of the melt. The event water was further separated into surface-water and subsurface-water components by utilizing measured changes in H4SiO4 concentrations in stream water during the snowmelt. Results indicated that subsurface flow was the dominant pathway by which event water reached the stream except during the

  1. Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors

    NASA Astrophysics Data System (ADS)

    Malzone, J. M.; Shanley, J. B.

    2014-12-01

    The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded

  2. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, T.M.; Raffensperger, J.P.; Hornberger, G.M.; Clapp, R.B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two-storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  3. Temporal control on concentration, character, and export of dissolved organic carbon in two hemiboreal headwater streams draining contrasting catchments

    NASA Astrophysics Data System (ADS)

    Wallin, Marcus B.; Weyhenmeyer, Gesa A.; Bastviken, David; Chmiel, Hannah E.; Peter, Simone; Sobek, Sebastian; Klemedtsson, Leif

    2015-05-01

    Although lateral carbon (C) export from terrestrial to aquatic systems is known to be an important component in landscape C balances, most existing global studies are lacking empirical data on the soil C export. In this study, the concentration, character, and export of dissolved organic carbon (DOC) were studied during 2 years in two hemiboreal headwater streams draining catchments with different soil characteristics (mineral versus peat soils). The streams exposed surprisingly similar strong air temperature controls on the temporal variability in DOC concentration in spite of draining such different catchments. The temporal variability in DOC character (determined by absorbance metrics, specific ultraviolet absorbance 254 (SUVA254) as a proxy for aromaticity and a254/a365 ratio as a proxy for mean molecular weight) was more complex but related to stream discharge. While the two streams showed similar ranges and patterns in SUVA254, we found a significant difference in median a254/a354, suggesting differences in the DOC character. Both streams responded similarly to hydrological changes with higher a254/a365 at higher discharge, although with rather small differences in a254/a365 between base flow and high flow (<0.3). The DOC exports (9.6-25.2 g C m-2 yr-1) were among the highest reported so far for Scandinavia and displayed large interannual and intraannual variability mainly driven by irregular precipitation/discharge patterns. Our results show that air temperature and discharge affect the temporal variability in DOC quantity and character in different ways. This will have implications for the design of representative sampling programs, which in turn will affect the reliability of future estimates of landscape C budgets.

  4. Influence of Terrain and Land Cover on the Isotopic Composition of Seasonal Snowpack in Rocky Mountain Headwater Catchments Affected by Bark Beetle Induced Tree Mortality

    NASA Astrophysics Data System (ADS)

    Kipnis, E. L.; Murphy, M.; Klatt, A. L.; Miller, S. N.; Williams, D. G.

    2015-12-01

    Session H103: The Hydrology-Vegetation-Climate Nexus: Identifying Process Interactions and Environmental Shifts in Mountain Catchments Influence of Terrain and Land Cover on the Isotopic Composition of Seasonal Snowpack in Rocky Mountain Headwater Catchments Affected by Bark Beetle Induced Tree Mortality Evan L Kipnis, Melanie A Murphey, Alan Klatt, Scott N Miller, David G Williams Snowpack accumulation and ablation remain difficult to estimate in forested headwater catchments. How physical terrain and forest cover separately and interactively influence spatial patterns of snow accumulation and ablation largely shapes the hydrologic response to land cover disturbances. Analysis of water isotopes in snowpack provides a powerful tool for examining integrated effects of water vapor exchange, selective redistribution, and melt. Snow water equivalence (SWE), δ2H, δ18O and deuterium excess (D-excess) of snowpack were examined throughout winter 2013-2014 across two headwater catchments impacted by bark beetle induced tree mortality. A USGS 10m DEM and a derived land cover product from 1m NAIP imagery were used to examine the effects of terrain features (e.g., elevation, slope, aspect) and canopy disturbance (e.g., live, bark-beetle killed) as predictors of D-excess, an expression of kinetic isotope effects, in snowpack. A weighting of Akaike's Information Criterion (AIC) values from multiple spatially lagged regression models describing D-excess variation for peak snowpack revealed strong effects of elevation and canopy mortality, and weaker, but significant effects of aspect and slope. Snowpack D-excess was lower in beetle-killed canopy patches compared to live green canopy patches, and at lower compared to high elevation locations, suggesting that integrated isotopic effects of vapor exchange, vertical advection of melted snow, and selective accumulation and redistribution varied systematically across the two catchments. The observed patterns illustrate the potential

  5. Multiscale soil moisture measurement for mapping surface runoff generation on torrential headwater catchments (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance

    2015-04-01

    Runoff generation in the headwater catchments in various land use conditions still remain a core issue in catchment hydrology (Uhlenbrook S. et al., 2003). Vegetation has a strong impact on flows distribution (interception, infiltration, evapotranspiration, runoff) but the relative influence of these mechanisms according to geomorphological determinants is still not totally understood. The "ORE Draix" located in the Alpes-de-Haute-Provence (France) allows to study these parameters using experimental watersheds equipped with a long term monitoring instrumentation (rainfall, streamflow, water, soil and air temperature, soil erosion, soil moisture...). These marl torrential watersheds have a peculiar hydrological behavior during flood events with large outflow differences between the wooded and the bare areas. We try to identify the runoff production factors by studying water storage/drainage processes within the first 30 cm depth of soil (Wilson et al., 2003, Western et al., 2004). Soil moisture can explain runoff during floods, that's why we try to upscale this variable at the watershed level. Unlike studies on soil moisture monitoring in agricultural context (flat areas), conventional remote sensing methods are difficult to apply to the badlands (elevation between 1500 masl and 1800 masl, approximately 1km² areas, steep slopes, various land uses) (Bagdhadi, 2005). This difficulty can be overcome by measuring soil moisture at different spatial (point, plot, slope, catchment) and time scales (event, season, year) using innovative approaches. In this context, we propose a monitoring of soil moisture based on geostatistical treatments crossed with measurements at different scales. These measures are provided from ground and airborne sensors deployment. Point measurements are ensured at a very high time frequency using capacitance probes. At an intermediate level, a slope is equipped with a DTS sensor (distributed temperature sensing) to obtain a 2D estimate of

  6. Vegetation controls on soil water dynamics and runoff production in a headwater catchment in the Ore Mountains

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Graeff, T.; Schlaeger, S.; Morgner, M.; Bauer, A.

    2009-04-01

    for a period of more than 3 months. At both sites simulations were most sensitive to small changes of key plant parameters. Especially root depth, leaf area index and plant coverage and their evolution during the vegetation phase were of prime importance for a good model performance. Surprisingly, evapo-transpiration and thus vegetation determines near surface soil moisture dynamics and therefore surface runoff production at this headwater catchment. Consequently, survey of key plant parameters such as leaf area index, plant coverage and their evolution during the vegetation phase is of prime importance for model predictions of soil moisture dynamics and surface runoff production in this headwater. Many process-orientated model studies put their major efforts into assessment of soil parameters and treat vegetation as something static that can be characterized by a few constant parameters. Model studies ? including some of our own ? often just devote a single statement such as ?vegetation was short grass and parameters were taken from the literature? to characterize vegetation in their model structure. This story shows that sometimes even grown up process hydrologists don?t see the wood for the trees.

  7. Nitrogen attenuation along delivery pathways in agricultural catchments

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  8. Simulating surface and subsurface water flow for a headwater catchment in the Eifel National Park, Germany.

    NASA Astrophysics Data System (ADS)

    Sciuto, G.; Diekkrüger, B.

    2009-04-01

    The system of equations governing water flow and solute transport is highly non-linear. Moreover at the soil surface, boundary condition changes rapidly and irregularly. Therefore, the equations describing hydrological processes are usually solved by numerical methods. This work is part of the Transregio-SFB 32 (TR32) research project with the title "Pattern in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation". The TR32 works on exchange processes among soil, vegetation and the adjacent atmospheric boundary layer.A fully-integrated surface-subsurface flow model is applied to the Wüstebach basin which is a tributary to the Erkensruhr river, Germany, with a catchment size of about 27 ha. This catchment is part of the new Eifel National Park. The catchment is well characterized and monitored. The simulation of surface/subsurface flow and the interaction between these domains are studied here with the three-dimensional finite-element code HydroGeoSphere (Therrien et al., 2007). With increasing computer power, process-based models that use grids to discretize space have become popular. For such models, the simulation results depend on both grid cell size and on the time step length used in the model. The choice of the space and time resolution results from a subjective balance between acceptable accuracy and such as calculation time and use of hard-disk space. In this study the effect of grid cell size and time step length on model results is studied. The results show that before model calibration a choice for a certain grid cell size and a certain time step length has to be made. References: Therrien, R.; McLaren, R.G.; Sudicky, E.A.; Panday, S.M. (2007). HydroGeoSphere; A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport: User manual, 362 pp.

  9. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds.

    PubMed

    Williams, Mark R; Buda, Anthony R; Elliott, Herschel A; Collick, Amy S; Dell, Curtis; Kleinman, Peter J A

    2015-05-01

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO-N concentrations in seep and stream water were affected by NO-N processing along seep surface flow paths and by upslope applications of N from fertilizers and manures. The research was conducted in two headwater agricultural watersheds, FD36 (40 ha) and RS (45 ha), which are fed, in part, by a shallow fractured aquifer system possessing high (3-16 mg L) NO-N concentrations. Data from in-seep monitoring showed that NO-N concentrations generally decreased downseep (top to bottom), indicating that most seeps retained or removed a fraction of delivered NO-N (16% in FD36 and 1% in RS). Annual mean N applications in upslope fields (as determined by yearly farmer surveys) were highly correlated with seep NO-N concentrations in both watersheds (slope: 0.06; = 0.79; < 0.001). Strong positive relationships also existed between seep and stream NO-N concentrations in FD36 (slope: 1.01; = 0.79; < 0.001) and in RS (slope: 0.64; = 0.80; < 0.001), further indicating that N applications control NO-N concentrations at the watershed scale. Our findings clearly point to NO-N leaching from upslope agricultural fields as the primary driver of NO-N losses from seeps to streams in these watersheds and therefore suggest that appropriate management strategies (cover crops, limiting fall/winter nutrient applications, decision support tools) be targeted in these zones. PMID:26024271

  10. Chloride sources in urban and rural headwater catchments, central New York.

    PubMed

    Gutchess, Kristina; Jin, Li; Lautz, Laura; Shaw, Stephen B; Zhou, Xiaoli; Lu, Zunli

    2016-09-15

    Road salt used as a deicing agent in winter months has become an emerging contaminant to streams and groundwater. In central New York, road salts are applied heavily during winter months. Recognizing potential sources of salinity to a river may reveal processes controlling the salinization of freshwater systems, with implications for future management practices. The Tioughnioga River, located in central New York, is a headwater of the Susquehanna River, which flows into the Chesapeake Bay. Salinity of the Tioughnioga River water has been increasing since the late 1930s. In this study, water samples were collected weekly at the East and West Branches of the Tioughnioga River from 2012 to 2014. We characterize natural and anthropogenic sources of salinity in the Tioughnioga River, using two independent approaches: (1) chloride to bromide ratios (Cl/Br) and (2) linear discriminant analysis. Ratios of Cl/Br suggest that road salt runoff influence is notable in both branches, but is more significant in the West Branch, consistent with a greater area of urban land. Linear discriminant analysis confirms the results of Cl/Br in the West Branch and further indicates presence of Appalachian Basin Brines in the East Branch, although their contribution may be volumetrically small. Longitudinal stream Cl concentration profiles indicate that sources of pollution are particularly concentrated around urban areas. Residence time of Cl in the watershed is estimated to be approximately 20 to 30years using a mixing model, suggesting that stream Cl concentrations likely will continue to rise for several decades.

  11. Chloride sources in urban and rural headwater catchments, central New York.

    PubMed

    Gutchess, Kristina; Jin, Li; Lautz, Laura; Shaw, Stephen B; Zhou, Xiaoli; Lu, Zunli

    2016-09-15

    Road salt used as a deicing agent in winter months has become an emerging contaminant to streams and groundwater. In central New York, road salts are applied heavily during winter months. Recognizing potential sources of salinity to a river may reveal processes controlling the salinization of freshwater systems, with implications for future management practices. The Tioughnioga River, located in central New York, is a headwater of the Susquehanna River, which flows into the Chesapeake Bay. Salinity of the Tioughnioga River water has been increasing since the late 1930s. In this study, water samples were collected weekly at the East and West Branches of the Tioughnioga River from 2012 to 2014. We characterize natural and anthropogenic sources of salinity in the Tioughnioga River, using two independent approaches: (1) chloride to bromide ratios (Cl/Br) and (2) linear discriminant analysis. Ratios of Cl/Br suggest that road salt runoff influence is notable in both branches, but is more significant in the West Branch, consistent with a greater area of urban land. Linear discriminant analysis confirms the results of Cl/Br in the West Branch and further indicates presence of Appalachian Basin Brines in the East Branch, although their contribution may be volumetrically small. Longitudinal stream Cl concentration profiles indicate that sources of pollution are particularly concentrated around urban areas. Residence time of Cl in the watershed is estimated to be approximately 20 to 30years using a mixing model, suggesting that stream Cl concentrations likely will continue to rise for several decades. PMID:27183460

  12. Impact of forest disturbance on the runoff response in headwater catchments. Case study: Sumava mountains, Czech republic

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Hais, Martin; Bartunkova, Kristyna; Su, Ye

    2013-04-01

    The forest disturbance and stream modifications are important phenomenon affecting the natural dynamics of erosion and sedimentation processes on montane and submontane streams. The changes in land use, land cover structure, forest cover and stream modifications, occurring in the cultural landscape have significant effect on the dynamics of fluvial processes, especially in relation to the extreme runoff events. The contribution discusses the relations between forest disturbance and fluvial dynamics, stemming from the research in Sumava Mountains, located at the border between Czech Republic and Germany, Central Europe. The study area is located in headwater region, affected by different types of forest disturbance in past three decades - bark beetle outbreak, repeated windstorms and clear-cut forest management. The streams in experimental catchments here displayed extensive dynamics of erosion and sedimentation after the extreme floods in 2002 and 2009 and were affected by artificial modifications. The analysis is based on the combination of different research techniques, including remote sensed data processing, network of automated high frequency rainfall-runoff monitoring or field survey of stream modifications and geomorphologic changes on riverbeds after extreme events. Using landsat satellite data and aerial photographs we created model of Bark beetle dispersion and clear-cutting between 1985 and 2007. This model enables to describe disturbance dynamic, which is needed for understanding of nature those processes. Next analysis of Landsat satellite data was used to detect the effect of forest disturbance on the wetness and temperature properties of land cover, affected by two significant different types of forest disturbance - bark beetle outbreak and clear cut. The rainfall-runoff analysis using multivariate geostatistical techniques was focused on experimental catchments with similar conditions of climate, physiography and topography but different type

  13. Mechanisms affecting stormflow generation and solute behaviour in a Sahelian headwater catchment

    NASA Astrophysics Data System (ADS)

    Ribolzi, Olivier; Karambiri, Harouna; Bariac, Thierry; Benedetti, Marc; Caquineaux, Sandrine; Descloitres, Marc; Aventurier, Alain

    2007-04-01

    SummaryThe aim of this study was to analyse stormflow processes and the behaviour of solutes therein (Ca 2+, Mg 2+, Na +, K +, alkalinity, NO3-, SO42-, Cl -, Si), during flood events in tropical semi-arid conditions. The study site was a small Sahelian catchment (1.4 ha) located in northern Burkina Faso. Runoff and rain water was sampled over a 2-year period (1999 and 2000). In addition to dissolved load, suspended load was measured in the stream water collected at the outlet of the catchment. Isotopic tracing using δ 18O was also conducted during two very different flood events. The results indicated that: (i) event water was by far the major contributor to the stream stormflow, with Hortonian overland flow being the main stormflow process at work; (ii) a small fraction of pre-event soil water may have contributed during the recession of heavy flood with wet antecedent conditions; (iii) solute concentrations were higher in runoff compared to rainwater. With the exception of NO3- and Cl -, the highest concentrations were measured at the onset of floods, and almost always decreased during the rising stage of the hydrographs; (iv) a good correlation was found between suspended load and the concentrations of Ca 2+, Mg 2+, alkalinity and Si. It was concluded that fast physico-chemical interactions between event water and reactive suspended phases may explain most of the chemical changes between rainwater and floodwater.

  14. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  15. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  16. Stream Ammonium Uptake Across Scales in Headwater Catchments of a Tropical Rainforest, Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Brereton, R. L.; McDowell, W. H.; Wymore, A.

    2015-12-01

    Many tropical forest streams export high amounts of nitrogen relative to streams draining undisturbed watersheds of other biomes. With their low DOC concentrations and high rates of respiration, headwater streams in the Luquillo Mountains have been previously characterized as energy-limited, suggesting that NH4+ uptake is dominated not by N demand but by energy demand. In the Rio Icacos watershed, high concentrations of NH4+ (>1 mg N/L) are found in groundwater adjacent to the streams, making high inputs of NH4+ to the stream channel via groundwater seepage likely. Stream nutrient spiraling metrics can be used to quantify uptake and retention rates of specific nutrients, and can be measured by solute additions. Tracer Additions for Spiraling Curve Characterization (TASCC) is a recently developed method (Covino et al. 2010) for quantifying nutrient uptake with a single slug addition of nutrient and conservative tracer. Here we present NH4+ uptake metrics from TASCC additions in three Luquillo streams of different sizes, ranging from 2nd to 4th order: the Rio Icacos, a larger, 3rd order tributary and a smaller 2nd order tributary. Background NH4+ concentrations vary by up to an order of magnitude, with highest concentrations (27 μg N/L) found in the smaller tributary. Background DOC concentrations are uniformly low and show no difference between the three streams (500-600 μg C/L). The smaller tributary has the shortest uptake length (155 m) and highest uptake velocity (2.9 mm/min) of the three streams. Unexpectedly, the Rio Icacos has a higher uptake velocity (1.7 mm/min) than the larger tributary (1.0 mm/min), despite having an uptake length more than double (1400 m) that of the larger tributary (596 m). Overall, NH4+ uptake is substantial in all three streams and varies with background concentrations, not stream size.

  17. Spatial distributions of forest stand condition, vegetation ground cover, and soil erosion for evaluating the linkages of sediment transport from hillslopes to streams in headwater catchments

    NASA Astrophysics Data System (ADS)

    Gomi, T.; Kumakura, A.; Mizugaki, S.; Takahisa, F.; Ishikawa, Y.; Uchiyama, Y.

    2011-12-01

    We investigated soil erosion and resultant fine sediment transport in headwater catchments with heterogeneous spatial patterns of forest stand condition and vegetation ground cover. The study was conducted in 7 and 5 ha headwater catchments (Watersheds No.3 and No.4, respectively) in Tanzawa mountains area, 60 km of southwest of Tokyo, Japan. We selected 53 points located within catchments including near stream channels to the ridge line. A 0.5 x 0.5 m plot (1m x 1m) were selected in each point for investigating vegetation biomass, litter cover, soil erosion (e.g., soil pedestal), overstory vegetation condition (type of forest and canopy openness), and soil physical properties (e.g., soil bulk density and particle size). We assumed that high of soil pedestal indicated short term soil erosions by soil splash and related down slope soil movement. Percentages of bare soil in No. 3 tend to greater than ones in No.4. In addition, bare soil slope tended to distributed lower part of hillslopes with > 45° in gradient, where the soil can be transported to streams. Because of the high soil erosion rate in No.3 catchment, suspended sediment and bedload transport in No.3 tended to be greater ones in No.4 catchment. Fingerprinting approach using activities of fallout radionuclides (caesium-137 and excess lead-210) confirmed that some of the fine sediment transport at associated with hillslope soil surface erosion. Findings of this study suggested that processes of catchment scale fine sediment depending on the linkages between hillslope and channels.

  18. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Legout, Cédric; Poulenard, Jérôme; Nemery, Julien; Navratil, Oldrich; Grangeon, Thomas; Evrard, Olivier; Esteves, Michel

    2013-04-01

    Increasing the understanding of the hydro-sedimentary dynamics at the catchment scale requires data on the origin of suspended sediments in addition to the classical measurements of suspended sediment concentrations and discharge. In mountainous environments the extremely high spatial and temporal variability of suspended sediment fluxes suggests that the proportions of suspended sediment sources transiting at outlets may also exhibit strong variations during flood events. However, conventional fingerprinting techniques based on geochemical and radionuclide measurements are time-consuming and rather expensive. They constitute a major limitation to conduct routine characterisation of the source of suspended sediment transiting at outlets that would require the analysis of a large number of samples. We investigated how visible or infrared diffuse reflectance spectroscopy coupled with partial least squares chemometrics techniques could be used to predict the proportion of source material in suspended sediment samples and how it could help understanding the hydro-sedimentary processes occurring during floods. The studied catchment is located in the southern French Alps, draining an area of 22-km². It is composed of black marls, limestones, molasses, undifferentiated deposits and gypsum. Forty-eight source material samples were collected in badlands areas and 328 suspended sediment samples were collected at the outlet during 23 flood events. Spectroscopic measurements were carried out on dried samples. Given that the erosion processes are particle size selective, five size fractions of source material were measured in order to assess the potential alteration of the signatures. As the biogeochemical processes occurring in the river such as iron oxidation could also affect the signatures, source materials that were immersed in the river for durations ranging from 1 day to 9 weeks were analysed. Finally, partial least-squares regression models were constructed on 81

  19. Threshold changes in storm runoff generation at a till-mantled headwater catchment

    NASA Astrophysics Data System (ADS)

    Detty, J. M.; McGuire, K. J.

    2010-07-01

    A small research watershed in the Hubbard Brook Experimental Forest in New Hampshire was equipped with a spatially distributed instrument network designed to continuously monitor hydrometric responses in the shallow subsurface. We analyzed rainfall events during seasonal wet up from late summer through autumn to investigate the mechanisms of runoff generation and the patterns of rainfall-runoff response at the catchment outlet. Our results show that storm quick flow depths displayed a threshold relationship with two independently measured soil moisture indices: a maximum water table height index and the sum of gross precipitation and antecedent soil moisture. Quick flow depths during events with below-threshold criteria were not significantly correlated with either index, while quick flow depths during events with above-threshold criteria were strongly correlated with both indices (r ≥ 0.98). The effective runoff contributing area (estimated by event runoff ratios) also changed significantly between above- and below-threshold conditions, as did the synchronicity between groundwater fluctuations and streamflow. Below the threshold, we inferred that catchment runoff was generated primarily in the near-stream zones, while above the threshold the contributing area likely expanded laterally onto neighboring hillslopes. Our results show that the effective saturated hydraulic conductivity appeared to increase significantly during runoff events with above-threshold conditions, possibly owing to water tables rising into highly transmissive near-surface soils. We believe the observed threshold pattern may partially be explained as a transmissivity feedback mechanism and/or preferential flows through macropore networks which allowed for a rapid expansion of the runoff contributing area onto hillslopes, resulting in increased runoff yields.

  20. Hydrochemical changes along stormflow pathways in a small moorland headwater catchment in Mid-Wales, UK

    NASA Astrophysics Data System (ADS)

    Chapman, P. J.; Reynolds, B.; Wheater, H. S.

    1993-11-01

    A hydrogeochemical investigation of a small moorland catchment in Mid-Wales has determined the importance of chemical changes along stormflow pathways to stream water chemistry. Flow from a network of ephemeral, natural soil pipes was identified as a major source of solute-rich water to the stream during storm events. Water was sampled during five events, of different rainfall magnitudes and antecedent conditions. Samples were collected at several points within the pipe network, along the water pathway from a major pipe outlet to the head of the stream and within the stream channel. There were significant changes in the chemical composition of water along the flow pathways to the stream; antecedent conditions, size of event and season were important in determining the magnitude of these changes. Between the outlet of the main pipe and the stream channel, concentrations of Ca, Mg and Si increased, whereas concentrations of dissolved organic carbon (DOC), Fe, H + and Al species decreased. The response of K and NO 3-N varied with season. Concentrations of Na, Cl and SO 4 varied little along the pathway. The most significant change in chemical composition was the release of Ca and Mg and the associated consumption of H + within the drift material at the head of the stream. This reaction has important consequences for the degree to which the stream is buffered against inputs of acidic pipe water and hence for the acidity of the stream water. Solutes whose concentration and speciation are controlled by pH are also affected. The results emphasize the significance of spatial variability within the catchment soils and the importance of chemical and biological reactions along water pathways in determining stream water chemistry.

