Science.gov

Sample records for agricultural lands urban

  1. Conversion of prime agricultural land to urban land uses in Kansas City

    NASA Technical Reports Server (NTRS)

    Shaklee, R. V.

    1976-01-01

    In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

  2. Agricultural Land in an Urban Society. Resource Publications in Geography.

    ERIC Educational Resources Information Center

    Furuseth, Owen J.; Pierce, John T.

    Intended for geography professors, researchers, and undergraduate students, this publication focuses on the important issues surrounding the urbanization of agricultural land, the assessment of the relative effectiveness of policy responses, and an assessment of opportunities for change in approaches toward farmland preservation. Emphasis is on…

  3. Analysing the impact of urban pressures on agricultural land

    NASA Astrophysics Data System (ADS)

    Aksoy, Ece; Schröder, Christoph; Fons, Jaume; Gregor, Mirko; Louwagie, Geertrui

    2015-04-01

    Land, and here in particular soil, is a finite and essentially non-renewable resource. EU-wide, land take, i.e. the increase of settlement area over time, consumes more than 1000 km2 annually of which half is actually sealed and, hence, lost under impermeable surfaces. Land take and in particular soil sealing has already been identified as one of the major soil threats in the 2006 EC Communication 'Towards a Thematic Strategy on Soil Protection' (Soil Thematic Strategy), and has been confirmed as such in the report on the implementation of this strategy. The aim of this study is to relate the potential of land for a particle use in a given region with the actual land use. This allows evaluating whether land (in particular the soil dimension) is used according to its (theoretical) potential. To this aim, the impact of a number of land cover flows related to urban development on soils with a good, average and poor production potential were assessed and mapped. Thus, the amount and quality (potentials and/or suitability for agricultural production) of agricultural land lost between the years 2000 and 2006 was identified. In addition, areas with high productivity potential around urban areas indicating areas of potential future land use conflicts for Europe were identified.

  4. Urbanization and agricultural land loss in India: comparing satellite estimates with census data.

    PubMed

    Pandey, Bhartendu; Seto, Karen C

    2015-01-15

    We examine the impacts of urbanization on agricultural land loss in India from 2001 to 2010. We combined a hierarchical classification approach with econometric time series analysis to reconstruct land-cover change histories using time series MODIS 250 m VI images composited at 16-day intervals and night time lights (NTL) data. We compared estimates of agricultural land loss using satellite data with agricultural census data. Our analysis highlights six key results. First, agricultural land loss is occurring around smaller cities more than around bigger cities. Second, from 2001 to 2010, each state lost less than 1% of its total geographical area due to agriculture to urban expansion. Third, the northeastern states experienced the least amount of agricultural land loss. Fourth, agricultural land loss is largely in states and districts which have a larger number of operational or approved SEZs. Fifth, urban conversion of agricultural land is concentrated in a few districts and states with high rates of economic growth. Sixth, agricultural land loss is predominantly in states with higher agricultural land suitability compared to other states. Although the total area of agricultural land lost to urban expansion has been relatively low, our results show that since 2006, the amount of agricultural land converted has been increasing steadily. Given that the preponderance of India's urban population growth has yet to occur, the results suggest an increase in the conversion of agricultural land going into the future.

  5. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  6. Characterizing urbanization, and agricultural and conservation land-use change in Riverside County, California, USA.

    PubMed

    Chen, Xiongwen; Li, Bai-Lian; Allen, Michael F

    2010-05-01

    Monitoring trends in urbanization and land use related to population growth and changing social and economic conditions is an important tool for developing in land use and habitat conservation policy. We analyzed urbanization and agricultural land-use change in Riverside County, California from 1984 to 2002, comparing maps every two years on the basis of aerial photographs. Matrix analysis combined with information theory was applied to study land type conversion. Results showed that the total area of "Urban and Built-Up Land" increased the most whereas total area of "Prime Farmland" decreased most. Land-use characterized as "Grazing Land,"Farmland of Local Importance," and "Farmland of Statewide Importance" also decreased. Mean patch size also decreased for "Grazing Land,"Water Area,"Other Land," and "Prime Farmland." The diversity of land types decreased dramatically after 1992. Urbanization patterns were different among three city groups (Riverside City, Coachella Valley, and Blythe), indicating the different times for "leapfrog" development in the three areas. Furthermore, the unpredictability and change in composition of land use increased after 1996 due to intensified urbanization. If the current driving forces continue, our model projects that in 2020 the area of "Urban and Built-Up Land" may increase between 25% and 39% in comparison with 2002. Percentages of most agricultural land types are projected to decrease, especially "Farmland of Local Importance,"Prime Farmland," and "Farmland of Statewide Importance." If the county's goal is to preserve agricultural lands and natural biodiversity, while maintaining sustainable development, current land-use policies and practices should be changed. This study demonstrates new useful methods for monitoring and detection of change of land-use processes.

  7. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China

    PubMed Central

    Wang, Chao; Gao, Qiong; Wang, Xian; Yu, Mei

    2016-01-01

    Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial for understanding mechanisms of LCLUC and assisting land use planning and conservation. China has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite imagery, we proposed a land change detection method to capture significant land change hotspots over Northern China during 2001–2013, and further analyzed temporal trends and spatial patterns of LCLUC. We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. The process was especially strong in North China Plain with 14,057 km2 of urban gain and −21,017 km2 of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were reclaimed. Substantial recovery of forests (49,908 km2) and closed shrubland (60,854 km2) occurred in mountainous regions due to abandoned infertile farmland, secondary succession, and governmental conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information to support effective environmental policies towards sustainable development. PMID:27874092

  8. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China.

    PubMed

    Wang, Chao; Gao, Qiong; Wang, Xian; Yu, Mei

    2016-11-22

    Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial for understanding mechanisms of LCLUC and assisting land use planning and conservation. China has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite imagery, we proposed a land change detection method to capture significant land change hotspots over Northern China during 2001-2013, and further analyzed temporal trends and spatial patterns of LCLUC. We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. The process was especially strong in North China Plain with 14,057 km(2) of urban gain and -21,017 km(2) of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were reclaimed. Substantial recovery of forests (49,908 km(2)) and closed shrubland (60,854 km(2)) occurred in mountainous regions due to abandoned infertile farmland, secondary succession, and governmental conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information to support effective environmental policies towards sustainable development.

  9. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Gao, Qiong; Wang, Xian; Yu, Mei

    2016-11-01

    Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial for understanding mechanisms of LCLUC and assisting land use planning and conservation. China has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite imagery, we proposed a land change detection method to capture significant land change hotspots over Northern China during 2001–2013, and further analyzed temporal trends and spatial patterns of LCLUC. We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. The process was especially strong in North China Plain with 14,057 km2 of urban gain and ‑21,017 km2 of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were reclaimed. Substantial recovery of forests (49,908 km2) and closed shrubland (60,854 km2) occurred in mountainous regions due to abandoned infertile farmland, secondary succession, and governmental conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information to support effective environmental policies towards sustainable development.

  10. Map Analysis and Spatial Statistic: Assessment of Spatial Variability of Agriculture Land Conversion at Urban Fringe Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2016-11-01

    Urban development has brought various effects, one of which was the marginalization of the agricultural sector. Agricultural land is gradually converted to other type of land uses which considered more profitable. Conversion of agricultural land cannot be avoided but it should be controlled. Early identification on spatial distribution and intensity of agricultural land conversion as well as its related factor is necessary. Objective of the research were (1) to assess the spatial variability of agricultural land conversion, (2) to identify factors that affecting the spatial variability of agricultural land conversion. Research was conducted at urban fringe area of Yogyakarta. Spatial variability of agricultural land conversion was analysed using an index called Relative Conversion Index (RCI). Combined of map analysis and spatial statistical were used to determine the center of agricultural land conversion. Simple regression analysis was used to determine the factors associated with the conversion of agricultural land. The result shows that intensity of agricultural land conversion in the study area varies spatially as well as temporally. Intensity of agricultural land conversion in the period 1993-2000, involves three categories which are high, moderate and low. In the period of 2000-2007, the intensity of agricultural land conversion involves two categories which are high and low. Spatial variability of agricultural land conversion in the study area has a significant correlation with three factors: population growth, fragmentation of agricultural land and distance of agricultural land to the city

  11. Effects of urbanization on agricultural lands and river basins: case study of Mersin (South of Turkey).

    PubMed

    Duran, Celalettin; Gunek, Halil; Sandal, Ersin Kaya

    2012-04-01

    Largely, Turkey is a hilly and mountainous country. Many rivers rise from the mountains and flow into the seas surrounding the country. Mean while along fertile plains around the rivers and coastal floodplains of Turkey were densely populated than the other parts of the country. These characteristics show that there is a significant relationship between river basins and population or settlements. It is understood from this point of view, Mersin city and its vicinity (coastal floodplain and nearby river basins) show similar relationship. The city of Mersin was built on the southwest comer of Cukurova where Delicay and Efrenk creeks create narrow coastal floodplain. The plain has rich potential for agricultural practices with fertile alluvial soils and suitable climate. However, establishment of the port at the shore have increased commercial activity. Agricultural and commercial potential have attracted people to the area, and eventually has caused rapid spatial expansion of the city, and the urban sprawls over fertile agricultural lands along coastal floodplain and nearby river basins of the city. But unplanned, uncontrolled and illegal urbanization process has been causing degradation of agricultural areas and river basins, and also causing flooding in the city of Mersin and its vicinity. Especially in the basins, urbanization increases impervious surfaces throughout watersheds that increase erosion and runoff of surface water. In this study, the city of Mersin and its vicinity are examined in different ways, such as land use, urbanization, morphology and flows of the streams and given some directions for suitable urbanization.

  12. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  13. Effects of urban sprawl on agricultural land: a case study of Kahramanmaraş, Turkey.

    PubMed

    Doygun, Hakan

    2009-11-01

    The main objective of this study is to quantify areal loss of olive groves due to urban sprawl of the city of Kahramanmaraş, Turkey. Spatial changes were analysed by interpreting the digitized data derived from a black-white monoscopic aerial photograph taken in 1985, panchromatic IKONOS image of 2000 and two pan-sharpened Quickbird images of 2004 and 2006. Data obtained revealed that the area of olive groves decreased by 25% from 460.55 ha in 1985 to 344.46 in 2006, while the number of parcels increased from 170 to 445. Of the total areal loss, 60% was due to building constructions, with the rest being due to clear-cut for new residential gardens composed of exotic plants, new buildings, or new roads. Rapid population growth, increased land prices due to urban expansion, and abandonment of agricultural practices to construction of multi-storey buildings were the main causes of the process that transformed the olive groves into urbanized areas. Results pointed to an urgent need to (1) revise the national and municipal land management practices, (2) balance the gap between the short- and long-term economic benefits that urban and community development plans ignore, and (3) monitor land-use changes periodically by using high resolution satellite images.

  14. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect.

  15. An initial analysis of LANDSAT 4 Thematic Mapper data for the classification of agricultural, forested wetland, and urban land covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.

    1982-01-01

    An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.

  16. Effects of urbanization on stream ecosystems along an agriculture-to-urban land-use gradient, Milwaukee to Green Bay, Wisconsin, 2003-2004

    USGS Publications Warehouse

    Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.

    2010-01-01

    In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were

  17. An Initial Analysis of LANDSAT-4 Thematic Mapper Data for the Discrimination of Agricultural, Forested Wetland, and Urban Land Covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1984-01-01

    An initial analysis of LANDSAT 4 Thematic Mapper (TM) data for the discrimination of agricultural, forested wetland, and urban land covers is conducted using a scene of data collected over Arkansas and Tennessee. A classification of agricultural lands derived from multitemporal LANDSAT Multispectral Scanner (MSS) data is compared with a classification of TM data for the same area. Results from this comparative analysis show that the multitemporal MSS classification produced an overall accuracy of 80.91% while the TM classification yields an overall classification accuracy of 97.06% correct.

  18. Agriculture: Land Use

    EPA Pesticide Factsheets

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  19. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  20. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    USGS Publications Warehouse

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  1. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models.

  2. Theme: Urban Agriculture.

    ERIC Educational Resources Information Center

    Ellibee, Margaret; And Others

    1990-01-01

    On the theme of secondary agricultural education in urban areas, this issue includes articles on opportunities, future directions, and implications for the profession; creative supervised experiences for horticulture students; floral marketing, multicultural education; and cultural diversity in urban agricultural education. (JOW)

  3. Modeling the transfer of land and water from agricultural to urban uses in the Middle Rio Grande Basin, New Mexico.

    SciTech Connect

    Jarratt, Janet; Passell, Howard David; Kelly, Susan; Malczynski, Leonard A.; Chermak, Janie; Van Bloeman Waanders, Paul; McNamara, Laura A.; Tidwell, Vincent Carroll; Pallachula, Kiran; Turnley, Jessica Glicken; Kobos, Peter Holmes; Newman, Gretchen Carr

    2004-11-01

    Social and ecological scientists emphasize that effective natural resource management depends in part on understanding the dynamic relationship between the physical and non-physical process associated with resource consumption. In this case, the physical processes include hydrological, climatological and ecological dynamics, and the non-physical process include social, economic and cultural dynamics among humans who do the resource consumption. This project represents a case study aimed at modeling coupled social and physical processes in a single decision support system. In central New Mexico, individual land use decisions over the past five decades have resulted in the gradual transformation of the Middle Rio Grande Valley from a primarily rural agricultural landscape to a largely urban one. In the arid southwestern U.S., the aggregate impact of individual decisions about land use is uniquely important to understand, because scarce hydrological resources will likely limit the viability of resulting growth and development trajectories. This decision support tool is intended to help planners in the area look forward in their efforts to create a collectively defined 'desired' social landscape in the Middle Rio Grande. Our research question explored the ways in which socio-cultural values impact decisions regarding that landscape and associated land use. Because of the constraints hydrological resources place on land use, we first assumed that water use, as embodied in water rights, was a reasonable surrogate for land use. We thought that modeling the movement of water rights over time and across water source types (surface and ground) would provide planners with insight into the possibilities for certain types of decisions regarding social landscapes, and the impact those same decisions would have on those landscapes. We found that water rights transfer data in New Mexico is too incomplete and inaccurate to use as the basis for the model. Furthermore, because of its

  4. Impact of the Spatial Arrangement of Agricultural Land Use on Ecosystems Services and Peri-Urban Livelihoods at the Landscape Scale.

    NASA Astrophysics Data System (ADS)

    Inkoom, J. N.; Fürst, C.

    2014-12-01

    The relationship between agricultural land uses (ALU) and their impact on ecosystems services (ES) including biodiversity conservation is complex. This complexity has been augmented by isolated research on the impact of ALU on the landscape's capacity to provide ES in most climatically vulnerable areas of Sub-Saharan Africa. Though a considerable number of studies emphasise the nexus between specific land use types and their impact on ES, a sufficient modelling basis for an empirical consideration of spatial interactions between different agricultural land uses at the landscape scale within peri-urban areas in Sub-Saharan Africa is consistently missing. The need to assess and address significant issues regarding size, shape, spatial location, and interactivity of different land use patches in assessing land use interactions and their impact on ecosystem service provision necessitated this investigation. To formulate a methodology to correspond to this complexity, ES obtained from a characteristically agricultural and urbanizing landscapes were mapped using analytical hierarchical processes and management expert approaches. Further, landscape metrics and mean enrichment factor approaches are explored as neighbourhood assessment tools aimed at assessing the mutual impact gradient of agricultural and adjacent urban land uses on ES provision. Implementation is undertaken in GISCAME using a 2012 rapideye image classification and primary data collected on selected ES from local farmers within the VEA catchment of Upper East, Ghana. The outcome aims to provide the understanding of expected trade-offs and synergies varying ALU could pose to current and potential ES provision within urbanizing landscapes. Policy implications for observed trade-offs and synergies of ALU interaction on ES, rural livelihoods, and food security are communicated to farmers and decision makers. Keywords: Agricultural land use, neighbourhood interaction, ecosystems services, livelihoods, GISCAME.

  5. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal.

  6. Urban conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables are important sources of vitamins and nutrients for human nutrition. United States Department of Agriculture recommends filling half of the food plates with vegetables in every meal. While it is important in promoting good health, access to fresh vegetables is limited especially in urban ...

  7. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  8. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  9. Urban Agriculture Program Planning Guide.

    ERIC Educational Resources Information Center

    Hemp, Paul E.; Ethridge, Jim

    Urban agriculture may be defined as those areas of agriculture that are practiced in metropolitan settings, plus knowledge and skills in agricultural subject areas which lead to vocational proficiency and improved quality of life or effective citizenship. Agriculture areas that are especially significant in urban settings include ornamental…

  10. Agricultural and urban pollution

    NASA Technical Reports Server (NTRS)

    Brehmer, M. L.

    1972-01-01

    The degradation produced by the introduction of agricultural and urban wastes into estuarine systems, with emphasis on the Chesapeake Bay area, is discussed. The subjects presented are: (1) effects of sediment loading and (2) organic and nutrient loading problems. The impact of high turbidity on the biological life of the bay is analyzed. The sources of nutrients which produce over-enrichment of the waters and the subsequent production of phytoplankton are examined.

  11. Determination of impact of urbanization on agricultural land and wetland land use in Balçovas' delta by remote sensing and GIS technique.

    PubMed

    Bolca, Mustafa; Turkyilmaz, Bahar; Kurucu, Yusuf; Altinbas, Unal; Esetlili, M Tolga; Gulgun, Bahriye

    2007-08-01

    Because of their intense vegetation and the fact that they include areas of coastline, deltas situated in the vicinity of big cities are areas of greet attraction for people who wish to get away from in a crowded city. However, deltas, with their fertile soil and unique flora and fauna, need to be protected. In order for the use of such areas to be planned in a sustainable way by local authorities, there is a need for detailed data about these regions. In this study, the changes in land use of the Balçova Delta, which is to the immediate west of Turkey's third largest city Izmir, from 1957 up to the present day, were investigated. In the study, using aerial photographs taken in 1957, 1976 and 1995 and an IKONOS satellite image from the year 2005, the natural and cultural characteristics of the region and changes in the coastline were determined spatially. Through this study, which aimed to reveal the characteristics of the areas of land already lost as well as the types of land use in the Balçova delta and to determine geographically the remaining areas in need of protection, local authorities were provided with the required data support. Balçova consists of flat and fertile wetland with mainly citrus-fruit orchards and flower-producing green houses. The marsh and lagoon system situated in the coastal areas of the delta provides a habitat for wild life, in particular birds. In the Balçova Delta, which provides feeding and resting for migratory birds, freshwater sources are of vital importance for fauna and flora. The settlement area, which in 1957 was 182 ha, increased 11-fold up to the year 2005 when it reached 2,141 ha. On the other hand, great losses were determined in farming land, olive groves, forest and in the marsh and lagoon system. This unsystematic and rapid urbanization occurring in the study region is not only causing the loss of important agricultural land and wetland, but also lasting water and soil pollution.

  12. The effect of land use on soil health indicators in peri-urban agriculture in the humid forest zone of southern cameroon.

    PubMed

    Monkiedje, Adolphe; Spiteller, Michael; Fotio, Daniel; Sukul, Premasis

    2006-01-01

    The objective of this study was to identify the effect of different land uses in peri-urban agriculture on the soil properties. Soil health indicators were evaluated in the top 10 cm at five tilled agricultural sites involving different cropping systems and use of agrochemicals within the peri-urban agricultural areas of Yaounde, Cameroon, and compared with a native forest land. The experimental data showed that the selected indicators were sensitive to cropping practice. Most cropped land had significantly higher total C, available N and P concentrations, soil pH, electrical conductivity, salinity, biomass C and P, dehydrogenase, beta-glucosidase, and acid phosphatase activities. Land producing corn (Zea mays L.) and sugarcane (Saccharum officinarum L.) differed from that producing tomatoes (Lycopersicon esculentum Mill.), but cultivation of these crops has significantly impacted native soil quality. However, phenol oxidase, microbal biomass C/organic C (C(mic)/C(org)), and microbial biomass C/microbial biomass P (C(mic)/P(mic)) were negatively affected. These appeared to be more consistent indicators of negative management causing changes to soil health and may be suitable for an early appraisal of soil health.

  13. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient

    USGS Publications Warehouse

    Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

    2011-01-01

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water

  14. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    PubMed

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  15. Urban land teleconnections and sustainability.

    PubMed

    Seto, Karen C; Reenberg, Anette; Boone, Christopher G; Fragkias, Michail; Haase, Dagmar; Langanke, Tobias; Marcotullio, Peter; Munroe, Darla K; Olah, Branislav; Simon, David

    2012-05-15

    This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics. We illustrate how three key themes that are currently addressed separately in the urban sustainability and land change literatures can lead to incorrect conclusions and misleading results when they are not examined jointly: the traditional system of land classification that is based on discrete categories and reinforces the false idea of a rural-urban dichotomy; the spatial quantification of land change that is based on place-based relationships, ignoring the connections between distant places, especially between urban functions and rural land uses; and the implicit assumptions about path dependency and sequential land changes that underlie current conceptualizations of land transitions. We then examine several environmental "grand challenges" and discuss how urban land teleconnections could help research communities frame scientific inquiries. Finally, we point to existing analytical approaches that can be used to advance development and application of the concept.

  16. Determination of the effects of temporal change in urban and agricultural land uses as seen in the example of the town of Akhisar, using remote sensing techniques.

    PubMed

    Gulgun, Bahriye; Yörük, Ismail; Turkyilmaz, Bahar; Bolca, Mustafa; Güneş, Asli

    2009-03-01

    Today, as a result of erratic and unplanned urbanization, towns are rapidly becoming a mass of concrete and town-dwellers are suffocated by their busy and stressful professional lives. They feel a need for places where they can find breathing-space in their free time. Green areas within towns are important spaces where townspeople are able to carry out recreational activities. These places form a link between townspeople and nature. The importance of urban green areas is increasing with every passing day due to their social, psychological, ecological, physical and economic functions and their impact on the quality of towns. In this study it has been attempted to demonstrate the pressures of urban development on agricultural land by determining the changing land use situation over the years in the district of Akhisar. In this research, an aerial photograph from year 1939 and satellite images of the town from the years 2000 and 2007 were used. Land use changes in the region were determined spatially. As a result of this study, which aims to determine in which direction urbanization is progressing in the district, the importance of town planning emerges. This study will be informative for the local authorities in their future town planning projects. With its flat and almost flat fertile arable land, the district of Akhisar occupies an important position within the province of Manisa. From the point of view of olive production the region is one of Turkey's important centres. Fifty-five percent of the olive production in the province of Manisa is realized in Akhisar. However, the results of the present study show that while agricultural areas comprised 2.5805 km(2) in 1939, these had diminished to 1.5146 km(2) in the year 2000 and had diminished to 1.0762 km(2) in the year 2007 and residential area (dense) 0.449 km(2) occupied in 1939, in the year 2000 this had risen to 1.9472 and 2.3238 km(2) in the year 2007. This planless urbanization in the study area has led to

  17. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport

  18. Stable Isotopes of N2O in a Large Canadian River Impacted by Agricultural and Urban Land Use

    NASA Astrophysics Data System (ADS)

    Thuss, S. J.; Rosamond, M. S.; Schiff, S.; Venkiteswaran, J. J.; Elgood, R. J.

    2009-05-01

    N2O is a potent greenhouse gas. Although denitrification is an important process in the global N cycle, N2O flux measurements from rivers worldwide are scarce. The two main processes producing N2O in rivers -- nitrification and denitrification -- result in N2O that is widely separated in isotopic signature. However, studies on the stable isotopes of N2O in rivers are almost non-existent. Here, we report the N2O fluxes and isotopic signatures in the Grand River, a large, heavily impacted river in southern Ontario. Land use in the basin is predominately agricultural and the river receives effluent from 26 wastewater treatment plants (WWTPs). River samples were collected over a 28 hour period to capture diel variation, along the entire length of the river to capture changing land use and throughout the year to capture the seasonal variability. A dynamic model was used to correct the measured N2O values for the effects of atmospheric exchange. Isotopic analysis of both the NH4+ and the NO3- end members in the WWTP effluent and in the river allowed the determination of N2O production pathways. N2O is produced along the entire length of the river but N2O from denitrification increases dramatically in the river below WWTPs at night when dissolved oxygen is low and nitrification of NH4+ decreases.

  19. Agriculture in Gloria Land.

    PubMed

    Pal, M

    1993-01-01

    A farming system has been developed on the Gloria Land farm at the Sri Aurobindo Ashram that uses purely organic materials and achieves yields comparable with or better than those on conventional farms under similar agroclimatic conditions. The stimulus for the conversion to organic farming came from observations of the toxicity of chemical pesticides and their apparent ineffectiveness in reducing the impact of pests and diseases. On the Gloria Land farm, a carefully integrated mixture of activities includes crop growing, animal husbandry, fish rearing and sericulture. Sufficient organic waste is produced to fulfill at the needs of the farm's crops. Energy is partially supplied by biogas produced on the farm. This system is economically viable and ecologically sustainable.

  20. Urban land teleconnections and sustainability

    PubMed Central

    Seto, Karen C.; Reenberg, Anette; Boone, Christopher G.; Fragkias, Michail; Haase, Dagmar; Langanke, Tobias; Marcotullio, Peter; Munroe, Darla K.; Olah, Branislav; Simon, David

    2012-01-01

    This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics. We illustrate how three key themes that are currently addressed separately in the urban sustainability and land change literatures can lead to incorrect conclusions and misleading results when they are not examined jointly: the traditional system of land classification that is based on discrete categories and reinforces the false idea of a rural–urban dichotomy; the spatial quantification of land change that is based on place-based relationships, ignoring the connections between distant places, especially between urban functions and rural land uses; and the implicit assumptions about path dependency and sequential land changes that underlie current conceptualizations of land transitions. We then examine several environmental “grand challenges” and discuss how urban land teleconnections could help research communities frame scientific inquiries. Finally, we point to existing analytical approaches that can be used to advance development and application of the concept. PMID:22550174

  1. Urban Intensification and Expansion in Sub-Saharan Africa: Impacts on Urban Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Uzokwe, V. N. E. N.; Muchelo, R. O.; Odeh, I. A.

    2015-12-01

    In Sub-Saharan Africa (SSA), urban intensification and expansion are increasing at alarming rates due to rapid population growth and rural-to-urban migration. This has led to the premise that the proportion of SSA urban residents most vulnerable to food insecurity is the highest in the world. Using a focused survey and multi-temporal (decadal) land use/cover classification of Landsat images, we explored the effect of urban intensification and expansion on urban agriculture and food security, focusing on a megacity and a regional center in Uganda: Kampala and Mbarara, respectively. We found that food insecurity arose due to a number of reasons, among which are: i) expansion and intensification of of urban settlements into previously productive agricultural lands in urban and peri-urban areas; ii) loss of predominantly young (rural agricultural) adult labor force to urban centers, leading to decline in rural food production; iii) lack of proper urban planning incorporating green and agricultural development leading to low productive market garden systems. We discussed these outcomes in light of existing studies which estimated that urban agriculture alone supports over 800 million people globally and accounts for 15-20% of world food supply. In spite of this relatively low contribution by urban/peri-urban agriculture, it probably accounts for higher proportion of food supply to urban poor in SSA and thus are most vulnerable to the loss of urban and peri-urban agricultural land. Further recommendations require policy makers and urban planners to team up to design a suitable framework for sustainable urban planning and development.

  2. Using land-cover data to understand effects of agricultural and urban development on regional water quality

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.

    2010-01-01

    The Land-Cover Trends project is a collaborative effort between the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS), the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA) to understand the rates, trends, causes, and consequences of contemporary land-use and land-cover change in the United States. The data produced from this research can lead to an enriched understanding of the drivers of future landuse change, effects on environmental systems, and any associated feedbacks. USGS scientists are using the EPA Level III ecoregions as the geographic framework to process geospatial data collected between 1973 and 2000 to characterize ecosystem responses to land-use changes. General land-cover classes for these periods were interpreted from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery to categorize and evaluate land-cover change using a modified Anderson Land-Use/Land-Cover Classification System for image interpretation.

  3. National agricultural lands study. Agricultural land retention and availability: a bibliographic source book

    SciTech Connect

    Not Available

    1981-01-01

    Publications obtainable resulting from the national agricultural lands study are described. The book is divided into 5 chapters: agricultural land within a changing context; agricultural land base-limitations and capabilities; competition for and allocation of agricultural land, state and local agricultural land protection programs, and the federal role. This source book is intended to provide the reader with a broad familiarity with this literature and with issues involved in the current debate about protecting farmland. (DMC)

  4. Mapping of agricultural land use from ERTS-1 digital data

    NASA Technical Reports Server (NTRS)

    Wilson, A. D.; Max, G. A.; Peterson, G. W.

    1973-01-01

    A study area was selected in Lancaster and Lebanon Counties, two of the major agricultural counties in Pennsylvania. This area was delineated on positive transparencies on MSS data collected on October 11, 1972 (1080-15185). Channel seven was used to delineate general land forms, drainage patterns, water and urban areas. Channel five was used to delineate highway networks. These identifiable features were useful aids for locating areas on the computer output. Computer generated maps were used to delineate broad land use categories, such as forest land, agricultural land, urban areas and water. These digital maps have a scale of approximately 1:24,000 thereby allowing direct comparison with U.S.G.S. 7.5 minute quadrangle sheets. Aircraft data were used as a form of ground truth useful for the delineation of land use patterns.

  5. 12 CFR 619.9025 - Agricultural land.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Agricultural land. 619.9025 Section 619.9025 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9025 Agricultural land. Land improved or unimproved which is devoted to or available for the production of crops and...

  6. 12 CFR 619.9025 - Agricultural land.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Agricultural land. 619.9025 Section 619.9025 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9025 Agricultural land. Land improved or unimproved which is devoted to or available for the production of crops and...

  7. 12 CFR 619.9025 - Agricultural land.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Agricultural land. 619.9025 Section 619.9025 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9025 Agricultural land. Land improved or unimproved which is devoted to or available for the production of crops and...

  8. 12 CFR 619.9025 - Agricultural land.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Agricultural land. 619.9025 Section 619.9025 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9025 Agricultural land. Land improved or unimproved which is devoted to or available for the production of crops and...

  9. 12 CFR 619.9025 - Agricultural land.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Agricultural land. 619.9025 Section 619.9025 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9025 Agricultural land. Land improved or unimproved which is devoted to or available for the production of crops and...

  10. Agricultural land use change in the Northeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Census of Agriculture (http://www.agcensus.usda.gov/) provides county-level estimates of farm numbers, land use area and livestock and crop production every five years. In 2007, only eight of the 299 counties that make up the twelve Northeastern states had no agricultural land use. About 20...

  11. Land Grabbing and the Commodification of Agricultural Land in Africa

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Rulli, M. C.

    2014-12-01

    The increasing global demand for farmland products is placing unprecedented pressure on the global agricultural system. The increasing demand can be met through either the intensification or the expansion of agricultural production at the expenses of other ecosystems. The ongoing escalation of large scale land acquisitions in the developing world may contribute to both of these two processes. Investments in agriculture have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. It is unclear however to what extent these investments are driving the intensification or the expansion of agriculture. In the last decade large scale land acquisitions by external investors have increased at unprecedented rates. This global land rush was likely enhanced by recent food crises, when prices skyrocketed in response to crop failure, new bioenergy policies, and the increasing demand for agricultural products by a growing and increasingly affluent human population. Corporations recognized the potential for high return investments in agricultural land, while governments started to enhance their food security by purchasing large tracts of land in foreign countries. It has been estimated that, to date, about 35.6 million ha of cropland - more than twice the agricultural land of Germany - have been acquired by foreign investors worldwide. As an effect of these land deals the local communities lose legal access to the land and its products. Here we investigate the effect of large scale land acquisition on agricultural intensification or expansion in African countries. We discuss the extent to which these investments in agriculture may increase crop production and stress how this phenomenon can greatly affect the local communities, their food security, economic stability and the long term resilience of their livelihoods, regardless of whether the transfer of property rights is the result of an

  12. Agricultural Land Conversion: Background and Issues.

    ERIC Educational Resources Information Center

    Furuseth, Owen J.

    1982-01-01

    Analyzes forces contributing to the conversion of agricultural land for other uses, causes for the depletion of the land, major issues surrounding the loss of farmland, and current policies designed to control haphazard land conversion. Concludes that the United States lacks a national farmland protection policy. (KC)

  13. The plight of arid land agriculture

    SciTech Connect

    Hinman, C. W.; Hinman, K.W.

    1992-01-01

    This book analyses the problems of the agricultural environment worldwide and possible solutions. Problems covered include the following: famines caused by agricultural land mismanegment in Subsaharan Africa and population increase; improved productivity leading to salinity, erosion, and water depletion; toxic wastes; loging, deforestation, and over-grazing. Agricultural practices, both ancient and modern, in arid lands are described. Food crops suited for arid lands, potential industrial crops, oil extraction from seed and rubber extraction, and biomass as a source of energy are discussed in different chapters. Finally the book deals with optimization of water use, prevention of salinization, and the prospect of global warming.

  14. Percent Agricultural Land Cover on Steep Slopes

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  15. Evaluating the Benefits of Peri-Urban Agriculture

    PubMed Central

    Brinkley, Catherine

    2014-01-01

    By uniting literature from farmland preservation, growth management, food systems, economics, bioengineering, and environmental studies, this article provides an overview and valuation of the services that farms provide for urban areas. This article first analyzes the mission statements of 130 nationally accredited land trusts to ascertain the criteria used in preserving farmland. Land trusts present uniform preference for parcels that provide ecosystem services, wildlife habitat, viewsheds, local heritage, and agricultural productivity. The list of benefits provided by land trusts was compared to a literature review drawing from farmland amenity, agritourism, farmland preservation, and ecosystems studies to reveal the range of market values for the various benefits of farmland. The market value of farmland services varies from −$37,541 to 124,000 per acre depending on the method of analysis and location of the farm. This research has strong implications for land-use planning, economic opportunities, and ecosystems infrastructure in peri-urban areas. PMID:25324593

  16. Evaluating the Benefits of Peri-Urban Agriculture.

    PubMed

    Brinkley, Catherine

    2012-08-01

    By uniting literature from farmland preservation, growth management, food systems, economics, bioengineering, and environmental studies, this article provides an overview and valuation of the services that farms provide for urban areas. This article first analyzes the mission statements of 130 nationally accredited land trusts to ascertain the criteria used in preserving farmland. Land trusts present uniform preference for parcels that provide ecosystem services, wildlife habitat, viewsheds, local heritage, and agricultural productivity. The list of benefits provided by land trusts was compared to a literature review drawing from farmland amenity, agritourism, farmland preservation, and ecosystems studies to reveal the range of market values for the various benefits of farmland. The market value of farmland services varies from -$37,541 to 124,000 per acre depending on the method of analysis and location of the farm. This research has strong implications for land-use planning, economic opportunities, and ecosystems infrastructure in peri-urban areas.

