Science.gov

Sample records for agricultural land-use change

  1. Agricultural land use change in the Northeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Census of Agriculture (http://www.agcensus.usda.gov/) provides county-level estimates of farm numbers, land use area and livestock and crop production every five years. In 2007, only eight of the 299 counties that make up the twelve Northeastern states had no agricultural land use. About 20...

  2. Climate change - Agricultural land use - Food security

    NASA Astrophysics Data System (ADS)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  3. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  4. Agriculture: Land Use

    EPA Pesticide Factsheets

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  5. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  6. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  7. Remote sensing for estimating agricultural land use change as the impact of climate change

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Komariah; Dewi, W. S.; Sumani; Mujiyo; Sukoco, T. A.; Rozaki, Z.

    2016-05-01

    Agricultural land use conversion is inevitable to meet the needs of growing population, together with climate change issue which has become global concern. This research aims at investigating the impact of climate change on agriculture by identifying land use conversion in part of Central Java, Indonesia, namely Tegal District. Research was carried out in August 2014 until March 2015.This is a survey research with explorative descriptive method, data processing using ENVI 4.5. and ArcGIS 10.1. The satellite image of Landsat was analyzed by determining and comparing the land use changes of the last 20 years, then the interview data with farmers was analyzed using logistic regression. The results showed that many lands converted into settlement, with increasing rate in 2003-2014 was almost twice than 1994-2003, while the reduce of irrigation rice field lands are lower in the period of 2003-2014 than 1994-2003. It is presumed that the factors encourage irrigation rice field land conversion are erratic rainfall, floods in the 1990s, and water lack in the 2000s. This paper discusses briefly about agricultural land use conversion as the impact of the past and current climate variability on farm land.

  8. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  9. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    NASA Astrophysics Data System (ADS)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  10. Targeting land-use change for nitratenitrogen load reductions in an agricultural watershed

    USGS Publications Warehouse

    Jha, M.K.; Schilling, K.E.; Gassman, P.W.; Wolter, C.F.

    2010-01-01

    The research was conducted as part of the USDA's Conservation Effects Assessment Project. The objective of the project was to evaluate the environmental effects of land-use changes, with a focus on understanding how the spatial distribution throughout a watershed influences their effectiveness.The Soil and Water AssessmentTool (SWAT) water quality model was applied to the Squaw Creek watershed, which covers 4,730 ha (11,683 ac) of prime agriculture land in southern Iowa. The model was calibrated (2000 to 2004) and validated (1996 to 1999) for overall watershed hydrology and for streamflow and nitrate loadings at the watershed outlet on an annual and monthly basis. Four scenarios for land-use change were evaluated including one scenario consistent with recent land-use changes and three scenarios focused on land-use change on highly erodible land areas, upper basin areas, and floodplain areas. Results for the Squaw Creek watershed suggested that nitrate losses were sensitive to land-use change. If land-use patterns were restored to 1990 conditions, nitrate loads may be reduced 7% to 47% in the watershed and subbasins, whereas converting row crops to grass in highly erodible land, upper basin, and floodplain areas would reduce nitrate loads by 47%, 16%, and 8%, respectively. These SWAT model simulations can provide guidance on how to begin targeting land-use change for nitrate load reductions in agricultural watersheds.

  11. Reconstructing a century of agricultural land use and drivers of change from social and environmental records

    NASA Astrophysics Data System (ADS)

    Sangster, Heather; Smith, Hugh; Riley, Mark; Sellami, Haykel; Chiverrell, Richard; Boyle, John

    2016-04-01

    Changes to agricultural land use practices and climate represent serious challenges to the future management of rural landscapes. In Britain, the modern rural landscape may seem comparatively stable relative to the long history of human impact. However, there have been important changes linked to the intensification of agricultural practices during the last ca. 100 years and more recently improvements in land management designed to reduce impacts on land and water resources. Few studies attempt high-resolution spatial reconstruction of historic land use change, which is essential for understanding such human-environment interactions in the recent past. Specifically, the absence of detailed spatio-temporal records of agricultural land use/land cover change at the catchment-scale presents a challenge in assessing recent developments in land use policies and management. Here, we generate a high-resolution time-series of historic land use at the catchment-scale for hydrological modelling applications. Our reconstructions focus on three catchments in England ((1) Brotherswater (NE Lake District); (2) Crose Mere (Shropshire); (3) Loweswater (NW Lake District)) spanning a range of agricultural environments subject to different levels of land use change; from intensively-farmed lowlands to upland catchments subject to lower-intensity grazing. Temporal reconstructions of changes in land management practices and vegetation cover are based on historic aerial photography (1940s-2000s) and satellite-derived land cover maps (1990, 2000, and 2007), in combination with annual records of parish-level agricultural census data (1890s-1970s) and farmer interviews, in order to produce an integrated series of digital land cover and land practice maps. The datasets are coupled with composite temperature and precipitation series produced from a number of local stations. Combined, these spatio-temporal datasets allow a comprehensive assessment of land use and management change against the

  12. Estimating Agricultural Land Use Change in Karamoja, NE. Uganda Using Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Nakalembe, C. L.

    2013-12-01

    Land use information is useful for deriving biophysical variables for effective planning and management of natural resources. Land use information is also needed to understand negative environmental impacts of land use while maintaining economic and social benefits. Recent maps of land cover and land use have been generated for Africa at the continental scale from coarse resolution data (e.g. MODIS, Spot Vegetation, MERIS, and Landsat). In these map products, croplands and rangelands are generally poorly represented, particularly in semi-arid regions like Karamoja. Products derived from coarse resolution data also fail at mapping subsistence croplands and are limited in their use for extraction of land-cover specific temporal profiles for agricultural monitoring in the study area (Fritz, See, & Rembold, 2010). Given the subsistence nature of agriculture, most fields in Karamoja are very small that care not discernible from other land uses in coarse resolution data and data products such as FAO Africover2000. product derived from 30m Landsat data is one such product. There is a high level of disagreement and large errors of omission and omission due to the coarse resolution of the data used to derive the product. In addition population growth and policy changes in the region have resulted in a shift to agro-pastoralism and systematic expansion of cropland area since 2000. This research will produce an updated agricultural land use map for Karamoja. The land cover map will be used to estimate agricultural land use change in the region and as a filter to extract agricultural land use specific temporal profiles specific to agriculture to compare to crop statistics.

  13. Implications of agricultural land use change to ecosystem services in the Ganges delta.

    PubMed

    Islam, G M Tarekul; Islam, A K M Saiful; Shopan, Ahsan Azhar; Rahman, Md Munsur; Lázár, Attila N; Mukhopadhyay, Anirban

    2015-09-15

    Ecosystems provide the basis for human civilization and natural capital for green economy and sustainable development. Ecosystem services may range from crops, fish, freshwater to those that are harder to see such as erosion regulation, carbon sequestration, and pest control. Land use changes have been identified as the main sources of coastal and marine pollution in Bangladesh. This paper explores the temporal variation of agricultural land use change and its implications with ecosystem services in the Ganges delta. With time agricultural lands have been decreased and wetlands have been increased at a very high rate mainly due to the growing popularity of saltwater shrimp farming. In a span of 28 years, the agricultural lands have been reduced by approximately 50%, while the wetlands have been increased by over 500%. A large portion (nearly 40%) of the study area is covered by the Sundarbans which remained almost constant which can be attributed to the strict regulatory intervention to preserve the Sundarbans. The settlement & others land use type has also been increased to nearly 5%. There is a gradual uptrend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between agricultural land use change and ecosystem services in the Ganges delta in Bangladesh. The continuous decline of agricultural land (due to salinization) and an increase of wetland have been attributed to the conversion of agricultural land into shrimp farming in the study area. Such land use change requires significant capital, therefore, only investors and wealthier land owners can get the higher profit from the land conversion while the poor people is left with the environmental consequences that affect their long-term lives and livelihood. An environmental management plan is proposed for sustainable land use in the Ganges delta in Bangladesh.

  14. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation.

    PubMed

    Richards, Peter

    2015-09-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets.

  15. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation

    PubMed Central

    Richards, Peter

    2015-01-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets. PMID:26985080

  16. Characterizing urbanization, and agricultural and conservation land-use change in Riverside County, California, USA.

    PubMed

    Chen, Xiongwen; Li, Bai-Lian; Allen, Michael F

    2010-05-01

    Monitoring trends in urbanization and land use related to population growth and changing social and economic conditions is an important tool for developing in land use and habitat conservation policy. We analyzed urbanization and agricultural land-use change in Riverside County, California from 1984 to 2002, comparing maps every two years on the basis of aerial photographs. Matrix analysis combined with information theory was applied to study land type conversion. Results showed that the total area of "Urban and Built-Up Land" increased the most whereas total area of "Prime Farmland" decreased most. Land-use characterized as "Grazing Land,"Farmland of Local Importance," and "Farmland of Statewide Importance" also decreased. Mean patch size also decreased for "Grazing Land,"Water Area,"Other Land," and "Prime Farmland." The diversity of land types decreased dramatically after 1992. Urbanization patterns were different among three city groups (Riverside City, Coachella Valley, and Blythe), indicating the different times for "leapfrog" development in the three areas. Furthermore, the unpredictability and change in composition of land use increased after 1996 due to intensified urbanization. If the current driving forces continue, our model projects that in 2020 the area of "Urban and Built-Up Land" may increase between 25% and 39% in comparison with 2002. Percentages of most agricultural land types are projected to decrease, especially "Farmland of Local Importance,"Prime Farmland," and "Farmland of Statewide Importance." If the county's goal is to preserve agricultural lands and natural biodiversity, while maintaining sustainable development, current land-use policies and practices should be changed. This study demonstrates new useful methods for monitoring and detection of change of land-use processes.

  17. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives.

    PubMed

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-11-01

    Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This study contributed to this subject by providing alternative perspectives in addressing these missing links. A method was developed to allocate historical CSC-LUC to agricultural expansions by land classes (products), trade, and end use. The analysis for 1995-2010 leads to three key trends: (i) agricultural land degradation and abandonment is found to be a major (albeit indirect) driver for CSC-LUC, (ii) CSC-LUC is spurred by the growth of cross-border trade, (iii) non-food use (excluding liquid biofuels) has emerged as a significant contributor of CSC-LUC in the 2000's. In addition, the study demonstrated that exact values of CSC-LUC at a single spatio-temporal point may change significantly with different methodological settings. For example, CSC-LUC allocated to 'permanent oil crops' changed from 0.53 Pg C (billion tonne C) of carbon stock gain to 0.11 Pg C of carbon stock loss when spatial boundaries were changed from global to regional. Instead of comparing exact values for accounting purpose, key messages for policymaking were drawn from the main trends. Firstly, climate change mitigation efforts pursued through a territorial perspective may ignore indirect effects elsewhere triggered through trade linkages. Policies targeting specific commodities or types of consumption are also unable to quantitatively address indirect CSC-LUC effects because the quantification changes with different arbitrary methodological settings. Instead, it is recommended that mobilising non-productive or under-utilised lands for productive use should be targeted as a key solution to avoid direct and indirect CSC-LUC.

  18. Modelling the effects of recent agricultural land use change on catchment flow and sediment generation

    NASA Astrophysics Data System (ADS)

    Escobar Ruiz, Veronica; Smith, Hugh; Blake, William

    2016-04-01

    Intensive agricultural practices can exacerbate runoff and soil erosion leading to detrimental impacts downstream. Physically-based models have previously been used to assess the impacts on flow and sediment transport in response to land use change, but there has been little investigation of the effect shorter-term changes linked to variations in the extent of cultivated land. The aim of this project is to quantify the impacts on flow generation and sediment transport of different catchment conditions related to both actual recent changes in agricultural land use as well as future change scenarios. To this end, a physically-based distributed hydrological model, SHETRAN was applied in the Blackwater catchment (12 km2) located in south-west England. Land cover was simulated on the basis of satellite-derived land cover maps (1990, 2000 and 2007) as well as a catchment-scale field survey (2011). Soils were represented in the model using five layers for five different soil types in which parameter values were varied in accordance with land use and literature values. Rainfall data (15 min) combined with monthly calculations of evapotranspiration using a simple temperature-based PE model were used to represent contemporary climatic conditions spanning 2010-2014. Calibration was undertaken for selected events during 2011 when land use information was concurrent with available flow and suspended sediment yield data. All land use simulations were then completed for the period 2010-2014 to enable the comparison of model outputs. This contribution will present preliminary results from these land use simulations alongside the effect of several future changes scenarios on catchment flow and sediment generation.

  19. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia.

    PubMed

    Richards, Peter D; Walker, Robert T; Arima, Eugenio Y

    2014-11-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km(2) of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets.

  20. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia

    PubMed Central

    Richards, Peter D.; Walker, Robert T.; Arima, Eugenio Y.

    2014-01-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets. PMID:25492993

  1. Soil bacterial diversity changes in response to agricultural land use in semi-arid soils

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-04-01

    Natural scrublands in semi-arid deserts are increasingly being converted into agricultural lands. The long-term effect of such a transition in land use on soil bacterial communities was explored at two sites typical of semi-arid deserts in Mexico (Baja California). Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods - denaturing gradient gel electrophoresis (DGGE) and PhyloChip hybridization -employed to analyze 16S rRNA gene fragments amplified from total community DNA. DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. Soil parameters that differed between land uses were highly correlated with the community composition of taxa responding to land use. Variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses. The long term use for agriculture resulted in profound changes in the bacterial community composition and physicochemical characteristics of former scrublands, which may affect various soil ecosystem functions.

  2. The potential and sustainability of agricultural land use in a changing ecosystem in southern Greenland

    NASA Astrophysics Data System (ADS)

    Hunziker, Matthias; Caviezel, Chatrina; Kuhn, Nikolaus J.

    2015-04-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased potential regarding agricultural land use. Subsequently, the agricultural sector is expected to grow. Thereby, a higher hay production and grazing capacity is pursued by applying more efficient farming practices (Greenland Agriculture Advisory Board 2009). However, agricultural potential at borderline ecotones is not only influenced by factors like temperature and growing season but also by other ecologic parameters. In addition, the intensification of land use in the fragile boreal - tundra border ecotone has various environmental impacts (Perren et al. 2012; Normand et al. 2013). Already the Norse settlers practiced animal husbandry in southern Greenland between 986-1450 AD. Several authors mention the unadapted land use as main reason for the demise of the Norse in Greenland, as grazing pressure exceeded the resilience of the landscape and pasture economy failed (Fredskild 1988; Perren et al. 2012). During the field work in summer 2014, we compared the pedologic properties of already used hay fields, grazed land, birch woodland and barren, unused land around Igaliku (South Greenland), in order to estimate the potential and the sustainability of the land use in southern Greenland. Beside physical soil properties, nutrient condition of the different land use types, the shrub woodland and barren areas was analyzed. The results of the study show that the most suitable areas for intensive agricultural activity are mostly occupied. Further on, the fields, which were used by the Norse, seem to be the most productive sites nowadays. Less productive hay fields are characterized by a higher coarse fraction, leading to a reduced ability to store water and to an unfavorable nutrient status. An intensification of the agricultural land use by applying fertilizer would lead to an increased environmental impact

  3. Agricultural land-use change in a Mexican oligotrophic desert depletes ecosystem stability

    PubMed Central

    Hernández-Becerra, Natali; Tapia-Torres, Yunuen; Beltrán-Paz, Ofelia; Blaz, Jazmín; Souza, Valeria

    2016-01-01

    Background Global demand for food has led to increased land-use change, particularly in dry land ecosystems, which has caused several environmental problems due to the soil degradation. In the Cuatro Cienegas Basin (CCB), alfalfa production irrigated by flooding impacts strongly on the soil. Methods In order to analyze the effect of such agricultural land-use change on soil nutrient dynamics and soil bacterial community composition, this work examined an agricultural gradient within the CCB which was comprised of a native desert grassland, a plot currently cultivated with alfalfa and a former agricultural field that had been abandoned for over 30 years. For each site, we analyzed C, N and P dynamic fractions, the activity of the enzyme phosphatase and the bacterial composition obtained using 16S rRNA clone libraries. Results The results showed that the cultivated site presented a greater availability of water and dissolved organic carbon, these conditions promoted mineralization processes mediated by heterotrophic microorganisms, while the abandoned land was limited by water and dissolved organic nitrogen. The low amount of dissolved organic matter promoted nitrification, which is mediated by autotrophic microorganisms. The microbial N immobilization process and specific phosphatase activity were both favored in the native grassland. As expected, differences in bacterial taxonomical composition were observed among sites. The abandoned site exhibited similar compositions than native grassland, while the cultivated site differed. Discussion The results suggest that the transformation of native grassland into agricultural land induces drastic changes in soil nutrient dynamics as well as in the bacterial community. However, with the absence of agricultural practices, some of the soil characteristics analyzed slowly recovers their natural state. PMID:27602304

  4. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories.

  5. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    NASA Astrophysics Data System (ADS)

    Pugh, T. A. M.; Arneth, A.; Olin, S.; Ahlström, A.; Bayer, A. D.; Klein Goldewijk, K.; Lindeskog, M.; Schurgers, G.

    2015-12-01

    It is over three decades since a large terrestrial carbon sink (ST) was first reported. The magnitude of the net sink is now relatively well known, and its importance for dampening atmospheric CO2 accumulation, and hence climate change, widely recognised. But the contributions of underlying processes are not well defined, particularly the role of emissions from land-use change (ELUC) versus the biospheric carbon uptake (SL; ST = SL - ELUC). One key aspect of the interplay of ELUC and SL is the role of agricultural processes in land-use change emissions, which has not yet been clearly quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative ELUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present-day ST, or an underestimation of SL, of up to 1.0 Pg C a-1. Management processes influencing crop productivity per se are important for food supply, but were found to have little influence on ELUC.

  6. US agricultural policy, land use change, and biofuels: are we driving our way to the next dust bowl?

    NASA Astrophysics Data System (ADS)

    Wright, Christopher K.

    2015-05-01

    Lark et al (2015 Environ. Res. Lett. 10 044003), analyze recent shifts in US agricultural land use (2008-2012) using newly-available, high-resolution geospatial information, the Cropland Data Layer. Cropland expansion documented by Lark et al suggests the need to reform national agricultural policies in the wake of an emerging, new era of US agriculture characterized by rapid land cover/land use change.

  7. Land-use change affects water recycling in Brazil's last agricultural frontier.

    PubMed

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.

  8. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  9. Farmers' Preferences for Future Agricultural Land Use Under the Consideration of Climate Change.

    PubMed

    Pröbstl-Haider, Ulrike; Mostegl, Nina M; Kelemen-Finan, Julia; Haider, Wolfgang; Formayer, Herbert; Kantelhardt, Jochen; Moser, Tobias; Kapfer, Martin; Trenholm, Ryan

    2016-09-01

    Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity.

  10. Farmers' Preferences for Future Agricultural Land Use Under the Consideration of Climate Change

    NASA Astrophysics Data System (ADS)

    Pröbstl-Haider, Ulrike; Mostegl, Nina M.; Kelemen-Finan, Julia; Haider, Wolfgang; Formayer, Herbert; Kantelhardt, Jochen; Moser, Tobias; Kapfer, Martin; Trenholm, Ryan

    2016-09-01

    Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity.

  11. Modelling economic and biophysical drivers of agricultural land-use change. Calibration and evaluation of the Nexus Land-Use model over 1961-2006

    NASA Astrophysics Data System (ADS)

    Souty, F.; Dorin, B.; Brunelle, T.; Dumas, P.; Ciais, P.

    2013-12-01

    The central role of land-use change in the Earth System and its implications for food security, biodiversity and climate has spurred the development of global models that combine economical and agro-ecological drivers and constraints. With such a development of integrated approaches, evaluating the performance of global models of land-use against observed historical changes recorded by agricultural data becomes increasingly challenging. The Nexus Land-Use model is an example of land-use model integrating both biophysical and economical processes and constraints. This paper is an attempt to evaluate its ability to simulate historical agricultural land-use changes over 12 large but economically coherent regions of the world since 1961. The evaluation focuses on the intensification vs. extensification response of crop and livestock production in response to changes of socio-economic drivers over time, such as fertiliser price, population and diet. We examine how well the Nexus model can reproduce annual observation-based estimates of cropland vs. pasture areas from 1961 to 2006. Food trade, consumption of fertilisers and food price are also evaluated against historical data. Over the 12 regions considered, the total relative error on simulated cropland area is 2% yr-1 over 1980-2006. During the period 1961-2006, the error is larger (4% yr-1) due to an overestimation of the cropland area in China and Former Soviet Union over 1961-1980. Food prices tend to be underestimated while the performances of the trade module vary widely among regions (net imports are underestimated in Western countries at the expense of Brazil and Asia). Finally, a sensitivity analysis over a sample of input datasets provides some insights on the robustness of this evaluation.

  12. Alterations in soil microbial community composition and biomass following agricultural land use change

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-11-01

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.

  13. Alterations in soil microbial community composition and biomass following agricultural land use change

    PubMed Central

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-01-01

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils. PMID:27812029

  14. Changes in soil fungal communities across a landscape of agricultural soil land-uses

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2012-12-01

    Agricultural management is a major driver of changes in soils and their resident microbial communities, but we do not yet have a clear picture of how agriculture affects soil fungi. This is an important gap in our knowledge since fungi play an important role in many soil processes. Previous research has suggested that organic management practices can lead to an increase in soil fungal community diversity, which could have impacts on soil processes and alter the long term trajectory of soil quality in agricultural systems. Also, the relationship between management effects, biogeography, and soil fungi is not clear. The biogeography of macroscopic species is well described by taxa-area relationships and distance decay models, and recent research has suggested that certain subsets of fungi (e.g. AMF, litter sapotrophs) demonstrate similar patterns. However there is little information on how soil fungi as a whole are distributed across a landscape with soils under different managements. The goal of this project was to examine how different management practices alter soil fungal communities across a landscape of agricultural fields in upstate NY. We asked several specific questions: 1) Do different types of agricultural land-uses lead to divergent or convergent communities of soil fungi? 2) If soil type is held constant, do soil fungal communities diverge with geographic distance? 3) What are the major fungal groups that change in response to soil management, and are they cosmopolitan or endemic across the landscape? We studied these questions across agricultural fields in upstate NY that ranged from conventional corn, organic grains/corn, and long-term pasture. We sampled four fields (conventional, 10 and 20 year organic, and pasture) that had identical soils types and ranged from 100 m to 4 km apart. We utilized a multiplexed pyrosequencing approach on genomic DNA to analyze the structure of the soils' fungal communities. This approach allowed us to study soil fungi

  15. Spatial Modeling of Agricultural Land-Use Change at Global Scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.

    2013-12-01

    Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic

  16. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed

    NASA Astrophysics Data System (ADS)

    Neupane, Ram P.; Kumar, Sandeep

    2015-10-01

    Land use and climate are two major components that directly influence catchment hydrologic processes, and therefore better understanding of their effects is crucial for future land use planning and water resources management. We applied Soil and Water Assessment Tool (SWAT) to assess the effects of potential land use change and climate variability on hydrologic processes of large agriculture dominated Big Sioux River (BSR) watershed located in North Central region of USA. Future climate change scenarios were simulated using average output of temperature and precipitation data derived from Special Report on Emission Scenarios (SRES) (B1, A1B, and A2) for end-21st century. Land use change was modeled spatially based on historic long-term pattern of agricultural transformation in the basin, and included the expansion of corn (Zea mays L.) cultivation by 2, 5, and 10%. We estimated higher surface runoff in all land use scenarios with maximum increase of 4% while expanding 10% corn cultivation in the basin. Annual stream discharge was estimated higher with maximum increase of 72% in SRES-B1 attributed from higher groundwater contribution of 152% in the same scenario. We assessed increased precipitation during spring season but the summer precipitation decreased substantially in all climate change scenarios. Similar to decreased summer precipitation, discharge of the BSR also decreased potentially affecting agricultural production due to reduced future water availability during crop growing season in the basin. However, combined effects of potential land use change with climate variability enhanced for higher annual discharge of the BSR. Therefore, these estimations can be crucial for implications of future land use planning and water resources management of the basin.

  17. Out-migration and land-use change in agricultural frontiers: insights from Altamira settlement project.

    PubMed

    Vanwey, Leah K; Guedes, Gilvan R; D'Antona, Alvaro O

    2012-09-01

    One of Daniel Hogan's lasting impacts on international demography community comes through his advocacy for studying bidirectional relationships between environment and demography, particularly migration. We build on his holistic approach to mobility and examine dynamic changes in land use and migration among small farm families in Altamira, Pará, Brazil. We find that prior area in either pasture or perennials promotes out-migration of adult children, but that out-migration is not directly associated with land-use change. In contrast to early formulations of household life cycle models that argued that aging parents would decrease productive land use as children left the farm, we find no effect of out-migration of adult children on land-use change. Instead, remittances facilitate increases in area in perennials, a slower to pay off investment that requires scarce capital, but in pasture. While remittances are rare, they appear to permit sound investments in the rural milieu and thus to slow rural exodus and the potential consolidation of land into large holdings. We would do well to promote the conditions that allow them to be sent and to be used productively to keep families on the land to avoid the specter of extensive deforestation for pasture followed by land consolidation.

  18. Out-migration and land-use change in agricultural frontiers: insights from Altamira settlement project

    PubMed Central

    D’Antona, Álvaro O.

    2012-01-01

    One of Daniel Hogan’s lasting impacts on international demography community comes through his advocacy for studying bidirectional relationships between environment and demography, particularly migration. We build on his holistic approach to mobility and examine dynamic changes in land use and migration among small farm families in Altamira, Pará, Brazil. We find that prior area in either pasture or perennials promotes out-migration of adult children, but that out-migration is not directly associated with land-use change. In contrast to early formulations of household life cycle models that argued that aging parents would decrease productive land use as children left the farm, we find no effect of out-migration of adult children on land-use change. Instead, remittances facilitate increases in area in perennials, a slower to pay off investment that requires scarce capital, but in pasture. While remittances are rare, they appear to permit sound investments in the rural milieu and thus to slow rural exodus and the potential consolidation of land into large holdings. We would do well to promote the conditions that allow them to be sent and to be used productively to keep families on the land to avoid the specter of extensive deforestation for pasture followed by land consolidation. PMID:23129878

  19. Impact of land-use induced changes on agricultural productivity in the Huang-Huai-Hai River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Li, Zhaohua; Wang, Zhan; Chu, Xi; Li, Zhihui

    The water resource allocation is greatly influenced by the land use, agricultural productivity and farmers' income. Therefore analyzing the impacts of land use changes on agricultural productivity and subsequent effects on farmer's income is an important basis of the further study on the management mechanism and optimal water resource allocation. Taking the Huang-Huai-Hai River Basin as the study area, this study examined the impacts of conversion from cultivated land to built-up land from 2000-2005 and 2005-2008. Then the agricultural productivity was estimated with the Estimation System for Agricultural Productivity model, and the changes in agricultural productivity caused by land conversion were analyzed. Thereafter, Simultaneous Equations Model was used to analyze the impacts of the conversion from cultivated land to built-up land on the agricultural productivity and subsequent effects on farmer's income. The results showed that: (1) The agricultural productivity was stable during the whole period, reaching about 2.84 ton/ha, 3.09 ton/ha and 2.80 ton/ha on average in 2000, 2005 and 2008, respectively, but the conversion from cultivated land to built-up land had important influence on the spatial pattern of agricultural productivity. (2) The land productivity, total power of agricultural machinery and the conversion from cultivated land to built-up land had an overall positive effect on the agricultural productivity. (3) The agricultural productivity and gross domestic product had positive influence on the farmers' income, while the cultivated land area per capita and percentage of farming employee had negative influence, indicating that the farmer's income was mainly contributed by non-agricultural income. These results in this study showed that optimal land use management can play an important role in promoting virtuous ecosystem cycle and sustainable socioeconomic development, which can also lay an important foundation for further research on the optimal

  20. Agriculture, land use, and commercial biomass energy

    SciTech Connect

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  1. The Mexico greenhouse gases emissions inventory: Results and methodology contributions on agriculture and land use change

    SciTech Connect

    Ruiz-Suarez, L.G.; Gonzalez, E.; Masera, O.

    1996-12-31

    The 1990 Preliminary Greenhouse Gases Emissions Inventory was released in October 1995. It was carried out with sponsorship of the US CSSP and UNEP. It was the product of a partnership between government and academic institutions. Total emissions of CO{sub 2} are 433,721 Gg. Land use change emissions of CO{sub 2} are 111,784 Gg which accounts for 25.8% of the national total. Methane is the second largest greenhouse gas, 3,801 Gg. When its warming potential is accounted for, it is equivalent to 18% of total greenhouse gases emissions. Livestock is the source of 51.3% of these emissions. Methane emissions from cattle and CO{sub 2} emissions from land use change are strongly associated. Besides the results on emission estimates, the inventory work allowed them to use and to improve on IPCC methodologies. Serious miscalculations may result from straightforward application of Tier 1 or even and even of Tier 2 IPPC methodologies for methane emissions from cattle. The need for nation specific forest categories and for more detailed information on the dynamics of land use change was shown. An analysis of emission trends shows the possibility of associated mitigation options for methane and CO{sub 2} from these two sources. A comparative analysis for mitigation potential of methane emissions from large and small scale cattle raising is under way.

  2. Emissions of greenhouse gases from agriculture, land-use change, and forestry in the Gambia.

    PubMed

    Jallow, B P

    1995-01-01

    The Gambia has successfully completed a national greenhouse gas emissions inventory based on the results of a study funded by the United Nations Environment Programme (UNEP)/Global Environment Facility (GEF) Country Case Study Program. The concepts of multisectoral, multidisciplinary, and interdisciplinary collaboration were most useful in the preparation of this inventory. New data were gathered during the study period, some through regional collaboration with institutions such as Environment and Development in the Third World (ENDA-TM) Energy Program and the Ecological Monitoring Center in Dakar, Senegal, and some through national surveys and the use of remote sensing techniques, as in the Bushfires Survey. Most of the data collected are used in this paper. The Intergovernmental Panel on Climate Change/Organisation for Economic Co-operation and Development/International Energy Agency (IPCC/OECD/IEA) methodology is used to calculate greenhouse gas emissions. Many of the default data in the IPCC/OECD/IEA methodology have also been used. Overall results indicate that in the biomass sectors (agriculture, forestry, and land-use change) carbon dioxide (CO2) is emitted most, with a total of 1.7 Tg. This is followed by methane (CH4), 22.3 Gg; carbon monoxide (CO), 18.7 Gg; nitrogen oxides (NOx), 0.3 Gg; and nitrous oxide (N2O), 0.014 Gg. The Global Warming Potential (GWP) was used as an index to describe the relative effects of the various gases reported here. Based on the emissions in The Gambia in 1993, it was found that CO2 will contribute 75%, CH4 about 24.5%, and N2O 0.2% of the warming expected in the 100-year period beginning in 1993. The results in this analysis are limited by the shortcomings of the IPCC/OECD/IEA methodology and scarce national data. Because the methodology was developed outside of the developing world, most of its emissions factors and coefficients were developed and tested in environments that are very different from The Gambia. This is likely

  3. From jhum to broom: Agricultural land-use change and food security implications on the Meghalaya Plateau, India.

    PubMed

    Behera, Rabi Narayan; Nayak, Debendra Kumar; Andersen, Peter; Måren, Inger Elisabeth

    2016-02-01

    Human population growth in the developing world drives land-use changes, impacting food security. In India, the dramatic change in demographic dynamics over the past century has reduced traditional agricultural land-use through increasing commercialization. Here, we analyze the magnitude and implications for the farming system by the introduction of cash-cropping, replacing the traditional slash and burn rotations (jhum), of the tribal people on the Meghalaya Plateau, northeast India, by means of agricultural census data and field surveys conducted in seven villages. Land-use change has brought major alterations in hill agricultural practices, enhanced cash-cropping, promoted mono-cropping, changed food consumption patterns, underpinned the emergence of a new food system, and exposed farmers and consumers to the precariousness of the market, all of which have both long- and short-term food security implications. We found dietary diversity to be higher under jhum compared to any of the cash-crop systems, and higher under traditional cash-cropping than under modern cash-cropping.

  4. Analysis of Agricultural Land Use Change in the Middle Reach of the Heihe River Basin, Northwest China

    PubMed Central

    Fu, Li; Zhang, Lanhui; He, Chansheng

    2014-01-01

    The Heihe River Basin (HRB) is the second largest inland river basin in arid Northwest China. The expanding agricultural irrigation, growing industrialization, and increasing urban development in the middle reach have depleted much of the river flow to the lower reach, degrading the corresponding ecosystems. Since the enactment of the State Council of China’s new HRB water allocation policy in 2000 tremendous land use and land cover (LULC) changes have taken place to reduce water consumption in the middle reach and deliver more water downstream. This paper analyzes LULC changes during the period of 2000–2009 to understand how the changing land use patterns have altered water resource dynamics in the region. Results, while yet to be further verified in the field, show that from 2000 to 2009, urban, agricultural land, rangeland, and forest areas have increased, and barren area has decreased. Within the cropland, rice (a high water consumption crop) planting area decreased, while corn and wheat (relatively lower water consumption crops) planting areas increased. These changes in land use patterns, especially in the agricultural zones, have ensured the discharge of the required amount of water to the lower reach. PMID:24599043

  5. Effect of land use land cover change on soil erosion potential in an agricultural watershed.

    PubMed

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S

    2011-02-01

    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  6. Alterations of hydraulic soil properties influenced by land-use changes and agricultural management systems

    NASA Astrophysics Data System (ADS)

    Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvathy; Jülich, Stefan; Schwärzel, Kai; Schwen, Andreas

    2016-04-01

    Estimation and modeling of soil water movement and the hydrologic balance of soils requires sound knowledge about hydraulic soil properties (HSP). The soil water characteristics, the hydraulic conductivity function and the pore size distribution (PSD) are commonly used instruments for the mathematical representation of HSP. Recent research highlighted the temporal variability of these functions caused by meteorological or land-use influences. State of the art modeling software for the continuous simulation of soil water movement uses a stationary approach for the HSP which means that their time dependent alterations and the subsequent effects on soil water balance is not considered. Mathematical approaches to describe the evolution of PSD are nevertheless known, but there is a lack of sound data basis for parameter estimation. Based on extensive field and laboratory measurements at 5 locations along a climatic gradient across Austria and Germany, this study will quantify short-term changes in HSP, detect driving forces and introduce a method to predict the effects of soil and land management actions on the soil water balance. Amongst several soil properties, field-saturated and unsaturated hydraulic conductivities will be determined using a hood infiltration experiments in the field as well as by evaporation and dewpoint potentiometer method in the lab. All measurements will be carried out multiple times over a span of 2 years which will allow a detailed monitoring of changes in HSP. Experimental sites where we expect significant inter-seasonal changes will be equipped with sensors for soil moisture and matric potential. The choice of experimental field sites follows the intention to involve especially the effects of tillage operations, different cultivation strategies, microclimatically effective structures and land-use changes. The international project enables the coverage of a broad range of soil types as well as climate conditions and hence will have broad

  7. Climate and agricultural land use change impacts on streamflow in the upper midwestern United States

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Kessler, Andrew C.; Brown, Melinda K.; Zvomuya, Francis

    2015-07-01

    Increased streamflow and its associated impacts on water quality have frequently been linked to changes in land use and land cover (LULC) such as tile drainage, cultivation of prairies, and increased adoption of soybeans (Glycine max) in modern day cropping systems. This study evaluated the relative importance of changes in precipitation and LULC on streamflow in 29 Hydrologic Unit Code 008 watersheds in the upper midwestern United States. The evaluation was done by statistically testing the changes in slope and intercept of the relationships between ln(annual streamflow) versus annual precipitation for the periods prior to 1975 (prechange period) and after 1976 (postchange period). A significant shift either in slope or intercept of these relationships was assumed to be an indication of LULC changes whereas a lack of significant shift suggested a single relationship driven by precipitation. All 29 watersheds showed no statistical difference in slope or intercept of the relationships between the two periods. However, a simpler model that kept the slope constant for the two periods showed a slight upward shift in the intercept value for 10 watersheds in the postchange period. A comparison of 5 year moving averages also revealed that the increased streamflows in the postchange period are mainly due to an increase in precipitation. Minimal or the lack of LULC change impact on streamflow results from comparable evapotranspiration in the two time periods. We also show how incorrect assumptions in previously published studies minimized precipitation change impacts and heightened the LULC change impacts on streamflows.

  8. The impact of agricultural intensification and land-use change on the European arable flora

    PubMed Central

    Storkey, J.; Meyer, S.; Still, K. S.; Leuschner, C.

    2012-01-01

    The impact of crop management and agricultural land use on the threat status of plants adapted to arable habitats was analysed using data from Red Lists of vascular plants assessed by national experts from 29 European countries. There was a positive relationship between national wheat yields and the numbers of rare, threatened or recently extinct arable plant species in each country. Variance in the relative proportions of species in different threat categories was significantly explained using a combination of fertilizer and herbicide use, with a greater percentage of the variance partitioned to fertilizers. Specialist species adapted to individual crops, such as flax, are among the most threatened. These species have declined across Europe in response to a reduction in the area grown for the crops on which they rely. The increased use of agro-chemicals, especially in central and northwestern Europe, has selected against a larger group of species adapted to habitats with intermediate fertility. There is an urgent need to implement successful conservation strategies to arrest the decline of this functionally distinct and increasingly threatened component of the European flora. PMID:21993499

  9. Land Use and Change

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2004-01-01

    The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

  10. Impacts on wetlands of large-scale land-use changes by agricultural development: the Small Sanjiang Plain, China.

    PubMed

    Liu, Hongyu; Zhang, Shikui; Li, Zhaofu; Lu, Xianguo; Yang, Qing

    2004-08-01

    The Small Sanjiang Plain (SSP), was formerly the largest wetland complex in China, located in the Northeastern part of Heilongjiang Province, China. Home to vast numbers of waterfowls, fish, and plants, the SSP is globally significant for biodiversity conservation. The loss and fragmentation of wetlands as a result agricultural development over 50 years has impacted wetland communities and their biodiversity. We used GIS to inventory large-scale land-use changes from 1950 to 2000, together with other statistical data. We found that 73.6% of the wetlands were lost due to agricultural development. Consequences of these land-use changes included: i) a rapid decline in waterfowl and plant species with the loss and fragmentation of natural wetlands and wetland ecosystem degradation; ii) greater variation in wetland water levels as the result of land-use changes over the years; iii) disruption of the dynamic river-floodplain connection by construction of drainage ditches and levees; and iv) a decrease in floodplain area that caused increased flooding peak flows and runoff. Here we show how these changes affect wetland biodiversity and impact important wetland species.