  1. Diurnal variation of dominant nitrate retention processes in an agricultural headwater stream

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Ryabenko, Evgenia; Stumpp, Christine

    2015-04-01

    Nitrate and ammonium are introduced by agricultural practice into the environment and are transformed and retained on their pathway through aquatic environments. In particular, biological transformation processes (i.e. microbial denitrification or ammonium oxidation and assimilation) are responsible for the largest part of nitrate removal, which are also crucial processes in headwater streams. It is well known, that most of the biological processes are influenced by available (solar) energy fluxes, temperatures and dissolved oxygen concentrations, which vary with time and space. However, looking at biogeochemical hot spots in the landscapes` hydrological interface, the stream and river network (e.g. stream sections with a high biological activity), the temporal variability of biological processes can be an important control on total nitrate export. In this study, we therefore identified most important diurnal time periods for nitrate retention in a 75 m impervious section of an agricultural headwater stream using oxygen saturation dynamics and nitrate isotopes. We regularly measured discharge, hydro-geochemical and climate parameters, as well as nitrate and water isotopes in grab samples at three locations along the reach. On average, we observed a decrease of 10% in nitrate concentration from up- to downstream, which was only caused by biological processes and not by dilution. Nitrate isotope analysis indicated distinct trends along the reach and with time of the day. Both nitrate assimilation and nitrification caused significant changes in nitrate isotope distribution in the early day. To explain the distinct observed process dynamics from the morning to the afternoon, we simulated net primary production (NEP) and respiration using the river metabolism model RIVERMETC with observed oxygen concentrations and water temperatures. Comparing the results with the observed nitrate dynamics, the short time period when NEP occurs (~10:30 -12:30) seems to be crucial for

  2. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  3. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  4. Response of near-stream surface connectivity to water table dynamics during rainfall events at a small headwater catchment (Luxembourg)

    NASA Astrophysics Data System (ADS)

    Frentress, Jay; Martínez-Carreras, Núria; Pfister, Laurent; McDonnell, Jeff

    2014-05-01

    The controls on non-linear streamflow response to changing streamflow sources during precipitation events are poorly understood. Here, we investigate the linkages between surface saturation development and streamflow under a range of wetness conditions for a forested headwater catchment in Luxembourg. Previous work at this site shows a threshold response in stream discharge to changes in soil moisture. This non-linearity is thought to reflect the development of saturation connectivity that drives streamflow response. Furthermore, the catchment has typically large rainfall-runoff ratios during winter, accompanied by long delays to peak after the onset of rainfall. To better understand controls on these behaviors, we examined the response of near-stream surface saturation development to incident precipitation, discharge, and fluctuating groundwater levels during rain events. Specifically, we sought to test the hypothesis that threshold-like response behavior exists between near-stream surface saturation and discharge, as well as quantify changes in surface saturated zone chemistry to better understand mixing between end-member sources during events. We used ground-based thermal infrared imagery to measure surface saturation development in a 4 by 6 m zone in the riparian area. Imagery collected over several months was analyzed to calculate the proportion of saturated area. Water samples from this saturated riparian area, nearby piezometers as well as discharge were collected for analysis of water isotopes, major cations/anions, and silica concentrations. Data analysis is ongoing but preliminary results indicate that saturation extent exhibits a non-linear, threshold-like response to discharge and antecedent wetness conditions. Surface saturation showed strong hysteresis with near-stream groundwater levels, with saturated areas expanding ahead of increasing groundwater levels. As the proportion of saturated area increased during rainfall events, the saturated riparian

  5. Long term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: Trends, mechanisms and heterogeneity.

    NASA Astrophysics Data System (ADS)

    Oni, Stephen; Futter, Martyn; Bishop, Kevin; Kohler, Stephan; Ottosson-Lofvenius, Mikael; Laudon, Hjalmar

    2013-04-01

    The effects of climate change are currently apparent in the boreal landscape of northern Sweden. Warmer temperature and declining acid deposition are affecting runoff chemistry. These effects are mediated by landscape type. Markedly different responses are observed in streams draining forest and mire landscape elements. Here, we assess long-term water quality time-series from three nested headwater streams draining upland forest (C2), peat/mire (C4) and mixed (C7) (forest and mire) catchments. Temporal trends in weather and runoff (1981-2008); dissolved organic carbon concentration [DOC] (1993-2010) and other water quality parameters (1987-2011) were assessed. Historically, sulfate deposition is low in the region and is further declining. There was no significant annual trend in precipitation or runoff but a significant monotonic increasing trend existed in air temperature and length of growing season. Stream [DOC] was positively correlated with some trace metals (copper, iron and zinc) and negatively with several other chemical parameters (e.g. sulfate, conductivity, calcium). Both sulfate and conductivity showed declining trends, while a significant increase was observed in pH during winter and spring. Calcium and magnesium showed monotonic decreasing trends. The declining trajectories of stream base cation and sulfate concentrations during other times of the year were not accompanied by changes in pH and alkalinity. Water temperature increased significantly both annually and in most months while iron and DOC concentrations showed significant increases in autumn months. Though all streams showed significant positive trends in [DOC] in autumn, only C2 had a significant annual increasing trend. There was also a shift in the magnitude of variability in spring [DOC] and increasing trend of summer baseflow [DOC] in C2 and C7.

  6. Drivers of erosion and suspended sediment transport in three headwater catchments of the Mexican Central Highlands

    NASA Astrophysics Data System (ADS)

    Duvert, Clément; Gratiot, Nicolas; Evrard, Olivier; Navratil, Oldrich; Némery, Julien; Prat, Christian; Esteves, Michel

    2010-11-01

    Quantifying suspended sediment exports from catchments and understanding suspended sediment dynamics within river networks is important, especially in areas draining erodible material that contributes to the siltation of downstream reservoirs and to the degradation of water quality. A one-year continuous monitoring study of water and sediment fluxes was conducted in three upland subcatchments (3.0, 9.3, and 12.0 km 2) located within the Cointzio basin, in the central volcanic highlands of Mexico (Michoacán state). Two subcatchments generated high sediment exports (i.e., Huertitas, 900-1500 t km - 2 y - 1 and Potrerillos, 600-800 t km - 2 y - 1 ), whereas the third subcatchment was characterized by a much lower sediment yield (i.e., La Cortina, 30 t km - 2 y - 1 ). Such disparities in subcatchment behaviours were associated with the presence of severely gullied areas in Huertitas and Potrerillos rather than with rainfall erosivity indices. An adapted classification of hysteretic patterns between suspended sediment concentration (SSC) and discharge was proposed because 42% of flood events contributing to 70% of sediment export were not discriminated by the classical clockwise/anticlockwise typology. This new classification allowed the identification of relationships in the hydrosedimentary responses of successive floods. A stream transport capacity limit was also detected during hydrograph recession phases. Overall, hydrosedimentary processes proved to be seasonally dependent: sediment export was repeatedly limited by the stream transport capacity during the first part of the rainy season, whereas a channel minimum erosivity threshold was frequently reached at the end of the season.

  7. Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.

    NASA Astrophysics Data System (ADS)

    Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.

    2015-12-01

    in these northern Rocky Mountain catchments.

  8. Temporal and spatial changes in dissolved organic carbon concentration and fluorescence intensity of fulvic acid like materials in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Terajima, Tomomi; Moriizumi, Mihoko

    2013-02-01

    SummaryDissolved organic carbon (DOC) such as humic substances are key to understanding the aquatic environment in catchments, because they, containing a large number of phenolic and carboxylic acid groups, adsorb many kinds of inorganic materials and also affect nutrition and carbon transport in catchments. To understand the detailed DOC dynamics, we conducted hydrological observations at mountainous headwater catchments dominated by different vegetation types (planted evergreen coniferous forest of 1.29 ha and natural deciduous broadleaf forest of 1.28 ha). The relationship between DOC concentrations and fluorescence intensity of fulvic acid-like materials (F-FAM) were positively correlated in both catchments but different between soil extracts, baseflow, and near surface flow represented by biomat flow. The ratios of change in F-FAM to that in DOC concentration (F-FAM/DOC) were higher in the baseflow (about 6 in both catchments) and lower in the soil extracts (about 4.5 in both catchments, respectively). However, the relationship in stormflow was distributed between the trends of baseflow and soil extracts. The higher F-FAM/DOC in baseflow may thus indicate that DOC (and FAM) in groundwater discharge mainly contributed to the stream flow, and the stormflow mainly reflect subsurface flow through soil during most rainstorms. In contrast, a high F-FAM/DOC ratio (>6) appeared in the stormflow of both catchments especially during large storms of short duration and high intensity following a dry antecedent period. The F-FAM/DOC in biomat flow developing distinctly in the coniferous catchment was high (about 6.5). Thus, rapid shallow subsurface flow through the biomat or near-surface of slopes might explain the unique transport dynamics of DOC and FAM in stormflows with the high F-FAM/DOC ratio. These results imply that the DOC and FAM relationship responds variably depending on both the distribution of soil organic matter and rainwater flow paths in steep slopes as

  9. Runoff Generation Processes At Headwater Scale In A Marly Torrential Catchment

    NASA Astrophysics Data System (ADS)

    Marc, V.; Cognard-Plancq, A. L.; Cras, A.; Mathys, N.; Olivier, J. E.

    The study is carried out in a plot of 1330 m2 located on the experimental catchments of Draix (Alpes de Haute Provence, France). Approximately two thirds of the surface are made of a bare marly zone (marls of Callovo-Oxfordien called " Terres Noires "). The upper part is covered by a shrubby vegetation on a soil whose depth does not exceed 70 cm. The plot outlet is equipped with a V-notch weir and a stage recorder. Experiments of chemical and isotopic water tracing have been carried out on this site to (1) provide information about the flow processes (in relation with field observations and hydrometric measurements), (2) to test the relevance of isotope tracers to define at this scale the residence time distribution of new water, (3) to compare the results with those obtained using an hydrological model. For these objectives, a further equipment was added on the plot in spring 2001 : sequential sampler for the collection of discrete rainfall increments (increments of 3 mm), porous ceramic cups for the sampling of soil water and automatic sampler at the outlet. 3 flood events were sampled between the 4th and 25th July 2001. The rainfall amounts were 28.4 mm, 54.2 mm and 29.2 mm producing peak flows of 5.7 l/s, 16.4 l/s and 13.9 l/s, respectively. Despite the physical context (steep slope, impervious material), the discharge coefficients donSt exceed 30 %. This result emphasises the impact of the soil layer (and perhaps the marl itself) on water storage. The storage time and the delay of water transfer are studied using water tracing. Water samples were analysed for major species, dissolved organic carbon and oxygen-18. The first results confirm the important role of the soil on water quality. The chemographs show that a pre-event water contributes to the flow. This impact on water quality may be explained by a rapid movement of water through the subsurface into the soil macropores. The analysis of the input-output relation for isotope concentrations and the

  10. Using continuous monitoring of physical parameters to better estimate phosphorus fluxes in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal

    2016-04-01

    Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for

  11. Temporal dynamics between cattle in-stream presence and suspended solids in a headwater catchment.

    PubMed

    Terry, Julie A; McW H Benskin, Clare; Eastoe, Emma F; Haygarth, Philip M

    2014-07-01

    Cattle in-stream activity is potentially an important contributor to water pollution from agriculture. Here we present research on the physical movements of cattle within a stream on suspended solid concentrations (SSC). This study used camera surveillance to monitor the in-stream activity of dairy cattle in an unfenced reach over a four-month period. Results were compared against high-resolution SSC data. Over the days that cattle grazed the field, 57.9% of the instances when SSC crossed the 25 mg l(-1) Freshwater Fish Directive guideline threshold can be attributed to cattle presence in the stream. Flow was the main driver of total sediments transported over the study period, and no relationship was found between SSC and the absolute number of cattle feet in the water. Hysteresis analysis indicated a 'first-flush' of local sediments rapidly mobilised during the non-cattle related SSC events, a result of cattle proximity to channel margins. Results demonstrate a temporal lag between cattle in-stream presence and a critical amount of their contribution to sediment load, and that monitoring only instantaneously with cattle activity may lead to underestimation of their pollution impact.

  12. The effects of season and agriculture on nitrous oxide production in headwater streams.

    PubMed

    Beaulieu, J J; Arango, C P; Tank, J L

    2009-01-01

    Streams and rivers are a globally significant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, there remains much uncertainty in the magnitude of N(2)O emissions from these sources, partly due to an incomplete understanding of the factors that control microbial N(2)O production in lotic sediments. During 2004-2005 we measured sediment N(2)O production in 12 headwater streams across an agricultural land use gradient. Stream water nitrate (NO(3)(-)) concentrations were positively related to the proportion of agricultural land use in the basin and frequently exceeded 20 mg N L(-1) in the stream draining the most agricultural basin. Stream sediments were nearly always a net source of N(2)O, and production rates were positively related to stream water NO(3)(-) concentrations and sediment carbon content. There were no seasonal patterns in N(2)O production rates during 2004, but stream water NO(3)(-) and N(2)O production both peaked during the winter of 2005. The spike in NO(3)(-) concentrations likely resulted from winter rain and snowmelt that flushed NO(3)(-) from the soils following a dry summer and fall. In turn, the elevated stream water NO(3)(-) concentrations stimulated in-stream N(2)O production rates. Overall, we were only able to explain 29% of the variation in N(2)O production rates on a log scale. The unexplained variation may be due to differences in the fraction of denitrified NO(3)(-) that is converted to N(2)O among the study sites, or that our measures of substrate availability in the water column were not reflective of substrate availability in the porewater used by denitrifiers.

  13. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  14. Towards an automatic statistical model for seasonal precipitation prediction and its application to Central and South Asian headwater catchments

    NASA Astrophysics Data System (ADS)

    Gerlitz, Lars; Gafurov, Abror; Apel, Heiko; Unger-Sayesteh, Katy; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    Statistical climate forecast applications typically utilize a small set of large scale SST or climate indices, such as ENSO, PDO or AMO as predictor variables. If the predictive skill of these large scale modes is insufficient, specific predictor variables such as customized SST patterns are frequently included. Hence statistically based climate forecast models are either based on a fixed number of climate indices (and thus might not consider important predictor variables) or are highly site specific and barely transferable to other regions. With the aim of developing an operational seasonal forecast model, which is easily transferable to any region in the world, we present a generic data mining approach which automatically selects potential predictors from gridded SST observations and reanalysis derived large scale atmospheric circulation patterns and generates robust statistical relationships with posterior precipitation anomalies for user selected target regions. Potential predictor variables are derived by means of a cellwise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability based cluster analysis. Finally for every month and lead time, an individual random forest based forecast model is automatically calibrated and evaluated by means of the preliminary generated predictor variables. The model is exemplarily applied and evaluated for selected headwater catchments in Central and South Asia. Particularly the for winter and spring precipitation (which is associated with westerly disturbances in the entire target domain) the model shows solid results with correlation coefficients up to 0.7, although the variability of precipitation rates is highly underestimated. Likewise for the monsoonal precipitation amounts in the South Asian target areas a certain skill of the model could

  15. Determining Solute Sources and Water Flowpaths in a Forested Headwater Catchment: Advances With the Ca-Sr-Ba Multi-tracer

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.

    2011-12-01

    Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide

  16. Hydrological controls on nutrient concentrations and fluxes in agricultural catchments.

    PubMed

    Petry, J; Soulsby, C; Malcolm, I A; Youngson, A E

    2002-07-22

    Like many streams draining intensively farmed parts of lowland Scotland, water quality in the Newmills burn, Aberdeenshire, is characterized by relatively high nutrient levels; mean concentrations of NO3-N and NH3-N are 6.09 mg l(-1) and 0.28 mg l(-1), respectively, whilst average PO4-P concentrations reach 0.06 mg l(-1). Nutrient concentrations vary spatially and temporally with levels being highest under arable farming during the autumn and winter. Annual fluxes from the 14.5 km2 catchment are estimated at 25.67 and 1.26 kg ha(-1) a(-1) for NO3-N and NH3-N, respectively, and 0.26 kg ha(-1) a(-1) for PO4-P. Hydrological controls exert a strong influence on both nutrient concentrations and fluxes. Over short timescales nutrient concentrations and fluxes are greatest during storm events when P04-P and NH3-N are mobilized by overland flow in riparian areas, particularly where the soils have been compacted by livestock or farm machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, provide large contributions of NO3-N on the recession limb of hydrological events. In contrast, groundwater inputs generally have lower NO3 concentrations implying that denitrification may be a pathway of N loss in the saturated zone. Approximately 75% of the N loss for the catchment occurs during the autumn and early winter when high flows dominate the hydrological regime. The close coupling of hydrological pathways and biogeochemical processes has major implications for catchment management strategies such as Nitrate Vulnerable Zones (NVZs) as it is likely that significant groundwater stores with long residence times will continue to cause N losses before water quality improvements become apparent.

  17. Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape.

    PubMed

    Anderson, Todd R; Groffman, Peter M; Kaushal, Sujay S; Walter, M Todd

    2014-03-01

    Riparian zones adjacent to cropped lands are effective at reducing nitrate (NO) loads to receiving water bodies primarily through plant assimilation and denitrification. Denitrification represents a permanent removal pathway and a greenhouse gas source, converting NO to inert N gas or nitrous oxide (NO), and has been the subject of many studies in agricultural landscapes. Despite the prevailing notion that riparian zones can be areas of enhanced denitrification, there is a lack of in situ denitrification measurements from these areas that buffer streams and rivers from NO originating in upland cropped soils, especially over time scales that capture seasonal dynamics. We measured in situ groundwater denitrification rates in two riparian zones of an intensive dairy farm located in the headwaters of the Susquehanna River. Denitrification rates determined monthly over a 1-yr period with the N-NO push-pull method ranged from 0 to 4177 μg N kg soil d (mean, 830 ± 193 μg N kg soil d). Denitrification showed a distinct seasonal pattern, with highest rates observed in the spring and summer, concomitant with warmer temperatures and decreasing dissolved oxygen. We estimate an annual N loss of 470 ± 116 kg yr ha of riparian zone via denitrification in the shallow saturated zone, with the potential for >20% of this amount occurring as NO. Total denitrification from shallow groundwater in the riparian zone was equivalent to 32% of manure N spread on the adjacent upland field, confirming the importance of riparian zones in agricultural landscapes at controlling N loads entering downstream waters. PMID:25602674

  18. Chasing storms in an agricultural catchment: the stream DOM story

    NASA Astrophysics Data System (ADS)

    Hernes, P. J.; Spencer, R. G.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Dyda, R. Y.; Bergamaschi, B. A.

    2011-12-01

    Storm events are notorious for mobilizing large amounts of dissolved and particulate substances in streams and rivers. Conversion of natural landscapes to agricultural land-use can significantly amplify this effect. We investigated the impacts of two storm events on stream dissolved organic matter (DOM) in 2008 in Willow Slough, a California/Sacramento Valley agricultural catchment. The tools utilized included carbon stable isotopes, fluorescence, ultraviolet-visible absorbance, lignin, disinfection byproduct formation potential, and biodegradation experiments. Dissolved organic carbon (DOC) concentrations at the mouth at peak discharge during the storms ranged from 9-10 mg/L compared to baseline conditions of 2-4 mg/L. Other storm effects included increased dissolved organic nitrogen, depleted carbon stable isotopes, increased humic fluorescence intensity, increased specific UV absorbance (SUVA), decreased spectral slopes, increased bioavailability, and increased carbon-normalized yields of lignin. Increased frequency and intensity of storms due to climate change are likely to have a non-linear effect on riverine exports and water quality, with subsequent impacts on carbon loading, mercury transport, and drinking water quality.

  19. Critical source times for nutrient loss in agricultural catchment streams

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Shore, Mairead; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger; Murphy, Paul; Jordan, Phil

    2014-05-01

    Identifying periods of the year when there is a high risk of incidental nutrient loss from farms via runoff to streams underpins current nutrient management legislation in Europe. This research explored high-temporal resolution nutrient transfer patterns relative to the time that manure and fertiliser are prohibited from being spread (the mandatory spreading 'closed' period) in five Irish agricultural catchments. Catchment nutrient losses during the 12 week closed periods in 2009-10, 2010-11 and 2011-12 were compared with losses during the remainder of the year, and with losses in the two week 'shoulder' periods immediately before and after the closed period. The closed period losses were assumed to be residual from soil nutrient stores and the 'shoulder' periods were considered to also include incidental losses. Nutrient loss was measured at sub-hourly frequency as total phosphorus (P) and total oxidised nitrogen (mostly nitrate-N) fluxes in streamflow. The streamflow fluxes showed that the proportion of the annual nitrate-N loss occurring during the closed periods (33-61%) was high compared with the remainder of the year. Six to ten times more nitrate-N loss occurred in the two weeks after, compared with the two weeks before, the closed period. These two week 'shoulder' period losses were, on average, less than or equal to 2.5 kg nitrate-N/ha and 9% of total annual nitrate-N loss in streamflow. On average, 40-53% of the annual P loss occurred during the closed periods but in a runoff-prone catchment in a year with a wet summer, the closed period was the less risky period. Similar to nitrate-N, two to twenty times more P loss occurred in the two weeks after, compared with the two weeks before, the closed period. These shoulder period losses were, on average, less than or equal to 0.027 kg/ha and 4.2% of total annual P loss in streamflow. The proportion of the shoulder period loss that could be attributed to recently spread nutrients was not known but can be

  20. Forest Harvesting of a Rocky Mountain Headwater Catchment: Assessing the Impacts on Runoff and Sediment Transport Into and Through Riparian Buffers

    NASA Astrophysics Data System (ADS)

    Puntenney, K.; Bladon, K. D.; Silins, U.

    2015-12-01

    Mitigating forest harvesting impacts by retaining a vegetated riparian buffer along headwater streams is a widely implemented best management practice. However, there is still debate over current retention practices and their effectiveness at regulating runoff, erosion, and sediment transport from harvested areas to streams. Forested, headwater catchments on the eastern slopes of the Rocky Mountains (49°37' N, 114°40' W) were harvested in winter 2015. Fixed-width (30 m) riparian buffers were retained based on the regional operating ground rules for all of the identified and mapped hydrologic features. Modified Gerlach troughs (total n=40) were installed along the cutblock-buffer interface, 10 m into the vegetated buffer, and in unharvested control sites to collect runoff and sediment. Site characteristics, including surface soil moisture, slope, vegetation cover, soil type, litter depth, and upslope accumulated area will be used to describe differences in runoff volumes and sediment concentrations between sites. Rainfall simulations are also being used to quantify and compare the initiation of runoff, runoff volumes, and sediment concentrations under high intensity precipitation events in cutblocks, at the cutblock-buffer interface, and within vegetated buffers. Broad objectives of this ongoing study are to identify spatio-temporal hotspots of runoff and sediment transport from cutblocks into and through riparian buffers.

  1. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Z.; Abbott, B. W.; Troccaz, O.; Baudry, J.; Pinay, G.

    2015-09-01

    Direct and indirect effects from agriculture, urbanization, and resource extraction have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. The capacity of a watershed to remove or retain nutrients is a function of biotic and abiotic conditions across the terrestrial-aquatic gradient including soil, groundwater, riparian zone, and surface water. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments. We analysed a five-year, high frequency water chemistry dataset from 3 catchments ranging from 2.3 to 10.8 km2 in northwestern France. Catchments differed in the relationship between hydrology and solute concentrations, associated with catchment characteristics such as hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness appeared to have greater transient storage and residence time, buffering the catchment to fluctuations in water chemistry, reflected in relatively invariant carbon and nutrient chemistry across hydrologic conditions. Conversely, the catchments with smoother, thinner soils responded to both intra- and inter-annual hydrologic variation with high concentrations of PO43- and NH4+ during low flow conditions and strong increases in DOC, sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land use) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on elemental fluxes is both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and probability of human

  2. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  3. Nitrogen loadings and environmental impacts in rice agriculture catchments in subtropical central China

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    The severe deterioration of water quality in rice agriculture catchments challenges ecologists and hydrologists in exploring how rice agriculture affects nutrient loadings and water quality. This research observed the nitrogen (N) concentrations in stream water and groundwater in one forest and five rice agriculture catchments in subtropical central China to quantify the relationships between rice agriculture intensification, water quality of water bodies, and catchment N loadings. Our results indicate that intensive rice agriculture deteriorated stream water quality. A non-linear fitting analysis using a Boltzmann sigmoid function suggests that the concentrations and mass fluxes of ammonium-N (NH4+-N), nitrate-N (NO3--N), and total N (TN) in stream water increase with the areal proportion of rice agriculture in the catchments; however, these increases can only be detected when the areal proportions of rice agriculture in the catchments are greater than 13-30%, highlighting the importance of reasonable land use planning for managing stream water quality as well as N loadings from catchments. The factorial correspondence analysis (FCA) also suggests that rice agriculture has a potential to impose groundwater NH4+-N pollution, particularly in the soil exhausting season of July - October. And, the great N fertilizer application rates for rice cropping can increase the groundwater NO3-N and TN concentrations due to large quantities of N leaching into groundwater system beneath the paddy fields. The high N concentrations in groundwater result in strong N loadings via the base flow process. The NO3--N loadings via the base flow reaches 0.12-0.27 kg N ha-1 month-1 in the rice agriculture catchments, contributing 27.3%-36.5% of the total NO3--N loadings by the stream discharge. Therefore, the best management practices for N reduction and the smart land use planning should be applied in the rice agriculture catchments to improve water quality and mitigate N loadings.

  4. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  5. A national scale monitoring network for nutrients in agriculture dominated headwaters in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Rozemeijer, J.; Klein, J.

    2012-04-01

    Although specific monitoring networks exist in the Netherlands which assess the leaching of nutrients to surface waters and groundwater, none of them was capable to quantify the effects of nutrient reduction schemes to agriculture dominated headwaters. Thus, an important link was missing which relates the nutrient concentrations measured in shallow groundwater at farm scale to nutrient concentrations measured at the scale of Water Framework Directive water bodies. A new network was composed using existing monitoring locations and water quality time series owned by the 24 water boards in the Netherlands. Only monitoring locations were selected where no other pollution sources , such as water sewage treatment plants were influencing water quality. Eventually, 168 monitoring locations were selected to assess compliance to environmental standards and 80 for trend analysis. Compliance was tested applying environmental quality standards (EQS) based on summer averaged concentrations, which are set by the water boards and which are water type and location dependent. Compliance was strongly weather dependent, and only 24% of the locations complied for N and P under all weather conditions. Trends were assessed using a combination of seasonal Mann-Kendall tests and Theil-Sen robust lines for individual time series, and aggregating those trends to acquire median and average trend slopes for the sand, clay and peat regions in the Netherlands. Significant downward trends were demonstrated for N and P over the whole period (slopes between -0,55 mgN/l and -0.015 and 0.02 mg P/l per 10 year). Slopes were even more pronounced for winter concentrations of N (-0.89 mg N/l per 10 year). The slopes were relevant and environmentally significant in relation to the height of the EQS and were attributed to the effective reduction of nutrient leaching as the result of adapted farming practices. The presentation will highlight and evaluate choices in the design of the newly composed network

  6. Influence of riparian seepage zones on nitrate variability in two agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian seepage zones are one of the primary pathways of groundwater transport to headwater streams. While seeps have been recognized for their contributions to streamflow, there is little information on how seeps affect stream water quality. The objective of this study was to examine the influence...

  7. Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

    NASA Astrophysics Data System (ADS)

    Aubert, A. H.; Gascuel-Odoux, C.; Gruau, G.; Akkal, N.; Faucheux, M.; Fauvel, Y.; Grimaldi, C.; Hamon, Y.; Jaffrézic, A.; Lecoz-Boutnik, M.; Molénat, J.; Petitjean, P.; Ruiz, L.; Merot, P.

    2013-04-01

    High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i) the high temporal and spatial variability of climate and human activity and (ii) the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France), aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon) were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the stocking period

  8. Bedrock and soil contribution to the runoff formation in a headwater catchment: experimental observations and simulation using the hydrological distributed model GEOtop

    NASA Astrophysics Data System (ADS)

    Bertoldi, G.; Dietrich, W. E.; Miller, N. L.; Rigon, R.