  17. Mapping urban and peri-urban agriculture using high spatial resolution satellite data

    NASA Astrophysics Data System (ADS)

    Forster, Dionys; Buehler, Yves; Kellenberger, Tobias W.

    2009-03-01

    In rapidly changing peri-urban environments where biophysical and socio-economic processes lead to spatial fragmentation of agricultural land, remote sensing offers an efficient tool to collect land cover/land use (LCLU) data for decision-making. Compared to traditional pixel-based approaches, remote sensing with object-based classification methods is reported to achieve improved classification results in complex heterogeneous landscapes. This study assessed the usefulness of object-oriented analysis of Quickbird high spatial resolution satellite data to classify urban and peri-urban agriculture in a limited peri-urban area of Hanoi, Vietnam. The results revealed that segmentation was essential in developing the object-oriented classification approach. Accurate segmentation of shape and size of an object enhanced classification with spectral, textural, morphological, and topological features. A qualitative, visual comparison of the classification results showed successful localisation and identification of most LCLU classes. Quantitative evaluation was conducted with a classification error matrix reaching an overall accuracy of 67% and a kappa coefficient of 0.61. In general, object-oriented classification of high spatial resolution satellite data proved the promising approach for LCLU analysis at village level. Capturing small-scale urban and peri-urban agricultural diversity offers a considerable potential for environmental monitoring. Challenges remain with the delineation of field boundaries and LCLU diversity on more spatially extensive datasets.

  18. Carbon balance of Russian agricultural land

    NASA Astrophysics Data System (ADS)

    Schepaschenko, D.; Shvidenko, A.; Schepaschenko, M.

    2012-04-01

    Russia managed 218.7 mln ha agricultural land (2009) in accordance with national statistics (FSSS, 2011: http://www.gks.ru/dbscripts/Cbsd/DBInet.cgi#1). Among that, 91.75 mln ha is arable land; 92.05 mln ha - hayfield and pasture; 34.9 mln ha - abandoned arable and fallow. Abandoned arable area is not indicated directly in the statistics, but can be calculated as a difference between "arable" and "cultivated" area. We estimated carbon balance of agricultural land by accounting carbon fluxes. Carbon sink includes: net primary productivity (NPP), applying fertilizes and liming. Carbon losses include soil respiration (SR), harvest and lateral flux. The initial data (cultivated area and harvest distribution by regions and crop) was derived from national agriculture statistics (FSSS, 2011). NPP was estimated via harvest and set of regression models. Average NPP for agricultural land was estimated at 435 g C m-2 (530 g C m-2 for crops). Soil respiration was calculated by a model (Mukhortova et. al., 1011: http://www.iiasa.ac.at/Research/FOR/forest_cdrom/Articles/Mukhortova_2011_IBFRA_SR.pdf) developed for Russia which is based on all available empirical data and accounted for climatic parameters, soil type and management practice. Average SR of agricultural land is 344 g C m-2 (372 g C m-2 for the cropland). We applied the IPCC method (National inventory, 2010; IPCC, 2006) for fertilizer and lateral fluxes assessment. The total carbon balance of agricultural land is almost in equilibrium (-0.04 t C ha-1) in spite of arable land is a carbon source (-0.84 t C ha-1). The highest sink (1.21 t C ha-1) is provided by abandoned land. Carbon fluxes vary substantially depending on seasonal weather conditions. For example grains' NPP in 2010 (dry and hot summer in major agricultural regions of European Russia) was estimated at 32% less compare to 2009 and the total carbon balance of this land category decreased by order of magnitude. We used Russian land cover (Schepaschenko et al

  19. Agriculture, land use, and commercial biomass energy

    SciTech Connect

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  20. The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

  1. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  2. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  3. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  4. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  5. An Initial Analysis of LANDSAT-4 Thematic Mapper Data for the Discrimination of Agricultural, Forested Wetlands, and Urban Land Cover. [Poinsett County, Arkansas; and Reelfoot Lake and Union City, Tennessee

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1985-01-01

    The capabilities of TM data for discriminating land covers within three particular cultural and ecological realms was assessed. The agricultural investigation in Poinsett County, Arkansas illustrates that TM data can successfully be used to discriminate a variety of crop cover types within the study area. The single-date TM classification produced results that were significantly better than those developed from multitemporal MSS data. For the Reelfoot Lake area of Tennessee TM data, processed using unsupervised signature development techniques, produced a detailed classification of forested wetlands with excellent accuracy. Even in a small city of approximately 15,000 people (Union City, Tennessee). TM data can successfully be used to spectrally distinguish specific urban classes. Furthermore, the principal components analysis evaluation of the data shows that through photointerpretation, it is possible to distinguish individual buildings and roof responses with the TM.

  6. [Simulation and prediction of urban and rural settlement growth and land use change in Yingkou City].

    PubMed

    Xi, Feng-Ming; He, Hong-Shi; Hu, Yuan-Man; Wu, Xiao-Qing; Bao, Li; Tian, Ying; Wang, Jin-Nian; Ma, Wen-Jun

    2008-07-01

    Based on the 1988, 1992, 1997, 2000, and 2004 Landsat TM remote sensing data of Yingkou City, Liaoning Province, the urban and rural settlement growth and land use change in the city from 2005 to 2030 were simulated and predicted by using the SLEUTH urban growth and land use change model with six scenarios (current trend scenario, no protection scenario, moderate protection scenario, managed growth scenario, ecologically sustainable growth scenario, and regional and urban comprehensive planning scenario). The results showed that in the city, the increased area of urban and rural settlement growth from 1988 to 2004 was 14.93 km2, and the areas of water area, orchard, mine, and agricultural land changed greatly from 1997 to 2004. From 2005 to 2030, based on ecologically sustainable growth scenario, the urban and rural settlement growth would have a slow increase, and agricultural land and forestland would be better protected; under no protection scenario, the urban and rural settlement growth would have a rapid increase, and large area of agricultural land would be lost; under current trend scenario, the agricultural land loss would be similar to that under no protective scenario, but the loss pattern could be different; under moderate protection scenario and managed growth scenario, the agricultural land would have a smaller loss; while under regional and urban comprehensive planning scenario, the urban and rural settlement growth would be mainly distributed in urban development area and urban fringe. The SLEUTH model with different scenarios could simulate how the different land management policies affect urban and rural settlement growth and land use change, which would be instructive to the coordination of Chinese urban and rural settlement development and the socialist new rural reconstruction.

  7. Agricultural land management options following large-scale environmental contamination - evaluation for Fukushima affected agricultural land

    SciTech Connect

    Vandenhove, Hildegarde

    2013-07-01

    The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)

  8. Impact of urbanization and land-use change on climate.

    PubMed

    Kalnay, Eugenia; Cai, Ming

    2003-05-29

    The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data or satellite measurements of night light are used to classify urban and rural areas. Here we use the difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years, which is insensitive to surface observations, to estimate the impact of land-use changes on surface warming. Our results suggest that half of the observed decrease in diurnal temperature range is due to urban and other land-use changes. Moreover, our estimate of 0.27 degrees C mean surface warming per century due to land-use changes is at least twice as high as previous estimates based on urbanization alone.

  9. An Exploratory Analysis of Student-Community Interactions in Urban Agriculture

    ERIC Educational Resources Information Center

    Grossman, Julie; Sherard, Maximilian; Prohn, Seb M.; Bradley, Lucy; Goodell, L. Suzanne; Andrew, Katherine

    2012-01-01

    Urban agriculture initiatives are on the rise, providing healthy food while teaching a land ethic to youth. In parallel, increasing numbers of university graduates are obtaining Extension work requiring the effective communication of science in a diverse, urban, low-income setting. This study evaluates a pilot service-learning program, the…

  10. Climate change - Agricultural land use - Food security

    NASA Astrophysics Data System (ADS)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  11. Remote Sensing Application to Land Use Classification in a Rapidly Changing Agricultural/Urban Area: City of Virginia Beach, Virginia. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Odenyo, V. A. O.

    1975-01-01

    Remote sensing data on computer-compatible tapes of LANDSAT 1 multispectral scanner imager were analyzed to generate a land use map of the City of Virginia Beach. All four bands were used in both the supervised and unsupervised approaches with the LAYSYS software system. Color IR imagery of a U-2 flight of the same area was also digitized and two sample areas were analyzed via the unsupervised approach. The relationships between the mapped land use and the soils of the area were investigated. A land use land cover map at a scale of 1:24,000 was obtained from the supervised analysis of LANDSAT 1 data. It was concluded that machine analysis of remote sensing data to produce land use maps was feasible; that the LAYSYS software system was usable for this purpose; and that the machine analysis was capable of extracting detailed information from the relatively small scale LANDSAT data in a much shorter time without compromising accuracy.

  12. Redistributive land and tenancy reform in Bangladesh agriculture.

    PubMed

    Taslim, M A

    1993-04-01

    Land is scarce and population dense in Bangladesh. Accordingly, there is great need to maximize agricultural production with intensive cultivation and the diffusion of modern technology. The realization of this goal, however, is impeded by the prevailing inequitable and inefficient structure of agricultural land tenure in which a few rural households hold the bulk of cultivatable land. Cropsharing and the system of land tenancy perpetuates low productivity and stagnation throughout the country. Development professionals, ruling politicians, and general populations in many countries under similar circumstances often suggest that share tenancy be abolished and tenants given ownership of tenanted plots, with large farms broken into smaller ones with an ultimate ceiling on farm size. The political and undertaken by new governments coming to power after violent social upheavals. Careful review reveals that such reform has hardly ever led to the establishment of prosperous and independent peasantries. Small family farms have instead become more dependent on the state and on off-farm employment. The rural elite is destroyed and a small peasant proprietorship dependent on the state is established which is ultimately controlled by the urban elite of the country; control over rural populations is reinforced. The dubious historical motivation for and results of land reform suggest that Bangladesh abandon its consideration in favor of promoting vocational training and education; providing research and extension services to agriculture for more rapid diffusion of high-yield innovations; mobilizing domestic resources to build up the infrastructure; fostering the development of private initiatives; and informing and advising about sustainable development practices to encourage their adoption so that an ecological balance may be maintained.

  13. Urban Dynamics: Analyzing Land Use Change in Urban Environments

    NASA Technical Reports Server (NTRS)

    Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

    2000-01-01

    In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

  14. Pesticides in wells in agricultural and urban areas of the Hudson River basin

    USGS Publications Warehouse

    Phillips, P.J.; Wall, G.R.; Ryan, C.M.

    2000-01-01

    Ground-water samples from four monitoring well networks in the Hudson River basin were analyzed for pesticides (detection limits from 0.001 to 0.018 ??g/L). The most frequent detections were in samples from shallow depths beneath agricultural areas. Concentrations of pesticides in samples from all four networks were generally below 0.10 ??g/L, and the concentration of only one (cyanazine) exceeded any maximum contaminant levels or health advisory levels set by the U.S. Environmental Protection Agency. The well networks represented two land-use and two well-depth categories as follows: 1. agricultural shallow wells - two springs and 14 wells finished less than 15 m below land surface in unconfined unconsolidated aquifers beneath agricultural land, 2. agricultural water-supply-wells - 31 wells finished 1.8 to 120 m below land surface in unconsolidated unconfined aquifers and bedrock aquifers beneath agricultural land 3. urban/residential shallow-wells - 17 wells finished less than 16 m below land surface in unconfined unconsolidated aquifers beneath urban or residential land; and 4. urban/residential water-supply-wells - 25 water-supply or observation wells finished 5 to 113 m below land surface in unconfined, unconsolidated aquifers and bedrock aquifers beneath urban or residential land. Pesticides were detected in 69 percent of the samples from the agricultural shallow wells, in 29 percent of the samples from the agricultural water-supply wells, in no samples from the urban/residential shallow wells, and in 16 percent of the samples from the urban/residential water-supply wells. At least half of the samples from the agricultural shallow-well network contained two herbicides (atrazine and metolachlor) and one herbicide metabolite (deethylatrazine); other pesticides detected in samples from this network included metribuzin, cyanazine, EPTC, and pendimethalin. Samples from the agricultural water-supply wells contained two insecticides (diazinon and malathion), two

  15. Geo-information Based Spatio-temporal Modeling of Urban Land Use and Land Cover Change in Butwal Municipality, Nepal

    NASA Astrophysics Data System (ADS)

    Mandal, U. K.

    2014-11-01

    Unscientific utilization of land use and land cover due to rapid growth of urban population deteriorates urban condition. Urban growth, land use change and future urban land demand are key concerns of urban planners. This paper is aimed to model urban land use change essential for sustainable urban development. GI science technology was employed to study the urban change dynamics using Markov Chain and CA-Markov and predicted the magnitude and spatial pattern. It was performed using the probability transition matrix from the Markov chain process, the suitability map of each land use/cover types and the contiguity filter. Suitability maps were generated from the MCE process where weight was derived from the pair wise comparison in the AHP process considering slope, land capability, distance to road, and settlement and water bodies as criterion of factor maps. Thematic land use land cover types of 1999, 2006, and 2013 of Landsat sensors were classified using MLC algorithm. The spatial extent increase from 1999 to 2013 in built up , bush and forest was observed to be 48.30 percent,79.48 percent and 7.79 percent, respectively, while decrease in agriculture and water bodies were 30.26 percent and 28.22 percent. The predicted urban LULC for 2020 and 2027 would provide useful inputs to the decision makers. Built up and bush expansion are explored as the main driving force for loss of agriculture and river areas and has the potential to continue in future also. The abandoned area of river bed has been converted to built- up areas.

  16. Urban soils: properties for utilitzation for green infrastructure and urban agriculture

    NASA Astrophysics Data System (ADS)

    Shanskiy, Merrit; Krebstein, Kadri

    2015-04-01

    The human influenced soils in urban areas are of prime importance to human populations. Also, it is becoming a trend that there is large increase in reclaimed lands and new users for old industrial areas. Very often the urban soils are heavily modified by different anthropogenic factors. Therefore, it makes it essential to collect the data and knowledge of urban soils in order to understand better how such soils can be managed, rehabilitated or reconditioned to support green infrastructure or urban agriculture. Although the soil organic carbon (SOC) is the largest carbon stock in terrestrial ecosystems and the carbon sequestration is a widely accepted soil function there is still few studies mapping the carbon stocks in urban areas using digital soil mapping techniques. For urban land-use planning and decision making in a process of green infrastructure sustainable development it is in major importance. The urban soils are often lacking sufficient amount of organic matter but they are degraded (compacted, builded, contaminated by construction debris, graded) making them unsuitable as a growing medium. Therefore, the use of certain green infrastructure practices and the development of urban agriculture can be challenging in an urban environment. The issue of assessing soil quality becomes two-fold: the health of the soil as a growing medium needs to be addressed as well as the possible contamination that may be present. Knowing the development history of a parcel is key to determining what type of soil testing should be done, if any, prior to redevelopment or reuse. For current, pilot scale study the soil sampling was carried out in Tartu, Estonia. The different microenvironments were determined inside of urban areas. Soils were collected from such a microenvironments as urban garden areas, parks, other green infrastructure elements. The soils were analyzed for main agrochemical and physical properties at the Estonian University of Life Sciences, laboratory of the

  17. Environmental challenges threatening the growth of urban agriculture in the United States.

    PubMed

    Wortman, Sam E; Lovell, Sarah Taylor

    2013-09-01

    Urban agriculture, though often difficult to define, is an emerging sector of local food economies in the United States. Although urban and agricultural landscapes are often integrated in countries around the world, the establishment of mid- to large-scale food production in the U.S. urban ecosystem is a relatively new development. Many of the urban agricultural projects in the United States have emerged from social movements and nonprofit organizations focused on urban renewal, education, job training, community development, and sustainability initiatives. Although these social initiatives have traction, critical knowledge gaps exist regarding the science of food production in urban ecosystems. Developing a science-based approach to urban agriculture is essential to the economic and environmental sustainability of the movement. This paper reviews abiotic environmental factors influencing urban cropping systems, including soil contamination and remediation; atmospheric pollutants and altered climatic conditions; and water management, sources, and safety. This review paper seeks to characterize the limited state of the science on urban agricultural systems and identify future research questions most relevant to urban farmers, land-use planners, and environmental consultants.

  18. [Impacts of rail transit in Shanghai on its urban land use change].

    PubMed

    Li, Cheng; Li, Jun-Xiang; Li, Rong; Xu, Ming-Ce; Qin, Hai

    2008-07-01

    By using the land use data interpreted with 1:50,000 color-infrared aerial photos of Shanghai collected in 1989 and 2005, and based on Geographic Information System (GIS) techniques, the impacts of urban rail transit (URT) development in Shanghai on its urban land use change was quantitatively analyzed, and a preliminary prediction of the land use change from 2010 to 2025 was made with Markov probability models. The results showed that the URT accelerated the land use change, particularly from an agricultural dominated natural landscape in 1989 to a high-value man-made urban landscape primarily composed of residence and public facilities. URT increased the land use rate in the study area. From 1989 to 2005, public facility land, green space, agriculture land, land for other uses (primarily used for construction), and water area changed greatly, with the greatest change rate of the land for other uses and the lowest one of water area. From 2010 to 2025, the areas and proportions of agriculture land and water area would keep on decreasing, while those of man-made landscapes including residence and public facilities would increase continuously. From the viewpoints of increasing land use rate and its gain, the present land use structure along Shanghai URT should be further regulated to improve the intensive and sustainable use of land resources.

  19. Evaluation of Resources of Agricultural Lands Using Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  20. Evaluation of Agricultural Land Suitability: Application of Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of evaluation of agricultural land suitability is considered as a fuzzy modeling task. The application of individual fuzzy indicators provides an opportunity for assessment of lsand suitability of lands as degree or grade of performance when the lands are used for agricultural purposes....

  1. Lead in urban soils - A real or perceived concern for urban agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban agriculture is growing in cities across the U.S. and it has the potential to provide multiple benefits including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. A review ...

  2. Pollinator interactions with yellow starthistle (Centaurea solstitialis) across urban, agricultural, and natural landscapes.

    PubMed

    Leong, Misha; Kremen, Claire; Roderick, George K

    2014-01-01

    Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis), a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1) rates of bee visitation, 2) viable seed set, and 3) the efficiency of pollination (relationship between bee visitation and seed set). We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services.

  3. Non-agricultural ammonia emissions in urban China

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.

    2014-03-01

    The non-agricultural ammonia (NH3) emissions in cities have received little attention but could rival agricultural sources in term of the efficiency in PM formation. The starting point for finding credible solutions is to comprehensively establish a city-specific Non-agricultural Ammonia Emission Inventory (NAEI) and identify the largest sources where efforts can be directed to deliver the largest impact. In this paper, I present a NAEI of 113 national key cities targeted on environmental protection in China in 2010, which for the first time covers NH3 emissions from pets, infants, smokers, green land, and household products. Results show that totally 210 478 Mg, the NH3 emissions from traffic, fuel combustion, waste disposal, pets, green land, human, and household products are 67 671 Mg, 56 275 Mg, 44 289 Mg, 23 355 Mg, 7509 Mg, 7312 Mg, and 4069 Mg, respectively. The NH3 emission intensity from the municipal districts ranges from 0.08 to 3.13 Mg km-2 yr-1, with a average of 0.84 Mg km-2 yr-1. The high NH3 emission intensities in Beijing-Tianjin-Hebei region, Yangtze River Delta region and Pearl River Delta region support the view that non-agricultural NH3 sources play a key role in city-scale NH3 emissions and thus have potentially important implications for secondary PM formation (ammonium-sulfate-nitrate system) in urban agglomeration of China. Therefore, in addition to current SO2 and NOx controls, China also needs to allocate more scientific, technical, and legal resources on controlling non-agricultural NH3 emissions in the future.

  4. Agricultural Land Use classification from Envisat MERIS

    NASA Astrophysics Data System (ADS)

    Brodsky, L.; Kodesova, R.

    2009-04-01

    This study focuses on evaluation of a crop classification from middle-resolution images (Envisat MERIS) at national level. The main goal of such Land Use product is to provid spatial data for optimisation of monitoring of surface and groundwater pollution in the Czech Republic caused by pesticides use in agriculture. As there is a lack of spatial data on the pesticide use and their distribution, the localisation can be done according to the crop cover on arable land derived from the remote sensing images. Often high resolution data are used for agricultural Land Use classification but only at regional or local level. Envisat MERIS data, due to the wide satellite swath, can be used also at national level. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. Methodology of a pixel-based MERIS classification applying an artificial neural-network (ANN) technique was proposed and performed at a national level, the Czech Republic. Five crop groups were finally selected - winter crops, spring crops, summer crops and other crops to be classified. Classification models included a linear, radial basis function (RBF) and a multi-layer percepton (MLP) ANN with 50 networks tested in training. The training data set consisted of about 200 samples per class, on which bootstrap resampling was applied. Selection of a subset of independent variables (Meris spectral channels) was used in the procedure. The best selected ANN model (MLP: 3 in, 13 hidden, 3 out) resulted in very good performance (correct classification rate 0.974, error 0.103) applying three crop types data set. In the next step data set with five crop types was evaluated. The ANN model (MLP: 5 in, 12 hidden, 5 out) performance was also very good (correct classification rate 0.930, error 0.370). The study showed, that while accuracy of about 80 % was achieved at pixel level when classifying only three crops, accuracy of about 70 % was achieved for five crop

  5. New Jersey Land-Use Planning Techniques and Legislation. Agricultural Experiment Station Bulletin AE-338.

    ERIC Educational Resources Information Center

    Schneider, Lee D.

    In response to recent urban to rural migration trends and the development of rather piecemeal land use policies and practices by local, state, and Federal decision makers, the U.S. Department of Agriculture has established a regional project (NE-78) and this report reflects the first of three major project objectives (to describe and appraise…

  6. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    NASA Astrophysics Data System (ADS)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  7. A Meta-Analysis of Global Urban Land Expansion

    PubMed Central

    Seto, Karen C.; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K.

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely. PMID:21876770

  8. Using Multispectral Analysis in GIS to Model the Potential for Urban Agriculture in Philadelphia

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Cooper, W. P.

    2010-12-01

    In the context of growing concerns about the international food system’s dependence on fossil fuels, soil degradation, climate change, and other diverse issues, a number of initiatives have arisen to develop and implement sustainable agricultural practices. Many seeking to reform the food system look to urban agriculture as a means to create localized, sustainable agricultural production, while simultaneously providing a locus for community building, encouraging better nutrition, and promoting the rebirth of depressed urban areas. The actual impact of such system, however, is not well understood, and many critics of urban agriculture regard its implementation as impractical and unrealistic. This project uses multispectral imagery from United States Department of Agriculture’s National Agricultural Imagery Program with a one-meter resolution to quantify the potential for increasing urban agriculture in an effort to create a sustainable food system in Philadelphia. Color infrared images are classified with a minimum distance algorithm in ArcGIS to generate baseline data on vegetative cover in Philadelphia. These data, in addition to mapping on the ground, form the basis of a model of land suitable for conversion to agriculture in Philadelphia, which will help address questions related to potential yields, workforce, and energy requirements. This research will help city planners, entrepreneurs, community leaders, and citizens understand how urban agriculture can contribute to creating a sustainable food system in a major North American city.

  9. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  10. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.

  11. Land surface temperature shaped by urban fractions in megacity region

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2017-02-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation ( R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  12. The "sowing of concrete": Peri-urban smallholder perceptions of rural-urban land change in the Central Peruvian Andes.

    PubMed

    Haller, Andreas

    2014-05-01

    Policy makers concerned with the peri-urban interface find their greatest challenges in the rapid urban growth of developing mountain regions, since limitations caused by relief and altitude often lead to an increased competition between rural and urban land use at the valley floors. In this context, little attention has been paid to the affected agriculturalists' perceptions of peri-urban growth-important information required for the realization of sustainable land use planning. How is the process of rural-urban land change perceived and assessed by peri-urban smallholder communities? Which are the major difficulties to be overcome? By what means are the affected people reacting and how are these adaptation strategies linked with the ongoing landscape transformations of the hinterland? By using the example of Huancayo Metropolitano, an emerging Peruvian mountain city, it is shown that rural-urban land change is intensively discussed within peri-urban smallholder groups. Although urbanization also leads to infrastructure investments by public institutions-an advantage perceived throughout the study area-the negative impacts of rural-urban land use change prevail. The perceptions' analysis reveals that the decrease of fertile and irrigated agricultural land at the quechua valley floor is especially considered to threaten subsistence, food and income security. In order to compensate the loss of production capacities, many smallholders try to expand or intensify their land use at the suni altitudinal belt: an agro-ecological zone characterized by steep and nonirrigated slopes that can actually not be used for the year-round production of crops previously cultivated at the quechua zone.

  13. Advancing an Urban Agenda: Principles and Experiences of an Urban Land Grant University

    ERIC Educational Resources Information Center

    Maruyama, Geoffrey; Jones, Robert J.; Finnegan, John R., Jr.

    2009-01-01

    Our urban-located land grant institution has long been committed to engaged research, teaching, and service. This paper describes efforts to articulate and implement a strategic urban land grant vision that places urban/metropolitan engagement at the center of our institution's "urban age" future. We describe intentional and broad-based efforts in…

  14. Agricultural Education in an Urban Charter School: Perspectives and Challenges

    ERIC Educational Resources Information Center

    Henry, Kesha A.; Talbert, Brian Allen; Morris, Pamala V.

    2014-01-01

    Urban school districts are viable recruitment sources for higher education in agriculture and have the ability to play a significant role in efforts to increase agricultural education program numbers at the secondary level. Secondary school increases should lead to growth in agricultural college enrollments across the country. Increasing…

  15. [Spatial tendency of urban land use in new Yinzhou Town of Ningbo City, Zhejiang Province of East China].

    PubMed

    Jiang, Wen-Wei; Guo, Hui-Hui; Mei, Yan-Xia

    2012-03-01

    By adopting gradient analysis combining with the analysis of urban land use degree, this paper studied the spatial layout characteristics of residential and industrial lands in new Yinzhou Town, and explored the location characters of various urban land use by selecting public green land, public facilities, and road as the location advantage factors. Gradient analysis could effectively connect with the spatial layout of urban land use, and quantitatively depict the spatial character of urban land use. In the new town, there was a new urban spatial center mostly within the radius of 2 km, namely, the urban core area had obvious location advantage in the cross-shaft direction urban development. On the south of Yinzhou Avenue, the urban hinterland would be constructed soon. In the future land use of the new town, the focus would be the reasonable vicissitude of industrial land after the adjustment of industrial structure, the high-efficient intensive use of the commercial land restricted by the compulsive condition of urban core area, and the agricultural land protection in the southeastern urban-rural fringe.

  16. Towards a Pedagogy of Land: The Urban Context

    ERIC Educational Resources Information Center

    Styres, Sandra; Haig-Brown, Celia; Blimkie, Melissa

    2013-01-01

    This article examines the possibilities when shifting what we have come to call a pedagogy of Land from rural to urban contexts. The authors explore some persisting questions around what it means to bring a pedagogy of Land into classrooms and communities in urban settings. The authors consider the ways a pedagogy of Land might translate from…

  17. "Something good can grow here": chicago urban agriculture food projects.

    PubMed

    Hatchett, Lena; Brown, Loretta; Hopkins, Joan; Larsen, Kelly; Fournier, Eliza

    2015-01-01

    Food security is a challenge facing many African-American low-income communities nationally. Community and university partners have established urban agriculture programs to improve access to high quality affordable fruits and vegetables by growing, distributing, and selling food in urban neighborhoods. While the challenge of food security is within communities of color, few studies have described these urban agriculture programs and documented their impact on the crew members who work in the programs and live in the low-income communities. More information is needed on the program impact for crew and community health promotion. Using a survey and focus group discussion from the crew and staff we describe the program and activities of four Chicago Urban Agriculture programs. We summarized the impact these programs have on crew members' perception of urban agriculture, health habits, community engagement, and community health promotion in low-income African-American neighborhoods.

  18. The importance of agricultural lands for Himalayan birds in winter.

    PubMed

    Elsen, Paul R; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S

    2017-04-01

    The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural

  19. Cities as selective land predators? A lesson on urban growth, deregulated planning and sprawl containment.

    PubMed

    Colantoni, Andrea; Grigoriadis, Efstathios; Sateriano, Adele; Venanzoni, Giuseppe; Salvati, Luca

    2016-03-01

    The present study investigates changes in the use of land caused by the expansion of an informal city in the Mediterranean region (Athens, Greece) and it proposes a simplified methodology to assess selective land take at the scale of municipalities. The amount of land take over twenty years (1987-2007) for cropland, sparsely vegetated areas and natural land was compared with the surface area of the respective class at the beginning of the study period (1987). Indicators of selective land take by class were correlated with socioeconomic indicators at the scale of municipalities to verify the influence of the local context and the impact of urban planning on land take processes. Evidence indicates that urban expansion into fringe land consumes primarily cropland and sparse vegetation in the case of the Athens' metropolitan region. Cropland and sparse vegetation were consumed proportionally more than the respective availability in 16 municipalities out of 60. Agricultural land take was positively correlated with population density and growth rate, rate of participation to the job market and road density. Sparse vegetation land take was observed in municipalities with predominance of high density settlements. As a result of second-home expansion in coastal municipalities, natural land was converted to urban use in proportion to the availability in the landscape. Urban planning seems to have a limited impact on selective land take.

  20. National land-cover data and national agricultural census estimates of agricultural land use in the northeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The landscape of the northeastern United States is diverse and patchy, a complex mixture of forest, agriculture, and developed lands. Many urgent social and environmental issues require spatially-referenced information on land use, a need filled by the National Land-Cover Data (NLCD). The accuracy o...

  1. Land conversion for suburban housing: A study of urbanization around Warsaw and Olsztyn, Poland.

    PubMed

    Wasilewski, Adam; Krukowski, Krzysztof

    2004-08-01

    In Poland of the 1990s, urban demand for housing land around city agglomerations increased rapidly. The decreasing profitability of agricultural production also caused farmers to become interested in the sale of agricultural land for nonagricultural purposes, and new land legislation granted them the right to sell their land. Polish counties simultaneously received self-governing status, which allowed them to define the priorities for local development. Counties received additional responsibility for land management and quickly demonstrated strong support for land conversion, which was perceived as a factor of local development. This paper argues that decentralization and the extension of private control over land have led to a loss of rural landscapes in Poland because farmers, county governments, and rural society in general gained from the conversion of agricultural to housing land. Rapid urbanization has significantly reduced the availability of open space around cities and threatened valuable landscapes, for it has occurred in the absence of environmental safeguards. This paper reports findings from research in two counties, located in regions with diverse economic growth rates. Decentralization is particularly problematic if tax regulations and intergovernmental fiscal relations reward local authorities for urbanization but not environmental protection.

  2. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  3. Seasonality in birth defects, agricultural production and urban location.

    PubMed

    McKinnish, Terra; Rees, Daniel I; Langlois, Peter H

    2014-12-01

    This paper tests whether the strength of the "spring spike" in birth defects is related to agricultural production and urban location using Texas Birth Defects Registry data for the period 1996-2007. We find evidence of a spike in birth defects among children conceived in the spring and summer, but it is more pronounced in urban non-agricultural counties than in other types of counties. Furthermore, the spike lasts longer in urban non-agricultural counties as compared to other types of counties.

  4. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  5. Percent Agricultural Land Cover on Steep Slopes (Future)

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  6. Early Agriculture: Land Clearance and Climate Effects

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2013-12-01

    In the 2003 AGU Emiliani Lecture, I proposed the 'early anthropogenic hypothesis' --the idea that major anthropogenic effects on greenhouse gases and climate occurred thousands of years before the industrial era. In the decade since then, several dozen published papers have argued its pros and cons. In the 2013 Tyndall History of Global Change Lecture I will update where matters now stand. I will show figures from the 2003 Climate Change paper that laid out the initial hypothesis, and then update subsequent evidence from ice-core drilling, archeology, and land-use histories. The primary claims in the 2003 hypothesis were these: (1) the CH4 rise since 5000 years ago is anthropogenic; (2) the CO2 rise since 7000 years ago is also anthropogenic; (3) the amount of carbon emitted from preindustrial deforestation was roughly twice the amount released during the industrial era; (4) global temperature would have been cooler by about 0.8oC by the start of the industrial era if agricultural CO2 and CH4 emissions had not occurred; (5) early anthropogenic warming prevented the inception of new ice sheets at high northern latitudes; and (6) pandemics and other population catastrophes during the last 2000 years caused CO2 decreases lasting decades to centuries. The new evidence shows that these claims have held up well. The late-Holocene CO2 and CH4 rises are anomalous compared to average gas trends during previous interglaciations of the last 800,000 years. Land-use models based on historical data simulate pre-industrial CO2 carbon releases more than twice the industrial amounts. Archeological estimates of CH4 emissions from expanding rice irrigation account for much of the late Holocene CH4 rise, even without including livestock emissions or biomass burning. Model simulations show that the large pre-industrial greenhouse-gas emissions indicated by these historical and archeological estimates would have warmed global climate by more than 1oC and prevented northern glacial

  7. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  8. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality.

    PubMed

    Joimel, Sophie; Schwartz, Christophe; Hedde, Mickaël; Kiyota, Sayuri; Krogh, Paul Henning; Nahmani, Johanne; Pérès, Guénola; Vergnes, Alan; Cortet, Jérôme

    2017-04-15

    Despite their importance both in soil functioning and as soil indicators, the response of microarthropods to various land uses is still unclear. The aim of this study is to assess the effect of land use on microarthropod diversity and determine whether a soil's biological quality follows the same physicochemical quality-based gradient from forest, agriculture-grassland, agriculture-arable land, vineyards, urban vegetable gardens to urban, industrial, traffic, mining and military areas. A database compiling the characteristics of 758 communities has been established. We calculated Collembola community indices including: species richness, Pielou's evenness index, collembolan life forms, the abundance of Collembola and of Acari, the Acari/Collembola abundance ratio, and the Collembolan ecomorphological index. Results show that agricultural land use was the most harmful for soil microarthropod biodiversity, whilst urban and industrial land uses give the same level of soil biological quality as forests do. Furthermore, differences between the proportions of Acari and ecomorphological groups were observed between land uses. This study, defining soil microarthropod diversity baselines for current land uses, should therefore help in managing and preserving soil microarthropod biodiversity, especially by supporting the preservation of soil quality.