  11. Land cover, land use, and climate change impacts on agriculture in southern Vietnam

    NASA Astrophysics Data System (ADS)

    Kontgis, Caitlin

    Global environmental change is rapidly changing the surface of the Earth in varied and irrevocable ways. Across the world, land cover and land use have been altered to accommodate the needs of expanding populations, and climate change has required plant, animal, and human communities to adapt to novel climates. These changes have created unprecedented new ecosystems that affect the planet in ways that are not fully understood and difficult to predict. Of utmost concern is food security, and whether agro-ecosystems will adapt and respond to widespread changes so that growing global populations can be sustained. To understand how one staple food crop, rice, responds to global environmental change in southern Vietnam, this dissertation aims to accomplish three main tasks: (1) quantify the rate and form of urban and peri-urban expansion onto cropland using satellite imagery and demographic data, (2) track changes to annual rice paddy harvests using time series satellite data, and (3) model the potential effects of climate change on rice paddies by incorporating farmer interview data into a crop systems model. The results of these analyses show that the footprint of Ho Chi Minh City grew nearly five times between 1990 and 2012. Mismatches between urban development and population growth suggest that peri-urbanization is driven by supply-side investment, and that much of this form of land expansion has occurred near major transit routes. In the nearby Mekong River Delta, triple-cropped rice paddy area doubled between 2000 and 2010, from one-third to two-thirds of rice fields, while paddy area expanded by about 10%. These results illustrate the intensification of farming practices since Vietnam liberalized its economy, yet it is not clear whether such practices are environmentally sustainable long-term. Although triple-cropped paddy fields have expanded, future overall production is estimated to decline without the effects of CO2 fertilization. Temperatures are anticipated

  12. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices.

    PubMed

    Stevanović, Miodrag; Popp, Alexander; Bodirsky, Benjamin Leon; Humpenöder, Florian; Müller, Christoph; Weindl, Isabelle; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Kreidenweis, Ulrich; Rolinski, Susanne; Biewald, Anne; Wang, Xiaoxi

    2017-01-03

    The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.

  13. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  14. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  15. The trajectories and determinants of agricultural land-use change over the last two decades in post-Soviet European Russia

    NASA Astrophysics Data System (ADS)

    Prishchepov, A. V.; Müller, D.; Sieber, A.; Kuemmerle, T.; Radeloff, V. C.; Hostert, P.

    2012-04-01

    The transition from state-command to market-driven economies in Russia in 1991 triggered fundamental political, economic and institutional changes, which in turn drastically affected agricultural land use. Large tracks of agricultural lands became abandoned, particularly during the first decade of the transition. However, it is not clear how the changing socio-economic and political conditions in post-Soviet Russia changed abandonment trajectories over the last two decades. We analyzed agricultural land-use change, both agricultural land abandonment and recultivation of once abandoned agricultural lands, with multitemporal Landsat TM/ETM+ images for 1990-2000-2009 to study Ryazan province in the forest-steppe transition zone and Rostov province in the steppe zone of European Russia. We classified agricultural land use change over 1990-2000-2009 with Support Vector Machines and assessed classification accuracies with independently of training datasets collected validation data. Overall accuracies were over 80%. We summarized the rates of agricultural land use change, and quantified the spatial determinants of these land use change processes using logistic regressions. Results indicated that 28% of agricultural land managed in 1990 were abandoned by the year 2000 in Ryazan province. From 2000 to 2009, agricultural land abandonment increased by another half what was abandoned from 1990 to 2000 and comprised 42% of abandoned agricultural that was managed in 1990 while only 1.4% of previously abandoned agricultural land was recultivated. In other words, agricultural abandonment was a continuous and permanent land use change in Ryazan province. In Rostov province, abandonment rates were substantially lower at nearly 10% of the agricultural land managed in 1990 and only minor additional abandonment from 2000 to 2009. The pattern of agricultural land abandonment in Ryazan province was largely determined by a mix of socio-economic and environmental factors (e.g. increased

  16. Mapping Agricultural Land-Use Change in the U.S. 2008-2012

    NASA Astrophysics Data System (ADS)

    Lark, T.; Salmon, M.; Gibbs, H.

    2014-12-01

    Cultivation of corn and soybeans in the United States reached record levels following the biofuels boom of the late 2000s. Debate churns about whether expansion of these crops caused conversion of carbon-rich natural ecosystems or instead replaced other crops on existing fields. Here we describe a novel trajectory-based methodology for analyzing satellite-derived land cover products that enables integration of all available and intermediate-year data to improve consistency across data sources, time, and geographic boundaries. Using this approach, we track crop-specific expansion pathways across the conterminous U.S., 2008-2012, and identify the types, amount, and locations of all land converted to and from cropland. We find total cropland area increased by a net of 3 million acres over the study period, with gross land conversion to cropland 2.5 times greater than net expansion. Grasslands were the source of 77% of all new cropland, and we estimate 1.6 million acres (22%) were virgin grasslands that had not been previously planted or plowed. Corn was the most common crop planted directly on new land, as well as the largest indirect contributor to change through its displacement of other crops. Results identify holes in federal policies including improper enforcement of the Renewable Fuels Standard and insufficient coverage of recent Farm Bill provisions, suggesting current implementations of federal policies are likely insufficient to protect remaining grassland habitat.

  17. Modeling land-use change

    SciTech Connect

    1995-12-31

    Tropical land-use change is generally considered to be the greatest net contributor of carbon dioxide to the atmosphere after fossil-fuel burning. However, estimates vary widely, with one major cause of variation being that terrestrial ecosystems are both a source and a sink for carbon. This article describes two spatially explicit models which simulate rates and patterns of tropical land-use change: GEOMOD1, based on intuitive assumptions about how people develop land over time, and GEOMOD2, based on a statistical analysis of how people have actually used the land. The models more closely estimate the connections between atmospheric carbon dioxide, deforestation, and other land use changes.

  18. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil.

    PubMed

    Persson, U Martin; Henders, Sabine; Cederberg, Christel

    2014-11-01

    The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land-use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land-use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land-use change carbon footprints in 2010 to be 66 tCO2 /t meat (carcass weight) for Brazilian beef, 0.89 tCO2 /t for Brazilian soybeans, and 7.5 tCO2 /t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land-use change. It is argued that with an increasing commercialization and globalization of the drivers of land-use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land-use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible.

  19. Impacts of land use change in soil carbon and nitrogen in a Mediterranean agricultural area (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, L.; Martín-Carrillo, M.; Lozano-García, B.

    2013-05-01

    The agricultural Mediterranean areas are dedicated to arable crops (AC), but in the last decades, a significant number of AC has led to a land use change (LUC) to olive grove (OG) and vineyards (V). A field study was conducted to determine the long-term effects (46 years) of LUC (AC by OG and V) and to determine soil organic carbon (SOC), total nitrogen (TN), C : N ratio and their stratification across the soil entire profile, in Montilla-Moriles denomination of origin (D.O.), in Calcic-Chromic Luvisols (LVcc/cr), an area under semiarid Mediterranean conditions. The experimental design consisted of studying the LUC on one farm between 1965 and 2011. Originally, only AC was farmed in 1965, but OG and V were farmed up to now (2011). This LUC principally affected the horizon thickness, texture, bulk density, pH, organic matter, organic carbon, total nitrogen and C : N ratio. The LUC had a negative impact in the soil, affecting the SOC and TN stocks. The conversion from AC to V and OG involved the loss of the SOC stock (52.7% and 64.9% to V and OG respectively) and the loss of the TN stock (42.6% and 38.1% to V and OG respectively). With respect to the stratification ratios (SRs), the effects were opposite; 46 years after LUC increased the SRs (in V and OG) of SOC, TN and C : N ratio.

  20. Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe

    NASA Astrophysics Data System (ADS)

    Prishchepov, Alexander V.; Radeloff, Volker C.; Baumann, Matthias; Kuemmerle, Tobias; Müller, Daniel

    2012-06-01

    Institutional settings play a key role in shaping land cover and land use. Our goal was to understand the effects of institutional changes on agricultural land abandonment in different countries of Eastern Europe and the former Soviet Union after the collapse of socialism. We studied ˜273 800 km2 (eight Landsat footprints) within one agro-ecological zone stretching across Poland, Belarus, Latvia, Lithuania and European Russia. Multi-seasonal Landsat TM/ETM + satellite images centered on 1990 (the end of socialism) and 2000 (one decade after the end of socialism) were used to classify agricultural land abandonment using support vector machines. The results revealed marked differences in the abandonment rates between countries. The highest rates of land abandonment were observed in Latvia (42% of all agricultural land in 1990 was abandoned by 2000), followed by Russia (31%), Lithuania (28%), Poland (14%) and Belarus (13%). Cross-border comparisons revealed striking differences; for example, in the Belarus-Russia cross-border area there was a great difference between the rates of abandonment of the two countries (10% versus 47% of abandonment). Our results highlight the importance of institutions and policies for land-use trajectories and demonstrate that radically different combinations of institutional change of strong institutions during the transition can reduce the rate of agricultural land abandonment (e.g., in Belarus and in Poland). Inversely, our results demonstrate higher abandonment rates for countries where the institutions that regulate land use changed and where the institutions took more time to establish (e.g., Latvia, Lithuania and Russia). Better knowledge regarding the effects of such broad-scale change is essential for understanding land-use change and for designing effective land-use policies. This information is particularly relevant for Northern Eurasia, where rapid land-use change offers vast opportunities for carbon balance and biodiversity

  1. Land Use Change In Australia's Tropical Savanna Woodlands: Greenhouse Gas Emissions From Deforestation And Conversion To Agriculture

    NASA Astrophysics Data System (ADS)

    Hutley, L. B.; Bristow, M.; Beringer, J.; Livesley, S. L.; Arndt, S. K.

    2015-12-01

    Clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHG), although there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas are 12% of global savanna extent and are largely intact; however there is currently a focus on agricultural expansion across northern Australia involving clearing for primary production. Eddy covariance and soil chamber methods were used over almost 2 years to quantify CO2 and non-CO2 fluxes from savanna that was cleared and prepared for agriculture (CS). Fluxes from an uncleared site (UC) were also monitored. Carbon fluxes from both sites were similar (NEE -0.23 Mg C ha-1 month-1) for the 5.4 months prior to clearing, a period spanning the late dry to mid-wet season. Fluxes were monitored for a further 17 months through a dry-wet-dry climate cycle and phased land use change which included clearing and a debris curing phase, followed by burning and soil preparation for cropping. Over this period (excluding the managed fire), the CS site was a source of +0.43 Mg C ha-1 month-1 compared to a net sink at the UC site of -0.05 Mg C ha-1 month-1. Woody debris from clearing (30.9 Mg C ha-1) was removed from the site via burning in the late dry season and emission factors were used to calculate emissions of CO2, CH4 and N2O which totalled 138.0 Mg CO2-e ha-1. Over the 17 months of monitoring this land transformation, emissions were +9.7 Mg CO2-e ha-1 month-1 compared to a sink of -0.17 Mg CO2-e from the UC site. Using these emissions and LUC scenarios at catchment to regional scales suggest proposed clearing for agriculture could significantly increase the region's fire-dominated GHG emissions. These data are essential for both land-atmosphere models as well as decision support tools that inform trade-offs between greenhouse gas accounting, conservation and development goals.

  2. Modeling Agriculture and Land Use in an Integrated Assessment Framework

    SciTech Connect

    Sands, Ronald D.; Leimbach, Marian

    2003-01-01

    The Agriculture and Land Use (AgLU) model is a top-down economic model with just enough structure to simulate global land use change and the resulting carbon emissions over one century. These simulations are done with and without a carbon policy represented by a positive carbon price. Increases in the carbon price create incentives for production of commercial biomass that affect the distribution of other land types and, therefore, carbon emissions from land use change. Commercial biomass provides a link between the agricultural and energy systems. The ICLIPS core model uses AgLU to provide estimates of carbon emissions from land use change as one component of total greenhouse gas emissions.

  3. Biodiversity evaluation in tropical agricultural systems - How will rubber cultivation and land use change effect species diversity in SW China

    NASA Astrophysics Data System (ADS)

    Cotter, M.; Grenz, J.; Sauerborn, J.

    2012-04-01

    The Greater Mekong Subregion is a known hotspot of biodiversity, which faces drastic changes due to human impact particularly with regard to infrastructure and economy. Within the framework of the Sino-German research project "Living Landscapes China" (LILAC), we have developed a biodiversity evaluation tool based on the combination of approaches from landscape ecology with detailed empirical data on species diversity and habitat characteristics of tropical plant and arthropod communities in a Geographical Information System. We use field ecological data to assess different spatial and qualitative aspects of the diversity and spatial distribution of species throughout the research area, a watershed in south-western Yunnan province, PR China. In addition, scenarios on the impact of land use change have been analyzed and compared in order to highlight the implications these possible future scenarios would have on species diversity within the research area. The aim of the presented tool is to provide scientists and policy makers who have to evaluate the consequences of scenarios of future land use with information on the current and likely future state of biodiversity in their research area or administrative region. This will enable them to assess the likely impacts of land use changes on structural and ecological diversity and allow for informed land use planning. The methodology developed for this tool can also be applied outside of the Greater Mekong Subregion, as the model structure allows for an easy adaption to other research areas and challenges, be it oil palm production in Southeast Asia or small scale farming in central Africa or the Amazon basin.

  4. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    PubMed

    Knox, Sara Helen; Sturtevant, Cove; Matthes, Jaclyn Hatala; Koteen, Laurie; Verfaillie, Joseph; Baldocchi, Dennis

    2015-02-01

    Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions.

  5. Comment on "Climate and agricultural land use change impacts on streamflow in the upper midwestern United States" by Satish C. Gupta et al.

    NASA Astrophysics Data System (ADS)

    Schilling, Keith E.

    2016-07-01

    Increasing precipitation and land use/land cover (LU/LC) change have contributed to increasing streamflow and base flow in many Midwestern rivers but the relative importance of causal factors is open to debate. The dominant LULC change in the agricultural Midwest is the emergence of soybean production that occurred in the mid- to late-20th Century that replaced many sod-based rotations and increased total row crop area devoted to annual maize and soybean crops. Increasing precipitation may be a more important factor for increasing total discharge whereas LULC changes contributed more to base flow changes.

  6. LCLUC as an entry point for transdisciplinary research--reflections from an agriculture land use change study in South Asia.

    PubMed

    Nagabhatla, Nidhi; Padmanabhan, Martina; Kühle, Peter; Vishnudas, Suma; Betz, Lydia; Niemeyer, Bastian

    2015-01-15

    This article highlights applied understanding of classifying earth imaging data for land cover land use change (LCLUC) information. Compared to the many previous studies of LCLUC, the present study is innovative in that it applied geospatial data, tools and techniques for transdisciplinary research. It contributes to a wider discourse on practical decision making for multi-level governance. Undertaken as part of the BioDIVA project, the research adopted a multi-tiered methodical approach across three key dimensions: socioecology as the sphere of interest, a transdisciplinary approach as the disciplinary framework, and geospatial analysis as the applied methodology. The area of interest was the agroecosystem of Wayanad district in Kerala, India (South Asia). The methodology was structured to enable analysis of multi-scalar and multi-temporal data, using Wayanad as a case study. Three levels of analysis included: District (Landsat TM-30m), Taluk or sub-district (ASTER-15m) and Village or Gram Panchayat (GeoEye-0.5m). Our hypothesis, that analyzing patterns of land use change is pertinent for up-to-date assessment of agroecosystem resources and their wise management is supported by the outcome of the multi-tiered geospatial analysis. In addition, two examples from the project that highlight the adoption of LCLUC by different disciplinary experts are presented. A sociologist assessed the land ownership boundary for a selected tribal community. A faunal ecologist used it to assess the effect of landscape structure on arthropods and plant groups in rice fields. Furthermore, the Google Earth interface was used to support the overall validation process. Our key conclusion was that a multi-level understanding of the causes, effects, processes and mechanisms that govern agroecosystem transformation requires close attention to spatial, temporal and seasonal dynamics, for which the incorporation of local knowledge and participation of local communities is crucial.

  7. Changes of Soil Bacterial Diversity as a Consequence of Agricultural Land Use in a Semi-Arid Ecosystem

    PubMed Central

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-01-01

    Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years) of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE) analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes) correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem. PMID:23527207

  8. Land use change and human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Norris, Douglas E.

    Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.

  9. Comment on "Climate and agricultural land use change impacts on streamflow in the upper midwestern United States," by Satish C. Gupta et al.

    NASA Astrophysics Data System (ADS)

    Belmont, Patrick; Stevens, John R.; Czuba, Jonathan A.; Kumarasamy, Karthik; Kelly, Sara A.

    2016-09-01

    The paper "Climate and agricultural land use change impacts on streamflow in the upper midwestern United States" by Satish C. Gupta, Andrew C. Kessler, Melinda K. Brown, and Francis Zvomuya (hereafter referred to as Gupta et al.) purports to evaluate "the relative importance of changes in precipitation and LULC (land use, land cover) on streamflow in 29 Hydrologic Unit Code 008 watersheds in the Upper Midwestern United States." However, as we report here, the approach used by Gupta et al. is wholly inadequate for making such an evaluation. Gupta et al. use strong language to criticize other studies and imply a level of certainty that goes well beyond, and in some cases is entirely unsupported by, the results they have presented. We take this opportunity to point out several critical flaws in their study.

  10. Agricultural Land Use classification from Envisat MERIS

    NASA Astrophysics Data System (ADS)

    Brodsky, L.; Kodesova, R.

    2009-04-01

    This study focuses on evaluation of a crop classification from middle-resolution images (Envisat MERIS) at national level. The main goal of such Land Use product is to provid spatial data for optimisation of monitoring of surface and groundwater pollution in the Czech Republic caused by pesticides use in agriculture. As there is a lack of spatial data on the pesticide use and their distribution, the localisation can be done according to the crop cover on arable land derived from the remote sensing images. Often high resolution data are used for agricultural Land Use classification but only at regional or local level. Envisat MERIS data, due to the wide satellite swath, can be used also at national level. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. Methodology of a pixel-based MERIS classification applying an artificial neural-network (ANN) technique was proposed and performed at a national level, the Czech Republic. Five crop groups were finally selected - winter crops, spring crops, summer crops and other crops to be classified. Classification models included a linear, radial basis function (RBF) and a multi-layer percepton (MLP) ANN with 50 networks tested in training. The training data set consisted of about 200 samples per class, on which bootstrap resampling was applied. Selection of a subset of independent variables (Meris spectral channels) was used in the procedure. The best selected ANN model (MLP: 3 in, 13 hidden, 3 out) resulted in very good performance (correct classification rate 0.974, error 0.103) applying three crop types data set. In the next step data set with five crop types was evaluated. The ANN model (MLP: 5 in, 12 hidden, 5 out) performance was also very good (correct classification rate 0.930, error 0.370). The study showed, that while accuracy of about 80 % was achieved at pixel level when classifying only three crops, accuracy of about 70 % was achieved for five crop

  11. Land-Use Change and Bioenergy

    SciTech Connect

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  12. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport

  13. Linking carbon stock change from land-use change to consumption of agricultural products: A review with Indonesian palm oil as a case study.

    PubMed

    Goh, Chun Sheng; Wicke, Birka; Verstegen, Judith; Faaij, André; Junginger, Martin

    2016-12-15

    Numerous analyses have been performed to quantitatively link carbon stock change caused by land-use change (CSC-LUC) to consumption of agricultural products, but results differ significantly, even for studies focussing on the same region or product. This is due to the different focuses and interpretations of the links between direct drivers and underlying causes of CSC-LUC, which can be translated into differences in key functions, i.e. specific methods, algorithms and parameters embedded in the analysis. Using the example of Indonesian palm oil production (often associated with CSC-LUC), this paper carries out a meta-analysis of 12 existing studies, determines the different settings for the key functions embedded in consumption-based CSC-LUC studies and discussed their implications for policymaking. It identifies the underlying reasons of adopting different settings within the eight key functions and their advantages and trade-offs. Examples are the way of determining how deforestation is linked to oil palm, and the inclusion of non-agriculture and non-productive drivers in the accounting to weight their roles in CSC-LUC in comparison to palm oil consumption. Following that, the quantitative results from the selected studies were processed and harmonised in terms of unit, allocation mechanism, allocation key and amortisation period. This resulting in ranges of 0.1-3.8 and -0.1-15.7 tCO2/t crude palm oil for historical and projection studies, respectively. It was observed that CSC-LUC allocated to palm oil is typically lower when propagating effects and non-agricultural or non-productive drivers were accounted for. Values also greatly differ when marginal and average allocation mechanisms were employed. Conclusively, individual analyses only answer part of the question about CSC-LUC drivers and have their own strengths and weaknesses. Since the context can be very different, using quantitative results from a single study for accounting purposes in policymaking is

  14. Investigation of environmental change pattern in Japan. Observation of present state of agricultural land-use by analysing LANDSAT data

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator); Hayashi, S.

    1977-01-01

    The author has identified the following significant results. Species and ages of grasses in pastures were identified, and soils were classified into several types using LANDSAT data. This data could be used in a wide area of cultivation, reclamation, or management planning on agricultural land.

  15. Land Use, Land-Use Change, and Forestry

    NASA Astrophysics Data System (ADS)

    Watson, Robert T.; Noble, Ian R.; Bolin, Bert; Ravindranath, N. H.; Verardo, David J.; Dokken, David J.

    2000-07-01

    The exchange of carbon between the atmosphere and biosphere is an important factor in controlling global warming and climate change. Consequently, it is important to examine how carbon flows between different pools and how carbon stocks change in response to afforestation, reforestation, and deforestation, and other land-use activities. This IPCC Special Report is a comprehensive, state-of-the-art examination of the scientific and technical implications of carbon sequestration and the global carbon cycle. It also examines environmental and socioeconomic issues, conservation, sustainable resource management, and development issues in relation to carbon sequestration. The volume will be invaluable for government policymakers, business/industry analysts and officials, environmental groups, and researchers in global change, atmospheric chemistry, soil science, and economics.

  16. Land Use and Land Cover Change

    SciTech Connect

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  17. Effects of Agricultural Land-Use Changes and Rainfall on Ground-Water Recharge in Central and West Maui, Hawai`i, 1926-2004

    USGS Publications Warehouse

    Engott, John A.; Vana, Thomas T.

    2007-01-01

    Concern surrounding declines in ground-water levels and an increase in the chloride concentration of water pumped from wells in the Iao aquifer system on the Island of Maui has prompted an investigation into the long-term sustainability of current (2006) and future ground-water withdrawals. As part of this investigation, a water budget for central and west Maui was calculated from which (1) ground-water recharge was estimated for the period 1926-2004 and (2) the effects of agricultural land-use changes and drought were analyzed. Estimated mean ground-water recharge decreased 44 percent from 1979 to 2004 in central and west Maui. Reduction in agricultural irrigation, resulting from more efficient irrigation methods and a reduction in the acreage used for agriculture, is largely responsible for the declining recharge. Recently, periods of lower-than-average rainfall have further reduced recharge. During the period 1926-79, ground-water recharge averaged 693 Mgal/d, irrigation averaged 437 Mgal/d, and rainfall averaged 897 Mgal/d. During the period 2000-04, ground-water recharge averaged 391 Mgal/d, irrigation averaged 237 Mgal/d, and rainfall averaged 796 Mgal/d. Simulations of hypothetical future conditions indicate that a cessation of agriculture in central and west Maui would reduce mean ground-water recharge by 18 percent in comparison with current conditions, assuming that current climatic conditions are the same as the long-term-average conditions during the period 1926-2004. A period of drought identical to that of 1998-2002 would reduce mean recharge by 27 percent. Mean recharge would decrease by 46 percent if this drought were to occur after a cessation of agriculture in central and western Maui. Whereas droughts are transient phenomena, a reduction in agricultural irrigation is likely a permanent condition.

  18. FINAL REPORT: An Integrated Inter-temporal Analysis of Land Use Change in Forestry and Agriculture: An Assessment of the Influence of Technological Change on Carbon Sequestration and Land Use.

    SciTech Connect

    Brent Sohngen

    2008-10-30

    This project built a global land use model to examine the implications of land based carbon sequestration on land uses. The model also can be used to assess the costs of different land-based actions to reduce carbon emissions.

  19. Future N2O from US agriculture: projecting effects of changing land use, agricultural technology, and climate on N2O emissions

    SciTech Connect

    Scott, M J.; Sands, Ronald D. ); Rosenberg, Norman J. ); Izaurralde, R Cesar C. )

    2002-12-02

    The objective of this paper is to detailed supply relationships for nitrous oxide (N2O) emissions from U.S. agriculture for the purpose of conducting policy-sensitive emissions modeling of this greenhouse gas. The basic tool used is the emissions framework of the Intergovernmental Panel on Climate Change (IPCC) Phase II guidelines developed by the IPCC and Organization for Economic Cooperation and Development (OECD) for national emissions inventories. The inventory method has been modified based on the results of an updated literature review and analysis. The supply relationships developed in this project are used to estimate emissions of N2O for U.S. agriculture through the year 2080 under baseline conditions and a policy to restrain emissions growth.

  20. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  1. Land Use and Land Cover Change Modeling Using Remote Sensing and Soft Computing Approach to Assess Sugarcane Expansion Impacts in Tropical Agriculture

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Victoria, D.; Zullo, J., Jr.; Gomes, D.; Bayma-Silva, G.

    2014-12-01

    Agriculture is related with land-use/cover changes (LUCC) over large areas and, in recent years, increase in demand of ethanol fuel has been influence in expansion of areas occupied with corn and sugar cane, raw material for ethanol production. Nevertheless, there´s a concern regarding the impacts on food security, such as, decrease in areas planted with food crops. Considering that the LUCC is highly dynamic, the use of Remote Sensing is a tool for monitoring changes quickly and precisely in order to provide information for agricultural planning. In this work, Remote Sensing techniques were used to monitor the LUCC occurred in municipalities of São Paulo state- Brazil related with sugarcane crops expansion in order to (i) evaluate and quantify the previous land cover in areas of sugarcane crop expansion, and (ii) provide information to elaborate a future land cover scenario based on Self Organizing Map (SOM) approach. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey. The Landsat images were then segmented into homogeneous objects, with represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. The segmentation procedure resulted in polygons over the three time periods along twenty years (1990-2010). The land cover for each object was visually identified, based on its shape, texture and spectral characteristics. Land cover types considered were: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. SOM technique was used to estimate the values for the future land cover scenarios for the selected municipalities, using the information of land change provided by the remote sensing and data from official sources.

  2. Determination of the effects of temporal change in urban and agricultural land uses as seen in the example of the town of Akhisar, using remote sensing techniques.

    PubMed

    Gulgun, Bahriye; Yörük, Ismail; Turkyilmaz, Bahar; Bolca, Mustafa; Güneş, Asli

    2009-03-01

    Today, as a result of erratic and unplanned urbanization, towns are rapidly becoming a mass of concrete and town-dwellers are suffocated by their busy and stressful professional lives. They feel a need for places where they can find breathing-space in their free time. Green areas within towns are important spaces where townspeople are able to carry out recreational activities. These places form a link between townspeople and nature. The importance of urban green areas is increasing with every passing day due to their social, psychological, ecological, physical and economic functions and their impact on the quality of towns. In this study it has been attempted to demonstrate the pressures of urban development on agricultural land by determining the changing land use situation over the years in the district of Akhisar. In this research, an aerial photograph from year 1939 and satellite images of the town from the years 2000 and 2007 were used. Land use changes in the region were determined spatially. As a result of this study, which aims to determine in which direction urbanization is progressing in the district, the importance of town planning emerges. This study will be informative for the local authorities in their future town planning projects. With its flat and almost flat fertile arable land, the district of Akhisar occupies an important position within the province of Manisa. From the point of view of olive production the region is one of Turkey's important centres. Fifty-five percent of the olive production in the province of Manisa is realized in Akhisar. However, the results of the present study show that while agricultural areas comprised 2.5805 km(2) in 1939, these had diminished to 1.5146 km(2) in the year 2000 and had diminished to 1.0762 km(2) in the year 2007 and residential area (dense) 0.449 km(2) occupied in 1939, in the year 2000 this had risen to 1.9472 and 2.3238 km(2) in the year 2007. This planless urbanization in the study area has led to

  3. LandCaRe DSS--an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies.

    PubMed

    Wenkel, Karl-Otto; Berg, Michael; Mirschel, Wilfried; Wieland, Ralf; Nendel, Claas; Köstner, Barbara

    2013-09-01

    Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously

  4. Increasing agricultural land use is associated with the spread of an invasive fish (Gambusia affinis).

    PubMed

    Lee, Finnbar; Simon, Kevin S; Perry, George L W

    2017-05-15

    Land-use change and invasive species pose major threats to ecosystems globally. These stressors can act together, with disturbance due to changes in land-use facilitating invasion. We examined the potential for agricultural land use to facilitate the establishment and population growth (abundance) of a globally invasive fish (Gambusia affinis). To achieve this we examined Gambusia presence, abundance, and life history traits in 31 streams spanning an agricultural land use gradient in the North Island of New Zealand. We used regression models to quantify the relationship between agricultural land use and in-stream physiochemical and habitat variables, and zero-inflated models to explore the relationship among physiochemical, habitat and catchment-scale variables and Gambusia's distribution and abundance. The percentage of the catchment in agricultural land use was associated with changes to physiochemical and habitat conditions. Increasing agricultural land use was associated with increasing macrophyte cover and water temperature and decreasing velocity in streams. Catchment-scale variables (land use and site position in the network) and water temperature were the most important determinants of whether Gambusia occurred at a site. Local in-stream habitat (macrophyte cover and water velocity) and nutrient conditions were the most influential predictors of Gambusia abundance given Gambusia were present. Gambusia life-history traits, sex ratio and body length varied among sites but were not predicted by physiochemical gradients. The distribution of Gambusia in streams in New Zealand is partially controlled by catchment-scale conditions via a combination of dispersal limitation and environmental filtering, both of which are affected by agricultural land use. Agricultural land use alters local in-stream conditions, resulting in systems that are similar to those in Gambusia's natural range; these altered systems have the potential to support an increased abundance of

  5. Biodiversity data obsolescence and land uses changes

    PubMed Central

    Ariño, Arturo H.; Galicia, David

    2016-01-01

    Background Primary biodiversity records (PBR) are essential in many areas of scientific research as they document the biodiversity through time and space. However, concerns about PBR quality and fitness-for-use have grown, especially as derived from taxonomical, geographical and sampling effort biases. Nonetheless, the temporal bias stemming from data ageing has received less attention. We examine the effect of changes in land use in the information currentness, and therefore data obsolescence, in biodiversity databases. Methods We created maps of land use changes for three periods (1956–1985, 1985–2000 and 2000–2012) at 5-kilometres resolution. For each cell we calculated the percentage of land use change within each period. We then overlaid distribution data about small mammals, and classified each data as ‘non-obsolete or ‘obsolete,’ depending on both the amount of land use changes in the cell, and whether changes occurred at or after the data sampling’s date. Results A total of 14,528 records out of the initial 59,677 turned out to be non-obsolete after taking into account the changes in the land uses in Navarra. These obsolete data existed in 115 of the 156 cells analysed. Furthermore, more than one half of the remaining cells holding non-obsolete records had not been visited at least for the last fifteen years. Conclusion Land use changes challenge the actual information obtainable from biodiversity datasets and therefore its potential uses. With the passage of time, one can expect a steady increase in the availability and use of biological records—but not without them becoming older and likely to be obsolete by land uses changes. Therefore, it becomes necessary to assess records’ obsolescence, as it may jeopardize the knowledge and perception of biodiversity patterns. PMID:27994967

  6. The Effect of No Agricultural Productivity Growth on Future Land Use and Climate through Biogeophysical Mechanisms

    NASA Astrophysics Data System (ADS)

    Davies-Barnard, T.; Valdes, P. J.; Singarayer, J. S.; Jones, C.

    2012-12-01

    Future land use and the consequent land cover change will have a significant impact on future climate through biogeophysical (albedo, surface roughness and latent heat transfer, etc.) as well as biogeochemical (greenhouse gas emissions etc.) mechanisms. One of the major determinants of the extent of land use induced land cover change is the agricultural productivity growth within the socio-economic models used for developing the RCP scenarios. There are considerable uncertainties in the size of agricultural productivity under climate change, as yields are projected to vary spatially in signal and strength. Previous climate modeling work has considered the impacts to the carbon cycle of different levels of agricultural productivity growth, but has failed to consider the biogeophysical effects of the land use induced land cover change on climate. Here we examine the climate impacts of the assumption of agricultural productivity growth and business as usual land use. The effects are considered through the biogeophysical land use induced land cover change, using the Hadley Centre climate model HadGEM2. The model simulations use the set biogeochemical climate forcing of the RCP 4.5 scenario, but the biogeophysical land use change specification is altered over a 100 year simulation. Simulations are run with combinations of no land use change; standard RCP 4.5 land use change; business as usual land use change; and zero agricultural productivity growth. The key effect of no agricultural productivity growth is that more cropland is required to feed the same population, necessitating cropland expansion. The expansion of cropland and consequent deforestation increases the albedo and gives an extensive cooling effect in the northern hemisphere (up to 2°C). Differences in global mean temperature between the zero agricultural productivity growth with business as usual land use change specified run and the standard RCP 4.5 run are -0.2°C by 2040 and -0.7°C by 2100. There is

  7. Analyzing simulated patterns of land use change

    SciTech Connect

    Dale, V.H.; O`Neill, R.V.; Southworth, F.; Loureiro, F.

    1992-07-01

    Land use change is one of major factors affecting global environmental conditions. Modeling land use change requires combining spatially-explicit ecological information with socioeconomic factors. A modeling system is being developed that integrates sub-models of human colonization with submodels of ecological interactions to estimate patterns and rates of deforestation under different immigration and land management scenarios. The model projects maps of land use change that can be compared to remote sensing measures using spatial statistics. The simulation modeling system is being applied to the Brazilian state of Rondonia where deforestation has increased at a faster rate over the past two decades than anywhere else in the world. The model projections suggest that land management can both reduce carbon release and improve the length of time farmers are able to remain on the land. The model provides a tool to evaluate the spatial and temporal implications of various land management options.

  8. Analyzing simulated patterns of land use change

    SciTech Connect

    Dale, V.H.; O'Neill, R.V.; Southworth, F. ); Loureiro, F. )

    1992-01-01

    Land use change is one of major factors affecting global environmental conditions. Modeling land use change requires combining spatially-explicit ecological information with socioeconomic factors. A modeling system is being developed that integrates sub-models of human colonization with submodels of ecological interactions to estimate patterns and rates of deforestation under different immigration and land management scenarios. The model projects maps of land use change that can be compared to remote sensing measures using spatial statistics. The simulation modeling system is being applied to the Brazilian state of Rondonia where deforestation has increased at a faster rate over the past two decades than anywhere else in the world. The model projections suggest that land management can both reduce carbon release and improve the length of time farmers are able to remain on the land. The model provides a tool to evaluate the spatial and temporal implications of various land management options.

  9. Land Use Change Modelling in R

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Buytaert, W.

    2014-12-01

    Land use activities, through the provision of natural resources, are essential to human existence. In many regions land use change is degrading biodiversity and threatening the sustainability of ecosystem services upon which communities and livelihoods depend. Spatially explicit land use change models are widely used to understand and quantify key processes that affect land use change and make predictions about past and future change. These models typically include a module to estimate the suitability of different locations to particular land use types based on biophysical and socioeconomic predictor variables and a module to allocate change spatially. They are commonly implemented in languages such as C/C++ and Fortran and made available as standalone applications or through proprietary GIS. In many cases the models are released under closed source licences, limiting the reproducibility of scientific results and making model comparison difficult. This work presents a new R package providing methods and classes to support land use change modelling and model development and comparison within the open source R statistical computing environment. The package makes use of existing R implementations of methods such as random forests and recursive partitioning and regression trees to estimate location suitability, as well as providing methods for statistical model building and evaluation. Currently two spatial allocation methods are provided: the first based on the widely used and tested CLUE-S algorithm and the second a novel stochastic procedure developed for large scale applications. Some common tools for evaluating allocation results are implemented. It is hoped that the package will provide a framework for the development of new routines that can be incorporated into future releases of the code.

  10. Hydrology of a zero-order Southern Piedmont watershed through 45 years of changing agricultural land use. Part 1. Monthly and seasonal rainfall-runoff relationships

    NASA Astrophysics Data System (ADS)

    Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.

    2006-01-01

    Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.

  11. GLOBAL CHANGE RESEARCH NEWS #3: IPCC SPECIAL REPORT ON "LAND USE, LAND USE CHANGE, AND FORESTRY"

    EPA Science Inventory

    ORD is participating in the development of an Intergovernmental Panel on Climate Change (IPCC) Special Report on "Land Use, Land Use Change and Forestry." Preparation of the Special Report was requested by the Conference of the Parties(COP) to the United Nations Framework Conve...

  12. Reply to comment by Schottler et al. on "Climate and agricultural land use change impacts on streamflow in the upper midwestern United States"

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Kessler, Andrew C.; Brown, Melinda K.; Schuh, William M.

    2016-08-01

    In their comments, Schottler et al. (doi:10.1002/2015WR018482) raised concerns about our technique for deciphering climate and land use land cover (LULC) change impacts on streamflow in the upper Midwestern United States. In this reply, we further explain the underpinnings of our statistical technique and point out criticism on the procedures that Schottler et al. (doi:10.1002/2015WR018482; doi:10.1002/hyp.9738) used in their comment.

  13. Rates and potentials of soil organic carbon sequestration in agricultural lands in Japan: an assessment using a process-based model and spatially-explicit land-use change inventories

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2013-11-01

    In order to develop a system to estimate a country-scale soil organic carbon stock change (SCSC) in agricultural lands in Japan that enables to take account effect of land-use changes, climate, different agricultural activity and nature of soils, a spatially-explicit model simulation system using Rothamsted Carbon Model (RothC) integrated with spatial and temporal inventories was developed. Future scenarios on agricultural activity and land-use change were prepared, in addition to future climate projections by global climate models, with purposely selecting rather exaggerated and contrasting set of scenarios to assess system's sensitivity as well as to better factor out direct human influence in the SCSC accounting. Simulation was run from year 1970 to 2008, and to year 2020, with historical inventories and future scenarios involving target set in agricultural policy, respectively, and subsequently until year 2100 with no temporal changes in land-use and agricultural activity but with varying climate to investigate course of SCSC. Results of the country-scale SCSC simulation have indicated that conversion of paddy fields to croplands occurred during past decades, as well as a large conversion of agricultural fields to settlements or other lands that have occurred in historical period and would continue in future, could act as main factors causing greater loss of soil organic carbon (SOC) at country-scale, with reduction organic carbon input to soils and enhancement of SOC decomposition by transition of soil environment to aerobic conditions, respectively. Scenario analysis indicated that an option to increase organic carbon input to soils with intensified rotation with suppressing conversion of agricultural lands to other land-use types could achieve reduction of CO2 emission due to SCSC in the same level as that of another option to let agricultural fields be abandoned. These results emphasize that land-use changes, especially conversion of the agricultural lands

  14. Comment on "Climate and agricultural land use change impacts on streamflow in the upper midwestern United States" by Satish C. Gupta et al.

    NASA Astrophysics Data System (ADS)

    Schottler, Shawn; Ulrich, Jason; Engstrom, Daniel

    2016-08-01

    We challenge the assertions of the study by Gupta et al. (doi: 10.1002/2015WR017323) that land use, land cover change (LULC) has had minimal or no effect on hydrology in Minnesota's rivers. Statistical analyses actually demonstrate that something other than changes in precipitation (and soil moisture) must be contributing to increases in runoff ratio and flow. The analysis presented by Gupta et al. (doi: 10.1002/2015WR017323) fails to directly address the fundamental purpose and mechanism of artificial drainage, which is to reduce water residence time on the landscape, thereby reducing ET (and soil wetness) and routing this water to rivers instead.