    2005-12-01

    Most of the models used to reproduce the runoff at hillslope scale and at small-catchment scale are based on the assumption that the sub-surface runoff flows following the bedrock topography, often considered impermeable and parallel to the surface. Another common hypothesis is that the motion can be described as a function of the only topographic gradient rather than of the hydraulic head gradient. In this contribution, to assess the importance of these statements the distributed model GEOtop has been applied to a flood event in a small headwater catchment (2.3 ha) located in Marin County, California, USA. A measuring campaign has recognized a motion field where the fractured bedrock contribution appears significant. During storms, hillslopes do not saturate at the soil-bedrock interface, while a shallow water table remains in hollows also during the dry season. Simulations under different conditions (with uniform and measured soil thickness) have been performed, and different degrees of bedrock permeability have been simulated. The model makes it possible to reproduce the outgoing discharges, the saturated areas, and the observed water table in a suitable way and the results confirm the importance of considering the flow inside the bedrock to reproduce the basin response. Lastly, the model shows that a significant contribution to the saturated area is given by the potential suction gradient which forms at the interface between unsaturated hillslopes and saturated hollows, whose modelling can be neglected.

  9. Responses of Emergent Behaviour in Headwater Catchments to Long-term and Short-term Environmental Change

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Soulsby, C.; Malcolm, I. A.; Brewer, M. J.

    2007-12-01

    Emergent behaviour of hydrological processes at the catchment scale often results in relatively simple and predictable functional characteristics which are underpinned by heterogeneous, complex processes at the small scale. It is unclear how such small-scale processes are affected by long- and short-term perturbations in forcing factors affected by various environmental changes. This leads to uncertainty in how emergent behaviour will change and how hydrology and hydrochemistry will respond at the catchment scale. A powerful resource in improving predictions of such responses is applying advanced statistical analysis to long-term data sets of conservative tracers, particularly in gauged catchments that are subject to marked environmental change. Changes in tracer behaviour can provide an integrated insight into the emergent response of system functioning and its non-linear characteristics. In this paper, we present the analysis of long-term tracer data collected since 1982 in 2 small (ca. 1km2) experimental catchments in the Scottish highlands. These have been affected by marked change and variability in driving variables of climate, land cover and rainfall chemistry: Annual rainfall ranged between 1490 and 2500mm and an average 1°C increase in air temperatures was observed over the monitoring period. In addition, forestry operations resulted in 70% of each catchment being clear felled. Finally, air pollution legislation targeting acid emissions has improved the quality of precipitation, resulting in a marked reduction in acid deposition. Long-term (20 year, weekly) time-series analyses of two tracers are used to assess changes in emergent catchment behaviour. Chloride input-output time series are analysed using a range of residence time models which highlighted non-stationarity in the catchment mean residence times (which ranged between 2-11 months for individual years) and corresponding residence time distributions. At the catchments scale these were driven

  10. LANDSCAPE INFLUENCES ON IN-STREAM BIOTIC INTEGRITY: USE OF MACROINVERTEBRATE METRICS TO IDENTIFY LANDSCAPE STRESSORS IN HEADWATER CATCHMENTS

    EPA Science Inventory

    The biotic integrity of streams is profoundly influenced by quantitative and qualitative features in the landscape of the surrounding catchment. In this study, aquatic macroinvertebrate metrics (e.g., relative abundance of Ephemeroptera, Trichoptera, and/or Plecoptera taxa, or t...

  11. Antecedent conditions, hydrological connectivity and anthropogenic inputs: Factors affecting nitrate and phosphorus transfers to agricultural headwater streams.

    PubMed

    Outram, Faye N; Cooper, Richard J; Sünnenberg, Gisela; Hiscock, Kevin M; Lovett, Andrew A

    2016-03-01

    This paper examines relationships between rainfall-runoff, catchment connectivity, antecedent moisture conditions and fertiliser application with nitrate-N and total phosphorus (TP) fluxes in an arable headwater catchment over three hydrological years (2012-2014). Annual precipitation totals did not vary substantially between years, yet the timing of rainfall strongly influenced runoff generation and subsequent nitrate-N and TP fluxes. The greatest nitrate-N (>250 kg N day(-1)) and TP (>10 kg TP day(-1)) fluxes only occurred when shallow groundwater was within 0.6m of the ground surface and runoff coefficients were greater than 0.1. These thresholds were reached less frequently in 2012 due to drought recovery resulting in lower annual nitrate-N (7.4 kg N ha(-1)) and TP (0.12 kg P ha(-1)) fluxes in comparison with 2013 (15.1 kg N ha(-1); 0.21 kg P ha(-1)). The wet winter of 2013 with elevated shallow groundwater levels led to more frequent activation of sub-surface pathways and tile drain flow. Throughout the period, dry antecedent conditions had a temporary effect in elevating TP loads. Evidence of TP source exhaustion after consecutive storm events can be attributed to the repeated depletion of temporarily connected critical source areas to the river network via impermeable road surfaces. Fertiliser application varied considerably across three years due to differences in crop rotation between farms, with annual N and P fertiliser inputs varying by up to 21% and 41%, respectively. Proportional reductions in annual riverine nitrate-N and TP loadings were not observed at the sub-catchment outlet as loadings were largely influenced by annual runoff. Nitrate loadings were slightly higher during fertiliser application, but there was little relationship between P fertiliser application and riverine TP load. These data indicate that this intensive arable catchment may be in a state of biogeochemical stationarity, whereby legacy stores of nutrients buffer against changes

  12. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  13. Field-based study of connectivity in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Lexartza-Artza, I.; Wainwright, J.

    2009-12-01

    Field-based studies of hydrological connectivity can provide context-specific knowledge that might both help understand dynamic complex systems and contribute to other synthetic or modelling approaches. The importance of such an understanding of catchment processes and also of the knowledge of catchment connections with water bodies and the changes of concentration with scale for Integrated Catchment Management has been increasingly emphasized. To provide a holistic understanding, approaches to the study of connectivity need to include both structural and functional aspects of the system and must consider the processes taking place within and across different temporal and spatial scales. A semi-quantitative nested approach has been used to investigate connectivity and study the interactions and feedbacks between the factors influencing transfer processes in the Ingbirchworth Catchment, in the uplands of the River Don, England. A series of reconnaissance techniques have been combined with monitoring of aspects such as rainfall, runoff, sediment transfer and soil-moisture distribution from plot to catchment scale and with consideration of linkages between land and water bodies. The temporal aspect has also been considered, with a special focus on the temporal distribution of events and the influence of longer term catchment changes such as those in land use and management practices. A variability of responses has been observed in relation to the characteristics of events, land use and scale of observation, with elements traditionally considered as limiting or enhancing connectivity responding differently under changing conditions. Sediment redistribution, reshaping of structure and consequent reinforcing loops can be observed across all land uses and landscape units, but the relevance it terms of effective connectivity of highly connected patches varies as the scale is increased. The knowledge acquired can contribute to recognise emerging processes significant for

  14. Inferring runoff generation processes through high resolution spatial and temporal UV-Vis absorbance measurements in a mountainous headwater catchment in Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Windhorst, David; Schob, Sarah; Zang, Carina; Crespo, Patricio; Breuer, Lutz

    2015-04-01

    The alpine grassland páramo - typically occurring in the headwater catchments of the Andes - plays an important role in flow regulation, hydropower generation and local water supply. However, hydrological and hydro-biogeochemical processes in the páramo and their potential reactions to climate and land use change are largely unknown. Therefore, we used a UV-Vis absorbance spectrometer to investigate fluxes of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity and nitrate (NO3-N) in a small headwater catchment (91.31 km²) in the páramo in south Ecuador on a 5 min temporal and 100 m spatial resolution to gain first insights in its hydrological functioning. Spatial sampling was realized during three snapshot sampling campaigns along the 14.2 km long stream between October 2013 and January 2014, while temporal sampling took place at a permanent sampling site within the catchment between February and June 2014. To identify the runoff generation processes the spatial patterns have been associated with local site specific (e.g. fish ponds) and sub-catchment wide (e.g. land use) characteristics. Storm flow events within the time series allowed to further study temporal changes and rotational patterns of concentration-discharge relations (hysteresis). In total, 35 events were identified to be suitable for analyzing hysteresis effects of BOD, COD, and turbidity. Nitrate concentrations could be studied for 20 events. Regardless of the flow conditions nitrate leaching increased with a growing share of non-native pine forests or pastures in the study area. During low flow conditions, the high water holding capacity of the upstream páramo areas ensured a continuous supply of BOD to the stream. Pasture and pine forest sites, mostly occurring in the downstream section of the stream, contributed to BOD only during discharge events. Contradicting the expectations the trout farms along the lower part of the streams had a relatively closed nutrient cycle and

  15. Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Futter, M. N.; Bishop, K.; Köhler, S. J.; Ottosson-Löfvenius, M.; Laudon, H.

    2013-04-01

    The boreal landscape is a complex, spatio-temporally varying mosaic of forest and mire landscape elements that control surface water hydrology and chemistry. Here, we assess long-term water quality time series from three nested headwater streams draining upland forest (C2), peat/mire (C4) and mixed (C7) (forest and mire) catchments. Acid deposition in this region is low and is further declining. Temporal trends in weather and runoff (1981-2008), dissolved organic carbon concentration [DOC] (1993-2010) and other water quality parameters (1987-2011) were assessed. There was no significant annual trend in precipitation or runoff. However, runoff increased in March and declined in May. This suggested an earlier snowmelt regime in recent years. Significant monotonic increasing trends in air temperature and length of growing season suggested a decrease in snowfall and less spring runoff. Stream [DOC] was positively correlated with some trace metals (copper, iron and zinc) and negatively with several other chemical parameters (e.g. sulfate, conductivity, calcium). Both sulfate and conductivity showed declining trends, while a significant increase was observed in pH during winter and spring. Calcium and magnesium showed monotonic decreasing trends. The declining trajectories of stream base cation and sulfate concentrations during other times of the year were not accompanied by changes in pH and alkalinity. These results indicate subtle effects of recovery from acidification. Water temperature increased significantly both annually and in most months. A simultaneous monotonic increase in iron (Fe) and [DOC] in autumn suggests co-transport of Fe-DOC in the form of organometallic complexes. A monotonic increase in UV absorbance in most months without co-occurring changes in DOC trend suggests a shift in DOC quality to a more humic-rich type. The observed increase in soil solution [DOC] and subtle trends in stream [DOC] suggest that climate rather than recovery from

  16. Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Whelan, M. J.; Rushton, K. R.; Gandolfi, C.

    2013-02-01

    Pesticide losses to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water supply. The relative role of different transfer pathways (spray drift, spills, overland flow and leaching from soils) is often uncertain, and there is a need for experimental observation and modelling to ensure that processes are understood under a range of conditions. Here we examine the transport of propyzamide and carbetamide in a small (15.5 ha) headwater sub-catchment dominated by an artificially drained field with strongly undulating topography (topographic gradients > 1:10). Specifically, we explore the validity of the "field-scale lysimeter" analogy by applying the one dimensional mathematical model MACRO. Although one dimensional representation has been shown to be reasonable elsewhere, the scale and topography of the monitored system challenge many of the underlying assumptions. MACRO considers two interacting flow domains: micropores and macropores. The effect of subsurface drains can also be included. A component of the outflow from the main drain was identified as originating from an upslope permeable shallow aquifer which was represented using a simple groundwater model. Predicted herbicide losses were sensitive to drain spacing and the organic carbon to water partition coefficient, KOC. The magnitude of the peak water and herbicide transport and their timing were simulated satisfactorily, although model performance was poor following a period of one month when snow covered the ground and precipitation was underestimated by the rain gauge. Total herbicide loads were simulated adequately by MACRO, suggesting that the field-scale lysimeter analogy is valid at this scale, although baseflow contributions to flow needed to be accounted for separately in order to adequately represent hydrological response.

  17. Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model.

    PubMed

    Tediosi, A; Whelan, M J; Rushton, K R; Gandolfi, C

    2013-02-01

    Pesticide losses to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water supply. The relative role of different transfer pathways (spray drift, spills, overland flow and leaching from soils) is often uncertain, and there is a need for experimental observation and modelling to ensure that processes are understood under a range of conditions. Here we examine the transport of propyzamide and carbetamide in a small (15.5 ha) headwater sub-catchment dominated by an artificially drained field with strongly undulating topography (topographic gradients >1:10). Specifically, we explore the validity of the "field-scale lysimeter" analogy by applying the one dimensional mathematical model MACRO. Although one dimensional representation has been shown to be reasonable elsewhere, the scale and topography of the monitored system challenge many of the underlying assumptions. MACRO considers two interacting flow domains: micropores and macropores. The effect of subsurface drains can also be included. A component of the outflow from the main drain was identified as originating from an upslope permeable shallow aquifer which was represented using a simple groundwater model. Predicted herbicide losses were sensitive to drain spacing and the organic carbon to water partition coefficient, K(OC). The magnitude of the peak water and herbicide transport and their timing were simulated satisfactorily, although model performance was poor following a period of one month when snow covered the ground and precipitation was underestimated by the rain gauge. Total herbicide loads were simulated adequately by MACRO, suggesting that the field-scale lysimeter analogy is valid at this scale, although baseflow contributions to flow needed to be accounted for separately in order to adequately represent hydrological response.

  18. Projected stream water fluxes of NO3 and total organic carbon from the Storgama headwater catchment, Norway, under climate change and reduced acid deposition.

    PubMed

    de Wit, Heleen A; Wright, Richard F

    2008-02-01

    Fluctuations in the 20-year record of nitrate (NO3) and total organic carbon (TOC) concentrations and fluxes in runoff at the small headwater catchment Storgama, southern Norway, were related to climate and acid deposition. The long-term decline in NO3 related to reduced NO3 deposition and increased winter discharge, whereas the long-term increase in TOC related to reduced sulfur deposition. Multiple regression models describing long-term trends and seasonal variability in these records were used to project future concentrations given scenarios of climate change and acid deposition. All scenarios indicated reduced NO3 fluxes and increased TOC fluxes; the largest projected changes for the period 2071-2100 were -86% and +24%, respectively. Uncertainties are that the predicted future temperatures are considerably higher than the historical record. Also, nonlinear responses of ecosystem processes (nitrogen [N] mineralization) to temperature, N-enrichment of soils, and step-changes in environmental conditions may affect future leaching of carbon and N.

  19. Where does water go when it rains? Conceptualizing runoff processes in headwater catchments (John Dalton Medal Lecture)

    NASA Astrophysics Data System (ADS)

    McDonnell, J.

    2009-04-01

    Streamflow generation concepts have remained largely unchanged since the First International Hydrological Decade (1965-1974) despite numerous case studies from an ever-widening array of catchments. Two broad classes of streamflow generation behavior have been described and conceptualized into widely used model structures: infiltration excess overland flow and saturation excess overland flow. These concepts rely on the description of spatial patterns of soil surface infiltration rates and "variable source areas" of saturation (from rising near-stream water tables) with known boundary conditions. While subsurface flow during storm events occurs (and in steep wet areas may greatly exceed overland flow contributions), its location and behavior are poorly conceptualized and predicted. The mechanisms of subsurface flow delivery to the stream are seemingly endless and range from lateral preferential flow, to flow along impeding layers, to flow in highly conductive soil and sub-soil layers—all largely unpredictable from conditions at the soil surface. So how can we conceptualize subsurface flow and its many manifestations and such poorly known boundary conditions? Can we simplify the myriad subsurface response mechanisms to be consistent with infiltration excess and saturation excess overland flow concepts? This talk examines the future of runoff conceptualization and advances a simple concept of subsurface "storage excess". I offer evidence in support of storage excess using field data from catchments distributed across a wide array of climate, geology, vegetation and topographic conditions. These data show subsurface storage filling and then spilling is a simple concept that makes sense across many scales and may help explain runoff amount and timing, geographic and time source components, and residence time. I address how such measures might be used for "gauging" the ungauged catchment as part of the IAHS Decade on Prediction in Ungauged Basins (2003-2012) and

  20. Restoring the hydrologic response to pre-developed conditions in an urbanized headwater catchment: Reality or utopia?

    NASA Astrophysics Data System (ADS)

    Wright, O.; Istanbulluoglu, E.

    2012-12-01

    The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.

  1. Soil moisture mapping in torrential headwater catchments using a local interpolation method (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Mallet, Florian; Marc, Vincent; Douvinet, Johnny; Rossello, Philippe; Le Bouteiller, Caroline; Malet, Jean-Philippe

    2016-04-01

    , soil type or land use. Eventually, the model gives insight into a catchment scale distributed high frequency soil moisture dynamics. This analysis is also used to identify the relative impacts of the morphological determinants on soil moisture content. References : McDonnell, J.J. and K. Beven, 2014. The future of hydrological science: A (common) path forward ? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50, 5342-5350. Davies A. C. Davies and K. Beven, 2015. Hysteresis and scale in catchment storage, flow and transport. Hydrological Processes, Volume 29, Issue 16 : 3604-3615. Joly D., Brossard T., Cardot H., Cavailhes J., Hilal M., Wavresky P., 2008. Interpolation par recherche d'information locale. Climatologie, Volume 5 : 27-47.

  2. [Contribution of Base Flow to Total Nitrogen Loading in Subtropical Agricultural Catchments].

    PubMed

    Ma, Qiu-mei; Li, Wei; Wang, Yi; Liu, Xin-liang; Li, Yong; Wu, Jin-shui

    2016-04-15

    With the fast development of economics and improvement of people's living standard, non-point source pollution of the agricultural catchments in subtropical China has become more and more severe, where water quality deterioration has become a main barrier for sustainable development and ecological restoration. The process of ecohydrology in catchment is greatly influenced by the process of base flow in channel. This study selected the Tuojia and Jianshan catchments located in Changsha County, Hunan Province, to quantify and compare the contribution of base flow to total nitrogen (TN) loading from January 2011 to December 2013, through field observation and model estimation. The results suggested that the Tuojia catchment with higher intensity of rice agriculture had the greater volume of base flow, higher average flow-weighted TN concentration in base flow, and greater monthly TN loading via base flow [15.2 mm · month⁻¹, 4.14 mg · L⁻¹ and 0.54 kg · (hm² · month)⁻¹, respectively] than those in the Jianshan catchment with lower intensity [11.4 mm · month⁻¹, 1.72 mg · L⁻¹ and 0.20 kg · (hm² · month)⁻¹, respectively]. The base flow contribution to TN loading showed an apparently seasonal pattern. During rice-growing seasons, the contributions of base flow to TN loading were 23.2% and 18.6% in the Tuojia and Jianshan catchments, respectively, lower than those in the fallow seasons (46.9% and 40.0% correspondingly. These results suggested that rice agriculture increased the contribution of base flow in the fallow season to TN loading. Therefore, to alleviate the suffering of non-point source pollution in the rice agriculture catchments, reasonable management measure of rice fields should be implemented to decrease contrihution of base flow to TN loading. PMID:27548958

  3. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  4. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments.

    PubMed

    Rochelle-Newall, Emma J; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain

    2016-09-08

    Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.

  5. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments.

    PubMed

    Rochelle-Newall, Emma J; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain

    2016-01-01

    Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers. PMID:27604854

  6. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments

    NASA Astrophysics Data System (ADS)

    Rochelle-Newall, Emma J.; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain

    2016-09-01

    Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.

  7. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments

    PubMed Central

    Rochelle-Newall, Emma J.; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain

    2016-01-01

    Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers. PMID:27604854

  8. The processes and timing of sediment delivery from headwaters to the trunk stream of a Central European mountain gully catchment

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; Bork, Hans-Rudolf; Fuelling, Alexander; Fuchs, Markus; Larsen, Joshua R.

    2013-11-01

    Gully systems determine downstream water quality and sediment loads since they are located where streams begin. They are often only considered as a sediment source, and the degree to which gully systems also store sediment, and the timescales of this storage, have received less attention. Gully sediment storage is important because many sedimentary archives, such as floodplains and lakes, have recorded increases in sedimentation rates particularly in Medieval times, which are interpreted as the result of increased slope erosion and gully activity. At present there is insufficient evidence directly linking such other sedimentary archives and gully systems. There is also a lack of long term records which may indicate how the major external controls, climatic or anthropogenic, might determine gully responses. To address this, we analysed sediment sources and sinks within a small (43 ha) gully catchment in the Spessart Mountains, Germany. We found five main phases of erosion and deposition since ~ 13 ka, which revealed catchment vegetation significantly controlled geomorphic responses. A loss of vegetation due to climate deterioration (e.g. Younger Dryas) or deforestation (e.g. Medieval period) caused widespread slope instability and the aggradation of the gully thalweg. In contrast, well forested conditions before the Medieval period, and again in recent years, re-stabilised the slopes, leading to gully incision with knickpoint retreat. This result differs from previous interpretations of gully activity in Central Europe that gully erosion mostly occurred in Medieval times. Our results also demonstrate that only the initial phase of knickpoint retreat is significant for supplying sediment to the gully fan and trunk stream. Then knickpoint retreat leads to a relative increase in the thalweg storage capacity downstream, which limits further sediment export. This has important implications for the interpretation of floodplain ages, since the initial supply of gully

  9. Identifying critical source areas for water quality: 1. Mapping and validating transport areas in three headwater catchments in Otago, New Zealand

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. S.; McDowell, R. W.

    2009-12-01

    SummaryValidity of five empirical to process-based, hydrological models described by Srinivasan and McDowell (2007) in mapping transport areas was tested in the Invermay and Glenomaru headwater catchments in Otago, New Zealand. These transport areas together with contaminant source areas form critical source areas (CSAs), where the majority of contaminant loss occurs and therefore represent areas where mitigation potential would be most efficient. Rainfall and 15-min instantaneous surface flows at the catchment outlets and the shallow water table (<1 m from surface) dynamics within 5-40 m of perennial streams were recorded. In the Glenomaru deer sub-catchment, subsurface flow from a tile drain and surface flow in an ephemeral stream were also measured. In the Invermay catchment, surface soil moisture was recorded periodically during stormflow and baseflow periods to map the expansion and contraction of surface saturation areas. Analysis of spatial and time-series data from August 2006 to February 2008 indicated that during dry seasons (below-average rainfall periods), the majority of stormflow came from direct precipitation, wet areas (areas at or above saturation like deer wallows) adjacent to the stream and semi-pervious areas such as animal tracks. During wet periods (above-average rainfall), flow from these areas accounted for 10-70% of total stormflows. Water table data indicated that saturated areas with the water table at the surface rarely extended >10 m from the stream during storm events. There appeared to be an active subsurface (shallow) flow system transferring flows from land to streams. However, during many rainfall events, semi-pervious areas like fence lines, animal tracks and gateways were connected to the stream via infiltration-excess surface runoff, as measured by surface runoff samplers. This may be a significant for contaminant transfer given the amount of time spent by animals on these areas and deposition of contaminants (e.g., in dung) and

  10. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Goyenola, G.; Meerhoff, M.; Zwirnmann, E.; Ovesen, N. B.; Glendell, M.; Gelbrecht, J.; Teixeira de Mello, F.; González-Bergonzoni, I.; Jeppesen, E.; Kronvang, B.

    2015-01-01

    Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and molecular composition. To examine this, we took water samples over two years in two paired intensive and extensive farming catchments in each Denmark (temperate climate) and Uruguay (subtropical climate). We measured dissolved organic carbon (DOC) and nitrogen (DON) concentrations and DOC and DON molecular fractions with size-exclusion chromatography. Moreover, we assessed DOM composition with absorbance and fluorescence measurements, as well as parallel factor analysis (PARAFAC). We also calculated DOC and DON loads based on daily discharge measurements, as well as measured precipitation and air temperature. In the catchments in Uruguay, the fluvial DOM was characterized by higher temporal variability of DOC and DON loads which were clearly related to a higher temporal variability of precipitation and a DOM composition with rather plant-like character relative to the Danish catchments. Moreover, we consistently found a higher temporal variability of DOC an DON loads in the intensive farming catchments than in the extensive farming catchments, with the highest temporal variability in the Uruguayan intensive farming catchment. Moreover, the composition of DOM exported from the intensive farming catchments was always complex and related to microbial processing in both Denmark and Uruguay. This was indicated by low C : N ratios, several spectroscopic DOM composition indexes and the PARAFAC fluorescence components. We propose that the consistent effect of intensive farming on DOM composition and the temporal variability of DOC and DON loads is related to similarities in the management of

  11. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Goyenola, G.; Meerhoff, M.; Zwirnmann, E.; Ovesen, N. B.; Glendell, M.; Gelbrecht, J.; Teixeira de Mello, F.; Gonzalez-Bergonzoni, I.; Jeppesen, E.; Kronvang, B.

    2015-05-01

    Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes, and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and quality. To examine this, we took water samples over 2 years in two paired intensive and extensive farming catchments in each of Denmark (temperate climate) and Uruguay (subtropical climate). We measured dissolved organic carbon (DOC) and nitrogen (DON) concentrations and DOC and DON molecular fractions with size-exclusion chromatography. Moreover, we characterized DOM quality with absorbance and fluorescence measurements, as well as parallel factor analysis (PARAFAC). We also calculated the DOC and DON loads based on daily discharge measurements, as well as measured precipitation and air temperature. The fluvial DOM in the catchments in Uruguay was characterized by higher temporal variability of DOC and DON loads which were clearly to a higher temporal variability of precipitation and a DOM composition with rather plant-like character relative to the Danish catchments. Moreover, we found a consistently higher temporal variability of DOC and DON loads in the intensive farming catchments than in the extensive farming catchments, with highest temporal variability in the Uruguayan intensive farming catchment. Furthermore, the composition of DOM exported from the intensive farming catchments was consistently complex and always related to microbial processing in both Denmark and Uruguay. This was indicated by low C : N ratios, several spectroscopic DOM composition indices and PARAFAC fluorescence components. We propose that the consistent effect of intensive farming on DOM composition and the temporal variability of DOC and DON loads is related to similarities in the management of

  12. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  13. Examining the linkages between forest water use, hydrology, and climate using dual-isotope approaches: insights and challenges in headwater catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Brooks, J. R.; Pypker, T. G.; McDonnell, J. J.; Bond, B. J.; Williams, D. G.