  9. Metal Distribution in Urban Agricultural Soils in the Inland Empire, California

    NASA Astrophysics Data System (ADS)

    Marin, C. C. E.

    2015-12-01

    Urban environments exhibit unique biogeochemistry due to the presence of a myriad of anthropogenic sources of contaminants. One potential route through which humans have been exposed to metal contaminants is the ingestion of food produced on urban soils. The Inland Empire is a metropolitan located in semi-arid region of Southern California with greater than 4 million residents, where the growing population is demonstrating an increase in citizen participation in contributing to expanding local food systems. In response to the demand for locally grown produce, the Inland Empire is undergoing rapid land use change, where large tracts of land on the periphery of cities, including Riverside, are being converted or set aside for urban agriculture, though the quality of the soil for food production is unknown. At the same time, smaller gardens and farms are growing in number within the more densely populated areas. Assessing the quality of urban soil currently used for food production in this region can aid in projecting how land use change will affect the quality of crops produced as urban agriculture continues to expand in arid regions. Soil samples were taken from a variety of land use types, including areas currently producing crops and areas set aside for future large scale food production. Samples were collected at the surface (0-2 cm) and below till depth (20-22 cm). These soils were analyzed for total carbon including organic and inorganic carbon fractions, total nitrogen, bulk metal and trace metal concentrations (including As, Mn, Cr, Pb, Cd, Zn, and Cu). To approximate the mobility of the trace elements under various conditions, extraction tests were also performed, including EPA Pb bioavailability analysis. Finally, we utilize statistical tools and spatial analysis to illustrate the relationship between previous land use, current land use, and soil quality for urban crop production.

  10. Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran

    PubMed Central

    Mohd Shafri, Helmi Zulhaidi; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956–2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

  11. Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.

    PubMed

    Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved.

  12. Theme: Land Laboratories--Urban Settings, Liability, Natural Resources Labs.

    ERIC Educational Resources Information Center

    Whaley, David, Ed.; And Others

    1994-01-01

    Includes "With a Little Imagination"; "From Fallow to Fertile"; "Operating a School Enterprise in Agriculture"; "Using a Nontraditional Greenhouse to Enhance Lab Instruction"; "Risk Management for Liability in Operating Land Laboratories"; "Working Land and Water Laboratory for Natural…

  13. Monitoring Land Use/Land Cover Changes in a River Basin due to Urbanization using Remote Sensing and GIS Approach

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Khire, M. V.; Gedam, S. S.

    2014-11-01

    Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.

  14. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  15. Cities and Urban Land Use in Advanced Placement Human Geography.

    ERIC Educational Resources Information Center

    Ford, Larry R.

    2000-01-01

    Discusses the cities and urban land use section of the Advanced Placement (AP) human geography course, focusing on the: (1) definitions of urbanism; (2) origin and evolution of cities; (3) functional character of contemporary cities; (4) built environment and social space; and (5) responses to urban growth. (CMK)

  16. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  17. Governance, agricultural intensification, and land sparing in tropical South America.

    PubMed

    Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine

    2014-05-20

    In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970-2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process.

  18. Governance, agricultural intensification, and land sparing in tropical South America

    PubMed Central

    Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine

    2014-01-01

    In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process. PMID:24799696

  19. Modeling Agriculture and Land Use in an Integrated Assessment Framework

    SciTech Connect

    Sands, Ronald D.; Leimbach, Marian

    2003-01-01

    The Agriculture and Land Use (AgLU) model is a top-down economic model with just enough structure to simulate global land use change and the resulting carbon emissions over one century. These simulations are done with and without a carbon policy represented by a positive carbon price. Increases in the carbon price create incentives for production of commercial biomass that affect the distribution of other land types and, therefore, carbon emissions from land use change. Commercial biomass provides a link between the agricultural and energy systems. The ICLIPS core model uses AgLU to provide estimates of carbon emissions from land use change as one component of total greenhouse gas emissions.

  20. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    PubMed

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb.

  1. Urban Growth in a Fragmented Landscape: Estimating the Relationship between Landscape Pattern and Urban Land Use Change in Germany, 2000-2006

    NASA Astrophysics Data System (ADS)

    Keller, R.

    2013-12-01

    One of the highest priorities in the conservation and management of biodiversity, natural resources and other vital ecosystem services is the assessment of the mechanisms that drive urban land use change. Using key landscape indicators, this study addresses why urban land increased 6 percent overall in Germany from 2000-2006. Building on regional science and economic geography research, I develop a model of landscape change that integrates remotely sensed and other geospatial data, and socioeconomic data in a spatial autoregressive model to explain the variance in urban land use change observed in German kreise (counties) over the past decade. The results reveal three key landscape mechanisms that drive urban land use change across Germany, aligning with those observed in US studies: (1) the level of fragmentation, (2) the share of designated protected areas, and (3) the share of prime soil. First, as fragmentation of once continuous habitats in the landscape increases, extensive urban growth follows. Second, designated protected areas have the perverse effect of hastening urbanization in surrounding areas. Third, greater shares of prime, productive soil experienced less urban land take over the 6 year period, an effect that is stronger in the former East Germany, where the agricultural sector remains large. The results suggest that policy makers concentrate their conservation efforts on preexisting fragmented land with high shares of protected areas in Germany to effectively stem urban land take. Given that comparative studies of land use change are vital for the scientific community to grasp the wider global process of urbanization and coincident ecological impacts, the methodology employed here is easily exportable to land cover and land use research programs in other fields and geographic areas. Key words: Urban land use change, Ecosystem services, Landscape fragmentation, Remote sensing, Spatial regression models, GermanyOLS and Spatial Autoregressive Model

  2. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban

  3. Plastic and the nest entanglement of urban and agricultural crows.

    PubMed

    Townsend, Andrea K; Barker, Christopher M

    2014-01-01

    Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas), which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos), a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6%) were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line) could reduce the occurrence of entanglement of nestling birds.

  4. Plastic and the Nest Entanglement of Urban and Agricultural Crows

    PubMed Central

    Townsend, Andrea K.; Barker, Christopher M.

    2014-01-01

    Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas), which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos), a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6%) were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line) could reduce the occurrence of entanglement of nestling birds. PMID:24498238

  5. Effects of antecedent land cover on physical, chemical, and biological responses to urbanization in streams across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Cuffney, T. F.; Qian, S.

    2012-12-01

    The effects of urbanization on physical, chemical, and biological characteristics of streams were assessed across gradients of urbanization in 9 metropolitan areas of the conterminous US (Boston, MA; Raleigh; NC, Birmingham, AL; Atlanta, GA; Milwaukee-Green Bay, WI; Denver, CO; Dallas-Fort Worth, TX; Salt Lake City, UT; and Portland, OR) as a part of the U.S. Geological Survey's National Water Quality Assessment Program. Gradients of urbanization were established on the basis of a multimetric index of urban intensity that combined land cover, population, and road density. Simple regression models established that the condition of biological communities (e.g., invertebrate responses) showed statistically significant degradation as urbanization increased in six (Boston, Raleigh, Birmingham, Atlanta, Salt Lake, and Portland) of the nine metropolitan areas. Multiple regression models incorporating basin-scale land cover (e.g., forest, agricultural land) and environmental variables (e.g., water temperature, chemistry, hydrology) did not substantially improve the explanatory power of the regressions and could not explain differences in responses among metropolitan areas. Multilevel hierarchical models incorporating basin- and regional-scale predictors demonstrated that regional-scale climate (air temperature and precipitation) and antecedent land cover (i.e., land cover being converted to urban) predicted invertebrate responses to urbanization. The lack of identifiable urban responses for Milwaukee-Green Bay, Denver, and Dallas-Fort Worth were associated with high levels of antecedent agriculture (row crops and grazing) that degraded the biological communities and obscured the effects of urbanization. Urbanization was associated with increases in conductivity, nutrients, pesticides, and hydrologic variability. Levels of these variables at background sites were higher in regions with high antecedent agriculture; consequently, the effects of urbanization appeared to be

  6. Multifunctionality assessment of urban agriculture in Beijing City, China.

    PubMed

    Peng, Jian; Liu, Zhicong; Liu, Yanxu; Hu, Xiaoxu; Wang, An

    2015-12-15

    As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent.

  7. Association between agricultural land use and West Nile virus antibody prevalence in Iowa birds.

    PubMed

    Randall, Natalie J; Blitvich, Bradley J; Blanchong, Julie A

    2013-10-01

    In the Plains states of the central United States, research suggests that the prevalence of West Nile virus (WNV) disease in humans is higher in agricultural areas than in nonagricultural areas. In contrast, there is limited information about WNV exposure in birds, the primary amplifying host of WNV, in agriculturally dominated landscapes. We evaluated whether exposure to WNV in peridomestic birds sampled in central Iowa varied with the proportion of land use devoted to agriculture. Over the summers of 2009 and 2010, we captured birds in sites comprising gradients of agricultural, urban, and natural land uses, and tested their sera for antibodies to WNV. Overall, WNV antibody prevalence was low (2.3%). Our results suggest that agricultural land use had minimal influence on WNV exposure in birds. We conclude that birds are not likely to be useful indicators of WNV activity in agricultural areas in the Plains states despite human risk being highest in those areas. Antibody prevalence for WNV, however, was higher in American Robins, Mourning Doves, and Northern Cardinals than in other species, making these species potentially useful for monitoring WNV activity in the US Plains states.

  8. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  9. Phosphorus cycling in Montreal's food and urban agriculture systems.

    PubMed

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  10. The interaction between land subsidence and urban development in China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, R.; Zhou, Y.; Jiang, Y.; Wang, X.

    2015-11-01

    The Yangtze River Delta and North China Plain are experiencing serious land subsidence development and are also the areas that have undergone the fastest urbanization. Rapid urban development inevitably requires more water resources. However, China is a country with small per capita water resources, nonuniform distribution of water resources, and over-exploitation of groundwater - all of which are critical factors contributing to the potential for a land subsidence disaster. In addition, land subsidence has brought about elevation loss, damaged buildings, decreased safety of rail transit projects, lowered land value, and other huge economic losses and potential safety hazards in China. In this paper, Beijing, a typical northern Chinese city deficient in water, is taken as an example to explore (a) the problems of urban development, utilization of water resources, and land subsidence development; (b) the harm and influence of land subsidence hazards on urban construction; and (c) the relationship between urban development and land subsidence. Based on the results, the author has predicted the trend of urban development and land subsidence in Beijing and puts forward her viewpoints and suggestions.

  11. Different seasonality of nitrate export from an agricultural watershed and an urbanized watershed in Midwestern USA

    NASA Astrophysics Data System (ADS)

    Tian, S.; Youssef, M. A.; Richards, R. P.; Liu, J.; Baker, D. B.; Liu, Y.

    2016-10-01

    Land use/land cover is a critical factor affecting temporal dynamics of nitrate export from watersheds. Based on a long-term (>30 years) water quality monitoring program in the Western Lake Erie area, United States, this study compared seasonal variation of nitrate export from an agricultural watershed and an urbanized watershed. A seasonality index was adapted to quantitatively characterize seasonal variation of nitrate export from the two watersheds. Results showed that monthly nitrate concentrations from the two watersheds exhibited different seasonal variation. Seasonality index of monthly nitrate loading for the agricultural watershed is approximately 3 times of that from the urbanized watershed and the difference is statistically significant (p < 0.0001). Meanwhile, calculated historical seasonality indexes of monthly nitrate loading for both watersheds exhibited significant (p < 0.05) decreasing trends according to the non-seasonal Mann-Kendall test. The identified differences in seasonal nitrate export from the two watersheds were mainly attributed to their distinct nitrogen sources, physical and biogeochemical settings. The declining seasonality index of monthly nitrate loading from the agricultural watershed could be partially caused by historical climate change in the study region, especially increased temperature during winter. Urbanization could be one key factor contributing to the declining seasonality index of monthly nitrate loading from the urbanized watershed. Information derived from this study have practical implications for developing proper management practices to mitigate nitrate pollution in Midwestern United States.

  12. Interpretation of Pennsylvania agricultural land use from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1974-01-01

    The author has identified the following significant results. To study the complex agricultural patterns in Pennsylvania, a portion of an ERTS scene was selected for detailed analysis. Various photographic products were made and were found to be only of limited value. This necessitated the digital processing of the ERTS data. Using an unsupervised classification procedure, it was possible to delineate the following categories: (1) forest land with a northern aspect, (2) forest land with a southern aspect, (3) valley trees, (4) wheat, (5) corn, (6) alfalfa, grass, pasture, (7) disturbed land, (8) builtup land, (9) strip mines, and (10) water. These land use categories were delineated at a scale of approximately 1:20,000 on the line printer output. Land use delineations were also made using the General Electric IMAGE 100 interactive analysis system.

  13. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    USGS Publications Warehouse

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  14. Determining urban land uses through building-associated element attributes derived from lidar and aerial photographs

    NASA Astrophysics Data System (ADS)

    Meng, Xuelian

    Urban land-use research is a key component in analyzing the interactions between human activities and environmental change. Researchers have conducted many experiments to classify urban or built-up land, forest, water, agriculture, and other land-use and land-cover types. Separating residential land uses from other land uses within urban areas, however, has proven to be surprisingly troublesome. Although high-resolution images have recently become more available for land-use classification, an increase in spatial resolution does not guarantee improved classification accuracy by traditional classifiers due to the increase of class complexity. This research presents an approach to detect and separate residential land uses on a building scale directly from remotely sensed imagery to enhance urban land-use analysis. Specifically, the proposed methodology applies a multi-directional ground filter to generate a bare ground surface from lidar data, then utilizes a morphology-based building detection algorithm to identify buildings from lidar and aerial photographs, and finally separates residential buildings using a supervised C4.5 decision tree analysis based on the seven selected building land-use indicators. Successful execution of this study produces three independent methods, each corresponding to the steps of the methodology: lidar ground filtering, building detection, and building-based object-oriented land-use classification. Furthermore, this research provides a prototype as one of the few early explorations of building-based land-use analysis and successful separation of more than 85% of residential buildings based on an experiment on an 8.25-km2 study site located in Austin, Texas.

  15. Urban agriculture: long-term strategy or impossible dream?: Lessons from Prospect Farm in Brooklyn, New York.

    PubMed

    Angotti, T

    2015-04-01

    Proponents of urban agriculture have identified its potential to improve health and the environment but in New York City and other densely developed and populated urban areas, it faces huge challenges because of the shortage of space, cost of land, and the lack of contemporary local food production. However, large portions of the city and metropolitan region do have open land and a history of agricultural production in the not-too-distant past. Local food movements and concerns about food security have sparked a growing interest in urban farming. Policies in other sectors to address diet-related illnesses, environmental quality and climate change may also provide opportunities to expand urban farming. Nevertheless, for any major advances in urban agriculture, significant changes in local and regional land use policies are needed. These do not appear to be forthcoming any time soon unless food movements amplify their voices in local and national food policy. Based on his experiences as founder of a small farm in Brooklyn, New York and his engagement with local food movements, the author analyzes obstacles and opportunities for expanding urban agriculture in New York.

  16. Properties of 21 Urban Agricultural Soils in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, H. S.; Kim, J. W.

    2012-04-01

    The number of urban agriculture practitioners has been increasing rapidly in Korea like many other urbanized countries recently. The Korean government enacted a law for promoting urban agriculture in 2011. However, urban soil environment can be potential sources of many toxic contaminants including heavy metals making people concern about the safety of the agricultural products from the urban agriculture. The accumulation of heavy metals in soil and plant by overuse of compost from animal waste was one of the raised concerns. This study was carried out to find out properties and total and phytoavailable (1.0 M NH4NO3 extractable) contents of heavy metals (Cd, Pb, Cu, Zn) in 21 urban agricultural soils in Seoul. On the average, the investigated urban soils showed pH1:5 6.89, EC1:5 0.14 dS m-1, organic mater 2.22%, available P2O5 139 mg kg-1, cation exchange capacity (CEC) 11.36 cmolc kg-1 and total nitrogen 0.15%. The average exchangeable-Ca, -Mg, -K and -Na of the 21 samples were 6.71, 1.44, 1.06 and 0.30 cmol+ kg-1, respectively. Total heavy metal concentrations (Cd 0.97-3.17 mg kg-1, average 1.89 mg kg-1; Pb 8.10-46.27 mg kg-1, average 19.96 mg kg-1; Cu 8.97-133.40 mg kg-1, average 38.37 mg kg-1; and Zn 38.97-180.06 mg kg-1, average 97.73 mg kg-1) in urban agricultural soils were lower than those of the warning standard in the area 1 according to the Soil Environmental Conservation Act of Korea. Phytoavailable-Cu, -Pb, and -Zn concentrations of the samples showed 0.02-0.28, N.D-0.09 and 0.01-0.43 mg kg-1, respectively. Phytoavailable-Cd was not detected. The average phytoavailable-Cu concentration from this study was similar to that from the previous phytoavailable-Cu of the highly contaminated soils from nearby abandoned mines, which might be resulted from overuse of compost from animal waste. Results showed a necessity of long-term monitoring of soils for sustainable urban agriculture in Korea.

  17. Destruction of the recreational, asthetic, agricultural, wildlife conservation and preservation, and residential uses of the land as a result of the abuses of the manufacturing, commercial, extractive, construction, and transportation industries

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Explicit concern over land use and abuse stems from the recognition of the negative impacts of unrestrained and unregulated economic, industrial, and population growth upon finite land resources. Only one quarter of the total surface area of the earth is land, and of that a large portion is uninhabitable. The present stresses upon the land include urbanization, urban sprawl and urban congestion; electrical, nuclear industrial park siting requirements; land degradation through stripping surface minerals; land degradation through disposal of radioactive wastes, sewage sludge, solid waste and other industrial wastes; rising demand for agricultural land; and the erosion and destruction of land through elimination of protective coverings such as forests, grasslands, and wetlands.

  18. Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity.

    PubMed

    Edwards, David P; Gilroy, James J; Thomas, Gavin H; Uribe, Claudia A Medina; Haugaasen, Torbjørn

    2015-09-21

    The conversion of natural habitats to farmland is a major driver of the global extinction crisis. Two strategies are promoted to mitigate the impacts of agricultural expansion on biodiversity: land sharing integrates wildlife-friendly habitats within farmland landscapes, and land sparing intensifies farming to allow the offset of natural reserves. A key question is which strategy would protect the most phylogenetic diversity--the total evolutionary history shared across all species within a community. Conserving phylogenetic diversity decreases the chance of losing unique phenotypic and ecological traits and provides benefits for ecosystem function and stability. Focusing on birds in the threatened Chocó-Andes hotspot of endemism, we tested the relative benefits of each strategy for retaining phylogenetic diversity in tropical cloud forest landscapes threatened by cattle pastures. Using landscape simulations, we find that land sharing would protect lower community-level phylogenetic diversity than land sparing and that with increasing distance from forest (from 500 to >1,500 m), land sharing is increasingly inferior to land sparing. Isolation from forest also leads to the loss of more evolutionarily distinct species from communities within land-sharing landscapes, which can be avoided with effective land sparing. Land-sharing policies that promote the integration of small-scale wildlife-friendly habitats might be of limited benefit without the simultaneous protection of larger blocks of natural habitat, which is most likely to be achieved via land-sparing measures.

  19. The Relationship between Land Use and Vulnerability to Nitrogen and Phosphorus Pollution in an Urban Watershed.

    PubMed

    Tasdighi, Ali; Arabi, Mazdak; Osmond, Deanna L

    2017-01-01

    Characterization of the vulnerability of water bodies to pollution from natural and anthropogenic sources requires understanding the relationship between land use and water quality. This study aims (i) to explore the influence of upstream land use on annual stream water concentrations and loads of total nitrogen (TN) and phosphorus (TP) and (ii) to characterize the vulnerability of water bodies to TN and TP pollution as a function of land use under varying climatic conditions. Multiple linear regression models were used across 23 stream locations within the Jordan Lake watershed in North Carolina between 1992 and 2012 to explore land use-water quality relationships. The percentage of urban land use and wastewater treatment plant capacity were the most important factors with strong ( 0.7) and significant ( < 0.01) positive correlations with annual TN and TP concentrations and loads. Percent agricultural land was negatively correlated with TN in 18 out of 21 yr of the study period. Using analysis of covariance, significant ( 0.01) differences were determined between models developed for urban land use with TN and TP loads based on annual precipitation. Using concentrations instead of loads resulted in a nonsignificant difference between models for average and wet years. Finally, a procedure was developed to characterize the vulnerability to TN and TP pollution, computed as the probability of exceeding the nutrient standard limits. Results indicated that the vulnerability to TN and TP was controlled primarily by urban land use, with higher values in dry years than normal and wet years.

  20. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    PubMed

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  1. Convergence in nitrogen deposition and cryptic isotopic variation across urban and agricultural valleys in northern Utah

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Ogata, E. M.; Weintraub, S. R.; Baker, M. A.; Ehleringer, J. R.; Czimczik, C. I.; Bowling, D. R.

    2016-09-01

    The extent to which atmospheric nitrogen (N) deposition reflects land use differences and biogenic versus fossil fuel reactive N sources remains unclear yet represents a critical uncertainty in ecosystem N budgets. We compared N concentrations and isotopes in precipitation-event bulk (wet + dry) deposition across nearby valleys in northern Utah with contrasting land use (highly urban versus intensive agriculture/low-density urban). We predicted greater nitrate (NO3-) versus ammonium (NH4+) and higher δ15N of NO3- and NH4+ in urban valley sites. Contrary to expectations, annual N deposition (3.5-5.1 kg N ha-1 yr-1) and inorganic N concentrations were similar within and between valleys. Significant summertime decreases in δ15N of NO3- possibly reflected increasing biogenic emissions in the agricultural valley. Organic N was a relatively minor component of deposition ( 13%). Nearby paired wildland sites had similar bulk deposition N concentrations as the urban and agricultural sites. Weighted bulk deposition δ15N was similar to natural ecosystems (-0.6 ± 0.7‰). Fine atmospheric particulate matter (PM2.5) had consistently high values of bulk δ15N (15.6 ± 1.4‰), δ15N in NH4+ (22.5 ± 1.6‰), and NO3- (8.8 ± 0.7‰), consistent with equilibrium fractionation with gaseous species. The δ15N in bulk deposition NH4+ varied by more than 40‰, and spatial variation in δ15N within storms exceeded 10‰. Sporadically high values of δ15N were thus consistent with increased particulate N contributions as well as potential N source variation. Despite large differences in reactive N sources, urban and agricultural landscapes are not always strongly reflected in the composition and fluxes of local N deposition—an important consideration for regional-scale ecosystem models.

  2. Thermal Band Analysis of Agricultural Land Use and its Effects on Bioclimatic Comfort: The Case of Pasinler

    NASA Astrophysics Data System (ADS)

    Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi

    2014-05-01

    Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.

  3. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  4. Applications of WEPS and SWEEP to non-agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by wind is a serious problem on agricultural lands throughout the United States and the world. Dust from wind erosion obscures visibility and pollutes the air. It fills road ditches where it can impact water quality, causes automobile accidents, fouls machinery, and imperils animal an...

  5. Impact of land cover types and components on urban heat

    NASA Astrophysics Data System (ADS)

    Xie, L. T.; Cai, G. Y.

    2015-12-01

    This paper discussed the impact of the distribution of parks including water bodies on the relief of urban heat. An image of QuickBird on Aug. 30, 2013 was employed to perform the detailed land cover classification. One swath of Landsat 8 THIR image was collected to derive the land surface temperature. After some necessary preprocessing procedures, object-based classification method was used to classify the land cover as residential region, square and road, water body, as well as park. The results showed that water bodies and parks play an important role in reducing the land surface temperature. Grass, shrub and trees were extracted out respectively by manual from parks that were adopted to test the influence of proportions among trees, shrubs and grass on the fluctuation of land surface temperature in urban area. The results achieved in this paper could be helpful for the local governments to make a decision in urban plan and management.

  6. Agricultural land use mapping. [Pennsylvania, Montana, and Texas

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1973-01-01

    The author has identified the following significant results. Agricultural areas were selected or analysis in southeastern Pennsylvania, north central Montana, and southern Texas. These three sites represent a broad range of soils, soil parent materials, climate, modes of agricultural operation, crops, and field sizes. In each of these three sites, ERTS-1 digital data were processed to determine the feasibility of automatically mapping agricultural land use. In Pennsylvania, forest land, cultivated land, and water were separable within a 25,000 acre area. Four classes of water were also classified and identified, using ground truth. A less complex land use pattern was analyzed in Hill County, Montana. A land use map was prepared shown alternating patterns of summer fallow and stubble fields. The location of farmsteads could be inferred, along with that of a railroad line. A river and a creek flowing into the river were discernible. Six categories of water, related to sediment content and depth, were defined in the reservoir held by the Fresno dam. These classifications were completed on a 150 square mile area. Analysis of the data from Texas is in its formative stages. A test site has been selected and a brightness map has been produced.

  7. Urban and Suburban Residents' Perceptions of Farmers and Agriculture.

    ERIC Educational Resources Information Center

    Molnar, Joseph J.; Duffy, Patricia A.

    Attitudes about farming and government agricultural policies differed among residential categories ranging from urban to rural. A mail survey gathered 3,232 completed questionnaires from a national random sample of 9,250 households. Statistical weighting made respondent categories representative of national proportions. Although respondents…

  8. [Statistical prediction of radioactive contamination impacts on agricultural pasture lands].

    PubMed

    Spiridonov, S I; Ivanov, V V

    2014-01-01

    Based on the literature data analysis, the rationale is given for the use of probabilistic approaches to solve the problems of estimation of a long-lived radionuclide uptake in animal products. Methods for statistical prediction of radioactive contamination consequences for agricultural pasture lands have been devised and implemented in the form of models and program modules. These offer the estimation of radionuclide transfer between the links of an agricultural chain, taking into account variability in the migration parameters, estimation of soil contamination limits based on the preset risk levels for the stuffs produced and statistical coordination of standards. An illustration is given of the application of the above methods using statistical characteristics of 137Cs migration parameters in the soil-plant-animal produce chain. Further trends have been formulated in the development of the risk concept as applied to the assessment of radioecological situations of radioactive contamination of the agricultural land.

  9. Computer-aided boundary delineation of agricultural lands

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1989-01-01

    The National Agricultural Statistics Service of the United States Department of Agriculture (USDA) presently uses labor-intensive aerial photographic interpretation techniques to divide large geographical areas into manageable-sized units for estimating domestic crop and livestock production. Prototype software, the computer-aided stratification (CAS) system, was developed to automate the procedure, and currently runs on a Sun-based image processing system. With a background display of LANDSAT Thematic Mapper and United States Geological Survey Digital Line Graph data, the operator uses a cursor to delineate agricultural areas, called sampling units, which are assigned to strata of land-use and land-cover types. The resultant stratified sampling units are used as input into subsequent USDA sampling procedures. As a test, three counties in Missouri were chosen for application of the CAS procedures. Subsequent analysis indicates that CAS was five times faster in creating sampling units than the manual techniques were.

  10. 25 CFR 162.202 - How will tribal laws be enforced on agricultural land?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How will tribal laws be enforced on agricultural land... agricultural land? (a) Unless prohibited by federal law, we will recognize and comply with tribal laws regulating activities on agricultural land, including tribal laws relating to land use,...

  11. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes.

    PubMed

    De Palma, Adriana; Kuhlmann, Michael; Roberts, Stuart P M; Potts, Simon G; Börger, Luca; Hudson, Lawrence N; Lysenko, Igor; Newbold, Tim; Purvis, Andy

    2015-12-01

    Bees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats. Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

  12. Non-exercise physical activity in agricultural and urban people.

    PubMed

    Levine, James A; McCrady, Shelly K; Boyne, Sandra; Smith, Joanne; Cargill, Kathryn; Forrester, Terrence

    2011-01-01

    With evidence that urbanisation is associated with obesity, diabetes, hypertension and cardiovascular disease, this article compares daily physical activity between rural and urban dwellers. Specifically, it examines habitual daily activity levels, non-exercise activity thermogenesis (NEAT) and energy expenditure in agricultural and urban Jamaicans and urban North Americans. Ambulation was 60 per cent greater in rural Jamaicans than in the urban dwellers (4675 ± 2261 versus 2940 ± 1120 ambulation-attributed arbitrary units (AU)/day; P = 0.001). Levels of ambulation in lean urban Jamaicans were similar to those in lean urban North Americans, whereas obese urban dwellers walked less than their lean urban counterparts (2198 ± 516 versus 2793 ± 774 AU/day; P = 0.01). The data with respect to daily sitting mirrored the walking data; obese Americans sat for almost four hours more each day than rural Jamaicans (562 ± 78 versus 336 ± 68 minutes/day; P < 0.001). Urbanisation is associated with low levels of daily activity and NEAT.

  13. Contrasting effects of urbanization and agriculture on surface temperature in eastern China

    NASA Astrophysics Data System (ADS)

    Zhou, Decheng; Li, Dan; Sun, Ge; Zhang, Liangxia; Liu, Yongqiang; Hao, Lu

    2016-08-01

    The combined effect of urbanization and agriculture, two most pervasive land use activities, on the surface climate remains poorly understood. Using Moderate Resolution Imaging Spectroradiometer data over 2010-2015 and forests as reference, we showed that urbanization warmed the land surface temperature (LST), especially during the daytime and in growing seasons (maximized at 5.0 ± 2.0°C in May), whereas agriculture (dominated by double-cropping system) cooled the LST in two growing seasons during the daytime and all the months but July during the nighttime in Jiangsu Province, eastern China. Collectively, they had insignificant effects on the LST during the day (-0.01°C) and cooled the LST by -0.6°C at night. We also found large geographic variations associated with their thermal effects, indicated by a warming tendency southward. These spatiotemporal patterns depend strongly on vegetation activity, evapotranspiration, surface albedo, and the background climate. Our results emphasize the great potential of agriculture in offsetting the heating effects caused by rapid urbanization in China.

  14. Selected findings and current perspectives on urban and agricultural water quality by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2001-01-01

    Studies by the USGS National Water-Quality Assessment (NAWQA) program in the last decade describe water-quality conditions in nearly 120 agricultural and 35 urban watersheds ('urban' primarily refers to residential and commercial development over the last 50 years). The findings show that for both urban and agricultural areas, nonpoint chemical contamination is an issue. Much work still needs to be done in urban areas with point source contamination as well, including infrastructure improvements. Appreciable improvements in overall water quality, however, will depend upon effective management of point and nonpoint sources. The findings show that nonpoint chemical contamination is an agricultural and urban issue. Whereas a lot of work still needs to be pursued with point source contamination and infrastructure improvements in urban areas (such as related to combined and sanitary sewer overflows), appreciable improvements in water quality also will depend upon management of nonpoint sources. The NAWQA findings also show that water-quality conditions and aquatic health reflect a complex combination of land and chemical use, land-management practices, population density and watershed development, and natural features, such as soils, geology, hydrology, and climate. Contaminant concentrations vary from season to season and from watershed to watershed. Even among seemingly similar land uses and sources of contamination, different areas can have very different degrees of vulnerability and, therefore, have different rates at which improved treatment or management can lead to water-quality improvements.

  15. Land use and stream nitrogen concentrations in agricultural watersheds along the central coast of California.

    PubMed

    Los Huertos, M; Gentry, L E; Shennan, C

    2001-11-22

    In coastal California nitrogen (N) in runoff from urban and agricultural land is suspected to impair surface water quality of creeks and rivers that discharge into the Monterey Bay Sanctuary. However, quantitative data on the impacts of land use activities on water quality are largely limited to unpublished reports and do not estimate N loading. We report on spatial and temporal patterns of N concentrations for several coastal creeks and rivers in central California. During the 2001 water year, we estimated that the Pajaro River at Chittenden exported 302.4 Mg of total N. Nitrate-N concentrations were typically <1 mg N l(-1) in grazing lands, oak woodlands, and forests, but increased to a range of 1 to 20 mg N l(-1) as surface waters passed through agricultural lands. Very high concentrations of nitrate (in excess of 80 mg N l(-1)) were found in selected agricultural ditches that received drainage from tiles (buried perforated pipes). Nitrate concentrations in these ditches remained high throughout the winter and spring, indicating nitrate was not being flushed out of the soil profile. We believe unused N fertilizer has accumulated in the shallow groundwater through many cropping cycles. Results are being used to organize landowners, resource managers, and growers to develop voluntary monitoring and water quality protection plans.

  16. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia.

    PubMed

    Richards, Peter D; Walker, Robert T; Arima, Eugenio Y

    2014-11-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km(2) of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets.

  17. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia

    PubMed Central

    Richards, Peter D.; Walker, Robert T.; Arima, Eugenio Y.

    2014-01-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets. PMID:25492993

  18. Macroinvertebrate assemblages in agricultural, mining, and urban tropical streams: implications for conservation and management.

    PubMed

    Mwedzi, Tongayi; Bere, Taurai; Mangadze, Tinotenda

    2016-06-01

    The study evaluated the response of macroinvertebrate assemblages to changes in water quality in different land-use settings in Manyame catchment, Zimbabwe. Four land-use categories were identified: forested commercial farming, communal farming, Great Dyke mining (GDM) and urban areas. Macroinvertebrate community structure and physicochemical variables data were collected in two seasons from 41 sites following standard methods. Although not environmentally threatening, urban and GDM areas were characterised by higher conductivity, total dissolved solids, salinity, magnesium and hardness. Chlorides, total phosphates, total nitrogen, calcium, potassium and sodium were significantly highest in urban sites whilst dissolved oxygen (DO) was significantly higher in the forested commercial faming and GDM sites. Macroinvertebrate communities followed the observed changes in water quality. Macroinvertebrates in urban sites indicated severe pollution (e.g. Chironomidae) whilst those in forested commercial farming sites and GDM sites indicated relatively clean water (e.g. Notonemouridae). Forested watersheds together with good farm management practices are important in mitigating impacts of urbanisation and agriculture. Strategies that reduce oxygen-depleting substances must be devised to protect the health of Zimbabwean streams. The study affirms the wider applicability of the South African Scoring System in different land uses.