  15. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions

    NASA Astrophysics Data System (ADS)

    Schilling, Keith E.; Jha, Manoj K.; Zhang, You-Kuan; Gassman, Philip W.; Wolter, Calvin F.

    2008-07-01

    Over the last century, land use and land cover (LULC) in the United States Corn Belt region shifted from mixed perennial and annual cropping systems to primarily annual crops. Historical LULC change impacted the annual water balance in many Midwestern basins by decreasing annual evapotranspiration (ET) and increasing streamflow and base flow. Recent expansion of the biofuel industry may lead to future LULC changes from increasing corn acreage and potential conversion of the industry to cellulosic bioenergy crops of warm or cool season grasses. In this paper, the Soil and Water Assessment Tool (SWAT) model was used to evaluate potential impacts from future LULC change on the annual and seasonal water balance of the Raccoon River watershed in west-central Iowa. Three primary scenarios for LULC change and three scenario variants were evaluated, including an expansion of corn acreage in the watershed and two scenarios involving expansion of land using warm season and cool season grasses for ethanol biofuel. Modeling results were consistent with historical observations. Increased corn production will decrease annual ET and increase water yield and losses of nitrate, phosphorus, and sediment, whereas increasing perennialization will increase ET and decrease water yield and loss of nonpoint source pollutants. However, widespread tile drainage that exists today may limit the extent to which a mixed perennial-annual land cover would ever resemble pre-1940s hydrologic conditions. Study results indicate that future LULC change will affect the water balance of the watershed, with consequences largely dependent on the future LULC trajectory.

  16. Trade-off analysis in the Northern Andes to study the dynamics in agricultural land use.

    PubMed

    Stoorvogel, J J; Antle, J M; Crissman, C C

    2004-08-01

    In this paper we hypothesize that land use change can be induced by non-linearities and thresholds in production systems that impact farmers' decision making. Tradeoffs between environmental and economic indicators is a useful way to represent dynamic properties of agricultural systems. The Tradeoff Analysis (TOA) System is software designed to implement the integrated analysis of tradeoffs in agricultural systems. The TOA methodology is based on spatially explicit econometric simulation models linked to spatially referenced bio-physical simulation models to simulate land use and input decisions. The methodology has been applied for the potato-pasture production system in the Ecuadorian Andes. The land use change literature often describes non-linearity in land use change as a result of sudden changes in the political (e.g. new agricultural policies) or environmental setting (e.g. earthquakes). However, less attention has been paid to the non-linearities in production systems and their consequences for land use change. In this paper, we use the TOA system to study agricultural land use dynamics and to find the underlying processes for non-linearities. Results show that the sources of non-linearities are in the properties of bio-physical processes and in the decision making-process of farmers.

  17. Mapping of agricultural land use from ERTS-1 digital data

    NASA Technical Reports Server (NTRS)

    Wilson, A. D.; Max, G. A.; Peterson, G. W.

    1973-01-01

    A study area was selected in Lancaster and Lebanon Counties, two of the major agricultural counties in Pennsylvania. This area was delineated on positive transparencies on MSS data collected on October 11, 1972 (1080-15185). Channel seven was used to delineate general land forms, drainage patterns, water and urban areas. Channel five was used to delineate highway networks. These identifiable features were useful aids for locating areas on the computer output. Computer generated maps were used to delineate broad land use categories, such as forest land, agricultural land, urban areas and water. These digital maps have a scale of approximately 1:24,000 thereby allowing direct comparison with U.S.G.S. 7.5 minute quadrangle sheets. Aircraft data were used as a form of ground truth useful for the delineation of land use patterns.

  18. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  19. Automatic information extraction for land use and agricultural applications

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Thomas, D. T.

    1973-01-01

    Description of some current work in interpretation technique development for automatic computer-aided image information extraction related to various application areas, including land use mapping and agricultural survey and monitoring. In particular, the application of a fast template matching algorithm, employing the sequential similarity detection principle, to image registration, linear feature detection, and the extraction and enumeration of scene objects is discussed and illustrated.

  20. Agricultural land use mapping. [Pennsylvania, Montana, and Texas

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1973-01-01

    The author has identified the following significant results. Agricultural areas were selected or analysis in southeastern Pennsylvania, north central Montana, and southern Texas. These three sites represent a broad range of soils, soil parent materials, climate, modes of agricultural operation, crops, and field sizes. In each of these three sites, ERTS-1 digital data were processed to determine the feasibility of automatically mapping agricultural land use. In Pennsylvania, forest land, cultivated land, and water were separable within a 25,000 acre area. Four classes of water were also classified and identified, using ground truth. A less complex land use pattern was analyzed in Hill County, Montana. A land use map was prepared shown alternating patterns of summer fallow and stubble fields. The location of farmsteads could be inferred, along with that of a railroad line. A river and a creek flowing into the river were discernible. Six categories of water, related to sediment content and depth, were defined in the reservoir held by the Fresno dam. These classifications were completed on a 150 square mile area. Analysis of the data from Texas is in its formative stages. A test site has been selected and a brightness map has been produced.

  1. Land Use and climate change interactions in tropical South America

    NASA Astrophysics Data System (ADS)

    Swann, A. L. S.; Longo, M.; Knox, R. G.; Lee, E.; Moorcroft, P. R.

    2015-12-01

    Ongoing agricultural expansion in Amazonia and the surrounding areas of Brazil is expected to continue over the next several decades as global food demand increases. The transition of natural forest and savannah ecosystems to pastureland and agricultural crops is predicted to create warmer and drier atmospheric conditions than the native vegetation. Compounding this effect, climate change is likely to lead to reduced transpiration fluxes as plants become more water efficient under higher atmospheric carbon dioxide (CO2) levels. Here we investigate the expected impacts of predicted future land use on the climate of South America as well as the potential impacts of increasing CO2. We find that the climate response to land use change generally consistent with expectations from previous global modeling simulations with drier conditions resulting from deforestation, however the direct changes in precipitation are relatively small (on order of a few percent). Local drying from land use change is driven primarily by decreases in evapo-transpiration associated with the loss of forest, and concomitant increases in runoff. Significant changes in convectively available potential energy and convective inhibition during the transition to the wet season indicate that the decrease in surface latent heat flux is indeed leading to a drier atmosphere, however these changes occur around a mean climatological state that is already very favorable for convection, and thus lead to relatively small changes in precipitation. The physiological effects of increasing CO2 alone also drive a reduction in precipitation, which is compounded by radiation-driven circulation changes. If these land use changes were to occur under a background state of drier conditions, such as those predicted for the future global climate model experiments, this additional atmospheric drying driven by land use change may be sufficient to decrease precipitation more substantially.

  2. Modeling socioeconomic and ecologic aspects of land-use change

    SciTech Connect

    Dale, V.H.; Pedlowski, M.A.; O'Neill, R.V.; Southworth, F.

    1992-01-01

    Land use change is one of the major factors affecting global environmental conditions. Prevalent types of land-use change include replacing forests with agriculture, mines or ranches; forest degradation from collection of firewood; and forest logging. A global effect of wide-scale deforestation is an increase in atmospheric carbon dioxide concentration, which may affect climate. Regional effects include loss of biodiversity and disruption of hydrologic regimes. Local effects include soil erosion, siltation and decreases in soil fertility, loss of extractive reserves, and disruption of indigenous people. Modeling land use change requires combining socioeconomic and ecological factors because socioeconomic forces frequently initiate land-use change and are affected by the subsequent ecological degradation. This paper describes a modeling system that integrates submodels of human colonization and impacts to estimate patterns and rates of deforestation under different immigration and land use scenarios. Immigration which follows road building or paving is a major factor in the rapid deforestation of previously inaccessible areas. Roads facilitate colonization, allow access for large machines, and provide transportation routes for mort of raw materials and produce.

  3. Elbe river flood peaks and postwar agricultural land use in East Germany.

    PubMed

    van der Ploeg, R R; Schweigert, P

    2001-12-01

    Collectivization of farmland since the 1950s has changed the agricultural land use in former East Germany. Single fields on the collective farms became increasingly large and were cultivated with increasingly heavy farm equipment. This led to large-scale physical degradation of arable soils, enhancing the formation of surface runoff in periods with prolonged and excessive precipitation. The extent to which this development may have affected the discharge behavior of the main East German river, the Elbe, has so far not been studied. We analyzed the flood peaks of the Elbe during the past century (1900-2000). The flood discharge behavior of the Elbe has apparently changed significantly since the 1950s. Although climate changes may be involved, we conclude that the Elbe flood peaks, recorded since 1950, are related to the changes in postwar agricultural land use in former East Germany. To restore the degraded farmland soils, a change in agricultural land use may be necessary.

  4. The land use climate change energy nexus

    SciTech Connect

    Dale, Virginia H; Efroymson, Rebecca Ann; Kline, Keith L

    2011-01-01

    Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered both by changing human resource-management practices and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource extraction and land management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies and sustainability of alternative energy sources. Thus climate change, energy choices, and land-use change are linked, and any analysis in landscape ecology that considers one of these factors should consider them all. This analysis explores the implications of those linkages and points out ecological patterns and processes that may be affected by these interactions.

  5. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions

    USGS Publications Warehouse

    Schilling, K.E.; Jha, M.K.; Zhang, Y.-K.; Gassman, P.W.; Wolter, C.F.

    2009-01-01

    Over the last century, land use and land cover (LULC) in the United States Corn Belt region shifted from mixed perennial and annual cropping systems to primarily annual crops. Historical LULC change impacted the annual water balance in many Midwestern basins by decreasing annual evapotranspiration (ET) and increasing streamflow and base flow. Recent expansion of the biofuel industry may lead to future LULC changes from increasing corn acreage and potential conversion of the industry to cellulosic bioenergy crops of warm or cool season grasses. In this paper, the Soil and Water Assessment Tool (SWAT) model was used to evaluate potential impacts from future LULC change on the annual and seasonal water balance of the Raccoon River watershed in west-central Iowa. Three primary scenarios for LULC change and three scenario variants were evaluated, including an expansion of corn acreage in the watershed and two scenarios involving expansion of land using warm season and cool season grasses for ethanol biofuel. Modeling results were consistent with historical observations. Increased corn production will decrease annual ET and increase water yield and losses of nitrate, phosphorus, and sediment, whereas increasing perennialization will increase ET and decrease water yield and loss of nonpoint source pollutants. However, widespread tile drainage that exists today may limit the extent to which a mixed perennial-annual land cover would ever resemble pre-1940s hydrologic conditions. Study results indicate that future LULC change will affect the water balance of the watershed, with consequences largely dependent on the future LULC trajectory. ?? 2008 by the American Geophysical Union.

  6. Evaluation of historical land cover, land use, and land-use change emissions in the GCAM integrated assessment model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.

    2012-12-01

    Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.

  7. Spatial Temporal Land Use Change Detection Using Google Earth Data

    NASA Astrophysics Data System (ADS)

    Wibowo, Adi; Osman Salleh, Khairulmaini; Sitanala Frans, F. Th. R.; Mulyo Semedi, Jarot

    2016-11-01

    Land use as representation of human activities had different type. Human activity needs land for home, food, school, work, and leisure. Land use changed depends on human activity in the world within spatial and temporal term. This study aims to identify land use change using Google Earth data spatially and temporally. To answer the aim of this research, Google Earth data within five-year used for the analysis. This technique use for detection and mapping the land use change. The result saw the spatial-temporal land use change each year. This result addressed very importance of Google Earth Data as spatial temporal land use detection for land use mapping.

  8. Interpretation of Pennsylvania agricultural land use from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1974-01-01

    The author has identified the following significant results. To study the complex agricultural patterns in Pennsylvania, a portion of an ERTS scene was selected for detailed analysis. Various photographic products were made and were found to be only of limited value. This necessitated the digital processing of the ERTS data. Using an unsupervised classification procedure, it was possible to delineate the following categories: (1) forest land with a northern aspect, (2) forest land with a southern aspect, (3) valley trees, (4) wheat, (5) corn, (6) alfalfa, grass, pasture, (7) disturbed land, (8) builtup land, (9) strip mines, and (10) water. These land use categories were delineated at a scale of approximately 1:20,000 on the line printer output. Land use delineations were also made using the General Electric IMAGE 100 interactive analysis system.

  9. Corn ethanol production, food exports, and indirect land use change.

    PubMed

    Wallington, T J; Anderson, J E; Mueller, S A; Kolinski Morris, E; Winkler, S L; Ginder, J M; Nielsen, O J

    2012-06-05

    The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.

  10. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    PubMed

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  11. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.

    PubMed

    Mladenoff, David J; Sahajpal, Ritvik; Johnson, Christopher P; Rothstein, David E

    2016-01-01

    Perennial cellulosic feedstocks may have potential to reduce life-cycle greenhouse gas (GHG) emissions by offsetting fossil fuels. However, this potential depends on meeting a number of important criteria involving land cover change, including avoiding displacement of agricultural production, not reducing uncultivated natural lands that provide biodiversity habitat and other valued ecosystem services, and avoiding the carbon debt (the amount of time needed to repay the initial carbon loss) that accompanies displacing natural lands. It is unclear whether recent agricultural expansion in the United States competes with lands potentially suited for bioenergy feedstocks. Here, we evaluate how recent land cover change (2008-2013) has affected the availability of lands potentially suited for bioenergy feedstock production in the U.S. Lake States (Minnesota, Wisconsin, Michigan) and its impact on other natural ecosystems. The region is potentially well suited for a diversity of bioenergy production systems, both grasses and woody biomass, due to the widespread forest economy in the north and agricultural economy in the south. Based on remotely-sensed data, our results show that between 2008 and 2013, 836,000 ha of non-agricultural open lands were already converted to agricultural uses in the Lake States, a loss of nearly 37%. The greatest relative changes occurred in the southern half that includes some of the most diverse cultivable lands in the country. We use transition diagrams to reveal gross changes that can be obscured if only net change is considered. Our results indicate that expansion of row crops (corn, soybean) was responsible for the majority of open land loss. Even if recently lost open lands were brought into perennial feedstock production, there would a substantial carbon debt. This reduction in open land availability for biomass production is closing the window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States as

  12. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands

    PubMed Central

    Mladenoff, David J.; Sahajpal, Ritvik; Johnson, Christopher P.; Rothstein, David E.

    2016-01-01

    Perennial cellulosic feedstocks may have potential to reduce life-cycle greenhouse gas (GHG) emissions by offsetting fossil fuels. However, this potential depends on meeting a number of important criteria involving land cover change, including avoiding displacement of agricultural production, not reducing uncultivated natural lands that provide biodiversity habitat and other valued ecosystem services, and avoiding the carbon debt (the amount of time needed to repay the initial carbon loss) that accompanies displacing natural lands. It is unclear whether recent agricultural expansion in the United States competes with lands potentially suited for bioenergy feedstocks. Here, we evaluate how recent land cover change (2008–2013) has affected the availability of lands potentially suited for bioenergy feedstock production in the U.S. Lake States (Minnesota, Wisconsin, Michigan) and its impact on other natural ecosystems. The region is potentially well suited for a diversity of bioenergy production systems, both grasses and woody biomass, due to the widespread forest economy in the north and agricultural economy in the south. Based on remotely-sensed data, our results show that between 2008 and 2013, 836,000 ha of non-agricultural open lands were already converted to agricultural uses in the Lake States, a loss of nearly 37%. The greatest relative changes occurred in the southern half that includes some of the most diverse cultivable lands in the country. We use transition diagrams to reveal gross changes that can be obscured if only net change is considered. Our results indicate that expansion of row crops (corn, soybean) was responsible for the majority of open land loss. Even if recently lost open lands were brought into perennial feedstock production, there would a substantial carbon debt. This reduction in open land availability for biomass production is closing the window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States as

  13. Impact of urbanization and land-use change on climate.

    PubMed

    Kalnay, Eugenia; Cai, Ming

    2003-05-29

    The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data or satellite measurements of night light are used to classify urban and rural areas. Here we use the difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years, which is insensitive to surface observations, to estimate the impact of land-use changes on surface warming. Our results suggest that half of the observed decrease in diurnal temperature range is due to urban and other land-use changes. Moreover, our estimate of 0.27 degrees C mean surface warming per century due to land-use changes is at least twice as high as previous estimates based on urbanization alone.

  14. Attributing land-use change carbon emissions to exported biomass

    SciTech Connect

    Saikku, Laura; Soimakallio, Sampo; Pingoud, Kim

    2012-11-15

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

  15. Characterizing patterns of agricultural land use in Amazonia by merging satellite imagery and census data

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey Alan

    In recent decades, millions of hectares of Amazonian primary forest, cerrado, and secondary forest have been cleared to support a dramatically increasing number of cattle and humans. With plans proposed for major new highways and utilities in the basin, development is highly likely to continue in coming years. Conversion to human use threatens to change the climate, ecosystems, and natural resources of Amazonia, and these effects are due not only to changes in land cover but to the land use management practices that follow. Unfortunately, we lack basin-wide information about land use across Amazonia. A key reason for this dearth of information is that earth-observing satellites designed to interpret land cover are prone to miss the land use changes within; in an area encompassing millions of square kilometers, it is impossible to visit more than a small portion of the study region to quantify land use activities. Agricultural censuses suggest a strategy to fill this gap: in Amazonia, they provide the only ground-surveyed land use information---yet because they are not easily reconciled with satellite-based land cover information, census data are underutilized. The research forming this dissertation presents a new, basin-wide depiction of land use in Amazonia by developing and applying new tools for understanding the past, current, and future impact of agricultural development. Specifically, this dissertation: (1) presents a new detailed understanding of the distribution and density of agricultural land use practices in Amazonia in the mid-1990s by fusing agricultural census data with satellite-derived land cover classifications; (2) assesses historical changes in agriculture of the previous decades; and (3) describes and applies new general techniques for the rapid update of land use data sets and maps using satellite imagery and census data. The fusion of census and satellite data described here advances our understanding by uniting the strengths of two distinct

  16. Remote Sensing Application to Land Use Classification in a Rapidly Changing Agricultural/Urban Area: City of Virginia Beach, Virginia. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Odenyo, V. A. O.

    1975-01-01

    Remote sensing data on computer-compatible tapes of LANDSAT 1 multispectral scanner imager were analyzed to generate a land use map of the City of Virginia Beach. All four bands were used in both the supervised and unsupervised approaches with the LAYSYS software system. Color IR imagery of a U-2 flight of the same area was also digitized and two sample areas were analyzed via the unsupervised approach. The relationships between the mapped land use and the soils of the area were investigated. A land use land cover map at a scale of 1:24,000 was obtained from the supervised analysis of LANDSAT 1 data. It was concluded that machine analysis of remote sensing data to produce land use maps was feasible; that the LAYSYS software system was usable for this purpose; and that the machine analysis was capable of extracting detailed information from the relatively small scale LANDSAT data in a much shorter time without compromising accuracy.

  17. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  18. The Implications of Future Food Demand on Global Land Use, Land-Use Change Emissions, and Climate

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M.; Kyle, P.; Luckow, P.; Clarke, L.; Edmonds, J.; Eom, J.; Kim, S.; Moss, R.; Patel, P.

    2011-12-01

    In 2005, cropland accounted for approximately 10% of global land area. The amount of cropland needed in the future depends on a number of factors including global population, dietary preferences, and agricultural crop yields. In this paper, we explore the effect of various assumptions about global food demand and agricultural productivity between now and 2100 on global land use, land-use change emissions, and climate using the GCAM model. GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated, global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. For this analysis, we look at the effect of alternative socioeconomic pathways, crop yield improvement assumptions, and future meat demand scenarios on the demand for agricultural land. The three socioeconomic pathways explore worlds where global population in 2100 ranges from 6 billion people to 14 billion people. The crop yield improvement assumptions range from a world where yields do not improve beyond today's levels to a world with significantly higher crop productivity. The meat demand scenarios range from a vegetarian world to a world where meat is a dominant source of calories in the global diet. For each of these scenarios, we find that sufficient land exists to feed the global economy. However, rates of deforestation, bioenergy potential, land-use change emissions, and climate change differ across the scenarios. Under less favorable scenarios, deforestation rates, land-use change emissions, and the rate of climate change can be adversely affected.

  19. Mechanisms Linking Land Use and Regional Climate Changes in West Africa

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; Yu, M.; JI, Z.; Pal, J. S.

    2014-12-01

    Land use land cover change is an important driver for regional climate changes in West Africa due to the strong land-atmosphere coupling. On the other hand, land use is also strongly influenced by climate changes due to the primarily rain-fed agriculture in this region and the relatively low capacity to adapt. It is therefore important that projections for future climate changes or land use changes account for the impact of the feedback between land use and climate. Land use influences regional climate through several different pathways, including changes in surface biogeophysical properties (e.g., surface albedo, Bowen ratio, surface roughness) that have been widely studied, and changes in the dynamic properties of the land surface influencing dust emission. The relative importance of these two pathways is likely to be model dependent and region dependent. In this study the effects of these two pathways will be evaluated and compared, based on results from a modeling framework that includes a regional climate-vegetation model, a crop growth model, an agricultural economics model, and a land use allocation model. This will be conducted in the context of future land use and climate change projections, with the ultimate objective to assess how agricultural land use in West Africa may change driven by climate and socioeconomic changes, and how the resulting land use change may further modify regional climate in the future.

  20. The Columbian Encounter and Land-Use Change.

    ERIC Educational Resources Information Center

    Turner, B. L. II, Butzer, Karl W.

    1992-01-01

    Discusses land use patterns in fifteenth-century Europe and in the Americas and the mutual influence (initiated by Columbus's arrival in the Americas) that led to land use change. Presents a historical perspective and categorization of contemporary global land use changes for the purpose of highlighting associations between past and present global…

  1. Human land-use and soil change

    USGS Publications Warehouse

    Wills, Skye A.; Williams, Candiss O.; Duniway, Michael C.; Veenstra, Jessica; Seybold, Cathy; Pressley, DeAnn

    2017-01-01

    Soil change refers to the alteration of soil and soil properties over time in one location, as opposed to soil variability across space. Although soils change with pedogensis, this chapter focuses on human caused soil change. Soil change can occur with human use and management over long or short time periods and small or large scales. While change can be negative or positive; often soil change is observed when short-term or narrow goals overshadow the other soil’s ecosystem services. Many soils have been changed in their chemical, physical or biological properties through agricultural activities, including cultivation, tillage, weeding, terracing, subsoiling, deep plowing, manure and fertilizer addition, liming, draining, and irrigation. Assessing soil change depends upon the ecosystem services and soil functions being evaluated. The interaction of soil properties with the type and intensity of management and disturbance determines the changes that will be observed. Tillage of cropland disrupts aggregates and decreases soil organic carbon content which can lead to decreased infiltration, increased erosion, and reduced biological function. Improved agricultural management systems can increase soil functions including crop productivity and sustainability. Forest management is most intensive during harvesting and seedling establishment. Most active management in forests causes disturbance of the soil surface which may include loss of forest floor organic materials, increases in bulk density, and increased risk of erosion. In grazing lands, pasture management often includes periods of biological, chemical and physical disturbance in addition to the grazing management imposed on rangelands. Grazing animals have both direct and indirect impacts on soil change. Hoof action can lead to the disturbance of biological crusts and other surface features impairing the soil’s physical, biological and hydrological function. There are clear feedbacks between vegetative systems

  2. Assessing the Impacts of Land Use Change from Cotton to Perennial Bioenergy Grasses on Hydrological Fluxes and Water Quality in a Semi-Arid Agricultural Watershed Using the APEX Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ale, S.; Rajan, N.

    2015-12-01

    The semi-arid Texas High Plains (THP) region, where cotton (Gossypium hirsutum L.) is grown in vast acreage, has the potential to grow perennial bioenergy grasses. A change in land use from cotton cropping systems to perennial grasses such as Alamo switchgrass (Panicum virgatum L.) and Miscanthus giganteus (Miscanthus sinensis Anderss. [Poaceae]) can significantly affect regional hydrologic cycle and water quality. Assessing the impacts of this potential land use change on hydrology and water quality enables the environmental assessment of feasibility to grow perennial grasses in this region to meet the U.S. national bioenergy target of 2022. The Agricultural Policy/Environmental eXtender (APEX) model was used in this study to assess the impacts of replacing cotton with switchgrass and Miscanthus on water and nitrogen balances in the upstream subwatershed of the Double Mountain Fork Brazos watershed in the THP, which contains 52% cotton land use. The APEX model was initially calibrated against observed streamflow and crop yield data. Since observed data on nitrogen loads in streamflow was not available for this subwatershed, we calibrated the APEX model against the SWAT-simulated nitrogen loads at the outlet of this subwatershed, which were obtained in a parallel study. The calibrated APEX model was used to simulate the impacts of land use change from cotton to Miscanthus and switchgrass on surface and subsurface water and nitrogen balances. Preliminary results revealed that the average (1994-2009) annual surface runoff decreased by 84% and 66% under the irrigated and dryland switchgrass scenarios compared to the baseline scenarios. Average annual percolation increased by 106% and 57% under the irrigated and dryland switchgrass scenarios relative to the baseline scenarios. Preliminary results also indicated Miscanthus and switchgrass appeared to be superior to cotton in terms of better water conservation and water quality, and minimum crop management requirements.

  3. Impacts of Forest and Agricultural Land Use on Stream Dissolved Organic Carbon During Storms

    NASA Astrophysics Data System (ADS)

    Oh, N. H.; Shin, Y.; Jeon, Y. J.; Lee, E. J.; Eom, J. S.; Kim, B.

    2015-12-01

    Although many studies have been conducted to evaluate the effects of land use on concentrations and compositions of dissolved organic carbon (DOC) in streams and rivers, the relationships are still not clear. To elucidate the impacts of forest and agricultural land use on stream DOC during storm events, we investigated concentrations, optical properties, δ13C, and Δ 14C of DOC in forest and agriculture dominated headwater streams in South Korea. Stream DOC concentrations were the highest in a forested subwatershed, and a significant positive correlation was observed between stream DOC concentrations and the proportion of forested area in watersheds, which was strengthened by increased rain intensity. Four PARAFAC components were extracted including terrestrial humic substances, terrestrial fulvic acids, microbial organic matter, and protein-like organic matter, all of which showed a positive correlation with stream DOC concentration although relative proportion of components were dependent on land use. While DOC in a forest stream was mostly composed of terrestrially derived and 14C-enriched, DOC in an agricultural stream included aged DOC up to ~1,000 years old. Although the impacts of hydrological changes due to irrigation, fertilizer use, and selected crop species were not examined, the results of this study suggest that agricultural land use can be a source of aged terrestrial DOC to streams during summer monsoon storms, potentially changing the balance of the regional carbon cycle.

  4. Global priorities for national carnivore conservation under land use change.

    PubMed

    Di Minin, Enrico; Slotow, Rob; Hunter, Luke T B; Montesino Pouzols, Federico; Toivonen, Tuuli; Verburg, Peter H; Leader-Williams, Nigel; Petracca, Lisanne; Moilanen, Atte

    2016-04-01

    Mammalian carnivores have suffered the biggest range contraction among all biodiversity and are particularly vulnerable to habitat loss and fragmentation. Therefore, we identified priority areas for the conservation of mammalian carnivores, while accounting for species-specific requirements for connectivity and expected agricultural and urban expansion. While prioritizing for carnivores only, we were also able to test their effectiveness as surrogates for 23,110 species of amphibians, birds, mammals and reptiles and 867 terrestrial ecoregions. We then assessed the risks to carnivore conservation within each country that makes a contribution to global carnivore conservation. We found that land use change will potentially lead to important range losses, particularly amongst already threatened carnivore species. In addition, the 17% of land targeted for protection under the Aichi Target 11 was found to be inadequate to conserve carnivores under expected land use change. Our results also highlight that land use change will decrease the effectiveness of carnivores to protect other threatened species, especially threatened amphibians. In addition, the risk of human-carnivore conflict is potentially high in countries where we identified spatial priorities for their conservation. As meeting the global biodiversity target will be inadequate for carnivore protection, innovative interventions are needed to conserve carnivores outside protected areas to compliment any proposed expansion of the protected area network.

  5. Global priorities for national carnivore conservation under land use change

    PubMed Central

    Di Minin, Enrico; Slotow, Rob; Hunter, Luke T. B.; Montesino Pouzols, Federico; Toivonen, Tuuli; Verburg, Peter H.; Leader-Williams, Nigel; Petracca, Lisanne; Moilanen, Atte

    2016-01-01

    Mammalian carnivores have suffered the biggest range contraction among all biodiversity and are particularly vulnerable to habitat loss and fragmentation. Therefore, we identified priority areas for the conservation of mammalian carnivores, while accounting for species-specific requirements for connectivity and expected agricultural and urban expansion. While prioritizing for carnivores only, we were also able to test their effectiveness as surrogates for 23,110 species of amphibians, birds, mammals and reptiles and 867 terrestrial ecoregions. We then assessed the risks to carnivore conservation within each country that makes a contribution to global carnivore conservation. We found that land use change will potentially lead to important range losses, particularly amongst already threatened carnivore species. In addition, the 17% of land targeted for protection under the Aichi Target 11 was found to be inadequate to conserve carnivores under expected land use change. Our results also highlight that land use change will decrease the effectiveness of carnivores to protect other threatened species, especially threatened amphibians. In addition, the risk of human-carnivore conflict is potentially high in countries where we identified spatial priorities for their conservation. As meeting the global biodiversity target will be inadequate for carnivore protection, innovative interventions are needed to conserve carnivores outside protected areas to compliment any proposed expansion of the protected area network. PMID:27034197

  6. Change in statistics of drought in a land use scenario for Brazil

    NASA Astrophysics Data System (ADS)

    Kilian, Markus; Chavez, Erik; Lucarini, Valerio

    2016-04-01

    The land use changes due to an intensified and expanding agricultural and industrial activity is affecting regional weather and climate in Brazil. We analyse the results of a land use change driven Weather and Research Forecasting Model (WRF) using classical drought indices and specific agricultural yield loss drought optimum indices. The objective is to assess changes in risk exposure driven by changes in weather patterns subject to different scenarios of land use changes in Brazil. The WRF model is driven by land use changes as well as the ECHAM5 climate model (with the A1B scenario) on a 60km and 30km grid. In order to determine the risk exposure of an important economic sector to changes in land use change we focus on maize as one of the principal crop grown in Brazil.

  7. Political ecology of land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Novira, Nina

    2014-05-01

    Indonesia had once around 10% of the world's rain forest. Many accuse shifting cultivation and poverty to be responsible to tropical deforestation and land use change. Without denying the importance of these factors, this paper tries to see the problem from a different angel. Massive deforestation first took place when the Dutch colonials decided to develop coffee, tea and later rubber and oil palm plantation in the late 19th century. During the Independence Era, land use change can be divided into 3 periods: 1950 - 1975 period of agricultural expansion, mainly government program; 1975 - 1990 period of commercial logging concession, mainly private concession with government's endorsement; and 1990 to date period of land use change to cash crop, settlement, and business area, a more complex process involving private company, government program and endorsement, and personal action. The first two periodization shows clearly that land use change in Indonesia has a strong connection to political decision and power at certain period of time, which also influenced by international market tendencies at the given period. The last period has actually not so much difference. This paper seeks to explain land use change in Indonesia especially in the last period of 1990 to present. This period can be divided again into 3 sub-periods: later New Order Era, early Reformation Era, and the Regional Autonomy Era. The case study was conducted in Labuhan Batu Utara District of North Sumatera. Semi-structured interview was done with various actors in different levels. It is argued that government's policies and arrangements along with government's reaction to international market and politics plays a substantially important role in land use change. In the first sub-period (1990 - 1998), it is the fading power of Suharto's regime that increases farmers' courage to violate the strict prohibition of rice field conversion to other uses. Another important factor is the introduction of

  8. Farming the Planet: Agricultural land use and the transformation of Planet Earth

    NASA Astrophysics Data System (ADS)

    Ramankutty, N.

    2008-12-01

    Agriculture has dramatically altered the face of our planet. Roughly a third of the world's landscape is currently being used for cultivation or grazing cattle. Furthermore, over the last 50 years, our food production system has been driven by agricultural intensification, through increased use of irrigation and fertilization. Such large-scale changes in land cover and land use can have major Earth system consequences. Nonetheless, few descriptions are available of the nature and extent of these changes. In this talk, I will describe recent work in the use of remote-sensing and ground-based data to derive global data sets of agricultural land cover and land use practices. I will present results from mapping the world's croplands and pastures, the harvested area and yield of 175 different crops, and fertilizer application rates for the Year 2000.

  9. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the

  10. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities

    PubMed Central

    Birkhofer, Klaus; Smith, Henrik G.; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities. PMID:26730734

  11. Impacts of land-use history on the recovery of ecosystems after agricultural abandonment

    NASA Astrophysics Data System (ADS)

    Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Lindeskog, Mats; Arneth, Almut

    2016-09-01

    Land-use changes have been shown to have large effects on climate and biogeochemical cycles, but so far most studies have focused on the effects of conversion of natural vegetation to croplands and pastures. By contrast, relatively little is known about the long-term influence of past agriculture on vegetation regrowth and carbon sequestration following land abandonment. We used the LPJ-GUESS dynamic vegetation model to study the legacy effects of different land-use histories (in terms of type and duration) across a range of ecosystems. To this end, we performed six idealized simulations for Europe and Africa in which we made a transition from natural vegetation to either pasture or cropland, followed by a transition back to natural vegetation after 20, 60 or 100 years. The simulations identified substantial differences in recovery trajectories of four key variables (vegetation composition, vegetation carbon, soil carbon, net biome productivity) after agricultural cessation. Vegetation carbon and composition typically recovered faster than soil carbon in subtropical, temperate and boreal regions, and vice versa in the tropics. While the effects of different land-use histories on recovery periods of soil carbon stocks often differed by centuries across our simulations, differences in recovery times across simulations were typically small for net biome productivity (a few decades) and modest for vegetation carbon and composition (several decades). Spatially, we found the greatest sensitivity of recovery times to prior land use in boreal forests and subtropical grasslands, where post-agricultural productivity was strongly affected by prior land management. Our results suggest that land-use history is a relevant factor affecting ecosystems long after agricultural cessation, and it should be considered not only when assessing historical or future changes in simulations of the terrestrial carbon cycle but also when establishing long-term monitoring networks and

  12. Carbon Density and Anthropogenic Land Use Influences on Net Land-Use Change Emissions

    SciTech Connect

    Smith, Steven J.; Rothwell, Andrew J.

    2013-10-08

    We examine historical and future land-use emissions using a simple mechanistic carbon-cycle model with regional and ecosystem specific parameterizations. Our central estimate of net terrestrial land-use change emissions, exclusive of climate feedbacks, is 250 GtC over the last three hundred years. This estimate is most sensitive to assumptions for preindustrial forest and soil carbon densities. We also find that estimates are sensitive to the treatment of crop and pasture lands. These sensitivities also translate into differences in future terrestrial uptake in the RCP4.5 land-use scenario. This estimate of future uptake is lower than the native values from the GCAM integrated assessment model result due to lower net reforestation in the RCP4.5 gridded land-use data product

  13. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990-2012.

    PubMed

    Tubiello, Francesco N; Salvatore, Mirella; Ferrara, Alessandro F; House, Jo; Federici, Sandro; Rossi, Simone; Biancalani, Riccardo; Condor Golec, Rocio D; Jacobs, Heather; Flammini, Alessandro; Prosperi, Paolo; Cardenas-Galindo, Paola; Schmidhuber, Josef; Sanz Sanchez, Maria J; Srivastava, Nalin; Smith, Pete

    2015-01-10

    We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down-revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr(-1) in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr(-1) in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr(-1) in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the

  14. Implications of climate and land use change: Chapter 4

    USGS Publications Warehouse

    Hall, Jefferson S.; Murgueitio, Enrique; Calle, Zoraida; Raudsepp-Hearne, Ciara; Stallard, Robert F.; Balvanera, Patricia; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella

    2015-01-01

    This chapter relates ecosystem services to climate change and land use. The bulk of the chapter focuses on ecosystem services and steepland land use in the humid Neotropics – what is lost with land-cover changed, and what is gained with various types of restoration that are sustainable given private ownership. Many case studies are presented later in the white paper. The USGS contribution relates to climate change and the role of extreme weather events in land-use planning.

  15. Development and allocation of land-use scenarios in agriculture for hydrological impact studies

    NASA Astrophysics Data System (ADS)

    Klöcking, Beate; Ströbl, Bernhard; Knoblauch, Steffi; Maier, Uta; Pfützner, Bernd; Gericke, Andreas

    In order to study the impacts of Global Change induced future agricultural land-use patterns on regional water dynamics and water quality, the spatial and temporal crop distribution under present and under scenario conditions is needed. The development of land-use changes inside the arable areas was simulated by a bottom-up approach basing on the analysis of adaptation reactions of farmers. A Geographic Information System-based approach was developed, that performs a spatial allocation of these crop schemes, and reproduces the agricultural fruit patterns and rotation cycles. This so called “crop generator” was applied to the Thuringian Basin in Germany and the distributed eco-hydrological model ArcEGMO was run to simulate the water dynamics in the basin of the Upper Unstrut for the political frame of the European Union’s AGENDA 2000.

  16. Weighing the relative potential impacts of climate change and land-use change on an endangered bird

    EPA Science Inventory

    Climate change and land-use change are projected to be two of the greatest drivers of biodiversity loss over the coming century. Land-use change, particularly the conversion of more natural lands to agriculture or residential or commercial development has resulted in extensive h...

  17. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment.

    PubMed

    Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter

    2016-01-01

    Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance.

  18. Detection and assessment of land use dynamics on Tenerife (Canary Islands): the agricultural development between 1986 and 2010

    NASA Astrophysics Data System (ADS)

    Günthert, Sebastian; Naumann, Simone; Siegmund, Alexander

    2012-10-01

    Since Spanish colonial times, the Canary Islands and especially Tenerife have always been used for intensive agriculture. Today almost 1/4 of the total area of Tenerife are agriculturally affected, whereas especially mountainous areas with suitable climate conditions are drastically transformed for agricultural use by building of large terraces. In recent years, political and economical developments lead to a further transformation process, especially inducted by an expansive tourism, which caused concentration- and intensification-tendencies of agricultural land use in lower altitudes as well as agricultural set-aside and rural exodus in the hinterland. The overall aim of the research at hand is to address the agricultural land use dynamics of the past decades, to statistically assess the causal reasons for those changes and to model the future agricultural land use dynamics on Tenerife. Therefore, an object-based classification procedure for recent RapidEye data (2010), Spot 4 (1998) as well as SPOT 1 (1986-88) imagery was developed, followed by a post classification comparison (PCC). Older agricultural fallow land or agricultural set-aside with a higher level of natural succession can hardly be acquired in the used medium satellite imagery. Hence, a second detection technique was generated, which allows an exact identification of the total agriculturally affected area on Tenerife, also containing older agricultural fallow land or agricultural set-aside. The method consists of an automatic texture-oriented detection and area-wide extraction of linear agricultural structures (plough furrows and field boundaries of arable land, utilised and non-utilised agricultural terraces) in current orthophotos of Tenerife. Once the change detection analysis is realised, it is necessary to identify the different driving forces which are responsible for the agricultural land use dynamics. The statistical connections between agricultural land use changes and these driving forces

  19. Land use change and land degradation in southeastern Mediterranean Spain.

    PubMed

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall "recuperating" trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  20. Land-use protection for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp

    2014-12-01

    Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.