    2010-12-01

    The amount of biologically available water is arguably the central driver in plant processes. While many studies have examined the hydrological components of biologically available water, the role that vegetation water use plays within the forested ecosystem water balance is poorly understood. Fundamental questions of forests' effect on the hydrologic cycle remain unanswered. Stable isotope observations play an important role in studies that explore the interface between plant physiological function and watershed flowpaths, flow sources, and residence times. We use multiple approaches, including stable isotopes to mechanistically assess the inter-relationships between vegetation water use, hydrology, and climate. We measured deuterium and 18O of xylem water and soil water to track changes in the depth of transpiration source water throughout the summers in a headwater catchment in western Oregon. Additionally, we measured transpiration, soil moisture, and foliar pre-dawn water potential. Forest transpiration and soil evaporation are often not separately measured, and yet respond to environmental drivers in fundamentally different ways. A promising approach for partitioning the evapotranspiration into its component fluxes involves measurement of the stable isotope composition (2H and 18O) of water vapor exchanged between vegetation and atmosphere. We present some preliminary data examining changes in ET partitioning in response to bark beetles outbreaks in the Rocky Mountains. Last, to examine the linkages between vegetation function and micro-climate, we applied a dual isotope (13C and 18O) approach to infer physiological response of trees to changing environmental conditions. We found that stable isotopes of oxygen were directly related to stomatal conductance and inversely related to relative humidity; however, the relationship with relative humidity was more apparent. The correlation of stable isotopes in tree rings with environmental variables can be

  14. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    Fine sediment source fingerprinting techniques have been widely applied in agricultural river catchments. Successful source discrimination in agricultural environments depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. In this study, we re-examine this critical assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment (920 km2) in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides (137Cs, excess 210Pb), major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. However, source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources, and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, a combination of metal pollution from abandoned historic mines and organic enrichment of

  15. Scale-dependence of land use effects on water quality of streams in agricultural catchments.

    PubMed

    Buck, Oliver; Niyogi, Dev K; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.

  16. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  17. Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested, headwater catchment

    USGS Publications Warehouse

    Rice, K.C.; Hornberger, G.M.

    1998-01-01

    Three-component (throughfall, soil water, groundwater) hydrograph separations at peak flow were performed on 10 storms over a 2-year period in a small forested catchment in north-central Maryland using an iterative and an exact solution. Seven pairs of tracers (deuterium and oxygen 18, deuterium and chloride, deuterium and sodium, deuterium and silica, chloride and silica, chloride and sodium, and sodium and silica) were used for three-component hydrograph separation for each storm at peak flow to determine whether or not the assumptions of hydrograph separation routinely can be met, to assess the adequacy of some commonly used tracers, to identify patterns in hydrograph-separation results, and to develop conceptual models for the patterns observed. Results of the three-component separations were not always physically meaningful, suggesting that assumptions of hydrograph separation had been violated. Uncertainties in solutions to equations for hydrograph separations were large, partly as a result of violations of assumptions used in deriving the separation equations and partly as a result of improper identification of chemical compositions of end-members. Results of three-component separations using commonly used tracers were widely variable. Consistent patterns in the amount of subsurface water contributing to peak flow (45-100%) were observed, no matter which separation method or combination of tracers was used. A general conceptual model for the sequence of contributions from the three end-members could be developed for 9 of the 10 storms. Overall results indicated that hydrochemical and hydrometric measurements need to be coupled in order to perform meaningful hydrograph separations.

  18. Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Vereecken, Harry

    2016-05-01

    In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wüstebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models.

  19. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    PubMed Central

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868

  20. Soft water level sensors for characterizing the hydrological behaviour of agricultural catchments.

    PubMed

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance.

  1. Linking Groundwater Nitrate-N Concentrations to Management and Hydrological Changes in two Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Melland, Alice R.; Jordan, Philip; Murphy, Paul N. C.; Shortle, Ger

    2013-04-01

    In order to minimize Nitrogen (N) transfer from groundwater to surface water in agricultural river catchments it is useful to understand how those transfer pathways may vary over time and space, and thus in their connection to nutrient sources and potential effects of temporal changes in water recharge and land management. In this paper we investigate the links between N sources, groundwater and surface water, as well as the implication of spatiotemporal variability for mitigation measures. We present three years of N concentrations in stream water (sub-hourly) and in groundwater (monthly) of different strata in four hillslopes in two ca 10 km2 Irish agricultural catchments with permeable soils. One catchment with arable land overlying slate bedrock and the other with intensively managed grassland on sandstone. Both catchments were dominated by delayed nutrient transfer pathways via groundwater. Relatively high concentrations of N were found in the groundwater of both catchments, attributed to leaching of surplus soil nitrate-N. The Grassland/sandstone catchment had locally higher nitrate-N concentrations in the groundwater with more spatiotemporal variability than in the groundwater of the Arable/Slate catchment. The N concentrations in the stream water of the Arable/Slate catchment were more directly reflected by groundwater conditions. In one hillslope the effects of pasture reseeding were observed by locally elevated N concentrations in the groundwater with a delay of ca five months. This was not reflected in the surface water despite groundwater dominating the contribution to stream water. In another hillslope N was naturally buffered in the near-stream zone, but this zone was bypassed with high nitrate-N content water from the uplands via tile-drains. The apparent spatiotemporal variability in N concentration highlights the need for insight into these differences when interpreting groundwater quality data from a limited number of sampling points and occasions

  2. Estimation of groundwater contribution in runoff from small agricultural dominated catchments

    NASA Astrophysics Data System (ADS)

    Deelstra, Johannes; Jansons, Viesturs; Lagzdiņš, Ainis

    2013-04-01

    Under poor natural drainage condition, agricultural land has to be provided with subsurface drainage systems to discharge excess water from the rootzone, thereby guaranteeing optimal cropping conditions during the growing season, while in addition facilitating land preparation. Subsurface drainage systems can significantly contribute in runoff and nutrient loss generation. A secondary effect of drainage systems is that it reduces surface runoff and thereby erosion and phosphorus loss. In addition to surface and subsurface runoff, a third component, being groundwater, is contributing in runoff. As only information about the total runoff at the catchment outlet is available, uncertainty exists about the contribution of the different flow processes. Agriculture is a main contributor of nutrients and sediments to surface water causing water quality problems. Knowledge about the different pathways of water and hence nutrients and sediments to open water systems is important with respect to the choice of mitigation measures in agricultural dominated catchments. Estimates of groundwater or baseflow contribution (BFI) are often based on the use of digital filters applied to average daily discharge values. When using recommended values for the digital filter, this resulted in BFI of 40 - 50 % when applied to small Norwegian agricultural catchments. When taking the poor natural drainage conditions into consideration in addition to the presence of heavy marine clay deposits at depths greater than 1 - 2 m below soil surface, these values are considered unrealistically high. Deelstra et al (2010) showed that small agricultural catchments can have rather "flashy" runoff behaviour, characterised by large diurnal variations in discharge which also contradicts high baseflow contributions. An approach to obtain a realistic filter parameter for a digital filter has been carried out, based on discharge measurements on a set of small, nested catchments in Norway and further tested in

  3. Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions

    PubMed Central

    Pierce, Samuel C.; Kröger, Robert; Pezeshki, Reza

    2012-01-01

    Large tracts of lowlands have been drained to expand extensive agriculture into areas that were historically categorized as wasteland. This expansion in agriculture necessarily coincided with changes in ecosystem structure, biodiversity, and nutrient cycling. These changes have impacted not only the landscapes in which they occurred, but also larger water bodies receiving runoff from drained land. New approaches must append current efforts toward land conservation and restoration, as the continuing impacts to receiving waters is an issue of major environmental concern. One of these approaches is agricultural drainage management. This article reviews how this approach differs from traditional conservation efforts, the specific practices of drainage management and the current state of knowledge on the ecology of drainage ditches. A bottom-up approach is utilized, examining the effects of stochastic hydrology and anthropogenic disturbance on primary production and diversity of primary producers, with special regard given to how management can affect establishment of macrophytes and how macrophytes in agricultural landscapes alter their environment in ways that can serve to mitigate non-point source pollution and promote biodiversity in receiving waters. PMID:24832519

  4. Effect of subsurface drainage on streamflow in an agricultural headwater watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial drainage, also known as subsurface or tile drainage is paramount to sustaining crop production agriculture in the poorly-drained, humid regions of the world. Hydrologic assessments of individual plots and fields with tile drainage are becoming common; however, a major void exists in our u...

  5. Baseline Q-values for streams in intensive agricultural catchments in Ireland

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Wall, David; Mellander, Per-Erik; Mechan, Sarah; Shortle, Ger

    2010-05-01

    The effectiveness of regulations introduced in Ireland in 2006 in response to the European Union Nitrates Directives for minimising nutrient loss to waterways from farms is being studied by Teagasc, the Irish Agriculture and Food Development Authority as part of an Agricultural Catchments Programme from 2008 - 2011. The regulations in Ireland require that during winter, green cover is established and maintained on arable farms, manure is stored and not spread, ploughing is not conducted and that chemical fertiliser is not spread. The regulations also require buffer zones between fields and water courses when applying organic or chemical fertilisers and that nutrient application rates and timing match crop requirements. An upper limit for livestock manure loading of 170 kg ha-1 organic N each year is also set. The biophysical research component of the Agricultural Catchments Programme is focussed on quantifying nutrient source availability, surface and subsurface transport pathways and stream chemical water quality. A baseline description of stream ecological quality was also sought. Stream ecology was measured in autumn 2009 at 3-5 locations within four surface water catchments and at the spring emergence of a catchment underlain by karst limestone. Landuse in each catchment is dominated by medium to high intensity grassland or cereal farming and annual average rainfall ranges from 900 - 1200 mm. Surveys were conducted in 1st to 3rd order streams throughout each catchment at locations which had minimal observed point source inputs for 100m upstream, incomplete shade, a hard streambed substrate and riffle conditions suitable for the sampling methods. Benthic macroinvertebrates were identified and quantified and used to calculate the biological indices Small Stream Risk Score, Q-value, Biological Monitoring Working Party (BMWP), Average Score Per Taxa (ASPT) and EQR (Observed Q-value/Reference Q-value). Diatom community assemblages were identified from samples

  6. Plot and Catchment Scale Hydrological Impacts of Agricultural Field Boundary Features

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2015-04-01

    Natural flood management aims to reduce downstream flow levels by delaying the movement of water through a catchment and increasing the amount of soil infiltration. Field boundary features such as hedgerows and dry stone walls are common features in the rural landscape. It is hypothesised that there presence could reduce runoff connectivity and change the soil moisture levels by altering the soil structure and porosity. The use of larger agricultural machinery has resulted in the removal of field boundaries and the subsequent increase in field sizes over the 20th Century. This change in the rural landscape is likely to have changed the partitioning of rainfall into runoff and the hydrological pathways throughout the catchment. However, the link between field boundaries and catchment scale flood risk has not yet been proven. We aim to address this need for evidence to support natural flood management by focussing on these widespread features in the rural landscape. Firstly, we quantify the change in the density of field boundaries over the past 120 years for the Skell catchment, Northern England using historical OS maps. The analysis has shown that field size has approximately doubled in the Skell catchment since 1892, due to the removal of field boundaries. Secondly, we assess the effect of field boundaries on local soil characteristics and hydrological processes through plot scale continuous monitoring of the hydrological processes along a 20m transect through the linear boundary features. For the summer period results show that soil moisture levels are lower immediately next to the hedgerow compared to distances greater than 1m from the hedgerow. Finally, we use this data to parameterise and validate a catchment scale hydrological model. The model is then applied to test the impact of a network of field boundaries on river flow extremes at the catchment scale.

  7. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods.

    PubMed

    Boithias, Laurie; Sauvage, Sabine; Taghavi, Lobat; Merlina, Georges; Probst, Jean-Luc; Pérez, José Miguel Sánchez

    2011-11-30

    Rising pesticide levels in streams draining intensively managed agricultural land have a detrimental effect on aquatic ecosystems and render water unfit for human consumption. The Soil and Water Assessment Tool (SWAT) was applied to simulate daily pesticide transfer at the outlet from an agriculturally intensive catchment of 1110 km(2) (Save river, south-western France). SWAT reliably simulated both dissolved and sorbed metolachlor and trifluralin loads and concentrations at the catchment outlet from 1998 to 2009. On average, 17 kg of metolachlor and 1 kg of trifluralin were exported at outlet each year, with annual rainfall variations considered. Surface runoff was identified as the preferred pathway for pesticide transfer, related to the good correlation between suspended sediment exportation and pesticide, in both soluble and sorbed phases. Pesticide exportation rates at catchment outlet were less than 0.1% of the applied amount. At outlet, SWAT hindcasted that (i) 61% of metolachlor and 52% of trifluralin were exported during high flows and (ii) metolachlor and trifluralin concentrations exceeded European drinking water standards of 0.1 μg L(-1) for individual pesticides during 149 (3.6%) and 17 (0.4%) days of the 1998-2009 period respectively. SWAT was shown to be a promising tool for assessing large catchment river network pesticide contamination in the event of floods but further useful developments of pesticide transfers and partition coefficient processes would need to be investigated.

  8. [Catchment scale risk assessment and critical source area identification of agricultural phosphorus loss].

    PubMed

    Li, Qi; Chen, Li-Ding; Qi, Xin; Zhang, Xin-Yu; Ma, Yan

    2007-09-01

    Agricultural non-point source phosphorus pollution is a severe problem for rural water bodies in China, but hard to control directly because of its special characteristics. In this paper, an approach on the catchment scale risk assessment and critical source area identification of agricultural phosphorus loss in northern China was made, based on the catchment scale phosphorus ranking scheme and the method proposed by Gburek et al. Eight factors were selected and weighed in the modified catchment scale phosphorus ranking scheme, and the phosphorus loss risk rating of each factor was adjusted based on the current professional standards and the actual circumstances in China. The areas with ' high' risk rating of phosphorus loss in definite catchment were the critical source areas for non-point source phosphorous pollution control in that catment. The availability of obtained data and the quantification of the assessment were taken into account in the new scheme, and GIS technique and geostatistics were used for confirming the factors. Therefore, the new scheme had definite operability and practicability. PMID:18062300

  9. Bridging the Divide: understanding controls on nitrogen export by scaling from headwater catchments to eastern North America

    NASA Astrophysics Data System (ADS)

    Duncan, J. M.; Band, L. E.; Creed, I. F.; Duffy, C.; Green, M. B.; Groffman, P. M.; Tague, C.; Whittinghill, K. A.; Wollheim, W. M.

    2012-12-01

    A major challenge in ecohydrology is the development of a predictive understanding of the roles of land use and climate on nitrogen (N) cycling and export at regional to continental scales. A dramatic increase in anthropogenic N loads to terrestrial and aquatic ecosystems has contributed to forest decline, acidification of freshwater systems, and eutrophication of coastal and estuarine environments. Watershed studies have been a hallmark of ecosystem research and over the last few decades this approach has been refined to hierarchically link terrestrial and aquatic ecosystems as a continuum of water, carbon and nutrients along hydrologic flowpaths at multiple scales. We examine nested controls and feedbacks between biotic and abiotic processes controlling N cycling and export from watersheds within temperate forest biomes in eastern North America, a region that has undergone major changes in forest cover and structure as a result of historic logging, agricultural expansion then contraction, urbanization, N deposition, and climate change. Our conceptual model is that the controls on patterns of stream N concentrations and loads exported from watersheds emerge from a cascade of sources and sinks at multiple spatial and temporal scales that accumulate along converging flowpaths. This cascade integrates atmospheric, geologic, geomorphic, land use/land cover, water infrastructure and plant, soil and microbial responses. In order to synthesize controls at continental to patch (10-100 sq. m) scales, we must: (1) Understand how N is coupled to water and carbon cycling within reference forest ecosystems, broadly defined to including surface water drainage networks, across current climate, atmospheric N deposition, geologic, geomorphic and vegetation gradients; and (2) Develop a mechanistic understanding of how human activity alters the timing, magnitude and pattern of these coupled processes. Time series of N export patterns from long-term experimental watersheds across a

  10. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    NASA Astrophysics Data System (ADS)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or

  11. Agricultural management change effects on river nutrient yields in a catchment of Central Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Y.

    2009-04-01

    Modelling efforts are strongly recommended nowadays by European legislation for investigating non-structural mitigation measures against water pollution on catchment scale. Agricultural diffuse pollution is considered to be the main responsible human activity for the Eutrophication of inland waters with nitrogen (N) and phosphorus (P). The physically-based water quality model SWAT is implemented in an agricultural medium-size agricultural catchment of Central Greece with the purpose to simulate the baseline situation and subsequently to predict the effects that realistic non-structural interventions, applied on the agricultural land, have on water quality and crop yields. SWAT was successfully calibrated according to measured flows and water quality data and subsequently scenarios were developed by changing chemical fertilizer application rates and timing on corn, cotton and wheat cultivations. All scenarios resulted in a decrease of nutrient emissions to surface waters but with a simultaneous small decrease in crop yields. The model predicted explicitly the consequences of non-structural mitigation measures against water pollution sustaining that the understanding of land management changes in relation to its driving factors provides essential information for sustainable management of the agricultural sector in an agricultural country like Greece.

  12. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. PMID:26849342

  13. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts.

  14. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  15. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  16. Distribution of soil organic carbon in two small agricultural Mediterranean catchments.

    NASA Astrophysics Data System (ADS)

    Gomez, J. A.; Burguet, M.; Taguas, M. E.; Perez, R.; Ayuso, J. L.; Vanwallgehem, T.; Giraldez, J. V.; Vanderlinden, K.

    2012-04-01

    Soil organic carbon (SOC) is a key indicator of soil quality and a major factor for evaluating carbon sequestration schemes in forest and agricultural soils. However, at the farm or catchment scale SOC presents a large spatial variability which complicates the evaluation of soil quality (Gomez et al., 2009) and the certification of the potential for carbon sequestration. We hypothesize that the typical row crop configuration of olive orchards, with cover crops or bare soil in-between the rows, can explain a vast proportion of this variability. However, it is also expected that agricultural activities and topography-driven erosion processes at different scales (Van Oost et al., 2007) will contribute to SOC variability. Given the complexity of this problem and the important experimental effort required to resolve it, there are to our knowledge relatively few studies that have addressed this issue, especially in agricultural soils under Mediterranean conditions. This communications presents a preliminary evaluation of the top 1-m SOC content at two small, 8 and 6.7-ha, catchments in Southern Spain, covered by olive groves, that were intensively sampled in 2011. Spatial variability of SOC is analyzed across tree rows, areas in-between tree rows, and at different depths. The SOC distribution is evaluated against the topography of the catchment and the intensity of the water erosion processes analyzed by a simple model, such as SEDD, as used by Ferro and Porto (2000) and Taguas et al. (2011). The results of this communication will explore and discuss the differences between both catchments, and suggest guidelines for further exploring the sources of SOC variability, while providing guidelines to improve SOC estimation at the field scale for certification purposes.

  17. Modeling pesticide transfer during flood events in an agricultural catchment using the SWAT model

    NASA Astrophysics Data System (ADS)

    Boithias, Laurie; Taghavi, Lobat; Oeurng, Chantha; Polard, Thierry; Ferrant, Sylvain; Jean, Séverine; Probst, Jean-Luc; Merlina, Georges; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2010-05-01

    Pesticide monitoring, understanding of pesticide fate and pollution quantification have become major concerns in Europe since the introduction of the Water Framework Directive in 2000. Pesticides can be transported from agricultural catchments to stream networks in either the soluble or particulate phase, depending on their physicochemical properties (solubility, partition coefficient). Quick flood events therefore have a major impact on molecule transport. This study - part of the EU AguaFlash project (http://www.aguaflash-sudoe.eu/) - examined pesticide load dynamics in both the soluble and particulate phases and attempted to quantify their fluxes from various contributing compartments (surface runoff and subsurface and groundwater flows). The hydrological and water quality model SWAT (Soil and Water Assessment Tool, 2005 version) was tested at daily time step to assess the fate and transport of two pesticides with a wide range of solubility (Trifluralin and Metolachlor). SWAT was applied on an 1100 km² agricultural catchment (Save catchment, South-west France). The model was calibrated on discharge, suspended sediment, nitrate and pesticide data collected at the catchment outlet from March 2008 to March 2009, with weekly measurements during base flow and daily during flood events. Agricultural management practices (crop rotation, planting date, fertilizers and pesticide application) were entered into the model in a dominant simplifying land use approach (one rotation by sub-basin, same management operation dates throughout the catchment). Calibration for discharge fluctuations and suspended sediment and nitrate concentration variations was satisfactory. SWAT was able to accurately reproduce observed pesticide concentrations during base flows and peaks during flood events, despite the ‘dominant land use' approximation being used and management practices inputs being averaged for the whole catchment. During the simulation period, simulated preferred pathway for

  18. Incidental nutrient transfers: Assessing critical times in agricultural catchments using high-resolution data.

    PubMed

    Shore, Mairead; Jordan, Phil; Melland, Alice R; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger

    2016-05-15

    Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers. PMID:26933967

  19. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  20. Variation of IUH shapes with size of rainfall-runoff events in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Banasik, Kazimierz; Hejduk, Leszek; Banasik, Jerzy

    2013-04-01

    Instantaneous unit hydrograph (IUH) is one of the key components in many procedures for design flood estimation. The IUH defined by gamma pdf, called also Nash model, has been estimated for each of the over 30 recorded rainfall-runoff events, in a small (A=82.4 km2), lowland, agricultural catchment located in central Poland, in the period 1980-2010 (Banasik et al., 2011). Variability of the IUH characteristics (such as lag time, time to peak, maximum ordinate) vs. rainfall-runoff parameters (such as peak discharge and runoff depth) will be presented. A larger variability of the IUH characteristics for smaller events was noted. Two methods for estimating, empirically based, representative IUH, for the catchment and for the design flood estimation, are presented. The first one is based on mean values of time to peak and peak ordinate of all individual IUHs, and the other one is taking into account only the largest events when the lag time has tendency to decrease with runoff depth increasing. The empirically estimated representative IUHs are compared with unit hydrograph of FSSR and ReFH (Kjeldsen 2007). Results of single event model application, with the IUH incorporated in it, are compared with results of FFA for this catchment. Banasik K., Hejduk L. and Oygarden L., 2011. Prediction and reduction of diffuse pollution, solid emission and extreme flows from rural areas - case study of small agricultural catchments. Warsaw University of Life Sciences Press, Warsaw. Kjeldsen T.R., 2007. Flood Estimation Handbook, Supplementary Report No. 1. The revitalized FSR/FEH rainfall-runoff method. Centre for Ecology & Hydrology, Wallingford, UK. ACKNOWLEDGMENTS The investigation described in the paper is part of the research project KORANET founded by PL-National Center for Research and Development.

  1. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  2. [Phosphorus Fractions and Release Risk in Surface Sediments of an Agricultural Headwater Stream System in Hefei Suburban, China].

    PubMed

    Pei, Ting-ting; Li, Ru-zhong; Gao, Su-di; Luo, Yue-ying

    2016-02-15

    A typical water system of agricultural headwater stream in Chaohu Lake basin was selected as the study area, and 17, 16, 14 and 13 surface sediments were collected from the four styles of stream, respectively, including ponds, branches, main channel and mainstream deep pools, in October 2014 (in autumn) and April 2015 (in spring). The forms and space-time variations of phosphorus in the sediments were analyzed. Clustering and variance analysis were conducted on the phosphorus forms data from the four styles of stream by means of multivariate statistical analyses. We quantified the phosphorus release risk (PSI) and identified the main impact factors of PSI via calculating the phosphorus sorption index (PSI) and the correlation analysis. The results showed that: (1) The contents of TP in the surface sediments ranged from 137.517 to 1709.229 mg x kg(-1) with an average value of 532. 245 mg x kg(-1), and the order of the average contents of phosphorus forms was IP (350.347 mg x kg(-1)) > OP (167.333 mg x kg(-1)) > Fe/Al-P ( 78. 869 mg x kg(-1)) > Ca-P (56.343 mg x kg(-1)) > Ex-P (6.609 mg x kg(-1)); (2) The contents of phosphorus forms had the same trend in all the four stream styles, which was deep pool > main channel > branch > pond; (3) In autumn, the deep pool and main channel were clustered into one class, while the pond and branch were clustered into the other class. In spring, branch, main channel and deep pool were clustered into the same class; (4) Variance analysis showed that the differences among the four stream styles were larger in autumn than in spring; (5) The PSI of the surface sediments ranged between 24.49 and 69.94 (mg x L(-1) x (100 g x micromol)(-1). The PSI in spring was lower than that in spring, indicating that phosphorus release risk of surface sediment was higher in spring than in autumn. (6) PSI had a significant negative correlation with Ex-P, IP and pH.

  3. [Phosphorus Fractions and Release Risk in Surface Sediments of an Agricultural Headwater Stream System in Hefei Suburban, China].

    PubMed

    Pei, Ting-ting; Li, Ru-zhong; Gao, Su-di; Luo, Yue-ying

    2016-02-15

    A typical water system of agricultural headwater stream in Chaohu Lake basin was selected as the study area, and 17, 16, 14 and 13 surface sediments were collected from the four styles of stream, respectively, including ponds, branches, main channel and mainstream deep pools, in October 2014 (in autumn) and April 2015 (in spring). The forms and space-time variations of phosphorus in the sediments were analyzed. Clustering and variance analysis were conducted on the phosphorus forms data from the four styles of stream by means of multivariate statistical analyses. We quantified the phosphorus release risk (PSI) and identified the main impact factors of PSI via calculating the phosphorus sorption index (PSI) and the correlation analysis. The results showed that: (1) The contents of TP in the surface sediments ranged from 137.517 to 1709.229 mg x kg(-1) with an average value of 532. 245 mg x kg(-1), and the order of the average contents of phosphorus forms was IP (350.347 mg x kg(-1)) > OP (167.333 mg x kg(-1)) > Fe/Al-P ( 78. 869 mg x kg(-1)) > Ca-P (56.343 mg x kg(-1)) > Ex-P (6.609 mg x kg(-1)); (2) The contents of phosphorus forms had the same trend in all the four stream styles, which was deep pool > main channel > branch > pond; (3) In autumn, the deep pool and main channel were clustered into one class, while the pond and branch were clustered into the other class. In spring, branch, main channel and deep pool were clustered into the same class; (4) Variance analysis showed that the differences among the four stream styles were larger in autumn than in spring; (5) The PSI of the surface sediments ranged between 24.49 and 69.94 (mg x L(-1) x (100 g x micromol)(-1). The PSI in spring was lower than that in spring, indicating that phosphorus release risk of surface sediment was higher in spring than in autumn. (6) PSI had a significant negative correlation with Ex-P, IP and pH. PMID:27363143

  4. Public Health Perspectives of Channelized and Unchannelized Headwater Streams in Central Ohio: A Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Headwater streams constitute the majority of watersheds in the United States and many headwater streams in the midwest have been channelized for agricultural drainage. Public health implications of water chemistry and aquatic macroinvertebrates within channelized and unchannelized headwater streams ...

  5. Influence of adding small instream wood on fishes and hydrology within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large instream wood is well known for its importance in headwater streams because it promotes the development of pool habitat for fishes and provides them with cover from predators during the summer. However, little is known about the influence of small instream wood (diameter < 10 cm, length < 1 m...