  19. Rates, trends, causes, and consequences of urban land-use change in the United States

    USGS Publications Warehouse

    Acevedo, William; Taylor, Janis L.; Hester, Dave J.; Mladinich, Carol S.; Glavac, Sonya

    2006-01-01

    Over the past 200 years, changes to the Nation's urban areas have been dramatic. Changes that have occurred relate both to the location of urban centers, as well as to the spatial extent of land dedicated to urban uses. Urban areas at the beginning of the 19th century were located primarily along major rivers or bodies of water, as waterways provided the most efficient means for transporting goods and people. As railroads became prominent, urban areas were able to expand or develop away from the water's edge.Geographic features such as steep slopes, wetlands, and lack of freshwater impeded settlement. In 1902, the National Reclamation Act was passed and with it came funding for the construction of water storage and transportation systems. This encouraged urban expansion in the arid west. After World War II, the Nation's urban areas continued to expand outward away from the city center as populations migrated to the margins of urban areas, where land was less expensive and the environment was less polluted. In 1956, the Federal Highway Act and the building of Interstate highways further facilitated urban expansion across the Unite States. Rural towns, small industrial centers, and farmland were engulfed by expanding urban centers.Over the past 200 years, numerous social, cultural, economic, and political incentives have encouraged urban expansion. In the 1800s, the industrial revolution influenced where people lived and worked. Many people shifted from agricultural production in rural areas to factory work in urban centers. Advances in transportation systems, such as rail transport in the 19th and early 20th centuries, followed by the mass production of the automobile and convenient air travel, facilitated a mobile society and a national economy. Economic growth and a population boom after World War II spurred increased suburbanization-the shifting of residential areas to the outlying section of a city or to a separate municipality-on the fringe of urban areas

  20. Geographic concentration and driving forces of agricultural land use in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuluan; Li, Xiubin; Xin, Liangjie; Hao, Haiguang

    2012-03-01

    Since the 1990s, China has entered the middle phase of urbanization which leads to the existence of significant geographic concentration of agricultural land use. The average value of regional concentration degree of ten representative crops in China was 59.03%, showing a high degree of geographic concentration in farming. Some typical agriculture provinces in farming have arisen. The degree of geographic concentration in farming has been enhanced, with the average degree of regional concentration of ten crops increasing considerably by 3.83% in 2009 compared to that in 1990 (55.20%). The spatial growing center of farming was found to move westward and northward during 1990-2009. Meanwhile food production concentrated in the Northeast China and main producing area, and cash crops production concentrated in Northwest China. Off-farm employment of rural labor force, commercialization of agricultural product and regional comparative advantage are the main driving forces of geographic concentration of agricultural land use. Governmental policies with regional differences should be considered to promote further development of agriculture.

  1. The “sowing of concrete”: Peri-urban smallholder perceptions of rural–urban land change in the Central Peruvian Andes☆

    PubMed Central

    Haller, Andreas

    2014-01-01

    Policy makers concerned with the peri-urban interface find their greatest challenges in the rapid urban growth of developing mountain regions, since limitations caused by relief and altitude often lead to an increased competition between rural and urban land use at the valley floors. In this context, little attention has been paid to the affected agriculturalists’ perceptions of peri-urban growth—important information required for the realization of sustainable land use planning. How is the process of rural–urban land change perceived and assessed by peri-urban smallholder communities? Which are the major difficulties to be overcome? By what means are the affected people reacting and how are these adaptation strategies linked with the ongoing landscape transformations of the hinterland? By using the example of Huancayo Metropolitano, an emerging Peruvian mountain city, it is shown that rural–urban land change is intensively discussed within peri-urban smallholder groups. Although urbanization also leads to infrastructure investments by public institutions—an advantage perceived throughout the study area—the negative impacts of rural–urban land use change prevail. The perceptions’ analysis reveals that the decrease of fertile and irrigated agricultural land at the quechua valley floor is especially considered to threaten subsistence, food and income security. In order to compensate the loss of production capacities, many smallholders try to expand or intensify their land use at the suni altitudinal belt: an agro-ecological zone characterized by steep and nonirrigated slopes that can actually not be used for the year-round production of crops previously cultivated at the quechua zone. PMID:25844006

  2. Impact of urban agriculture on malaria vectors in Accra, Ghana.

    PubMed

    Klinkenberg, Eveline; McCall, Pj; Wilson, Michael D; Amerasinghe, Felix P; Donnelly, Martin J

    2008-08-04

    To investigate the impact of urban agriculture on malaria transmission risk in urban Accra larval and adult stage mosquito surveys, were performed. Local transmission was implicated as Anopheles spp. were found breeding and infected Anopheles mosquitoes were found resting in houses in the study sites. The predominant Anopheles species was Anopheles gambiae s.s.. The relative proportion of molecular forms within a subset of specimens was 86% S-form and 14% M-form. Anopheles spp. and Culex quinquefasciatus outdoor biting rates were respectively three and four times higher in areas around agricultural sites (UA) than in areas far from agriculture (U). The annual Entomological Inoculation Rate (EIR), the number of infectious bites received per individual per year, was 19.2 and 6.6 in UA and U sites, respectively. Breeding sites were highly transitory in nature, which poses a challenge for larval control in this setting. The data also suggest that the epidemiological importance of urban agricultural areas may be the provision of resting sites for adults rather than an increased number of larval habitats. Host-seeking activity peaked between 2-3 am, indicating that insecticide-treated bednets should be an effective control method.

  3. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  4. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.

    PubMed

    Weindorf, David C; Zhu, Yuanda; Chakraborty, Somsubhra; Bakr, Noura; Huang, Biao

    2012-01-01

    Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.

  5. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India

    PubMed Central

    Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

    2013-01-01

    Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

  6. Automatic information extraction for land use and agricultural applications

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Thomas, D. T.

    1973-01-01

    Description of some current work in interpretation technique development for automatic computer-aided image information extraction related to various application areas, including land use mapping and agricultural survey and monitoring. In particular, the application of a fast template matching algorithm, employing the sequential similarity detection principle, to image registration, linear feature detection, and the extraction and enumeration of scene objects is discussed and illustrated.

  7. Urbanization, Agricultural Intensification, and Habitat Alteration in Vietnam: Modeling Transitional Development and Emerging Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Fox, J.; Saksena, S.; Spencer, J.; Finucane, M.; Sultana, N.

    2012-12-01

    Our overarching hypothesis is that new risks, in this case the H5N1 strain of avian influenza, emerge during transitions between stages of development. Moreover, these risks are not coincidental but occur precisely because of the in-between nature of the coupled human-natural system at the point when things are neither traditional nor modern but resemble the state of chaos, release and reorganization. We are testing this hypothesis in Vietnam using demographic, social, economic, and environmental data collected in national censuses and analyzed at commune and district levels to identify communes and districts that are traditional, modern, and transitional (peri-urban). Using data from the 2006 agricultural census that capture both the changing nature of the built environment (types of sanitation systems) and the loss of and diversification of agriculture systems (percent of households whose major source of income is from agriculture, and percent of land under agriculture, forests, and aquaculture), and a normalized difference vegetation index from 2006 Landsat images we created a national scale urbanicity map for Vietnam. Field work in the summer of 2011 showed this map to be an accurate (approximately 85%) approximation of traditional (rural), transitional (periurban), and modern (urban) communes. Preliminary results suggest that over 7% of the country's land area and roughly 15% of its population resides in periurban neighborhoods, and that these areas do have a statistically significant greater incidence of AVI as measured in chicken deaths than traditional and modern communes (Table 1). Transitional neighborhoods such as these force planners to ask two questions. To what extent does the dichotomy of urban/rural makes sense in the context of Vietnam, when large areas and parts of the population are caught between the two? Second, how can planners and policy makers effectively provide for basic public goods and services in these contexts?Classification of places

  8. Mapping urban environmental noise: a land use regression method.

    PubMed

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  9. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability.

    PubMed

    Firmansyah, I; Spiller, M; de Ruijter, F J; Carsjens, G J; Zeeman, G

    2017-01-01

    Nitrogen (N) and phosphorus (P) are two essential macronutrients required in agricultural production. The major share of this production relies on chemical fertilizer that requires energy and relies on limited resources (P). Since these nutrients are lost to the environment, there is a need to shift from this linear urban metabolism to a circular metabolism in which N and P from domestic waste and wastewater are reused in agriculture. A first step to facilitate a transition to more circular urban N and P management is to understand the flows of these resources in a coupled urban-agricultural system. For the first time this paper presents a Substance Flow Analysis (SFA) approach for the assessment of the coupled agricultural and urban systems under limited data availability in a small island. The developed SFA approach is used to identify intervention points that can provide N and P stocks for agricultural production. The island of St. Eustatius, a small island in the Caribbean, was used as a case study. The model developed in this study consists of eight sub-systems: agricultural and natural lands, urban lands, crop production, animal production, market, household consumption, soakage pit and open-dump landfill. A total of 26 flows were identified and quantified for a period of one year (2013). The results showed that the agricultural system is a significant source for N and P loss because of erosion/run-off and leaching. Moreover, urban sanitation systems contribute to deterioration of the island's ecosystem through N and P losses from domestic waste and wastewater by leaching and atmospheric emission. Proposed interventions are the treatment of blackwater and greywater for the recovery of N and P. In conclusion, this study allows for identification of potential N and P losses and proposes mitigation measures to improve nutrient management in a small island context.

  10. a Study of Urban Intensive Land Evaluating System

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Gu, J.; Chen, X.; You, Y.; Tang, Q.

    2012-07-01

    The contradiction of land supply and demand is becoming increasingly prominent in China. The increasing efficiency of land use is an important means to resolve the conflict. We propose a scientific approach for promoting the urban intensive land use. In this paper, an evaluation system of urban intensive land use is programmed. It is designed to change the manual way of collecting index data and building index system to a dynamical way. The system improves the efficiency and accuracy of the evaluation of urban intensive land use. It achieves intensive evaluation on three scales: macro-level, medium-level and micro-level. We build two data extraction methods. One is XML-based meta-data exchange method that obtains index data from the cadastral database. Another is data monitoring method that writes the index data to the evaluation database at real time. Database technologies are used to calculate index values and build index systems dynamically. GIS technologies are use to achieve three scales evaluation of urban intensive land use.

  11. Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Soule, James M.; Fitch, Harold R.

    1974-01-01

    An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.

  12. Bidecadal Urban Land Cover and Ecosystem Service Changes in the Three Urbanized Regions

    NASA Astrophysics Data System (ADS)

    Haas, Jan; Ban, Yifang

    2013-01-01

    In the past 20 years, China has experienced rapid urbanization as a consequence of economic reforms and population growth. Urbanization is still proceeding at staggering speed. Therefore, the development of effective analytical methods to monitor the unprecedented growth of Chinese cities and the resulting environmental impacts are crucial for urban planning and sustainable development. The overall objective of this research is to investigate urban land cover change between 1990 and 2010 and the resulting effects upon ecosystem services by analysis of multitemporal Landsat 5 and HJ1-A/B images in three highly urbanized regions.

  13. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS... Must agricultural land be managed in accordance with a tribe's agricultural resource management plan... and objectives in any agricultural resource management plan developed by the tribe, or by us in...

  14. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and comply with tribal laws regulating activities on Indian agricultural land, including tribal laws relating to... primarily responsible for enforcing tribal laws pertaining to Indian agricultural land, we will: (1)...

  15. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  16. Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use

    NASA Astrophysics Data System (ADS)

    Steinbuks, J.; Hertel, T. W.

    2011-12-01

    The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the

  17. 25 CFR 162.231 - How can the land be used under an agricultural lease?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How can the land be used under an agricultural lease? 162... AND PERMITS Agricultural Leases Lease Requirements § 162.231 How can the land be used under an agricultural lease? (a) An agricultural lease must describe the authorized uses of the leased premises. Any...

  18. 25 CFR 162.231 - How can the land be used under an agricultural lease?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How can the land be used under an agricultural lease? 162... AND PERMITS Agricultural Leases Lease Requirements § 162.231 How can the land be used under an agricultural lease? (a) An agricultural lease must describe the authorized uses of the leased premises. Any...

  19. 25 CFR 162.231 - How can the land be used under an agricultural lease?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How can the land be used under an agricultural lease? 162... AND PERMITS Agricultural Leases Lease Requirements § 162.231 How can the land be used under an agricultural lease? (a) An agricultural lease must describe the authorized uses of the leased premises. Any...

  20. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes,...

  1. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes,...

  2. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2010-11-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  3. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2009-09-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  4. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  5. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts.

  6. [Ecological design of ditches in agricultural land consolidation: a review].

    PubMed

    Ye, Yan-mei; Wu, Ci-fang; Yu, Jing

    2011-07-01

    Agricultural land consolidation is a strong disturbance to farmland ecosystem. In traditional agricultural land consolidation, the main technical and economic indices for the design of ditches include the convenience for production and transportation, the allocation of water resources, and the improvement of water utilization, but short of ecological consideration, which has already affected the spread of agricultural species, caused the degradation of bio-habitat, and given obvious negative effects on the bio-competition mechanism, buffering and compensation capacity, and insect pests-resistance of farmland ecosystem. This paper summarized the functions of ecological ditches, and introduced the recent progress on the formations and construction designs of ecological ditches, tests of ecological engineering methods, and technologies and methods of choosing correct ecological materials. It was suggested that the future research should focus on the different functional requirements and specifications for different roads and ditches, and the characteristics and habitats of all the organisms and animals should be considered by the designers and constructors. Moreover, a comprehensive design which meets the ecological demands for the ditches' formations, structures, and regulatory sizes should be taken into account to solve the most of the problems listed above.

  7. Land-use suitability analysis for urban development in Beijing.

    PubMed

    Liu, Renzhi; Zhang, Ke; Zhang, Zhijiao; Borthwick, Alistair G L

    2014-12-01

    Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing.

  8. Spatial and temporal predictions of agricultural land prices using DSM techniques.

    NASA Astrophysics Data System (ADS)

    Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.

    2009-04-01

    Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population

  9. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds.

  10. Land atmosphere interactions in a rapidly urbanizing environment

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Emmi, P. C.; Forster, C. B.; Klewicki, J. C.; Peterson, T. R.

    2003-12-01

    The majority of greenhouse gases and other atmospheric pollutants originate in cities, yet the interactions between human activities, vegetation, and the atmosphere are poorly understood in urbanizing environments. The Urban Trace-gas Emissions Study (UTES) in the Salt Lake Valley is a multidisciplinary study of the interactions between land cover types and atmospheric processes in a rapidly urbanizing, semi-arid ecosystem. Our goal is to: 1) determine the major local sources of trace gases and quantify their temporal and spatial variability in a variety of land cover types; 2) study the underlying and interacting social-environmental processes controlling emissions and concentrations of pollutants, and 3) use a collaborative process with decision-makers to evaluate scenarios for managing air quality and greenhouse gas emissions as the population of the valley rapidly increases. Our major emphasis is on carbon dioxide, water vapor, and volatile organic compounds (VOC's), all of which influence climate and air quality, and have both anthropogenic and biogenic components. Here we report preliminary results from a pilot study combining measurements of eddy covariance, CO2 concentrations and isotopes, aerosols, VOC's, meteorology, traffic flow, and natural gas combustion in a residential neighborhood. Natural gas usage was fairly constant during the study, which was conducted in the winter, while traffic flow had the characteristic rush hour diurnal pattern. Source identification of CO2 concentrations with stable isotopes showed that only 60% of CO2 sources were attributable to traffic emissions, with the remainder attributed to residential natural gas combustion. Diurnal pollutant concentrations were strongly influenced by local scale near-slope flow patterns, while on a longer scale daily patterns were determined by meso-scale climatic conditions such as the build-up and mix-out of atmospheric inversions. These results showed that an understanding of patterns and

  11. Spatial Variations in the Relationships between Land Use and Water Quality across an Urbanization Gradient in the Watersheds of Northern Georgia, USA

    NASA Astrophysics Data System (ADS)

    Tu, Jun

    2013-01-01

    A spatial statistical technique, Geographically Weighted Regression (GWR) is applied to study the spatial variations in the relationships between four land use indicators, including percentages of urban land, forest, agricultural land, and wetland, and eight water quality indicators including specific conductance (SC), dissolved oxygen, dissolved nutrients, and dissolved organic carbon, in the watersheds of northern Georgia, USA. The results show that GWR has better model performance than ordinary least squares regression (OLS) to analyze the relationships between land use and water quality. There are great spatial variations in the relationships affected by the urbanization level of watersheds. The relationships between urban land and SC are stronger in less-urbanized watersheds, while those between urban land and dissolved nutrients are stronger in highly-urbanized watersheds. Percentage of forest is an indicator of good water quality. Agricultural land is usually associated with good water quality in highly-urbanized watersheds, but might be related to water pollution in less-urbanized watersheds. This study confirms the results obtained from a similar study in eastern Massachusetts, and so suggest that GWR technique is a very useful tool in water environmental research and also has the potential to be applied to other fields of environmental studies and management in other regions.

  12. Land Recycling: from Science to Practice - A Sustainable Development of Urban Areas

    NASA Astrophysics Data System (ADS)

    Romanowicz, A.

    2015-12-01

    Member States (MS) of the European Union have experience significant urban sprawl in the last 3 decades. The urban sprawl was driven mainly by internal (MS or EU) or external migration but also by EU policies (including funds and projects) and by changes in life style (e.g. moving away from cities; second homes). This presentation will aim at showing a number of EU wide analysis on: aging population, depopulation of some of the EU regions; agricultural production and scenarios projections of thereof. Various EU funded projects and programs have analyzed ways how future cities and how EU future land use could developed. Number of those solutions where further investigated with case studies/small scale implementations. However, in recent years the 2012 EU road map to resource efficiency and UN Sustainable Development Goals have called respectively for 'no net land take by 2050' and land neutrality. Thus, the process of implementing innovative solutions for land use has started and some of the cities and regions are well ahead in moving towards XXI century society. In order to streamline/share knowledge and steer EU wide discussion on this the European Commission in its road map to resource efficiency announced a Communication on land as a resource. This presentation will attempt to synthesize current discussion on the topic of 'land as a resource' and include examples of implemented innovative solutions for aging population, land recycling for urban developments and green spaces within the current EU policy context. Finally, some appreciation of the adopted UN Sustainable Development Goals regarding land and soil from the EU perspective will be given.

  13. Analysis of Agricultural Land Use Change in the Middle Reach of the Heihe River Basin, Northwest China

    PubMed Central

    Fu, Li; Zhang, Lanhui; He, Chansheng

    2014-01-01

    The Heihe River Basin (HRB) is the second largest inland river basin in arid Northwest China. The expanding agricultural irrigation, growing industrialization, and increasing urban development in the middle reach have depleted much of the river flow to the lower reach, degrading the corresponding ecosystems. Since the enactment of the State Council of China’s new HRB water allocation policy in 2000 tremendous land use and land cover (LULC) changes have taken place to reduce water consumption in the middle reach and deliver more water downstream. This paper analyzes LULC changes during the period of 2000–2009 to understand how the changing land use patterns have altered water resource dynamics in the region. Results, while yet to be further verified in the field, show that from 2000 to 2009, urban, agricultural land, rangeland, and forest areas have increased, and barren area has decreased. Within the cropland, rice (a high water consumption crop) planting area decreased, while corn and wheat (relatively lower water consumption crops) planting areas increased. These changes in land use patterns, especially in the agricultural zones, have ensured the discharge of the required amount of water to the lower reach. PMID:24599043

  14. African land ecology: opportunities and constraints for agricultural development.

    PubMed

    Voortman, Roelf L; Sonneveld, Ben G J S; Keyzer, Michiel A

    2003-08-01

    Compared to other continents, the economic growth performance of Sub-Saharan Africa has been poor over the last four decades. Likewise, progress in agricultural development has been limited and the Green Revolution left Africa almost untouched. The question raised in the literature is whether the poor performance is a question of poor policies or of an unfavorable biophysical environment (policy versus destiny). This paper, with a broad perspective, analyzes adaptation of current land use to environmental conditions in Africa and compares the physical resource base of Africa with Asia. In doing so, we search for unifying principles that can have operational consequences for agricultural development. We argue that some specificities of the natural resource base, namely local homogeneity and spatial diversity of the predominant Basement Complex soils, imply that simple fertilizer strategies may not produce the yield increases obtained elsewhere.

  15. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.

    PubMed

    Qin, Zhangcai; Zhuang, Qianlai; Zhu, Xudong; Cai, Ximing; Zhang, Xiao

    2011-12-15

    Using marginal agricultural lands to grow energy crops for biofuel feedstocks is a promising option to meet the biofuel needs in populous China without causing further food shortages or environmental problems. Here we quantify the effects of growing switchgrass and Miscanthus on Chinese marginal agricultural lands on biomass production and carbon emissions with a global-scale biogeochemical model. We find that the national net primary production (NPP) of these two biofuel crops are 622 and 1546 g C m(-2) yr(-1), respectively, whereas the NPP of food crops is about 600 g C m(-2) yr(-1) in China. The net carbon sink over the 47 Mha of marginal agricultural lands across China is 2.1 Tg C yr(-1) for switchgrass and 5.0 Tg C yr(-1) for Miscanthus. Soil organic carbon is estimated to be 10 kg C m(-2) in both biofuel ecosystems, which is equal to the soil carbon levels of grasslands in China. In order to reach the goal of 12.5 billion liters of bioethanol in 2020 using crop biomass as biofuel feedstocks, 7.9-8.0 Mha corn grain, 4.3-6.1 Mha switchgrass, or 1.4-2.0 Mha Miscanthus will be needed. Miscanthus has tremendous potential to meet future biofuel needs, and to benefit CO(2) mitigation in China.

  16. Urban land expansion in Quanzhou City, China, 1995-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With its phenomenal development in recent decades, urbanization in China has been covered in a large number of studies. These studies have focused on large cities, with smaller and lesser known cities largely overlooked. This study analyzed the spatiotemporal changes of land use in Quanzhou, a histo...

  17. Urban Property Taxation: II. Land and Location. Exchange Bibliography 480.

    ERIC Educational Resources Information Center

    White, Anthony G.

    This is one of three related bibliographies listing publications dealing with the broad topic of property taxation. This particular volume concerns some specialized fields of study, including locational theory, land use and taxation, property markets and valuation, housing, and urban renewal and redevelopment. Citations are listed alphabetically…

  18. [Dynamics of land use landscape pattern in Hangzhou City during its rapid urbanization].

    PubMed

    Deng, Jin-Song; Li, Jun; Yu, Liang; Wang, Ke

    2008-09-01

    Based on the multi-temporal SPOT images of Hangzhou City in 1996, 2000, 2003, and 2006, a method combining Principal Component Analysis (PCA) and hybrid classifier was adopted to accurately extract the land use change information. Meantime, the dynamics and characteristics of landscape pattern change were analyzed by using landscape indexes. The results showed that from 1996 to 2006, the rapid urbanization in Hangzhou induced a tremendous conversion of landscape pattern. Owing to the anthropogenic disturbance, the agricultural landscape was gradually replaced by man-made landscape, and the dynamics of the landscape pattern in Hangzhou exhibited complexity and diversity. Cropland landscape was impacted most seriously, being encroached at large scale; orchard landscape suffered from slight impact due to its small occupation in the landscape; forest landscape was insensitive to the impact due to its aggregated distribution; while water landscape was impacted greatly but exhibited slight fragmentation. Urban land landscape was the one undergone the biggest and quickest change.

  19. Agricultural Development, Land Change, and Livelihoods in Tanzania's Kilombero Valley

    NASA Astrophysics Data System (ADS)

    Connors, John Patrick

    The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security. This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania's Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security. The results of household survey reveal no difference or lower food security among households that diversify their

  20. Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada.

    PubMed

    Voicu, Mihai F; Shaw, Cindy; Kurz, Werner A; Huffman, Ted; Liu, Jiangui; Fellows, Max

    2017-02-21

    The 2015 Paris Agreement reinforces the importance of the land sector and its contribution to greenhouse gas (GHG) reductions. Thus, there is growing interest in improving estimates of the GHG balance in response to land-use changes (LUCs) involving agriculture and forestry, for national-scale reporting, and for carbon (C) offsets. Large agricultural areas in Europe, Russia and North America are reverting to forest, either naturally or through planting, after abandonment of agricultural land, and this trend may have a substantial impact on carbon budgets. We report results of a pilot project in the Mixedwood Plains ecozone of eastern Canada to analyze the change in the C budget on a landscape over 15 years on abandoned cropland where woody vegetation is regenerating. Thirty-six plots (2 km × 2 km) with paired aerial photographs taken circa 1994 and circa 2008 at a scale of 1:10,000 or larger were randomly selected from the 20 km × 20 km National Forest Inventory (NFI) grid. A spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) was used to estimate impacts of LUC on C stocks and fluxes. Polygons identifying areas of LUC within each photo plot were delineated, classified, and evaluated to provide input data for the model. The rate of C accumulation in our study area was found to be relatively constant over the entire simulation period, at 1.07 Mg C/ha/yr. Abandoned agricultural land reverting to woody lands could play an important role in regional and national C sequestration in Canada, but more research is required to quantify the areal extent of this LUC.

  1. Urban and regional land use analysis: CARETS and Census Cities experiment package

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Milazzo, V. A.

    1973-01-01

    The author has identified the following significant results. Areas of post 1970 and 1972 land use changes were identified solely from the Skylab imagery from comparisons with 1970 land use maps. Most land use changes identified involved transition from agriculture to single family residential land use. The second most prominent changes identified from the Skylab imagery were areas presently under construction. Post 1970 changes from Skylab were compared with the 1972 changes noted from the high altitude photographs. A good correlation existed between the change polygons mapped from Skylab and those mapped from the 1972 high altitude aerial photos. In addition, there were a number of instances where additional built-up land use not noted in the 1972 aerial photo as being developed were identified on the Skylab imagery. While these cases have not been documented by field observation, by correlating these areas with the appearance of similar land use areas whose identity has been determined, we can safely say that we have been able to map further occurrences of land use change beyond existing high altitude photo coverage from the Skylab imagery. It was concluded that Skylab data can be used to detect areas of land use change within an urban setting.

  2. Hydrology for urban land planning--A guidebook on the hydrologic effects of urban land use

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1968-01-01

    The application of current knowledge of the hydrologic effects of urbanization to the Brandywine should be viewed as a forecast of conditions which may be expected as urbanization proceeds. By making such forecasts in advance of actual urban development, the methods can be tested, data can be extended, and procedures improved as verification becomes possible.

  3. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  4. Reducing pollution in agriculture land, agroforestry and Common Agrarian Policy

    NASA Astrophysics Data System (ADS)

    Rosa Mosquera Losada, Maria; Santiago-Freijanes, José Javier; Ferreiro-Domínguez, Nuria; Rois, Mercedes; Rigueiro-Rodríguez, Antonio

    2015-04-01

    Reducing non-point source pollution in Europe is a key activity for the European institutions and citizens. Ensuring high quality food supply while environment is sustainable managed is a highly relevant in the European agriculture. New CAP tries to promote sustainability with the greening measures in Pillar I (EU payments) and Pillar II (EU-Country cofinanced payments). The star component of the Pillar I is the greening. The greening includes three types of activities related to crop rotation, maintenance of permanent pasture and the promotion of Ecological Focus Areas (EFA). Greening practices are compulsory in arable lands when they are placed in regions with low proportion of forests and when the owner has large farms. Among the EFA, there are several options that include agroforestry practices like landscape features, buffer strips, agroforestry, strips of eligible hectares along forest edges, areas with short rotation coppice. These practices promote biodiversity and the inclusion of woody vegetation that is able to increase the uptake of the excess of nutrients like N or P. USA Agriculture Department has also recognize the importance of woody vegetation around the arable lands to reduce nutrient pollution and promote biodiversity.

  5. Development and application of fuzzy indicator for assessment of agricultural land resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  6. Incorporating agricultural land cover in conceptual rainfall runoff models

    NASA Astrophysics Data System (ADS)

    Euser, Tanja; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert

    2015-04-01

    Incorporating spatially variable information is a frequently discussed option to increase the performance of (semi) distributed conceptual rainfall runoff models. One of the methods to do this is by using these spatially variable information to delineate Hydrological Response Units (HRUs) within a catchment. This study tests whether the incorporation of an additional agricultural HRU in a conceptual hydrological model can better reflect the spatial differences in runoff generation and therefore improve the simulation of the wetting phase in autumn. The study area is the meso-scale Ourthe catchment in Belgium. A previous study in this area showed that spatial patterns in runoff generation were already better represented by incorporation of a wetland and a hillslope HRU, compared to a lumped model structure. The influences which are considered by including an agriculture HRU are increased drainage speed due to roads, plough pans and increased infiltration excess overland flow (drainage pipes area only limited present), and variable vegetation patterns due to sowing and harvesting. In addition, the vegetation is not modelled as a static resistance towards evaporation, but the Jarvis stress functions are used to increase the realism of the modelled transpiration; in land-surface models the Jarvis stress functions are already often used for modelling transpiration. The results show that an agricultural conceptualisation in addition to wetland and hillslope conceptualisations leads to small improvements in the modelled discharge. However, the influence is larger on the representation of spatial patterns and the modelled contributions of different HRUs to the total discharge.

  7. 76 FR 18581 - Correction; Central Valley Project Improvement Act, Standard Criteria for Agricultural and Urban...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Agricultural and Urban Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of... Urban Water Management Plans. In the SUPPLEMENTARY INFORMATION section, the Web site in which to...

  8. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  9. Land Use and Land Cover Change Modeling Using Remote Sensing and Soft Computing Approach to Assess Sugarcane Expansion Impacts in Tropical Agriculture

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Victoria, D.; Zullo, J., Jr.; Gomes, D.; Bayma-Silva, G.

    2014-12-01

    Agriculture is related with land-use/cover changes (LUCC) over large areas and, in recent years, increase in demand of ethanol fuel has been influence in expansion of areas occupied with corn and sugar cane, raw material for ethanol production. Nevertheless, there´s a concern regarding the impacts on food security, such as, decrease in areas planted with food crops. Considering that the LUCC is highly dynamic, the use of Remote Sensing is a tool for monitoring changes quickly and precisely in order to provide information for agricultural planning. In this work, Remote Sensing techniques were used to monitor the LUCC occurred in municipalities of São Paulo state- Brazil related with sugarcane crops expansion in order to (i) evaluate and quantify the previous land cover in areas of sugarcane crop expansion, and (ii) provide information to elaborate a future land cover scenario based on Self Organizing Map (SOM) approach. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey. The Landsat images were then segmented into homogeneous objects, with represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. The segmentation procedure resulted in polygons over the three time periods along twenty years (1990-2010). The land cover for each object was visually identified, based on its shape, texture and spectral characteristics. Land cover types considered were: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. SOM technique was used to estimate the values for the future land cover scenarios for the selected municipalities, using the information of land change provided by the remote sensing and data from official sources.

  10. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Song, Jiyun; Wang, Zhi-Hua

    2015-03-01

    We couple a single column model (SCM) to a cutting-edge single-layer urban canopy model (SLUCM) with realistic representation of urban hydrological processes. The land-surface transport of energy and moisture parametrized by the SLUCM provides lower boundary conditions to the overlying atmosphere. The coupled SLUCM-SCM model is tested against field measurements of sensible and latent heat fluxes in the surface layer, as well as vertical profiles of temperature and humidity in the mixed layer under convective conditions. The model is then used to simulate urban land-atmosphere interactions by changing urban geometry, surface albedo, vegetation fraction and aerodynamic roughness. Results show that changes of landscape characteristics have a significant impact on the growth of the boundary layer as well as on the distributions of temperature and humidity in the mixed layer. Overall, the proposed numerical framework provides a useful stand-alone modelling tool, with which the impact of urban land-surface conditions on the local hydrometeorology can be assessed via land-atmosphere interactions.

  11. EnviroAtlas -- Fresno, California -- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Fresno, CA EnviroAtlas One-Meter-scale Urban Land Cover Data were generated via supervised classification of combined aerial photography and LiDAR data. The air photos were United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1-m spatial resolution. Aerial photography ('imagery') was collected on multiple dates in summer 2010. Seven land cover classes were mapped: Water, impervious surfaces (Impervious), soil and barren (Soil), trees and forest (Tree), and grass and herbaceous non-woody vegetation (Grass), agriculture (Ag), and Orchards. An accuracy assessment of 500 completely random and 103 stratified random points yielded an overall User's fuzzy accuracy of 81.1 percent (see below). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Fresno, CA plus a 1-km buffer. Where imagery was available, additional areas outside the 1-km boundary were also mapped but not included in the accuracy assessment. We expect the accuracy of the areas outside of the 1-km boundary to be consistent with those within. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with

  12. EnviroAtlas -- Fresno, California -- One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The Fresno, CA EnviroAtlas One-Meter-scale Urban Land Cover Data were generated via supervised classification of combined aerial photography and LiDAR data. The air photos were United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1-m spatial resolution. Aerial photography ('imagery') was collected on multiple dates in summer 2010. Seven land cover classes were mapped: Water, impervious surfaces (Impervious), soil and barren (Soil), trees and forest (Tree), and grass and herbaceous non-woody vegetation (Grass), agriculture (Ag), and Orchards. An accuracy assessment of 500 completely random and 103 stratified random points yielded an overall User's fuzzy accuracy of 81.1 percent (see below). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Fresno, CA plus a 1-km buffer. Where imagery was available, additional areas outside the 1-km boundary were also mapped but not included in the accuracy assessment. We expect the accuracy of the areas outside of the 1-km boundary to be consistent with those within. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The da

  13. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization.

    PubMed

    Ozsoy, Gokhan; Aksoy, Ertugrul

    2015-07-01

    This paper integrates the Revised Universal Soil Loss Equation (RUSLE) with a GIS model to investigate the spatial distribution of annual soil loss and identify areas of soil erosion risk in the Uluabat sub-watershed, an important agricultural site in Bursa Province, Turkey. The total soil loss from water erosion was 473,274 Mg year(-1). Accordingly, 60.3% of the surveyed area was classified into a very low erosion risk class while 25.7% was found to be in high and severe erosion risk classes. Soil loss had a close relationship with land use and topography. The most severe erosion risk typically occurs on ridges and steep slopes where agriculture, degraded forest, and shrubs are the main land uses and cover types. Another goal of this study was to use GIS to reveal the multi-year urbanization status caused by rapid urbanization that constitutes another soil erosion risk in this area. Urbanization has increased by 57.7% and the most areal change was determined in class I lands at a rate of 80% over 25 years. Urbanization was identified as one of the causes of excessive soil loss in the study area.