  1. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon

    PubMed Central

    Galford, Gillian L.; Soares-Filho, Britaldo; Cerri, Carlos E. P.

    2013-01-01

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes. PMID:23610175

  2. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon.

    PubMed

    Galford, Gillian L; Soares-Filho, Britaldo; Cerri, Carlos E P

    2013-06-05

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.

  3. Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    NASA Technical Reports Server (NTRS)

    Wilms, R. P.

    1973-01-01

    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.

  4. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    PubMed

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca(+2), Mg(+2), and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg(+2) than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  5. Changing land use: Problems and opportunities

    USGS Publications Warehouse

    Robbins, C.S.; Dawson, D.K.; Dowell, B.A.; Wilson, Marcia H.; Sader, Steven A.

    1995-01-01

    Under the pressure of increasing human populations and expanding demands for food and fiber, native tropical and temperate habitats are becoming more restricted, and populations of many resident and migratory birds are declining. Mist net surveys of 111 forest and agricultural sites in Mexico, Belize, and Guatemala show that some migratory species use a wide variety of habitats during the non-breeding season; other migrants, especially ground-feeding insectivores that nest in temperate forests, are largely restricted to forest habitats during the northern winter. Most tropical residents are also scarce or absent in agricultural habitats; this is especially true of the suboscine families, which are an important component of tropical forests: Furnariidae, Dendrocolaptidae, Formicariidae, Tyrannidae, and Pipridae: Of the various agricultural habitats studied, arboreal crops, especially mature citrus and cacao, were used by a wide variety and relatively large number of migrants; at the other extreme, few birds were captured or observed in commercially grown allspice and platanos (bananas). Although habitat constraints on many species are increasing, the impact of these constraints can be reduced through research, management, legislation, and especially education. Long-range habitat management objectives that reduce forest fragmentation and promote retention of critical habitats for species can be realized if an informed and concerned public can be created

  6. [Impacts of rail transit in Shanghai on its urban land use change].

    PubMed

    Li, Cheng; Li, Jun-Xiang; Li, Rong; Xu, Ming-Ce; Qin, Hai

    2008-07-01

    By using the land use data interpreted with 1:50,000 color-infrared aerial photos of Shanghai collected in 1989 and 2005, and based on Geographic Information System (GIS) techniques, the impacts of urban rail transit (URT) development in Shanghai on its urban land use change was quantitatively analyzed, and a preliminary prediction of the land use change from 2010 to 2025 was made with Markov probability models. The results showed that the URT accelerated the land use change, particularly from an agricultural dominated natural landscape in 1989 to a high-value man-made urban landscape primarily composed of residence and public facilities. URT increased the land use rate in the study area. From 1989 to 2005, public facility land, green space, agriculture land, land for other uses (primarily used for construction), and water area changed greatly, with the greatest change rate of the land for other uses and the lowest one of water area. From 2010 to 2025, the areas and proportions of agriculture land and water area would keep on decreasing, while those of man-made landscapes including residence and public facilities would increase continuously. From the viewpoints of increasing land use rate and its gain, the present land use structure along Shanghai URT should be further regulated to improve the intensive and sustainable use of land resources.

  7. Assessing Ecological Impacts According to Land Use Change

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  8. Monitoring land use change using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Xie, Yunlin; Peng, Mingjun

    2008-12-01

    Rapid land use change has take place in Wuhan, the largest mega-city in central China during the last decade. Remotely sensed imagery together with geographical information system have long been utilized to monitor spatial and temporal land use change. The aim of this paper is to find out the land use change and the trend of urban growth in Wuhan, China using satellite images. The Landsat TM image acquired in 1991 and the Landsat ETM image acquired in 2002 were used to monitor land use change in Wuhan. The images were geo-referenced according to Gauss-Kruger projection with Krasovsky spheroid, by using 1:50, 000 topographical maps. The image processing is implemented by using Erdas Imagine package. The RMS error has been controlled under the limit of 1 pixel. The geo-referenced images were classified as seven land use types: cultivated land, forest land, grassland, urban and villages, transportation, water bodies and barren land. Two land use maps were produced for each date. The geo-referenced, classified images were compared pixel by pixel to locate and quantify land use changes that took place from 1991 to 2002 period. The further change detection analysis in a later stage is performed in ArcGIS. The transition matrix was produced and the quantitative information on the size of land use change from one type to another was compiles. The results of study indicate that the conversion of land use from cultivated land to urban was prominent, the rapid urban sprawl has occupied lots of cultivated land and water bodies, the urban area significantly increased 30%, most of which are converted from cultivated land. these valuable cultivated land need careful protection by providing land use plans to guide urban growth going toward the right directions. The results obtained from this application also indicate that the use of satellite imageries is very useful for mapping land use changes, and the monitoring land use change is essential for land use planning and urban

  9. Evaluation of Resources of Agricultural Lands Using Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  10. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be

  11. The role of land use changes in the distribution of shallow landslides.

    PubMed

    Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia

    2017-01-01

    The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in

  12. The effects of land use change and precipitation change on direct runoff in Wei River watershed, China.

    PubMed

    Dong, Leihua; Xiong, Lihua; Lall, Upmanu; Wang, Jiwu

    2015-01-01

    The principles and degrees to which land use change and climate change affect direct runoff generation are distinctive. In this paper, based on the MODIS data of land use in 1992 and 2003, the impacts of land use and climate change are explored using the Soil Conservation Service Curve Number (SCS-CN) method under two defined scenarios. In the first scenario, the precipitation is assumed to be constant, and thus the consequence of land use change could be evaluated. In the second scenario, the condition of land use is assumed to be constant, so the influence only induced by climate change could be assessed. Combining the conclusions of two scenarios, the effects of land use and climate change on direct runoff volume can be separated. At last, it is concluded: for the study basin, the land use types which have the greatest effect on direct runoff generation are agricultural land and water body. For the big sub basins, the effect of land use change is generally larger than that of climate change; for middle and small sub basins, most of them suffer more from land use change than from climate change.

  13. Effect of land use/cover change on land surface temperatures - The Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Hereher, Mohamed E.

    2017-02-01

    In this study remote sensing techniques were employed to investigate the impact of land use/cover change on land surface temperatures (LST) for a highly dynamic landscape, i.e. the Nile Delta. Land use change was determined from analyzing a 15 years of bi-monthly normalized difference vegetation index (NDVI) dataset acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite along with a synchronized 13 years of bi-monthly LST dataset retrieved from MODIS Aqua satellite. Time series analysis for NDVI and LST data was carried out at selected locations experiencing land use change. Mean LST change was determined for each location before and after the land use change. Results indicate that NDVI composite data for 15 years proved sufficient for delineating land use change. Significant spatial changes include the transformation from agriculture to urban land, which increased the LST by 1.7 °C during the 13 years and the transformation of bare land to agriculture, which decreased the LST by 0.52 °C for the same period. Due to the explosive population growth in the Nile Delta, urban encroachment upon agricultural land could, hence, promote a prolonged regional warming by modifying the micro-climate and other climate-related phenomena.

  14. Trade-offs in water and carbon ecosystem services with land-use changes in grasslands.

    PubMed

    Kim, John H; Jobbágy, Esteban G; Jackson, Robert B

    2016-09-01

    Increasing pressures for food, fiber, and fuel continue to drive global land-use changes. Efforts to optimize ecosystem services under alternative land uses are often hampered by the complex interactions and trade-offs among them. We examined the effects of land-use changes on ecosystem carbon storage and groundwater recharge in grasslands of Argentina and the United States to (1) understand the relationships between both services, (2) predict their responses to vegetation shifts across environmental gradients, and (3) explore how market or policy incentives for ecosystem services could affect land-use changes. A trade-off of ecosystem services was evident in most cases, with woody encroachment increasing carbon storage (+29 Mg C/ha) but decreasing groundwater recharge (-7.3 mm/yr) and conversions to rain-fed cultivation driving opposite changes (-32 Mg C/ha vs. +13 mm/yr). In contrast, crops irrigated with ground water tended to reduce both services compared to the natural grasslands they replaced. Combining economic values of the agricultural products together with the services, we highlight potentials for relatively modest financial incentives for ecosystem services to abate land-use changes and for incentives for carbon to drive land-use decisions over those of water. Our findings also identify key opportunities and caveats for some win-win and lose-lose land-use changes for more integrative and sustainable strategies for land management.

  15. China's Land-Use Changes during the Past 300 Years: A Historical Perspective.

    PubMed

    Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C; Cui, Xuefeng

    2016-08-25

    Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s-1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability.

  16. China’s Land-Use Changes during the Past 300 Years: A Historical Perspective

    PubMed Central

    Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C.; Cui, Xuefeng

    2016-01-01

    Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s–1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability. PMID:27571087

  17. The Solutions of the Agricultural Land Use Monitoring Problems

    ERIC Educational Resources Information Center

    Vershinin, Valentin V.; Murasheva, Alla A.; Shirokova, Vera A.; Khutorova, Alla O.; Shapovalov, Dmitriy A.; Tarbaev, Vladimir A.

    2016-01-01

    Modern landscape--it's a holistic system of interconnected and interacting components. To questions of primary importance belongs evaluation of stability of modern landscape (including agrarian) and its optimization. As a main complex characteristic and landscape inhomogeneity in a process of agricultural usage serves materials of quantitative and…

  18. Effect of land use change on soil properties and functions

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  19. Decomposing the Drivers of Past, Present, and Future Land Use Change

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M. A.

    2015-12-01

    Over the past 500 years, global agricultural area has grown from 2 million km2 (1500) to 15 million km2 (2005), displacing forests and other natural ecosystems in the process (Hurtt et al., 2011). This expansion in area has been driven by changes in population, income, diet, and agricultural productivity. These factors will continue to evolve in the future; however, the effect of these changes on future land use, land cover, and emissions remains uncertain (e.g., Calvin et al., In Press). Additionally, future changes in land depend critically on the implementation of land-based mitigation options, such as bioenergy and afforestation (Wise et al., 2009; Reilly et al., 2012; Popp et al., 2013; Calvin et al., 2014). As all of these factors are uncertain in the future, the future evolution of land use and land cover is also uncertain. This presentation decomposes the drivers of past, present, and future land use change, characterizing the contribution of factors such as population, income, diet, agricultural productivity, and mitigation. In the historical period, we rely on a variety of land-based datasets (e.g., FAO, HYDE). For the future period, we analyze the integrated assessment modeling community's implementation of the Shared Socioeconomic Pathways (SSPs; O'Neill et al., In Press). The SSPs describe five different evolutions of socioeconomic development, varying several factors relevant to land use and land use change.

  20. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period.

    PubMed

    Barretto, Alberto G O P; Berndes, Göran; Sparovek, Gerd; Wirsenius, Stefan

    2013-06-01

    Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975-1996 and 1996-2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium-resolution data on total farmland area changes were used in a spatially explicit assessment of the land-use transitions that occurred in Brazil during 1960-2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land-use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land-use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land-use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center-western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be

  1. Characterization of streamflow, salinity, and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2013

    USGS Publications Warehouse

    Richards, Rodney J.; Moore, Jennifer L.

    2015-01-01

    Land use was characterized for 1992, 2002, and 2009 for site MA3. The common land-use change in the MA3 subwatershed was a conversion from previously irrigated agricultural land to urban land use. The MA3 subwatershed had 124 acres of irrigated land use converted to urban land use and 27.1 acres of unirrigated desert converted to urban land use from 1992 to 2009. Consistent with findings in previous land-use change reports, salinity and dissolved-selenium loading at site MA3 showed significant decreases as irrigated land was converted to urban land use.

  2. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    population under hunger and poverty. In light of these threats and opportunities facing the global food system, the proposed study takes a long-term perspective and addresses the main medium and long- term drivers of agricultural markets using the International Model for Policy Analysis of Agricultural Commodities and Trade developed by the Environment and Production Technology Division of IFPRI to project future production, consumption, and trade of key agricultural commodities. The main objective of the study is to analyze the link between energy and agricultural markets, focusing on the "new" role of agriculture as a supplier of energy for transportation through biofuels, and the subsequent impact on land use and demand for water from the agricultural sector. In this context, this study incorporates various scenarios of future energy demand and energy price impacts on global agricultural markets (food prices and food security), water use implications (irrigation water consumption by agricultural sector), and land use implications (changes in national and global crop area). The scenarios are designed to understand the impact of energy prices on biofuel production, cost of production for agricultural crops, conversion of rainfed area to irrigated area, and necessary levels of crop productivity growth to counter these effects.

  3. Land-use change and infectious disease in West Africa

    NASA Astrophysics Data System (ADS)

    Thomson, M. C.; Ericksen, P. J.; Mohamed, A. Ben; Connor, S. J.

    Land-use change has been associated with changes in the dynamics of infectious disease in West Africa. Here we describe the complex interactions of land-use change with three diseases (both vector- and non-vector-borne) of considerable public health significance in this region, namely, malaria and irrigation; epidemic meningitis and land degradation; onchocerciasis and deforestation. We highlight the confounding effect of climate variability, which acts as a driver of both land-use change and human health. We conclude, as have others, that the scale of observation always matters, and complex and dynamic feedbacks among social-ecological systems are not easily teased apart. We suggest that in order to establish the causal chain of interactions between land-use change and human health outcomes two approaches are necessary. The first is to have a thorough understanding of the aetiology of disease and the specific mechanisms by which land-use and climate variability affect the transmission of pathogens. This is achieved by focused, detailed studies encompassing a wide range of potential drivers, which are inevitably small scale and often cover short time periods. The second consists of large-scale studies of statistical associations between transmission indices or health outcomes and environmental variables stratified by known ecological or socio-economic confounders, and sufficient in size to overcome local biases in results. Such research activities need to be designed to inform each other if we are to develop predictive models for monitoring these diseases and to develop integrated programs for human health and sustainable land use.

  4. Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt.

    PubMed

    Kühling, Insa; Broll, Gabriele; Trautz, Dieter

    2016-02-15

    The Western Siberian grain belt covers 1millionkm² in Asiatic Russia and is of global importance for agriculture. Massive land-use changes took place in that region after the dissolution of the Soviet Union and the collapse of the state farm system. Decreasing land-use intensity (LUI) in post-Soviet Western Siberia was observed on grassland due to declining livestock whilst on cropland trends of land abandonment reversed in the early 2000s. Recultivation of abandoned cropland as well as increasing fertilizer inputs and narrowing crop rotations led to increasing LUI on cropland during the last two decades. Beyond that general trend, no information is available about spatial distribution and magnitude but a crucial precondition for the development of strategies for sustainable land management. To quantify changes and patterns in LUI, we developed an intensity index that reflects the impacts of land-based agricultural production. Based on subnational yearly statistical data, we calculated two separate input-orientated indices for cropland and grassland, respectively. The indices were applied on two spatial scale: at seven provinces covering the Western Siberian grain belt (Altay Kray, Chelyabinsk, Kurgan, Novosibirsk, Omsk, Sverdlovsk and Tyumen) and at all districts of the central province Tyumen. The spatio-temporal analysis clearly showed opposite trends for the two land-use types: decreasing intensity on grassland (-0.015 LUI units per year) and intensification on cropland (+0.014 LUI units per year). Furthermore, a spatial concentration towards intensity centres occurred during transition from a planned to a market economy. A principal component analysis enabled the individual calculations of both land-use types to be combined and revealed a strong link between biophysical conditions and LUI. The findings clearly showed the need for having a different strategy for future sustainable land management for grassland (predominantly used by livestock of households

  5. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  6. Climate change and land-use change impact on Western African river basins

    NASA Astrophysics Data System (ADS)

    Mariotti, Laura; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    The main resource in western Africa is agriculture and therefore availability and quality of fresh water resources threaten food production in many regions. Quantifying the impact of climate and land-use change in very vulnerable regions like western Africa is therefore of crucial importance for developing appropriate adaptation and mitigation strategies. In this work the International Center for theoretical Physic (ICTP) regional climate model (RegCM3) is used to perform a 120 (1980-2100) years climate change simulation under the A1B scenario using ECHAM5 as boundary condition (BC). To further investigate which it would be the combined effect of the land-use change together with the climate change a 10 years time simulation has been completed using the future projected land-use from IIASA (The International Institute for Applied Systems Analysis). Both simulations have been coupled with a physical based fully distributed hydrological model (CHyM) to asses which it would be the final effect of climate and land-use change on the river discharge. The two rivers used for this analysis are the Niger and Volta basin. The CHyM model has been validated coupling fist the hydrological model with a perfect boundary regional model simulation using ERA-interim as BC and using the runoff observations available along the two river basins. The model is able to reproduce the monthly seasonal cycle in both river basins reasonably well, therefore this allow us to use the same setting for a climate and land-use change simulation. Two hydrological time slice simulations have been performed with and without land-use change included. Results are presented and discussed for the monsoon season (JJA) on a station based, for the same stations used for validation purposed, but also the spatial change in discharge is presented in both cases and compared with the simple precipitation change observed in the region. Although the portion of change in precipitation due to the green house gases

  7. Multiscale Mapping of Species Diversity under Changed Land-Use Using Imaging Spectroscopy.

    PubMed

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-03-28

    Land-use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land-uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land-use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57 and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land-use, and the lowest values were calculated for the agricultural land-use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land-use. The suggested framework of this study succeeded in quantifying land-use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land-use, especially under increasing environmental changes. This article is protected by copyright. All rights reserved.

  8. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan.

    PubMed

    Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M

    2013-11-01

    Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.

  9. Effective radiative forcing from historical land use change

    NASA Astrophysics Data System (ADS)

    Andrews, Timothy; Betts, Richard A.; Booth, Ben B. B.; Jones, Chris D.; Jones, Gareth S.

    2016-08-01

    The effective radiative forcing (ERF) from the biogeophysical effects of historical land use change is quantified using the atmospheric component of the Met Office Hadley Centre Earth System model HadGEM2-ES. The global ERF at 2005 relative to 1860 (1700) is -0.4 (-0.5) Wm-2, making it the fourth most important anthropogenic driver of climate change over the historical period (1860-2005) in this model and larger than most other published values. The land use ERF is found to be dominated by increases in the land surface albedo, particularly in North America and Eurasia, and occurs most strongly in the northern hemisphere winter and spring when the effect of unmasking underlying snow, as well as increasing the amount of snow, is at its largest. Increased bare soil fraction enhances the seasonal cycle of atmospheric dust and further enhances the ERF. Clouds are shown to substantially mask the radiative effect of changes in the underlying surface albedo. Coupled atmosphere-ocean simulations forced only with time-varying historical land use change shows substantial global cooling (dT = -0.35 K by 2005) and the climate resistance (ERF/dT = 1.2 Wm-2 K-1) is consistent with the response of the model to increases in CO2 alone. The regional variation in land surface temperature change, in both fixed-SST and coupled atmosphere-ocean simulations, is found to be well correlated with the spatial pattern of the forced change in surface albedo. The forcing-response concept is found to work well for historical land use forcing—at least in our model and when the forcing is quantified by ERF. Our results suggest that land-use changes over the past century may represent a more important driver of historical climate change then previously recognised and an underappreciated source of uncertainty in global forcings and temperature trends over the historical period.

  10. Implications of land use change in tropical northern Africa under global warming

    NASA Astrophysics Data System (ADS)

    Brücher, T.; Claussen, M.; Raddatz, T.

    2015-12-01

    A major link between climate and humans in tropical northern Africa, and the Sahel in particular, is land use and associated land cover change, mainly where subsistence farming prevails. Here we assess possible feedbacks between the type of land use and harvest intensity and climate by analysing a series of idealized GCM experiments using the Max Planck Institute Earth System Model (MPI-ESM). The baseline for these experiments is a simulation forced by the RCP8.5 (radiation concentration pathway) scenario, which includes strong greenhouse gas emissions and anthropogenic land cover changes. The anthropogenic land cover changes in the RCP8.5 scenario include a mixture of pasture and agriculture. In subsequent simulations, we replace the entire area affected by anthropogenic land cover change in the region between the Sahara in the north and the Guinean Coast in the south (4 to 20° N) with either pasture or agriculture. In a second set-up we vary the amount of harvest in the case of agriculture. The RCP8.5 baseline simulation reveals strong changes in the area mean agriculture and monsoon rainfall. In comparison with these changes, any variation of the type of land use in the study area leads to very small, mostly insignificantly small, additional differences in mean temperature and annual precipitation change in this region. These findings are only based on the specific set-up of our experiments, which only focuses on variations in the kind of land use, and not the increase in land use, over the 21st century, nor whether land use is considered at all. Within the uncertainty of the representation of land use in current ESMs, our study suggests marginal feedback between land use changes and climate changes triggered by strong greenhouse gas emissions. Hence as a good approximation, climate can be considered as an external forcing: models investigating land-use-conflict dynamics can run offline by prescribing seasonal or mean values of climate as a boundary condition

  11. Modelling land use/cover changes with markov-cellular automata in Komering Watershed, South Sumatera

    NASA Astrophysics Data System (ADS)

    Kusratmoko, E.; Albertus, S. D. Y.; Supriatna

    2017-01-01

    This research has a purpose to study and develop a model that can representing and simulating spatial distribution pattern of land use change in Komering watershed. The Komering watershed is one of nine sub Musi river basin and is located in the southern part of Sumatra island that has an area of 8060,62 km2. Land use change simulations, achieved through Markov-cellular automata (CA) methodologies. Slope, elevation, distance from road, distance from river, distance from capital sub-district, distance from settlement area area were driving factors that used in this research. Land use prediction result in 2030 also shows decrease of forest acreage up to -3.37%, agricultural land decreased up to -2.13%, and open land decreased up to -0.13%. On the other hand settlement area increased up to 0.07%, and plantation land increased up to 5.56%. Based on the predictive result, land use unconformity percentage to RTRW in Komering watershed is 18.62 % and land use conformity is 58.27%. Based on the results of the scenario, where forest in protected areas and agriculture land are maintained, shows increase the land use conformity amounted to 60.41 % and reduce unconformity that occur in Komering watershed to 17.23 %.

  12. Object-Based Retro-Classification Of A Agricultural Land Use: A Case Study Of Irrigated Croplands

    NASA Astrophysics Data System (ADS)

    Dubovyk, Olena; Conrad, Christopher; Khamzina, Asia; Menz, Gunter

    2013-12-01

    Availability of the historical crop maps is necessary for the assessment of land management practices and their effectiveness, as well as monitoring of environmental impacts of land uses. Lack of accurate current and past land-use information forestalls assessment of the occurred changes and their consequences and, thus, complicates knowledge-driven agrarian policy development. At the same time, lack of the sampling dataset for the past years often restrict mapping of historical land use. We proposed a methodology for a retro-assessment of several crops, based on multitemporal Landsat 5 TM imagery and a limited sampling dataset. The overall accuracy of the retro-map was 81% while accuracies for specific crop classes varied from 60% to 93%. If further elaborated, the developed method could be a useful tool for the generation of historical data on agricultural land use.

  13. Agriculture, Food Production, and Rural Land Use in Advanced Placement® Human Geography

    ERIC Educational Resources Information Center

    Moseley, William G.; Watson, Nancy H.

    2016-01-01

    ''Agriculture, Food, and Rural Land Use" constitutes a major part of the AP Human Geography course outline. This article explores challenging topics to teach, emerging research trends in agricultural geography, and sample teaching approaches for concretizing abstract topics. It addresses content identified as "essential knowledge"…

  14. CORAL RESPONSES TO CLIMATE AND LAND USE CHANGES

    EPA Science Inventory

    Fisher, William S., Debbie L. Santavy, John E. Rogers and Richard G. Zepp. In press. Coral Responses to Climate and Land Use Changes (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1019).

    Coral reefs have ex...

  15. Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use

    NASA Astrophysics Data System (ADS)

    Steinbuks, J.; Hertel, T. W.

    2011-12-01

    The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the

  16. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  17. Potential climate forcing of land use and land cover change

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-05-01

    Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. Given these projected trends there is a need to understand the global climate impacts of land use and land cover change (LULCC). Here we quantify the climate impacts of global LULCC in terms of modifications to the balance between incoming and outgoing radiation at the top of the atmosphere (radiative forcing; RF) that are caused by changes in long-lived and short-lived greenhouse gas concentrations, aerosol effects and land surface albedo. We simulate historical changes to terrestrial carbon storage, global fire emissions, secondary organic aerosol emissions, and surface albedo from LULCC using the Community Land Model version 3.5. These LULCC emissions are combined with estimates of agricultural emissions of important trace gases and mineral dust in two sets of Community Atmosphere Model simulations to calculate the RF from LULCC impacts on atmospheric chemistry and changes in aerosol concentrations. With all forcing agents considered together, we show that 45% (+30%, -20%) of the present-day anthropogenic RF can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC RF by a factor of 2 to 3 with respect to the LULCC RF from CO2 alone. This enhancement factor also applies to projected LULCC RF, which we compute for four future scenarios associated with the Representative Concentration Pathways. We calculate total RFs between 1 to 2 W m-2 from LULCC for the year 2100 (relative to a preindustrial state). To place an upper bound on the potential of LULCC to alter the global radiation budget we include a fifth

  18. Potential climate forcing of land use and land cover change

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present-day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. Given these projected trends there is a need to understand the global climate impacts of land use and land cover change (LULCC). Here we quantify the climate impacts of global LULCC in terms of modifications to the balance between incoming and outgoing radiation at the top of the atmosphere (radiative forcing, RF) that are caused by changes in long-lived and short-lived greenhouse gas concentrations, aerosol effects, and land surface albedo. We attribute historical changes in terrestrial carbon storage, global fire emissions, secondary organic aerosol emissions, and surface albedo to LULCC using simulations with the Community Land Model version 3.5. These LULCC emissions are combined with estimates of agricultural emissions of important trace gases and mineral dust in two sets of Community Atmosphere Model simulations to calculate the RF of changes in atmospheric chemistry and aerosol concentrations attributed to LULCC. With all forcing agents considered together, we show that 40% (±16%) of the present-day anthropogenic RF can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC RF by a factor of 2 to 3 with respect to the LULCC RF from CO2 alone. This enhancement factor also applies to projected LULCC RF, which we compute for four future scenarios associated with the Representative Concentration Pathways. We attribute total RFs between 0.9 and 1.9 W m-2 to LULCC for the year 2100 (relative to a pre-industrial state). To place an upper bound on the potential of LULCC to alter the global radiation budget

  19. Analyzing historical land use changes using a Historical Land Use Reconstruction Model: a case study in Zhenlai County, northeastern China

    PubMed Central

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui; Xing, Xiaoshi; de Sherbinin, Alex

    2017-01-01

    Historical land use information is essential to understanding the impact of anthropogenic modification of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a lack of spatial explicitness, complete thematic details and the conversion types for historical land use changes, the majority of historical land use reconstructions do not sufficiently meet the requirements for an adequate model. Considering these shortcomings, we explored the possibility of constructing a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then a three-map comparison method was adopted to validate the projected reconstruction map. The reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. The largest land use/cover type in the study area was determined to be grassland, followed by arable land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land use changes among the three maps were as a result of inconsistencies in the classification of land-use categories during the study period, rather than as a result of the simulation model. PMID:28134342

  20. Analyzing historical land use changes using a Historical Land Use Reconstruction Model: a case study in Zhenlai County, northeastern China

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui; Xing, Xiaoshi; de Sherbinin, Alex

    2017-01-01

    Historical land use information is essential to understanding the impact of anthropogenic modification of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a lack of spatial explicitness, complete thematic details and the conversion types for historical land use changes, the majority of historical land use reconstructions do not sufficiently meet the requirements for an adequate model. Considering these shortcomings, we explored the possibility of constructing a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then a three-map comparison method was adopted to validate the projected reconstruction map. The reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. The largest land use/cover type in the study area was determined to be grassland, followed by arable land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land use changes among the three maps were as a result of inconsistencies in the classification of land-use categories during the study period, rather than as a result of the simulation model.

  1. Analyzing historical land use changes using a Historical Land Use Reconstruction Model: a case study in Zhenlai County, northeastern China.

    PubMed

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui; Xing, Xiaoshi; de Sherbinin, Alex

    2017-01-30

    Historical land use information is essential to understanding the impact of anthropogenic modification of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a lack of spatial explicitness, complete thematic details and the conversion types for historical land use changes, the majority of historical land use reconstructions do not sufficiently meet the requirements for an adequate model. Considering these shortcomings, we explored the possibility of constructing a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then a three-map comparison method was adopted to validate the projected reconstruction map. The reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. The largest land use/cover type in the study area was determined to be grassland, followed by arable land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land use changes among the three maps were as a result of inconsistencies in the classification of land-use categories during the study period, rather than as a result of the simulation model.

  2. Human modification of the atmospheric water cycle through land use change

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Keys, Patrick; Fetzer, Ingo; Savenije, Hubert; Gordon, Line

    2016-04-01

    Human society have radically transformed the land surface of the Earth and through that altered the hydrological cycle in various way. In this research, we quantify and analyse the global changes to terrestrial moisture recycling from anthropogenic driven modifications in land cover and land use. We simulate evaporation and moisture recycling in potential, historical, and current land cover and land use scenarios by coupling a global hydrological model (STEAM) with a moisture tracking scheme (WAM-2layers). Moreover, we investigate where and when rainfall change occurs, assuming that change in moisture recycling translates into change in rainfall. Although changes in the hydrological flows are limited at the global and annual average, the spatial and temporal differences are significant. Propagation of land use change into rainfall change appears non-uniformly distributed. In particular, disappearance of vegetation appears to reduce the dry season length and affect the dry season rainfall more than the average. Thus, land use change in certain regions potentially affects agricultural development in downwind regions by altering the total rainfall as well as the dry season length. This study shows how land resources and water availability are tightly connected also over large distances, and points to the need to study land use change and climate change in conjunction.

  3. Land use changing and land use optimization of Lake Baikal basin on the example of two key areas

    NASA Astrophysics Data System (ADS)

    Solodyankina, S.

    2012-04-01

    Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years

  4. Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions

    NASA Astrophysics Data System (ADS)

    Bayer, Anita D.; Lindeskog, Mats; Pugh, Thomas A. M.; Anthoni, Peter M.; Fuchs, Richard; Arneth, Almut

    2017-02-01

    Land-use and land-cover (LUC) changes are a key uncertainty when attributing changes in measured atmospheric CO2 concentration to its sinks and sources and must also be much better understood to determine the possibilities for land-based climate change mitigation, especially in the light of human demand on other land-based resources. On the spatial scale typically used in terrestrial ecosystem models (0.5 or 1°) changes in LUC over time periods of a few years or more can include bidirectional changes on the sub-grid level, such as the parallel expansion and abandonment of agricultural land (e.g. in shifting cultivation) or cropland-grassland conversion (and vice versa). These complex changes between classes within a grid cell have often been neglected in previous studies, and only net changes of land between natural vegetation cover, cropland and pastures accounted for, mainly because of a lack of reliable high-resolution historical information on gross land transitions, in combination with technical limitations within the models themselves. In the present study we applied a state-of-the-art dynamic global vegetation model with a detailed representation of croplands and carbon-nitrogen dynamics to quantify the uncertainty in terrestrial ecosystem carbon stocks and fluxes arising from the choice between net and gross representations of LUC. We used three frequently applied global, one recent global and one recent European LUC datasets, two of which resolve gross land transitions, either in Europe or in certain tropical regions. When considering only net changes, land-use-transition uncertainties (expressed as 1 standard deviation around decadal means of four models) in global carbon emissions from LUC (ELUC) are ±0.19, ±0.66 and ±0.47 Pg C a-1 in the 1980s, 1990s and 2000s, respectively, or between 14 and 39 % of mean ELUC. Carbon stocks at the end of the 20th century vary by ±11 Pg C for vegetation and ±37 Pg C for soil C due to the choice of LUC

  5. Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation.

    PubMed

    Stuhler, John D; Orrock, John L

    2016-06-01

    Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators.

  6. Modeling green infrastructure land use changes on future air ...

    EPA Pesticide Factsheets

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  7. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel

    2008-06-01

    Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those

  8. PROJECTING LAND-USE CHANGE: A SUMMARY OF THE EFFECTS OF COMMUNITY GROWTH AND CHANGE ON LAND-USE PATTERNS

    EPA Science Inventory

    Many potential clients for land-use change models, such as city and county planners, community groups, and environmental agencies, need better information on the features, strengths, and limitations of various model packages. Because of this growing need, the U.S. Environmental P...

  9. ASSESSING THE RELATIVE AND COMBINED IMPACTS OF FUTURE LAND-USE AND CLIMATE CHANGES ON NONPOINT SOURCE POLLUTION

    EPA Science Inventory

    In this paper, we discuss the potential water quality impacts of future land-use and climate changes. The Little Miami River Basin was used as a case study. It is a predominantly agricultural watershed in southwestern Ohio (U.S.A.) that has experienced land-use modifications. ...

  10. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence

    PubMed Central

    Murray, Kris. A.; Daszak, Peter

    2013-01-01

    The emergence of novel viral diseases is driven by socioeconomic, demographic and environmental changes. These include land use changes such as deforestation, agricultural expansion and habitat degradation. However, the links between land use change and disease emergence are poorly understood and likely complex. In this review, we propose two hypotheses for the mechanisms by which land use change can lead to viral emergence: 1) by perturbing disease dynamics in multi-host disease systems via impacts on cross-species transmission rates (the ‘perturbation’ hypothesis); and 2) by allowing exposure of novel hosts to a rich pool of pathogen diversity (the ‘pathogen pool’ hypothesis). We discuss ways that these two hypotheses might be tested using a combination of ecological and virological approaches, and how this may provide novel control and prevention strategies. PMID:23415415

  11. Disease emergence from global climate and land use change.

    PubMed

    Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K

    2008-11-01

    Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.

  12. Global land-use change hidden behind nickel consumption.

    PubMed

    Nakajima, Kenichi; Nansai, Keisuke; Matsubae, Kazuyo; Tomita, Makoto; Takayanagi, Wataru; Nagasaka, Tetsuya

    2017-05-15

    Economic growth is associated with a rapid rise in the use of natural resources within the economy, and has potential environmental impacts at local and/or global scales. In today's globalized economy, each country has indirect flows supporting its economic activities, and natural resource consumption through supply chains influences environmental impacts far removed from the place of consumption. One way to control environmental impacts associated with consumption of natural resources is to identify the consumption of natural resources and the associated environmental impacts through the global supply chain. In this study, we used a global link input-output model (GLIO, a hybrid multiregional input-output model) to detect the linkages between national nickel consumption and mining-associated global land-use changes. We focused on nickel, whose global demand has risen rapidly in recent years, as a case study. The estimated area of land-use change around the world caused by nickel mining in 2005 was 1.9km(2), and that induced by Japanese final demand for nickel was 0.38km(2). Our modeling also revealed that the areas of greatest land-use change associated with nickel mining were concentrated in only a few countries and regions far removed from the place of consumption. For example, 57.7% of the world's land-use changes caused by nickel mining were concentrated in five countries in 2005: Australia, 13.7%; Russia, 12.9%; Indonesia, 12.5%; New Caledonia, 10.4%; and Colombia, 8.2%. The mining-associated land-use change induced by Japanese final demand accounted for 19.5% of the total area affected by land-use change caused by nickel mining. The top three countries accounted for 70.6% (Indonesia: 47.0%, New Caledonia: 16.0%, and Australia: 7.7%), and the top five accounted for 82.4% (the Philippines: 7.5%, and Canada: 4.3%, in addition to the top three countries and regions).

  13. Implications of land-use change on forest carbon stocks in the eastern United States

    NASA Astrophysics Data System (ADS)

    Puhlick, Joshua; Woodall, Christopher; Weiskittel, Aaron

    2017-02-01

    Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest stand-level evaluations of C dynamics and trajectories. To better inform the assessment of forest stand C dynamics in the context of potential land-use change, we used a region-wide repeated forest inventory (n = 71 444 plots) across the eastern United States to assess forest land-use conversion and associated changes in forest C stocks. Specifically, the probability of forest area reduction between 2002–2006 and 2007–2012 on these plots was related to key driving factors such as proportion of the landscape in forest land use, distance to roads, and initial forest C. Additional factors influencing the actual reduction in forest area were then used to assess the risk of forest land-use conversion to agriculture, settlement, and water. Plots in forests along the Great Plains had the highest periodic (approximately 5 years) probability of land-use change (0.160 ± 0.075; mean ± SD) with forest conversion to agricultural uses accounting for 70.5% of the observed land-use change. Aboveground forest C stock change for plots with a reduction in forest area was ‑4.2 ± 17.7 Mg ha‑1 (mean ± SD). The finding that poorly stocked stands and/or those with small diameter trees had the highest probability of conversion to non-forest land uses suggests that forest management strategies can maintain the US terrestrial C sink not only in terms of increased net forest growth but also retention of forest area to avoid conversion. This study highlights the importance of considering land-use change in planning and policy decisions that seek to maintain or enhance regional C sinks.

  14. Modeling biofuel expansion effects on land use change dynamics

    NASA Astrophysics Data System (ADS)

    Warner, Ethan; Inman, Daniel; Kunstman, Benjamin; Bush, Brian; Vimmerstedt, Laura; Peterson, Steve; Macknick, Jordan; Zhang, Yimin

    2013-03-01

    Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses. This model provides insights into the drivers and dynamic interactions of LUC (e.g., dietary choices and biofuel policy) and is not intended to assert improvement in numerical results relative to other works. Demand for food commodities are mostly met in high food and high crop-based biofuel demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet food demands under a presumed 40% increase in per capita food demand. In comparison, the high food demand scenario requires greater pastureland for meat production, leading to larger overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a potential for supply shortfalls, and associated upward pressure on prices, of food commodities requiring higher land use intensity (e.g., beef) which biofuels could exacerbate.

  15. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition.

    PubMed

    Allan, Eric; Manning, Pete; Alt, Fabian; Binkenstein, Julia; Blaser, Stefan; Blüthgen, Nico; Böhm, Stefan; Grassein, Fabrice; Hölzel, Norbert; Klaus, Valentin H; Kleinebecker, Till; Morris, E Kathryn; Oelmann, Yvonne; Prati, Daniel; Renner, Swen C; Rillig, Matthias C; Schaefer, Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily; Sorkau, Elisabeth; Steckel, Juliane; Steffen-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Fischer, Markus

    2015-08-01

    Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.

  16. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods

    SciTech Connect

    Kyle, G. Page; Luckow, Patrick; Calvin, Katherine V.; Emanuel, William R.; Nathan, Mayda; Zhou, Yuyu

    2011-12-12

    This report presents the data processing methods used in the GCAM 3.0 agriculture and land use component, starting from all source data used, and detailing all calculations and assumptions made in generating the model inputs. The report starts with a brief introduction to modeling of agriculture and land use in GCAM 3.0, and then provides documentation of the data and methods used for generating the base-year dataset and future scenario parameters assumed in the model input files. Specifically, the report addresses primary commodity production, secondary (animal) commodity production, disposition of commodities, land allocation, land carbon contents, and land values.