  6. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  7. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; description and water quality of the Little Conestoga Creek headwaters prior to the implementation of nutrient management

    USGS Publications Warehouse

    Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.; Howse, M.A.

    1992-01-01

    The headwaters of the Conestoga River are being studied to determine the effects of agricultural Best-Management Practices on surface-water and ground-water quality. As part of this study, a 5.82-square-mile area of the Little Conestoga Creek headwaters (Small Watershed) was monitored during 1984-86, prior to implementation of Best-Management Practices. This report describes the land use and hydrology of this study area and characterizes its surface-water and ground-water quality during the pre-Best-Management Practice phase. During base-flow conditions, median concentrations of dissolved nitrite plus nitrate nitrogen as nitrogen increased from 2.7 to 8.1 milligrams per liter as the stream flowed through the intensively-farmed carbonate valley. Median total phosphorus increased from 0.05 to 0.20 milligram per liter. Concentrations of dissolved nitrate nitrogen as nitrogen measured in ground water in carbonate rocks in the valley were as great as 25 milligrams per liter and consistently exceeded 10 milligrams per liter. Statistical analysis showed that it will require substantial reductions in concentrations and discharges of nitrogen and phosphorus in base flow to obtain statistically measurable improvements in water quality. If concentrations and discharges of total nitrogen in base flow at the five sites are reduced by 15 to 33 percent, and by 63 to 70 percent, respectively, then the Wilcoxon Mann-Whitney rank-sum test will be able to detect an improvement in water quality 95 percent of the time. Likewise, if concentrations of total phosphorus are reduced by 36 to 54 percent, or discharges of total phosphorus are reduced by 52 to 69 percent at the five sites, then an improvement in water quality will be able to be detected 95 percent of the time.

  8. Identifying priority zones in an agricultural catchment to mitigate glyphosate runoff

    NASA Astrophysics Data System (ADS)

    Joris, Ingeborg; Desmet, Nele; Wilczek, Daniel; Boënne, Wesley; Seuntjens, Piet; Koopmans, Kim; Bylemans, Dany; Wouters, Katrien; Vandaele, Karel

    2015-04-01

    Pesticide concentrations in rivers generally have a very dynamic signature and are strongly dependent on time and space. The dynamic time course is due to the time- and space-variant input conditions resulting from fast overland (runoff and erosion, direct losses) and subsurface flow (artificial drainage), directly connecting surfaces and/or agricultural fields where pesticides are applied, to receiving rivers. A thorough understanding of pesticide behavior at the watershed scale is needed to increase the effectiveness of mitigation measures. We developed a method to derive priority zones for applying mitigation measures for erosion control and mitigation of glyphosate runoff in an agricultural catchment. The study catchment was selected based on results from geospatial pesticide emission modeling, historical glyphosate concentrations, and crop cover. Priority zones were derived based on a risk map which includes information about the topography, crop cover, the estimated glyphosate use, the potential erosion risk, and the connectivity of the agricultural parcels to the river. The theoretical risk map was then validated in the field using field observations of runoff during stormflow events, and observations of roads short-circuiting the runoff to the river. The validated risk map was used to define priority zones for measures related to erosion control. Suggestions for specific measures such as grass buffer strips and small dams at the field scale were made. The information will be used to target farmers that may have a significant impact on the glyphosate load to surface water. Those farmers will be encouraged to participate in a voluntary erosion control program supported by the local government. The effect of mitigation measures on the glyphosate concentrations in the river will be assessed by monitoring two years before and three years after implementation of the measures. We will present the general setup of the study and the selection methodology of the

  9. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  10. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  11. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region. PMID:25940468

  12. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  13. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  14. Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

    2007-01-01

    Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

  15. Reducing agricultural nitrogen inputs in the German Baltic Sea catchment - trends and policy options.

    PubMed

    Ackermann, Andrea; Mahnkopf, Judith; Heidecke, Claudia; Venohr, Markus

    2016-01-01

    We depict recent agricultural nitrogen input and future loads to be expected in 2021 in the German Baltic Sea catchment to assess the feasibility of reaching water quality targets defined by the Marine Strategy Framework Directive (MSFD). We calculate recent and future nitrogen balances from agriculture by applying an interdisciplinary modelling system, also considering the effects of the Nitrate Directive. The nitrogen surpluses are transferred to a nutrient emission model to simulate nitrogen emissions, in-stream retention and resulting riverine loads to the sea until 2021. Finally, we analyse input reduction demands and agri-environmental measures necessary to attain water quality targets of the MSFD. The results are target-oriented mitigation options relevant for implementation, based on regional land use and nitrogen reduction demands. Furthermore, this paper discusses the effects of policies and measures implemented to reduce nitrogen loads. PMID:27642825

  16. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  17. Nitrate Degradation in the Aquifer of an Agricultural Catchment - An Integrative Modelling Approach

    NASA Astrophysics Data System (ADS)

    Kolbe, T.

    2015-12-01

    Agricultural activity has increased nitrate concentration in aquifers worldwide, which represents one of the major environmental challenges of our generation. Nitrate is highly mobile in groundwater and if transported to denitrifying environments (i.e. anaerobic areas with the presence of bioavailable organic carbon (basis for heterotrophic denitrification) or pyrite (basis for autotrophic denitrification)) degraded to nitrogenous gas. These areas are often small, but account for a high percentage of nitrate removal. Consequential groundwater flow, a nitrate supplier to these hot spots, influence significantly the fate of nitrate. A hydro-geochemical modeling approach is used to demonstrate the relation between nitrate inputs and denitrifying services provided by catchment structure and flow dynamics. A developed three-dimensional numerical groundwater flow model is capable to map groundwater flow and visualize preferential nitrate flow paths in a 35 km2 agricultural catchment, western France. Environmental proxies for microbial processes (natural isotopic abundance of nitrogen and oxygen) are used to identify denitrification processes in the aquifer. These information are combined with the flow paths obtained by the groundwater model in a post-processing step. An overall understanding of groundwater flow patterns and therefore nitrate input to denitrifying environments yield to better management decisions and predictions for nitrate attenuation.

  18. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  19. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  20. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on water quality in the Little Conestoga Creek headwaters, 1983-89

    USGS Publications Warehouse

    Koerkle, E.H.; Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.

    1996-01-01

    Water quality in the headwaters of the Little Conestoga Creek, Lancaster County, Pa., was investigated from April 1986 through September 1989 to determine possible effects of agricultural nutrient management on water quality. Nutrient management, an agricultural Best-Management Practice, was promoted in the 5.8-square-mile watershed by the U.S. Department of Agriculture Rural Clean Water Program. Nonpoint-source- agricultural contamination was evident in surface water and ground water in the watershed; the greatest contamination was in areas underlain by carbonate rock and with intensive row-crop and animal production. Initial implementation of nutrient management covered about 30 percent of applicable land and was concentrated in the Nutrient-Management Subbasin. By 1989, nutrient management covered about 45 percent of the entire Small Watershed, about 85 percent of the Nutrient- Management Subbasin, and less than 10 percent of the Nonnutrient-Management Subbasin. The number of farms implementing nutrient management increased from 14 in 1986 to 25 by 1989. Nutrient applications to cropland in the Nutrient- Management Subbasin decreased by an average of 35 percent after implementation. Comparison of base- flow surface-water quality from before and after implementation suggests that nutrient management was effective in slowing or reversing increases in concentrations of dissolved nitrate plus nitrite in the Nutrient-Management Subbasin. Although not statistically significant, the Mann-Whitney step-trend coefficient for the Nutrient-Management Subbasin was 0.8 milligram per liter, whereas trend coefficients for the Nonnutrient-Management Subbasin and the Small Watershed were 0.4 and 1.4 milligrams per liter, respectively, for the period of study. Analysis of covariance comparison of concurrent concentrations from the two sub- basins showed a significant decrease in concen- trations from the Nutrient-Management Subbasin compared to the Nonnutrient-Management Subbasin

  1. Estimating the Regional Flux of Nitrate and Agricultural Herbicide Compounds from Groundwater to Headwater Streams of the Northern Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Ator, S.; Denver, J. M.

    2011-12-01

    Agriculture is common in the Northern Atlantic Coastal Plain (NACP, including New Jersey through North Carolina), and groundwater discharge provides nitrogen (primarily in the form of nitrate) and herbicide compounds from agricultural sources along with the majority of flow to NACP streams. Poor water quality has contributed to ecological degradation of tidal streams and estuaries along much of the adjacent mid-Atlantic coast. Although statistical models have provided estimates of total instream nutrient flux in the Coastal Plain, the regional flux of nitrogen and herbicides during base flow is less well understood. We estimated the regional flux of nitrate and selected commonly used herbicide compounds from groundwater to non-tidal headwater streams of the NACP on the basis of late-winter or spring base-flow samples from 174 such streams. Sampled streams were selected using an unequal-probability random approach, and flux estimates are based on resulting population estimates rather than empirical models, which are commonly used for such estimates. Base-flow flux in the estimated 8,834 NACP non-tidal headwater streams are an estimated 21,200 kilograms per day of nitrate (as N) and 5.83, 0.565, and 20.7 kilograms per day of alachlor, atrazine, and metolachlor (including selected degradates), respectively. Base-flow flux of alachlor and metolachlor is dominated by degradates; flux of parent compounds is less than 3 percent of the total flux of parent plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications generally varies predictably with regional variations in hydrogeology. Abundant nonpoint (primarily agricultural) sources and hydrogeologic conditions, for example, contribute to particularly large base-flow flux from the Delmarva Peninsula to Chesapeake Bay. In the Delmarva Peninsula part of the Chesapeake Watershed, more than 10 percent of total nonpoint nitrogen applications is transported through groundwater to stream base flow

  2. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  3. Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Marisa Santos, Juliana; Nunes, João Pedro; Bernard-Jannin, Léonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

    2014-05-01

    Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14°C and in summer it can reach 35°C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially

  4. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their

  5. Dendrogeomorphic approaches for identifying the probable occurrence of debris flows and related torrential processes in steep headwater catchments: The Hrubý Jeseník Mountains, Czech Republic

    NASA Astrophysics Data System (ADS)

    Tichavský, Radek; Šilhán, Karel

    2015-10-01

    Culminating parts of mid-mountain ranges in Central Europe are interwoven by a network of high-gradient streams. These parts, together with the surrounding slopes, form a coupling system in which hazardous geomorphic processes, such as landslides, debris flows or flash floods, can occur. In the case of the Hrubý Jeseník Mountains (Eastern Sudetes, Czech Republic), we present an evaluation of the debris flows and related torrential processes in the high-gradient streams of the selected catchment based on dendrogeomorphic methods. In addition to the classical dendrogeomorphic approaches we refined the procedure of identifying certain and probable events using new weighted indexes for event reconstruction. Additionally, because of the steep narrow channels without a characteristic accumulation cone, a new spatial approach is defined based on the spacing of disturbed trees for each event (random distribution or clustering) and location of disturbed trees in an individual section of the valley floor. Using Kernel Density analysis for each event and calculating the particular grids in ArcGIS software, we are able to describe the spatial reach and probable nature of an event (debris flow or hyperconcentrated flow). Dendrogeomorphic analysis of 397 sampled trees (predominantly coniferous trees) revealed 24 torrential events (15 certain, nine probable) since 1928 with peaks in 1991, 1997 and 2010 according to index values. In addition, the spatial distribution of disturbed trees (grouped in clusters) in these years indicates debris flow events in the upper parts of the catchment. It seems that new dendrogeomorphic approaches should be valuable in remote, steep headwater catchments where several types of processes affect the valley floors.

  6. Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea.

    PubMed

    Huttunen, Inese; Lehtonen, Heikki; Huttunen, Markus; Piirainen, Vanamo; Korppoo, Marie; Veijalainen, Noora; Viitasalo, Markku; Vehviläinen, Bertel

    2015-10-01

    Climate change is expected to increase annual and especially winter runoff, shorten the snow cover period and therefore increase both nutrient leaching from agricultural areas and natural background leaching in the Baltic Sea catchment. We estimated the effects of climate change and possible future scenarios of agricultural changes on the phosphorus and nitrogen loading to the Baltic Sea from Finnish catchments. In the agricultural scenarios we assumed that the prices of agricultural products are among the primary drivers in the adaptation to climate change, as they affect the level of fertilization and the production intensity and volume and, hence, the modeled changes in gross nutrient loading from agricultural land. Optimal adaptation may increase production while supporting appropriate use of fertilization, resulting in low nutrient balance in the fields. However, a less optimal adaptation may result in higher nutrient balance and increased leaching. The changes in nutrient loading to the Baltic Sea were predicted by taking into account the agricultural scenarios in a nutrient loading model for Finnish catchments (VEMALA), which simulates runoff, nutrient processes, leaching and transport on land, in rivers and in lakes. We thus integrated the effects of climate change in the agricultural sector, nutrient loading in fields, natural background loading, hydrology and nutrient transport and retention processes.

  7. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-04-01

    Detailed data on land use and land cover constitutes important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly, however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in an agricultural mosaic catchment Haean, South Korea. We recorded the land cover types with additional information on agricultural practice and make this data available at the public repository Pangaea (doi:10.1594/PANGAEA.823677). In this paper we introduce the data, its collection and the post-processing protocol. During the studied period, a large portion of dry fields was converted to perennial crops. A comparison between our dataset and MODIS Land Cover Type (MCD12Q1) suggested that the MODIS product was restricted in this area since it does not distinguish irrigated fields from general croplands. In addition, linear landscape elements such as water bodies were not detected in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.

  8. Legacies and Trajectories of Hormone Export from Agricultural Catchments Under Natural and Anthropogenic Drivers

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Mashtare, M. L.; Sassman, S. A.; Rao, P. C.; Thompson, S. E.; Basu, N. B.; Lee, L. S.

    2011-12-01

    Hormones and other emerging contaminants have been detected in surface waters worldwide at concentrations known to negatively impact sensitive aquatic species. Concentrated animal feeding operations (CAFOs) are a significant source of hormones to the environment, as their recent intensification has increased manure production and land disposal. However, little is known regarding the short- and long-term fate and transport in catchments and likely environmental impacts. Lab microcosm and column studies indicate moderately high retardation (log KOC ~ 2.8 - 3.7) and fast aerobic biotransformation (half-lives < 10 days), yet monitoring reveals consistent presence of hormones in streams. Field studies at nested scales in tile-drained agricultural catchments suggested time-invariant concentrations for hormone export at annual time scales, similar to that noted for nutrients, implying accumulation of legacy stores from annual manure applications. A robust hydro-biogeochemical model, Hormone Export and Restoration Dynamics (HERD), was developed and validated to probe several research questions: (i) can manure application practices lead to the accumulation of hormones within the soil profile and develop legacy sources?; (ii) how persistent are hormones when long-term manure applications cease?; and (iii) to what extent can best management practices be successfully employed to reduce the downstream export of hormones? Preliminary HERD simulations suggest that hormones build up in the soil profile over time as a result of repeated animal waste applications, creating legacy sources that cause hormone export to become mass transfer-limited rather than source-limited. Under such conditions, annual flow-weighted concentrations were found to be chemostatic, implying hydrologic variability rather than biogeochemical processes as the dominant control of hormone export. Additionally, these results suggest that long-term, repeated animal waste applications can lead to chronic exposure

  9. Uncertainty assessments and hydrological implications of climate change in two adjacent agricultural catchments of a rapidly urbanizing watershed.

    PubMed

    Oni, S K; Futter, M N; Molot, L A; Dillon, P J; Crossman, J

    2014-03-01

    Lake Simcoe is the most important inland lake in Southern Ontario. The watershed is predominantly agricultural and under increasing pressure from urbanization, leading to changing runoff patterns in rivers draining to the lake. Uncertainties in rainfall-runoff modeling in tributary catchments of the Lake Simcoe Watershed (LSW) can be an order of magnitude larger than pristine watersheds, hampering water quality predictions and export calculations. Here we conduct a robust assessment to constrain the uncertainty in hydrological simulations and projections in the LSW using two representative adjacent agricultural catchments. Downscaled CGCM 3 projections using A1B and A2 emission scenarios projected increases of 4°C in air temperature and a 26% longer growing season. The fraction of precipitation falling as snow will decrease. Spring runoff is an important event in LSW but individual HBV best calibrated parameter sets under-predicted peak flows by up to 32%. Using an ensemble of behavioral parameter sets achieved credible representations of present day hydrology and constrained uncertainties in future projections. Parameter uncertainty analysis showed that the catchments differ in terms of their snow accumulation/melt and groundwater dynamics. Human activities exacerbate the differences in hydrological response. Model parameterization in one catchment could not generate credible hydrological simulations in the other. We cautioned against extrapolating results from monitored to ungauged catchments in managed watersheds like the LSW.

  10. Re-examining the basis for source discrimination and data corrections used by sediment fingerprinting studies in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Blake, Will

    2014-05-01

    The sediment fingerprinting technique has been widely used in agricultural catchments to quantify fine sediment contributions from various land use sources. This application of the technique depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. We re-examine this key assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides, major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. Source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, metal pollution from abandoned historic mines and organic enrichment of sediment from areas of peaty soil resulted in the non

  11. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Bataille, Clement; Liu, Zhongfang; Ale, Srinivasulu; VanDeVelde, Justin; Roswell, Charles R.; Bowling, Laura C.; Bowen, Gabriel J.

    2012-10-01

    SummaryDrainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of NO3--laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. In this study, we quantified the flux and hydrological pathways of agricultural NO3- and road-salt Cl- from catchments lying within the Wabash River Basin, a major source of NO3- to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both NO3- and Cl) was transported early in the storm and (2) higher transport of Cl--laden pre-event soil water relative to shallow groundwater elevated in NO3- occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of Cl- and NO3- differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  12. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    PubMed

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  13. Scaling issues relating to phosphorus transfer from land to water in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Heathwaite, A. L.; Liu, S.

    2005-03-01

    Various scales of input data exist to parameterise diffuse pollution models for the UK. For screening methodologies such as the phosphorus indicators tool—PIT [Heathwaite, A.L., Sharpley, A.N., Bechmann, M., 2003a. The conceptual basis for a decision support framework to assess the risk of phosphorus loss at the field scale across Europe. Journal of Plant Nutrition and Soil Science 166, 1-12; Heathwaite, A.L., Burke, S., Quinn, P.F., 2003b. The nutrient export risk matrix (the NERM) for strategic application of biosolids to agricultural land. International Association for Hydrological Sciences Publication 285, 1-9], which is applied throughout England and Wales, some assessment of the implications of using input data derived at different scales must be made. This work is further driven by practical issues such as licensing costs and data availability, which mean that not all data are readily accessible for all end users. This paper represents a first step towards quantifying the 'value-added' to model predictions by using input data derived at three different scales: 50×50 m, 1×1 km and 5×5 km. Model runs using PIT were carried out against observed phosphorus water quality data from the River Start and River Gara, which are the main sub-catchments of Slapton Ley, a grade 1 National Nature Reserve in southwest England. Model runs for the main 46 km 2 Slapton catchment were also undertaken. The results show that some improvement in the ability of the model to capture the observed water quality behaviour may be made by using higher resolution DEM data, though these improvements may be outweighed by the extra data processing and computational time. Conversely, model runs driven by the 5 km data demonstrate consistent under-prediction for all three test catchments, which is perhaps not surprising given the greater degree of averaging underlying datasets at this scale. Results from the 1 km datasets provide the best agreement with observed water quality data, and

  14. Understanding the controls on deposited fine sediment in the streams of agricultural catchments.

    PubMed

    Naden, P S; Murphy, J F; Old, G H; Newman, J; Scarlett, P; Harman, M; Duerdoth, C P; Hawczak, A; Pretty, J L; Arnold, A; Laizé, C; Hornby, D D; Collins, A L; Sear, D A; Jones, J I

    2016-03-15

    Excessive sediment pressure on aquatic habitats is of global concern. A unique dataset, comprising instantaneous measurements of deposited fine sediment in 230 agricultural streams across England and Wales, was analysed in relation to 20 potential explanatory catchment and channel variables. The most effective explanatory variable for the amount of deposited sediment was found to be stream power, calculated for bankfull flow and used to index the capacity of the stream to transport sediment. Both stream power and velocity category were highly significant (p ≪ 0.001), explaining some 57% variation in total fine sediment mass. Modelled sediment pressure, predominantly from agriculture, was marginally significant (p<0.05) and explained a further 1% variation. The relationship was slightly stronger for erosional zones, providing 62% explanation overall. In the case of the deposited surface drape, stream power was again found to be the most effective explanatory variable (p<0.001) but velocity category, baseflow index and modelled sediment pressure were all significant (p<0.01); each provided an additional 2% explanation to an overall 50%. It is suggested that, in general, the study sites were transport-limited and the majority of stream beds were saturated by fine sediment. For sites below saturation, the upper envelope of measured fine sediment mass increased with modelled sediment pressure. The practical implications of these findings are that (i) targets for fine sediment loads need to take into account the ability of streams to transport/retain fine sediment, and (ii) where agricultural mitigation measures are implemented to reduce delivery of sediment, river management to mobilise/remove fines may also be needed in order to effect an improvement in ecological status in cases where streams are already saturated with fines and unlikely to self-cleanse.

  15. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  16. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External

  17. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  18. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. PMID:26196068

  19. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  20. Influence of grass filter strips on structure and function of riparian habitats of agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings into agricultural streams. Previous studies have documented the effectiveness of grass filter strips in reducing the input of agricultural pollutants, but the inf...

  1. Long-term trends in climate and hydrology in an agricultural, headwater watershed of central Pennsylvania, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strategies to mitigate agricultural runoff must consider long-term changes in climate. We investigated temperature, precipitation and runoff trends over roughly four decades of monitoring an agricultural watershed in east central Pennsylvania (1968-2012). Temperature data confirmed significant expan...

  2. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths - are DOC exports mediated by iron reduction/oxidation cycles?

    NASA Astrophysics Data System (ADS)

    Knorr, K.-H.

    2012-09-01

    Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water, and DOC fluorescence, the wetlands were identified as main source of DOC. Antecedent biogeochemical conditions, i.e. water table levels in the wetlands, influenced the discharge patterns of nitrate, iron, and DOC during an event. The correlation of DOC with pH was positive in pore waters but negative in surface waters; it was negative for DOC with sulfate in pore waters but only weak in surface waters. The positive correlation of DOC with iron was universal for pore and surface water, though. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidizing iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is thus a need to more thoroughly consider processes of DOC mobilization in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least in part be caused by increasing activities in iron reduction, possibly due to increases in temperature or wetness of riparian wetlands.

  3. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths - are DOC exports mediated by iron reduction/oxidation cycles?

    NASA Astrophysics Data System (ADS)

    Knorr, K.-H.

    2013-02-01

    Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron reduction dominated biogeochemical

  4. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  5. USE OF MACROINVERTEBRATE METRICS TO DIFFERENTIATE BETWEEN THE EFFECTS OF DECREASED CANOPY AND INCREASED EMBEDDEDNESS IN STREAMS IN DRAINING AGRICULTURAL CATCHMENTS

    EPA Science Inventory

    Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...

  6. Characterizing Non-Point Source Pollution From Agricultural Landscape Using Remote Sensing And Gis - A Case Study From Sugarcreek Headwaters, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Prasad, V. K.; Stinner, B.; McCartney, D.

    Ohio is typical among many mid west and eastern states in US that are experiencing elevated inputs of anthropogenic pollutants, especially from agricultural sources. In this study, we designed an integrated Remote sensing and GIS based approach to investigate and understand the role of landscape complexity affecting the spatial and temporal variation in pollutant loads in one of the most impaired headwater streams in Ohio. LANDSAT ETM+ data in conjunction with digital elevation model were used to compute the hydrological and watershed parameters, viz., wetness index, topographic index, soil loss, flow direction, flow accumulation, stream networks, stream orders, etc. These parameters were used in Geographic Information Systems framework along with step wise multiple linear regression to understand the spatial and temporal variation in pollutant loads. Among the different parameters, results suggested elevation range and upstream flow length as best predictors for nitrate, flow direction and upstream flow length for ammonia and slope and elevation range for phosphate loads. Methodology followed in the study and the results obtained suggest potential use of Remote sensing and GIS for characterizing non-point source pollution.

  7. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; methods of data collection and analysis and description of study areas

    USGS Publications Warehouse

    Chichester, Douglas C.

    1988-01-01

    The U.S. Geological Survey is conducting a water quality study as part of the nationally implemented Rural Clean Water Program in the headwaters of the Conestoga River, Pennsylvania. The study, which began in 1982, was designed to determine the effect of agricultural best management practices on surface--and groundwater quality. The study was concentrated in four areas within the intensively farmed, carbonate rock terrane located predominately in Lancaster County, Pennsylvania. These areas were divided into three monitoring components: (1) a Regional study area (188 sq mi): (2) a Small Watershed study area (5.82 sq mi); and (3) two field site study areas, Field-Site 1 (22.1 acres) and Field 2 (47.5 acres). The type of water quality data and the methods of data collection and analysis are presented. The monitoring strategy and description of the study areas are discussed. The locations and descriptions for all data collection locations at the four study areas are provided. (USGS)

  8. Influence of planting grass filter strips on the structure and function of riparian habitats of agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are strips of cool or warm season grasses planted adjacent to agricultural streams to reduce nutrient, pesticide, and sediment input. This conservation practice is the most frequently planted riparian buffer type in the United States. Previous studies have not evaluated how gra...

  9. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    NASA Astrophysics Data System (ADS)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  10. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  11. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  12. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  13. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  14. Monitoring of soil moisture dynamics and spatial differences in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha; Baroni, Gabriele; Biro, Peter; Schrön, Martin

    2015-04-01

    A novel method to observe changes in soil moisture and other water pools at the land surface is non-invasive cosmic-ray neutron sensing. This approach by its physical principles is placed between in-soil measurements and remote sensing, and retrieves values for an intermediate spatial scale of several hectars, which can be used to quantify stored water at the land surface. It detects variations in the background of neutrons, induced initially from cosmic-rays hitting the atmosphere, and this can be related to interesting quantities at the land surface, such as soil moisture, but to some degree also snow water equivalent and changes in the biomass of vegetation. In a small catchment being used as a long-term landscape observatory of the TERENO initiative we retrieved cosmic-ray neutron measurements for several years, for up to four adjacent sites. The terrain was hilly with some slopes being partly used for agricultural fields, partly grassland. Here, after atmospheric corrections and a calibration procedure soil moisture dynamics could be observed for integral soil depths of several decimeters, clearly responding to precipitation events and offering a comparison to various local and non-local soil moisture measurements there. For winter periods with frost and snow, also the water mass stored in the snow cover can be retrieved. Furthermore, observed spatial differences can be related to vegetation, terrain and soil moisture state. Also, the relation to parameters representing crop biomass and growth will be discussed in respect to the retrieved cosmic-ray neutron signals, which have an influence on the interpretation as soil moisture.