  14. Classifying Urban Land Covers Using Local Indices of Spatial Complexity

    NASA Technical Reports Server (NTRS)

    Arumugam, Mahesh; Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    2003-01-01

    The skewed statistical distributions of land cover types in complex, heterogeneous urban areas limits the effectiveness of traditional spectrally based maximum-likelihood classifiers. This work examines the utility of fractal dimension and Moran's I index of spatial autocorrelation in segmenting high-resolution panchromatic and lower-resolution multispectral imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze multi-temporal and multi-platform imagery of Atlanta, Georgia. In this example, land cover change trajectories from forest or grassland to built up land covers lead to decreased spatial autocorrelation. In lower resolution imagery such as Landsat MSS, the complex details of forested land covers and urbanized areas are smoothed, and texture-based change detection is less effective. Although segmentation of panchromatic images is possible using fractal dimension or Moran's I, widely differing land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification.

  15. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use

    USGS Publications Warehouse

    Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L.

    2009-01-01

    Detailed urban land use data are important to government officials, researchers, and businesspeople for a variety of purposes. This article presents an approach to classifying detailed urban land use based on geometrical, textural, and contextual information of land parcels. An area of 6 by 14 km in Austin, Texas, with land parcel boundaries delineated by the Travis Central Appraisal District of Travis County, Texas, is tested for the approach. We derive fifty parcel attributes from relevant geographic information system (GIS) and remote sensing data and use them to discriminate among nine urban land uses: single family, multifamily, commercial, office, industrial, civic, open space, transportation, and undeveloped. Half of the 33,025 parcels in the study area are used as training data for land use classification and the other half are used as testing data for accuracy assessment. The best result with a decision tree classification algorithm has an overall accuracy of 96 percent and a kappa coefficient of 0.78, and two naive, baseline models based on the majority rule and the spatial autocorrelation rule have overall accuracy of 89 percent and 79 percent, respectively. The algorithm is relatively good at classifying single-family, multifamily, commercial, open space, and undeveloped land uses and relatively poor at classifying office, industrial, civic, and transportation land uses. The most important attributes for land use classification are the geometrical attributes, particularly those related to building areas. Next are the contextual attributes, particularly those relevant to the spatial relationship between buildings, then the textural attributes, particularly the semivariance texture statistic from 0.61-m resolution images.

  16. Improving the representation of agricultural management in land surface models

    NASA Astrophysics Data System (ADS)

    Sacks, William J.

    To gain a better understanding of processes affecting crop yield, as well as two-way feedbacks between agricultural management and climate, a number of groups have recently incorporated croplands into regional and global land surface models. However, many aspects of agricultural management are still treated in a rudimentary way in these models. For my doctoral research, I have aimed to improve the representation of two key agricultural processes in land surface models: crop phenology and irrigation. In addition, I have investigated the effects of these processes on both crop yields and climate. First, I assembled a dataset of global crop planting and harvesting dates for nineteen crops. I also investigated climatic and non-climatic factors that drive planting date decisions around the world. Second, I investigated trends and variability in crop planting dates and development progress across the U.S. I showed a trend to earlier planting of corn and soybeans, along with a trend to a longer crop growth period, and particularly a lengthening reproductive period in corn. In addition, I showed that growing degree days are a good predictor of the length of the vegetative period in corn, but less so for the reproductive period. Third, I used these observed trends along with the Agro-IBIS model to explore the implications of changes in crop phenology for both crop yields and fluxes of water and energy. I estimated that the trend to longer-season corn cultivars over the last three decades can account for 26% of the observed yield trend in the U.S. In addition, I found that earlier planting and longer-season cultivars shift the seasonality of water and energy fluxes, and have a small effect on annual-average fluxes. Finally, I investigated the effects of irrigation on climate, finding that this effect is significant in some large regions of the globe. Although the global-average temperature change was small, the large regional changes are important for both crop yields and

  17. Simulating future trends in urban stormwater quality for changing climate, urban land use and environmental controls.

    PubMed

    Borris, Matthias; Viklander, Maria; Gustafsson, Anna-Maria; Marsalek, Jiri

    2013-01-01

    The effects of climatic changes, progressing urbanization and improved environmental controls on the simulated urban stormwater quality in a northern Sweden community were studied. Future scenarios accounting for those changes were developed and their effects simulated with the Storm Water Management Model (SWMM). It was observed that the simulated stormwater quality was highly sensitive to the scenarios, mimicking progressing urbanization with varying catchment imperviousness and area. Thus, land use change was identified as one of the most influential factors and in some scenarios, urban growth caused changes in runoff quantity and quality exceeding those caused by a changing climate. Adaptation measures, including the reduction of directly connected impervious surfaces (DCIS) through the integration of more green spaces into the urban landscape, or disconnection of DCIS were effective in reducing runoff volume and pollutant loads. Furthermore, pollutant source control measures, including material substitution, were effective in reducing pollutant loads and significantly improving stormwater quality.

  18. Vivid valleys, pallid peaks? Hypsometric variations and rural-urban land change in the Central Peruvian Andes.

    PubMed

    Haller, Andreas

    2012-11-01

    What happens to the land cover within the hinterland's altitudinal belts while Central Andean cities are undergoing globalization and urban restructuring? What conclusions can be drawn about changes in human land use? By incorporating a regional altitudinal zonation model, direct field observations and GIS analyses of remotely sensed long term data, the present study examines these questions using the example of Huancayo Metropolitano - an emerging Peruvian mountain city of 420,000 inhabitants, situated at 3260 m asl in the Mantaro Valley. The study's results indicate that rapid urban growth during the late 1980s and early 1990s was followed by the agricultural intensification and peri-urban condominization at the valley floor (quechua) - since the beginning of Peru's neoliberal era. Moreover, regarding the adjoining steep slopes (suni) and subsequent grassland ecosystems (puna), the research output presents land cover change trajectories that clearly show an expansion of human land use, such as reforestation for wood production and range burning for livestock grazing, even at high altitudes - despite rural-urban migration trends and contrary to several results of extra-Andean studies. Consequently, rural-urban planners and policy makers are challenged to focus on the manifold impacts of globalization on human land use - at all altitudinal belts of the Andean city's hinterland: toward sustainable mountain development that bridges the social and physical gaps - from the bottom up.

  19. Monitoring urban growth and detection of land use with GIS and remote sensing: a case study of the Kyrenia region

    NASA Astrophysics Data System (ADS)

    Kara, Can; Akçit, Nuhcan

    2016-08-01

    Land-cover change is considered one of the central components in current strategies for managing natural resources and monitoring environmental changes. It is important to manage land resources in a sustainable manner which targets at compacting and consolidating urban development. From 2005 to 2015,urban growth in Kyrenia has been quite dramatic, showing a wide and scattered pattern, lacking proper plan. As a result of this unplanned/unorganized expansion, agricultural areas, vegetation and water bodies have been lost in the region. Therefore, it has become a necessity to analyze the results of this urban growth and compare the losses between land-cover changes. With this goal in mind, a case study of Kyrenia region has been carried out using a supervised image classification method and Landsat TM images acquired in 2005 and 2015 to map and extract land-cover changes. This paper tries to assess urban-growth changes detected in the region by using Remote Sensing and GIS. The study monitors the changes between different land cover types. Also, it shows the urban occupation of primary soil loss and the losses in forest areas, open areas, etc.

  20. Vivid valleys, pallid peaks? Hypsometric variations and rural–urban land change in the Central Peruvian Andes

    PubMed Central

    Haller, Andreas

    2012-01-01

    What happens to the land cover within the hinterland's altitudinal belts while Central Andean cities are undergoing globalization and urban restructuring? What conclusions can be drawn about changes in human land use? By incorporating a regional altitudinal zonation model, direct field observations and GIS analyses of remotely sensed long term data, the present study examines these questions using the example of Huancayo Metropolitano – an emerging Peruvian mountain city of 420,000 inhabitants, situated at 3260 m asl in the Mantaro Valley. The study's results indicate that rapid urban growth during the late 1980s and early 1990s was followed by the agricultural intensification and peri-urban condominization at the valley floor (quechua) – since the beginning of Peru's neoliberal era. Moreover, regarding the adjoining steep slopes (suni) and subsequent grassland ecosystems (puna), the research output presents land cover change trajectories that clearly show an expansion of human land use, such as reforestation for wood production and range burning for livestock grazing, even at high altitudes – despite rural–urban migration trends and contrary to several results of extra-Andean studies. Consequently, rural–urban planners and policy makers are challenged to focus on the manifold impacts of globalization on human land use – at all altitudinal belts of the Andean city's hinterland: toward sustainable mountain development that bridges the social and physical gaps – from the bottom up. PMID:23564987

  1. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  2. Urbanization, land tenure security and vector-borne Chagas disease

    PubMed Central

    Levy, Michael Z.; Barbu, Corentin M.; Castillo-Neyra, Ricardo; Quispe-Machaca, Victor R.; Ancca-Juarez, Jenny; Escalante-Mejia, Patricia; Borrini-Mayori, Katty; Niemierko, Malwina; Mabud, Tarub S.; Behrman, Jere R.; Naquira-Velarde, Cesar

    2014-01-01

    Modern cities represent one of the fastest growing ecosystems on the planet. Urbanization occurs in stages; each stage characterized by a distinct habitat that may be more or less susceptible to the establishment of disease vector populations and the transmission of vector-borne pathogens. We performed longitudinal entomological and epidemiological surveys in households along a 1900 × 125 m transect of Arequipa, Peru, a major city of nearly one million inhabitants, in which the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease, by the insect vector Triatoma infestans, is an ongoing problem. The transect spans a cline of urban development from established communities to land invasions. We find that the vector is tracking the development of the city, and the parasite, in turn, is tracking the dispersal of the vector. New urbanizations are free of vector infestation for decades. T. cruzi transmission is very recent and concentrated in more established communities. The increase in land tenure security during the course of urbanization, if not accompanied by reasonable and enforceable zoning codes, initiates an influx of construction materials, people and animals that creates fertile conditions for epidemics of some vector-borne diseases. PMID:24990681

  3. Urbanization, land tenure security and vector-borne Chagas disease.

    PubMed

    Levy, Michael Z; Barbu, Corentin M; Castillo-Neyra, Ricardo; Quispe-Machaca, Victor R; Ancca-Juarez, Jenny; Escalante-Mejia, Patricia; Borrini-Mayori, Katty; Niemierko, Malwina; Mabud, Tarub S; Behrman, Jere R; Naquira-Velarde, Cesar

    2014-08-22

    Modern cities represent one of the fastest growing ecosystems on the planet. Urbanization occurs in stages; each stage characterized by a distinct habitat that may be more or less susceptible to the establishment of disease vector populations and the transmission of vector-borne pathogens. We performed longitudinal entomological and epidemiological surveys in households along a 1900 × 125 m transect of Arequipa, Peru, a major city of nearly one million inhabitants, in which the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease, by the insect vector Triatoma infestans, is an ongoing problem. The transect spans a cline of urban development from established communities to land invasions. We find that the vector is tracking the development of the city, and the parasite, in turn, is tracking the dispersal of the vector. New urbanizations are free of vector infestation for decades. T. cruzi transmission is very recent and concentrated in more established communities. The increase in land tenure security during the course of urbanization, if not accompanied by reasonable and enforceable zoning codes, initiates an influx of construction materials, people and animals that creates fertile conditions for epidemics of some vector-borne diseases.

  4. Concentrations of potentially toxic metals in urban soils of seville: relationship with different land uses.

    PubMed

    Ruiz-Cortés, E; Reinoso, R; Díaz-Barrientos, E; Madrid, L

    2005-09-01

    Fifty-two samples of surface soils were taken in the urban area of Seville, to assess the possible influence of different land uses on their metal contents and their relationship with several soil properties. The samples corresponded to five categories or land uses: agricultural, parks, ornamental gardens, riverbanks, and roadsides. Sequential extraction of metal according to the procedure proposed by the former Community Bureau of Reference (BCR) was carried out, and pseudo-total (aqua regia soluble) metal contents were determined. Lower organic C, total N and available P and K contents were found in riverbank samples, probably due to the lack of manuring of those sites, left in a natural status. In contrast, significantly higher electrical conductivity was found in those sites, due to the tidal influence of the nearby Atlantic Ocean. Other land uses did not show significant differences in the general properties. Concentrations of Cu, Pb and Zn, both aqua-regia soluble and sequentially extracted, were clearly higher in soils from ornamental gardens, whereas the concentrations in the riverbank samples were slightly lower than the other categories. In contrast, other metals (Cd, Cr, Fe, Mn, Ni) were uniformly distributed throughout all land uses. A strong statistical association is found among the concentrations of Cu, Pb, Zn and organic C, suggesting that the larger contents of these metals in ornamental gardens are partly due to organic amendments added to those sites more frequently than to other kinds of sites. Considering the conclusions of previous studies, heavy traffic can also contribute to those ;urban' metals in urban soils. Periodic monitoring of the concentrations of urban metals in busy city centres and of the quality of amendments added to soils of recreational areas are recommended.

  5. Science and agriculture policy at Land-Grant Institutions.

    PubMed

    Westendorf, M L; Zimbelman, R G; Pray, C E

    1995-06-01

    United States Department of Agriculture (USDA) funding of science and education at Land-Grant College institutions is in transition. The traditional "science pipeline" model linking basic science funding with the application of technology is in question as some policymakers dispute the premise that non-directed science results in benefits to society. Historically, research at USDA and Land-Grant institutions is much more directed than that funded by the National Science Foundation (NSF), National Institutes of Health (NIH), or Department of Energy (DOE). Nevertheless, there are calls for change at the USDA as well. An approach that both the Congress and the Executive branch are taking seeks to direct research dollars according to predetermined goals. This is being emphasized in part due to budget pressures and may force the system to struggle maintaining funding in constant dollars. Deficit cutters are first considering cutting "earmarked grants" for research and facilities at USDA and Land Grant Institutions. Savings in these categories may help to support modest increases in formula funding and competitive grants. Earmarked grants for research and facilities at the Cooperative State Research Service (CSRS) for Fiscal Year 1993 were approximately 26% of total appropriations and distributed to well over 100 specific line items. This level has increased from approximately 15% of CSRS appropriations in 1985. At the same time formula funding has remained static and competitive grants, although increasing, are below authorized levels. As state and federal budgets face pressure and as concerns from consumer and environmental groups are encountered, balancing the percentage of research dollars devoted to research intended to increase production efficiency and the percentage devoted to meeting concerns about food safety, pesticides, water quality, sustainability, animal welfare, and so on will be a challenge. Linking research priorities with producer and consumer needs

  6. Prime agricultural land monitoring and assessment component of the California Integrated Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Tinney, L. R. (Principal Investigator); Streich, T.

    1981-01-01

    The use of digital LANDSAT techniques for monitoring agricultural land use conversions was studied. Two study areas were investigated: one in Ventura County and the other in Fresno County (California). Ventura test site investigations included the use of three dates of LANDSAT data to improve classification performance beyond that previously obtained using single data techniques. The 9% improvement is considered highly significant. Also developed and demonstrated using Ventura County data is an automated cluster labeling procedure, considered a useful example of vertical data integration. Fresno County results for a single data LANDSAT classification paralleled those found in Ventura, demonstrating that the urban/rural fringe zone of most interest is a difficult environment to classify using LANDSAT data. A general raster to vector conversion program was developed to allow LANDSAT classification products to be transferred to an operational county level geographic information system in Fresno.

  7. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation.

    PubMed

    Durán, América P; Duffy, James P; Gaston, Kevin J

    2014-10-07

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation.

  8. Agriculture land suitability analysis evaluation based multi criteria and GIS approach

    NASA Astrophysics Data System (ADS)

    Bedawi Ahmed, Goma; Shariff, Abdul Rashid M.; Balasundram, Siva Kumar; Abdullah, Ahmad Fikri bin

    2016-06-01

    Land suitability evaluation (LSE) is a valuable tool for land use planning in major countries of the world as well as in Malaysia. However, previous LSE studies have been conducted with the use of biophysical and ecological datasets for the design of equally important socio-economic variables. Therefore, this research has been conducted at the sub national level to estimate suitable agricultural land for rubber crops in Seremban, Malaysia by application of physical variables in combination with widely employed biophysical and ecological variables. The objective of this study has been to provide an up-to date GIS-based agricultural land suitability evaluation (ALSE) for determining suitable agricultural land for Rubber crops in Malaysia. Biophysical and ecological factors were assumed to influence agricultural land use were assembled and the weights of their respective contributions to land suitability for agricultural uses were assessed using an analytic hierarchical process. The result of this study found Senawang, Mambau, Sandakan and Rantau as the most suitable areas for cultivating Rubber; whereas, Nilai and Labu are moderately suitable for growing rubber. Lenggeng, Mantin and Pantai are not suitable for growing rubber as the study foresaw potential environmental degradation of these locations from agricultural intensification. While this study could be useful in assessing the potential agricultural yields and potential environmental degradation in the study area, it could also help to estimate the potential conversion of agricultural land to non-agricultural uses.

  9. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  10. Curriculum Guidelines for a Distance Education Course in Urban Agriculture Based on an Eclectic Model.

    ERIC Educational Resources Information Center

    Gaum, Wilma G.; van Rooyen, Hugo G.

    1997-01-01

    Describes research to develop curriculum guidelines for a distance education course in urban agriculture. The course, designed to train the teacher, is based on an eclectic curriculum design model. The course is aimed at the socioeconomic empowerment of urban farmers and is based on sustainable ecological-agricultural principles, an…

  11. A combined remote sensing and modeling based approach to identify sustainable pathways for urban and peri-urban agriculture in China

    NASA Astrophysics Data System (ADS)

    Wattenbach, M.; Delgado, J. M.; Roessner, S.; Bochow, M.; Güntner, A.; Kropp, J.; Cantu Ros, A. G.; Hattermann, F.; Kolbe, T.; Sodoudi, S.; Cubasch, U. Ulrich; Zeitz, J.; Ross, L.; Böckel, K.; Fang, C.; Bo, L.; Pan, G.

    2012-04-01

    As the world's biggest economy, China is becoming the biggest consumer of resources globally. Given this trend, the over-proportional fast increase in urbanization presents China with fundamental problems. Among the most urgent ones is the increasing loss of agricultural land as urbanization takes place in the most productive regions along the coast. The latter is being responsible for a shift in agriculture production towards climatically less favorable areas. At the same time, the loss of green areas in and around growing cities is increasing the effect of the urban heat island. The perception of the potential risks related to this phenomenon, in the context of climate change, has led the Shanghai city administration to increase its urban-greening efforts, expanding the per capita area of green from 1m2 in 1990 to 12.5m2 in 2008. In this context, this paper aims at identifying the influence of urban and peri-urban agriculture (UPA) on the sustainability of the urban regions of Shanghai and Nanjing. In particular, it focuses on the effects of UPA on the greenhouse gas (GHG) emissions, soil nutrients and water balances, local climate and the structure and functions of the urbanized areas. We propose an interdisciplinary framework combining remote sensing, model simulations and GHG field observations and targeted at identifying "win-win" strategies for sustainable planning pathways showing high potentials for UPA. The framework is based on spatial scenario modeling, automatic classification of urban structure types and on a prototype of a high-quality spatial database consisting of a 3D city model. Dynamic boundary conditions for climate and urban development are provided by state of the art models. These approaches meet the needs of stakeholders and planners in China. A special emphasis is put on interdependencies between small holder farming in the urban and peri-urban zone and climate change adaptation and mitigation strategies focusing on improved management of

  12. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included.

  13. Land cover, land use, and climate change impacts on agriculture in southern Vietnam

    NASA Astrophysics Data System (ADS)

    Kontgis, Caitlin

    Global environmental change is rapidly changing the surface of the Earth in varied and irrevocable ways. Across the world, land cover and land use have been altered to accommodate the needs of expanding populations, and climate change has required plant, animal, and human communities to adapt to novel climates. These changes have created unprecedented new ecosystems that affect the planet in ways that are not fully understood and difficult to predict. Of utmost concern is food security, and whether agro-ecosystems will adapt and respond to widespread changes so that growing global populations can be sustained. To understand how one staple food crop, rice, responds to global environmental change in southern Vietnam, this dissertation aims to accomplish three main tasks: (1) quantify the rate and form of urban and peri-urban expansion onto cropland using satellite imagery and demographic data, (2) track changes to annual rice paddy harvests using time series satellite data, and (3) model the potential effects of climate change on rice paddies by incorporating farmer interview data into a crop systems model. The results of these analyses show that the footprint of Ho Chi Minh City grew nearly five times between 1990 and 2012. Mismatches between urban development and population growth suggest that peri-urbanization is driven by supply-side investment, and that much of this form of land expansion has occurred near major transit routes. In the nearby Mekong River Delta, triple-cropped rice paddy area doubled between 2000 and 2010, from one-third to two-thirds of rice fields, while paddy area expanded by about 10%. These results illustrate the intensification of farming practices since Vietnam liberalized its economy, yet it is not clear whether such practices are environmentally sustainable long-term. Although triple-cropped paddy fields have expanded, future overall production is estimated to decline without the effects of CO2 fertilization. Temperatures are anticipated

  14. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  15. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    PubMed

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  16. Urban agricultural activities and women's strategies in sustaining family livelihoods in Harare, Zimbabwe.

    PubMed

    Mudimu, G D

    1996-12-01

    This article examines the interplay of changes in urban environments, economic reforms and women's strategies in sustaining family livelihood through a case study based on the survey of off-plot urban cultivators in Harare, Zimbabwe. It also exemplifies the nature of gender-based conflicts arising from varying perceptions of the uses of open urban spaces. This article is organized into four sections. The first section briefly discusses some contemporary issues regarding urban agriculture in eastern and southern Africa. Specifically, it examines the role of women and the conflicts that arise over the use of urban spaces for agricultural activities from the perspective of women's struggle and strategies for sustaining family livelihood. The second section gives some background to urban agriculture in Harare, emphasizing the contribution of urban agriculture to women's strategies for maintaining household food and cash income security as a response to economic reforms and how this comes into conflict with Harare City Council's view. The third and fourth section discusses the results of the survey of urban agriculturists, illuminating how female participation in the activity has distinctive motivations and contributions to the household and the urban economy. Finally, the conclusion outlines the challenges to city planning in a tropical country faced with demand for agricultural use within the urban environment.

  17. Influences of different land use spatial control schemes on farmland conversion and urban development.

    PubMed

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management.

  18. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  19. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  20. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods

    SciTech Connect

    Kyle, G. Page; Luckow, Patrick; Calvin, Katherine V.; Emanuel, William R.; Nathan, Mayda; Zhou, Yuyu

    2011-12-12

    This report presents the data processing methods used in the GCAM 3.0 agriculture and land use component, starting from all source data used, and detailing all calculations and assumptions made in generating the model inputs. The report starts with a brief introduction to modeling of agriculture and land use in GCAM 3.0, and then provides documentation of the data and methods used for generating the base-year dataset and future scenario parameters assumed in the model input files. Specifically, the report addresses primary commodity production, secondary (animal) commodity production, disposition of commodities, land allocation, land carbon contents, and land values.

  1. Detecting residential land-use development at the urban fringe

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.; Toll, D. L.

    1982-01-01

    Problems associated with the use of Landsat multispectral scanner (MSS) imagery for the detection of urban growth and land use patterns are discussed. The presence of vegetation, either original or added between scanning periods, has been found to dramatically effect the range of signatures in a given area. Different land use developmental stages have been successfully identified by means of 1:50,000 scale panchromatic aerial photography, a resolution only considered possible by spaceborne instrumentation with the advent of the Landsat D satellite. Textural information generated through the grey-tone spatial-dependency matrix for the Landsat band 5 data is compared for different years and a change detection algorithm is described. It is found that the addition of vegetation during development after the removal of natural vegetation resulted in error of omission in the single band data, which must therefore only be used in concert with other data sources.

  2. Urban and agricultural pesticide inputs to a critical habitat for the threatened delta smelt (Hypomesus transpacificus).

    PubMed

    Weston, Donald P; Asbell, Aundrea M; Lesmeister, Sarah A; Teh, Swee J; Lydy, Michael J

    2014-04-01

    The Cache Slough complex is an area of tidal sloughs in the Sacramento-San Joaquin River Delta of California (USA), and is surrounding by irrigated agricultural lands. Among the species of concern in the area is the delta smelt (Hypomesus transpacificus), a federally listed threatened species. Releases of the organophosphate insecticide chlorpyrifos and pyrethroid insecticides were examined to determine whether they represented a threat to the copepods on which delta smelt feed (Eurytemora affinis and Pseudodiaptomus forbesi) and to aquatic life in general, represented by the standard testing organism, Hyalella azteca. There was a single incident of toxicity to H. azteca as a result of discharge of agricultural irrigation water containing chlorpyrifos. Pyrethroids were not found in samples collected during the dry season. Following rain events, however, the waters of western Cache Slough repeatedly became toxic to H. azteca because of the pyrethroids bifenthrin and cyhalothrin. The 96-h median lethal concentrations (LC50s) for E. affinis and P. forbesi for the pyrethroids bifenthrin and cyhalothrin were 16.7 ng/L to 19.4 ng/L when tested at 20 °C. However, their LC50s may be 5 mg/L to 10 ng/L at in situ temperatures of the Cache Slough, comparable to the peak bifenthrin concentration observed. The dominant pyrethroid source appeared to be urban runoff entering a creek 21 km upstream of Cache Slough. Pyrethroids of urban origin were supplemented by agricultural inputs of pyrethroids and chlorpyrifos as the creek flowed toward Cache Slough.

  3. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-

  4. EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011)

    EPA Pesticide Factsheets

    The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China.

    PubMed

    Wu, Yanyan; Li, Shuyuan; Yu, Shixiao

    2016-01-01

    There are widespread concerns about urban sprawl in China. In response, modeling and assessing urban expansion and subsequent land use and land cover (LULC) changes have become important approaches to support decisions about appropriate development and land resource use. Guangzhou, a major metropolitan city in South China, has experienced rapid urbanization and great economic growth in the past few decades. This study applied a series of Landsat images to assess the urban expansion and subsequent LULC changes over 35 years, from 1979 to 2013. From start to end, urban expansion increased by 1512.24 km(2) with an annual growth rate of 11.25 %. There were four stages of urban growth: low rates from 1979 to 1990, increased rates from 1990 to 2001, high rates from 2001 to 2009, and steady increased rates from 2009 to 2013. There were also three different urban growth types in these different stages: edge-expansion growth, infilling growth, and spontaneous growth. Other land cover, such as cropland, forest, and mosaics of cropland and natural vegetation, were severely impacted as a result. To analyze these changes, we used landscape metrics to characterize the changes in the spatial patterns across the Guangzhou landscape and the impacts of urban growth on other types of land cover. The significant changes in LULC and urban expansion were highly correlated with economic development, population growth, technical progress, policy elements, and other similar indexes.

  9. Nitrogen emissions along the Colorado Front Range: Response to population growth, land and water use change, and agriculture

    NASA Astrophysics Data System (ADS)

    Baron, J. S.; Del Grosso, S.; Ojima, D. S.; Theobald, D. M.; Parton, W. J.

    While N emissions are not commonly linked to land use change, the production of fixed nitrogen is strongly related to activities associated with urbanization, such as construction, production of energy, and development and use of transportation corridors. Agricultural intensification, brought about by application of synthetic N fertilizers and industrial-scale animal feeding operations, is another land use change that increases N emissions. The Colorado Front Range region experienced rapid population growth from 1980 (1.9 million) to 2000 (2.9 million). Emissions from point (power plants and industry) and mobile (highway and off road vehicles) sources were responsible for most of the increase in emissions since 1980. Agriculture (cropped and grazed land and livestock) was the other important source of N emissions. Soil emissions from cropped and grazed lands remained stable while livestock emissions increased slightly due to more cattle and hogs in feedlots. Although cause and effect relationships between increased N emissions and eutrophication of particular ecosystems are difficult to establish, higher N deposition has been observed at alpine sites near the headwaters of the South Platte River commensurate with the rise in emissions. The ecosystem responses of alpine systems to N deposition are likely to be the result, albeit an indirect one, of land use change.

  10. Urban land cover thematic disaggregation, employing datasets from multiple sources and RandomForests modeling

    NASA Astrophysics Data System (ADS)

    Gounaridis, Dimitrios; Koukoulas, Sotirios

    2016-09-01

    Urban land cover mapping has lately attracted a vast amount of attention as it closely relates to a broad scope of scientific and management applications. Late methodological and technological advancements facilitate the development of datasets with improved accuracy. However, thematic resolution of urban land cover has received much less attention so far, a fact that hampers the produced datasets utility. This paper seeks to provide insights towards the improvement of thematic resolution of urban land cover classification. We integrate existing, readily available and with acceptable accuracies datasets from multiple sources, with remote sensing techniques. The study site is Greece and the urban land cover is classified nationwide into five classes, using the RandomForests algorithm. Results allowed us to quantify, for the first time with a good accuracy, the proportion that is occupied by each different urban land cover class. The total area covered by urban land cover is 2280 km2 (1.76% of total terrestrial area), the dominant class is discontinuous dense urban fabric (50.71% of urban land cover) and the least occurring class is discontinuous very low density urban fabric (2.06% of urban land cover).

  11. The Effect of No Agricultural Productivity Growth on Future Land Use and Climate through Biogeophysical Mechanisms

    NASA Astrophysics Data System (ADS)

    Davies-Barnard, T.; Valdes, P. J.; Singarayer, J. S.; Jones, C.

    2012-12-01

    Future land use and the consequent land cover change will have a significant impact on future climate through biogeophysical (albedo, surface roughness and latent heat transfer, etc.) as well as biogeochemical (greenhouse gas emissions etc.) mechanisms. One of the major determinants of the extent of land use induced land cover change is the agricultural productivity growth within the socio-economic models used for developing the RCP scenarios. There are considerable uncertainties in the size of agricultural productivity under climate change, as yields are projected to vary spatially in signal and strength. Previous climate modeling work has considered the impacts to the carbon cycle of different levels of agricultural productivity growth, but has failed to consider the biogeophysical effects of the land use induced land cover change on climate. Here we examine the climate impacts of the assumption of agricultural productivity growth and business as usual land use. The effects are considered through the biogeophysical land use induced land cover change, using the Hadley Centre climate model HadGEM2. The model simulations use the set biogeochemical climate forcing of the RCP 4.5 scenario, but the biogeophysical land use change specification is altered over a 100 year simulation. Simulations are run with combinations of no land use change; standard RCP 4.5 land use change; business as usual land use change; and zero agricultural productivity growth. The key effect of no agricultural productivity growth is that more cropland is required to feed the same population, necessitating cropland expansion. The expansion of cropland and consequent deforestation increases the albedo and gives an extensive cooling effect in the northern hemisphere (up to 2°C). Differences in global mean temperature between the zero agricultural productivity growth with business as usual land use change specified run and the standard RCP 4.5 run are -0.2°C by 2040 and -0.7°C by 2100. There is

  12. Land-cover changes in an urban lake watershed in a mega-city, Central China.

    PubMed

    Li, Yan; Zhao, Shuqing; Zhao, Kun; Xie, Ping; Fang, Jingyun

    2006-04-01

    Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.

  13. Increasing agricultural land use is associated with the spread of an invasive fish (Gambusia affinis).

    PubMed

    Lee, Finnbar; Simon, Kevin S; Perry, George L W

    2017-05-15

    Land-use change and invasive species pose major threats to ecosystems globally. These stressors can act together, with disturbance due to changes in land-use facilitating invasion. We examined the potential for agricultural land use to facilitate the establishment and population growth (abundance) of a globally invasive fish (Gambusia affinis). To achieve this we examined Gambusia presence, abundance, and life history traits in 31 streams spanning an agricultural land use gradient in the North Island of New Zealand. We used regression models to quantify the relationship between agricultural land use and in-stream physiochemical and habitat variables, and zero-inflated models to explore the relationship among physiochemical, habitat and catchment-scale variables and Gambusia's distribution and abundance. The percentage of the catchment in agricultural land use was associated with changes to physiochemical and habitat conditions. Increasing agricultural land use was associated with increasing macrophyte cover and water temperature and decreasing velocity in streams. Catchment-scale variables (land use and site position in the network) and water temperature were the most important determinants of whether Gambusia occurred at a site. Local in-stream habitat (macrophyte cover and water velocity) and nutrient conditions were the most influential predictors of Gambusia abundance given Gambusia were present. Gambusia life-history traits, sex ratio and body length varied among sites but were not predicted by physiochemical gradients. The distribution of Gambusia in streams in New Zealand is partially controlled by catchment-scale conditions via a combination of dispersal limitation and environmental filtering, both of which are affected by agricultural land use. Agricultural land use alters local in-stream conditions, resulting in systems that are similar to those in Gambusia's natural range; these altered systems have the potential to support an increased abundance of

  14. Formation of Land Use Order in Hamamatsu City under the Original Criteria of the Farm Land Exclusion from the Agricultural Promotion Area

    NASA Astrophysics Data System (ADS)

    Arita, Hiroyuki; Miyazawa, Shingo

    While zoning has been practiced to prevent sprawling development and to preserve collective farmland under the Agriculture Promotion Act, The Agricultural Promotion Area (APA) has been reduced in area by the action of the Farm Land Exclusion from the APA (EAPA) aiming at urban-uses. Since the EAPA has a great impact on the regional land use, appropriate criteria application techniques ought to be formulated at the transaction level. However, most local governments seem to have no strategic measure so far. Hamamatsu city, meanwhile, has introduced a unique standard upon which approval of the EAPA aptitude is based in 2003. Since the number of EAPA registration was relatively large in Hamamatsu city owing to the zone bordering on the line of land which a building has erected the officials' willingness to establish an objective standard was high. In this research, we verified the effect of the criteria application over the land use ordering, and made proposals for improvement of the present state through the examination of the EAPA criterion application of Hamamatsu city.