  17. Land use changes assessment using spatial data: Case study in Cong river basin - Thai Nguyen City - Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu

    Land use changes are being interested in most countries, especially in developing countries. Because land use changes always impacts on sustainable development not only in a region or a country but also in whole the world. Viet Nam is a developing country, in the last 10 years, land uses have rapidly changed in most provinces. Many of agriculture areas, forest areas have changed for various purposes as urban sprawl, establishing new industrial parks, public areas, mining and other land uses relate to human activities or economic function associated with a specific piece of land. Beside efficiencies of economic and society, then environment issues have been threatening serious pollution, are from land use changes. Remote sensing images application on studying land use changes, has been done in many countries around the world, and has brought high efficiencies. However, this application is still very new and limited in Viet Nam due to lacking of materials, tools, experts of remote sensing. This study used spatial data as Landsat TM images, SPOT5 images and land use planning maps to rapidly assess on happenings of land uses in the period 2000 -2010 in Cong river basin (Thai Nguyen City, Viet Nam), and to forecast the changes of land uses in the period 2010 - 2020. The results had a good accuracy and to be important references for authorities, policy makers in local land use.

  18. Agricultural land-use history causes persistent loss of plant phylogenetic diversity.

    PubMed

    Turley, Nash E; Brudvig, Lars A

    2016-09-01

    Intensive land use activities, such as agriculture, are a leading cause of biodiversity loss and can have lasting impacts on ecological systems. Yet, few studies have investigated how land-use legacies impact phylogenetic diversity (the total amount of evolutionary history in a community) or how restoration activities might mitigate legacy effects on biodiversity. We studied ground-layer plant communities in 27 pairs of Remnant (no agricultural history) and Post-agricultural (agriculture abandoned >60 yr ago) longleaf pine savannas, half of which we restored by thinning trees to reinstate open savanna conditions. We found that agricultural history had no impact on species richness, but did alter community composition and reduce phylogenetic diversity by 566 million years/1,000 m(2) . This loss of phylogenetic diversity in post-agricultural savannas was due to, in part, a reduction in the average evolutionary distance between pairs of closely related species, that is, increased phylogenetic clustering. Habitat restoration increased species richness by 27% and phylogenetic diversity by 914 million years but did not eliminate the effects of agricultural land use on community composition and phylogenetic structure. These results demonstrate the persistence of agricultural legacies, even in the face of intensive restoration efforts, and the importance of considering biodiversity broadly when evaluating human impacts on ecosystems.

  19. Consequences of land use and land cover change

    USGS Publications Warehouse

    Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.

  20. Efficiency of different techniques to identify changes in land use

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Mateix-Solera, Jorge; Gerrero, César

    2013-04-01

    The need for the development of sensitive and efficient methodologies for soil quality evaluation is increasing. The ability to assess soil quality and identify key soil properties that serve as indicators of soil function is complicated by the multiplicity of physical, chemical and biological factors that control soil processes. In the mountain region of the Mediterranean Basin of Spain, almond trees have been cultivated in terraced orchards for centuries. These crops are immersed in the Mediterranean forest scenery, configuring a mosaic landscape where orchards are integrated in the forest masses. In the last decades, almond orchards are being abandoned, leading to an increase in vegetation cover, since abandoned fields are naturally colonized by the surrounded natural vegetation. Soil processes and properties are expected to be associated with vegetation successional dynamics. Thus, the establishment of suitable parameters to monitor soil quality related to land use changes is particularly important to guarantee the regeneration of the mature community. In this study, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations in SE Spain. The main purpose was to evaluate if changes in management have significantly influenced different sets of soil characteristics. For this purpose, we used a discriminant analysis (DA). The different sets of soil characteristics tested in this study were 1: physical, chemical and biochemical properties; 2: soil near infrared (NIR) spectra; and 3: phospholipid fatty acids (PLFAs). After the DA performed with the sets 1 and 2, the three land uses were clearly separated by the two first discriminant functions, and more than 85 % of the samples were correctly classified (grouped). Using the sets 3 and 4 for DA resulted in a slightly better separation of land uses, being more than 85% of the

  1. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  2. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  3. Estimating impacts of climate change policy on land use: an agent-based modelling approach.

    PubMed

    Morgan, Fraser J; Daigneault, Adam J

    2015-01-01

    Agriculture is important to New Zealand's economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer's decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises.

  4. Estimating Impacts of Climate Change Policy on Land Use: An Agent-Based Modelling Approach

    PubMed Central

    2015-01-01

    Agriculture is important to New Zealand’s economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer’s decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises. PMID:25996591

  5. Association of land use and its change with beach closure in ...

    EPA Pesticide Factsheets

    Land use and its change have great influences on water quality. However, their impacts on microbial contamination of beach water have been rarely investigated and their relationship with beach closure is still unknown. Here, we analyzed beach closure data obtained from 2004 to 2013 for more than 500 beaches in the United States, and examined their associations with land use around beaches in 2006 and 2011, respectively, as well as the land use change between 2011 and 2006. The results show that the number of beach closures is negatively associated with the percentages of forest, barren land, grassland and wetland, while positively associated with the percentage of urban area. The results from multi-level models also indicate the negative association with forest area but positive association with urban area and agriculture. The examination of the change of land use and the number of beach closures between 2011 and 2006 indicates that the increase in the number of beach closures is positively associated with the increase in urban (β=1.612, p<0.05) and agricultural area including pasture (β=0.098, p<0.05), but negatively associated with the increase in forest area (β= -1.789, p<0.05). The study suggests that urbanization and agriculture development near beaches have adverse effects on beach microbial water quality, while afforestation may protect beach water quality and reduce the number of beach closures. To compare differences in beach closures across the US u

  6. Biodiversity scenarios neglect future land-use changes.

    PubMed

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.

  7. Land use change and terrestrial carbon stocks in Senegal

    USGS Publications Warehouse

    Woomer, P.L.; Tieszen, L.L.; Tappan, G.; Toure, A.; Sall, M.

    2004-01-01

    Environmental degradation resulting from long-term drought and land use change has affected terrestrial carbon (C) stocks within Africa's Sahel. We estimated Senegal's terrestrial carbon stocks in 1965, 1985, and 2000 using an inventory procedure involving satellite images revealing historical land use change, and recent field measurements of standing carbon stocks occurring in soil and plants. Senegal was divided into eight ecological zones containing 11 land uses. In 2000, savannas, cultivated lands, forests, and steppes were the four largest land uses in Senegal, occupying 70, 22, 2.7, and 2.3 percent of Senegal's 199,823 km2. System C stocks ranged from 9 t C ha−1 in degraded savannas in the north, to 113 t C ha−1 in the remnant forests of the Senegal River Valley. This approach resulted in estimated total C stocks of 1019 and 727 MT C between 1965 and 2000, respectively, indicating a loss of 292 MT C over 35 years. The proportion of C residing in biomass decreased with time, from 55 percent in 1965 to 38 percent in 2000. Calculated terrestrial C flux for 1993 was −7.5 MT C year−1 and had declined by 17 percent over the previous 18 years. Most of the terrestrial C flux in 1993 was attributed to biomass C reduction. Human disturbance accounted for only 22 percent of biomass C loss in 1993, suggesting that the effects of long-term Sahelian drought continue to play an overriding role in ecosystem change. Some carbon mitigation strategies for Senegal were investigated, including potential C sequestration levels. Opportunities for C mitigation exist but are constrained by available knowledge and access to resources.

  8. Implications of land use change in tropical West Africa under global warming

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Claussen, Martin

    2015-04-01

    Northern Africa, and the Sahel in particular, are highly vulnerable to climate change, due to strong exposure to increasing temperature, precipitation variability, and population growth. A major link between climate and humans in this region is land use and associated land cover change, mainly where subsistence farming prevails. But how strongly does climate change affect land use and how strongly does land use feeds back into climate change? To which extent may climate-induced water, food and wood shortages exacerbate conflict potential and lead changes in land use and to migration? Estimates of possible changes in African climate vary among the Earth System Models participating in the recent Coupled Model Intercomparison (CMIP5) exercise, except for the region adjacent to the Mediterranean Sea, where a significant decrease of precipitation emerges. While all models agree in a strong temperature increase, rainfall uncertainties for most parts of the Sahara, Sahel, and Sudan are higher. Here we present results of complementary experiments based on extreme and idealized land use change scenarios within a future climate.. We use the MPI-ESM forced with a strong green house gas scenario (RCP8.5) and apply an additional land use forcing by varying largely the intensity and kind of agricultural practice. By these transient experiments (until 2100) we elaborate the additional impact on climate due to strong land use forcing. However, the differences are mostly insignificant. The greenhouse gas caused temperature increase and the high variability in the West African Monsoon rainfall superposes the minor changes in climate due to land use. While simulated climate key variables like precipitation and temperature are not distinguishable from the CMIP5 RCP8.5 results, an additional greening is simulated, when crops are demanded. Crops have lower water usage than pastureland has. This benefits available soil water, which is taken up by the natural vegetation and makes it more

  9. Analyzing the Food-Fuel-Environment Tri-Lemma Facing World Agriculture: Global Land Use in the Coming Century

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.

    2011-12-01

    The number of people which the world must feed is expected to increase by another 3 billion people by 2100. When coupled with significant nutritional improvements for the 2.1 billion people currently living on less than $2/day, this translates into a very substantial rise in the demand for agricultural production. At the same time, the growing use of biomass for energy generation has introduced an important new source of industrial demand in agricultural markets. To compound matters, water, a key input into agricultural production, is rapidly diminishing in availability in large parts of the world and many soils are degrading. In addition, agriculture and forestry are increasingly envisioned as key sectors for climate change mitigation policy. Any serious attempt to reduce land-based emissions will involve changes in the way farming is conducted, as well as placing limits on the expansion of farming - particularly in the tropics, where most of the agricultural land conversion has come at the expense of forests, either directly, or indirectly via a cascading of land use requirements with crops moving into pasture and pasture into forest. Finally, agriculture and forestry are likely to be the economic sectors whose productivity is most sharply affected by climate change. In light of these challenges facing the global farm and food system, this paper will review the main sources of supply and demand for the world's cropland, and then provide a quantitative assessment of the impact of these forces on global land use over the coming century. The model incorporates forward looking behavior and examines competition between land used for ecosystem services, forestry, food and fuel. Explicit account is taken of emissions associated with both the intensive and extensive margins of agricultural expansion, as well as carbon sequestration and energy combustion. Key findings include: (a) energy prices and environmental policies will be increasingly important drivers of land use

  10. Evaluating Policy Options for Biofuel Land Use Change

    NASA Astrophysics Data System (ADS)

    Witcover, J.; Yeh, S.; Msangi, S.

    2012-12-01

    The use of biofuels leads to global land use change (LUC) through increased land competition. LUC poses risks such as increased greenhouse gas emissions and food prices, that policymakers must balance against biofuel objectives. This paper examines policy approaches to lower LUC risk from biofuels. We propose a three-pronged policy approach: (1) promoting feedstocks that rely less on land; (2) reducing LUC risk for land-using feedstocks; and (3) stimulating investments that increase land productivity and environmental protection. We illustrate possibilities for model-based evaluation of LUC policy design options using two linked partial economic equilibrium simulation models (BEPAM/IMPACT). While the modeling addresses only a subset of mitigation options presented (including an 'iLUC factor'), it illustrates how this approach can shed light on the geographical distribution and magnitude of LUC resulting from specific policy designs.

  11. Assessment of watershed regionalization for the land use change parameterization

    NASA Astrophysics Data System (ADS)

    Randusová, Beata; Kohnová, Silvia; Studvová, Zuzana; Marková, Romana; Nosko, Radovan

    2016-04-01

    The estimation of design discharges and water levels of extreme floods is one of the most important parts of the design process for a large number of engineering projects and studies. Floods and other natural hazards initiated by climate, soil, and land use changes are highly important in the 21st century. Flood risks and design flood estimation is particularly challenging. Methods of design flood estimation can be applied either locally or regionally. To obtain the design values in such cases where no recorded data exist, many countries have adopted procedures that fit the local conditions and requirements. One of these methods is the Soil Conservation Service - Curve number (SCS-CN) method which is often used in design flood estimation for ungauged sites. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. This study is focused on development of the SCS-CN methodology for the changing land use conditions in Slovak basins (with the pilot site of the Myjava catchment), which regionalize actual state of land use data and actual rainfall and discharge measurements of the selected river basins. In this study the state of the water erosion and sediment transport along with a subsequent proposal of erosion control measures was analyzed as well. The regionalized SCS-CN method was subsequently used for assessing the effectiveness of this control measure to reduce runoff from the selected basin. For the determination of the sediment transport from the control measure to the Myjava basin, the SDR (Sediment Delivery Ratio) model was used.

  12. Modeling Soil Organic Carbon for Agricultural Land Use Under Various Management Practices

    NASA Astrophysics Data System (ADS)

    Kotamarthi, V. R.; Drewniak, B.; Song, J.; Prell, J.; Jacob, R. L.

    2009-12-01

    Bioenergy is generating tremendous interest as an alternative energy source that is both environmentally friendly and economically competitive. The amount of land designated for agriculture is expected to expand, including changes in the current distribution of crops, as demand for biofuels increases as a carbon neutral alternative fuel source. However, the influence of agriculture on the carbon cycle is complex, and varies depending on land use change and management practices. The purpose of this research is to integrate agriculture in the carbon-nitrogen based Community Land Model (CLM) to evaluate the above and below ground carbon storage for corn, soybean, and wheat crop lands. The new model, CLM-Crop simulates carbon allocation during four growth stages, a soybean nitrogen fixation scheme, fertilizer, and harvest practices. We present results from this model simulation, which includes the impact of a new dynamic roots module to simulate the changing root structure and depth with growing season based on the availability of water and nitrogen in the root zone and a retranslocation scheme to simulate redistribution of nitrogen from leaves, roots, and stems to grain during organ development for crop yields, leaf area index (LAI), carbon allocation, and changes in soil carbon budgets under various practices such as fertilizer and residue management. Simulated crop yields for corn, soybean and wheat are in general agreement with measurements. Initial model results indicate a loss of soil organic carbon over cultivated lands after removal of natural vegetation which continues in the following years. Soil carbon in crop lands is a strong function of the residue management and has the potential to impact crop yields significantly.

  13. UK land-use change and its impact on SOC: 1925-2007

    NASA Astrophysics Data System (ADS)

    Bell, M. J.; Worrall, F.; Smith, Pete; Bhogal, Anne; Black, Helaina; Lilly, Allan; Barraclough, Declan; Merrington, Graham

    2011-12-01

    The contribution of soil organic carbon (SOC) to atmospheric greenhouse gas (GHG) concentrations could increase due to rising temperatures, agricultural land-management, and land-use change. Here the results of a modeling study are presented, which reviews the changing patterns of UK land-use from 1925 to 2007, and estimates the contribution that these changes have had toward UK GHG emissions. The study uses a large database of SOC concentrations from which SOC stocks are estimated for land-uses typical of the UK, and combines this with literature values of transition times for SOC to adjust to a new concentration following land-use change. The model was designed to be used with limited input data, allowing the impacts of historical land-use change, lacking in site specific soil and vegetation change data to be assessed. This study suggests that from 1925 to 2007 the UK's soils have acted as a net carbon sink as a result of land-use change, sequestering a total of 102 Tg C. This represents a 5% net gain in total SOC stocks, and an average increase of 1.9 Tg C/year (inter-quartile range: 0.19-3.12 Tg C/yr). When the reported losses of SOC due to climate change are compared to the gains resulting from land-use change the UK's soils are a sink of carbon, with the gains from land-use change offsetting those due to climate change. This overall sink is the result of an increase in the area of woodland, and conversion of arable land to permanent grassland. The greatest sequestration in any one year occurred in 1993 and coincides with the introduction of set-aside. The largest SOC flux to the atmosphere occurred in 1942 following arable expansion, emitting 12.3 Tg C in one year. This flux is equivalent to almost 10% of the UK's current total GHG emissions, indicating that such land-use change should be avoided in the future if targets to reduce GHG emissions are to be met.

  14. Threats and opportunities for freshwater conservation under future land use change scenarios in the United States.

    PubMed

    Martinuzzi, Sebastián; Januchowski-Hartley, Stephanie R; Pracheil, Brenda M; McIntyre, Peter B; Plantinga, Andrew J; Lewis, David J; Radeloff, Volker C

    2014-01-01

    Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001-2051) with current patterns of freshwater biodiversity and water quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water quality problems (e.g., the Midwest). Our scenarios reflecting environmentally oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the United States into the future will require attending to the potential threats and opportunities

  15. New Jersey Land-Use Planning Techniques and Legislation. Agricultural Experiment Station Bulletin AE-338.

    ERIC Educational Resources Information Center

    Schneider, Lee D.

    In response to recent urban to rural migration trends and the development of rather piecemeal land use policies and practices by local, state, and Federal decision makers, the U.S. Department of Agriculture has established a regional project (NE-78) and this report reflects the first of three major project objectives (to describe and appraise…

  16. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  17. Modeling socioeconomic and ecologic aspects of land-use change. A case study of Central Rondonia

    SciTech Connect

    Dale, V.H.; Pedlowski, M.A.; O`Neill, R.V.; Southworth, F.

    1992-11-01

    Land use change is one of the major factors affecting global environmental conditions. Prevalent types of land-use change include replacing forests with agriculture, mines or ranches; forest degradation from collection of firewood; and forest logging. A global effect of wide-scale deforestation is an increase in atmospheric carbon dioxide concentration, which may affect climate. Regional effects include loss of biodiversity and disruption of hydrologic regimes. Local effects include soil erosion, siltation and decreases in soil fertility, loss of extractive reserves, and disruption of indigenous people. Modeling land use change requires combining socioeconomic and ecological factors because socioeconomic forces frequently initiate land-use change and are affected by the subsequent ecological degradation. This paper describes a modeling system that integrates submodels of human colonization and impacts to estimate patterns and rates of deforestation under different immigration and land use scenarios. Immigration which follows road building or paving is a major factor in the rapid deforestation of previously inaccessible areas. Roads facilitate colonization, allow access for large machines, and provide transportation routes for mort of raw materials and produce.

  18. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  19. Association between agricultural land use and West Nile virus antibody prevalence in Iowa birds.

    PubMed

    Randall, Natalie J; Blitvich, Bradley J; Blanchong, Julie A

    2013-10-01

    In the Plains states of the central United States, research suggests that the prevalence of West Nile virus (WNV) disease in humans is higher in agricultural areas than in nonagricultural areas. In contrast, there is limited information about WNV exposure in birds, the primary amplifying host of WNV, in agriculturally dominated landscapes. We evaluated whether exposure to WNV in peridomestic birds sampled in central Iowa varied with the proportion of land use devoted to agriculture. Over the summers of 2009 and 2010, we captured birds in sites comprising gradients of agricultural, urban, and natural land uses, and tested their sera for antibodies to WNV. Overall, WNV antibody prevalence was low (2.3%). Our results suggest that agricultural land use had minimal influence on WNV exposure in birds. We conclude that birds are not likely to be useful indicators of WNV activity in agricultural areas in the Plains states despite human risk being highest in those areas. Antibody prevalence for WNV, however, was higher in American Robins, Mourning Doves, and Northern Cardinals than in other species, making these species potentially useful for monitoring WNV activity in the US Plains states.

  20. Conversion of prime agricultural land to urban land uses in Kansas City

    NASA Technical Reports Server (NTRS)

    Shaklee, R. V.

    1976-01-01

    In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

  1. From grass to grape - land use change and soil structure

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg

    2015-04-01

    In 1997 a ~0.5 ha vineyard was established on land formerly used as pasture; located in Namibia between the Naukluft and Tsaris mountains, some 50 to 60 km east of the Namib Sand Sea. Fossil water from springs along a geological fault provide the basis for this endeavour. In September 2013 the cultivated area has been enlarged by another 3 ha. In August 2014 soil samples were taken from the differently-aged vineyards and two adjacent spots outside the cropped areas. Additionally soil samples were taken from a neighbouring farm, which is irregularly used as pasture. The two locations are approximately 6.5 km apart. Undisturbed cores were extracted along with bulk soil samples to determine a suite of physical and chemical parameters. These parameters include texture, bulk density, water retention, air permeability, soil organic carbon (SOC), nitrogen (N), pH, electrical conductivity, and cation exchange capacity. The soil of the older vineyard showed the highest values of SOC (%) compared to both, the younger vineyard and pasture soils. Also N (%) levels were higher in the old vineyard soil. These differences are ascribed to the effects of land use change. Cultivating wine for 17 years and the associated farming practices influenced the soil properties. The young vineyard in comparison has not (yet) exerted a similar impact onto the soil as the land use change took place less than a year prior to sampling. The young vineyard reflects to some extent the initial conditions of the old vineyard, this can be used to predict the future impact of farming for this soil. Pasture is the predominant type of land use in this area. In order to compare one type of land use with another, the pasture soils from the neighbouring farm can be used. Contents of SOC and N are within a similar range for soils from the young vineyard and the pasture, which indicates that the recent land use change has not yet manifested itself in these parameters. However the old vineyard differs from the

  2. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    NASA Astrophysics Data System (ADS)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  3. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    PubMed

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale.

  4. Modeling Tropical Land Use Change and Assessing Policies to Reduce Carbon Dioxide Release from Africa

    NASA Astrophysics Data System (ADS)

    Pontius, Robert Gilmore, Jr.

    Humans may be causing the climate to change in ways that could threaten the welfare of future generations. The alteration by humans of the earth's remaining tropical forests is a component of the atmospheric flux of carbon dioxide, the most important greenhouse gas. It is especially important to investigate this flux because our understanding of it is highly uncertain, and it is a component of the global carbon cycle that humans can regulate. This dissertation supplies scientific tools and socioeconomic insights that policy makers may use to help to decide how much, if at all, to reduce the anthropogenic release of carbon dioxide from tropical landscapes. Chapter 1 presents a new Geographic Information System (GIS) model called GEOMOD2, which is a computer program written in FORTRAN. GEOMOD2 simulates land use change forward and backward in time using a digital map of land use, and produces a map of simulated carbon dioxide flux due to land use change. GEOMOD2 selects land for conversion according to patterns of previous land use and rates of land use change. Chapter 1 applies GEOMOD2 to tropical Africa, but the model could be used in other parts of the world and for a wider variety of applications. Chapter 2 uses the kappa parameter and an extraordinarily complete data set for Costa Rica to examine the accuracy with which GEOMOD2 predicts land use patterns. GEOMOD2 simulates the pattern of land use in Costa Rica over a duration of more than four decades with a success rate between 74% and 84% (kappa between 0.32 and 0.44). Chapter 3 uses an ecological economics approach to assess policies to reduce the amount of carbon dioxide being released from African agriculture. It concludes that the application of fertilizer to existing African fields would supply additional needed food to Africans at minimum carbon dioxide release, compared with other methods such as food importation, expanded shifting cultivation, or newly created permanent cultivation.

  5. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  6. Land-use and land-cover change in montane mainland southeast Asia.

    PubMed

    Fox, Jefferson; Vogler, John B

    2005-09-01

    This paper summarizes land-cover and land-use change at eight sites in Thailand, Yunnan (China), Vietnam, Cambodia, and Laos over the last 50 years. Project methodology included incorporating information collected from a combination of semiformal, key informant, and formal household interviews with the development of spatial databases based on aerial photographs, satellite images, topographic maps, and GPS data. Results suggest that land use (e.g. swidden cultivation) and land cover (e.g. secondary vegetation) have remained stable and the minor amount of land-use change that has occurred has been a change from swidden to monocultural cash crops. Results suggest that two forces will increasingly determine land-use systems in this region. First, national land tenure policies-the nationalization of forest lands and efforts to increase control over upland resources by central governments-will provide a push factor making it increasingly difficult for farmers to maintain their traditional swidden land-use practices. Second, market pressures-the commercialization of subsistence resources and the substitution of commercial crops for subsistence crops-will provide a pull factor encouraging farmers to engage in new and different forms of commercial agriculture. These results appear to be robust as they come from eight studies conducted over the last decade. But important questions remain in terms of what research protocols are needed, if any, when linking social science data with remotely sensed data for understanding human-environment interactions.

  7. [Land use pattern change in Ejin Delta of Northwest China during 1930-2010].

    PubMed

    Nian, Yan-yun; Wang, Xiao-li; Chen, Lu

    2015-03-01

    The land use and landscape pattern in the lower reaches of the arid inland river basin is meaningful to water resource allocation. Based on the land use data in 1930, 1961, 1990, 2000, 2010, the purpose of this study was to quantitatively analyze the change of landscape pattern in the Ejin Delta in the lower reaches of the Heihe River Basin, a typical inland river basin in Northwest China. The results showed that the desert area accounted for 73.4% of the total research area in 2010, and the grassland 20.8%. During the past 80 years, the grassland, farmland and construction land increased. The transformation of land use types were characterized by switching to farmland and construction land. The fragmentation and. diversity of the landscape increased, while the dominance of the landscape decreased. The landscape pattern obviously lied on the water resource and had regional diversity. Land use changes tended to make the landscape well-distributed, diverse and fragmentized. At last, the driving factors and ecological environment effects of land use change were discussed. In a word, to ensure harmonious development between human and eco-hydrology, suggestions such as planning ecological resettlement, limiting farmland area, developing precision agriculture and increasing the proportion of ecological water use should be put forward.

  8. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes.

    PubMed

    De Palma, Adriana; Kuhlmann, Michael; Roberts, Stuart P M; Potts, Simon G; Börger, Luca; Hudson, Lawrence N; Lysenko, Igor; Newbold, Tim; Purvis, Andy

    2015-12-01

    Bees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats. Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

  9. Historical land use change and associated carbon emissions in Brazil from 1940 to 1995

    NASA Astrophysics Data System (ADS)

    Leite, Christiane Cavalcante; Costa, Marcos Heil; Soares-Filho, Britaldo Silveira; de Barros Viana Hissa, Letícia

    2012-06-01

    The evaluation of impacts of land use change is in general limited by the knowledge of past land use conditions. Most publications on the field present only a vague description of the earlier patterns of land use, which is usually insufficient for more comprehensive studies. Here we present the first spatially explicit reconstruction of historical land use patterns in Brazil, including both croplands and pasturelands, for the period between 1940 and 1995. This reconstruction was obtained by merging satellite imagery with census data, and provides a 5' × 5' yearly data set of land use for three different categories (cropland, natural pastureland and planted pastureland) for Brazil. The results show that important land use changes occurred in Brazil. Natural pasture dominated in the 1950s and 1960s, but since the beginning of 1970s it has been gradually replaced by planted pasture, especially in southeast and center west of Brazil. The croplands began its expansion in the 1960s reaching extensive areas in almost all states in 1980. Carbon emissions from historical land use changes were calculated by superimposing a composite biomass map on grids of a weighted average of the fractions of the vegetation types and the replacement land uses. Net emissions from land use changes between 1940 and 1995 totaled 17.2 ± 9.0 Pg-C (90% confidence range), averaging 0.31 ± 0.16 Pg-C yr-1, but reaching up to 0.47 ± 0.25 Pg-C yr-1 during the 1960s and through 1986-1995. Despite international concerns about Amazon deforestation emissions, 72% of Brazil's carbon emissions during the period actually came from deforestation in the Atlantic Forest and Cerrado biomes. Brazil's carbon emissions from land use change are about 11 times larger than its emissions from fossil fuel burning, although only about 18.1% of the native biomass has been lost due to agricultural expansion, which is similar to the global mean (17.7%).

  10. Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin).

    PubMed

    Mirzaei, M; Solgi, E; Salmanmahiny, A

    2016-12-01

    Land use changes in a basin are the most important factors affecting its hydrology and water quality. A hydrological model is an effective tool in assessing the effects of land use change on surface water. In this study, the effects of land use changes in the Zayandehrud basin are estimated using long-term hydrologic impact assessment model. This model is applicable using long-term data on climate, soil hydrological groups, and land use maps. The study covered three land uses across 18 years (from 1997 to 2015), and we used data on 30 years of precipitation (from 1985 to 2015) in the model. The results of modeling revealed that the average runoff volume increased from around 5,765,034 m(3) in 1997 to 8,894,525 m(3) in 2015. The results also showed an increase in runoff depth. Land use changes over the study period showed an increase of residential areas, bare land, and agricultural lands and a decrease of pasture and forests. The results can be used to make decisions and monitor changes in land use to control the depth and volume of runoff. Using output maps helps in delimitation of the areas that have high runoff average and in implementation of the management plans for controlling the amount of runoff in these areas. Appropriate land use design can decrease impacts of land use changes including hydrologic effects.

  11. The land use-climate change-energy nexus

    NASA Astrophysics Data System (ADS)

    Dale, V. H.; Efroymson, R. A.; Kline, K. L.

    2011-12-01

    Spatial patterns and processes of ecological and human interactions are being altered by both changing resource-management practices of humans and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource-extraction and land-management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water, and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies, and sustainability of alternative energy sources. Thus, land use, climate change, and energy choices are linked, and any comprehensive analysis in landscape ecology that considers one of these factors should be cognizant of these interactions. These interactions and their effects may become even more important as population increases. This analysis explores the implications of those linkages and points out ecological patterns and processes that may be affected by these interactions.

  12. Increased influence of nitrogen limitation on CO2 emissions from future land use and land-use change

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Meiyappan, P.; House, J.

    2015-12-01

    In the latest projections of future greenhouse gas emissions for the Intergovernmental Panel on Climate Change (IPCC), few Earth System Models included the effect of nitrogen limitation, a key process limiting forest regrowth. We estimate the impacts of nitrogen limitation on the CO2 emissions from land use and land-use change (LULUC), including wood harvest, for the period 1900-2100. We use a land-surface model that includes a fully coupled carbon and nitrogen cycle, and accounts for forest regrowth processes following agricultural abandonment and wood harvest. Future projections are based on the four Representation Concentration Pathways used in the IPCC Fifth Assessment Report, and we account for uncertainty in future climate for each scenario based on ensembles of climate model outputs. Results show that excluding nitrogen limitation will underestimate global LULUC emissions by 34-52 PgC (20-30%) during the 20th century (range across three different historical LULUC reconstructions) and by 128-187 PgC (90-150%) during the 21st century (range across the four IPCC scenarios). The full range for estimated LULUC emissions during the 21st century including climate model uncertainty is 91 to 227 PgC (with nitrogen limitation included). The underestimation increases with time because: (1) Projected annual wood harvest rates from forests summed over the 21st century are 380-1080% higher compared to those of the 20th century, resulting in more regrowing secondary forests, (2) Nitrogen limitation reduces the CO2 fertilization effect on net primary production of regrowing secondary forests following wood harvest and agricultural abandonment, and (3) Nitrogen limitation effect is aggravated by the gradual loss of soil nitrogen from LULUC disturbance. Our study implies that: (1) Nitrogen limitation of CO2 uptake is substantial and sensitive to nitrogen inputs, (2) If LULUC emissions are larger than previously estimated in studies without nitrogen limitation, then meeting

  13. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Jain, Atul K.; House, Joanna I.

    2015-09-01

    In the latest projections of future greenhouse gas emissions for the Intergovernmental Panel on Climate Change (IPCC), few Earth System Models included the effect of nitrogen limitation, a key process limiting forest regrowth. Few included forest management (wood harvest). We estimate the impacts of nitrogen limitation on the CO2 emissions from land use and land use change (LULUC), including wood harvest, for the period 1900-2100. We use a land surface model that includes a fully coupled carbon and nitrogen cycle and accounts for forest regrowth processes following agricultural abandonment and wood harvest. Future projections are based on the four Representation Concentration Pathways used in the IPCC Fifth Assessment Report, and we account for uncertainty in future climate for each scenario based on ensembles of climate model outputs. Results show that excluding nitrogen limitation will underestimate global LULUC emissions by 34-52 PgC (20-30%) during the 20th century (range across three different historical LULUC reconstructions) and by 128-187 PgC (90-150%) during the 21st century (range across the four IPCC scenarios). The full range for estimated LULUC emissions during the 21st century including climate model uncertainty is 91 to 227 PgC (with nitrogen limitation included). The underestimation increases with time because (1) projected annual wood harvest rates from forests summed over the 21st century are 380-1080% higher compared to those of the 20th century, resulting in more regrowing secondary forests; (2) nitrogen limitation reduces the CO2 fertilization effect on net primary production of regrowing secondary forests following wood harvest and agricultural abandonment; and (3) nitrogen limitation effect is aggravated by the gradual loss of soil nitrogen from LULUC disturbance. Our study implies that (1) nitrogen limitation of CO2 uptake is substantial and sensitive to nitrogen inputs; (2) if LULUC emissions are larger than previously estimated in studies

  14. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies.

    PubMed

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001-2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified.

  15. Flood projections within the Niger River Basin under future land use and climate change.

    PubMed

    Aich, Valentin; Liersch, Stefan; Vetter, Tobias; Fournet, Samuel; Andersson, Jafet C M; Calmanti, Sandro; van Weert, Frank H A; Hattermann, Fred F; Paton, Eva N

    2016-08-15

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB.

  16. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies

    PubMed Central

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001–2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified. PMID:26394392

  17. Land use land cover change detection using remote sensing application for land sustainability

    NASA Astrophysics Data System (ADS)

    Balakeristanan, Maha Letchumy; Md Said, Md Azlin

    2012-09-01

    Land falls into the category of prime resources. Land use and land cover changes are identified as the prime issue in global environmental changes. Thus, it is necessary to initiate the land change detection process for land sustainability as well as to develop a competent land use planning. Tropical country like Malaysia has been experiencing land use and land cover changes rapidly for the past few decades. Thus, an attempt was made to detect the land use and land cover changes in the capital of the Selangor, Malaysia, Shah Alam over 20 years period (1990 - 2010). The study has been done through remote sensing approach using Earth Sat imagery of December 1990 and SPOT satellite imageries of March 2000 and December 2010. The current study resulted that the study area experienced land cover changes rapidly where the forest area occupied about 24.4% of Shah Alam in 1990 has decreased to 13.6% in 2010. Built up land have increased to 29.18% in 2010 from 12.47% in 1990. Other land cover classes such as wet land, wasteland and agricultural land also have undergone changes. Efficient land management and planning is necessary for land sustainability in Shah Alam.

  18. Impacts of land-use change to ecosystem services

    USGS Publications Warehouse

    Stohlgren, Tom; Holcombe, Tracy R.

    2013-01-01

    Increasing human populations on the landscape and globe coincide with increasing demands for food, energy, and other natural resources, with generally negative impacts to wildlife habitat, air and water quality, and natural scenery. Here we define and describe the impacts of land-use change on ecosystem services – the services that ecosystems provide humans such as filtering air and water, providing food, resources, recreation, and esthetics. We show how the human footprint is rapidly expanding due to population growth, demand for resources, and globalization. Increased trade and transportation has brought all the continents back together, creating new challenges for conserving native species and ecosystems.

  19. Future fire emissions associated with projected land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  20. National land-cover data and national agricultural census estimates of agricultural land use in the northeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The landscape of the northeastern United States is diverse and patchy, a complex mixture of forest, agriculture, and developed lands. Many urgent social and environmental issues require spatially-referenced information on land use, a need filled by the National Land-Cover Data (NLCD). The accuracy o...

  1. Impacts of climate change on land-use and wetland productivity in the Prairie Pothole Region of North America

    USGS Publications Warehouse

    Rashford, Benjamin S.; Adams, Richard M.; Wu, JunJie; Voldseth, Richard A.; Guntenspergen, Glenn R.; Werner, Brett; Johnson, W. Carter

    2016-01-01

    Wetland productivity in the Prairie Pothole Region (PPR) of North America is closely linked to climate. A warmer and drier climate, as predicted, will negatively affect the productivity of PPR wetlands and the services they provide. The effect of climate change on wetland productivity, however, will not only depend on natural processes (e.g., evapotranspiration), but also on human responses. Agricultural land use, the predominant use in the PPR, is unlikely to remain static as climate change affects crop yields and prices. Land use in uplands surrounding wetlands will further affect wetland water budgets and hence wetland productivity. The net impact of climate change on wetland productivity will therefore depend on both the direct effects of climate change on wetlands and the indirect effects on upland land use. We examine the effect of climate change and land-use response on semipermanent wetland productivity by combining an economic model of agricultural land-use change with an ecological model of wetland dynamics. Our results suggest that the climate change scenarios evaluated are likely to have profound effects on land use in the North and South Dakota PPR, with wheat displacing other crops and pasture. The combined pressure of land-use and climate change significantly reduces wetland productivity. In a climate scenario with a +4 °C increase in temperature, our model predicts that almost the entire region may lack the wetland productivity necessary to support wetland-dependent species.

  2. Integrated Assessment of Climate Change, Land-Use Changes, and Regional Carbon Dynamics in United States

    NASA Astrophysics Data System (ADS)

    Mu, J. E.; Sleeter, B. M.; Abatzoglou, J. T.

    2015-12-01

    The fact that climate change is likely to accelerate throughout this century means that climate-sensitive sectors such as agriculture will need to adapt increasingly to climate change. This fact also means that understanding the potential for agricultural adaptation, and how it could come about, is important for ongoing technology investments in the public and private sectors, for infrastructure investments, and for the various policies that address agriculture directly or indirectly. This paper is an interdisciplinary study by collaborating with climate scientist, agronomists, economists, and ecologists. We first use statistical models to estimate impacts of climate change on major crop yields (wheat, corn, soybeans, sorghum, and cotton) and predict changes in crop yields under future climate condition using downscaled climate projections from CMIP5. Then, we feed the predicted yield changes to a partial equilibrium economic model (FASOM-GHG) to evaluate economic and environmental outcomes including changes in land uses (i.e., cropland, pastureland, forest land, urban land and land for conservation) in United States. Finally, we use outputs from FASOM-GHG as inputs for the ST-SIM ecological model to simulate future carbon dynamics through changes in land use under future climate conditions and discuss the rate of adaptation through land-use changes. Findings in this paper have several merits compared to previous findings in the literature. First, we add economic components to the carbon calculation. It is important to include socio-economic conditions when calculating carbon emission and/or carbon sequestration because human activities are the major contribution to atmosphere GHG emissions. Second, we use the most recent downscaled climate projections from CMIP5 to capture uncertainties from climate model projections. Instead of using all GCMs, we select five GCMs to represent the ensemble. Third, we use a bottom-up approach because we start from micro-level data

  3. [Influence of land use change on vegetation cover dynamics in Dapeng Peninsula of Shenzhen, Guangdong Province of South China].

    PubMed

    Liang, Yao-Qin; Zeng, Hui; Li, Jing

    2012-01-01

    To study the vegetation cover dynamics under urbanization is of significance to direct regional ecological conservation. Based on the 1995-2007 remote sensing data and the investigation data of 1996 and 2007 land use change in Shenzhen, and by using NDVI index tracking and algebraic overlay calculation, this paper analyzed the vegetation types and their spatial differentiation, land use change pattern, and the relationships between land use change and vegetation cover dynamics in Dapeng Peninsula of Shenzhen. In 1995-2007, the vegetation cover in 65% of the study area changed significantly, with an overall increasing trend. Land use change was mainly caused by the development of urbanization and commercial agriculture, with 31% of the land surface changed in land use function. The land use change was one of the main causes of vegetation cover dynamics, and about 35% of the region where vegetation cover significantly degraded was related to land use change. 55% of the region where land use function changed due to mechanical disturbance caused the degradation of vegetation cover, but by the end of the study period, the vegetation cover in most of the degraded region had being improved significantly.