  15. Spatio-temporal analysis of discharge regimes based on hydrograph classification techniques in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Bloeschl, Guenter; Blaschke, Alfred Paul; Silasari, Rasmiaditya; Exner-Kittridge, Mike

    2016-04-01

    The stream, discharges and groundwater hydro-graphs is an integration in spatial and temporal variations for small-scale hydrological response. Characterizing discharges response regime in a drainage farmland is essential to irrigation strategies and hydrologic modeling. Especially for agricultural basins, diurnal hydro-graphs from drainage discharges have been investigated to achieve drainage process inferences in varying magnitudes. To explore the variability of discharge responses, we developed an impersonal method to characterize and classify discharge hydrograph based on features of magnitude and time-series. A cluster analysis (hierarchical k-means) and principal components analysis techniques are used for discharge time-series and groundwater level hydro-graphs to analyze their event characteristics, using 8 different discharge and 18 groundwater level hydro-graphs to test. As the variability of rainfall activity, system location, discharge regime and soil moisture pre-event condition in the catchment, three main clusters of discharge hydro-graph are identified from the test. The results show that : (1) the hydro-graphs from these drainage discharges had similar shapes but different magnitudes for individual rainstorm; the similarity is also showed in overland flow discharge and spring system; (2) for each cluster, the similarity of shape insisted, but the rising slope are different due to different antecedent wetness condition and the rain accumulation meanwhile the difference of regression slope can be explained by system location and discharge area; and (3) surface water always has a close proportional relation with soil moisture throughout the year, while only after the soil moisture exceeds a certain threshold does the outflow of tile drainage systems have a direct ratio relationship with soil moisture and a inverse relationship with the groundwater levels. Finally, we discussed the potential application of hydrograph classification in a wider range of

  16. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)).

  17. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  18. Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Posch, Maximilian

    2013-06-18

    Using an empirical model, we quantified the nitrogen (N) export from agricultural land in a large central European catchment (upper Vltava river, Czech Republic, about 13,000 km(2)) over the 1959-2010 period. The catchment witnessed a rapid socio-economic shift from a planned to a market economy in the 1990s, resulting in an abrupt (~50%) reduction in N fertilization rates at otherwise relatively stable land-use practices. This large-scale "experiment" enabled disentangling and quantification of individual effects of N fertilization and drainage on N leaching. The model is based on a two-step regression between annual N export and three independent variables: (i) annual average discharge in the first step and (ii) net anthropogenic nitrogen inputs (NANI) and proportion of drained agricultural land in the second step. Results show that N export was more related to mineralization of soil organic N pools due to drainage and tillage than to external N sources (NANI). The model, together with other reconstructed N sources in the catchment (leaching from forests, waste waters, and atmospheric deposition) and extrapolated back to 1900, explained 77% of the observed variability in N concentrations in the Vltava river during the 1900-2010 period.

  19. The fate of organic carbon in colluvial soils in a subtropical agricultural catchment (Arvorezinha, Brazil)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Van Oost, Kristof; Minella, Jean; Govers, Gerard

    2016-04-01

    One of the main reasons as to why soil erosion is considered to be a carbon sink for the atmosphere is that eroded carbon is often redeposited and buried in depositional environments. However, the quantification of the magnitude of this effect is still uncertain because the residence time of soil organic carbon in depositional environments is ill defined. The latter is especially true for tropical and subtropical areas as field data for these climatic zones are largely lacking. This is an important hiatus as ca. 40% of the total global arable land is located in the (sub-)tropics [1]. We collected samples from four depositional and one stable agricultural profile in a small agricultural catchment in Arvorezinha (Brazil) where deforestation started ca. 90 yrs ago. δ13C depth profiles allowed to identify the bottom of the original A-horizon: this is because δ13C values of the buried forest soils are significantly heavier than those of the colluvial deposits. The results show that soil organic carbon contents systematically decrease with depth below the actual plough layer. This is due to the fact that a significant fraction of the organic carbon that was originally deposited is removed by mineralization from these soils over decadal time scales. As the time of deforestation is known, age-depth curves could be established. Combining this information with SOC measurements allowed for a first estimate of carbon preservation rates and showed that after 70 years ca. 25% of the deposited organic carbon is released to the atmosphere: results were very consistent across profiles. In temperate environments, the time necessary for this fraction of the deposited carbon to be mineralized is somewhat longer, i.e. 100 years [2]. This suggests that soil organic carbon may be decomposed faster in sub-tropical environments in comparison to temperate environments. This is not unexpected, given the fact that average soil temperatures are higher and soils are, in this climate

  20. A multi-criteria parameterisation strategy for the hydrological modelling of storm events in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Hallema, D. W.; Moussa, R.

    2009-04-01

    The parameterisation of physically based hydrological models is a key factor in evaluating their performance and improving their adequacy. In comparison to natural catchments, the parameterisation of agricultural catchment models requires a special approach since agricultural practice, such as tillage, introduces a temporal variability in the hydraulic conductivity of the soil. This study aims to develop and evaluate a parameterisation strategy for the hydrological modelling of storm events in a Mediterranean agricultural catchment. The adopted methodology accounts for a spatio-temporally variable land use, combined with the presence of an artificial drainage network and the occurrence of short duration-high intensity storm events. A parameterisation of 43 events covering a 12-year period was carried out applying MHYDAS (Distributed HYdrological Modelling for AgroSystems) to the Roujan catchment (0.91 km2) in southern France. Parameterisation of MHYDAS is particularly difficult considering the large number of spatio-temporally variable parameters involved. To incorporate this variability, the catchment was divided into hydrological units that are considered hydrologically homogeneous, mostly parcels separated by field boundaries and ditches. The parameterisation was performed in four parts. Firstly, the appropriate flood routing equation was selected for each channel reach in the drainage network: kinematic wave where possible and diffuse wave for the other reaches. Secondly, the boundary conditions (geometry, connectivity and roughness of hydrological units and ditches) were assumed equal for all events, while soil hydrodynamic properties and initial soil moisture content were taken variable in time. A third step was to calibrate individual events by manually tuning the average overland- and channel flow celerity, saturated hydraulic conductivity, and two coefficients for the channel infiltration and exfiltration fluxes. The predictive power of each simulation was

  1. Transport of suspended sediment and organic carbon during storm events in a large agricultural catchment, southwest France.

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez

    2010-05-01

    Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and

  2. Influence of Antecedent Hydrologic Conditions on Nitrate and Phosphorus Export from a Small Agricultural Catchment in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; English, M. C.; Schiff, S. L.; Stone, M.

    2009-04-01

    The ability of the scientific community to quantify and predict discharge and nutrient transport in a range of settings is confounded by the effects of antecedent hydrologic conditions in upland areas. Previous work has empirically linked spatial variables such as land use, soil type, topography, and drainage characteristics to hydrochemical export from various landscapes (e.g. MCDOWELL et al., 2001; ARHEIMER and LIDEN, 2000; STAMM et al., 1998; JORDAN et al., 1997; WELSCH et al., 2001). However, the specific reasons why similar types of events produce different nutrient export patterns are poorly understood. Nutrient (nitrate, soluble and total phosphorus) transport from agricultural catchments is difficult to quantify and predict because of the influence of variable hydrologic flowpaths and their interaction with varying nutrient pools. This research examines the role of antecedent hydrologic conditions on stream discharge and nitrate (NO3-), soluble reactive phosphorus (SRP) and total phosphorus (TP) export from a small (2.7 km2) first-order agricultural catchment in Southern Ontario, Canada. During 59 events occurring over a two-year sampling period (year-round), runoff ratios ranged from 0-0.99). Runoff ratios increased throughout successive events as conditions became wetter although key indices of antecedent wetness such as water table position, pre-event streamflow and soil moisture did not yield predictive relationships. Nitrate, SRP and TP transport from the catchment increased with antecedent wetness during some periods but decreased with antecedent wetness during other periods. This variability appears to be linked to a combination of the position of water table before and during the event, as well as timing of fertilizer application. It is hypothesized that in general, wetter antecedent hydrologic conditions increase nutrient transport from the catchment by increasing macropore connectivity between surface soil horizons and tile drains, although this

  3. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also

  4. Impact of agricultural practices on runoff and glyphosate peaks in a small vineyard catchment

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David; Sourice, Stéphane; Communal, Pierre-Yves; Ballouche, Aziz

    2013-04-01

    The Layon River, a tributary of the Loire River, does frequently not comply with water quality standards because of pesticides. Vineyard is generally denounced. The aim of this project is to explain the transfer of pesticides during runoff events and its interaction with erosion. Pesticides and suspended particulate matter (SPM) concentrations are monitored at the outlet of the vineyards catchment each 2 minutes during floods to follow peaks. The results of three different hydrological years (2009, 2011, 2012) are exposed. The 2.2ha catchment is composed of two main vineyards plots managed by two independent farmers. Mean slopes are of 8% and can reach 40% in terraces. A gauging station has been installed at the end of the slope with a calibrated Venturi channel. The measurement station is composed of (a) an approach channel of 10 meters long for the establishment of a stable water surface, (b) a trapezoidal long-throated flume to assess the flow rate with the water level measured with (c) a bubbler sensor, (d) an automatic rain gauge, (e) an automatic sampler, (f) a modem and (g) a logosens OTT® data logger. 2009 was an average year, 2011 was particularly dry and 2012 particularly wet. Quantities of glyphosate applied were respectively 1087, 645 and 720g. Maximum discharges in the gauging station were 5, 12 and 25L.s-1. Minimum and maximum concentrations of glyphosate in runoff waters were 1-449.1 µg.L-1 in 2009, 0.62-13.6 µg.L-1 in 2011 and 0.1-3.7 µg.L-1 in 2012. Minimum and maximum concentrations of SPM were 14-1261mg.L-1 in 2009, 108- 6454 mg.L-1 in 2011 and 9-1541 mg.L-1 in 2012. While flows, quantities of glyphosate applied and peaks of concentrations observed in 2011 are more important in 2009, SPM generated in the runoff waters are lower than 2011 and 2012, even though 2012 has particularly been a wet year. Also, maximum runoff coefficients are 7% in 2009 and 2011 and 57% in 2012. In fact, this latest explains differences between years better than

  5. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; hUallachain, D. O.

    2015-08-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well

  6. Identifying the controls of soil loss in agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; Ó'hUallacháin, D.

    2015-03-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required but can be expensive and technically challenging. Here, the performance of in situ turbidity-sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). Calibrated against storm-period depth-integrated SS data, both systems gave comparable results; using the ex situ and in situ methods respectively, total load at Grassland B was estimated at 128 ± 28 and 154 ± 35, and 225 ± 54 and 248 ± 52 t at Arable B. The absence of spurious turbidity peaks relating to bankside debris around the in situ sensor and its greater security, make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (FFD) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12% of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly-drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils

  7. Relationship Between Watershed Land Use and Denitrification Enzyme Activity in Headwater Streams

    EPA Science Inventory

    Headwater streams are the dominant land-water interface across much of the landscape. Denitrification is an important ecological service provided by headwater streams. Anthropogenic inputs of N to terrestrial ecosystems largely result from agricultural practices. Animal agricultu...

  8. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use.

  9. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. PMID:23830922

  10. Assessment of hydrology, suspended sediment and particulate organic carbon transport in a large agricultural catchment using SWAT model

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was

  11. Integration of a modeling task in water policy design - Example of a prospective scenarios approach on an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Raimbault, T.; Durand, P.; Gascuel-Odoux, C.; Salmon-Monviola, J.; Masson, V.; Cordier, M. O.

    2010-05-01

    duration and by promoting CC in the autumn period. To conclude, the ability of TNT2 model to simulate catchments hydrology and nitrogen cycle has been demonstrated with a fine spatial resolution and fine degree of details in agricultural practices. A generic participatory 3-step-method for scenario analysis has been developed to ensure an appropriation of the prospective modeling task in decision support. Finally, the most advantageous CC management has been brought out and its effect of N cycling quantified. Keywords: hydrology, nitrogen, distributed model, diffuse pollution, scenario, decision support

  12. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  13. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed.

  14. Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China.

    PubMed

    Wang, Yi; Li, Yong; Liu, Xinliang; Liu, Feng; Li, Yuyuan; Song, Lifang; Li, Hang; Ma, Qiumei; Wu, Jinshui

    2014-09-01

    Land use has obvious influence on surface water quality; thus, it is important to understand the effects of land use patterns on surface water quality. This study explored the relationships between land use patterns and stream nutrient levels, including ammonium-N (NH4 (+)-N), nitrate-N (NO3 (-)-N), total N (TN), dissolved P (DP), and total P (TP) concentrations, in one forest and 12 agricultural catchments in subtropical central China. The results indicated that the TN concentrations ranged between 0.90 and 6.50 mg L(-1) and the TP concentrations ranged between 0.08 and 0.53 mg L(-1), showing that moderate nutrient pollution occurred in the catchments. The proportional areal coverages of forests, paddy fields, tea fields, residential areas, and water had distinct effects on stream nutrient levels. Except for the forest, all studied land use types had a potential to increase stream nutrient levels in the catchments. The land use pattern indices at the landscape level were significantly correlated to N nutrients but rarely correlated to P nutrients in stream water, whereas the influence of the land use pattern indices at the class level on stream water quality differentiated among the land use types and nutrient species. Multiple regression analysis suggested that land use pattern indices at the class level, including patch density (PD), largest patch index (LPI), mean shape index (SHMN), and mean Euclidian nearest neighbor distance (ENNMN), played an intrinsic role in influencing stream nutrient quality, and these four indices explained 35.08 % of the variability of stream nutrient levels in the catchments (p<0.001). Therefore, this research provides useful ideas and insights for land use planners and managers interested in controlling stream nutrient pollution in subtropical central China.

  15. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  16. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed. PMID:27380076

  17. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions

    NASA Astrophysics Data System (ADS)

    Adams, Russell; Quinn, Paul

    2014-05-01

    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub

  18. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows

  19. Flood survey of nitrate behaviour using nitrogen isotope tracing in the critical zone of a French agricultural catchment

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Moussa, Issam; Payre, Virginie; Probst, Anne; Probst, Jean-Luc

    2015-11-01

    Measurements of δ15N-NO3- were taken in a highly flood-responsive agricultural catchment in the southwest of France to trace the sources and transfer pathways of nitrates during flood events. From January to March 2013, surface water samples were collected every week at the outlet, and four floods were sampled with a high resolution. Sampling was also performed in surface waters and sand lenses from the rest of the basin to trace nitrate sources and processes spatially. Nitrate extractions were performed using a method based on the solubility difference between inorganic salts and organic solutions. The δ15N values were in the range of surface water contaminated by N-fertilisers. Depending on the hydroclimatic event, nitrates resulted from a combination of sources and processes. At the start of the floods, the values of δ15N-NO3- and nitrate concentrations were low, demonstrating the dilution of water with rainwater. During a second phase, the nitrate concentration and the δ15N were higher. Deeper waters and soil solutions were the second source of nitrates. When the water level was low, both nitrate concentration and isotopic composition were high. These values reflected the denitrification processes that occurred in the soil under anaerobic conditions. An analysis of δ15N-NO3- in stream water in a small agricultural catchment was efficient at determining the origin of nitrates during flood events using a simple method.

  20. Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies

    NASA Astrophysics Data System (ADS)

    Minella, Jean P. G.; Walling, Desmond E.; Merten, Gustavo H.

    2014-11-01

    The rapid expansion of agriculture in Brazil has increased erosion rates and sediment yields, causing many negative environmental and economic impacts, both on- and off-site. However, to date, very few catchment-scale sediment budget investigations have been carried out in Brazil. Given the need to reduce the negative off-site impacts of increasing agricultural activity, there is an important need for such investigations in order to inform the development of effective sediment management strategies. Against this background, 137Cs measurements have been combined with measurements of sediment yield and fingerprinting the source of the fine sediment output, to establish a provisional sediment budget for a small (1.19 km2) agricultural catchment in southern Brazil. The catchment is located in an area of steep highly erodible basaltic terrain, which has been intensively cultivated with tobacco. An ongoing monitoring programme provided information on the sediment yield from the catchment and existing suspended sediment source fingerprinting investigations provided information on the main sediment sources contributing to the sediment load at the catchment outlet. 137Cs measurements have been used to estimate medium-term erosion and deposition rates along 17 transects across the cultivated slopes and to quantify sedimentation rates within valley floor sediment sinks. These data have been used to estimate sediment redistribution rates within the cultivated areas of the study catchment and sediment accumulation in the valley floor sinks. The information provided by the three primary data sources has been integrated to establish the sediment budget for the catchment over the past 57 years. The individual terms of the budget necessarily involve much uncertainty, but its closure adds confidence to the final result. The budget calculations indicate that the study catchment has a sediment delivery ratio of ∼15%. The implications of the key features of the budget for developing

  1. Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Kang, Shaozhong; Zhang, Lu; Song, Xiaoyu; Zhang, Shuhan; Liu, Xianzhao; Liang, Yinli; Zheng, Shiqing

    2001-04-01

    Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995-1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the

  2. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; hydrology of a small carbonate site near Ephrata, Pennsylvania, prior to implementation of nutrient management

    USGS Publications Warehouse

    Koerkle, E.H.; Hall, D.W.; Risser, D.W.; Lietman, P.L.; Chichester, D.C.

    1997-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture and Pennsylvania Department of Environmental Protection, investigated the effects of agricultural best-management practices on water quality in the Conestoga River headwaters watershed. This report describes environmental factors and the surface-water and ground-water quality of one 47.5-acre field site, Field-Site 2, from October 1984 through September 1986, prior to implementation of nutrient management. The site is partially terraced agricultural cropland underlain by carbonate rock. Twenty-seven acres are terraced, pipe-drained, and are under no-till cultivation. The remaining acreage is under minimum-till cultivation. Corn is the primary crop. The average annual rate of fertilization at the site was 480 pounds per acre of nitrogen and 110 pounds per acre of phosphorus. An unconfined limestone and dolomitic aquifer underlies the site, Depth to bedrock ranges from 5 to 30 feet below land surface. Estimated specific yields range from 0.05 to 0.10, specific capacities of wells range from less than 1 to about 20 gallons per minute per foot of drawdown, and estimates of transmissivities range from 10 to 10,000 square feet per day. Average ground-water recharge was estimated to be about 23 inches per year. The specific capacity and transmissivity data indicate that two aquifer regimes are present at the site. Wells drilled into dolomites in the eastern part of the site have larger specific capacities (averaging 20 gallons per minute per foot of drawdown) relative to specific capacities (averaging less than 1 gallon per minute per foot of drawdown) of wells drilled into limestones in the western part of the site. Median concentrations of soil-soluble nitrate and soluble phosphorus in the top 4 feet of silt- or silty-clay-loam soil ranged from 177 to 329 and 8.5 to 35 pounds per acre, respectively. Measured runoff from the pipe-drained terraces ranged from 10 to 48,000 cubic feet and was

  3. Dissolved phosphorus transport from soil to surface water in catchments with different land use.

    PubMed

    Verheyen, Dries; Van Gaelen, Nele; Ronchi, Benedicta; Batelaan, Okke; Struyf, Eric; Govers, Gerard; Merckx, Roel; Diels, Jan

    2015-03-01

    Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha(-1) year(-1). Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future. PMID:25681980

  4. Spatio-temporal variability of shallow groundwater quality in a typical agricultural catchment in subtropical central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2015-12-01

    Excessive agriculture-sourced N leaching into shallow groundwater has deteriorated the domestic water quality in rural China. To effectively prevent the above environmental contamination issue, it is an essential prerequisite of exploring the spatio-temporal variability (stV) of the groundwater quality. In this study, a large observation program was deployed to observe ammonium-N (NH4N), nitrate-N (NO3N) and total N (TN) concentrations in 194 groundwater observation wells (1.5 m deep from soil surface) from April 2010 to November 2012 in the Jinjing river catchment in Hunan Province of China. A logit function was applied to transform NH4N, NO3N and TN data for normality; the resultant variables were thus named as NH4Nt, NO3Nt and TNt, respectively. A spatio-temporal semivariogram model in a sum-metric form was used to quantify the stV of NH4Nt, NO3Nt and TNt. The results indicated that the 33-month means ± standard deviations of the NH4N, NO3N and TN concentrations were 0.75±0.10, 1.60±0.19 and 2.99±0.29 mg N L-1, respectively. NH4Nt and NO3Nt exhibited a strong spatio-temporal dependence, while TNt only presented a strong temporal structure. Spatio-temporal ordinary kriging (stOK) was applied to predict the spatio-temporal distributions of NH4N, NO3N and TN over the catchment. The cross-validation results indicated that the stOK predictions for NH4N (r=0.48, RMSE=1.11 mg N L-1), NO3N (r=0.46, RMSE=1.21 mg N L-1) outperformed that for TN (r=0.29, RMSE=2.11 mg N L-1). Referenced to the Chinese Environmental Quality Standards for Groundwater (GB/T 14848-93), the proportions of areas contaminated by NH4N, NO3N and TN in the catchment over a 33-month period were 20.5%, 1.46%, and 5.07%, respectively. Our findings suggested that the Jinjing groundwater was mainly polluted by NH4N, which is probably attributed to the intensive rice agriculture featured with high urea fertilizer applications in the catchment.

  5. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the

  6. Predicting alpine headwater stream intermittency: a case study in the northern Rocky Mountains

    USGS Publications Warehouse

    Sando, Thomas R.; Blasch, Kyle W.

    2015-01-01

    This investigation used climatic, geological, and environmental data coupled with observational stream intermittency data to predict alpine headwater stream intermittency. Prediction was made using a random forest classification model. Results showed that the most important variables in the prediction model were snowpack persistence, represented by average snow extent from March through July, mean annual mean monthly minimum temperature, and surface geology types. For stream catchments with intermittent headwater streams, snowpack, on average, persisted until early June, whereas for stream catchments with perennial headwater streams, snowpack, on average, persisted until early July. Additionally, on average, stream catchments with intermittent headwater streams were about 0.7 °C warmer than stream catchments with perennial headwater streams. Finally, headwater stream catchments primarily underlain by coarse, permeable sediment are significantly more likely to have intermittent headwater streams than those primarily underlain by impermeable bedrock. Comparison of the predicted streamflow classification with observed stream status indicated a four percent classification error for first-order streams and a 21 percent classification error for all stream orders in the study area.

  7. Climate Change Impact on the Hydrology and Water Quality of a Small Partially-Irrigated Agricultural Lowland Catchment

    NASA Astrophysics Data System (ADS)

    Visser, A.; Kroes, J.; van Vliet, M. T.; Blenkinsop, S.; Broers, H.

    2010-12-01

    The objective of this study was to assess the potential effects of climate change on the hydrology of the small partially-irrigated agricultural lowland catchment of the Keersop, in south of the Netherlands, as well as the transport of a pre-existing spatially extensive trace metal contamination. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, with Cd and Zn for example, has accumulated in the topsoil and leaches towards the surface water system, especially during periods with high groundwater levels and high discharge rates. Daily time-series of precipitation and potential evapotranspiration were derived from the results of eight regional climate model experiments under the SRES A2 emissions scenario. They each span 100 years and are representative for the periods 1961-1990 (“baseline climate”) and 2071-2100 (“future climate”). The time-series of future climate were characterized by lower precipitation (-1% to -12%) and higher air temperatures (between 2°C and 5°C), and as a result higher potential evapotranspiration, especially in summer. The time-series were used to drive the quasi-2D unsaturated-saturated zone model (SWAP) of the Keersop catchment (43 km2). The model consisted of an ensemble of 686 1D models, each of which represented a 250x250 m area within the catchment. Simulation results for the future climate scenarios show a shift in the water balance of the catchment. The decrease in annual rainfall is nearly compensated by an increase in irrigation in the catchment, if present day irrigation rules are followed. On the other hand, both evaporation and transpiration fluxes increase. This increase is compensated by a decrease in the drainage flux and groundwater recharge. As a result, groundwater levels decline and the annual discharge of the Keersop stream decreases under all future climate scenarios, by 26% to 46%. Because Cd and Zn

  8. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7

  9. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  10. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters.

    PubMed

    Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Bour, O; Molénat, J; Ruiz, L; de Montety, V; De Ridder, J; Roques, C; Longuevergne, L

    2012-10-01

    Although nitrate export in agricultural catchments has been simulated using various types of models, the role of groundwater in nitrate dynamics has rarely been fully taken into account. We used groundwater dating methods (CFC analyses) to reconstruct the original nitrate concentrations in the groundwater recharge in Brittany (Western France) from 1950 to 2009. This revealed a sharp increase in nitrate concentrations from 1977 to 1990 followed by a slight decrease. The recharge concentration curve was then compared with past chronicles of groundwater concentration. Groundwater can be interpreted as resulting from the annual dilution of recharge water in an uncontaminated aquifer. Two aquifers were considered: the weathered aquifer and the deeper fractured aquifer. The nitrate concentrations observed in the upper part of the weathered aquifer implied an annual renewal rate of 27 to 33% of the reservoir volume while those in the lower part indicated an annual renewal rate of 2-3%. The concentrations in the deep fractured aquifer showed an annual renewal rate of 0.1%. The river concentration can be simulated by combining these various groundwater reservoirs with the recharge. Winter and summer waters contain i) recharge water, or water from the variably saturated zone with rapid transfer and high nitrate concentrations, and ii) a large contribution (from 35 to 80% in winter and summer, respectively) from the lower part of the aquifer (lower weathered aquifer and deep fractured aquifer). This induces not only a relatively rapid response of the catchment to variations in agricultural pressure, but also a potential inertia which has to be taken into account.

  11. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg

  12. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  13. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2014-02-01

    Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops.

  14. Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet

    NASA Astrophysics Data System (ADS)

    Temnerud, J.; von Brömssen, C.; Fölster, J.; Buffam, I.; Andersson, J.-O.; Nyberg, L.; Bishop, K.