  15. Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China

    PubMed Central

    Long, Hualou; Wu, Xiuqin; Wang, Wenjie; Dong, Guihua

    2008-01-01

    This paper analyzes the urban-rural land-use change of Chongqing and its policy dimensional driving forces from 1995 to 2006, using high-resolution Landsat TM (Thematic Mapper) data of 1995, 2000 and 2006, and socio-economic data from both research institutes and government departments. The outcomes indicated that urban-rural land-use change in Chongqing can be characterized by two major trends: First, the non-agricultural land increased substantially from 1995 to 2006, thus causing agricultural land especially farmland to decrease continuously. Second, the aggregation index of urban settlements and rural settlements shows that local urban-rural development experienced a process of changing from aggregation (1995-2000) to decentralization (2000-2006). Chongqing is a special area getting immersed in many important policies, which include the establishment of the municipality directly under the Central Government, the building of Three Gorges Dam Project, the Western China Development Program and the Grain-for-Green Programme, and bring about tremendous influences on its land-use change. By analyzing Chongqing's land-use change and its policy driving forces, some implications for its new policy of ‘Urban-rural Integrated Reform’ are obtained. That is more attentions need to be paid to curbing excessive and idle rural housing and consolidating rural construction land, and to laying out a scientific land-use plan for its rural areas taking such rural land-use issues as farmland occupation and rural housing land management into accounts, so as to coordinate and balance the urban-rural development. PMID:27879729

  16. The economic potential of carbon sequestration in Californian agricultural land

    NASA Astrophysics Data System (ADS)

    Catala-Luque, Rosa

    This dissertation studies the potential success of a carbon sequestration policy based on payments to farmers for adoption of alternative, less intensive, management practices in California. Since this is a first approach from a Californian perspective, we focus on Yolo County, an important agricultural county of the State. We focus on the six more important crops of the region: wheat, tomato, corn, rice, safflower, and sunflower. In Chapter 1, we characterize the role of carbon sequestration in Climate Change policy. We also give evidence on which alternative management practices have greenhouse gas mitigation potential (reduced tillage, cover-cropping, and organic systems) based on a study of experimental sites. Chapter 2 advances recognizing the need for information at the field level, and describes the survey designed used to obtain data at the field level, something required to perform a complete integrated assessment of the issue. The survey design is complex in the sense that we use auxiliary information to obtain a control (subpopulation of conventional farmers)-case (subpopulation of innovative farmers) design with stratification for land use. We present estimates for population quantities of interest such as total variable costs, profits, managerial experience in different alternatives, etc. This information efficiently gives field level information for innovative farmers, a missing piece of information so far, since our sampling strategy required the inclusion with probability one of farmers identified as innovative. Using an agronomic process model (DayCent) for the sample and population units, we construct carbon mitigation cost curves for each crop and management observed. Chapter 3 builds different econometric models for cross-sectional data taking into account the survey design, and expanding the sample size constructing productivity potential under each alternative. Based on the yield productivity potential modeled for each unit, we conclude that a

  17. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall

  18. Ethics and Agricultural Education: Determining Needs.

    ERIC Educational Resources Information Center

    Foster, Billye

    2000-01-01

    In a three-round Delphi (n=197, 109, 75), secondary teachers (61.5% in agriculture) identified important ethical issues regarding land and water use: conversion of agricultural land for urban development, water rights control, and public land used for agriculture. Nearly all addressed ethical issues in class. (SK)

  19. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Astrophysics Data System (ADS)

    Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

    2013-12-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  20. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice, Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  1. Reconstructing a century of agricultural land use and drivers of change from social and environmental records

    NASA Astrophysics Data System (ADS)

    Sangster, Heather; Smith, Hugh; Riley, Mark; Sellami, Haykel; Chiverrell, Richard; Boyle, John

    2016-04-01

    Changes to agricultural land use practices and climate represent serious challenges to the future management of rural landscapes. In Britain, the modern rural landscape may seem comparatively stable relative to the long history of human impact. However, there have been important changes linked to the intensification of agricultural practices during the last ca. 100 years and more recently improvements in land management designed to reduce impacts on land and water resources. Few studies attempt high-resolution spatial reconstruction of historic land use change, which is essential for understanding such human-environment interactions in the recent past. Specifically, the absence of detailed spatio-temporal records of agricultural land use/land cover change at the catchment-scale presents a challenge in assessing recent developments in land use policies and management. Here, we generate a high-resolution time-series of historic land use at the catchment-scale for hydrological modelling applications. Our reconstructions focus on three catchments in England ((1) Brotherswater (NE Lake District); (2) Crose Mere (Shropshire); (3) Loweswater (NW Lake District)) spanning a range of agricultural environments subject to different levels of land use change; from intensively-farmed lowlands to upland catchments subject to lower-intensity grazing. Temporal reconstructions of changes in land management practices and vegetation cover are based on historic aerial photography (1940s-2000s) and satellite-derived land cover maps (1990, 2000, and 2007), in combination with annual records of parish-level agricultural census data (1890s-1970s) and farmer interviews, in order to produce an integrated series of digital land cover and land practice maps. The datasets are coupled with composite temperature and precipitation series produced from a number of local stations. Combined, these spatio-temporal datasets allow a comprehensive assessment of land use and management change against the

  2. Land use and Hydrological Characteristics of Volcanic Urban Soils for Flood Susceptibility Modeling, Ciudad de Colima (Mexico)

    NASA Astrophysics Data System (ADS)

    Perez Gonzalez, M. L.; Capra, L.; Borselli, L.; Ortiz, A.

    2015-12-01

    The fast population rate growth and the unplanned urban development has created an increase of urban floods in the City of Colima. Land use change has transformed the hydrological behavior of the watersheds that participates on the runoff-infiltration processes that governs the pluvial concentrations. After the urban areas enlargement, 13% from 2010 to 2015, rainfall has caused significant damages to the downtown community. Therefore it is important to define the main hydraulic properties of the soils surrounding the city. The soil of the region is derived from the debris avalanche deposits of the Volcano of Colima. The volcanic soil cover is only 10 to 15 cm depth. To test the soils of the region, sampling locations were chosen after making a land use map from a Landsat image. The map was done by selecting and dividing similar surface images patterns into three main classifications: Natural (N1), Agricultural (N5) and Urban (N4) surfaces. Thirty-Three soil samples were collected and grouped in nine out of ten land use subdivisions. The 10thsubdivision, represents the completed urbanized area. The land use model is made using spot 4 1A images from the year 2010 up to year 2015. This land use evolutionary analysis will be a base to evaluate the change of the runoff-infiltration rate, direction, and concentration areas for the future flood susceptibility model. To get the parameters above, several soil analysis were performed. The results were that all the soil samples tested were classified as sandy soils. The water content values were from 7% (N4) to 45% (N1) while bulk density values for the same sample were form 0.65 (N1) to 1.50 (N4) g/cm3. The particle density and the porosity values were from 1.65 g/cm3 /5.5% (N4) - 2.65 g/cm3/ 75.40% (N1). The organic matter content was around 0.1% for urban soils and up to 6% on natural and agricultural soils. Some other test like electric conductivity and pH were performed. The obtained parameters were used to get other

  3. Implications of agricultural land use change to ecosystem services in the Ganges delta.

    PubMed

    Islam, G M Tarekul; Islam, A K M Saiful; Shopan, Ahsan Azhar; Rahman, Md Munsur; Lázár, Attila N; Mukhopadhyay, Anirban

    2015-09-15

    Ecosystems provide the basis for human civilization and natural capital for green economy and sustainable development. Ecosystem services may range from crops, fish, freshwater to those that are harder to see such as erosion regulation, carbon sequestration, and pest control. Land use changes have been identified as the main sources of coastal and marine pollution in Bangladesh. This paper explores the temporal variation of agricultural land use change and its implications with ecosystem services in the Ganges delta. With time agricultural lands have been decreased and wetlands have been increased at a very high rate mainly due to the growing popularity of saltwater shrimp farming. In a span of 28 years, the agricultural lands have been reduced by approximately 50%, while the wetlands have been increased by over 500%. A large portion (nearly 40%) of the study area is covered by the Sundarbans which remained almost constant which can be attributed to the strict regulatory intervention to preserve the Sundarbans. The settlement & others land use type has also been increased to nearly 5%. There is a gradual uptrend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between agricultural land use change and ecosystem services in the Ganges delta in Bangladesh. The continuous decline of agricultural land (due to salinization) and an increase of wetland have been attributed to the conversion of agricultural land into shrimp farming in the study area. Such land use change requires significant capital, therefore, only investors and wealthier land owners can get the higher profit from the land conversion while the poor people is left with the environmental consequences that affect their long-term lives and livelihood. An environmental management plan is proposed for sustainable land use in the Ganges delta in Bangladesh.

  4. Flooding of property by runoff from agricultural land in northwestern Europe

    NASA Astrophysics Data System (ADS)

    Boardman, John; Ligneau, Laurence; de Roo, Ad; Vandaele, Karel

    1994-08-01

    In the last twenty years there has been an increase in the incidence of flooding of property by runoff from agricultural land in many areas of northwestern Europe. These events take the form of inundations by soil-laden water associated with erision and the formation of ephemeral or talweg gullies developed in normally dry valley bottoms. Costs of such events may be considerable e.g. almost US$2M at Rottingdean, southern England, in 1987. These costs are largely borne by individual house occupants, insurance companies and local councils. The distribution of flooding is widespread but areas of high risk can be identified: the hilly area of central Belgium, parts of northern France, the South Downs in southern England and South-Limburg (the Netherlands). All these areas have silty, more or less loessial soils. Two types of flooding may be distinguished: winter flooding associated with wet soils and the cultivation of winter cereals, and summer flooding due to thunderstorm activity and runoff particularly from sugar beet, maize and potato crops. The distribution of these types of erosion varies in relation to the interaction between physical characteristics (soils and topography), climatic conditions and land use across the region. The reason for the recent increase in flooding events appears to be changes in land use, in the area of arable cropping, and the continued intensification of farming such as the use of chemical fertilizers, the decline in aggregate stability, the increase in the size of fields and compaction by farm vehicles. In some regions the risk of flooding has also increased because of expansion of urban areas in valley bottom locations. Communities have responded to the flooding hazard with emergency or protective measures usually involving engineered structures rather than land use change. The policy response to the increased risk of flooding has been very limited especially at the national and provincial level, the exception being plans developed

  5. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  6. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    SciTech Connect

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-08-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

  7. Meter-scale Urban Land Cover Mapping for EPA EnviroAtlas Using Machine Learning and OBIA Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.; Riegel, J.; Rudder, C.; Endres, K.

    2013-12-01

    US EPA EnviroAtlas is an online collection of tools and resources that provides geospatial data, maps, research, and analysis on the relationships between nature, people, health, and the economy (http://www.epa.gov/research/enviroatlas/index.htm). Using EnviroAtlas, you can see and explore information related to the benefits (e.g., ecosystem services) that humans receive from nature, including clean air, clean and plentiful water, natural hazard mitigation, biodiversity conservation, food, fuel, and materials, recreational opportunities, and cultural and aesthetic value. EPA developed several urban land cover maps at very high spatial resolution (one-meter pixel size) for a portion of EnviroAtlas devoted to urban studies. This urban mapping effort supported analysis of relations among land cover, human health and demographics at the US Census Block Group level. Supervised classification of 2010 USDA NAIP (National Agricultural Imagery Program) digital aerial photos produced eight-class land cover maps for several cities, including Durham, NC, Portland, ME, Tampa, FL, New Bedford, MA, Pittsburgh, PA, Portland, OR, and Milwaukee, WI. Semi-automated feature extraction methods were used to classify the NAIP imagery: genetic algorithms/machine learning, random forest, and object-based image analysis (OBIA). In this presentation we describe the image processing and fuzzy accuracy assessment methods used, and report on some sustainability and ecosystem service metrics computed using this land cover as input (e.g., carbon sequestration from USFS iTREE model; health and demographics in relation to road buffer forest width). We also discuss the land cover classification schema (a modified Anderson Level 1 after the National Land Cover Data (NLCD)), and offer some observations on lessons learned. Meter-scale urban land cover in Portland, OR overlaid on NAIP aerial photo. Streets, buildings and individual trees are identifiable.

  8. Monitoring the effects of land use/landcover changes on urban heat island

    NASA Astrophysics Data System (ADS)

    Gee, Ong K.; Sarker, Md Latifur Rahman

    2013-10-01

    Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to

  9. Municipal biosolid applications: Improving ecosystem services across urban, agricultural, and wildlife interfaces in Austin, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our project encompasses emerging contaminants, ecosystem services, and urban-agriculture-wildlife interfaces. This seminal research collaboration between USDA-ARS Grassland, Soil, and Water Research Laboratory, The City of Austin Water Utility, and Texas Parks and Wildlife Environmental Contaminant...

  10. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    PubMed

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.

  11. Simulating the Response of Urban Water Quality to Climate and Land Use Change in Partially Urbanized Basins

    NASA Astrophysics Data System (ADS)

    Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    Urban stream quality is particularly susceptible to extreme precipitation events and land use change. Although the projected effects of extreme events and land use change on hydrology have been resonably well studied, the impacts on urban water quality have not been widely examined due in part to the scale mismatch between global climate models and the spatial scales required to represent urban hydrology and water quality signals. Here we describe a grid-based modeling system that integrates the Distributed Hydrology Soil Vegetation Model (DHSVM) and urban water quality module adpated from EPA's Storm Water Management Model (SWMM) and Soil and water assessment tool (SWAT). Using the model system, we evaluate, for four partially urbanized catchments within the Puget Sound basin, urban water quality under current climate conditions, and projected potential changes in urban water quality associated with future changes in climate and land use. We examine in particular total suspended solids, toal nitrogen, total phosphorous, and coliform bacteria, with catchment representations at the 150-meter spatial resolution and the sub-daily timestep. We report long-term streamflow and water quality predictions in response to extreme precipitation events of varying magnitudes in the four partially urbanized catchments. Our simulations show that urban water quality is highly sensitive to both climatic and land use change.

  12. Land-use classification map of the greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Driscoll, L.B.

    1975-01-01

    The Greater Denver area, in the Front Range Urban Corridor of Colorado, is an area of rapid population growth and expanding land development. At present no overall land-use policy exists for this area, although man individuals and groups are concerned about environmental, economic, and social stresses caused by population pressures. A well-structured land-use policy for the entire Front Range Urban Corridor, in which compatible land uses are taken into account, could lead to overall improvements in land values. A land classification map is the first step toward implementing such a policy.

  13. Estimating Agricultural Land Use Change in Karamoja, NE. Uganda Using Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Nakalembe, C. L.

    2013-12-01

    Land use information is useful for deriving biophysical variables for effective planning and management of natural resources. Land use information is also needed to understand negative environmental impacts of land use while maintaining economic and social benefits. Recent maps of land cover and land use have been generated for Africa at the continental scale from coarse resolution data (e.g. MODIS, Spot Vegetation, MERIS, and Landsat). In these map products, croplands and rangelands are generally poorly represented, particularly in semi-arid regions like Karamoja. Products derived from coarse resolution data also fail at mapping subsistence croplands and are limited in their use for extraction of land-cover specific temporal profiles for agricultural monitoring in the study area (Fritz, See, & Rembold, 2010). Given the subsistence nature of agriculture, most fields in Karamoja are very small that care not discernible from other land uses in coarse resolution data and data products such as FAO Africover2000. product derived from 30m Landsat data is one such product. There is a high level of disagreement and large errors of omission and omission due to the coarse resolution of the data used to derive the product. In addition population growth and policy changes in the region have resulted in a shift to agro-pastoralism and systematic expansion of cropland area since 2000. This research will produce an updated agricultural land use map for Karamoja. The land cover map will be used to estimate agricultural land use change in the region and as a filter to extract agricultural land use specific temporal profiles specific to agriculture to compare to crop statistics.

  14. Exploring relationships among land ownership, agricultural land use, and native fish species richness in the Upper Mississippi River Basin

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    In this study, we explored relationships among agricultural land use, land ownership, and native fish biodiversity in the UMRB as a first step toward helping the Fishers and Farmers Partnership identify specific locations in the UMRB that may pose conservation challenges. For example, places that have experienced a loss of native fish species richness relative to historical conditions and also have high proportions of absentee landowners may provide restoration challenges. We were also interested in identifying areas that have retained high levels of species richness and are owner-operated. These areas present good opportunities to work with local landowners to protect aquatic resources. To identify such areas, we addressed two primary questions: 1) Is there a relationship between the type of agricultural land use (i.e. cropland vs pastureland) and the % of land rented or leased within the UMRB? and 2) How does the type of agricultural production and whether land is rented or leased relate to the maintenance of historical levels of native fish species richness? We predicted that areas with large amounts of land devoted to crop production will have experienced the greatest losses of native fish species richness. However, our hypothesis is that watersheds with large amounts of land rented or leased will have experienced even greater declines in native fish species richness than would be predicted from the amount of cultivated cropland alone. By testing these hypotheses, we intended to identify watersheds that would be strong candidates for protection, restoration, and enhancement

  15. Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea

    NASA Astrophysics Data System (ADS)

    Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

    2001-12-01

    The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and

  16. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes.

    PubMed

    Chandler, Richard B; King, David I; Raudales, Raul; Trubey, Richard; Chandler, Carlin; Chávez, Víctor Julio Arce

    2013-08-01

    Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns.

  17. Mapping land cover in urban residential landscapes using fine resolution imagery and object-oriented classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A knowledge of different types of land cover in urban residential landscapes is important for building social and economic city-wide policies including landscape ordinances and water conservation programs. Urban landscapes are typically heterogeneous, so classification of land cover in these areas ...

  18. Urban Land Cover/use Change Detection Using High Resolution SPOT 5 and SPOT 6 Images and Urban Atlas Nomenclature

    NASA Astrophysics Data System (ADS)

    Akay, S. S.; Sertel, E.

    2016-06-01

    Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was

  19. Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Stein, Alfred; Bijker, Wietske; Zhan, Qingming

    2016-12-01

    Urban land use extraction from Very High Resolution (VHR) remote sensing images is important in many applications. This study explores a novel way to characterize the spatial arrangement of land cover features, and to integrate it with commonly used land use indicators. Characterization is done based upon building objects, taking their functional properties into account. We categorize the objects to a set of building types according to their geometrical, morphological, and contextual attributes. The spatial arrangement is characterized by quantifying the distribution of building types within a land use unit. Moreover, a set of existing land use indicators primarily based upon the coverage ratio and density of land cover features is investigated. A Bayesian network integrates the spatial arrangement and land use indicators, by which the urban land use is inferred. We applied urban land use extraction to a Pléiades VHR image over the city of Wuhan, China. Our results showed that integrating the spatial arrangement significantly improved the accuracy of urban land use extraction as compared with using land use indicators alone. Moreover, the Bayesian network method produced results comparable to other commonly used classifiers. We concluded that the proposed characterization of spatial arrangement and Bayesian network integration was effective for urban land use extraction from VHR images.

  20. Paxton Revisited: The Essence of the Lived Experiences of Urban Agricultural Education Students

    ERIC Educational Resources Information Center

    Brown, Nicholas R.; Roberts, Richie; Whiddon, Ashley S.; Goossen, Carmelita E.; Kacal, Amanda

    2015-01-01

    The rapidly growing world population and need for more food and agricultural knowledge has inspired city dwellers to explore urban cultivation practices such as vertical farming and community gardening. Ultra-modern approaches to growing crops and livestock in urban high-rise buildings has sparked the imagination of scientists, agriculturists, and…

  1. Minto-Brown Island Park: A Case Study of Farming the Urban-Agricultural Interface.

    ERIC Educational Resources Information Center

    Taack, D. L.; And Others

    1994-01-01

    As urbanization increases, the potential for conflict between urban and agricultural interests grows. A case study of a conflict between farming and nonfarming interests provides students an opportunity to consider and discuss varying perceptions about pesticide use by farmers while evaluating data concerning pesticides. (LZ)

  2. Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A.; Clark, L. D., Jr.; Landgraf, K. F. (Principal Investigator)

    1981-01-01

    The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided.

  3. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Schatz, Jason; Singh, Aditya; Kucharik, Christopher J.; Townsend, Philip A.; Loheide, Steven P., II

    2016-05-01

    Despite documented intra-urban heterogeneity in the urban heat island (UHI) effect, little is known about spatial or temporal variability in plant response to the UHI. Using an automated temperature sensor network in conjunction with Landsat-derived remotely sensed estimates of start/end of the growing season, we investigate the impacts of the UHI on plant phenology in the city of Madison WI (USA) for the 2012-2014 growing seasons. Median urban growing season length (GSL) estimated from temperature sensors is ˜5 d longer than surrounding rural areas, and UHI impacts on GSL are relatively consistent from year-to-year. Parks within urban areas experience a subdued expression of GSL lengthening resulting from interactions between the UHI and a park cool island effect. Across all growing seasons, impervious cover in the area surrounding each temperature sensor explains >50% of observed variability in phenology. Comparisons between long-term estimates of annual mean phenological timing, derived from remote sensing, and temperature-based estimates of individual growing seasons show no relationship at the individual sensor level. The magnitude of disagreement between temperature-based and remotely sensed phenology is a function of impervious and grass cover surrounding the sensor, suggesting that realized GSL is controlled by both local land cover and micrometeorological conditions.

  4. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    NASA Astrophysics Data System (ADS)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  5. Land Cover Change and Remote Sensing in the Classroom: An Exercise to Study Urban Growth

    ERIC Educational Resources Information Center

    Delahunty, Tina; Lewis-Gonzales, Sarah; Phelps, Jack; Sawicki, Ben; Roberts, Charles; Carpenter, Penny

    2012-01-01

    The processes and implications of urban growth are studied in a variety of disciplines as urban growth affects both the physical and human landscape. Remote sensing methods provide ways to visualize and mathematically represent urban growth; and resultant land cover change data enable both quantitative and qualitative analysis. This article helps…

  6. Effects of Governance on Availability of Land for Agriculture and Conservation in Brazil.

    PubMed

    Sparovek, Gerd; Barretto, Alberto Giaroli de Oliveira Pereira; Matsumoto, Marcelo; Berndes, Göran

    2015-09-01

    The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives.

  7. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    SciTech Connect

    Rowntree, R.A.

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  8. Monitoring urban land cover change by updating the national land cover database impervious surface products

    USGS Publications Warehouse

    Xian, G.; Homer, C.

    2009-01-01

    The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales. ?? 2009 IEEE.

  9. Assessment of ecosystem services provided by urban trees: public lands within the Urban Growth Boundary of Corvallis, OR

    EPA Science Inventory

    Public lands within the Urban Growth Boundary of Corvallis, Oregon contain a diverse population of about 440,000 trees that include over 300 varieties and have an estimated tree cover of 31%. While often unrecognized, urban trees provide a variety of “ecosystem services” or dire...

  10. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil.

    PubMed

    Egler, M; Buss, D F; Moreira, J C; Baptista, D F

    2012-08-01

    Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture) on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.

  11. Factors Influencing Postsecondary Education Enrollment Behaviors of Urban Agricultural Education Students

    ERIC Educational Resources Information Center

    Esters, Levon T.

    2007-01-01

    The purpose of this study was to identify the factors that influenced the postsecondary education enrollment behaviors of students who graduated from an urban agricultural education program. Students indicated that parents and/or guardians had the most influence on their decisions to enroll in a postsecondary education program of agriculture.…

  12. Youth Leadership Development: Perceptions and Preferences of Urban Students Enrolled in a Comprehensive Agriculture Program

    ERIC Educational Resources Information Center

    Anderson, James C., II; Kim, Eunyoung

    2009-01-01

    This descriptive study explores the perceptions of and preferences for leadership development by students enrolled in a comprehensive urban agriculture program. A total of 284 students from the Chicago High School for Agricultural Sciences participated in the study. The results of the study showed that the average respondent was involved in a…

  13. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  14. As Land-Grant Law Turns 150, Students Crowd into Agriculture Colleges

    ERIC Educational Resources Information Center

    Biemiller, Lawrence

    2012-01-01

    On July 2, 1862, Abraham Lincoln signed Justin Morrill's second agriculture-school bill into law. Along with another measure he championed, in 1890, it created a system of land-grant colleges that rooted agriculture firmly in university research and helped democratize American higher education, creating institutions not for the sons and daughters…

  15. Agriculture, Food Production, and Rural Land Use in Advanced Placement® Human Geography

    ERIC Educational Resources Information Center

    Moseley, William G.; Watson, Nancy H.

    2016-01-01

    ''Agriculture, Food, and Rural Land Use" constitutes a major part of the AP Human Geography course outline. This article explores challenging topics to teach, emerging research trends in agricultural geography, and sample teaching approaches for concretizing abstract topics. It addresses content identified as "essential knowledge"…

  16. Agricultural policy effects on land cover and land use over 30 years in Tartous, Syria, as seen in Landsat imagery

    NASA Astrophysics Data System (ADS)

    Ibrahim, Waad Youssef; Batzli, Sam; Menzel, W. Paul

    2014-01-01

    This study pursues a connection between agricultural policy and the changes in land use and land cover detected with remote sensing satellite data. One part of the study analyzes the Syrian agricultural policy, wherein, certain regional targets have been selected for annual citrus or greenhouse development along with tools of enforcement, support, and monitoring. The second part of the study investigates the utility of remote sensing (RS) and geographical information systems (GIS) to map land use land cover changes (LULC-Cs) in a time series of images from Landsat Thematic Mapper (TM) from 1987, 1998, 2006, and 2010 and Enhanced Thematic Mapper plus (ETM+) from 1999 to 2002. Several multispectral band analyses have been performed to determine the most suitable band combinations for isolating greenhouses and citrus farms. Supervised classification with maximum likelihood classifier has been used to produce precise land use land cover map. This research demonstrates that spatial relationship between LULC-Cs and agricultural policies can be determined through a science-based GIS/RS application to a time series of satellite images taken at the same time of the implemented policy.

  17. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.

    PubMed

    Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang

    2016-08-01

    The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade.

  18. Barriers to the Adoption of Sustainable Agriculture on Rented Land: An Examination of Contesting Social Fields

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2005-01-01

    While over half of the cropland in the United States is rented, interest in land tenancy within sociological circles has been sporadic at best. In light of the prevalence of rented land in agriculture--particularly in the Midwest--it is vital that further research be conducted to investigate the effect that the rental relationship has upon the…

  19. Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, Dale A.

    2003-01-01

    Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

  20. Assessing the Source-to-Stream Transport of Benzotriazoles during Rainfall and Snowmelt in Urban and Agricultural Watersheds.

    PubMed

    Parajulee, Abha; Lei, Ying Duan; De Silva, Amila O; Cao, Xiaoshu; Mitchell, Carl P J; Wania, Frank

    2017-04-07

    While benzotriazoles (BTs) are ubiquitous in urban waters, their sources and transport remain poorly characterized. We aimed to elucidate the origin and hydrological pathways of BTs in Toronto, Canada, by quantifying three BTs, electrical conductivity, and δ(18)O in high-frequency streamwater samples taken during two rainfall and one snowmelt event in two watersheds with contrasting levels of urbanization. Average concentrations of total BTs (∑BT) were 1.3 to 110 times higher in the more urbanized Mimico Creek watershed relative to the primarily agricultural and suburban Little Rouge Creek. Strong correlations between upstream density of major roads and total BT concentrations or BT composition within all events implicate vehicle fluids as the key source of BTs in both watersheds. Sustained historical releases of BTs within the Mimico Creek watershed have likely led to elevated ∑BT in groundwater, with elevated concentrations observed during baseflow that are diluted by rainfall and surface runoff. In contrast, relatively constant concentrations, caused by mixing of equally contaminated baseflow and rainfall/surface runoff, are observed in the Little Rouge Creek throughout storm hydrographs, with an occasional first flush occurring at a subsite draining suburban land. During snowmelt, buildup of BTs in roadside snowpiles and preferential partitioning of BTs to the liquid phase of a melting snowpack leads to early peaks in ∑BT in both streams, except the sites in the Little Rouge Creek with low levels of vehicle traffic. Overall, a history of BT release and land use associated with urbanization have led to higher levels of BTs in urban areas and provide a glimpse into future BT dynamics in mixed use, (sub)urbanizing areas.

  1. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    NASA Astrophysics Data System (ADS)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  2. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    NASA Astrophysics Data System (ADS)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  3. Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States

    USGS Publications Warehouse

    Hladik, Michelle L.; Kuivila, Kathryn M.

    2012-01-01

    Pyrethroid insecticides are hydrophobic compounds that partition to streambed sediments and have been shown to cause toxicity to non-target organisms; their occurrence is well documented in parts of California, but there have been limited studies in other urban and agricultural areas across the United States. To broaden geographic understanding of pyrethroid distributions, bed sediment samples were collected and analyzed from 36 streams in 25 states, with about 2/3 of the sites in urban areas and 1/3 in agricultural areas. At least one pyrethroid (of the 14 included in the analysis) was detected in 78% of samples. Seven pyrethroids were detected in one or more samples. Bifenthrin was the most frequently detected (58% of samples), followed by permethrin (31%), resmethrin (17%), and cyfluthrin (14%). The other three detected pyrethroids (cyhalothrin, cypermethrin and delta/tralomethrin) were found in two or fewer of the samples. Concentrations ranged from 0.3 to 180 ng g-1 dry weight. The number of pyrethroids detected were higher in the urban samples than in the agricultural samples, but the highest concentrations of individual pyrethroids were split between urban and agricultural sites. The pyrethroids detected in the agricultural areas generally followed use patterns. Predicted toxicity was greater for urban areas and attributed to bifenthrin, cyfluthrin and cypermethrin, while in agricultural areas the toxicity was mainly attributed to bifenthrin.

  4. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  5. Farming the Planet: Agricultural land use and the transformation of Planet Earth

    NASA Astrophysics Data System (ADS)

    Ramankutty, N.

    2008-12-01

    Agriculture has dramatically altered the face of our planet. Roughly a third of the world's landscape is currently being used for cultivation or grazing cattle. Furthermore, over the last 50 years, our food production system has been driven by agricultural intensification, through increased use of irrigation and fertilization. Such large-scale changes in land cover and land use can have major Earth system consequences. Nonetheless, few descriptions are available of the nature and extent of these changes. In this talk, I will describe recent work in the use of remote-sensing and ground-based data to derive global data sets of agricultural land cover and land use practices. I will present results from mapping the world's croplands and pastures, the harvested area and yield of 175 different crops, and fertilizer application rates for the Year 2000.

  6. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation.

    PubMed

    Richards, Peter

    2015-09-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets.

  7. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation

    PubMed Central

    Richards, Peter

    2015-01-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets. PMID:26985080

  8. Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The evolving pressures from a changing climate and society are increasingly motivating decision support frameworks that consider the robustness of management actions across many possible futures. Focusing on robustness is helpful for investigating key vulnerabilities within current water systems and for identifying potential tradeoffs across candidate adaptation responses. To date, most robustness studies assume a social planner perspective by evaluating highly aggregated measures of system performance. This aggregate treatment of stakeholders does not explore the equity or intrinsic multi-stakeholder conflicts implicit to the system-wide measures of performance benefits and costs. The commonly present heterogeneity across complex management interests, however, may produce strong asymmetries for alternative adaptation options, designed to satisfy system-level targets. In this work, we advance traditional robustness decision frameworks by replacing the centralized social planner with a bottom-up, agent-based approach, where stakeholders are modeled as individuals, and represented as potentially self-interested agents. This agent-based model enables a more explicit exploration of the potential inequities and asymmetries in the distribution of the system-wide benefit. The approach is demonstrated by exploring the potential conflicts between urban flooding and agricultural production in the Lake Como system (Italy). Lake Como is a regulated lake that is operated to supply water to the downstream agricultural district (Muzza as the pilot study area in this work) composed of a set of farmers with heterogeneous characteristics in terms of water allocation, cropping patterns, and land properties. Supplying water to farmers increases the risk of floods along the lakeshore and therefore the system is operated based on the tradeoff between these two objectives. We generated an ensemble of co-varying climate and socio-economic conditions and evaluated the robustness of the

  9. Assessing the impact of urban land cover composition on CO2 flux

    NASA Astrophysics Data System (ADS)

    Becker, K.; Hinkle, C.

    2013-12-01

    Urbanization is an ever increasing trend in global land use change, and has been identified as a key driver of CO2 emissions. Therefore, understanding how urbanization affects CO2 flux across a range of climatic zones and development patterns is critical to projecting the impact of future land use on CO2 flux dynamics. A growing number of studies are applying the eddy covariance method to urban areas to quantify the CO2 flux dynamics of these systems. However, interpretation of eddy covariance data in these urban systems presents a challenge, particularly in areas with high heterogeneity due to a mixing of built and green space. Here we present a study aimed at establishing a relationship between land cover composition and CO2 flux for a heterogeneous urban area of Orlando, FL. CO2 flux has been measured at this site for > 4 years using an open path eddy covariance system. Land cover at this site was classified into built and green space, and relative weight of both land covers were calculated for each 30 min CO2 flux measurement using the Schuepp model and a source area based on +/- one standard deviation of wind direction. The results of this analysis established a relationship between built land cover and CO2 flux within the measured footprint of this urban area. These results, in combination with future projected land use data, will be a valuable resource for providing insight into the impact of future urbanization on CO2 flux dynamics in this region.

  10. Effects of urban land-use on largescale stonerollers in the Mobile River Basin, Birmingham, AL.

    PubMed

    Iwanowicz, D; Black, M C; Blazer, V S; Zappia, H; Bryant, W

    2016-04-01

    During the spring and fall of 2001 and the spring of 2002 a study was conducted to evaluate the health of the largescale stoneroller (Campostoma oligolepis) populations in streams along an urban land-use gradient. Sites were selected from a pool of naturally similar sub-basins (eco-region, basin size, and geology) of the Mobile River basin (MRB), using an index of urban intensity derived from infrastructure, socioeconomic, and land-use data. This urban land-use gradient (ULUG) is a multimetric indicator of urban intensity, ranging from 0 (background) to 100 (intense urbanization). Campostoma sp. have been used previously as indicators of stream health and are common species found in all sites within the MRB. Endpoints used to determine the effects of urban land-use on the largescale stoneroller included total glutathione, histology, hepatic apoptosis, condition factor and external lesions. Liver glutathione levels were positively associated with increasing urban land-use (r(2) = 0.94). Histopathological examination determined that some abnormalities and lesions were correlated with the ULUG and generally increased in prevalence or severity with increasing urbanization. Liver macrophage aggregates were positively correlated to the ULUG. The occurrence of nucleosomal ladders (indicating apoptotic cell death) did not correspond with urban intensity in a linear fashion. Apoptosis, as well as prevalence and severity of a myxozoan parasite, appeared to have a hormetic dose-response relationship. The majority of the biomarkers suggested fish health was compromised in areas where the ULUG ≥ 36.

  11. Effects of urban land-use on largescale stonerollers in the Mobile River Basin, Birmingham, AL

    USGS Publications Warehouse

    Iwanowicz, Deborah; Black, M.C.; Blazer, Vicki; Zappia, H.; Bryant, Wade L.