  4. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    PubMed Central

    Návar-Chaidez, Jose de Jesus

    2008-01-01

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617

  5. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico.

    PubMed

    Návar-Chaidez, Jose de Jesus

    2008-09-30

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem.For the period of 1980-1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 +/- 0.06 Tg, root biomass averages 0.17 +/- 0.03 Tg, and soil organic carbon averages 1.80 +/- 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices.

  6. Dynamic response of land use and river nutrient concentration to long-term climatic changes.

    PubMed

    Bussi, Gianbattista; Janes, Victoria; Whitehead, Paul G; Dadson, Simon J; Holman, Ian P

    2017-07-15

    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames.

  7. Impact of Southern Amazonian land use change on spatiotemporal climate variability

    NASA Astrophysics Data System (ADS)

    Kilian, Markus; Böhner, Jürgen; Lunkeit, Frank; Lucarini, Valerio; Schaldach, Rüdiger; Göpel, Jan; Schüngel, Jan

    2015-04-01

    The Amazonia river basin is affected by deforestation and increasing land use changes due to an intensified agricultural and industrial land use. These anthropogenic influences may cause major impacts on the regional climate on various spatial and temporal scales. In order to investigate the local impacts on temperature and precipitation we use dynamical downscaling of ECHAM5 data employing the Weather and Research Forecasting Model (WRF) on a 60km and 30km scale. Since previous studies have used simplified assumptions for land use changes or used purely random variations of deforestation, we aim for a realistic representation on the considered spatial scales. We fill this gap with results of the LandSHIFT model provided by the Center for Environmental System Research which accounts for socio-economic and agricultural developments. In this study we focus on the region of Mato Grosso and Pará between 2001 and 2006. The transformation from tropical rain forest to agricultural areas changes the mean and the variability of temperature and precipitation.

  8. Agricultural policy effects on land cover and land use over 30 years in Tartous, Syria, as seen in Landsat imagery

    NASA Astrophysics Data System (ADS)

    Ibrahim, Waad Youssef; Batzli, Sam; Menzel, W. Paul

    2014-01-01

    This study pursues a connection between agricultural policy and the changes in land use and land cover detected with remote sensing satellite data. One part of the study analyzes the Syrian agricultural policy, wherein, certain regional targets have been selected for annual citrus or greenhouse development along with tools of enforcement, support, and monitoring. The second part of the study investigates the utility of remote sensing (RS) and geographical information systems (GIS) to map land use land cover changes (LULC-Cs) in a time series of images from Landsat Thematic Mapper (TM) from 1987, 1998, 2006, and 2010 and Enhanced Thematic Mapper plus (ETM+) from 1999 to 2002. Several multispectral band analyses have been performed to determine the most suitable band combinations for isolating greenhouses and citrus farms. Supervised classification with maximum likelihood classifier has been used to produce precise land use land cover map. This research demonstrates that spatial relationship between LULC-Cs and agricultural policies can be determined through a science-based GIS/RS application to a time series of satellite images taken at the same time of the implemented policy.

  9. Wetlands: Crop freezes and land-use change in Florida

    USGS Publications Warehouse

    Marshall, C.H.; Pielke, R.A.; Steyaert, L.T.

    2003-01-01

    South Florida experienced a significant change in land usage during the twentieth century, including the conversion of natural wetlands into agricultural land for the cultivation of winter vegetable, sugar cane and citrus crops. This movement of agriculture from more northerly areas was intended partly to escape the risk of damaging winter freezes. Here we present evidence from a case study using a coupled atmosphere and land-surface computer-modelling system that suggests that the draining of wetlands may have inadvertently increased the frequency and severity of agriculturally damaging freezes in the south of Florida.

  10. Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan

    2015-06-01

    Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.

  11. Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley

    USGS Publications Warehouse

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi River watershed has resulted in a three-fold increase in the nitrate load of the river since the early 1950s. One way to reduce this nitrate load is to restore wetlands at suitable locations between croplands and receiving waters to remove run-off nitrate through denitrification. This research investigated denitrification potential (DP) of different land uses and its controlling factors in an agricultural watershed in the lower Mississippi valley (LMV) to help identify sites with high DP for reducing run-off nitrate. Soil samples collected from seven land-use types of an agricultural watershed during spring, summer, fall and winter were incubated in the laboratory for DP determination. Low-elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-elevation silt loam and low-elevation clay soils in croplands, respectively. DP of vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, respectively. Soil carbon and nitrogen availability, bulk density, and soil moisture significantly affected DP. These factors were significantly influenced in turn by landscape position and land-use type of the watershed. It is evident from these results that low-elevation, fine-textured soils under natural wetlands are the best locations for mediating nitrate loss from agricultural watersheds in the LMV. Landscape position and land-use types can be used as indices for the assessment/modeling of denitrification potential and identification of sites for restoration for nitrate removal in agricultural watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  12. Trajectories of Vegetation Change Under Controlled Land-use in Sudanian West Africa

    NASA Astrophysics Data System (ADS)

    Fisher, J. I.; Mustard, J. F.; Sanou, P.

    2004-12-01

    Land cover dynamics in Sudanian West African savannas are complex functions of climate variability, human migration, and increasingly intensive land-uses. The Nouhao Valley Project land management area in southeast Burkina Faso provides a large-scale natural experiment (2000 km-2) in which pastoral and agricultural land-uses are controlled in demarcated, contiguous zones. Abandoned more than 20 years, the Nouhao Valley was resettled by plan in 1984, after the eradication of Onchocerciasis (River Blindness). Pastoralists and agriculturalists were allocated and now occupy separate Project lands; adjacent areas are mixed use (control). Quantitative satellite analyses at the regional and landscape scale reveal that policy-driven land-uses significantly alter the long-term trajectory of riparian cover in a pattern distinct from climatic regional variability. Local patterns of land-use change are overprinted on climatic variability. Trends of primary productivity, derived from the AVHRR instrument, show that while the greater region has recovered gradually after the early 1980s droughts (10 g C m-2 y-2 in the control area), the pastoral region of the Nouhao Valley experienced relatively enhanced growth (19 g C m-2 y-2). A multi-temporal spectral mixture analysis of five Landsat TM scenes, spanning the period 1984-2002, indicate that the broad increase in green vegetation abundance is similar in open savannas across all land-use types, but highly contrasted in forest galleries and riparian areas. Trajectories of green vegetation areal abundance reveal that open savanna (20-60% tree and shrub) increased by an average of 5-10% from 1984-2002 over all land-uses; forests became more vegetated by 20-30% in pastoral areas, but only 7-10% in the agriculture and control areas. Large areas in the agricultural region experienced wide-spread loss of riparian forests. The sharp contrast between the land-cover dynamics of pastoral and agricultural land-uses is significant in savanna

  13. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    PubMed

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society.

  14. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  15. Implications of changing national policies on land use in the Chittagong Hill Tracts of Bangladesh.

    PubMed

    Thapa, Gopal B; Rasul, Golam

    2006-12-01

    Land use in the Chittagong Hill Tracts (CHT) of Bangladesh had undergone changes over the past several centuries. The landscape, which was mostly covered with forest with interspersed shifting cultivation plots until the beginning of the colonial period, has gradually changed into a landscape with a blend of land uses. Overall, the forest area has gradually declined, while the area under shifting cultivation and sedentary agriculture has expanded. The process of the change was multi-directional. National forestry, land use, land taxation, population migration policies, and development activities, such as construction of a hydroelectric dam and roads, played an important role in this process. Shifting cultivation had inflicted little damage on the forest until the beginning of the colonial period. The pace of deforestation accelerated with the nationalization of forests which abolished tribal people's customary use and management rights to the forest, and allowed large-scale commercial logging both legally and illegally. The pace was further intensified by the policy encouraging population migration to CHT and construction of a reservoir on the Karnafuli River. Efforts were made to replace shifting cultivation with more productive types of sedentary agriculture. However, much change could not take place in the absence of secure land rights, supportive trade policies, and the required support services and facilities, including infrastructure. Locationally suitable land use evolved in areas where transportation facilities were available and farmers were granted land title with the necessary extension services and credit facilities. These findings have important policy implications for the promotion of environmentally and economically sound land use in CHT.

  16. Effect Of Per-Capita Land Use Changes On Holocene Forest Clearance And CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.; Ellis, E. C.

    2009-12-01

    Several recent studies have attempted to estimate the extent of land clearance in the centuries and millennia before the industrial era. These studies require scaling modern land use to modern populations and then projecting (hind casting) that relationship in some way to pre-industrial times for which population information is available. Several studies have used a one-for-one (linear) scaling for these reconstructions, with the implicit assumption that land-use practices have not changed for several millennia. But this assumption is inconsistent with decades of field-based exploration: anthropological studies of contemporary cultures that use pre-modern farming methods, as well as archeological and paleoecological investigations of past farming methods. These studies suggest that per-capita land use was much larger millennia ago and then progressively decreased toward the present. Early land use (mostly shifting cultivation) was extensive (~4 +/- 2 ha/person) because land was readily available and little labor was required. By the centuries just prior to the industrial era, average per-capita land use had fallen to just ~0.4 +/- 0.2 ha per person because population growth forced farmers to grow food on smaller areas using more labor-intensive methods. Allowance for this long-term per-capita trend boosts estimates of the size of pre-industrial carbon emissions. Prior to the introduction of mechanized agriculture in prairie and steppe regions after 1850, most agriculture took place in forested regions. If small populations millennia ago had a disproportionately large impact on forest clearance and carbon emissions to the atmosphere, then later clearance and carbon emissions must be smaller than those derived by hind casting a linear relationship between modern population and land use.

  17. Impacts of agricultural land use on biological integrity: A causal analysis

    USGS Publications Warehouse

    Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.

    2011-01-01

    Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and

  18. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  19. Investigation into impacts of land-use changes on floods in the upper Huaihe River basin, China

    NASA Astrophysics Data System (ADS)

    Yu, M.; Li, Q.; Lu, G.; Wang, H.; Li, P.

    2015-06-01

    To investigate the agricultural land-use change on flood regime, the upper Huaihe River basin above the Dapoling station was selected as the case study site. Based on topography, land-use, hydrological and meteorological data in 1990s and 2010s, the improved distributed Xinanjiang model, with potential evapotranspiration being computed by coupling a dual-source evapotranspiration model with a simplified plant growth model, was adopted to simulate the daily and hourly rainfall-runoff processes over 1990s and 2010s, and then the effects of land-use change on flood volume, flood peak, occurring time of flood peak, the percentage of surface runoff component were investigated respectively. The results was interesting and indicated that impacts of land-use change on flood characteristics varied significantly with land-use types. The outputs could provide valuable references for flood risk management and water resources management in the Huaihe River basin.

  20. Global change pressures on soils from land use and management.

    PubMed

    Smith, Pete; House, Joanna I; Bustamante, Mercedes; Sobocká, Jaroslava; Harper, Richard; Pan, Genxing; West, Paul C; Clark, Joanna M; Adhya, Tapan; Rumpel, Cornelia; Paustian, Keith; Kuikman, Peter; Cotrufo, M Francesca; Elliott, Jane A; McDowell, Richard; Griffiths, Robert I; Asakawa, Susumu; Bondeau, Alberte; Jain, Atul K; Meersmans, Jeroen; Pugh, Thomas A M

    2016-03-01

    Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.

  1. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil.

    PubMed

    Egler, M; Buss, D F; Moreira, J C; Baptista, D F

    2012-08-01

    Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture) on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.

  2. Effects of Land Use Change on Tropical Hydrology

    NASA Astrophysics Data System (ADS)

    Creel, J.; Ogden, F. L.

    2012-12-01

    The effects of land use change in the tropics is an area that is poorly understood. It is often hypothesized that deforestation leads to larger flood peaks, although questions remain regarding the generality of this concept and controlling factors. We test this hypothesis using rainfall-runoff data from five different basins in the Panama Canal Watershed collected during the flood of record, which occurred in December, 2010. During this "La Purissima" event, over 1000 mm of rain fell in two days of portions of the study area. One of the basins used in our comparison is the 414 sq. km Upper Rio Chagres, which consists of 98% old-growth forest land cover. The response of this watershed is compared against adjacent watersheds with varying degrees of deforestation. Runoff ratios and flashiness indices are calculated for each of the five basins. Additionally, flood peaks during the storm are compared. Correlations between these indicators of flood runoff and contemporaneous land use data are used to explore the effect of the level of deforestation on flood severity for this unusually extreme well monitored tropical rainfall event.

  3. Landscape ecological security response to land use change in the tidal flat reclamation zone, China.

    PubMed

    Zhang, Runsen; Pu, Lijie; Li, Jianguo; Zhang, Jing; Xu, Yan

    2016-01-01

    As coastal development becomes a national strategy in Eastern China, land use and landscape patterns have been affected by reclamation projects. In this study, taking Rudong County, China as a typical area, we analyzed land use change and its landscape ecological security responses in the tidal flat reclamation zone. The results show that land use change in the tidal flat reclamation zone is characterized by the replacement of natural tidal flat with agricultural and construction land, which has also led to a big change in landscape patterns. We built a landscape ecological security evaluation system, which consists of landscape interference degree and landscape fragile degree, and then calculated the landscape ecological security change in the tidal flat reclamation zone from 1990 to 2008 to depict the life cycle in tidal flat reclamation. Landscape ecological security exhibited a W-shaped periodicity, including the juvenile stage, growth stage, and maturation stage. Life-cycle analysis demonstrates that 37 years is required for the land use system to transform from a natural ecosystem to an artificial ecosystem in the tidal flat reclamation zone.

  4. Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.

    PubMed

    Meneses, B M; Reis, R; Vale, M J; Saraiva, R

    2015-09-15

    To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments.

  5. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  6. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  7. Thermal Band Analysis of Agricultural Land Use and its Effects on Bioclimatic Comfort: The Case of Pasinler

    NASA Astrophysics Data System (ADS)

    Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi

    2014-05-01

    Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.

  8. [Simulation and prediction of urban and rural settlement growth and land use change in Yingkou City].

    PubMed

    Xi, Feng-Ming; He, Hong-Shi; Hu, Yuan-Man; Wu, Xiao-Qing; Bao, Li; Tian, Ying; Wang, Jin-Nian; Ma, Wen-Jun

    2008-07-01

    Based on the 1988, 1992, 1997, 2000, and 2004 Landsat TM remote sensing data of Yingkou City, Liaoning Province, the urban and rural settlement growth and land use change in the city from 2005 to 2030 were simulated and predicted by using the SLEUTH urban growth and land use change model with six scenarios (current trend scenario, no protection scenario, moderate protection scenario, managed growth scenario, ecologically sustainable growth scenario, and regional and urban comprehensive planning scenario). The results showed that in the city, the increased area of urban and rural settlement growth from 1988 to 2004 was 14.93 km2, and the areas of water area, orchard, mine, and agricultural land changed greatly from 1997 to 2004. From 2005 to 2030, based on ecologically sustainable growth scenario, the urban and rural settlement growth would have a slow increase, and agricultural land and forestland would be better protected; under no protection scenario, the urban and rural settlement growth would have a rapid increase, and large area of agricultural land would be lost; under current trend scenario, the agricultural land loss would be similar to that under no protective scenario, but the loss pattern could be different; under moderate protection scenario and managed growth scenario, the agricultural land would have a smaller loss; while under regional and urban comprehensive planning scenario, the urban and rural settlement growth would be mainly distributed in urban development area and urban fringe. The SLEUTH model with different scenarios could simulate how the different land management policies affect urban and rural settlement growth and land use change, which would be instructive to the coordination of Chinese urban and rural settlement development and the socialist new rural reconstruction.

  9. Leaf litter recycling in benthic and hyporheic layers in agricultural streams with different types of land use.

    PubMed

    Piscart, Christophe; Navel, Simon; Maazouzi, Chafik; Montuelle, Bernard; Cornut, Julien; Mermillod-Blondin, Florian; des Chatelliers, Michel Creuze; Simon, Laurent; Marmonier, Pierre

    2011-09-15

    Changes in land use and intensification of agricultural pressure have greatly accelerated the alteration of the landscape in most developed countries. These changes may greatly disturb the adjacent ecosystems, particularly streams, where the effects of pollution are amplified. In this study, we used the leaf litter breakdown rate to assess the functional integrity of stream ecosystems and river sediments along a gradient of either traditional extensive farming or a gradient of vineyard area. In the benthic layer, the total litter breakdown process integrates the temporal variability of the anthropogenic disturbances and is strongly influenced by land use changes in the catchment even though a low concentration of toxics was measured during the study period. This study also confirmed the essential role played by amphipods in the litter breakdown process. In contrast, microbial processes may have integrated the variations in available nutrients and dissolved oxygen concentrations, but failed to respond to the disturbances induced by vineyard production (the increase in pesticides and metal concentrations) during the study period. The response of microbes may not be sensitive enough for assessing the global effect of seasonal agricultural practices. Finally, the leaf litter breakdown measured in the hyporheic zone seemed mainly driven by microbial activities and was hence more affected by vertical exchanges with surface water than by land use practices. However, the breakdown rate of leaf litter in the hyporheic zone may constitute a relevant way to evaluate the impact on river functioning of any human activities that induce massive soil erosion and sediment clogging.

  10. Land cover change or land-use intensification: simulating land system change with a global-scale land change model.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2013-12-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970-2000 period and projections of other global and regional land change models.

  11. Introduction to special section on impacts of land use change on water resources

    USGS Publications Warehouse

    Stonestrom, D.A.; Scanlon, B.R.; Zhang, L.

    2009-01-01

    Changes in land use have potentially large impacts on water resources, yet quantifying these impacts remains among the more challenging problems in hydrology. Water, food, energy, and climate are linked through complex webs of direct and indirect effects and feedbacks. Land use is undergoing major changes due not only to pressures for more efficient food, feed, and fiber production to support growing populations but also due to policy shifts that are creating markets for biofuel and agricultural carbon sequestration. Hydrologic systems embody flows of water, solutes, sediments, and energy that vary even in the absence of human activity. Understanding land use impacts thus necessitates integrated scientific approaches. Field measurements, remote sensing, and modeling studies are shedding new light on the modes and mechanisms by which land use changes impact water resources. Such studies can help deconflate the interconnected influences of human actions and natural variations on the quantity and quality of soil water, surface water, and groundwater, past, present, and future. Copyright 2009 by the American Geophysical Union.

  12. Sustainability of ground water quality considering land use changes and public health risks.

    PubMed

    Twarakavi, Navin K C; Kaluarachchi, Jagath J

    2006-12-01

    One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality (GWQ). Another issue of equal interest is the sustainability of natural resources for future generations. To understand the sustainability of the natural resources such as water in general, one needs to understand the impact of future land use changes on the natural resources. This work proposes a methodology to address sustainability of GWQ considering land use changes, aquifer vulnerability to multiple contaminants, and public health risks. The methodology was demonstrated for the Sumas-Blaine aquifer in Washington State. The land transformation model predicted that nearly 60 percent of the land use practices would change in the Sumas-Blaine Aquifer by the year 2015. The accuracy of the LTM model predictions increased to greater levels as the spatial resolution was decreased. Aquifer vulnerability analysis was performed for major contaminants using the binary logistic regression (LR) method. The LR model, along with the predicted future land use, was used to estimate the future GWQ using two indices-carcinogenic and non-carcinogenic ground water qualities. Sustainability of GWQ was then analyzed using the concept of 'strong' sustainability. The sustainability map of GWQ showed improvements in many areas where urbanization is expected to occur. The positive impact of urbanization on GWQ is an indication of the extensive damage caused by existing agricultural activities in the study area.

  13. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows.

    PubMed

    Hardie, Scott A; Bobbi, Chris J

    2017-03-03

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  14. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano

    PubMed Central

    le Polain de Waroux, Yann; Garrett, Rachael D.; Heilmayr, Robert; Lambin, Eric F.

    2016-01-01

    Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in “deforestation havens.” We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation “hot spot” in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching. PMID:27035995

  15. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano.

    PubMed

    le Polain de Waroux, Yann; Garrett, Rachael D; Heilmayr, Robert; Lambin, Eric F

    2016-04-12

    Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in "deforestation havens." We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation "hot spot" in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching.

  16. Geographic concentration and driving forces of agricultural land use in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuluan; Li, Xiubin; Xin, Liangjie; Hao, Haiguang

    2012-03-01

    Since the 1990s, China has entered the middle phase of urbanization which leads to the existence of significant geographic concentration of agricultural land use. The average value of regional concentration degree of ten representative crops in China was 59.03%, showing a high degree of geographic concentration in farming. Some typical agriculture provinces in farming have arisen. The degree of geographic concentration in farming has been enhanced, with the average degree of regional concentration of ten crops increasing considerably by 3.83% in 2009 compared to that in 1990 (55.20%). The spatial growing center of farming was found to move westward and northward during 1990-2009. Meanwhile food production concentrated in the Northeast China and main producing area, and cash crops production concentrated in Northwest China. Off-farm employment of rural labor force, commercialization of agricultural product and regional comparative advantage are the main driving forces of geographic concentration of agricultural land use. Governmental policies with regional differences should be considered to promote further development of agriculture.

  17. [Influence of land use structure on nitrogen output in the watershed of suburban agriculture regions].

    PubMed

    Yang, Feng; Wang, Peng-ju; Yang, Shan-shan; Wu, Jin-shui; Hu, Rong-gui

    2012-08-01

    This study was conducted in Jintuo watershed of Changsha City, Hunan Province, in the suburban agriculture regions, by selecting 8 sub-basins to examine the effect of land use on watershed runoff nitrogen output. The land use map of watershed was interpreted from Spot-5 image of 2009, and by using hydraulic analysis function and spatial analysis extensions of ArcGIS 9.3, the catchment areas were delineated from DEM. Water sampling was carried out from Dec. 2009 to Nov. 2010, and the relationships between different types of nitrogen export and land use were analyzed. The results showed that nitrogen pollution in the watershed was extremely serious. There was a distinct seasonal variation in the following order: WI > SP > SU approximately = FA in the output concentration of total nitrogen and ammonium nitrogen which was not observed in the nitrate output. Moreover, land use was a dominant factor that determined the export of nitrogen, and especially a significant correlation was figured out between the nitrate output concentration and the land use structure. Forest and water body had a negative impact on nitrate output concentration while dry land, paddy field and habitation road had a positive effect. However, the effects varied with time. Dry land had the most significant important effect on nitrate output concentration in winter and fall, but in spring and summer was the forest land. The correlation between land use structure and the output concentration of total nitrogen and ammonium nitrogen was not found. The resident number, pig number and fertilization also had a major impact on nitrogen output quantity.

  18. Land-use change, economics, and rural well-being in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Gascoigne, William R.; Hoag, Dana L.K.; Johnson, Rex R.; Koontz, Lynne M.; Thomas, Catherine Cullinane

    2013-01-01

    This fact sheet highlights findings included in a comprehensive new report (see USGS Professional Paper 1800) which investigated land-use change, economic characteristics, and rural community well-being in the Prairie Pothole Region of the United States. Once one of the largest grassland-wetlands ecosystems on earth, the North American prairie has experienced extensive conversion to cultivated agriculture, with farming becoming the dominant land use in the region over the last century. Both perennial habitat lands and agricultural croplands retain importance economically, socially, and culturally. Greatly increased oil and gas development in recent years brought rises in employment and income but also stressed infrastructure, cost of living, and crime rates. Research described in these reports focuses on land-use dynamics and illuminates how economic variables and rural development in the Prairie Pothole Region might be influenced as land uses change.

  19. The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada.

    PubMed

    Ruan, Xiaofeng; Qiu, Feng; Dyck, Miles

    2016-08-01

    Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case. The empirical results show that the impacts of key environmental and socioeconomic factors varied in intensity depending on the type of land-use conversion involved. Overall, land suitability for agricultural uses, road density, elevation, and population growth were found to be significant predictors of land-use changes. High land suitability, low elevation, and moderate road density were associated with land conversion for agricultural purposes.

  20. Modeling Land Use Change In A Tropical Environment Using Similar Hydrologic Response Units

    NASA Astrophysics Data System (ADS)

    Guardiola-Claramonte, M.; Troch, P.

    2006-12-01

    Montane mainland South East Asia comprises areas of great biological and cultural diversity. Over the last decades the region has overcome an important conversion from traditional agriculture to cash crop agriculture driven by regional and global markets. Our study aims at understanding the hydrological implications of these land use changes at the catchment scale. In 2004, networks of hydro-meteorological stations observing water and energy fluxes were installed in two 70 km2 catchments in Northern Thailand (Chiang Mai Province) and Southern China (Yunnan Province). In addition, a detailed soil surveying campaign was done at the moment of instrument installation. Land use is monitored periodically using satellite data. The Thai catchment is switching from small agricultural fields to large extensions of cash crops. The Chinese catchment is replacing the traditional forest for rubber plantations. A first comparative study based on catchments' geomorphologic characteristics, field observations and rainfall-runoff response revealed the dominant hydrologic processes in the catchments. Land use information is then translated into three different Hydrologic Response Units (HRU): rice paddies, pervious and impervious surfaces. The pervious HRU include different land uses such as different stages of forest development, rubber plantations, and agricultural fields; the impervious ones are urban areas, roads and outcrops. For each HRU a water and energy balance model is developed incorporating field observed hydrologic processes, measured field parameters, and literature-based vegetation and soil parameters to better describe the root zone, surface and subsurface flow characteristics without the need of further calibration. The HRU water and energy balance models are applied to single hillslopes and their integrated hydrologic response are compared for different land covers. Finally, the response of individual hillslopes is routed through the channel network to represent

  1. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  2. Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change

    NASA Astrophysics Data System (ADS)

    Mu, J. E.; McCarl, B.

    2011-12-01

    Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation

  3. Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil

    NASA Astrophysics Data System (ADS)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-08-01

    In this paper, soil carbon, nitrogen and phosphorus concentrations and stocks were investigated in agricultural and natural areas in 17 plot-level paired sites and in a regional survey encompassing more than 100 pasture soils In the paired sites, elemental soil concentrations and stocks were determined in native vegetation (forests and savannas), pastures and crop-livestock systems (CPSs). Nutrient stocks were calculated for the soil depth intervals 0-10, 0-30, and 0-60 cm for the paired sites and 0-10, and 0-30 cm for the pasture regional survey by sum stocks obtained in each sampling intervals (0-5, 5-10, 10-20, 20-30, 30-40, 40-60 cm). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in native vegetation soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the native vegetation than in the pasture and CPS soils, and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the native vegetation to the pasture to the CPS soils. In the plot-level paired sites, the soil nitrogen stocks were lower in all depth intervals in pasture and in the CPS soils when compared with the native vegetation soils. On the other hand, the soil phosphorus stocks were higher in all depth intervals in agricultural soils when compared with the native vegetation soils. For the regional pasture survey, soil nitrogen and phosphorus stocks were lower in all soil intervals in pasture soils than in native vegetation soils. The nitrogen loss with cultivation observed here is in line with other studies and it seems to be a combination of decreasing organic matter inputs, in cases where crops replaced native forests, with an increase in soil organic matter decomposition that leads to a decrease in the long

  4. Land use change and landslide characteristics analysis for community-based disaster mitigation.

    PubMed

    Chen, Chien-Yuan; Huang, Wen-Lin

    2013-05-01

    On August 8, 2009, Typhoon Morakot brought heavy rain to Taiwan, causing numerous landslides and debris flows in the Taihe village area of Meishan Township, Chiayi County, in south-central Taiwan. In the Taihe land is primary used for agriculture and land use management may be a factor in the area's landslides. This study explores Typhoon Morakot-induced landslides and land use changes between 1999 and 2009 using GIS with the aid of field investigation. Spot 5 satellite images with a resolution of 2.5 m are used for landslide interpretation and manually digitalized in GIS. A statistical analysis for landslide frequency-area distribution was used to identify the landslide characteristics associated with different types of land use. There were 243 landslides with a total area of 2.75 km(2) in the study area. The area is located in intrinsically fragile combinations of sandstone and shale. Typhoon Morakot-induced landslides show a power-law distribution in the study area. Landslides were mainly located in steep slope areas containing natural forest and in areas planted with bamboo, tea, and betel nut. Land covered with natural forest shows the highest landslide ratio, followed by bamboo, betel nut, and tea. Landslides thus show a higher ratio in areas planted with shallow root vegetation such as bamboo, betel nut, and tea. Furthermore, the degree of basin development is proportional to the landslide ratio. The results show that a change in vegetation cover results in a modified landslide area and frequency and changed land use areas have higher landslide ratios than non-changed. Land use management and community-based disaster prevention are needed in mountainous areas of Taiwan for hazard mitigation.

  5. Increasing streamflow and baseflow in Mississippi River since the 1940 s: Effect of land use change

    USGS Publications Warehouse

    Zhang, Y.-K.; Schilling, K.E.

    2006-01-01

    A trend of increasing streamflow has been observed in the Mississippi River (MR) basin since the 1940 s as a result of increased precipitation. Herein we show that increasing MR flow is mainly in its baseflow as a result of land use change and accompanying agricultural activities that occurred in the MR basin during the last 60 years. Agricultural land use change in the MR basin has affected the basin-scale hydrology: more precipitation is being routed into streams as baseflow than stormflow since 1940 s. We explain that the conversion of perennial vegetation to seasonal row crops, especially soybeans, in the basin since 1940 s may have reduced evapotranspiration, increased groundwater recharge, and thus increased baseflow and streamflow. This explanation is supported with a data analysis of the annually and monthly flow rates at various river stations in the MR basin. Results from this study will help to direct our effort in managing land use and in reducing nutrient levels in MR and other major rivers since nutrient concentrations and loads carried by storm water and baseflow are different. ?? 2005 Elsevier B.V. All rights reserved.

  6. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  7. Anthropogenic land use change and infectious diseases: a review of the evidence.

    PubMed

    Gottdenker, Nicole L; Streicker, Daniel G; Faust, Christina L; Carroll, C R

    2014-12-01

    Humans have altered ecosystems worldwide, and it is important to understand how this land use change impacts infectious disease transmission in humans and animals. We conducted a systematic review 305 scientific articles investigating how specific types of anthropogenic land use change influence infectious disease dynamics. We summarized findings, highlighted common themes, and drew attention to neglected areas of research. There was an increase in publications on this topic over the last 30 years spanning diseases of humans, livestock, and wildlife, including a large number of zoonotic pathogens. Most papers (66.9%) were observational, 30.8% were review or concept papers, and few studies (2.3%) were experimental in nature, with most studies focusing on vector-borne and/or multi-host pathogens. Common land use change types related to disease transmission were deforestation/forest fragmentation/habitat fragmentation, agricultural development/irrigation, and urbanization/suburbanization. In response to anthropogenic change, more than half of the studies (56.9%) documented increased pathogen transmission, 10.4% of studies observed decreased pathogen transmission, 30.4% had variable and complex pathogen responses, and 2.4% showed no detectable changes. Commonly reported mechanisms by which land use change altered infectious disease transmission included alteration of the vector, host, and pathogen niche, changes in host and vector community composition, changes in behavior or movement of vectors and/or hosts, altered spatial distribution of hosts and/or vectors, and socioeconomic factors, and environmental contamination. We discussed observed patterns in the literature and make suggestions for future research directions, emphasizing the importance of ecological and evolutionary theory to understand pathogen responses in changing landscapes.

  8. Seasonal temperature responses to land-use change in the western United States

    USGS Publications Warehouse

    Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, Mary; Du, H.; Weare, B.

    2008-01-01

    In the western United States, more than 79 000??km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to - 3.1????C) and maximum (- 2.9 to - 6.1????C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. ?? 2007 Elsevier B.V. All rights reserved.

  9. Reconstructing Land Use History from Landsat Time-Series. Case study of Swidden Agriculture Intensification in Brazil

    NASA Astrophysics Data System (ADS)

    Dutrieux, L.; Jakovac, C. C.; Siti, L. H.; Kooistra, L.

    2015-12-01

    land use history mapping in the tropics and beyond. Spatial and temporal patterns were further analysed with an ecological perspective in a follow-up study. Results show that changes in land use patterns such as land use intensification and reduced agricultural expansion reflect the socio-economic transformations that occurred in the region

  10. Changes in streamflow characteristics in Wisconsin as related to precipitation and land use

    USGS Publications Warehouse

    Gebert, Warren A.; Garn, Herbert S.; Rose, William J.

    2016-01-19

    Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent

  11. Impacts of Land Use Change on Energy Usage and Ghg Emissions

    NASA Astrophysics Data System (ADS)

    Jeyachandran, I.; Eltrop, L.; Jenssen, T.; Marathe, S. D.

    2014-12-01

    Urbanization has a profound impact on landscape modification and subsequent impacts on energy usage and associated Green House Gas (GHG) emissions. In this paper, a methodology to assess the impact of land use change on energy demand and Green House Gas emissions using remote sensing data is presented. The methodology development was carried out using region of Stuttgart, Germany as the case study for the time period of 1990 to 2006. The first step involved using Corine land cover corresponding to the years 1990, 2000 and 2006 in conjunction with the administrative boundary map of the region of Stuttgart to assess the land use change from 1990 to 2006. The second step of the methodology involved using ATKIS building data of 2004 in conjunction with the land use data of 1990, and 2000 to identify the buildings in 1990 and 2000 and assess the land use conversion to built areas due to urbanization. Also the building types were identified, and the energy usage for heating and cooling was modeled using local guidelines. As the final step, the GHG emissions associated with heating and energy demand was estimated for the years 1990, 2000 and 2004 using the empirical relation set by Öko-Institute (2011). The results of the study indicate that there has been a significant increase in urban residential built surfaces (17%) and decrease in urban greenery, forest and agricultural areas during the time period of 1990 to 2004. The increase in residential built surfaces has resulted in an increase of electricity and heating demand and a subsequent increase in GHG emissions(14%). The methodology presented in this paper brings forth the use of remote sensing to estimate and predict GHG emissions resulting from land use changes.

  12. Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran

    PubMed Central

    Mohd Shafri, Helmi Zulhaidi; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956–2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

  13. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE PAGES

    Li, Xia; Mitra, Chandana; Dong, Li; ...

    2017-02-02

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  14. Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.

    PubMed

    Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved.

  15. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils.

    PubMed

    Komprda, Jiří; Komprdová, Klára; Sáňka, Milan; Možný, Martin; Nizzetto, Luca

    2013-07-02

    The subject of this study is the assessment of the influence of climate and land use change on the potential re-emission of organochlorine pesticides (OCPs) from background and agricultural soils. A deterministic spatially and temporally explicit model of the air-surface exchange was created, fed with distributed data of soil and atmospheric concentrations from real measurements, and run under various scenarios of temperature and land use change for a case study area representative of central European conditions. To describe land use influence, some important features were implemented including effect of plowing, influence of land cover, temperature of soil, and seasonal changes of air layer stability. Results show that volatilization of pesticides from soil largely exceeded dry gas deposition in most of the area. Agricultural soils accounted for more than 90% of the total re-emissions both because of the generally higher soil fugacities (higher loads of chemicals and relatively low organic carbon content), but also due to physical characteristics and land management practices enhancing the dynamics of the exchange. An increase of 1 °C in air temperature produced an increase of 8% in the averaged total volatilization flux, however this effect can be neutralized by a change of land use of 10% of the arable lands to grassland or forest, which is consistent with projected land use change in Europe. This suggests that future assessment of climate impact on POP fate and distribution should take into consideration land use aspects.

  16. Modelling climate change, land-use change and phosphorus reduction impacts on phytoplankton in the River Thames (UK)

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Whitehead, Paul; Dadson, Simon

    2016-04-01

    In this study, we assess the impact of changes in precipitation and temperature on the phytoplankton concentration of the River Thames (UK) by means of a physically-based model. A scenario-neutral approach was employed to evaluate the effects of climate variability on flow, phosphorus concentration and phytoplankton concentration. In particular, the impact of uniform changes in precipitation and temperature on five groups of phytoplankton (diatoms and large chlorophytes, other chlorophytes, picoalgae, Microcystis-like cyanobacteria and other cyanobacteria) was assessed under three different land-use/land-management scenarios (1 - current land use and phosphorus reduction practices; 2 - expansion of agricultural land and current phosphorus reduction practices; 3 - expansion of agricultural land and optimal phosphorus reduction practices). The model results were assessed within the framework of future climate projections, using the UK Climate Projections 09 (UKCP09) for the 2030s. The results of the model demonstrate that an increase in average phytoplankton concentration due to climate change is highly likely to occur, and its magnitude varies depending on the river reach. Cyanobacteria show significant increases under future climate change and land-use change. An expansion of intensive agriculture accentuates the growth in phytoplankton, especially in the upper reaches of the River Thames. However, an optimal phosphorus removal mitigation strategy, which combines reduction of fertiliser application and phosphorus removal from wastewater, can help to reduce this increase in phytoplankton concentration, and in some cases, compensate for the effect of rising temperature.

  17. Land-use and environmental changes in the Cerrados of South-Eastern Mato Grosso -- Brazil

    NASA Astrophysics Data System (ADS)

    Grecchi, Rosana Cristina

    The human-induced changes of the Earth's land surfaces have been unprecedented, with outcomes often indicating degradation and loss of environmental quality. Mato Grosso State in Brazil, location of the study area, underwent extensive land-use and land-cover changes in recent decades with the rates, patterns and consequences poorly documented until now. In this context, the aim of the present research is to propose a multidisciplinary approach for quantifying historical land-use and environmental changes in the southeast part of this State, where the Cerrado biome (Brazilian savannas) has been intensively converted into agricultural lands. The methodology includes three parts: remote sensing change detection, land vulnerability mapping, and identification of key environmental indicators. Land-use/cover information was extracted from a temporal remote sensing dataset using an object-oriented classification approach, and the changes quantified employing a post-classification method. In addition, the study area was assessed for its vulnerabilities, focusing mainly on erosion risks, wetlands, and areas with limited or no suitability for crops. Finally, key environmental indicators were identified from the preceding steps and analyzed within the Organisation for Economic Co-operation and Development (OECD) Pressure-State-Response (PSR) framework. The results provided an improved mapping of the Cerrados natural vegetation conversion into crops and pastures, and indicate that the Cerrado vegetation was intensively converted and also became more fragmented in the time frame studied. Between 1985 and 2005 the area lost approximately 6491 km 2 of Cerrados (42 %). Modeling based on the Universal Soil Loss Equation indicated significant increase in erosion risk from 1985 to 2005 mainly related to the increase in crop areas and the crops' encroachment into more fragile lands. The identification of environmental indicators rendered complex environmental information more

  18. Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland).