    2016-01-01

    In spite of the great abundance and ecological importance of headwater streams, managers are usually limited by a lack of information about water chemistry in these headwaters. In this study we test whether river outlet chemistry can be used as an additional source of information to improve the prediction of the chemistry of upstream headwaters (size < 2 km2), relative to models based on map information alone. We use the concentration of total organic carbon (TOC), an important stream ecosystem parameter, as the target for our study. Between 2000 and 2008, we carried out 17 synoptic surveys in 9 mesoscale catchments (size 32-235 km2). Over 900 water samples were collected in total, primarily from headwater streams but also including each catchment's river outlet during every survey. First we used partial least square regression (PLS) to model the distribution (median, interquartile range (IQR)) of headwater stream TOC for a given catchment, based on a large number of candidate variables including sub-catchment characteristics from GIS, and measured river chemistry at the catchment outlet. The best candidate variables from the PLS models were then used in hierarchical linear mixed models (MM) to model TOC in individual headwater streams. Three predictor variables were consistently selected for the MM calibration sets: (1) proportion of forested wetlands in the sub-catchment (positively correlated with headwater stream TOC), (2) proportion of lake surface cover in the sub-catchment (negatively correlated with headwater stream TOC), and (3) river outlet TOC (positively correlated with headwater stream TOC). Including river outlet TOC improved predictions, with 5-15 % lower prediction errors than when using map information alone. Thus, data on water chemistry measured at river outlets offer information which can complement GIS-based modelling of headwater stream chemistry.

  15. Map-based prediction of organic carbon in headwaters streams improved by downstream observations from the river outlet

    NASA Astrophysics Data System (ADS)

    Temnerud, J.; von Brömssen, C.; Fölster, J.; Buffam, I.; Andersson, J.-O.; Nyberg, L.; Bishop, K.

    2015-06-01

    In spite of the great abundance and ecological importance of headwater streams, managers are usually limited by a lack of information about water chemistry in these headwaters. In this study we test whether river outlet chemistry can be used as an additional source of information to improve the prediction of the chemistry of upstream headwaters (size < 2 km2), relative to models based on map information alone. Between 2000 and 2008, we conducted 17 synoptic surveys of streams within 9 mesoscale catchments (size 32-235 km2). Over 900 water samples were collected from catchments ranging in size from 0.03 to 235 km2. First we used partial least square regression (PLS) to model headwater stream total organic carbon (TOC) median and interquartile values for a given catchment, based on a large number of candidate variables including catchment characteristics from GIS, and measured chemistry at the catchment outlet. The best candidate variables from the PLS models were then used in hierarchical linear mixed models (MM) to model TOC in individual headwater streams. Three predictor variables were consistently selected for the MM calibration sets: (1) proportion of forested wetlands in the sub-catchment (positively correlated with headwater stream TOC), (2) proportion of lake surface cover in the sub-catchment (negatively correlated with headwater stream TOC), and (3) whole-catchment river outlet TOC (positively correlated with headwater stream TOC). Including river outlet TOC as a predictor in the models gave 5-15% lower prediction errors than using map information alone. Thus, data on water chemistry measured at river outlets offers information which can complement GIS-based modelling of headwater stream chemistry.

  16. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Zhu, T. X.

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km2 in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km2 in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km2 on the cultivated slopeland, in comparison to 27.7 t/km2 on the woodland plot, 213 t/km2 on the grassland plot, 467 t/km2 on the alfalfa plot, 236 t/km2 on the terraceland plot, and 642 t/km2 on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  17. Model-based coefficient method for calculation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures

    NASA Astrophysics Data System (ADS)

    Kyllmar, K.; Mårtensson, K.; Johnsson, H.

    2005-03-01

    A method to calculate N leaching from arable fields using model-calculated N leaching coefficients (NLCs) was developed. Using the process-based modelling system SOILNDB, leaching of N was simulated for four leaching regions in southern Sweden with 20-year climate series and a large number of randomised crop sequences based on regional agricultural statistics. To obtain N leaching coefficients, mean values of annual N leaching were calculated for each combination of main crop, following crop and fertilisation regime for each leaching region and soil type. The field-NLC method developed could be useful for following up water quality goals in e.g. small monitoring catchments, since it allows normal leaching from actual crop rotations and fertilisation to be determined regardless of the weather. The method was tested using field data from nine small intensively monitored agricultural catchments. The agreement between calculated field N leaching and measured N transport in catchment stream outlets, 19-47 and 8-38 kg ha -1 yr -1, respectively, was satisfactory in most catchments when contributions from land uses other than arable land and uncertainties in groundwater flows were considered. The possibility of calculating effects of crop combinations (crop and following crop) is of considerable value since changes in crop rotation constitute a large potential for reducing N leaching. When the effect of a number of potential measures to reduce N leaching (i.e. applying manure in spring instead of autumn; postponing ploughing-in of ley and green fallow in autumn; undersowing a catch crop in cereals and oilseeds; and increasing the area of catch crops by substituting winter cereals and winter oilseeds with corresponding spring crops) was calculated for the arable fields in the catchments using field-NLCs, N leaching was reduced by between 34 and 54% for the separate catchments when the best possible effect on the entire potential area was assumed.

  18. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    PubMed

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  19. Integrated validation of modeled plant growth, nitrogen- and water-fluxes in the agricultural used Rur catchment in Western Germany

    NASA Astrophysics Data System (ADS)

    Korres, Wolfgang; Klar, Christian; Reichenau, Tim; Fiener, Peter; Schneider, Karl

    2010-05-01

    Numerous studies have shown that agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil-moisture patterns in agroecosystems. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. Integrative validation of all three model components serves as a basis for modeling analysis of spatial soil moisture patterns. DANUBIA is parameterized and validated for the Rur catchment located in Western Germany. For integrative validation, an extensive three year dataset (2007 - 2009) of soil moisture- (TDR, FDR), plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was acquired. Plant measurements on an arable land test site were carried out biweekly. Measurements were conducted for winter wheat, maize and sugar beet during the growing season. Soil nitrogen and carbon measurements were taken before, during and after the growing season. Field averages of plant and soil parameters are derived from three individual measuring locations within each test field. Soil moisture was measured with three FDR soil moisture stations in 10 and 30 cm depth. In a grassland test site biomass measurements were carried out biweekly in 2009. Soil moisture was monitored at different locations in up to 60 cm soil depth using FDR- and TDR-stations. Meteorological data was measured with an eddy flux (arable land) and energy flux station (grassland test site). First results of point validation are in very good agreement with field measurements. Model results for winter wheat in 2007/2008 match field measurements well for both, the overall biomass (R2= 0.97, rel. RMSE = 16.8%, Nash Sutcliff - model efficiency ME = 0.96) as well as for

  20. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  1. Using 137Cs to study spatial patterns of soil erosion and soil organic carbon (SOC) in an agricultural catchment of the typical black soil region, Northeast China.

    PubMed

    Fang, Haiyan; Li, Qiuyan; Sun, Liying; Cai, Qiangguo

    2012-10-01

    Understanding the spatial pattern of soil organic carbon (SOC) is of great importance because of global environmental concerns. Soil erosion and its subsequent redistribution contribute significantly to the redistribution of SOC in agricultural ecosystems. This study investigated the relationships between (137)Cs and SOC over an agricultural landscape, and SOC redistribution was conducted for an agricultural catchment of the black soil region in Northeast China. The spatial patterns of (137)Cs and SOC were greatly affected by the established shelterbelts and the developed ephemeral gullies. (137)Cs were significantly correlated with SOC when (137)Cs were >2000 Bq m(-2), while no relation was observed between them when (137)Cs were <2000 Bq m(-2). Factors other than soil erosion such as vegetative productivity, mineralization of SOC, landscape position and management induced their spatial difference of (137)Cs and SOC. Using (137)Cs technique to directly study SOC dynamics must be cautious in the black soils. The net SOC loss rate across the entire catchment during 1954-2010 was 92.8 kg ha(-1) yr(-1), with around 42% of the eroded SOC being redeposited within the catchment. Such information can help guide shelterbelt establishment or other land management to reduce SOC loss in the agricultural ecosystems.

  2. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize

  3. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  4. Contrasted distribution of colloidal and true dissolved phosphorus in shallow groundwaters from a small, lowland agricultural catchment

    NASA Astrophysics Data System (ADS)

    GU, S.; Gruau, G.; Dupas, R.; Rivard, C.; Gascuel-odoux, C.; Dorioz, J. M.

    2015-12-01

    Colloids (1~1000 nm) are major phosphorus (P) carrier phases in agricultural soils. Most studies developed so far on the role of colloids in P transport have however focused on laboratory extracted colloids with only little attention being paid to natural soil solutions. Here, we monitored P speciation in natural soil solutions along two transects in a small, agricultural catchment located in Western France, during one hydrological year. We compared the P speciation in these solutions (<0.45 μm) with that of P in lab solutions (NaCl 0.001 M) obtained from the same soil samples, using different speciation techniques, including ultrafiltration combined with inductively coupled plasma mass spectrometry (UF-ICP-MS) and XANES spectroscopy. XANES data evidenced no difference in terms of P speciation between lab extracted colloids and bulk soil samples, however revealing a strong enrichment of P in extracted colloids, thereby confirming the role of colloids as a major P carrier phase in agricultural soils. In natural soil solutions, total dissolved P concentrations (TDP) were similar in transect K and G, while molybdate reactive dissolved P (MRDP) was nearly 10 times higher in transect G than in Transect K. UF-ICP-MS data showed that the natural and lab extracted colloids consisted of a homogeneous mixture of Fe(Al)-oxides and organic matter, despite strong spatial variations of colloidal P proportion in natural waters (from 25 to 70%). Overall, transect G waters showed high proportions of truly-dissolved MRDP (up to 65%), waters in Transect K being richer in colloidal P and truly-dissolved organic P (OP). Lab extractions, however, did not reveal the same difference in P speciation, all the extracts being dominated by colloidal P and MRDP in roughly the same proportions. So far, the cause of this difference is not clearly identified. Though confirming the important role of colloids as a major P carrier phase in agricultural soils, this study indicates that natural soil

  5. Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments.

    PubMed

    Aquilina, Luc; Poszwa, Anne; Walter, Christian; Vergnaud, Virginie; Pierson-Wickmann, Anne-Catherine; Ruiz, Laurent

    2012-09-01

    The intensification of agriculture in recent decades has resulted in extremely high nitrogen inputs to ecosystems. One effect has been H(+) release through NH(4)(+) oxidation in soils, which increases rock weathering and leads to acidification processes such as base-cation leaching from the soil exchange complex. This study investigated the evolution of cation concentrations over the past 50 years in rivers from the Armorican crystalline shield (Brittany, western France). On a regional scale, acidification has resulted in increased base-cation riverine exports (Ca(2+), Mg(2+), Na(+), K(+)) correlated with the increased NO(3)(-) concentration. The estimated cation increase is 0.7 mmol(+)/L for Ca(2+) + Mg(2+) and 0.85 mmol(+)/L for total cations. According to mass balance, cation loss represents >30% of the base-cation exchange capacity of soils. Long-term acidification thus contributes to a decline in soil productivity. Estimates of the total organic nitrogen annually produced worldwide indicate that acidification may also constitute an additional carbon source in crystalline catchments if compensated by liming practices.

  6. Risk assessment of surface water and groundwater pollution through agricultural activity on the catchment area of the Shelek River

    NASA Astrophysics Data System (ADS)

    Zubairov, Bulat; Dautova, Assel

    2015-04-01

    Agricultural activity in rural areas of Kazakhstan can create a potential risk of surface and groundwater pollution. In our contribution, we will focus on the risk assessment of surface water and groundwater pollution in the catchment area of the Shelek River basin in southeast Kazakhstan. Since soviet time, in the research area an intensive cultivation of tobacco was performed which means to use a big amount of pesticides during the growing-process. Therefore, this research was conducted in order to receive reliable data for management decisions justification and for practical testing of approach which is recommended by WHO for drinking water supply based on risks mapping. For our study, the soil and water samples from tobacco fields, artesian spring, and surface water source were taken for analysis on pesticides content. The samples were investigated in laboratory of Centre of Sanitary and Epidemiological Expertise of Almaty city (CSEE) according to approved methods from the national standards which are accepted in Kazakhstan. For the first time, in artesian spring small amount of nitrate pollution was found whose groundwater is one of the drinking water supplies of the region.

  7. Mapping Zn, Cu and Cd contents at the small catchment level after dispersion of contaminants by agricultural practices

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Mirás-Avalos, J. M.; Paz-Ferreiro, J.

    2009-04-01

    Dispersion of trace metals into the rural environment through the use of sewage sludge, fertilizers and manure has been worldwide reported. In El Abelar (Coruña province, Spain), pig slurry was discharged during years intensively into an agricultural field by means of a device which constituted a point source of contamination. The application point was located near the head of an elementary basin, so that slurry was dispersed by runoff into neighboring grassland and maize fields. In addition, diffuse pollution was also present in the study area as a consequence of cattle grazing. Water quality was monitored during and after slurry application at the outlet of a small catchment (about 10.7 ha in surface) draining the study fields. High levels of nutrients, including heavy metals, were found in drainage water. The main objectives of this paper are to determine the spatial variability of Cu, Zn and Cd as extracted by NO3H, EDTA and Ca2Cl and to evaluate the risk of accumulation of these heavy metals at the small catchment level. A set of 55 soil samples were taken from the top soil layer (0-20 cm) of the studied catchment, following a random sampling scheme. Fe, Mn, Cu, Zn and Cd contents were determined i) after digestion by nitric acid in a microwave (USEPA-SW-846 3051) ii) after extraction with EDTA and iii) after extraction with Cl2Ca. Element contents in the extracts were determined by ICP-MS. Summary statistics indicate that variability in Cu, Zn and Cd contents over the study area was very high. For example, after NO3H digestion Zn contents ranged from 29.66 to 141.77 3 mg kg-1 and Cu contents varied from 10.45 to 72.7 3 mg kg-1. High Cu and Zn contents result from accumulation as a consequence of slurry discharge. Also, some hot spots with high levels of Cd (> 3 mg kg-1 after NO3H) with respect to background values were recorded. Geostatistics provides all necessary tools to analyze the spatial variability of soil properties over a landscape. The spatial

  8. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  9. How old is upland catchment water?

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  10. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    SciTech Connect

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  11. Nitrous oxide and methane emission in an artificial wetland treating polluted runoff from an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Tournebize, Julien; Soosaar, Kaido; Chaumont, Cedric; Hansen, Raili; Muhel, Mart; Teemusk, Alar; Vincent, Bernard

    2015-04-01

    An artificial wetland built in 2010 to reduce water pollution in a drained agricultural watershed showed real potential for pesticide and nitrate removal. The 1.2 ha off-shore wetland with a depth of from 0.1 to 1 m intercepts drainage water from a 450 ha watershed located near the village of Rampillon (03°03'37.3'' E, 48°32'16.7'' N, 70 km south-east of Paris, France). A sluice gate installed at the inlet makes it possible to close the wetland during the winter months (December - March), when no pesticides are applied and rainfall events are more frequent. The flow entering the wetland fluctuates from 0 to 120 L/s. The wetland is partially covered by Carex spp., Phragmites australis, Juncus conglomeratus, Typha latifolia and philamentous algae. Since 2011, an automatic water quality monitoring system measures water discharge, temperature, dissolved O2, conductivity pH, NO3- and DOC in both inlet and outlet. In May 2014, an automatic weather station and Campbell Irgason system for the measurement of CO2 and H2O fluxes were installed in the middle of the wetland. In May and November 2014 one-week high frequency measurement campaigns were conducted to study N2O and CH4 fluxes using 6 manually operated opaque floating static chambers and 12 floating automatic dynamic chambers. The latter were operated via multiplexer and had an incubation time of 5 minutes, whereas the gas flow was continuously measured using the Aerodyne TILDAS quantum cascade laser system. During the campaign, the reduction of NO3- concentration was measured in nine reactor pipes. Also, water samples were collected for N2O and N2 isotope analysis, and sediments were collected for potential N2 emission measurements. In May, the hydraulic retention time (HRT) was 30 days, and the average NO3- concentration decreased from 24 in the inflow to 0 mg/L in the outflow. Methane flux was relatively high (average 1446, variation 0.2-113990 μg CH4-C m-2 h-1), while about 2/3 was emitted via ebullition

  12. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Prasuhn, V.; Stamm, C.; Lazzarotto, P.; Evangelou, M. W. H.; Schulin, R.

    2013-01-01

    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem world-wide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSA) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSA in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSA. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  13. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Prasuhn, V.; Stamm, C.; Lazzarotto, P.; Evangelou, M. W. H.; Schulin, R.

    2013-10-01

    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  14. Hydroclimatic Controls on the Seasonal and Inter-Annual Variability of Dissolved Phosphorus Concentration in a Lowland Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Grimaldi, C.; Gruau, G.

    2014-12-01

    We investigated soluble reactive phosphorus (SRP) at the outlet of a lowland agricultural catchment (Kervidy-Naizin, France) to identify the hydroclimatic controls on the seasonal and inter-annual variability in concentrations. Six years of stream data have been used, including a regular 6-daily sampling and high-frequency monitoring of 52 floods. Both on an annual basis and during flood events, distinct export dynamics for SRP and particulate phosphorus (PP) revealed that SRP transport mechanism was independent from PP (Dupas et al., submitted). During most flood events, discharge-SRP hystereses were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P-rich soil horizons. SRP concentrations were highest in the beginning of the hydrological year (period A), when the stream started to flow again after the dry summer season and water table fluctuated in the wetland domain. Thus, wetland soils seemed to be a major source of SRP. Concentrations during period A were higher after a long summer period than after a short one, which suggest that a pool of labile P was constituted in soils during the dry summer period. During winter (period B), SRP concentration generally decreased compared to period A, both during floods and interflood. This could be due to depletion of a soil P pool in the wetland domain and/or dilution by deep groundwater with low P concentration from the upland domain. Concentration during period B barely decreased compared to A during wet years, probably due to increased connectivity with soils from the upland domain in wet conditions. During spring (period C), SRP concentration increased during baseflow periods. The possible mechanisms causing the release of SRP could involve reduction of Fe oxide-hydroxides in wetland soils or in-stream processes. At the same time, SRP

  15. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China

    NASA Astrophysics Data System (ADS)

    Shen, Jianlin; Li, Yong; Liu, Xuejun; Luo, Xiaosheng; Tang, Hong; Zhang, Yangzhu; Wu, Jinshui

    2013-03-01

    Atmospheric emissions of reactive nitrogen (N) species are at high levels in China in recent years, but few studies have employed N deposition monitoring techniques that measure both dry and wet deposition for comprehensive evaluation of the impacts of N deposition on ecosystems. In this study, to quantify the total N deposition, both dry and wet N depositions were monitored using denuder/filter pack systems, passive samplers and wet-only samplers at three sites with different land use types (forest, paddy field and tea field) in a 135-km2 catchment in subtropical central China from September 2010 to August 2011. At the three sampling sites, the annual mean concentrations of total N (the sum of NH, NO and DON) in rainwater were 1.2-1.6 mg N L-1, showing small variation across sites. Annual mean concentrations of total N (the sum of NH3, NO2, HNO3, particulate NH and NO) in the air were 13-18 μg N m-3. High NH3 concentrations in the air were observed at the agricultural sites of tea and paddy fields, indicating significant NH3 emissions from N fertiliser application; and high NO2 concentrations were found at the upland sites of forest and tea field, suggesting high NO emissions from soils due to high N deposition or high N fertiliser input. The annual total N deposition for the three sites of paddy field, tea field and forest was estimated as 22, 34 and 55 kg N ha-1 yr-1, in which the dry N deposition components contributed to 21%, 36% and 63% of the annual total N deposition, respectively. The annual deposition of reduced N species was 1.1-1.8 times of the annual deposition of oxidised N species. To minimise the adverse effects of atmospheric N deposition on natural/semi-natural ecosystems, it is crucial to reduce the reactive N emissions from anthropogenic activities (e.g., N fertiliser application, animal production and fossil fuel combustion) in subtropical central China.

  16. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-01

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate.

  17. REXPO: A catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas

    NASA Astrophysics Data System (ADS)

    Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.

    2016-02-01

    During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for

  18. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  19. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  20. Contaminated sediment dynamics in peatland headwaters

    NASA Astrophysics Data System (ADS)

    Shuttleworth, Emma; Clay, Gareth; Evans, Martin; Hutchinson, Simon; Rothwell, James

    2016-04-01

    Peatlands are an important store of soil carbon, provide multiple ecosystem services, and when located in close proximity to urban and industrial areas, can also act as sinks of atmospherically deposited heavy metals. The near-surface layer of the blanket peats of the Peak District National Park, UK, is severely contaminated with high concentrations of anthropogenically derived, atmospherically deposited lead (Pb). These peats are severely degraded, and there is increasing concern that erosion is releasing considerable quantities of this legacy pollution into surface waters. Despite substantial research into Pb dynamics in peatlands formal description of the possible mechanisms of contaminated sediment mobilisation is limited. However, there is evidence to suggest that a substantial proportion of contaminated surface sediment may be redistributed elsewhere in the catchment. This study uses the Pb contamination stored near the peat's surface as a fingerprint to trace contaminated sediment dynamics and storage in three severely degraded headwater catchments. Erosion is exposing high concentrations of Pb on interfluve surfaces, and substantial amounts of reworked contaminated material are stored on other catchment surfaces (gully walls and floors). We propose a variety of mechanisms as controls of Pb release and storage on the different surfaces, including: (i) wind action on interfluves; (ii) the aspect of gully walls, and (iii) gully depth. Vegetation also plays an important role in retaining contaminated sediment on all surfaces.

  1. Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events

    NASA Astrophysics Data System (ADS)

    Moussa, Roger; Voltz, Marc; Andrieux, Patrick

    2002-02-01

    Field limits, tillage practices and ditch networks constitute man-made hydrological discontinuities in farmed catchments, and are expected to influence hydrological response during flood events. The purpose of this study is to assess the role of human impact, especially the existence of tillage practices and ditch network, on flood events. The study area is the farmed catchment of Roujan (0·91 km2) located in Southern France for which a spatially distributed hydrological model, MHYDAS, was developed and tested. The model considers the catchment as a series of interconnected field parts linked to the ditch network. Descriptions are provided for the main model procedures: computation of Hortonian excess rainfall on fields using the Green and Ampt approach, conversion of excess rainfall to surface runoff, interaction between ditch network and groundwater using a simple Darcian model and flood routing through the ditch network using the diffusive wave model. To analyse the role of both tillage practices and the ditch network, two sets of sensitivity analysis of the model were applied. The first set studied the role of tillage practices by comparing the actual spatial distribution of tillage practices on the catchment with three hypothetical scenarios. The second set studied the role of the ditch network by comparing the actual man-made ditch network with a hypothetical drainage network automatically extracted from a digital elevation model. Results show the importance of the role of tillage and the ditch network on the form of the hydrograph, the lag time, the runoff volume and the peak discharge. This technique could also be applied to study the impact of land use change on the hydrological behaviour of the catchment.

  2. Effects of the Spatial Organization of Agricultural Management on the Hydrological Behaviour of a Farmed Catchment During Flood Events

    NASA Astrophysics Data System (ADS)

    Moussa, R.; Voltz, M.; Andrieux, P.

    2001-05-01

    Field limits, tillage practices and ditch networks constitute man-made hydrological discontinuities in farmed catchments, and are expected to influence hydrological response during flood events. The purpose of this study is to assess the role of human impact, especially the existence of tillage practices and ditch network, on flood events. The study area is the farmed catchment of Roujan (91 ha) located in Southern France for which a spatially distributed hydrological model, MHYDAS, was developed and tested. The model considers the catchment as a series of interconnected field parts linked to the ditch network. Descriptions are provided for the main model procedures: computation of Hortonian excess rainfall on fields using the Green and Ampt approach, conversion of excess rainfall to surface runoff, interaction between ditch network and groundwater using a simple Darcian model and flood routing through the ditch network using the diffusive wave model. To analyse the role of both tillage practices and the ditch network, two sets of sensitivity analysis of the model were applied. The first set studied the role of tillage practices by comparing the actual spatial distribution of tillage practices on the catchment to three hypothetical scenarios. The second set studied the role of the ditch network by comparing the actual man-made ditch network to a hypothetical drainage network automatically extracted from a Digital Elevation Model. Results show the importance of the role of tillage and the ditch network on the form of the hydrograph, the lag time, the runoff volume and the peak discharge. This technique could also be applied to study the impact of land use change on the hydrological behaviour of the catchment.

  3. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact

  4. Controls of catchments` sub-storage contributions to dynamic water quality patterns in the stream network

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Maike Hegenauer, Anja

    2016-04-01

    Water quality is usually observed either continuously at a few stations within a catchment or with few snapshot sampling campaigns throughout the whole stream network. Although we know that the depletion of catchment sub-storages can vary throughout the stream network according to their actual water content (spatial variability of actual storage conditions can be caused amongst others by unevenly distributed rainfall, storage size or spatial differences in soil characteristics and land use), we know little about the impact of this process on spatial water quality patterns. For summer low flow recession periods, when stream water composition can be crucial for aquatic ecosystem conditions and the exceedance of water quality thresholds, knowledge on the controls of the dynamic interplay of catchment storages and stream water composition might improve water quality management and the implementation of corresponding mitigation measures. We studied this process throughout the stream network of a first-order agricultural headwater catchment in south-western Germany during two summer low flow recession periods. The underlying geology of the study area is a deep layer of aeolian loess, whilst the dominating soil is a silty calcaric regosol with gleizations in the colluvium. The land use in the catchment is dominated by viniculture (63 %) and arable crops (18 %). Due to the dense drainpipe network within the catchment we could identify 12 sub-catchments contributing during summer low flow recession periods to total stream discharge. We continuously observed discharge, electrical conductivity and water temperatures for 8 of the sub-catchments and at the catchment outlet. This data set was accomplished by 10 snapshot campaigns where we sampled for water temperatures, electrical conductivity, major ions, pH and O2 throughout the stream network. Using either discharge concentration relationships or time dependent functions, we derived continuous export rates for all measures in

  5. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  6. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO 2 uptake at regional and global scales

    NASA Astrophysics Data System (ADS)

    Perrin, Anne-Sophie; Probst, Anne; Probst, Jean-Luc

    2008-07-01

    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO 2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montoussé, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO 3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3- content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO 2 to the total riverine alkalinity (CO 2 ATM-SOIL/HCO 3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of N-fertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO 2 to riverine alkalinity decreased by about 7-17% on average for all the studied

  7. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  8. From Headwater Streams to Rivers

    ERIC Educational Resources Information Center

    Cummins, Kenneth W.