    2016-01-01

    During the spring and fall of 2001 and the spring of 2002 a study was conducted to evaluate the health of the largescale stoneroller (Campostoma oligolepis) populations in streams along an urban land-use gradient. Sites were selected from a pool of naturally similar sub-basins (eco-region, basin size, and geology) of the Mobile River basin (MRB), using an index of urban intensity derived from infrastructure, socioeconomic, and land-use data. This urban land-use gradient (ULUG) is a multimetric indicator of urban intensity, ranging from 0 (background) to 100 (intense urbanization). Campostoma sp. have been used previously as indicators of stream health and are common species found in all sites within the MRB. Endpoints used to determine the effects of urban land-use on the largescale stoneroller included total glutathione, histology, hepatic apoptosis, condition factor and external lesions. Liver glutathione levels were positively associated with increasing urban land-use (r2 = 0.94). Histopathological examination determined that some abnormalities and lesions were correlated with the ULUG and generally increased in prevalence or severity with increasing urbanization. Liver macrophage aggregates were positively correlated to the ULUG. The occurrence of nucleosomal ladders (indicating apoptotic cell death) did not correspond with urban intensity in a linear fashion. Apoptosis, as well as prevalence and severity of a myxozoan parasite, appeared to have a hormetic dose–response relationship. The majority of the biomarkers suggested fish health was compromised in areas where the ULUG ≥ 36.

  12. Agricultural land-use history causes persistent loss of plant phylogenetic diversity.

    PubMed

    Turley, Nash E; Brudvig, Lars A

    2016-09-01

    Intensive land use activities, such as agriculture, are a leading cause of biodiversity loss and can have lasting impacts on ecological systems. Yet, few studies have investigated how land-use legacies impact phylogenetic diversity (the total amount of evolutionary history in a community) or how restoration activities might mitigate legacy effects on biodiversity. We studied ground-layer plant communities in 27 pairs of Remnant (no agricultural history) and Post-agricultural (agriculture abandoned >60 yr ago) longleaf pine savannas, half of which we restored by thinning trees to reinstate open savanna conditions. We found that agricultural history had no impact on species richness, but did alter community composition and reduce phylogenetic diversity by 566 million years/1,000 m(2) . This loss of phylogenetic diversity in post-agricultural savannas was due to, in part, a reduction in the average evolutionary distance between pairs of closely related species, that is, increased phylogenetic clustering. Habitat restoration increased species richness by 27% and phylogenetic diversity by 914 million years but did not eliminate the effects of agricultural land use on community composition and phylogenetic structure. These results demonstrate the persistence of agricultural legacies, even in the face of intensive restoration efforts, and the importance of considering biodiversity broadly when evaluating human impacts on ecosystems.

  13. Urban Agriculture Programs on the Rise: Agriculture Education Model Can Reach Students Other Classes Leave Behind

    ERIC Educational Resources Information Center

    Fritsch, Julie M.

    2013-01-01

    Agricultural education begins with hands-on classroom and laboratory instruction. Because agriculture is such a broad topic, schools typically tailor agriculture class offerings to match the interests of the student population, needs of nearby businesses and industry, or topics relevant to their state's standard assessments. Within most…

  14. Targeting land-use change for nitratenitrogen load reductions in an agricultural watershed

    USGS Publications Warehouse

    Jha, M.K.; Schilling, K.E.; Gassman, P.W.; Wolter, C.F.

    2010-01-01

    The research was conducted as part of the USDA's Conservation Effects Assessment Project. The objective of the project was to evaluate the environmental effects of land-use changes, with a focus on understanding how the spatial distribution throughout a watershed influences their effectiveness.The Soil and Water AssessmentTool (SWAT) water quality model was applied to the Squaw Creek watershed, which covers 4,730 ha (11,683 ac) of prime agriculture land in southern Iowa. The model was calibrated (2000 to 2004) and validated (1996 to 1999) for overall watershed hydrology and for streamflow and nitrate loadings at the watershed outlet on an annual and monthly basis. Four scenarios for land-use change were evaluated including one scenario consistent with recent land-use changes and three scenarios focused on land-use change on highly erodible land areas, upper basin areas, and floodplain areas. Results for the Squaw Creek watershed suggested that nitrate losses were sensitive to land-use change. If land-use patterns were restored to 1990 conditions, nitrate loads may be reduced 7% to 47% in the watershed and subbasins, whereas converting row crops to grass in highly erodible land, upper basin, and floodplain areas would reduce nitrate loads by 47%, 16%, and 8%, respectively. These SWAT model simulations can provide guidance on how to begin targeting land-use change for nitrate load reductions in agricultural watersheds.

  15. Remote sensing for estimating agricultural land use change as the impact of climate change

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Komariah; Dewi, W. S.; Sumani; Mujiyo; Sukoco, T. A.; Rozaki, Z.

    2016-05-01

    Agricultural land use conversion is inevitable to meet the needs of growing population, together with climate change issue which has become global concern. This research aims at investigating the impact of climate change on agriculture by identifying land use conversion in part of Central Java, Indonesia, namely Tegal District. Research was carried out in August 2014 until March 2015.This is a survey research with explorative descriptive method, data processing using ENVI 4.5. and ArcGIS 10.1. The satellite image of Landsat was analyzed by determining and comparing the land use changes of the last 20 years, then the interview data with farmers was analyzed using logistic regression. The results showed that many lands converted into settlement, with increasing rate in 2003-2014 was almost twice than 1994-2003, while the reduce of irrigation rice field lands are lower in the period of 2003-2014 than 1994-2003. It is presumed that the factors encourage irrigation rice field land conversion are erratic rainfall, floods in the 1990s, and water lack in the 2000s. This paper discusses briefly about agricultural land use conversion as the impact of the past and current climate variability on farm land.

  16. Land degradation and economic conditions of agricultural households in a marginal region of northern Greece

    NASA Astrophysics Data System (ADS)

    Lorent, Hugues; Evangelou, Christakis; Stellmes, Marion; Hill, Joachim; Papanastasis, Vasilios; Tsiourlis, Georgios; Roeder, Achim; Lambin, Eric F.

    2008-12-01

    Land degradation is caused by and has impacts on both the social and natural components of coupled human-environment systems. However, few studies integrate both aspects simultaneously. The main objective of this study is to test a method to evaluate land degradation based on the integration of aggregate metrics of biophysical and socio-economic "degradation". We applied a framework that integrates the biophysical and socio-economic dimensions of land degradation to test the hypothesis that macro-economic policies, and in particular agricultural subsidies, are an important driving force of land degradation in marginal regions of the Mediterranean Europe. We analysed the influence of subsidies on the profitability of each crop and livestock type found in a sample of farms in a region of northern Greece. Spatial and socio-economic data on agricultural households were collected to link remote sensing data and land degradation maps to socio-economic conditions of these households, as measured by the standard gross margin. The results demonstrate that subsidies provide a crucial socio-economic support to maintain the profitability of agricultural activities but may also promote land-use practices with damaging ecological impacts. Different levels of biophysical and socio-economic "degradation" were associated with different land use practices. The integration of the socio-economic and biophysical dimensions of land degradation reveals associations that would not be detectable if indicators along one dimension alone would be used.

  17. Impact of land-use induced changes on agricultural productivity in the Huang-Huai-Hai River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Li, Zhaohua; Wang, Zhan; Chu, Xi; Li, Zhihui

    The water resource allocation is greatly influenced by the land use, agricultural productivity and farmers' income. Therefore analyzing the impacts of land use changes on agricultural productivity and subsequent effects on farmer's income is an important basis of the further study on the management mechanism and optimal water resource allocation. Taking the Huang-Huai-Hai River Basin as the study area, this study examined the impacts of conversion from cultivated land to built-up land from 2000-2005 and 2005-2008. Then the agricultural productivity was estimated with the Estimation System for Agricultural Productivity model, and the changes in agricultural productivity caused by land conversion were analyzed. Thereafter, Simultaneous Equations Model was used to analyze the impacts of the conversion from cultivated land to built-up land on the agricultural productivity and subsequent effects on farmer's income. The results showed that: (1) The agricultural productivity was stable during the whole period, reaching about 2.84 ton/ha, 3.09 ton/ha and 2.80 ton/ha on average in 2000, 2005 and 2008, respectively, but the conversion from cultivated land to built-up land had important influence on the spatial pattern of agricultural productivity. (2) The land productivity, total power of agricultural machinery and the conversion from cultivated land to built-up land had an overall positive effect on the agricultural productivity. (3) The agricultural productivity and gross domestic product had positive influence on the farmers' income, while the cultivated land area per capita and percentage of farming employee had negative influence, indicating that the farmer's income was mainly contributed by non-agricultural income. These results in this study showed that optimal land use management can play an important role in promoting virtuous ecosystem cycle and sustainable socioeconomic development, which can also lay an important foundation for further research on the optimal

  18. AGRICULTURAL-REGIONAL LAND AND PEOPLE CONFERENCE. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    FREEMAN, ORVILLE L.

    MIGRATION FROM FARMS CAN BE STOPPED. FARM LIFE CAN BE IMPROVED THROUGH DECENT HOUSING, THROUGH HEALTH, EDUCATION, AND PUBLIC SERVICES, AND THROUGH A COMBINATION OF PART-TIME EMPLOYMENT WITH PART-TIME AGRICULTURE. RURAL EMPLOYMENT CAN BE PROVIDED BY ENTERPRISES DEVELOPING RECREATIONAL RESOURCES AND SOIL AND WATER RESOURCES. ASSISTANCE PROGRAMS ARE…

  19. Agriculture: Land and Life. Junior High School Teacher Resource Manual.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This curriculum guide outlines a 3-year sequence of complementary courses designed to provide students (especially in Alberta, Canada) with a broad awareness of the economic, social, and scientific realities of the agricultural enterprise. Information is presented in context, through hands-on activity, through experimentation, and through…

  20. The Solutions of the Agricultural Land Use Monitoring Problems

    ERIC Educational Resources Information Center

    Vershinin, Valentin V.; Murasheva, Alla A.; Shirokova, Vera A.; Khutorova, Alla O.; Shapovalov, Dmitriy A.; Tarbaev, Vladimir A.

    2016-01-01

    Modern landscape--it's a holistic system of interconnected and interacting components. To questions of primary importance belongs evaluation of stability of modern landscape (including agrarian) and its optimization. As a main complex characteristic and landscape inhomogeneity in a process of agricultural usage serves materials of quantitative and…

  1. Characterizing patterns of agricultural land use in Amazonia by merging satellite imagery and census data

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey Alan

    In recent decades, millions of hectares of Amazonian primary forest, cerrado, and secondary forest have been cleared to support a dramatically increasing number of cattle and humans. With plans proposed for major new highways and utilities in the basin, development is highly likely to continue in coming years. Conversion to human use threatens to change the climate, ecosystems, and natural resources of Amazonia, and these effects are due not only to changes in land cover but to the land use management practices that follow. Unfortunately, we lack basin-wide information about land use across Amazonia. A key reason for this dearth of information is that earth-observing satellites designed to interpret land cover are prone to miss the land use changes within; in an area encompassing millions of square kilometers, it is impossible to visit more than a small portion of the study region to quantify land use activities. Agricultural censuses suggest a strategy to fill this gap: in Amazonia, they provide the only ground-surveyed land use information---yet because they are not easily reconciled with satellite-based land cover information, census data are underutilized. The research forming this dissertation presents a new, basin-wide depiction of land use in Amazonia by developing and applying new tools for understanding the past, current, and future impact of agricultural development. Specifically, this dissertation: (1) presents a new detailed understanding of the distribution and density of agricultural land use practices in Amazonia in the mid-1990s by fusing agricultural census data with satellite-derived land cover classifications; (2) assesses historical changes in agriculture of the previous decades; and (3) describes and applies new general techniques for the rapid update of land use data sets and maps using satellite imagery and census data. The fusion of census and satellite data described here advances our understanding by uniting the strengths of two distinct

  2. Contrasting Contaminant Occurrence in Urban and Agricultural Streams in the Midwestern and Southeastern United States

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.

    2015-12-01

    Streams in urban and agricultural settings are known to have many anthropogenic chemical stressors; however, there are important differences in the occurrence of pesticides, metals, legacy contaminants, combustion byproducts, and contaminants of emerging concern between the two settings. In 2013 and 2014, the U.S. Geological Survey characterized water-quality stressors and ecological conditions in 100 streams in the Midwestern U.S. and 115 streams in the southeastern U.S., respectively. Water samples were collected weekly for 10-12 weeks during spring and early summer. Habitat, sediment chemistry, and ecological communities were sampled once at the end of the water-sampling period. Water and(or) sediment samples were analyzed for pesticides, nutrients, wastewater indicator compounds, polycyclic aromatic hydrocarbons, halogenated compounds, metals, volatile organic compounds, and pharmaceuticals. The spatial and temporal distribution of detected compounds and health-based-benchmark-normalized summations of compound mixtures indicate important differences between agricultural and urban settings. In general, urban streams are affected by more complex chemical mixtures than agricultural streams. Although higher herbicide and nutrient concentrations generally are found in agricultural settings, the more frequent occurrence of insecticides, hydrocarbons, halogenated compounds, and metals in urban settings indicates higher potential toxicity in urban streams than in agricultural streams. The effects of these complex mixtures and other stressors are being evaluated in relation to stream ecological communities at the regional scale.

  3. Hermiston Agricultural Research and Extension Center Land Conveyance Act

    THOMAS, 113th Congress

    Sen. Wyden, Ron [D-OR

    2013-08-01

    07/30/2014 Committee on Energy and Natural Resources Senate Subcommittee on Public Lands, Forests, and Mining. Hearings held. With printed Hearing: S.Hrg. 113-433. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. Use of agricultural land evaluation and site assessment in Linn County, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Huddleston, J. Herbert; Pease, James R.; Forrest, William G.; Hickerson, Hugh J.; Langridge, Russell W.

    1987-07-01

    Oregon state law requires each county in the state to identify agricultural land and enact policies and regulations to protect agricultural land use. State guidelines encourage the preservation of large parcels of agricultural land and discourage partitioning of agricultural land and construction of nonfarm dwellings in agricultural areas. A land evaluation and site assessment (LESA) system was developed in Linn County to aid in the identification of agricultural land and provide assistance to decision makers concerning the relative merits of requests to partition existing parcels of ricultural land and introduce nonagricultural uses. Land evaluation was determined by calculating soil potential ratings for each agricultural soil in the county based on the soil potentials for winter wheat, annual ryegrass, permanent pasture, and irrigated sweet corn. Soil potential ratings were expressed on a scale of 0 to 150 points. The land evaluation score for a parcel consists of the weighted average soil potential rating for all of the soils in the parcel, weighted by the percentage of each soil present in the parcel. Site assessment was based on the size of a parcel and on the amount of existing conflict between agricultural and nonagricultural uses, particularly rural residential uses, both adjacent to and in the vicinity of a parcel. Parcel size refers to both size in relation to a typical field and size in relation to a typical farm unit. Conflict takes into account the number of nonfarm dwellings within 1/4 mile (0.4 km) of a parcel, the amount of the perimeter that adjoins conflicting land uses, and the residential density adjacent to the parcel. Empirical scales were derived for assigning points to each of the site assessment factors. Both parcel size and conflict were worth 75 points in the model. For parcel size, 45 points were allocated to field size and 30 points to farm-unit size. For conflict, 30 points were allocated to nonfarm dwellings within 1/4 mile and 45

  5. Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air

    USGS Publications Warehouse

    Lopes, T.J.; Bender, D.A.

    1998-01-01

    Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

  6. Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California.

    PubMed

    Walters, Sarah P; Thebo, Anne L; Boehm, Alexandria B

    2011-02-01

    Fecal pollution enters coastal waters through multiple routes, many of which originate from land-based activities. Runoff from pervious and impervious land surfaces transports pollutants from land to sea and can cause impairment of coastal ocean waters. To understand how land use practices and water characteristics influence concentrations of fecal indicator bacteria (FIB) and pathogens in natural waters, fourteen coastal streams, rivers, and tidal lagoons, surrounded by variable land use and animal densities, were sampled every six weeks over two years (2008 & 2009). Fecal indicator bacteria (FIB; Escherichia coli and Enterococci) and Salmonella concentrations, the occurrence of Bacteroidales human, ruminant, and pig-specific fecal markers, E. coli O157:H7, and Shiga toxin (stx) genes present in E. coli, were measured. In addition, environmental and climatic variables (e.g., temperature, salinity, rainfall), as well as human and livestock population densities and land cover were quantified. Concentrations of FIB and Salmonella were correlated with each other, but the occurrence of host-specific Bacteroidales markers did not correlate with FIB or pathogens. FIB and Salmonella concentrations, as well as the occurrence of E. coli harboring stx genes, were positively associated with the fraction of the surrounding subwatershed that was urban, while the occurrence of E. coli O157:H7 was positively associated with the agricultural fraction. FIB and Salmonella concentrations were negatively correlated to salinity and temperature, and positively correlated to rainfall. Areal loading rates of FIB, Salmonella and E. coli O157:H7 to the coastal ocean were calculated for stream and river sites and varied with land cover, salinity, temperature, and rainfall. Results suggest that FIB and pathogen concentrations are influenced, in part, by their flux from the land, which is exacerbated during rainfall; once waterborne, bacterial persistence is affected by water temperature and

  7. Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems

    PubMed Central

    Metson, Geneviève S.; Bennett, Elena M.

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities’ P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents’ relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256

  8. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    PubMed

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  9. Trade-off analysis in the Northern Andes to study the dynamics in agricultural land use.

    PubMed

    Stoorvogel, J J; Antle, J M; Crissman, C C

    2004-08-01

    In this paper we hypothesize that land use change can be induced by non-linearities and thresholds in production systems that impact farmers' decision making. Tradeoffs between environmental and economic indicators is a useful way to represent dynamic properties of agricultural systems. The Tradeoff Analysis (TOA) System is software designed to implement the integrated analysis of tradeoffs in agricultural systems. The TOA methodology is based on spatially explicit econometric simulation models linked to spatially referenced bio-physical simulation models to simulate land use and input decisions. The methodology has been applied for the potato-pasture production system in the Ecuadorian Andes. The land use change literature often describes non-linearity in land use change as a result of sudden changes in the political (e.g. new agricultural policies) or environmental setting (e.g. earthquakes). However, less attention has been paid to the non-linearities in production systems and their consequences for land use change. In this paper, we use the TOA system to study agricultural land use dynamics and to find the underlying processes for non-linearities. Results show that the sources of non-linearities are in the properties of bio-physical processes and in the decision making-process of farmers.

  10. Influence of Land Cover and Climate on CO2 and CH4 fluxes from Urban Soils

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; Groffman, P. M.; Kaushal, S.; Gold, A.; Cole, J. N.

    2015-12-01

    Soils are important sinks for greenhouse gases globally. Urbanization influences biogeochemical processes and gas fluxes through increased nitrogen deposition, heat island effects, and vegetation management. Previous work at the Baltimore Ecosystem Study LTER site has reported elevated CO2 fluxes and reduced CH4 consumption in urban soils. Differences among soils (urban forest, rural forest, lawns) have been linked to nitrogen cycling and may also be driven by temperature differences between land cover types. A combination of site-specific changes (land cover, nitrogen availability) and climatological (temperature, soil moisture) factors are likely to influence long-term patterns in gas fluxes and therefore carbon storage in growing urban regions. We utilized 15 years of measured gas fluxes and continuous temperature and soil moisture data to model CO2 emissions and CH4 consumption under different vegetation classes. We scaled these fluxes to the metropolitan region using high-resolution spatial, and found that regional CH4 consumption and CO2 fluxes are sensitive to changes in temperature and land cover. For instance, in 2007 land cover in Baltimore City had 21% lawn and 22% forest cover. If all of the lawn area in the city were converted to urban forest, CH4 consumption by urban soils would increase by 70% and CO2 emissions would decrease by 20%. In suburban Baltimore County, lawns and urban forests comprised 35 and 50% of land cover respectively. If all lawns in the county were converted to urban forest, soil CH4 consumption would increase by 55% and soil CO2 flux would decrease by 20%. Soil CO2 fluxes also increase by approximately 0.1g C m-2 d-1 for every 1° C increase across all land cover classes. CH4 consumption increases with temperature in urban and rural forest soils. Our results highlight the interacting effects of land cover change and climate on carbon fluxes from urban soils.

  11. Implications of agricultural transitions and urbanization for ecosystem services.

    PubMed

    Cumming, Graeme S; Buerkert, Andreas; Hoffmann, Ellen M; Schlecht, Eva; von Cramon-Taubadel, Stephan; Tscharntke, Teja

    2014-11-06

    Historically, farmers and hunter-gatherers relied directly on ecosystem services, which they both exploited and enjoyed. Urban populations still rely on ecosystems, but prioritize non-ecosystem services (socioeconomic). Population growth and densification increase the scale and change the nature of both ecosystem- and non-ecosystem-service supply and demand, weakening direct feedbacks between ecosystems and societies and potentially pushing social-ecological systems into traps that can lead to collapse. The interacting and mutually reinforcing processes of technological change, population growth and urbanization contribute to over-exploitation of ecosystems through complex feedbacks that have important implications for sustainable resource use.

  12. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  13. When Vacant Lots Become Urban Gardens: Characterizing the Perceived and Actual Food Safety Concerns of Urban Agriculture in Ohio.

    PubMed

    Kaiser, Michelle L; Williams, Michele L; Basta, Nicholas; Hand, Michelle; Huber, Sarah

    2015-11-01

    This study was intended to characterize the perceived risks of urban agriculture by residents of four low-income neighborhoods in which the potential exists for further urban agriculture development and to provide data to support whether any chemical hazards and foodborne pathogens as potential food safety hazards were present. Sixty-seven residents participated in focus groups related to environmental health, food security, and urban gardening. In addition, soils from six locations were tested. Residents expressed interest in the development of urban gardens to improve access to healthy, fresh produce, but they had concerns about soil quality. Soils were contaminated with lead (Pb), zinc, cadmium (Cd), and copper, but not arsenic or chromium. Results from our study suggest paint was the main source of soil contamination. Detectable polyaromatic hydrocarbon (PAH) levels in urban soils were well below levels of concern. These urban soils will require further management to reduce Pb and possibly Cd bioavailability to decrease the potential for uptake into food crops. Although the number of locations in this study is limited, results suggest lower levels of soil contaminants at well-established gardens. Soil tillage associated with long-term gardening could have diluted the soil metal contaminants by mixing the contaminants with clean soil. Also, lower PAH levels in long-term gardening could be due to enhanced microbial activity and PAH degradation, dilution, or both due to mixing, similar to metals. No foodborne pathogen targets were detected by PCR from any of the soils. Residents expressed the need for clearness regarding soil quality and gardening practices in their neighborhoods to consume food grown in these urban areas. Results from this study suggest long-term gardening has the potential to reduce soil contaminants and their potential threat to food quality and human health and to improve access to fresh produce in low-income urban communities.

  14. Dynamic Agricultural Land Unit Profile Database Generation using Landsat Time Series Images

    NASA Astrophysics Data System (ADS)

    Torres-Rua, A. F.; McKee, M.

    2012-12-01

    Agriculture requires continuous supply of inputs to production, while providing final or intermediate outputs or products (food, forage, industrial uses, etc.). Government and other economic agents are interested in the continuity of this process and make decisions based on the available information about current conditions within the agriculture area. From a government point of view, it is important that the input-output chain in agriculture for a given area be enhanced in time, while any possible abrupt disruption be minimized or be constrained within the variation tolerance of the input-output chain. The stability of the exchange of inputs and outputs becomes of even more important in disaster-affected zones, where government programs will look for restoring the area to equal or enhanced social and economical conditions before the occurrence of the disaster. From an economical perspective, potential and existing input providers require up-to-date, precise information of the agriculture area to determine present and future inputs and stock amounts. From another side, agriculture output acquirers might want to apply their own criteria to sort out present and future providers (farmers or irrigators) based on the management done during the irrigation season. In the last 20 years geospatial information has become available for large areas in the globe, providing accurate, unbiased historical records of actual agriculture conditions at individual land units for small and large agricultural areas. This data, adequately processed and stored in any database format, can provide invaluable information for government and economic interests. Despite the availability of the geospatial imagery records, limited or no geospatial-based information about past and current farming conditions at the level of individual land units exists for many agricultural areas in the world. The absence of this information challenges the work of policy makers to evaluate previous or current

  15. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  16. Effects of Urban Development on Water-Quality in the Piedmont of North Carolina-- The NAWQA Urban Land-Use Gradient Study

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Cuffney, T. F.; Giddings, E. M.; McMahon, G.

    2004-12-01

    A study of urban basins located in the Piedmont of North Carolina is underway as part of the U. S. Geological Survey National Water-Quality Assessment (NAWQA) to determine the relation between level of urban development and water quality. Data were collected from 30 basins on water chemistry (nutrient, pesticide, and ion concentrations), geomorphic and habitat characteristics, hydrologic stage, discharge, water temperature, pH, dissolved-oxygen concentration, specific conductance, benthic algae, invertebrate communities, and fish communities. Collection frequency for water chemistry ranged from 2 samples (at 20 sites) to 6 samples (at 10 sites). Biological data were collected in each basin twice. Investigation of the effects of urbanization on water quality must control for the effects of natural factors, while varying the degree of urbanization between study basins. A regional framework was used to control variability in natural factors that influence water-quality. The urban intensity in each basin was measured by using an index to integrate information on human influences. The Urban Index includes information about land cover, infrastructure, population, and socioeconomic characteristics. Sites were selected to represent the full gradient of undeveloped to fully urbanized basins. A preliminary review of the stream water-chemistry data indicates distinct relations between ionic composition and the Urban Index. Mean specific conductance was positively correlated with the Urban Index (Spearman correlation coefficient (r) = 0.77; 95-percent confidence limits (95CL) 0.61 - 0.93; probability (pr) <0.0001; N=30). Specific conductance ranged from 56 microsiemens (uS) at the least developed site to 607 uS at the most developed site. Dissolved sulfate (r=0.74; 95CL 0.57 - 0.91; pr <0.0001) and chloride (r=0.71; 95CL 0.52 - 0.90; pr <0.0001) were also positively correlated with the Urban Index. Sulfate ranged from 2.3 to 66 milligrams per liter (mg/L), and chloride ranged

  17. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  18. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  19. Elbe river flood peaks and postwar agricultural land use in East Germany.

    PubMed

    van der Ploeg, R R; Schweigert, P

    2001-12-01

    Collectivization of farmland since the 1950s has changed the agricultural land use in former East Germany. Single fields on the collective farms became increasingly large and were cultivated with increasingly heavy farm equipment. This led to large-scale physical degradation of arable soils, enhancing the formation of surface runoff in periods with prolonged and excessive precipitation. The extent to which this development may have affected the discharge behavior of the main East German river, the Elbe, has so far not been studied. We analyzed the flood peaks of the Elbe during the past century (1900-2000). The flood discharge behavior of the Elbe has apparently changed significantly since the 1950s. Although climate changes may be involved, we conclude that the Elbe flood peaks, recorded since 1950, are related to the changes in postwar agricultural land use in former East Germany. To restore the degraded farmland soils, a change in agricultural land use may be necessary.

  20. Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land-use and pollutant recharge

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Young; Yun, Seong-Taek; Yu, Soon-Young; Lee, Pyeong-Koo; Park, Seong-Sook; Chae, Gi-Tak; Mayer, Bernhard

    2005-10-01

    The ionic and isotopic compositions (δD, δ18O, and 3H) of urban groundwaters have been monitored in Seoul to examine the water quality in relation to land-use. High tritium contents (6.1-12.0 TU) and the absence of spatial/seasonal change of O-H isotope data indicate that groundwaters are well mixed within aquifers with recently recharged waters of high contamination susceptibility. Statistical analyses show a spatial variation of major ions in relation to land-use type. The major ion concentrations tend to increase with anthropogenic contamination, due to the local pollutants recharge. The TDS concentration appears to be a useful contamination indicator, as it generally increases by the order of forested green zone (average 151 mg/l), agricultural area, residential area, traffic area, and industrialized area (average 585 mg/l). With the increased anthropogenic contamination, the groundwater chemistry changes from a Ca-HCO3 type toward a Ca-Cl(+NO3) type. The source and behavior of major ions are discussed and the hydrochemical backgrounds are proposed as the basis of a groundwater management plan.

  1. EFFECTS OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    This study investigated differences in pathogen and indicator organism concentrations in stormwater runoff between different urban land uses and seasons. Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cros...

  2. Remote sensing in Arizona. [for land use and urban development planning

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Adams, R. E.

    1975-01-01

    Orthophotoquads prepared from high altitude photography and LANDSAT imagery were utilized for land use mapping and urban development planning. LANDSAT imagery of rough terrains were evaluated by photographic projection on a viewer screen for enlargement of details.

  3. [Diarrhea in urban agricultural workers in Nouakchott in Mauritania].

    PubMed

    Gagneux, S; Schneider, C; Odermatt, P; Cisse, G; Cheikh, D; Salem, M L; Toure, A; Tanner, M

    1999-01-01

    Nearly 200 million people in the developing world are dependent or urban gardening for food and income. This practice has been accelerated by the droughts of recent decades which have forced more and more migrants into urban areas. Numerous potential health hazards have been attributed to urban gardening but the exact risks in Sahelian areas remain unclear. The purpose of this cross-sectional study was to evaluate the incidence of diarrhea at the Tel Zatar gardening site in urban Nouakchott, Mauritania. In addition, a case-control study was carried out to identify risk factors for diarrhea in function of gardeners' activity and living conditions. Statistical analysis was performed using univariate and logistical regression methods. The annual incidence of diarrhea ranged from 6.9 (IC95 p. 100 = 5.0-8.8) to 8.5 (IC95 p. 100 = 6.2-10.8) episodes per gardener and year. Multivariate analysis identified four significant risk factors. Two of these factors were unrelated to gardening, i.e., not having spent more than USD 3.50 the previous day (odds ratio (OR = 2.8, IC95 p. 100 = 1.01-7.81) and poor food hygiene (cooking outside (OR = 4.69, IC95 p. 100 = 1.06-20.83). The other two factors were regular consumption of raw vegetables (OR = 25.5, IC95 p. 100 = 2.0-32.0) and use of untreated well water (OR = 3.85, IC95 p. 100 = 1.08-14.29). Unprotected well water was the cause of 59.2 p. 100 of diarrheal episodes reported by gardeners at Tel Zatar. The results of this study confirm that vegetable production in urban gardens such as Tel Zatar is associated with health risks. Public health measures should address not only the garden sites but also domestic hygiene.

  4. US agricultural policy, land use change, and biofuels: are we driving our way to the next dust bowl?

    NASA Astrophysics Data System (ADS)

    Wright, Christopher K.

    2015-05-01

    Lark et al (2015 Environ. Res. Lett. 10 044003), analyze recent shifts in US agricultural land use (2008-2012) using newly-available, high-resolution geospatial information, the Cropland Data Layer. Cropland expansion documented by Lark et al suggests the need to reform national agricultural policies in the wake of an emerging, new era of US agriculture characterized by rapid land cover/land use change.

  5. Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes.

    PubMed

    Yang, Shinwoo; Carlson, Kenneth

    2003-11-01

    A river along the semi-arid Front Range of Colorado was monitored for antibiotics including five tetracycline and six sulfonamide compounds. Existing analytical methods were adapted to measure these compounds in a surface water matrix at environmentally relevant concentrations (0.05 microg/L). Natural organic matter present in surface waters was confirmed to significantly impact the low-level analysis of tetracyclines (TCs) necessitating the use of standard addition quantification techniques. Five sites along the Cache la Poudre River were monitored for antibiotics encompassing pristine areas without anthropogenic influence, urban areas impacted by wastewater discharges and agricultural areas susceptible to non-point source contaminant runoff. The only site at which no antibiotics were detected was the pristine site in the mountains before the river had encountered urban or agricultural landscapes. By the time the river had exited the urban area, 6 of the 11 antibiotic compounds that were monitored were found in the samples. At Site 5, which had both urban and agricultural influences all five of the TCs monitored were detected indicating both urban and agricultural influences. The concentration of TCs at Site 5 ranged from 0.08 to 0.30 microg/L.

  6. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon

    PubMed Central

    Galford, Gillian L.; Soares-Filho, Britaldo; Cerri, Carlos E. P.

    2013-01-01

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes. PMID:23610175

  7. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon.

    PubMed

    Galford, Gillian L; Soares-Filho, Britaldo; Cerri, Carlos E P

    2013-06-05

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.

  8. Changes in population and agricultural land in conterminous United States counties, 1790 to 1997

    USGS Publications Warehouse

    Waisanen, Pamela J.; Bliss, Norman B.

    2002-01-01

    We have developed a data set of changes in population and agricultural land for the conterminous United States at the county level, resulting in more spatial detail than in previously available compilations. The purpose was to provide data on the timing of land conversion as an input to dynamic models of the carbon cycle, although a wide variety of applications exist for the physical, biological, and social sciences. The spatial data represent the appropriate county boundaries for each census year between 1790 and 1997, and the census attributes are attached to the appropriate spatial region. The resulting time series and maps show the history of population (1790-1990) and the history of agricultural development (1850-1997). The patterns of agricultural development reflect the influences of climate, soil productivity, increases in population size, variations in the general economy, and technological changes in the energy, transportation, and agricultural sectors.

  9. Rates and potentials of soil organic carbon sequestration in agricultural lands in Japan: an assessment using a process-based model and spatially-explicit land-use change inventories

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2013-11-01

    to other land-use types by abandoning or urbanization accompanied by substantial changes in the rate of organic carbon input to soils, could cause a greater or comparable influence on country-scale SCSC compared with changes in management of agricultural lands. A net-net based accounting on SCSC showed potential influence of variations in future climate on SCSC, that highlighted importance of application of process-based model for estimation of this quantity. Whereas a baseline-based accounting on SCSC was shown to have robustness over variations in future climate and effectiveness to factor out direct human-induced influence on SCSC. Validation of the system's function to estimate SCSC in agricultural lands, by comparing simulation output with data from nation-wide stationary monitoring conducted during year 1979-1998, suggested that the system has an acceptable levels of validity, though only for limited range of conditions at current stage. In addition to uncertainties in estimation of the rate of organic carbon input to soils in different land-use types at large-scale, time course of SOC sequestration, supposition on land-use change pattern in future, as well as feasibility of agricultural policy planning are considered as important factors that need to be taken account in estimation on a potential of country-scale SCSC.

  10. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although

  11. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  12. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration.

    PubMed

    Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso

    2017-01-15

    Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha(-1) on average, ranging from 5.4MgCha(-1) to 26.7MgCha(-1) in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO2 emission as a whole was reduced by 887,745Mg CO2. Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily.

  13. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan.

    PubMed

    Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M

    2013-11-01

    Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.