    PubMed

    Nowak, Agnieszka; Schneider, Christian

    2017-07-15

    Environmental degradation encompasses multiple processes that are rarely combined in analyses. This study refers to three types of environmental degradation resulting from agricultural activity: soil erosion, nutrient loss, and groundwater pollution. The research was conducted in seven distinct study areas in the Malopolska Province, Poland, each characterized by different environmental properties. Calculations were made on the basis of common models, i.e., USLE (soil erosion), InVEST (nutrient loss), and DRASTIC (groundwater pollution). Two scenarios were calculated to identify the areas contributing to potential and actual degradation. For the potential degradation scenario all study areas were treated as arable land. To identify the areas actually contributing to all three types of degradation, the de facto land use pattern was used for a second scenario. The results show that the areas most endangered by agricultural activity are located in the mountainous region, whereas most of the degraded zones were located in valley bottoms and areas with intensive agriculture. The different hazards rarely overlap spatially in the given study areas - meaning that different areas require different management approaches. The distribution of arable land was negatively correlated with soil erosion hazard, whereas no linkage was found between nutrient loss or groundwater pollution hazards and the proportion of arable land. This indicates that the soil erosion hazard is the most influential factor in the distribution of arable land, whereas nutrient loss and groundwater pollution is widely ignored during land use decision-making. Slope largely and most frequently influences all hazard types, whereas land use also played an important role in the case of soil and nutrient losses. In this study we presented a consistent methodology to capture complex degradation processes and provide robust indicators which can be included in existing impact assessment approaches like Life Cycle

  19. Impact of land cover and land use change on runoff characteristics.

    PubMed

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  20. Land Use Change, Fuel Use and Respiratory Health in Uganda

    PubMed Central

    Jagger, Pamela; Shively, Gerald

    2014-01-01

    This paper examines how biomass supply and consumption are affected by land use change in Uganda. We find that between 2007 and 2012 there was a 22% reduction in fuelwood sourced from proximate forests, and an 18% increase in fuelwood sourced from fallows and other areas with lower biomass availability and quality. We estimate a series of panel regression models and find that deforestation has a negative effect on total fuel consumed. We also find that access to forests, whether through ownership or proximity, plays a large role in determining fuel use. We then explore whether patterns of biomass fuel consumption are related to the incidence of acute respiratory infection using a cross-sectional data set of 1209 women and 598 children. We find a positive and significant relationship between ARI and the quantity of fuelwood from non-forest areas; a 100 kilogram increase in fuelwood sourced from a non-forest area results in a 2.4% increase in the incidence of ARI for children. We find the inverse effect of increased reliance on crop residues. As deforestation reduces the availability of high quality fuelwood, rural households may experience higher incidence of health problems associated with exposure to biomass burning. PMID:24535892

  1. Integrating global socio-economic influences into a regional land use change model for China

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  2. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran

    PubMed Central

    Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm

    2016-01-01

    Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion. PMID:27547511

  3. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran.

    PubMed

    Rezaei, Mahrooz; Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm

    2016-01-01

    Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion.

  4. Namibia specific climate smart agricultural land use practices: Challenges and opportunities for enhancing ecosystem services

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Talamondjila Naanda, Martha; Bloemertz, Lena

    2015-04-01

    Agriculture is a backbone for many African economies, with an estimated 70% of Africans active in agricultural production. The sector often does not only directly contribute to, but sustains food security and poverty reduction efforts. Sustaining this productivity poses many challenges, particularly to small scale subsistence farmers (SSF) in dry land areas and semi-arid countries like Namibia. SSF in northern central Namibia mix crop and livestock production on degraded semi-arid lands and nutrient-poor sandy soils. They are fully dependent on agricultural production with limited alternative sources of income. Mostly, their agricultural harvests and outputs are low, not meeting their livelihood needs. At the same time, the land use is often not sustainable, leading to degradation. The Namibia case reveals that addressing underlying economic, social and environmental challenges requires a combination of farm level-soil management practices with a shift towards integrated landscape management. This forms the basis for SSF to adopt sustainable land management practices while building institutional foundations, like establishing SSF cooperatives. One way in which this has been tested is through the concept of incentive-based motivation, i.e. payment for ecosystem services (PES), in which some of the beneficiaries pay, for instance for farmers or land users, who provide the services. The farmers provide these services by substituting their unsustainable land and soil management and adopting new (climate smart agricultural) land use practices. Climate Smart Agricultural land use practices (CSA-LUP) are one way of providing ecosystem services, which could be fundamental to long-term sustainable soil and land management solutions in Africa. There are few PES cases which have been systematically studied from an institutional development structure perspective. This study presents lessons evolving from the notion that direct participation and involvement of local people

  5. Five challenges to reconcile agricultural land use and forest ecosystem services in Southeast Asia.

    PubMed

    Carrasco, L R; Papworth, S K; Reed, J; Symes, W S; Ickowitz, A; Clements, T; Peh, K S-H; Sunderland, T

    2016-10-01

    Southeast Asia possesses the highest rates of tropical deforestation globally and exceptional levels of species richness and endemism. Many countries in the region are also recognized for their food insecurity and poverty, making the reconciliation of agricultural production and forest conservation a particular priority. This reconciliation requires recognition of the trade-offs between competing land-use values and the subsequent incorporation of this information into policy making. To date, such reconciliation has been relatively unsuccessful across much of Southeast Asia. We propose an ecosystem services (ES) value-internalization framework that identifies the key challenges to such reconciliation. These challenges include lack of accessible ES valuation techniques; limited knowledge of the links between forests, food security, and human well-being; weak demand and political will for the integration of ES in economic activities and environmental regulation; a disconnect between decision makers and ES valuation; and lack of transparent discussion platforms where stakeholders can work toward consensus on negotiated land-use management decisions. Key research priorities to overcome these challenges are developing easy-to-use ES valuation techniques; quantifying links between forests and well-being that go beyond economic values; understanding factors that prevent the incorporation of ES into markets, regulations, and environmental certification schemes; understanding how to integrate ES valuation into policy making processes, and determining how to reduce corruption and power plays in land-use planning processes.

  6. Application of TABU Search Algorithm with a Coupled ANNAGNPS-CCHE1D Model to Optimize Agricultural Land Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A principal contributor to soil erosion and nonpoint source pollution, agricultural activities have a major influence on the environmental quality of a watershed. Impact of agricultural activities on the quality of water resources can be minimized by implementing suitable agriculture land-use types....

  7. Impacts of biofuels on climate change, water use, and land use.

    PubMed

    Delucchi, Mark A

    2010-05-01

    Governments worldwide are promoting the development of biofuels in order to mitigate the climate impact of using fuels. In this article, I discuss the impacts of biofuels on climate change, water use, and land use. I discuss the overall metric by which these impacts have been measured and then present and discuss estimates of the impacts. In spite of the complexities of the environmental and technological systems that affect climate change, land use, and water use, and the difficulties of constructing useful metrics, it is possible to make some qualitative overall assessments. It is likely that biofuels produced from crops using conventional agricultural practices will not mitigate the impacts of climate change and will exacerbate stresses on water supplies, water quality, and land use, compared with petroleum fuels. Policies should promote the development of sustainable biofuel programs that have very low inputs of fossil fuels and chemicals that rely on rainfall or abundant groundwater, and that use land with little or no economic or ecological value in alternative uses.

  8. Relating United States crop land use to natural resources and climate change

    SciTech Connect

    Flores-Mendoza, F.J.; Hubbard, K.G.

    1995-02-01

    Crop production depends not only on the yield but also on the area harvested. The yield response to climate change has been widely examined, but the sensitivity of crop land use to hypothetical climate change has not been examined directly. Crop land-use regression models for estimating crop area indices (CAIs)-the percent of land used for corn, soybean, wheat, and sorghum production-are presented. Inputs to the models include available water-holding capacity of the soil, percent of land available for rain-fed agricultural production, annual precipitation, and annual temperature. The total variance of CAI explained by the models ranged from 78% from wheat to 87% for sorghum, and the root-mean-square errors ranged from 1.74% for sorghum to 4.24% for corn. The introduction of additional climatic variables to the models did not significantly improve their performance. The crop land-use models were used to predict the CAI for every crop reporting district in the United States for the current climatic condition and for possible future climate change scenarios (various combinations of temperature and precipitation changes over a range of -3{degrees} to +6{degrees}C and -20% to +20% respectively). The magnitude of climatic warming suggested by GCMs (GISS and GFDL) is from 3.5{degrees} to 5.9{degrees}C for regions of the United States. For this magnitude of warming, the model suggests corn and soybean production areas may decline while wheat and sorghum production areas may expand. If the warming is accompanied by a decrease in annual precipitation from 1% to 10%, then the areas used for corn and soybean production could decrease by as much as 20% and 40%, respectively. The area for sorghum and wheat under these conditions would increase by as much as 80% and 70%, respectively; the exact amount depending strongly on the change in precipitation. 15 refs., 6 figs.

  9. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia

    NASA Astrophysics Data System (ADS)

    Xi, Xin; Sokolik, Irina N.

    2016-10-01

    A regional dust model system is applied to quantify the anthropogenic dust emission in the post-Soviet Central Asia from 2000 to 2014. Two physically based dust schemes suggest that a proportion of 18.3-32.8% of total dust emissions is contributed by agricultural land use and the desiccation of Aral Sea, whereas a simplified dust scheme yields higher estimates in the range of 49.7-56.5% depending on whether a static or dynamic preferential dust source function is used. The dust schemes also differ greatly in the spatial distribution of anthropogenic dust and the sensitivity to the use of land use intensity in separating natural and human-made source areas, suggesting that the model representation of erosion threshold velocity, especially the role of vegetation, is a key source of model uncertainty in quantifying anthropogenic dust. The relative importance of agriculture and dried Aral Sea bed (Aralkum) differs greatly among the dust schemes. Despite the increased dust from the expansion of Aralkum, there is a negative trend in the anthropogenic dust proportion, indicating a shift of dust emission toward natural source areas. All dust schemes show a decrease in anthropogenic dust in response to land cover changes over agricultural lands.

  10. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect.

  11. Downscaling climate change scenarios in an urban land use change model.

    PubMed

    Solecki, William D; Oliveri, Charles

    2004-08-01

    The objective of this paper is to describe the process through which climate change scenarios were downscaled in an urban land use model and the results of this experimentation. The land use models (Urban Growth Model [UGM] and the Land Cover Deltatron Model [LCDM]) utilized in the project are part of the SLEUTH program which uses a probabilistic cellular automata protocol. The land use change scenario experiments were developed for the 31-county New York Metropolitan Region (NYMR) of the US Mid-Atlantic Region. The Intergovernmental Panel on Climate Change (IPCC), regional greenhouse gas (GHG) emissions scenarios (Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios) were used to define the narrative scenario conditions of future land use change. The specific research objectives of the land use modeling work involving the SLEUTH program were threefold: (1) Define the projected conversion probabilities and the amount of rural-to-urban land use change for the NYMR as derived by the UGM and LCDM for the years 2020 and 2050, as defined by the pattern of growth for the years 1960-1990; (2) Down-scale the IPCC SRES A2 and B2 scenarios as a narrative that could be translated into alternative growth projections; and, (3) Create two alternative future growth scenarios: A2 scenario which will be associated with more rapid land conversion than found in initial projections, and a B2 scenario which will be associated with a slower level of land conversion. The results of the modeling experiments successfully illustrate the spectrum of possible land use/land cover change scenarios for the years 2020 and 2050. The application of these results into the broader scale climate and health impact study is discussed, as is the general role of land use/land cover change models in climate change studies and associated environmental management strategies.

  12. Agriculture: Climate Change

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  13. Land Use Change Driven by Gold Mining; Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Swenson, J. J.; Carter, C. E.; domec, J.; Delgado, C. I.

    2011-12-01

    Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (~18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003- 2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (~500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/ artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.

  14. Urban Dynamics: Analyzing Land Use Change in Urban Environments

    NASA Technical Reports Server (NTRS)

    Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

    2000-01-01

    In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

  15. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  16. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  17. River water quality changes in New Zealand over 26 years: response to land use intensity

    NASA Astrophysics Data System (ADS)

    Julian, Jason P.; de Beurs, Kirsten M.; Owsley, Braden; Davies-Colley, Robert J.; Ausseil, Anne-Gaelle E.

    2017-02-01

    Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity - the inputs (fertilizer, livestock) and activities (vegetation removal) of land use - is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) - consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use-water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34/77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27/77 catchments, which we

  18. Importance of land use update during the calibration period and simulation of water balance response to land use change in the upper Rio das Mortes Catchment (Cerrado Biome, Central-Western Brazil)

    NASA Astrophysics Data System (ADS)

    Lamparter, Gabriele; Kovacs, Kristof; Nobrega, Rodolfo; Gerold, Gerhard

    2015-04-01

    Changes in the hydrological balance and following degradation of the water ecosystem services due to large scale land use changes are reported from agricultural frontiers all over the world. Traditionally, hydrological models including vegetation and land use as a part of the hydrological cycle use a fixed distribution of land use for the calibration period. We believe that a meaningful calibration - especially when investigating the effects of land use change on hydrology - demands the inclusion of land use change during the calibration period into the calibration procedure. The SWAT (Soil and Water Assessment Tool) model is a process-based, semi-distributed model calculating the different components of the water balance. The model bases on the definition of hydrological response units (HRUs) which are based on soil, vegetation and slope distribution. It specifically emphasises the role of land use and land management on the water balance. The Central-Western region of Brazil is one of the leading agricultural frontiers, which experienced rapid and radical deforestation and agricultural intensification in the last 40 years (from natural Cerrado savannah to cattle grazing to intensive corn and soya cropland). The land use history of the upper Rio das Mortes catchment (with 17500 km²) is reasonably well documented since the 1970th. At the same time there are almost continuous climate and runoff data available for the period between 1988 and 2011. Therefore, the work presented here shows the model calibration and validation of the SWAT model with the land use update function for three different periods (1988 to 1998, 1998 to 2007 and 2007 to 2011) in comparison with the same calibration periods using a steady state land use distribution. The use of the land use update function allows a clearer identification which changes in the discharge are due to climatic variability and which are due to changes in the vegetation cover. With land use update included into the

  19. The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Collins, Robert; Jenkins, Alan

    1996-11-01

    The chemistry of streams draining agricultural and forested catchments in the Middle Hills of Nepal is described. Differences between mean streamwater chemistry are attributable to the effects of the terraced agriculture and land management practices. The agricultural catchments were found to exhibit higher mean concentrations of base cations (Na, Mg, K), bicarbonate, acid anions (SO 4, Cl), metals (Al, Fe) and nutrients (NO 3, PO 4). Increased base cations apparently result from tillage practices exposing fresh soil material to weathering. Increased acid anions result from inputs of inorganic fertiliser, notably ammonium sulphate, and from an apparent increase in evapotranspiration from the flooded terraces in the agricultural catchments. Increased metal concentrations may be promoted by increased weathering and erosion rates, and this is further supported by observations of dramatically higher turbidity in the streamwater draining the agricultural catchments. Higher levels of nutrients are the direct result of fertiliser input but concentrations are generally low from all catchments as a result of denitrification, indicating that eutrophication downstream is not a likely consequence of land use change. The major dynamics of water chemistry occur during the monsoon, which is also the main season for agricultural production. Mean wet season concentrations of base cations tend to be lower than in the dry season at all catchments as higher flow dilutes the relatively constant weathering input. Ammonium concentrations are higher from the agricultural catchments in the wet season as a result of direct washout of fertiliser. Detailed monitoring through storm periods at one agricultural catchment indicates that the chemistry responds very rapidly to changing flow, with cations decreasing and acid anions increasing followed by equally rapid recovery as flow recedes. Bicarbonate concentrations also decline markedly but are still sufficiently high to maintain pH near

  20. Tracking changes in land-use and drainage status of organic soils using heterogeneous spatial datasets

    NASA Astrophysics Data System (ADS)

    Untenecker, Johanna; Tiemeyer, Bärbel; Freibauer, Annette; Laggner, Andreas; Luterbacher, Jürg

    2016-04-01

    Tracking land-use since 1990 is one of the major challenges in greenhouse gas (GHG) reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, as the data availability, especially for the base year 1990, is often poor. Even if data is available, spatial and thematic resolution will often change over time or differ even within one country. Such inconsistencies will cause a strong overestimation of land use change (LUC) if not adequately accounted for. Using different spatial datasets, we present a method that allows tracking changes in land-use and drainage status of organic soils. The drainage status is relevant for the Kyoto activities grazing land management (GM) and wetland drainage and rewetting (WDR) as the GHG emissions of organic soils strongly depend on the groundwater level. We used datasets that are already used for the German national inventory report (Digital Landscape Model of official cadastre data) and high resolution spatial datasets (CIR aerial photography) derived for biodiversity monitoring of six federal states in North and East Germany. This data is combined with the legal protection status such as nature conservation areas. To create a consistent time series, we developed a translation key which allows quantifying gross and net LUC in a spatially explicit manner. The developed method fills the lack of data for 1990 and allows GHG accounting on higher Tier levels as soon as detailed emission factors are ready to be implemented. LUC can be stratified by the protection status. Areas without a protection status show a trend towards both intensification of land-use and drier conditions. Highly protected areas show an opposite trend while a moderate protection level (e.g. by nature parks) did only have very weak effects. Furthermore, there are major differences between federal states. In Schleswig-Holstein, known as a federal state of high agricultural production, organic soils tend to become drier and

  1. Influence of Land-use Change on Surface Energy Fluxes and Atmospheric Circulation in California

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Snyder, M. A.; Sloan, L. C.

    2006-12-01

    California has seen significant changes in land cover and land use over the past century, with expanding urbanization along the Pacific coast and extensive agricultural development inland. Land-use change can modify local and regional climate due to changes in land surface albedo, vegetation roughness, vegetation cover, and soil moisture. We used the regional climate model RegCM3 to quantify the differences in surface energy fluxes and atmospheric circulation between 20-year experimental cases using natural and modern (~1990) land cover. Both irrigated agriculture and urban land have significant impacts on surface energy fluxes. Irrigated agricultural land in California's Central and Imperial Valleys increased latent heat flux and decreased sensible heat flux during the April-October dry season, resulting in lower mean and maximum surface air temperatures. Lower ground temperatures resulted in net long-wave radiation decreasing 40% in mid-summer. Conversely, latent heat flux decreased slightly and sensible heat flux increased slightly with conversion of natural vegetation to urban cover in many areas. Ground temperature and net long-wave radiation increased slightly in urban areas as well. As a result of changes to surface energy budgets and atmospheric pressure in a large part of the interior of California, the strength of the westerly sea breeze was reduced, and inland breezes were strengthened at the boundary between irrigated cropland and natural vegetation. Overall, widespread conversion of natural vegetation to irrigated cropland has likely had a much larger effect on California's climate than the creation of coastal cities. However, projections for future conversion of agricultural land to urban and suburban development could alter this conclusion.

  2. Structure, Composition and Metagenomic Profile of Soil Microbiomes Associated to Agricultural Land Use and Tillage Systems in Argentine Pampas

    PubMed Central

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P.

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no- tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems

  3. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    PubMed

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may

  4. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    NASA Astrophysics Data System (ADS)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong

  5. Monitoring and modeling land-use change in the Pearl River Delta, China, using satellite imagery and socioeconomic data

    NASA Astrophysics Data System (ADS)

    Seto, Karen Ching-Yee

    Over the last two decades, rapid rates of economic growth in the People's Republic of China have converted large areas of natural ecosystems and agricultural lands to urban uses. The size and rate of these land-use changes may affect local and regional climate, biogeochemistry, and food supply. To assess these impacts, both the amount of land converted and its relation to socioeconomic drivers must be determined. This research combines satellite remote sensing, which is used to monitor land conversion, with socioeconomic data to model the economic and demographic drivers of land-use change in the Pearl River Delta of Southern China. This research modifies existing techniques and develops new methods to assess the type, amount, and timing of land-use change from annual Landsat Thematic Mapper (TM) images from 1988 to 1996. During this period, most of the land-use change is conversion of agricultural land to urban areas. Results indicate that urban areas, increased by over 300% between 1988 and 1996. Field assessments confirm these results and indicate that the land-use change map is highly accurate at 93.5%. To use these data as inputs to statistical models, the year of land conversion derived from satellite imagery must be unbiased. A new method that uses time series techniques identifies the date at which land-use changes occur from a sequential series of TM images. The accuracy and bias of the dates of change identified compare favorably to a more conventional remote sensing change detection technique and may have the additional advantages of reducing efforts required to assemble training data and to correct for atmospheric effects. Data on the quantity of land-use change and the timing of these changes are used in conjunction with socioeconomic data to estimate statistical models that identify and quantify the demographic and economic changes on two types of land conversion: urbanization of agricultural land and urbanization of natural vegetation. Results

  6. Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

    2009-04-01

    Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

  7. Applying IPCC Representative Concentration Pathway (RCP) land-use projections in a regional assessment of land-use change in the conterminous United States.

    NASA Astrophysics Data System (ADS)

    Sherba, J.; Sleeter, B. M.

    2015-12-01

    The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) include global land-use change projections for four global emissions scenarios. These projections are potentially useful for driving regional-scale models needed for informing land-use and management interactions. Here, we applied global gridded RCP land-use projections within a regional-scale state-and-transition simulation model (STSM) projecting land-use change in the conterminous United States. First, we cross-walked RCP land-use transition classes to land-use classes more relevant for modeling at the regional scale. Coarse grid RCP land-use transition values were then downscaled to EPA Level III ecoregion boundaries using historical land-use transition data from the USGS Land Cover Trends (LCT) dataset. Downscaled transitions were aggregated to the ecoregion level. Ecoregions were chosen because they represent areas with consistent land-use patterns that have proven useful for studying land-use and management interactions. Ecoregion-level RCP projections were applied in a state-and-transition simulation model (STSM) projecting land-use change between 2005 and 2100 at the 1-km scale. Resulting RCP-based STSM projections were compared to STSM projections created using scenario projections from the Special Report on Emissions Scenarios (SRES) and the USGS LCT dataset. While most land-use trajectories appear plausible, some transitions such as forest harvest are unreasonable in the context of historical land-use patterns and the socio-economic drivers of change outlined for each scenario. This effort provides a method for using the RCP land-use projections in a wide range of regional scale models. However, further investigation is needed into the performance of RCP land-use projections at the regional scale.

  8. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  9. Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan.

    PubMed

    Hassan, Zahra; Shabbir, Rabia; Ahmad, Sheikh Saeed; Malik, Amir Haider; Aziz, Neelam; Butt, Amna; Erum, Summra

    2016-01-01

    One of the detailed and useful ways to develop land use classification maps is use of geospatial techniques such as remote sensing and Geographic Information System (GIS). It vastly improves the selection of areas designated as agricultural, industrial and/or urban sector of a region. In Islamabad city and its surroundings, change in land use has been observed and new developments (agriculture, commercial, industrial and urban) are emerging every day. Thus, the rationale of this study was to evaluate land use/cover changes in Islamabad from 1992 to 2012. Quantification of spatial and temporal dynamics of land use/cover changes was accomplished by using two satellite images, and classifying them via supervised classification algorithm and finally applying post-classification change detection technique in GIS. The increase was observed in agricultural area, built-up area and water body from 1992 to 2012. On the other hand forest and barren area followed a declining trend. The driving force behind this change was economic development, climate change and population growth. Rapid urbanization and deforestation resulted in a wide range of environmental impacts, including degraded habitat quality.

  10. Large-scale changes in community composition: determining land use and climate change signals.

    PubMed

    Kampichler, Christian; van Turnhout, Chris A M; Devictor, Vincent; van der Jeugd, Henk P

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.

  11. Integrated Assessment and the Relation Between Land-Use Change and Climate Change

    DOE R&D Accomplishments Database

    Dale, V. H.

    1994-10-07

    Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.

  12. Integrated assessment and the relation between land-use change and climate change

    SciTech Connect

    Dale, V.H.

    1994-10-07

    Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.

  13. Land use change impacts on water quality in three lake winnipeg watersheds.

    PubMed

    Yang, Qi; Leon, Luis F; Booty, William G; Wong, Isaac W; McCrimmon, Craig; Fong, Phil; Michiels, Patsy; Vanrobaeys, Jason; Benoy, Glenn

    2014-09-01

    Lake Winnipeg eutrophication results from excess nutrient loading due to agricultural activities across the watershed. Estimating nonpoint-source pollution and the mitigation effects of beneficial management practices (BMPs) is an important step in protecting the water quality of streams and receiving waters. The use of computer models to systematically compare different landscapes and agricultural systems across the Red-Assiniboine basin has not been attempted at watersheds of this size in Manitoba. In this study, the Soil and Water Assessment Tool was applied and calibrated for three pilot watersheds of the Lake Winnipeg basin. Monthly flow calibration yielded overall satisfactory Nash-Sutcliffe efficiency (NSE), with values above 0.7 for all simulations. Total phosphorus (TP) calibration NSE ranged from 0.64 to 0.76, total N (TN) ranged from 0.22 to 0.75, and total suspended solids (TSS) ranged from 0.29 to 0.68. Based on the assessment of the TP exceedance levels from 1993 to 2007, annual loads were above proposed objectives for the three watersheds more than half of the time. Four BMP scenarios based on land use changes were studied in the watersheds: annual cropland to hay land (ACHL), wetland restoration (WR), marginal annual cropland conversion to hay land (MACHL), and wetland restoration on marginal cropland (WRMAC). Of these land use change scenarios, ACHL had the greatest impact: TSS loads were reduced by 33 to 65%, TN by 58 to 82%, and TP by 38 to 72% over the simulation period. By analyzing unit area and percentage of load reduction, the results indicate that the WR and WRMAC scenarios had a significant impact on water quality in high loading zones in the three watersheds. Such reductions of sediment, N, and P are possible through land use change scenarios, suggesting that land conservation should be a key component of any Lake Winnipeg restoration strategy.

  14. Effects of watershed-scale land use change on stream nitrate concentrations

    USGS Publications Warehouse

    Schilling, K.E.; Spooner, J.

    2006-01-01

    The Walnut Creek Watershed Monitoring Project was conducted from 1995 through 2005 to evaluate the response of stream nitrate concentrations to changing land use patterns in paired 5000-ha Iowa watersheds. A large portion of the Walnut Creek watershed is being converted from row crop agriculture to native prairie and savanna by the U.S. Fish and Wildlife Service at the Neal Smith National Wildlife Refuge (NSNWR). Before restoration, land use in both Walnut Creek (treatment) and Squaw Creek (control) watersheds consisted of 70% row crops. Between 1990 and 2005, row crop area decreased 25.4% in Walnut Creek due to prairie restoration but increased 9.2% in Squaw Creek due to Conservation Reserve Program (CRP) grassland conversion back to row crop. Nitrate concentrations ranged between <0.5 to 14 mg L-1 at the Walnut Creek outlet and 2.1 to 15 mg L-1 at the downstream Squaw Creek outlet. Nitrate concentrations decreased 1.2 mg L-1 over 10 yr in the Walnut Creek watershed but increased 1.9 mg L-1 over 10 yr in Squaw Creek. Changes in nitrate were easier to detect and more pronounced in monitored subbasins, decreasing 1.2 to 3.4 mg L-1 in three Walnut Creek subbasins, but increasing up to 8.0 and 11.6 mg L-1 in 10 yr in two Squaw Creek subbasins. Converting row crop lands to grass reduced stream nitrate levels over time in Walnut Creek, but stream nitrate rapidly increased in Squaw Creek when CRP grasslands were converted back to row crop. Study results highlight the close association of stream nitrate to land use change and emphasize that grasslands or other perennial vegetation placed in agricultural settings should be part of a long-term solution to water quality problems. ?? ASA, CSSA, SSSA.

  15. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink

    USGS Publications Warehouse

    Shevliakova, Elena; Pacala, Stephen W.; Malyshev, Sergey; Hurtt, George C.; Milly, P.C.D.; Caspersen, John P.; Sentman, Lori T.; Fisk, Justin P.; Wirth, Christian; Crevoisier, Cyril

    2009-01-01

    We have developed a dynamic land model (LM3V) able to simulate ecosystem dynamics and exchanges of water, energy, and CO2 between land and atmosphere. LM3V is specifically designed to address the consequences of land use and land management changes including cropland and pasture dynamics, shifting cultivation, logging, fire, and resulting patterns of secondary regrowth. Here we analyze the behavior of LM3V, forced with the output from the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model AM2, observed precipitation data, and four historic scenarios of land use change for 1700-2000. Our analysis suggests a net terrestrial carbon source due to land use activities from 1.1 to 1.3 GtC/a during the 1990s, where the range is due to the difference in the historic cropland distribution. This magnitude is substantially smaller than previous estimates from other models, largely due to our estimates of a secondary vegetation sink of 0.35 to 0.6 GtC/a in the 1990s and decelerating agricultural land clearing since the 1960s. For the 1990s, our estimates for the pastures' carbon flux vary from a source of 0.37 to a sink of 0.15 GtC/a, and for the croplands our model shows a carbon source of 0.6 to 0.9 GtC/a. Our process-based model suggests a smaller net deforestation source than earlier bookkeeping models because it accounts for decelerated net conversion of primary forest to agriculture and for stronger secondary vegetation regrowth in tropical regions. The overall uncertainty is likely to be higher than the range reported here because of uncertainty in the biomass recovery under changing ambient conditions, including atmospheric CO2 concentration, nutrients availability, and climate. Copyright 2009 by the American Geophysical Union.

  16. Biofuels, causes of land-use change, and the role of fire in greenhouse gas emissions

    SciTech Connect

    Kline, Keith L; Dale, Virginia H

    2008-07-01

    IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE ('LAND CLEARING AND THE BIOFUEL CARBON debt,' J. Fargione et al., p. 1235, and 'Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,' T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associated carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market. Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation for a study not designed to identify the causal factors of land clearing. The study analyzed satellite imagery from a single state in Brazil over a 4-year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of land-use change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire's escalating contribution to global climate change is largely a result of burning in tropical savannas and forests. Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005. By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land. Neither Searchinger et al. nor Fargione et

  17. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    USGS Publications Warehouse

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  18. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Huisman, J. A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B. F. W.; Frede, H.-G.; Gräff, T.; Hubrechts, L.; Jakeman, A. J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D. P.; Lindström, G.; Seibert, J.; Sivapalan, M.; Viney, N. R.

    2009-02-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  19. The role of country-to-region assignments in global integrated modeling of energy, agriculture, land use, and climate

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Patel, P.; Calvin, K. V.

    2014-12-01

    Global integrated assessment models used for understanding the linkages between the future energy, agriculture, and climate systems typically represent between 8 and 30 geopolitical macro-regions, balancing the benefits of geographic resolution with the costs of additional data collection, processing, analysis, and computing resources. As these models are continually being improved and updated in order to address new questions for the research and policy communities, it is worth examining the consequences of the country-to-region mapping schemes used for model results. This study presents an application of a data processing system built for the GCAM integrated assessment model that allows any country-to-region assignments, with a minimum of four geopolitical regions and a maximum of 185. We test ten different mapping schemes, including the specific mappings used in existing major integrated assessment models. We also explore the impacts of clustering nations into regions according to the similarity of the structure of each nation's energy and agricultural sectors, as indicated by multivariate analysis. Scenarios examined include a reference scenario, a low-emissions scenario, and scenarios with agricultural and buildings sector climate change impacts. We find that at the global level, the major output variables (primary energy, agricultural land use) are surprisingly similar regardless of regional assignments, but at finer geographic scales, differences are pronounced. We suggest that enhancing geographic resolution is advantageous for analysis of climate impacts on the buildings and agricultural sectors, due to the spatial heterogeneity of these drivers.

  20. Legacies of Land Use Trajectories on Belowground Dynamics in Post-agricultural Tropical Ecosystems

    NASA Astrophysics Data System (ADS)

    Atkinson, E. E.; Marin-Spiotta, E.

    2012-12-01

    layer microbial community structure differed from all successional forest sites. Furthermore, we show strong differences in the soil microbial community with depth. In older forests that rapidly regenerated to secondary forest without an intermediate land use (i.e. tree plantation or high intensity pasture), we found increased extracellular enzyme activity in the forest floor, particularly for enzymes involved in the breakdown of cellulose, hemi-cellulose, and soluble saccharides. Pasture soils showed higher extracellular enzyme activity at the surface depth than the secondary forests. Since enzymes are directly linked to the turnover rates of different organic functional groups in soils, there is great potential for differences in enzyme activity to alter pathways of formation and stabilization of SOM. The next step in our research is to compare SOM chemistry and turnover for the different successional trajectories. We are installing long-term leaf litter, root, and soil transplant experiments between the younger secondary forests dominated by 1-2 exotic species and the older, more diverse secondary forests. From this research we expect to link microbial community structure and function with distinct forms of SOM, and thus determine whether changes in function create distinct SOM stabilization pathways.

  1. Assessing land use and cover change effects on hydrological response in the river C

    NASA Astrophysics Data System (ADS)

    Nunes, A.

    2009-04-01

    Assessing the impacts of land use change, especially the role of vegetation, on hydrological response from the plot to the catchment scale has become one of the widespread issues of scientific concern,in recent decades. The continuous expansion of urban areas, the dramatic changes in land-cover and land-use patterns and the climate change which have taken place on a global scale explain this increasing interest. Although scientists have long recognized that changes in land use and land cover are important factors affecting water circulation and the spatial-temporal variations in the distribution of water resources, little is known about the quantitative relation between land use/coverage characteristics and runoff generation or processes. Therefore, a better understanding of how land-use changes impact watershed hydrological processes will become a crucial issue for the planning, management, and sustainable development of water resources. In the past decades, abandonment of marginal agricultural land has been a widespread phenomenon in Portugal, as well as in many other countries of Europe, especially in the Mediterranean countries. The abandonment of arable land typically leads to natural succession and to the development of shrub and woodland. Shrubs like Cytisus spp.usually establish in study area. A Quercus pyrenaica Willd. wood generally appears after a long time, about 3 or 4 decades. The general aim of this work is to analyse the temporal evolution of water supplies in a Côa basins (located between 41°00'' N and 40°15'' N and 7°15'' W and 6°55'' W Greenwich)and relate its behaviour with changes undergone by the plant cover and by the main climatic variables (temperatures and precipitation). To achieve this goal, dynamics on the land use and land cover were estimated after the second half of the 20th century. The hydrological response under different land uses and plant covers were monitored during 2005 and 2006, using small permanently establish bounded

  2. Monitoring population and land use change in tropical forest protected areas

    NASA Astrophysics Data System (ADS)

    Zvoleff, A. I.; Rosa, M.; Ahumada, J. A.

    2014-12-01

    Monitoring human-environment interactions in tropical forest protected areas requires linking interdisciplinary datasets collected across a range of spatial and temporal scales. Recent assessments have shown that forest degradation and loss outside of protected areas is strongly associated with declines in biodiversity within protected areas. Biodiversity monitoring efforts must therefore develop approaches that consider change in the broader landscape, using biophysical and socioeconomic datasets that not only cover the extent of a protected area, but also the region surrounding it. The Tropical Ecology Assessment and Monitoring (TEAM) Network has developed an approach for linking remotely sensed imagery from Landsat and MODIS sensors with in-situ ecological data and socioeconomic datasets to better understand the effects of landscape change on biodiversity. The TEAM Network is a global system for monitoring biodiversity, land use/cover change (LUCC), and climate in sixteen tropical forest sites evenly distributed across global biophysical gradients (rainfall and seasonality) and gradients of expected climate change and land use change. TEAM adopts the Zone of Interaction (ZOI) concept to delineate the spatial extent around protected areas for linking broader-scale trends in LUCC to plot-based monitoring data. This talk reports on a cross-site comparison examining LUCC and biodiversity change across the TEAM network. The analysis indicates a gradient of forest loss in the tropics dependent on landscape-level human factors, such as population and road density. The highest losses of forest cover are associated with changing patterns of land use and agricultural development, particularly plantation forestry in Southeast Asia. While the spatial and temporal resolution of remote sensing-derived datasets continues to increase, a key challenge for monitoring efforts is linking this data to spatially explicit socioeconomic datasets for use in statistical modeling. We will

  3. Climate change or land use dynamics: do we know what climate change indicators indicate?

    PubMed

    Clavero, Miguel; Villero, Daniel; Brotons, Lluís

    2011-04-21

    Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.

  4. Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Breuer, L.; Frede, H.-G.

    Current model studies on the impact of land use change on water resources often simulate changes in land use without considering changes in the soil properties due to the change in land use. In this study, an artificial study catchment representing the Dill catchment (Germany) was used within the eco-hydrological model SWAT-G to study the sensitivity of SWAT-G simulations towards changes in soil properties during land use change. Since there is little information on these soil-vegetation interactions, we performed a model sensitivity study to investigate the impact of changes in the depth of the top soil layer, bulk density, saturated hydraulic conductivity and available water content on several simulated hydrological fluxes. To assess the significance of the simulated changes due to the changing soil properties, we compared the model sensitivity with the uncertainty in the hydrological fluxes due to the uncertainty in the parameterization of the plant parameters. The results showed that the changes in soil properties due to a land use transition from cropland to pasture only have a minor impact on the simulated mean annual, summer and winter runoff and actual evapotranspiration. Soil-vegetation interactions have a stronger impact on the simulated mean surface runoff, although the absolute contribution of this flux is small in our conceptualization of the Dill catchment. A comparison of the sensitivity and uncertainty of the simulated hydrological fluxes led to the conclusion that changes in soil properties due to land use change are relatively unimportant in our model of the Dill catchment in the light of the low sensitivity of the dominating hydrological fluxes and the large output uncertainty due to the plant parameter uncertainty.

  5. The plot size effect on soil erosion on rainfed agriculture land under different land uses in eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Bodí, M. B.; Burguet, M.; Segura, M.; Jovani, C.

    2009-04-01

    Soil erosion at slope scale is dependent on the size of the plot. This is because soil erosion is a scale-dependent process due to the spatial variability in infiltration, the potential for sediment to be captured by vegetation and other roughness components, and the changes in erosion rates and processes with increasing amounts of runoff. The effects of plot size may also vary with land use, as plot size may be less important in areas with a more homogeneous plant cover or bares soils; meanwhile the soil transmission losses will higher on vegetation covered soils and on patchy distributed plants. A series of study plots were established in 2003 at the El Teularet experimental Station in the Sierra de Enguera in eastern Spain. The overall goal is to assess runoff and erosion rates from different land uses at different spatial scales. Thirteen sets of plots have been established, and each set consists of five adjacent plots that vary in size from 1 m2 (1 x 1 m), 2 m2 (1 x 2 m), 4 m2 (1 x 4 m), 16 m2 (2 x 8 m) and 48 m2 (3 m wide x 16 m length). Each set of plots has a different land use, and the land uses being tested in the first year of this study are fallow, ploughed but unplanted, untilled oats and beans, tilled oats and beans, straw mulch, mulched with chipped olive branches, a geotextile developed to control erosion on agricultural fields, scrub oaks (Quercus coccifera), gorse (Ulex parviflorus), and three herbicide treatments—a systemic herbicide, a contact herbicide, and a persistent herbicide. From those plots, three plots were selected to analyse the effect of the size of the plot on the soil erosion assessment. Herbicide (bare), Catch crops (oat) and scrubland were selected to analyze the soil losses during 2004 and 2005. The results shows that sediment delivery is highly dependent on the land use and land management as the scrubland contributed with null sediment yield, meanwhile the herbicide reached the largest soil loss. The soil erosion was higher

  6. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  7. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  8. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    NASA Astrophysics Data System (ADS)

    John, Ranjeet; Chen, Jiquan; Lu, Nan; Wilske, Burkhard

    2009-10-01

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km2, respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km2 and 2197 km2, respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  9. Land use and stream nitrogen concentrations in agricultural watersheds along the central coast of California.