    1977-01-01

    Presents generalizations regarding how running water systems change physically, chemically and biologically with stream order, i. e., from the tiny headwater streams (order 1) to those receiving first order headwater tributaries (order 2) and so on. Food chain diagrams respective of stream order are explained. Stream study projects are suggested.…

  9. PSYCHIC A process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Strömqvist, J.; Collins, A. L.; Davison, P. S.; Lord, E. I.

    2008-02-01

    SummaryThis paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km 2) and Herefordshire Wye (4017 km 2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha -1 yr -1; DP, 2.57 vs 1.26 kg ha -1 yr -1; PP, 2.20 vs 0.56 kg ha -1 yr -1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002-2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.

  10. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  11. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  12. Modelling through-soil transport of phosphorus to surface waters from livestock agriculture at the field and catchment scale.

    PubMed

    McGechan, M B; Lewis, D R; Hooda, P S

    2005-05-15

    A model of phosphorus (P) losses in a small dairy farm catchment has been set up based on a linkage of weather-driven field-scale simulations using an adaptation of the MACRO model. Phosphorus deposition, both in faeces from grazing livestock in summer and in slurry spread in winter, has been represented. MACRO simulations with both forms of P deposition had been calibrated and tested at the individual field scale in previous studies. The main contaminant transport mechanism considered at both field and catchment scales is P sorbed onto mobile colloidal faeces particles, which move through the soil by macropore flow. Phosphorus moves readily through soil to field drains under wet conditions when macropores are water-filled, but in dry soil the P carrying colloids become trapped so losses remain at a low level. In the catchment study, a dairy farm is assumed to be composed of fields linked by a linear system of ditches which discharge into a single river channel. Results from linked simulations showed reasonable fits to values of catchment outflow P concentrations measured at infrequent intervals. High simulated outflow P concentrations occurred at similar times of year to high measured values, with some high loss periods during the summer grazing season and some during the winter when slurry would have been spread. However, there was a lack of information about a number parameters that would be required to carry out a more exact calibration and provide a rigorous test of the modelling procedure. It was nevertheless concluded that through soil flow of colloid sorbed P by macropore flow represents a highly plausible mechanism by which P is transported to river systems in livestock farming catchments. This represents an alternative to surface runoff transport, a mechanism to which high P losses from livestock farming areas have often been attributed. The occurrence of high simulated levels of loss under wet conditions indicates environmental benefits from avoiding

  13. Seasonal exposure of fish to neurotoxic pesticides in an intensive agricultural catchment, Uma-oya, Sri Lanka: linking contamination and acetylcholinesterase inhibition.

    PubMed

    Sumith, Jayakody A; Hansani, P L Chamila; Weeraratne, Thilini C; Munkittrick, Kelly R

    2012-07-01

    The annual cultivation pattern in the Uma-oya catchment in Sri Lanka is characterized by Yala and Maha rainfall periods and associated cropping. Two cultivation seasons were compared for pesticide residues: base flow, field drainage, and the runoff and supplementary sediment data for three sites in the catchment. Organophosphate and N-methyl carbamate pesticide analysis confirmed a higher concentration in the Yala season with low-flow conditions. Acetylcholinesterase (AChE) activity was measured by standard spectrometry in the brain, muscle, and eye tissues of three freshwater cyprinid fishes, Garra ceylonensis, Devario malabaricus, and Rasbora daniconius from three study sites during months overlapping two seasons in 2010 (December) and 2011 (July). Baseline AChE data were measured from fish samples from a forested reserve in the Knuckles. A 73% inhibition in muscle AChE activity in G. ceylonensis was associated with intense pesticide exposure months in the Yala season. The AChE inhibition more than 70% in G. ceylonensis eyes in both Yala (76%) and Maha (72.5%) seasons indicates particular sensitivity of eye tissue to inhibitors. The less dramatic AChE inhibition in the eye tissues in D. malabaricus and R. daniconius in both seasons indicates exemplary protective capacity of muscle AChE in fish. The highest inhibition of AChE (up to 60% in brain and up to 56% in muscle AChE activity in R. daniconius and up to 47.8% in brain and up to 64.6% in muscle AChE activity in D. malabaricus) occurred during the Yala season. Tissue AChE activity and physiological activity in fish were correlated. The results collectively indicate that AChE is a consistent biomarker for diffused contaminant exposure in agricultural catchments.

  14. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and

  15. Effects of agricultural best-management practices on the Brush Run Creek headwaters, Adams County, Pennsylvania, prior to and during nutrient management

    USGS Publications Warehouse

    Langland, M.J.; Fishel, D.K.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, investigated the effects of agricultural best-management practices on surface-water quality as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. This report characterizes a 0.63-square- mile agricultural watershed underlain by shale, mudstone, and red arkosic sandstone in the Lower Susquehanna River Basin. The water quality of the Brush Run Creek site was studied from October 1985 through September 1991, prior to and during the implementation of nutrient management designed to reduce sediment and nutrient discharges into Conewago Creek, a tributary to the Chesapeake Bay. The original study area was 0.38 square mile and included an area immediately upstream from a manure lagoon. The study area was increased to 0.63 square mile in the fall of 1987 after an extensive tile-drain network was discovered upstream and downstream from the established streamflow gage, and the farm owner made plans to spray irrigate manure to the downstream fields. Land use for about 64 percent of the 0.63 square mile watershed is cropland, 14 percent is pasture, 7 percent is forest, and the remaining 15 percent is yards, buildings, water, or gardens. About 73 percent of the cropland was used to produce corn during the study. The average annual animal population consisted of 57,000 chickens, 1,530 hogs, and 15 sheep during the study. About 59,340 pounds of nitrogen and 13,710 pounds of phosphorus were applied as manure and commercial fertilizer to fields within the subbasin during the 3-year period prior to implementation of nutrient management. During nutrient management, about 14 percent less nitrogen and 57 percent less phosphorus were applied as commercial and manure fertilizer. Precipitation totaled 209 inches, or 13 percent less than the long-term normal, during the 6-year study. Concentrations of total ammonia in

  16. Land use effects on quality and quantity aspects of water resources in headwater areas of the Jaguari River Basin

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Camargo, P. B. D.; Piccolo, M. C.; Zuccari, M. L.; Ferracini, V. L.; Cruz, P. P. N. D.; Green, T. R.; Costa, C. F. G. D.; Reis, L. D. C.

    2015-12-01

    In the context of the recent drought conditions in southeastern Brazil, EMBRAPA (Brazilian Agricultural Research Corporation) in partnership with two Brazilian universities (USP/CENA and UNIFAL) planned a research project, called BaCaJa, to understand the hydrobiogeochemistry processes that occur in small catchments (<1,000 ha) at the upper portions of the Jaguari River Basin situated on both states of Sao Paulo and Minas Gerais. The approach of this study is based on the fact that the evaluation of stream water quality and quantity is an efficient tool to characterize the sustainability of the agriculture production at a catchment level. Its goal is, therefore, to survey the land use effects on the hydrobiogeochemistry in headwaters areas of the Jaguari River Basin to support sustainable management of water resources in this region. Sampling stations were established on rivers and streams ranging from one to five order channels as well as selected small catchments to conduct studies on overland flow, soil solution, soil quality, aquatic biota and pesticide dynamic. The research team is huge and their goals are specific, diverse and complementary, being summed up as: characterize land use, topography and soils; evaluate erosive potential in agriculture areas; measure soil carbon and nitrogen contents; characterize hydrogeochemistry fluxes; apply hydrological modeling and simulate different land use and management scenarios; monitor possible pesticides contamination; and survey macro invertebrates as indicators of water quality. Based on a synthesis of the results, the project team intends to point out the environmental impacts and contribute recommendations of management for the focused region to conserve water resources in terms of quality and quantity.

  17. The Role of Headwater Streams in Downstream Water Quality.

    PubMed

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-02-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  18. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  19. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  20. Analysing the role of abandoned agricultural terraces on flood generation in a set of small Mediterranean mountain research catchments (Vallcebre, NE Spain)

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Llorens, Pilar; Pérez-Gallego, Nuria; Latron, Jérôme

    2016-04-01

    The Vallcebre research catchments are located in NE Spain, in a middle mountain area with a Mediterranean sub-humid climate. Most of the bedrock consists of continental red lutites that are easily weathered into loamy soils. This area was intensely used for agriculture in the past when most of the sunny gentle hillslopes were terraced. The land was progressively abandoned since the mid-20th Century and most of the fields were converted to meadows or were spontaneously forested. Early studies carried out in the terraced Cal Parisa catchment demonstrated the occurrence of two types of frequently saturated areas, ones situated in downslope locations with high topographic index values, and the others located in the inner parts of many terraces, where the shallow water table usually outcrops due to the topographical modifications linked to terrace construction. Both the increased extent of saturated areas and the role of a man-made elementary drainage system designed for depleting water from the terraces suggested that terraced areas would induce an enhanced hydrological response during rainfall events when compared with non-terraced hillslopes. The response of 3 sub-catchments, of increasing area and decreasing percentage of terraced area, during a set of major events collected during over 15 years has been analysed. The results show that storm runoff depths were roughly proportional to precipitations above 30 mm although the smallest catchment (Cal Parisa), with the highest percentage of terraces, was able to completely buffer rainfall events of 60 mm in one hour without any runoff when antecedent conditions were dry. Runoff coefficients depended on antecedent conditions and peak discharges were weakly linked to rainfall intensities. Peak lag times, peak runoff rates and recession coefficients were similar in the 3 catchments; the first variable values were in the range between Hortonian and saturation overland flow and the two last ones were in the range of

  1. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    NASA Astrophysics Data System (ADS)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  2. Catchment systems science and management: from evidence to resilient landscapes

    NASA Astrophysics Data System (ADS)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is

  3. Space-time Variability of Baseflow in Headwater Streams of the Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Singh, N.; Emanuel, R. E.; McGlynn, B. L.

    2014-12-01

    How hillslope shape and structure affect the spatial and temporal variability of streamflow is a key question in catchment hydrology. In particular, the role of hillslope structure and arrangement in mediating the longitudinal variability of streamflow in first-order headwater catchments remains poorly understood. Here we assess the spatio-temporal variability of streamflow under baseflow conditions in forested headwater catchments characterized by different topography and vegetation. We studied the relationship between hillslope structure and baseflow along a series of first-order streams using a combination of in-stream water isotope sampling, stream gauging, and geospatial analysis. We studied two pairs of small (< 15 ha) forested catchments at the Coweeta Hydrologic Laboratory (CHL), a long-term ecological research (LTER) site in the southern Appalachian Mountains. The catchments comprise different combinations of aspect (north and south) and vegetation type (deciduous and evergreen), and they contain hillslopes covering a range of sizes. We sampled water along first-order streams, from shallow hillslope wells, and from rainfall collectors distributed across CHL. These monthly samples, collected from June 2011 through June 2013, were analyzed for stable isotopes of water (18O and 2H) using laser spectrometry. During the same period, we quantified longitudinal changes in stream discharge at different baseflow states for each catchment and developed discharge versus contributing area relationships along streams within each continuously gauged catchment. We found relationships between stream water isotopic composition, landscape variables, and hillslope discharge, which was estimated as the difference in streamflow between consecutive measurement locations. Results showed that landscape heterogeneity exerts a strong control over longitudinal variability of baseflow by modulating the timing and volume of lateral flow along the stream gradient. However, the strength

  4. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  5. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Foucher, Anthony; Laceby, Patrick J.; Salvador-Blanes, Sébastien; Evrard, Olivier; Le Gall, Marion; Lefèvre, Irène; Cerdan, Olivier; Rajkumar, Vignesh; Desmet, Marc

    2015-12-01

    suspended sediment loads on riverine systems in similar lowland drained agricultural catchments.

  6. Identifying sediment sources in a drained lowland agricultural catchment: the application of a novel thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Laceby, J. P.; Le Gall, M.; Foucher, A.; Salvador-Blanes, S.; Evrard, O.; Lefèvre, I.; Cerdan, O.; Desmet, M.

    2015-12-01

    Soil erosion is one of the main processes influencing land and water degradation at the global scale. Identifying the main sediment sources is therefore essential for effective soil erosion management. Accordingly, caesium-137 (137Cs) concentrations were used to quantify the relative contribution of surface and subsurface erosion sources in a lowland drained catchment in France. As 137Cs concentrations are often dependent on particle size, specific surface area (SSA) and novel Thorium (Th) based particle size corrections were applied. Surface and subsurface samples were collected to characterize the radionuclide properties of potential sources. Sediment samples were collected during one hydrological year and a sediment core was sampled to represent sediment accumulated over a longer temporal period. Additionally, sediment from tile drains was sampled to determine the radionuclide properties of sediment exported from the drainage network. The results highlight a substantial enrichment in fine particles and associated 137Cs concentrations between the sources and the sediment. The application of both correction factors reduced this difference, with the Th correction providing a more accurate comparison of source and sediment samples than the SSA correction. Modelling results clearly indicate the dominance of surface sources during the flood events and in the sediment core. Sediment exported from the drainage network was modelled to originate predominantly from surface sources. This study demonstrates the potential of Th to correct for 137Cs particle size enrichment. More importantly, this research indicates that drainage networks may significantly increase the connectivity of surface sources to stream networks. Managing sediment transferred through drainage networks may reduce the deleterious effects of suspended sediment loads on riverine systems in similar lowland drained agricultural catchments.

  7. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  8. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    EPA Science Inventory

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  9. A long-term data set for hydrologic modeling in a snow-dominated mountain catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An hourly modeling data set is presented for the water years 1984 through 2008 for a snow-dominated headwater catchment. Meteorological forcing data and GIS watershed characteristics are described and provided. The meteorological data are measured at two sites within the catchment, and include pre...

  10. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions.

  11. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions. PMID

  12. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  13. Linking brownification to carbon cycling in headwater streams

    NASA Astrophysics Data System (ADS)

    Fasching, C.; Behounek, B.; Singer, G. A.; Battin, T. J.

    2013-12-01

    Brownification of inland waters is becoming a global phenomenon with major implications for aquatic ecology and drinking water supply. The unprecedented export of humic substances from the terrestrial environment causes this notable change in colour of stream and lake waters. Given the net heterotrophy of most inland waters, altered carbon fluxes may impact microbial metabolism and ultimately carbon dioxide emissions from these inland waters. Yet the implications for carbon cycling remain elusive. Here, we investigate the coupling of microbial metabolism, organic carbon characteristics and streamwater CO2 concntration along a brownification gradient in 20 headwater streams draining catchments covered with coniferous forest and peatland in the Bohemian Massive, Austria. We break down brownification into its components of concentration and quality, and relate each to carbon cycling in headwater streams. Brownification did not only increase streamwater dissolved organic matter (DOM) concentration but also induced changes in DOM quality. Humic-like and aromatic compounds of terrigenous origin -- conferring the brown colour to the water -- were metabolised by microbial heterotrophs in the streamwater yet at the cost of low carbon use efficiency (CUE). Potential CO2 evasion from headwaters was controlled by the quantity of bioavailable carbon as well as by the coupling of carbon qulity and microbial metabolism. This implies brownification to contribute to CO2 evasion from streams as a large fraction of terrigenous organic carbon is respired by microbial heterotrophs along the flow path. Our results illuminate the impact of brownification on carbon cycling which may gain relevance as global change progresses.

  14. Catchment controls on solute export

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of

  15. Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling

    PubMed Central

    2011-01-01

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic–toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  16. Environmental risk assessment of fluctuating diazinon concentrations in an urban and agricultural catchment using toxicokinetic-toxicodynamic modeling.

    PubMed

    Ashauer, Roman; Wittmer, Irene; Stamm, Christian; Escher, Beate I

    2011-11-15

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic-toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  17. Modeling water quality to improve agricultural practices and land management in a tunisian catchment using the soil and water assessment tool.

    PubMed

    Aouissi, Jalel; Benabdallah, Sihem; Chabaâne, Zohra Lili; Cudennec, Christophe

    2014-01-01

    Agriculture intensification has impaired water quality. In this study, the risk of pollution by nitrates was assessed by experimental monitoring, spatial integration of farm census, and modeling of water quality using the Soil and Water Assessment Tool (SWAT), version 2009, over the period of 1990 to 2006 for a catchment located northern Tunisia. Under a semiarid climate, the water quality is influenced by the predominating agriculture activities. The hydrological results are compared with the observed flows derived from measurements at the outlet of the Joumine watershed. Model performance showed good statistical agreements, with a Nash-Sutcliffe efficiency of 0.9 and a value of 0.92 after monthly calibration. The model predicted the timing of monthly peak flow values reasonably well. During the validation period, SWAT simulations were nearly as accurate, with Nash-Sutcliffe efficiency and values of 0.89 and 0.92, respectively. The model was used to simulate NO concentrations. The predicted NO concentration values were compared with in situ measured concentrations. The simulated and measured NO-N concentrations varied in the same range of 0 to 5 mg L at the E3 and E5 locations. The calibrated model was then used for simulating the impact of the best management practice scenarios to reduce NO loads to the river. The first set-up consisted of reducing the N fertilizer application by 20 and 100% from the current state. These two scenarios induced a reduction in NO loads by 22 and 72%, respectively. The second set-up consisted of using vegetation filter strips. The last scenario combined filter strips and a reduction of 20% in N fertilizer application. Results showed NO reduction rates of 20 and 36%, respectively. The SWAT model allowed managers to have several options to improve the water quality in the Joumine watershed. PMID:25602536

  18. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  19. Connectivity influences on nutrient and sediment migration in the Wartburg catchment, KwaZulu-Natal Province, South Africa

    NASA Astrophysics Data System (ADS)

    Kollongei, Kipkemboi J.; Lorentz, Simon A.

    Non-point-source (NPS) pollution of surface and groundwater by sediment and nutrient loads emanating from agricultural catchments is a prominent environmental issue, with major consequences on water supply and aquatic ecosystem quality. The concept of connectivity has proved invaluable in understanding migration of NPS pollutants in catchments. Observations of sediments or suspended solids (SS), nitrate (NO3) and phosphorous (P) fluxes alongside stable water isotope sampling were made on a nested basis at field and catchment (41 km2) scales for a series of events in the Wartburg catchment, South Africa. The nested catchment scale sampling was focused on control features in the stream network, including road crossings, farm dams and wetland zones. The analyzed stable water (δ18O and δ2H) isotopes results were used to interpret the connectivity of the contributing land forms and the stream network. The results reveal the dominant influences of farm dams and wetlands in limiting the downstream migration of sediment and nutrients for all but the most intense events. Certain events resulted in mixing in the dams and larger resultant outflow than inflow loads. These occurrences appear to be as a result of combinations of reservoir status, catchment antecedent conditions and rainfall depth and intensity. The nutrients loads between Bridge 1 and Bridge 2 stations reflect the bedrock control, where contributions from sugar cane hillslopes between these stations are not retained, even in the short wetland upstream of Bridge 2. Isotope analyses reveal that the headwaters, comprising 70% of the catchment area, contribute as little as 29% of the total catchment discharge, due to impoundments in this area. However, this contribution varies significantly for different events, reaching a maximum of 78% of the catchment discharge. It can therefore be concluded that nutrients and sediment migration in the Wartburg catchment is greatly influenced by connectivity. The δ18O and δ2H

  20. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  1. From Soil to Surface Water: a Meta-Analysis of Catchment-Scale Organic Matter Production and Transport

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Brooks, P. D.; Perdrial, J. N.

    2015-12-01

    Organic matter plays a fundamental role in the ecology and biogeochemistry of many ecosystems, from soils to headwater streams to oceans. In most catchments, the terrestrial environment is the dominant source of organic matter for the aquatic system, and thus DOM represents a fundamental linkage between soil and surface water. With trends of increasing DOC concentrations observed in many areas of the world, there is growing interest in identifying which factors drive DOM concentration and chemistry. Studies of systems ranging from tropical rainforests to boreal landscapes have identified many catchment characteristics that co-vary with DOM concentration and chemistry. These include climate elements such as solar radiation and precipitation patterns, chemical measurements such as sulfate or chloride concentration, and land use impacts such as percent agriculture. The question of which catchment characteristics actually control DOM can be broken down into two parts: which factors control the production of mobile DOM and what drives DOM transport from the terrestrial to the aquatic system. Here we review studies covering a range of ecosystems, scales, and measurement techniques, to categorize the major state factors that drive catchment controls of aquatic organic matter. Specifically, we identify three major transport vectors that vary both in their timing of DOM transport to surface water and the propensity for DOM originating from terrestrial source areas to be modified during transport. We use this three vector conceptual model of transport to group catchments and identify reproducible signatures of DOM export with varying levels of disturbance. By developing a generalized conceptual model of catchment-scale controls on aquatic organic matter, we can predict how dissolved organic matter will respond to environmental change. This knowledge can then help guide best management practices.

  2. From natural to human-dominated floodplains - A Holocene perspective for the Dijle catchment, Belgium

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; Verstraeten, Gert; Kasse, Cornelis; Bohncke, Sjoerd; Notebaert, Bastiaan; Vandenberghe, Jef

    2015-04-01

    Floodplain systems underwent important changes in many West and Central European catchments through the late Holocene. To better understand the relation between these landscape changes and human disturbances, geomorphic fieldwork needs to be complemented by quantitative measures of human impact in the landscape. In this study, we provide an holistic discussion in which we combine detailed data on floodplain changes with detailed data on human impact for the Dijle catchment (758 km²), Belgium. Human impact in the catchment was quantified based on statistical analysis of pollen data of six alluvial study sites. The results show that during the Neolithic Period, human impact was nearly absent and floodplains consisted of a strongly vegetated marshy environment where organic material accumulated, which is considered as the natural state of the floodplain. From the Bronze Age onwards, human impact increased and caused an increase in soil erosion and hillslope-floodplain connectivity. Consequently, sediment input in the floodplain system increased and floodplain geoecology changed towards an open floodplain dominated by clastic overbank deposits, mainly as the indirect result of an intensification of agricultural activities. Based on these data, a generalized model of floodplain development is presented: At the scale of the entire Dijle catchment, the gradual changes in floodplain morphology coincided with the gradually increasing human impact in the catchment, which suggests a linearity between the external forcing (human impact) and geomorphic response (floodplain change). However, at the narrow floodplains in the headwaters, the gradual increase in human impact contrasts with the abrupt change in floodplain geoecology, only triggered when human impact reached a threshold. Observed differences at catchment scale in time-lags and in the process-response model are attributed to differences in hillslope-floodplain connectivity, the location within the catchment and to

  3. Water quality in the Scottish uplands: a hydrological perspective on catchment hydrochemistry.

    PubMed

    Soulsby, C; Gibbins, C; Wade, A J; Smart, R; Helliwell, R

    2002-07-22

    Land above 300 m covers approximately 75% of the surface of Scotland and most of the nation's major river systems have their headwaters in this upland environment. The hydrological characteristics of the uplands exert an important influence on the hydrochemistry of both headwater streams and downstream river systems. Thus, many of the spatial and temporal patterns in the chemical quality of surface waters are mediated by hydrological processes that route precipitation through upland catchments. These hydrological pathways also have an important influence on how the hydrochemistry of upland streams is responding to increasing pressures from environmental changes at the global and regional scales. At the present time, atmospheric deposition remains an issue in many parts of the Scottish uplands, where critical loads of acidity are exceeded, particularly in areas affected by increasing N deposition. Moreover, climatic change forecasts predict increasingly wetter, warmer and more seasonal conditions, which may modify the hydrochemical regimes of many river systems, particularly those with a strong snowmelt component. On a more localised scale, land management practices, including felling of commercial forests, expansion of native woodlands, agricultural decline and moorland management all have implications for the freshwater environment. Moreover, increasing public access to upland areas for a range of recreational activities have implications for water quality. Understanding the hydrology of the uplands, through integrated field and modelling studies, particularly of the hydrological pathways that regulate chemical transfers to streamwaters, will remain an important research frontier for the foreseeable future.

  4. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern.

  5. Headwater Streams in Porous Landscapes - What's the contributing area?

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Bitew, M. M.; Du, E.; Griffiths, N.; Hopp, L.; Klaus, J.; McDonnell, J.; Vache, K. B.

    2015-12-01

    Building on a long legacy of hydrogeological investigations at the Savannah River Site in the Sandhills of the Upper Coastal Plain in South Carolina, we began in 2005 a headwater-scale investigation of hillslope flow pathways, streamflow sources, and water quality responses to intensive woody biomass production. The landscape is characterized by blackwater streams flowing slowly through wide flat stream valleys, deep unconsolidated layers of sands and clays, a regional clay layer beneath Fourmile Creek that defines the lower boundary of the surficial aquifer, rolling topography with steeper slopes on the valley margins and gentle slopes elsewhere, and a sandy clay loam argillic layer within 0.2 to 1.5m from the surface. Most water leaves headwater basins by groundwater flow, appearing as streamflow far downstream. Only at scales larger than 50 km2 does average streamflow match expectations from water balances. This raises the question, what constitutes the contributing area for headwater streams in porous landscapes? Perching and interflow generation over the argillic horizon is common, but leakage through clay is rapid relative to interflow travel times, so interflow serves to shift the point of percolation downslope from the point of infiltration. Only interflow from the valley-adjacent slopes can contribute to stormflow responses. Our interflow interception trenches and maximum rise piezometer networks reveal high heterogeneity in subsurface flow paths at multiple spatial scales. Streamwater has isotopic and chemical characteristics similar to deep groundwater, but we cannot easily determine the source area for groundwater reaching the first order streams. Our observations suggest that one's view of hillslope and catchment flow processes depends on the scale, number, and frequency of observations of state variables and outputs. In some cases, less frequent or less numerous observations of fewer tracers would have yielded different inferences. The data also

  6. PSYCHIC A process-based model of phosphorus and sediment mobilisation and delivery within agricultural catchments. Part 1: Model description and parameterisation

    NASA Astrophysics Data System (ADS)

    Davison, Paul S.; Withers, Paul J. A.; Lord, Eunice I.; Betson, Mark J.; Strömqvist, Johan

    2008-02-01

    SummaryPSYCHIC is a process-based model of phosphorus (P) and suspended sediment (SS) mobilisation in land runoff and subsequent delivery to watercourses. Modelled transfer pathways include release of desorbable soil P, detachment of SS and associated particulate P, incidental losses from manure and fertiliser applications, losses from hard standings, the transport of all the above to watercourses in underdrainage (where present) and via surface pathways, and losses of dissolved P from point sources. The model can operate at two spatial scales, although the scientific core is the same in both ca