    PubMed

    Los Huertos, M; Gentry, L E; Shennan, C

    2001-11-22

    In coastal California nitrogen (N) in runoff from urban and agricultural land is suspected to impair surface water quality of creeks and rivers that discharge into the Monterey Bay Sanctuary. However, quantitative data on the impacts of land use activities on water quality are largely limited to unpublished reports and do not estimate N loading. We report on spatial and temporal patterns of N concentrations for several coastal creeks and rivers in central California. During the 2001 water year, we estimated that the Pajaro River at Chittenden exported 302.4 Mg of total N. Nitrate-N concentrations were typically <1 mg N l(-1) in grazing lands, oak woodlands, and forests, but increased to a range of 1 to 20 mg N l(-1) as surface waters passed through agricultural lands. Very high concentrations of nitrate (in excess of 80 mg N l(-1)) were found in selected agricultural ditches that received drainage from tiles (buried perforated pipes). Nitrate concentrations in these ditches remained high throughout the winter and spring, indicating nitrate was not being flushed out of the soil profile. We believe unused N fertilizer has accumulated in the shallow groundwater through many cropping cycles. Results are being used to organize landowners, resource managers, and growers to develop voluntary monitoring and water quality protection plans.

  10. Landscape-scale modelling of soil carbon dynamics under land use and climate change

    NASA Astrophysics Data System (ADS)

    Lacoste, Marine; Viaud, Valérie; Michot, Didier; Christian, Walter

    2013-04-01

    Soil organic carbon (SOC) sequestration is highly linked to soil use and farming practices, but also to soil redistributions, soil properties, and climate. In a global change context, landscape, farming practice and climate changes are expected; and they will most probably impact SOC dynamics. To assess their respective impacts, we modelled the SOC contents and stocks evolution at the scale of an agricultural landscape, by taking into account the soil redistribution by tillage and water processes. The simulations were conducted from 2010 to 2100 under different scenarios of landscape and climate. These scenarios combined different land uses associated to specific farming practices (mixed dairy with rotations of crops and grasslands, intensive cropping with only crops rotations or permanent grasslands), landscape managements (hedges planting or removal), and climates (business-as-usual climate and climate change, with temperature and precipitations increase). We used a spatially SOC dynamic model (adapted from RothC), coupled to a soil redistribution model (LandSoil). SOC dynamics were spatially modelled with a lateral resolution of 2-m and for soil organic layers up to 105 cm. Initial SOC stocks were described with a 2-m resolution map based on field data and produced with digital soil mapping methods. The major factor of change in SOC stocks was land use change, the second factor of importance was climate change, and finally landscape management: for the total SOC stocks (0-to-105 cm soil layer) the change of land use, climate and landscape management induced a respective mean absolute variation of 10 to 20 tC ha-1, 9 tC ha-1 and 0.4 tC ha-1. When considering the 0-to-105 cm soil layer, the different modelled landscapes showed the same sensitivity to climate change, with induced a mean decrease of 10 tC ha-1. However, the impact of climate change was found different according to the different modelled landscape when considering the 0-to-7.5 and 0-to-30 cm soil

  11. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  12. Increasing land use drives changes in plant phylogenetic diversity and prevalence of specialists.

    PubMed

    Villalobos, Soraya; Vamosi, Jana C

    2016-01-01

    Increased human land use has resulted in the increased homogenization of biodiversity between sites, yet we lack sufficient indicators to predict which species decline and the consequence of their potential loss on ecosystem services. We used comparative phylogenetic analysis to (1) characterize how increasing conversion of forest and grasslands to grazing pasturelands changes plant diversity and composition; (2) examine how changes in land use relate to declines in functional trait diversity; and (3) specifically investigate how these changes in plant composition affect the prevalence of zygomorphy and the possible consequences that these changes may have on pollinator functional groups. As predicted, we found that the conversion to grazing pasturelands negatively impacted species richness and phylogenetic composition. Clades with significantly more represented taxa in grasslands (GL) were genera with a high representation of agricultural weeds, while the composition was biased towards clades of subalpine herbaceous wildflowers in Mixed Forest (MF). Changes in community composition and structure had strong effects on the prevalence of zygomorphic species likely driven by nitrogen-fixing abilities of certain clades with zygomorphic flowers (e.g., Fabaceae). Land conversion can thus have unexpected impacts on trait distributions relevant for the functioning of the community in other capacities (e.g., cascading effects to other trophic levels (i.e., pollinators). Finally, the combination of traits represented by the current composition of species in GL and MF might enhance the diagnostic value of productivity and ecosystem processes in the most eroded ecosystems.

  13. Increasing land use drives changes in plant phylogenetic diversity and prevalence of specialists

    PubMed Central

    Vamosi, Jana C.

    2016-01-01

    Increased human land use has resulted in the increased homogenization of biodiversity between sites, yet we lack sufficient indicators to predict which species decline and the consequence of their potential loss on ecosystem services. We used comparative phylogenetic analysis to (1) characterize how increasing conversion of forest and grasslands to grazing pasturelands changes plant diversity and composition; (2) examine how changes in land use relate to declines in functional trait diversity; and (3) specifically investigate how these changes in plant composition affect the prevalence of zygomorphy and the possible consequences that these changes may have on pollinator functional groups. As predicted, we found that the conversion to grazing pasturelands negatively impacted species richness and phylogenetic composition. Clades with significantly more represented taxa in grasslands (GL) were genera with a high representation of agricultural weeds, while the composition was biased towards clades of subalpine herbaceous wildflowers in Mixed Forest (MF). Changes in community composition and structure had strong effects on the prevalence of zygomorphic species likely driven by nitrogen-fixing abilities of certain clades with zygomorphic flowers (e.g., Fabaceae). Land conversion can thus have unexpected impacts on trait distributions relevant for the functioning of the community in other capacities (e.g., cascading effects to other trophic levels (i.e., pollinators). Finally, the combination of traits represented by the current composition of species in GL and MF might enhance the diagnostic value of productivity and ecosystem processes in the most eroded ecosystems. PMID:26966669

  14. Estimating Indirect Emissions from Land Use Change Due to Biofuels (Invited)

    NASA Astrophysics Data System (ADS)

    Reilly, J. M.

    2010-12-01

    Interest in biofuels as an alternative fuel has led to the realization that they may not be a viable low greenhouse gas alternative, even if process emissions are low, because expansions of land area in biomass crops may lead to forest destruction and hence carbon emissions.(1,2)If the concern was only direct land use effects—changes in carbon stocks on land directly used for biomass—direct measurement would be an option. However, agricultural economists recognize that if biofuels are produced from crops grown on existing cropland the crops previously grown there will likely be replaced by production elsewhere. Given international markets in agricultural products a diversion of land or part of the corn crop in the US for biofuels would result in higher market prices for corn and other crops, and thus spur land conversion almost anywhere around the world. There have now been a number of estimates of the potential land use emissions, and those estimates vary widely and are sensitive to key parameters of both the economic models used in the analysis and the representation of biophysical processes.(3,4,5)Among the important parameters are those that describe the willingness to convert unmanaged land, the ability to intensify production on existing land, the productivity of new land coming to production compared to existing cropland, demand elasticities for agricultural products, and the representation of carbon and nitrogen cycles and storage.(6,7) 1. J. Fargione, J. et al., Science 319, 1235 (2008). 2. T. Searchinger, T et al., Science 319, 1238 (2008) 3. J.M. Melillo, Science, 326: 1397-1399 (2009) 4. M. Wise et al., Science 324, 1183 (2009). 5. W. E. Tyner, et al., Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis, Department of Agricultural Economics, Purdue University (July 2010). 6. T. W. Hertel, The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making? AAEA Presidential

  15. The sustainable management of ameliorated peatlands on changed land use conditions; scenarios of constrains and possibilities

    NASA Astrophysics Data System (ADS)

    Shanskiy, , Merrit; Vollmer, Elis; Penu, Priit

    2015-04-01

    The utilization of organic soils for forestry or agriculture requires the land amelioration that could result on the peat losses from 15 to 20 t ha-1 in a year on following five years. After five years, the peat losses will be 5 - 15 t ha-1 in a year. The agricultural land resource on different types of organic soils (including ameliorated bogs) in Estonia is 360 000 ha that comprises 41% of total agricultural land area. The landscape iself is a valuable resource that considered to be a set of characteristics that satisfy needs of people using the landscape: economical or non-economical value; ecological, social, recreational, aesthetical, educational, scientific or even protective value. More diverse landscapes have higher biodiversity and yield more services to public, they are also seen as more sustainable and resilient to short-term changes. In order to maintain landscape diversity, sustainable maintenance is important. The purpose of current study was to estimate the land use potential on three different ameliorated peat areas and to develop the methodology for the futher sustainable utilization in order to secure the best ecological functioning of soil while taking into account maintaining and increasing landscape value. Therefore, site specific soil sampling (n=77) was carried out on predetermined eight study sites. Soil samples were analyzed for main agrochemical parameters (n=17; pHKCl, P, K, C%, N%, S%, ash, main anions and cations). This enables determing site-specific best suitable crops and land use scenarios. For the land resource description (soils type, topology) the digital soil map (1: 10,000) and field sudy based database were used for describing the model areas. For more specific identification of the field layers the Agricultural Registers and Information Board (ARIB) and databases of the Common Agricultural Policy (CAP) payments were used for subsidy schemes chekout. Estonian Nature Information System map tool was used to specify the

  16. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments.

    PubMed

    Serpa, D; Nunes, J P; Santos, J; Sampaio, E; Jacinto, R; Veiga, S; Lima, J C; Moreira, M; Corte-Real, J; Keizer, J J; Abrantes, N

    2015-12-15

    The impacts of climate and land use changes on streamflow and sediment export were evaluated for a humid (São Lourenço) and a dry (Guadalupe) Mediterranean catchment, using the SWAT model. SWAT was able to produce viable streamflow and sediment export simulations for both catchments, which provided a baseline for investigating climate and land use changes under the A1B and B1 emission scenarios for 2071-2100. Compared to the baseline scenario (1971-2000), climate change scenarios showed a decrease in annual rainfall for both catchments (humid: -12%; dry: -8%), together with strong increases in rainfall during winter. Land use changes were derived from a socio-economic storyline in which traditional agriculture is replaced by more profitable land uses (i.e. corn and commercial forestry at the humid site; sunflower at the dry site). Climate change projections showed a decrease in streamflow for both catchments, whereas sediment export decreased only for the São Lourenço catchment. Land use changes resulted in an increase in streamflow, but the erosive response differed between catchments. The combination of climate and land use change scenarios led to a reduction in streamflow for both catchments, suggesting a domain of the climatic response. As for sediments, contrasting results were observed for the humid (A1B: -29%; B1: -22%) and dry catchment (A1B: +222%; B1: +5%), which is mainly due to differences in the present-day and forecasted vegetation types. The results highlight the importance of climate-induced land-use change impacts, which could be similar to or more severe than the direct impacts of climate change alone.

  17. Linking Land Use Changes to Surface Water Quality Variability in Lake Victoria: Some Insights From Remote Sensing (GC41B-1101)

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan

    2016-01-01

    Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.

  18. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  19. The impacts of land use change on malaria vector abundance in a water-limited, highland region of Ethiopia.

    PubMed

    Stryker, Jody J; Bomblies, Arne

    2012-12-01

    Changes in land use and climate are expected to alter the risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  20. The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited Highland Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Stryker, J.; Bomblies, A.

    2012-12-01

    Changes in land use and climate are expected to alter risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically-based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  1. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be

  2. Association of land use and its change with beach closure in the United States, 2004-2013.

    PubMed

    Wu, Jianyong; Jackson, Laura

    2016-11-15

    Land use and its change have great influences on water quality. However, their impacts on microbial contamination of beach water have rarely been investigated and their relationship with beach actions (e.g., advisories or closure) is still unknown. Here, we analyzed beach closure data obtained from 2004 to 2013 for >500 beaches in the United States, and examined their associations with land use around beaches in 2006 and 2011, as well as the land use change between 2006 and 2011. The results show that the number of beach closures due to elevated indicators of health risk is negatively associated with the percentages of forest, barren land, grassland and wetland, while positively associated with the percentages of urban area. The results from multi-level models also indicate the negative association with forest area but positive association with urban area and agriculture. The examination of the change of land use and the number of beach closures between 2006 and 2011 indicates that the increase in the number of beach closures is positively associated with the increase in urban (β=1.612, p<0.05) and agricultural area including pasture (β=0.098, p<0.05), but negatively associated with the increase in forest area (β=-1.789, p<0.05). The study suggests that urbanization and agriculture development near beaches have adverse effects on beach microbial water quality, while afforestation may protect beach water quality and reduce the number of beach closures.

  3. Riparian responses to extreme climate and land-use change scenarios.

    PubMed

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems.

  4. Potential population-level effects of land-use change and climate change

    EPA Science Inventory

    Climate change and land-use change are poised to be two fo the largest drivers of biological changeover the next century. We explored the potential effects of these two forces on a population of Red-cockaded Woodpeckers (Picoides borealis) at Fort Benning in Georgia, USA. We us...

  5. Assessing Climatic Impacts due to Land Use Change over Southeast Asian Maritime Continent base on Mesoscale Model Simulations

    NASA Astrophysics Data System (ADS)

    Feng, N.; Christopher, S. A.; Nair, U. S.

    2014-12-01

    Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.

  6. Land-use change and emerging infectious disease on an island continent.

    PubMed

    McFarlane, Rosemary A; Sleigh, Adrian C; McMichael, Anthony J

    2013-06-28

    A more rigorous and nuanced understanding of land-use change (LUC) as a driver of emerging infectious disease (EID) is required. Here we examine post hunter-gatherer LUC as a driver of infectious disease in one biogeographical region with a compressed and documented history--continental Australia. We do this by examining land-use and native vegetation change (LUCC) associations with infectious disease emergence identified through a systematic (1973-2010) and historical (1788-1973) review of infectious disease literature of humans and animals. We find that 22% (20) of the systematically reviewed EIDs are associated with LUCC, most frequently where natural landscapes have been removed or replaced with agriculture, plantations, livestock or urban development. Historical clustering of vector-borne, zoonotic and environmental disease emergence also follows major periods of extensive land clearing. These advanced stages of LUCC are accompanied by changes in the distribution and density of hosts and vectors, at varying scales and chronology. This review of infectious disease emergence in one continent provides valuable insight into the association between accelerated global LUC and concurrent accelerated infectious disease emergence.

  7. Climate change and land use drivers of fecal bacteria in tropical hawaiian rivers.

    PubMed

    Strauch, Ayron M; Mackenzie, Richard A; Bruland, Gregory L; Tingley, Ralph; Giardina, Christian P

    2014-07-01

    Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500-4500 mm) of mean annual rainfall (MAR) to investigate the effects of short-term (24-h) and long-term (MAR) rainfall on three fecal indicator bacteria (FIB) (enterococci, total coliforms, and ). All sample sites were in native Ohia dominated forest above 600 m in elevation. Additional samples were collected just above sea level where the predominant land cover is pasture and agriculture, permitting the additional study of interactions between land use across the MAR gradient. We found that declines in MAR significantly amplified concentrations of all three FIB and that FIB yield increased more rapidly with 24-h rainfall in low-MAR watersheds than in high-MAR watersheds. Because storm frequency decreases with declining MAR, the rate of change in water potential affects microbial growth, whereas increased rainfall intensity dislodges more soil and bacteria as runoff compared with water-logged soils of high-MAR watersheds. As expected, declines in % forest cover and increased urbanization increased FIB. Taken together, shifts in rainfall may alter bacterial inputs to tropical streams, with land use change also affecting water quality in streams and near-shore environments.

  8. Land-Use Change and Emerging Infectious Disease on an Island Continent

    PubMed Central

    McFarlane, Rosemary A.; Sleigh, Adrian C.; McMichael, Anthony J.

    2013-01-01

    A more rigorous and nuanced understanding of land-use change (LUC) as a driver of emerging infectious disease (EID) is required. Here we examine post hunter-gatherer LUC as a driver of infectious disease in one biogeographical region with a compressed and documented history—continental Australia. We do this by examining land-use and native vegetation change (LUCC) associations with infectious disease emergence identified through a systematic (1973–2010) and historical (1788–1973) review of infectious disease literature of humans and animals. We find that 22% (20) of the systematically reviewed EIDs are associated with LUCC, most frequently where natural landscapes have been removed or replaced with agriculture, plantations, livestock or urban development. Historical clustering of vector-borne, zoonotic and environmental disease emergence also follows major periods of extensive land clearing. These advanced stages of LUCC are accompanied by changes in the distribution and density of hosts and vectors, at varying scales and chronology. This review of infectious disease emergence in one continent provides valuable insight into the association between accelerated global LUC and concurrent accelerated infectious disease emergence. PMID:23812027

  9. Arsenic and fluoride variations in groundwater of an endorheic basin undergoing land-use changes.

    PubMed

    Reyes-Gómez, Víctor M; Alarcón-Herrera, María Teresa; Gutiérrez, Mélida; López, Daniel Núñez

    2015-02-01

    The salt content of soil and water in endorheic basins within arid areas greatly restrict agricultural activities. Despite this limitation, these lands are increasingly used to accommodate new settlements and/or agricultural practices. This study focuses on the Laguna El Cuervo closed basin of northern Mexico and its underlying aquifer, which has been found to contain high concentrations of arsenic (As) and fluoride (F). The spatial distribution of As and F, their variations with time, and the impact of drought conditions and land-use changes were investigated using well data collected from a total of 27 wells in 2007, 2010, and 2011 (As data also collected in 2005). Four of these wells were used as monitoring wells. Data also included the As content of 140 surface sediments. Results showed that 54.5 % of the wells surpassed the As limit for drinking water of 0.025 mg L(-1) and that 89.0 % surpassed he F limit of 1.5 mg L(-1). Spatial analyses identified the areas in the center of the basin with the highest content of contaminants. Principal component and correlation analyses showed a co-occurrence of As and F with r = 0.55 for the 2011 data and 0.59 for the combined data. In contrast, the relationship of As and F concentrations to droughts and changes in land use were not as clearly shown, possibly because of the short time this area has been monitored. The high As and F concentrations in the groundwater may be limiting the availability of water within this basin, especially considering the greater groundwater demand foreseen for the future. Water-conservation practices, such as drip irrigation and artificial groundwater recharge, should be considered to maintain groundwater levels supportive of agricultural practices.

  10. Land Use. An Instructional Unit for Teachers of Adult Vocational Education in Agriculture.

    ERIC Educational Resources Information Center

    Wise, Jack; Iverson, Maynard J.

    An adult farmer course designed to develop the effective ability of land holders to plan for and implement wise land use is presented. The unit consists of eight lesson plans: (1) the importance of land use, (2) the physical and chemical properties of the soil, (3) soil testing as a tool of land use, (4) balanced fertilization of soils, (5)…

  11. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand.

    PubMed

    Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto

    2016-05-01

    The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region.

  12. Abrupt biological response to hydrologic and land-use changes in Lake Apopka, Florida, USA.

    PubMed

    Schelske, Claire L; Lowe, Edgar F; Battoe, Lawrence E; Brenner, Mark; Coveney, Michael F; Kenney, William F

    2005-05-01

    Lake Apopka is a shallow, hypereutrophic lake in north-central Florida that experienced an abrupt shift in primary producer community structure (PPCS) in 1947. The PPCS shift was so abrupt anecdotal accounts report that dominant, submersed aquatic vegetation was uprooted by a hurricane in 1947 and replaced by phytoplankton within weeks. Here we propose two hypotheses to explain the sudden shift to phytoplankton. First, hydrologic modification of the drainage basin in the late 1800s lowered the lake level ca. 1.0 m, allowing the ecosystem to accommodate moderate, anthropogenic nutrient enrichment through enhanced production in the macrophyte community. Second, additional hydrologic changes and large-scale agricultural development of floodplain wetlands began in 1942 and altered the pattern and scale of phosphorus loading to the lake that triggered the rapid shift to phytoplankton dominance in 1947. Historic land-use changes and paleolimnological data on biological responses to nutrient loading support these hypotheses.

  13. The impacts of land use, radiative forcing, and biological changes on regional climate in Japan

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Pielke, R. A., Sr.

    2013-12-01

    Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the

  14. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    SciTech Connect

    Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen; Kwon, Ho-young; Wander, Michelle M.; Wang, Michael

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  15. Changes in spatiotemporal land use patterns in selected hydrogeomorphic areas of China and the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences exist in land use/cover pattern and its change between the P. R. China and the USA. In order to describe those differences, land use changes in representative regions were quantitatively analyzed and compared. Xiamen City, Changzhutan region and Liupan Mountains regions were selected to ...

  16. Patterns and structures of land use change in the Three Rivers Headwaters Region of China.

    PubMed

    Yang, Jingbiao; Wang, Yi Chen; Guo, Luo; Xue, Dayuan

    2015-01-01

    Located in Qinghai Province of China, the Three Rivers Headwaters Region is the source region of the Yangtze, Yellow and Lantsang Rivers, and plays an important role in biodiversity conservation and regulating water supply. Despite many efforts on land use change in Qinghai, knowledge of the spatial variation of land use change is still lacking. This study examines the patterns of land use change across various watersheds, prefectures and the temple surroundings. Remote sensing images of 1987, 1997 and 2007 were analyzed to derive land use distributions; patterns and structures of the landscape were then quantified with landscape metrics. The results illustrated that the Yangtze River headwater region had more diverse and more evenly distributed landscape, while the Lantsang and the Yellow headwater regions showed a decline in landscape diversity. Comparison of the land use patterns of four prefectures revealed that Yushu Prefecture experienced an increase in landscape diversity from 1987 to 2007 while the land use patches in Guoluo Prefecture exhibited more aggregated patterns than other prefectures. Analysis of the spatial variations of land use change in the temple surroundings illustrated that 19.7% and 35.9% of the temples in Guoluo and Yushu Prefectures, respectively, encountered land use change for their immediate areas within 2 km. Comparison of the surroundings of temples and human settlements found that land use change was not evenly distributed, and that greater land use change had occurred for the surroundings of human settlements. Such findings provided insights into the spatial variation of land use change in the Three Rivers Headwaters Region.

  17. Recent land-use/land-cover change in the Central California Valley

    USGS Publications Warehouse

    Soulard, Christopher E.; Wilson, Tamara S.

    2013-01-01

    Open access to Landsat satellite data has enabled annual analyses of modern land-use and land-cover change (LULCC) for the Central California Valley ecoregion between 2005 and 2010. Our annual LULCC estimates capture landscape-level responses to water policy changes, climate, and economic instability. From 2005 to 2010, agriculture in the region fluctuated along with regulatory-driven changes in water allocation as well as persistent drought conditions. Grasslands and shrublands declined, while developed lands increased in former agricultural and grassland/shrublands. Development rates stagnated in 2007, coinciding with the onset of the historic foreclosure crisis in California and the global economic downturn. We utilized annual LULCC estimates to generate interval-based LULCC estimates (2000–2005 and 2005–2010) and extend existing 27 year interval-based land change monitoring through 2010. Resulting change data provides insights into the drivers of landscape change in the Central California Valley ecoregion and represents the first, continuous, 37 year mapping effort of its kind.

  18. Land use and land cover change detection in Karinca river catchment (NW Turkey) using GIS and RS techniques.

    PubMed

    Efe, Recep; Soykan, Abdullah; Curebal, Isa; Sonmez, Suleyman

    2012-04-01

    The basin of Karinca river, in the north-west of Turkey, covers an area of 29,840 ha. Pronounced changes in land use emerged as a result of the development of activities in the tourism sector in Turkey in the 1970's. The basin has been significantly affected in the course of this process. This study was conducted in order to determine the land use changes (as well as the type of changes and their direction) occurring in the use of land in the Karinca river catchment for the period 1979-2007. The geographical data were gathered by using 1:25000 scale topographical maps as a basis. Thus, the existing soil and land use data from 1979 were processed on these bases and the the main materials rendering the land use were produced. Geometric verification was made by putting the previously prepared bases onto landsat ETM+ and satellite images of 2007. In the final stage, results pertaining to the changes in land use were obtained by overlapping the two sets of data. All processes were done using the ArcGIS Desktop v9.x program. According to the data of the year 1979, the catchment area consisted of 43.4% forest, 26.5% grassland, 18.3% olive groves, 10.6% agriculture and 1.2% built-up lands. Comparing these coverage with the data of 2007, show a clear shift among residential areas, olive groves and forest terrain. It was found that the agricultural areas, particularly along the shoreline, were converted into resort houses and that the olive groves (the dominant land use) shifted from lower regions to its upper sectors. All these changes caused loss of natural habitats leading to degradation.

  19. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.

    PubMed

    Kauffman, J Boone; Hughes, R Flint; Heider, Chris

    2009-07-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate

  20. [Changes and analysis of soil quality under different land use types in oasis rim].

    PubMed

    Gui, Dong-Wei; Lei, Jia-Qiang; Zeng, Fan-Jiang; Mu, Gui-Jin; Yang, Fa-Xiang; Zhu, Jun-Tao

    2010-09-01

    The aggravation process of oasisization leads to changes of land use type in oasis rim. In order to discuss the effects of different land use types on soil properties and soil quality, the four land use types located Cele oasis rim in south margin of Tarim Basin, which are the cotton field, orchard, and Caligonum mongolicum Turcz land use type reclaimed by people and nature state land use type covered by Alhagi sparsifolia SHAP, were selected as study object. The relative soil quality index (RI) and the soil quality synthesis index (SQI) were used to analyse the changes of soil quality between four land use types within 0-20 cm, 2040 cm, 40-60 cm soil depth, respectively. Meantime, the fractal theory was used to analyse the particle-size distribution (PSD) property of top soil under different land use types. The results indicated that there was a significant difference in the soil organic matter and total nitrogen in same soil depth between four land use types; the order ranked according to RI was same to the order ranked according to SQI in each soil depth between four land use types. The cotton field and orchard have an obviously positive effect on soil quality of the top soil, however, the soil quality of Alhagi sparsifolia SHAP land use type was gradually increasing along with the increasing soil depth. The soil properties and soil quality of Caligonum mongolicum Turcz land use type were at the lowest level according to the comparison results among all land use types, and the calculation results of PSD fractal dimension also indicated the Caligonum mongolicum Turcz land use type had the worst ability on maintaining soil fine fractions.

  1. Holocene Biomass Burning, Environmental Change, and Human Land Use in the Southern Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Wahl, D.

    2013-12-01

    For several decades scholars have studied the dynamic relationship between the prehispanic Maya and their environment in order to test hypotheses that environmental change played a role in the abandonment of the Maya lowlands. Fire was inherent in Maya land use practices, arguably the primary tool used to alter the landscape and extract resources. Opening of forest for agriculture, building, and extraction/production of construction material necessitated burning. The extensive production of lime plaster for architectural and domestic use demanded harvesting and burning of vast quantities of green wood. While we understand the fundamental role of fire in Maya land use, there are very few records of prehispanic biomass burning from the Maya lowlands. Consequently, only a limited understanding exists of both natural fire regimes and patterns of anthropogenic burning in the tropical dry forests of Central America. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of fossil charcoal recovered from lacustrine sediment cores, extending from the early Holocene to the present. The study sites, Lagos Paixban and Puerto Arturo are located in the southern Maya lowlands in modern northern Peten, Guatemala. Macroscopic charcoal data are presented along with previously published proxy data from the sites, and interpreted in the context of existing regional and local paleoenvironmental and archeological records. Results show that frequent fires occurred in the closed canopy forests of the region since at least the early mid-Holocene (~9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of sedentary agriculture at around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Preclassic period suggest that land use

  2. Impacts of climate change and past land use change on the water resources in Pune, India

    NASA Astrophysics Data System (ADS)

    Wagner, P. D.; Kumar, S.; Schneider, K.

    2012-12-01

    Global change affects local and regional water resources and is therefore of major concern in current hydrologic research. Especially in regions with scarce water resources, high climate sensitivity, and/or dynamic socio-economic development, research on developing suitable adaptation and mitigation strategies is needed. In this study, we used the well-established and widely-used hydrologic model SWAT (Soil and Water Assessment Tool) to study the impact of climate change and past land use change on water resources. Our study aims at analyzing the impact of global change on the water balance components in the meso-scale Mula and Mutha Rivers catchment upstream of the city of Pune, India. To analyze climate change impacts regional climate model data based on IPCC emission scenario A1B was used by employing a downscaling method that rearranges historically measured data. The hydrologic model was run with the rearranged scenario weather data and model results were analyzed for the scenario period from 2020 to 2099. Past land use changes between 1989 and 2009 were identified with the help of three multi-temporal land use classifications, which were based on multi-spectral satellite data. Two model runs were performed and compared using the land use classifications of 1989 and 2009. Climate change leads to a slight increase of evapotranspiration. Particularly in the rainy season and in the first months of the dry season higher evapotranspiration can be observed. Towards the end of the scenario period low water storages in the major dams of the catchment at the beginning of the dry season indicate severe impacts on water availability. The impacts of land use changes balance out on the catchment scale and are hence more obvious at the sub-basin scale, where e.g., urbanization results in increased runoff and decreased evapotranspiration.

  3. Impact of land use changes on connectivity in a rural catchment with mild topography

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Ghaffari, Golaleh

    2016-04-01

    Concept of sediment connectivity and quantitative assessment of its spatial distribution became important tool for analysis of spatial connectivity of sediment transport processes in basins. Most of the first connectivity studies is focused on montane basins with high rates of erosion originating in steep slopes in headwater areas. However, less attention is paid to the mild landscapes in highland and lowland landscape, with often high connectivity. It applies to the rural areas where the sediment transport and erosion control are of key importance. Assessment of connectivity and its control in such environment thus can contribute to the efficient and sustainable landscape management. In our study we have tested applicability of the concept of index of sediment connectivity (IC) in mid-latitude rural catchment with mild topography and extensive share of arable land. The aim of the study was (i) to test the GIS-based IC calculation in specific topographic conditions, (ii) to assess the effects of land use changes on the sediment connectivity and (iii) to identify the landscape features affecting connection between hillslopes and stream channels. The study area - Loucka River Basin, Czech Republic with area of 386 sq km is located in highland landscape with 60% share of arable land. The basin study area has a reverse pattern of topography compared to the typical montane catchments - the extensive headwater areas, used for agriculture, are flat and are drained into steep valleys in downstream. The basin is equipped with long-term monitoring of suspended sediment transport. We have used the high resolution 5 meter DEM derived from aerial LiDAR scanning as a base for analysis of topographic controls of sediment connectivity and for calculation of connectivity topographic index. The index of connectivity was calculated in a multitemporal scale of two decades since 1990 to analyze the the changes of sediment connectivity and its spatial distribution in response to the

  4. [Land Use Pattern Change and Regional Sustainability Evaluation of Wetland in Jiaogang Lake].

    PubMed

    Yang, Yang; Cai, Yi-min; Bai, Yan-ying; Chen, Wei-ping; Yang, Xiu-chao

    2015-06-01

    Changes in land use and sustainability evaluation of wetland in Jiaogang Lake from 1995 to 2013 were analyzed, based on the land use change models and an index system, supported by RS, GIS, and social statistical data. The results showed: (1) dry land, paddy field, and building land were the predominant landscape in the study area. The arable land was mainly converted during 1995-2000, which was driven by the extension of agriculture, and the building land increased significantly during 2010-2013, which was driven by the tourism development. (2) Compared to the beginning research area, the building land increased by 123.3%, and the wetland decreased by 23.15%. The land system was at risk for a low proportion of wetland, scarcity of unused land, and the fragmented landscape. (3) The regional sustainability results were bad level, bad level, poor level, good level, and poor level during the different periods, with some room for improvement. (4) The fitness of regional sustainability in study area yielded satisfactory results in 2010, owing to the rapid growth of regional productivity and the regional stability. Since 2010, with the increasing environmental load, the regional sustainability fell down to the poor level. The obstruction of sustainable development is necessary to be addressed in the study area.

  5. Impacts of land use and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and climate are the two major factors directly influencing catchment hydrology; however, it is difficult to separate the effects of the two. Using the SWAT (Soil and Water Assessment Tools) model, we assessed the impacts of land use change and climate variability on surface hydrology (runof...

  6. Stable Isotopes of N2O in a Large Canadian River Impacted by Agricultural and Urban Land Use

    NASA Astrophysics Data System (ADS)

    Thuss, S. J.; Rosamond, M. S.; Schiff, S.; Venkiteswaran, J. J.; Elgood, R. J.

    2009-05-01

    N2O is a potent greenhouse gas. Although denitrification is an important process in the global N cycle, N2O flux measurements from rivers worldwide are scarce. The two main processes producing N2O in rivers -- nitrification and denitrification -- result in N2O that is widely separated in isotopic signature. However, studies on the stable isotopes of N2O in rivers are almost non-existent. Here, we report the N2O fluxes and isotopic signatures in the Grand River, a large, heavily impacted river in southern Ontario. Land use in the basin is predominately agricultural and the river receives effluent from 26 wastewater treatment plants (WWTPs). River samples were collected over a 28 hour period to capture diel variation, along the entire length of the river to capture changing land use and throughout the year to capture the seasonal variability. A dynamic model was used to correct the measured N2O values for the effects of atmospheric exchange. Isotopic analysis of both the NH4+ and the NO3- end members in the WWTP effluent and in the river allowed the determination of N2O production pathways. N2O is produced along the entire length of the river but N2O from denitrification increases dramatically in the river below WWTPs at night when dissolved oxygen is low and nitrification of NH4+ decreases.

  7. Impacts of land use change on hydrological components and macroinvertebrate distributions in the Poyang lake area

    NASA Astrophysics Data System (ADS)

    Schmalz, Britta; Kuemmerlen, Mathias; Kiesel, Jens; Jähnig, Sonja C.; Fohrer, Nicola

    2014-05-01

    Climate and land use changes affect river ecosystems globally and cause environmental impacts at different spatial and temporal scales. An integrated modelling approach for depicting the effect of environmental changes on aquatic ecosystems was developed and tested. Catchment characteristics, the flow regime and the distribution of aquatic organisms were linked together. The Changjiang river catchment (1717 km²), as part of the Poyang Lake basin in China, was selected as the test area. Measuring and sampling campaigns at 50 locations were carried out for collecting land use, hydrological, hydraulic and biological (macroinvertebrate) data. The water balance of the catchment was modeled with the ecohydrological model SWAT (Soil and Water Assessment Tool). The streamflow time series computed with SWAT at each of the 50 sampling points were tranfered to the species distribution model BIOMOD which predicted the occurrence of macroinvertebrates in the stream network based on hydrological, climatic and topographic variables. The SWAT modeling results showed high temporal dynamics where 72% of the annual streamflow occurred during the monsoon season from March to July. Due to various slopes, soil characteristics, land cover and associated land management, a high spatial variability of surface runoff between the subbasins and HRUs was detected. The highest values occurred on agricultural land with cabbage cultivation, the lowest in forest areas. The SWAT model indicates that deforestation scenarios result in higher streamflow, higher surface runoff and altered flow patterns compared with the base model. In contrast, model runs representing afforestation showed opposite trends. The predictions for the stream macroinvertebrate community, arising from the integrated modelling framework were found to be suitable for describing changing environmental conditions. The deforestation scenario reduced macroinvertebrate richness through the increase in agriculture and tea plantations.

  8. Agroforestry versus farm mosaic systems - Comparing land-use efficiency, economic returns and risks under climate change effects.

    PubMed

    Paul, Carola; Weber, Michael; Knoke, Thomas

    2017-06-01

    Increasing land-use conflicts call for the development of land-use systems that reconcile agricultural production with the provisioning of multiple ecosystem services, including climate change mitigation. Agroforestry has been suggested as a global solution to increase land-use efficiency, while reducing environmental impacts and economic risks for farmers. Past research has often focused on comparing tree-crop combinations with agricultural monocultures, but agroforestry has seldom been systematically compared to other forms of land-use diversification, including a farm mosaic. This form of diversification mixes separate parcels of different land uses within the farm. The objective of this study was to develop a modelling approach to compare the performance of the agroforestry and farm mosaic diversification strategies, accounting for tree-crop interaction effects and economic and climate uncertainty. For this purpose, Modern Portfolio Theory and risk simulation were coupled with the process-based biophysical simulation model WaNuLCAS 4.0. For an example application, we used data from a field trial in Panama. The results show that the simulated agroforestry systems (Taungya, alley cropping and border planting) could outperform a farm mosaic approach in terms of cumulative production and return. Considering market and climate uncertainty, agroforestry showed an up to 21% higher economic return at the same risk level (i.e. standard deviation of economic returns). Farm compositions with large shares of land allocated to maize cultivation were also more severely affected by an increasing drought frequency in terms of both risks and returns. Our study demonstrates that agroforestry can be an economically efficient diversification strategy, but only if the design allows for economies of scope, beneficial interactions between trees and crops and higher income diversification compared to a farm mosaic. The modelling approach can make an important contribution to support

  9. Cost, drivers and action against land degradation through land use and cover change in Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Strokov, Anton; Johnson, Timothy; Mirzabaev, Alisher

    2016-04-01

    The natural conditions and socio-economic factors determine the structure and the principles of land use in Russia. The increasing degradation of land resources in many parts of Russia manifested in numerous forms such as desertification, soil erosion, secondary salinization, water-logging and overgrazing. The major drivers of degradation include: climatic change, unsustainable agricultural practices, industrial and mining activities, expansion of crop production to fragile and marginal areas, inadequate maintenance of irrigation and drainage networks. Several methods for estimating Total Economic Value of land-use and land-cover change were used: 1) the cost of production per hectare (only provisional services were included); 2) the value of ecosystem services provided by Costanza et al, 1997; 3) coefficients of basic transfer and contingent approaches based on Tianhong et al, 2008 and Xie et al, 2003, who interviewed 200 ecologists to give a value of ecosystem services of different land types in China; 4) coefficients on a basic transfer and contingent approaches based on author's interview of 20 experts in Lomonosov Moscow State University. In general, the estimation of the prices for action and inaction in addressing the degradation and improvement of the land resources on a national scale (the Federal districts) with an emphasis on the period of economic reforms from 1990-2009 in Russia, where the area of arable lands decreased by 25% showed that the total land use/cover dynamic changes are about 130 mln ha, and the total annual costs of land degradation due to land-use change only, are about 189 bln USD in 2009 as compared with 2001, e.g. about 23.6 bln USD annually, or about 2% of Russia's Gross Domestic Product in 2010. The costs of action against land degradation are lower than the costs of inaction in Russia by 5-6 times over the 30 year horizon. Almost 92% of the costs of action are made up of the opportunity costs of action. The study was performed with

  10. Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area.

    PubMed

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2017-02-01

    A thorough knowledge of the effects of climate and land use changes on the soil carbon pool is critical to planning effective strategies for adaptation and mitigation in future scenarios of global climate and land use change. In this study, we used CarboSOIL model to predict changes in soil organic carbon stocks in a semi-natural area of Southern Spain in three different time horizons (2040, 2070, 2100), considering two general circulation models (BCM2 and ECHAM5) and three IPCC scenarios (A1b, A2, B2). The effects of potential land use changes from natural vegetation (Mediterranean evergreen oak woodland) to agricultural land (olive grove and cereal) on soil organic carbon stocks were also evaluated. Predicted values of SOC contents correlated well those measured (R2 ranging from 0.71 at 0-25cm to 0.97 at 50-75cm) showing the efficiency of the model. Results showed substantial differences among time horizons, climate and