  14. Detection and assessment of land use dynamics on Tenerife (Canary Islands): the agricultural development between 1986 and 2010

    NASA Astrophysics Data System (ADS)

    Günthert, Sebastian; Naumann, Simone; Siegmund, Alexander

    2012-10-01

    Since Spanish colonial times, the Canary Islands and especially Tenerife have always been used for intensive agriculture. Today almost 1/4 of the total area of Tenerife are agriculturally affected, whereas especially mountainous areas with suitable climate conditions are drastically transformed for agricultural use by building of large terraces. In recent years, political and economical developments lead to a further transformation process, especially inducted by an expansive tourism, which caused concentration- and intensification-tendencies of agricultural land use in lower altitudes as well as agricultural set-aside and rural exodus in the hinterland. The overall aim of the research at hand is to address the agricultural land use dynamics of the past decades, to statistically assess the causal reasons for those changes and to model the future agricultural land use dynamics on Tenerife. Therefore, an object-based classification procedure for recent RapidEye data (2010), Spot 4 (1998) as well as SPOT 1 (1986-88) imagery was developed, followed by a post classification comparison (PCC). Older agricultural fallow land or agricultural set-aside with a higher level of natural succession can hardly be acquired in the used medium satellite imagery. Hence, a second detection technique was generated, which allows an exact identification of the total agriculturally affected area on Tenerife, also containing older agricultural fallow land or agricultural set-aside. The method consists of an automatic texture-oriented detection and area-wide extraction of linear agricultural structures (plough furrows and field boundaries of arable land, utilised and non-utilised agricultural terraces) in current orthophotos of Tenerife. Once the change detection analysis is realised, it is necessary to identify the different driving forces which are responsible for the agricultural land use dynamics. The statistical connections between agricultural land use changes and these driving forces

  15. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  16. Impacts of land-use history on the recovery of ecosystems after agricultural abandonment

    NASA Astrophysics Data System (ADS)

    Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Lindeskog, Mats; Arneth, Almut

    2016-09-01

    Land-use changes have been shown to have large effects on climate and biogeochemical cycles, but so far most studies have focused on the effects of conversion of natural vegetation to croplands and pastures. By contrast, relatively little is known about the long-term influence of past agriculture on vegetation regrowth and carbon sequestration following land abandonment. We used the LPJ-GUESS dynamic vegetation model to study the legacy effects of different land-use histories (in terms of type and duration) across a range of ecosystems. To this end, we performed six idealized simulations for Europe and Africa in which we made a transition from natural vegetation to either pasture or cropland, followed by a transition back to natural vegetation after 20, 60 or 100 years. The simulations identified substantial differences in recovery trajectories of four key variables (vegetation composition, vegetation carbon, soil carbon, net biome productivity) after agricultural cessation. Vegetation carbon and composition typically recovered faster than soil carbon in subtropical, temperate and boreal regions, and vice versa in the tropics. While the effects of different land-use histories on recovery periods of soil carbon stocks often differed by centuries across our simulations, differences in recovery times across simulations were typically small for net biome productivity (a few decades) and modest for vegetation carbon and composition (several decades). Spatially, we found the greatest sensitivity of recovery times to prior land use in boreal forests and subtropical grasslands, where post-agricultural productivity was strongly affected by prior land management. Our results suggest that land-use history is a relevant factor affecting ecosystems long after agricultural cessation, and it should be considered not only when assessing historical or future changes in simulations of the terrestrial carbon cycle but also when establishing long-term monitoring networks and

  17. Geospatial Analysis of Urban Land Use Pattern Analysis for Hemorrhagic Fever Risk - a Review

    NASA Astrophysics Data System (ADS)

    Izzah, L. N.; Majid, Z.; Ariff, M. A. M.; Fook, C. K.

    2016-09-01

    Human modification of the natural environment continues to create habitats in which vectors of a wide variety of human and animal pathogens (such as Plasmodium, Aedes aegypti, Arenavirus etc.) thrive if unabated with an enormous potential to negatively affect public health. Typical examples of these modifications include impoundments, dams, irrigation systems, landfills and so on that provide enabled environment for the transmission of Hemorrhagic fever such as malaria, dengue, avian flu, Lassa fever etc. Furthermore, contemporary urban dwelling pattern appears to be associated with the prevalence of Hemorrhagic diseases in recent years. These observations are not peculiar to the developing world, as urban expansion also contributes significantly to mosquito and other vectors habitats. This habitats offer breeding ground to some vector virus populations. The key to disease control is developing an understanding of the contribution of human landscape modification to vector-borne pathogen transmission and how a balance may be achieved between human development, public health, and responsible urban land use. A comprehensive review of urban land use Pattern Analysis for Hemorrhagic fever risk has been conducted in this paper. The study found that most of the available literatures dwell more on the impact of urban land use on malaria and dengue fevers; however, studies are yet to be found discussing the implications of urban land use on the risk of Ebola, Lassa and other non-mosquito borne VHFs. A relational model for investigating the influence of urban land use change pattern on the risk of Hemorrhagic fever has been proposed in this study.

  18. Namibia specific climate smart agricultural land use practices: Challenges and opportunities for enhancing ecosystem services

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Talamondjila Naanda, Martha; Bloemertz, Lena

    2015-04-01

    Agriculture is a backbone for many African economies, with an estimated 70% of Africans active in agricultural production. The sector often does not only directly contribute to, but sustains food security and poverty reduction efforts. Sustaining this productivity poses many challenges, particularly to small scale subsistence farmers (SSF) in dry land areas and semi-arid countries like Namibia. SSF in northern central Namibia mix crop and livestock production on degraded semi-arid lands and nutrient-poor sandy soils. They are fully dependent on agricultural production with limited alternative sources of income. Mostly, their agricultural harvests and outputs are low, not meeting their livelihood needs. At the same time, the land use is often not sustainable, leading to degradation. The Namibia case reveals that addressing underlying economic, social and environmental challenges requires a combination of farm level-soil management practices with a shift towards integrated landscape management. This forms the basis for SSF to adopt sustainable land management practices while building institutional foundations, like establishing SSF cooperatives. One way in which this has been tested is through the concept of incentive-based motivation, i.e. payment for ecosystem services (PES), in which some of the beneficiaries pay, for instance for farmers or land users, who provide the services. The farmers provide these services by substituting their unsustainable land and soil management and adopting new (climate smart agricultural) land use practices. Climate Smart Agricultural land use practices (CSA-LUP) are one way of providing ecosystem services, which could be fundamental to long-term sustainable soil and land management solutions in Africa. There are few PES cases which have been systematically studied from an institutional development structure perspective. This study presents lessons evolving from the notion that direct participation and involvement of local people

  19. Stakeholder perception about urban sprawl impacts in land degradation in Lithuania. The importance of profession and education.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiune, Ieva; Mierauskas, Pranas; Depellegrin, Daniel

    2016-04-01

    Stakeholders have an important impact on land use planning. Their visions and culture, shape and influence the decision makers and the legislation (Schwilch et al., 2009; Fleskens and Stringer, 2014; Pereira et al., 2016; Subiros et al., 2016). Nowadays, urban sprawl is one the causes of land degradation, causing important, environmental, social and economic problems. This expansion to rural areas is caused mainly by lifestyle changes, cultural views, increase of mobility, house price in city centers, poor air quality, noise, small apartments, unsafe environments, lack of green areas, competition among municipalities, development of transport network and social problems. Urban sprawl is currently an important problem in Lithuania, especially in Vilnius. Vilnius residents are concerned about the impacts of urban sprawl in environmental, social and economic aspects. Nevertheless, this depends very much on the age of and the occupation of the residents (Pereira et al., 2014). However, very little information is available about the vision of stakeholders regarding this position. The objective of this work is to study the stakeholder's perception about urban sprawl impacts on land degradation in Lithuania. A total of 86 stakeholders from different institutions were interviewed and asked to rate from 1 to 5 according to the importance of the question (1=very low; 2=low; 3=medium; 4=high and 5=very high). The questions carried out were. Does urban sprawl have impacts on a) consumption of land and soil, b) loss of soil permeability, c) loss of soil biodiversity, d) loss of best agricultural land, e) increase in the use of water and fertilizers in less productive areas, f) increase in soil erosion in remote areas, and g) loss of natural habitats. These variables were analyzed according to the gender, age, place of residence (urban/countryside), Profession, field of studies, study level and if the participant was a member of a NGO. A general regression was carried out in

  20. LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN

    EPA Science Inventory

    The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

  1. The Land-Grant Analogy and the American Urban University: An Historical Analysis

    ERIC Educational Resources Information Center

    Diner, Steven J.

    2013-01-01

    This article examines how the history of land-grant universities in America shaped the views of higher educators, public officials, and foundations on the role of urban universities in addressing the problems of American cities. Higher education leaders urged the federal government to provide funds that would enable urban universities to do for…

  2. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management.

    PubMed

    Beck, Scott M; McHale, Melissa R; Hess, George R

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m(2)) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  3. [Relationship Between Agricultural Land and Water Quality of Inflow River in Erhai Lake Basin].

    PubMed

    Pang, Yan; Xiang, Song; Chu, Zhao-sheng; Xue, Li-qiang; Ye, Bi-bi

    2015-11-01

    We studied the relationship between agricultural land and water quality of inflow river in Erhai Lake Basin, by means of spatial and statistical analysis, from the perspective of comprehensive agricultural land and the area percentage of different types of agricultural land. The obtained results indicated that inflow water quality showed a significant spatial difference, the inflow TP pollution in the western inflow rivers of Erhai Basin was serious. The major pollution indicators in the northern and southern inflow rivers (except for D3) were organic matter and nitrogen. The area percentage of agricultural land had a significantly indicative effect on the water quality of inflow river. The area percentage of comprehensive agricultural land negatively correlated with permanganate index, NH4(+) -N, TN and TP contents in wet season, the correlation coefficients were - 0.859, - 0.565, - 0.693, - 0.181. It negatively correlated with permanganate index and NH4(+) -N content in dry season, the correlation coefficients were - 0.384, - 0.328. It had positive relationships with and TN, TP content in dry season, the correlation coefficients were 0.221 and 0.146. The area percentage of different types of agricultural land had an obviously indicative effect on the inflow water quality. Farmland positively correlated with TN and TP contents both in wet and dry seasons. The correlation coefficients between farmland and TN, TP were 0.252, 0.581 in rainy season and were 0.149, 0.511 in dry season. It had positive and negative relationships with permanganate index, NH4(+) -N content in wet season and dry season, respectively. The correlation coefficients between farmland and permanganate index, NH4(+) -N were 0.388, 0.053 in rainy season and were -0.137, -0.147 in dry season. Forest land exhibited an opposite performance to that of farmland. The correlation coefficients between forest land and TN, TP, permanganate index, NH4(+) -N were - 0.526, - 0.275, - 0.469, -0.155 in rainy

  4. Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan

    2015-06-01

    Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.

  5. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  6. Analysing Relationships Between Urban Land Use Fragmentation Metrics and Socio-Economic Variables

    NASA Astrophysics Data System (ADS)

    Sapena, M.; Ruiz, L. A.; Goerlich, F. J.

    2016-06-01

    Analysing urban regions is essential for their correct monitoring and planning. This is mainly accounted for the sharp increase of people living in urban areas, and consequently, the need to manage them. At the same time there has been a rise in the use of spatial and statistical datasets, such as the Urban Atlas, which offers high-resolution urban land use maps obtained from satellite imagery, and the Urban Audit, which provides statistics of European cities and their surroundings. In this study, we analyse the relations between urban fragmentation metrics derived from Land Use and Land Cover (LULC) data from the Urban Atlas dataset, and socio-economic data from the Urban Audit for the reference years 2006 and 2012. We conducted the analysis on a sample of sixty-eight Functional Urban Areas (FUAs). One-date and two-date based fragmentation indices were computed for each FUA, land use class and date. Correlation tests and principal component analysis were then applied to select the most representative indices. Finally, multiple regression models were tested to explore the prediction of socio-economic variables, using different combinations of land use metrics as explanatory variables, both at a given date and in a dynamic context. The outcomes show that demography, living conditions, labour, and transportation variables have a clear relation with the morphology of the FUAs. This methodology allows us to compare European FUAs in terms of the spatial distribution of the land use classes, their complexity, and their structural changes, as well as to preview and model different growth patterns and socio-economic indicators.

  7. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization.

    PubMed

    Zhang, Wenting; Huang, Bo

    2015-03-01

    Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of

  8. Multi-Agent Based Simulation of Optimal Urban Land Use Allocation in the Middle Reaches of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Huang, W.; Jin, W.; Li, S.

    2016-06-01

    The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.

  9. Agricultural Land Cover from Multitemporal C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Skriver, H.

    2013-12-01

    Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were

  10. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  11. Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling

    PubMed Central

    2011-01-01

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic–toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  12. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  13. Contrasting Pesticide Occurrence in Urban and Agricultural Streams in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Van Metre, P. C.; Sandstrom, M. W.; Nowell, L. H.; Frey, J. W.; Hladik, M.; Gilliom, R. W.

    2014-12-01

    Pesticides are known to degrade stream ecosystems in agricultural and urban settings. Occurrence, seasonal timing, and predicted toxicity of pesticides in these two settings, however, can vary greatly. In 2013, the U.S. Geological Survey and the U.S. Environmental Protection Agency characterized water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in 100 streams across the Midwestern U.S. Water samples were collected weekly from May through July and sediment and ecology were sampled once near the end of the water-sampling period. Water samples were analyzed for about 240 pesticides and pesticide degradates and sediment samples were analyzed for about 120 pesticides and degradates. The spatial and temporal distribution of detected compounds and the pesticide toxicity index (PTI) of compound mixtures indicate important differences in pesticide occurrence between agricultural and urban settings. Although higher pesticide concentrations generally are found in agricultural settings, the more frequent occurrence of insecticides in urban settings can lead to higher PTI scores in some urban streams than in agricultural streams.

  14. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  15. Child Labour in Urban Agriculture: The Case of Dar es Salaam, Tanzania.

    ERIC Educational Resources Information Center

    Mlozi, Malongo R. S.

    1995-01-01

    Urban agriculture in Dar es Salaam was found to use child labor of both children with parents of higher and lower socioeconomic status (SES). Discusses policy implications and calls for the education of parents of lower SES not to expect an economic contribution from their children's labor, and the education of children about their rights. (LZ)

  16. An Exploration of the Motivational Profile of Secondary Urban Agriculture Students

    ERIC Educational Resources Information Center

    Anderson, James C., II

    2013-01-01

    This descriptive-correlational study examined the personal factors that may affect the self-determination of 110 freshmen who have elected to enroll in an urban agriculture program. The personal factors, termed the motivational profile, consisted of influences in the decision to enroll in the program, the student's type of motivation to attend the…

  17. Entrepreneurial Endeavors: (Re)Producing Neoliberalization through Urban Agriculture Youth Programming in Brooklyn, New York

    ERIC Educational Resources Information Center

    Weissman, Evan

    2015-01-01

    Driven by social and environmental criticism of the neoliberalization of agro-food systems, urban agriculture today enjoys renewed interest throughout the United States as a primary space to engage the politics of food. Using Brooklyn, New York as a case study, I employ mixed qualitative methods to investigate the contradictions that arise in…

  18. Impact of conservation land management practices on soil microbial function in an agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Conservation Reserve Program (CRP) involves removing agricultural land from production and replanting with native vegetation for the purpose of reducing agriculture’s impact on the environment. In 2002, part of the Beasley Lake watershed in the Mississippi Delta was enrolled in CRP. In ad...

  19. Global pattern of soil carbon losses due to the conversion of forests to agricultural land.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Gale, William; Li, Linhai

    2014-02-11

    Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant (k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks.

  20. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  1. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  2. Gender and Agricultural Science: Evidence from Two Surveys of Land-Grant Scientists.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.; Goldberger, Jessica R.

    2002-01-01

    Analysis of surveys of land-grant agricultural scientists in 1979 and 1996 found significant gender differences in postdoctoral work experience, academic rank, employment of graduate students, book publication, and links with private industry. Gender differences were found in attitudes toward biotechnology and university-industry links, but not in…

  3. Impacts of Forest and Agricultural Land Use on Stream Dissolved Organic Carbon During Storms

    NASA Astrophysics Data System (ADS)

    Oh, N. H.; Shin, Y.; Jeon, Y. J.; Lee, E. J.; Eom, J. S.; Kim, B.

    2015-12-01

    Although many studies have been conducted to evaluate the effects of land use on concentrations and compositions of dissolved organic carbon (DOC) in streams and rivers, the relationships are still not clear. To elucidate the impacts of forest and agricultural land use on stream DOC during storm events, we investigated concentrations, optical properties, δ13C, and Δ 14C of DOC in forest and agriculture dominated headwater streams in South Korea. Stream DOC concentrations were the highest in a forested subwatershed, and a significant positive correlation was observed between stream DOC concentrations and the proportion of forested area in watersheds, which was strengthened by increased rain intensity. Four PARAFAC components were extracted including terrestrial humic substances, terrestrial fulvic acids, microbial organic matter, and protein-like organic matter, all of which showed a positive correlation with stream DOC concentration although relative proportion of components were dependent on land use. While DOC in a forest stream was mostly composed of terrestrially derived and 14C-enriched, DOC in an agricultural stream included aged DOC up to ~1,000 years old. Although the impacts of hydrological changes due to irrigation, fertilizer use, and selected crop species were not examined, the results of this study suggest that agricultural land use can be a source of aged terrestrial DOC to streams during summer monsoon storms, potentially changing the balance of the regional carbon cycle.

  4. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  5. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and comply... 25 Indians 1 2011-04-01 2011-04-01 false How will tribal laws be enforced on Indian...

  6. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and comply... 25 Indians 1 2014-04-01 2014-04-01 false How will tribal laws be enforced on Indian...

  7. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and comply... 25 Indians 1 2012-04-01 2011-04-01 true How will tribal laws be enforced on Indian...

  8. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and comply... 25 Indians 1 2013-04-01 2013-04-01 false How will tribal laws be enforced on Indian...

  9. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  10. "Left High and Dry": Federal Land Policies and Pima Agriculture, 1860-1910

    ERIC Educational Resources Information Center

    Dejong, David H.

    2009-01-01

    The Akimel O'odham, or "River People" (Pima), have lived in the middle Gila River Valley for centuries, irrigating and cultivating the same land as their Huhugam ancestors did for millennia. Continuing their irrigated agricultural economy bequeathed to them by their Huhugam ancestors, the Pima leveraged a favorable geopolitical setting into a…

  11. Land Conservation in an Evolving Agricultural Industry: Trade-offs to Consider

    NASA Astrophysics Data System (ADS)

    Baker, J. S.; Murray, B. C.; McCarl, B. A.; Jackson, R. B.

    2008-12-01

    This study analyzes the interactions of land conservation policy with biofuel expansion using an economic model of the U.S. forest and agricultural sectors. The world agricultural industry is changing rapidly under emerging market and policy-based pressures. An important driver in the U.S. is the Renewable Fuels Standard (RFS), which mandates significant expansion in biofuels production (up to 36 billion gallons/year by 2022). Traditional land conservation practices such as the Conservation Reserve Program (CRP) are at risk in this changing agricultural climate, as the opportunity costs of reverting to cropland continue to rise. Large- scale reversion of CRP acreage is likely to lead to substantial losses in soil carbon, biodiversity, soil erosion protection, and water quality. However, given the increased competition for land resources, continued efforts to maintain the CRP could induce land use change (LUC) and agricultural development from even more sensitive ecosystems, including native grasslands and forests. This study uses economic modeling to study CRP reversion and LUC under multiple scenarios, including: 1) Baseline assumptions of growth in world agricultural demand and energy prices, with and without CRP reversion; 2) Implementation of the RFS while maintaining the CRP; and 3) RFS with CRP reversion allowed. The study is done using the FASOMGHG model (Lee, McCarl et al, 2008), which is well suited for this analysis as it: 1) Depicts land use competition between crops, pasture, CRP, and forestry over a 100 year period 2) Contains comprehensive GHG accounting across the sectors, 3) Allows land in the CRP to revert to cultivation at an economically optimal rate as land values increase, and 4) Extensively models biofuel and conventional agricultural production possibilities. Results generated to date show significant reversion to cultivation, even under the baseline (36% of the total CRP stock by 2020). Implementing the RFS further pressures conservation

  12. Integrated remote sensing for multi-temporal analysis of urban land cover-climate interactions

    NASA Astrophysics Data System (ADS)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.

    2016-08-01

    Climate change is considered to be the biggest environmental threat in the future in the South- Eastern part of Europe. In frame of predicted global warming, urban climate is an important issue in scientific research. Surface energy processes have an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. This paper investigated the influences of urban growth on thermal environment in relationship with other biophysical variables in Bucharest metropolitan area of Romania. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- climate interactions over period between 2000 and 2015 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, and urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  13. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments.

  14. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture

    PubMed Central

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  15. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    PubMed

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  16. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano

    PubMed Central

    le Polain de Waroux, Yann; Garrett, Rachael D.; Heilmayr, Robert; Lambin, Eric F.

    2016-01-01

    Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in “deforestation havens.” We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation “hot spot” in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching. PMID:27035995

  17. Forest to agriculture conversion in southern Belize: Implications for migrant land birds

    USGS Publications Warehouse

    Spruce, J.P.; Dowell, B.A.; Robbins, C.S.; Sader, S.A.; Doyle, Jamie K.; Schelhas, John

    1993-01-01

    Central America offers a suite of neotropical habitats vital to overwintering migrant land birds. The recent decline of many forest dwelling avian migrants is believed to be related in part to neotropical deforestation and land use change. However, spatio-temporal trends in neotropical habitat availability and avian migrant habitat use are largely unknown. Such information is needed to assess the impact of agriculture conversion on migrant land birds. In response, the USDI Fish and Wildlife Service and the University of Maine began a cooperative study in 1988 which applies remote sensing and field surveys to determine current habitat availability and avian migrant habitat use. Study sites include areas in Belize, Costa Rica, Guatemala and southern Mexico. Visual assessment of Landsat TM imagery indicates southern Belize forests are fragmented by various agricultural systems. Shifting agriculture is predominant in some areas, while permanent agriculture (citrus and mixed animal crops) is the primary system in others. This poster focuses on efforts to monitor forest to agriculture conversion in southern Belize using remote sensing, field surveys and GIS techniques. Procedures and avian migrant use of habitat are summarized.

  18. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano.

    PubMed

    le Polain de Waroux, Yann; Garrett, Rachael D; Heilmayr, Robert; Lambin, Eric F

    2016-04-12

    Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in "deforestation havens." We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation "hot spot" in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching.

  19. Sediment delivery from agricultural land to rivers via subsurface drainage

    NASA Astrophysics Data System (ADS)

    Chapman, A. S.; Foster, I. D. L.; Lees, J. A.; Hodgkinson, R. A.

    2005-10-01

    Diffuse sources of sediment and sediment-associated nutrients are of increasing environmental concern because of their impacts on receiving water courses. The aim of the research reported here was to monitor the outflow from four field (land) drains at two farms in the English Midlands in order to estimate the quantity of sediment delivered to the local rivers and the most likely sources and processes involved. A multiparameter sediment unmixing model was employed, using environmental magnetic, geochemical and radionuclide tracers in order to determine the most likely origin of sediments transported through the drains. Results demonstrated that there was a generally linear relationship between drainflow sediment loss and drainflow volume and that the majority (>70%) of the sediment exported from the drains was derived from topsoil. Macropore flow through heavily cracked soils is supported by the data to be the most likely means of sediment delivery to the drains. In one catchment, drains contributed over 50% of the annual sediment budget. Spatial and temporal variations in the sources of sediment reaching one drain outlet were investigated in detail. A link between soil moisture deficit (SMD) and the frequency of high-intensity rainfall events was used to explain the appearance and persistence of a new sediment source in this drain after October 1998. It is concluded that field drains have the potential to be significant conduits of sediment and agrochemicals in a wide variety of environments in the UK. It is also suggested that this potential may increase if projected climate change leads to more intense rainfall events and increases in SMD across a greater area of the UK.

  20. Breeding biology of Mottled Ducks on agricultural lands in southwestern Louisiana

    USGS Publications Warehouse

    Durham, R.S.; Afton, A.D.

    2006-01-01

    Breeding biology of Anas fulvigula maculosa (Mottled Ducks) has been described in coastal marsh and associated habitats, but little information is available for agricultural habitats in Louisiana. We located nests to determine nest-initiation dates and clutch sizes during the primary breeding season (February-May) in 1999 (n = 29) and 2000 (n = 37) on agricultural lands in southwestern Louisiana. In 1999, 60% of located nests were initiated between 22 March and 10 April, whereas in 2000, only 22% of nests were initiated during the same time period. Average clutch size was 0.9 eggs smaller in 2000 than in 1999. Annual differences in reproductive parameters corresponded with extremely dry conditions caused by low rainfall before the laying period in 2000. Flooded rice fields appear to be important loafing and feeding habitat of Mottled Ducks nesting in agricultural lands, especially during drought periods when other wetland types are not available or where natural wetlands have been eliminated.

  1. Aerosol Retrieval over Urban Area in MODIS Dark Target Land Algorithm

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Levy, R. C.; Mattoo, S.

    2013-12-01

    Urban air quality in many parts of the globe has reached at dangerous level (5 to 10 times higher than WHO guidelines) as urbanization and industrialization have amplified many folds during the last few decades. More than half of the world's population now lives in urban areas and their number will increase 60% by 2030. Therefore it is very critical to monitor air quality (aerosol or PM) on a daily basis; especially in populated regions (urban areas) around the world. The new version (C6) of MODIS Dark Target Land Aerosol Algorithm (MDT) provides aerosol optical depth (AOD) retrievals at 10km2 and 3km2 spatial resolutions over dark vegetated regions. Initial validation efforts during DISCOVER-AQ field campaign over Baltimore-DC area shows that MDT overestimates AOD over urban areas, mainly because the bright and complex urban surface is not characterized properly. Accurate estimation of the surface signal within satellite-measured radiance is essential for aerosol retrieval. Surface characterization can be challenging and small error (~0.01) can produce large errors in retrieved AOD (~0.1). In this new approach, we have modified the surface characterization for urban areas, using the urban percentage information from the MODIS Land Product. We used the MODIS land surface spectral reflectance product to redefine the relationship between shortwave-IR and visible wavelengths over urban areas. We derived new surface characterization for urban area and used the DRAGON network measurements, during DISCOVER-AQ field campaigns, to validate the new AOD retrievals both in 10km and 3km spatial resolution. Initial inter-comparison with AERONET data over US shows significant improvement in AOD retrieval over urban areas. This improved AOD retrieval will be an important step toward utilization of satellite based particulate matter estimation for surface air quality monitoring. We also evaluate whether the new 3km product can enable studies of small-scale gradients in aerosol

  2. Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley

    USGS Publications Warehouse

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi River watershed has resulted in a three-fold increase in the nitrate load of the river since the early 1950s. One way to reduce this nitrate load is to restore wetlands at suitable locations between croplands and receiving waters to remove run-off nitrate through denitrification. This research investigated denitrification potential (DP) of different land uses and its controlling factors in an agricultural watershed in the lower Mississippi valley (LMV) to help identify sites with high DP for reducing run-off nitrate. Soil samples collected from seven land-use types of an agricultural watershed during spring, summer, fall and winter were incubated in the laboratory for DP determination. Low-elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-elevation silt loam and low-elevation clay soils in croplands, respectively. DP of vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, respectively. Soil carbon and nitrogen availability, bulk density, and soil moisture significantly affected DP. These factors were significantly influenced in turn by landscape position and land-use type of the watershed. It is evident from these results that low-elevation, fine-textured soils under natural wetlands are the best locations for mediating nitrate loss from agricultural watersheds in the LMV. Landscape position and land-use types can be used as indices for the assessment/modeling of denitrification potential and identification of sites for restoration for nitrate removal in agricultural watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  3. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  4. Agricultural land-use change in a Mexican oligotrophic desert depletes ecosystem stability

    PubMed Central

    Hernández-Becerra, Natali; Tapia-Torres, Yunuen; Beltrán-Paz, Ofelia; Blaz, Jazmín; Souza, Valeria

    2016-01-01

    Background Global demand for food has led to increased land-use change, particularly in dry land ecosystems, which has caused several environmental problems due to the soil degradation. In the Cuatro Cienegas Basin (CCB), alfalfa production irrigated by flooding impacts strongly on the soil. Methods In order to analyze the effect of such agricultural land-use change on soil nutrient dynamics and soil bacterial community composition, this work examined an agricultural gradient within the CCB which was comprised of a native desert grassland, a plot currently cultivated with alfalfa and a former agricultural field that had been abandoned for over 30 years. For each site, we analyzed C, N and P dynamic fractions, the activity of the enzyme phosphatase and the bacterial composition obtained using 16S rRNA clone libraries. Results The results showed that the cultivated site presented a greater availability of water and dissolved organic carbon, these conditions promoted mineralization processes mediated by heterotrophic microorganisms, while the abandoned land was limited by water and dissolved organic nitrogen. The low amount of dissolved organic matter promoted nitrification, which is mediated by autotrophic microorganisms. The microbial N immobilization process and specific phosphatase activity were both favored in the native grassland. As expected, differences in bacterial taxonomical composition were observed among sites. The abandoned site exhibited similar compositions than native grassland, while the cultivated site differed. Discussion The results suggest that the transformation of native grassland into agricultural land induces drastic changes in soil nutrient dynamics as well as in the bacterial community. However, with the absence of agricultural practices, some of the soil characteristics analyzed slowly recovers their natural state. PMID:27602304

  5. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  6. Benefits for agriculture and the environment from urban waste.

    PubMed

    Sortino, Orazio; Montoneri, Enzo; Patanè, Cristina; Rosato, Roberta; Tabasso, Silvia; Ginepro, Marco

    2014-07-15

    Soluble bio-based substances (SBO) that have been isolated from urban biowaste have recently been reported to enhance plant leaf chlorophyll content and growth. The same SBO have also been shown to enhance the photochemical degradation of organic pollutants in industrial effluent. These findings suggest that SBO may promote either C fixation or mineralization, according to operating conditions. The present work aims to investigate SBO performance, as a function of source material. Thus, three materials have been sampled from a municipal waste treatment plant: (i) the digestate of the anaerobic fermentation of a humid organic fraction, (ii) a whole vegetable compost made from gardening residues and (iii) compost made from a mixture of digestate, gardening residues and sewage sludge. These materials were hydrolyzed at pH13 and 60°C to yield SBO that display different chemical compositions. These products were applied to soil at 30, 145 and 500 kg ha(-1) doses for tomato cultivation. Soil and plant leaf chemical composition, plant growth, leaf chlorophyll content and CO2 exchange rate as well as fruit quality and production rate were measured. Although it did not affect the soil's chemical composition, SBO were found to significantly increase plant photosynthetic activity, growth and productivity up to the maximum value achieved at 145 kg ha(-1). The effects were analyzed as a function of SBO chemical composition and applied dose. The results of this work, compared with those of previous works, indicate that urban biowaste, if properly exploited, may furnish conjugate economic and environmental benefits, within a friendly sustainable ecosystem.

  7. WRF Model Evaluation for the Urban Heat Island Assessment under Varying Land Use/Land Cover and Reference Site Conditions

    NASA Astrophysics Data System (ADS)

    Bhati, S.

    2015-12-01

    Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with inclusion of UCM both for meteorological parameters (T and RH) and the UHIs. Overall, RMSEs for near surface temperature improved from 1.63°C to 1.13°C for urban areas and from 2.89°C to 2.75°C for non-urban areas with inclusion of urban canopy model in WRF. Similarly, index of agreement and RMSEs for mean urban heat island intensities (UHI) improved from 0.77 to 0.88 and 1.91°C to 1.60°C respectively with WRF-UCM. Hit rate from the model simulated mean heat island intensities using WRF model are 72 % for urban areas and 58 % for non-urban areas such as green areas and riverside areas. The corresponding values improved in WRF-UCM with a hit rate of 75% for urban areas and 72 % for non-urban areas. In general, model is able to capture the magnitude of UHI well though it performs better during night than during the daytime. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a rural reference point for UHI estimation near the urban area is examined in the context of rapidly growing cities where nearby rural areas are transforming fast into built-up areas themselves and reference site may not be appropriate for future years. Both WRF and WRF-UCM simulated UHI shows satisfactory performance against benchmarks for the statistical measures with classical methodology using rural site as a reference point. Using an alternate methodology of considering a green area within the city having minimum temperature as a reference site worked satisfactorily only with WRF- UCM. In

  8. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  9. 25 CFR 162.205 - Can individual Indian landowners exempt their agricultural land from certain tribal leasing...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agricultural land from certain tribal leasing policies? 162.205 Section 162.205 Indians BUREAU OF INDIAN... leasing policies? (a) Individual Indian landowners may exempt their agricultural land from the application of a tribal leasing policy of a type described in § 162.203(b) through (c) of this subpart, if...

  10. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities

    PubMed Central

    Birkhofer, Klaus; Smith, Henrik G.; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities. PMID:26730734

  11. Spatial stochastic regression modelling of urban land use

    NASA Astrophysics Data System (ADS)

    Arshad, S. H. M.; Jaafar, J.; Abiden, M. Z. Z.; Latif, Z. A.; Rasam, A. R. A.

    2014-02-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable.

  12. Uncertainty in Urban Flooding Assessment under Climate and Land Use Change

    NASA Astrophysics Data System (ADS)

    Jung, Il Won; Chang, Heejun; Moradkhani, Hamid

    2010-05-01

    According to IPCC AR4 projections, the frequency of heavy precipitation events is likely to increase over the Pacific Northwestern (PNW) of USA during the 21st century. Consequently, flood risk is expected to increase in this region. Additionally, the land use change, such as urban development exacerbates the flood risk. We investigate potential changes in urban flood frequency and their uncertainty caused by future climate change and urban development in two urbanizing watersheds, the Fanno and Johnson, located in the PNW. The Fanno creek watershed is highly developed with a 84% urban land use, and the Johnson creek watershed is moderately developed with a 40% urban land use. The urban development of these watersheds will increase in the future with a higher rate of urban development in the Johnson watershed. This study employs three possible land use change scenarios, Conservation, Development, and Plan Trend, developed by the Pacific Northwest Ecosystem Research Consorthium (PNW-ERC). The Precipitation Runoff Modeling System (PRMS) hydrological model developed by U.S. Geological Survey is employed to simulate runoff changes and resulting changes in flood frequency. To consider model parameter uncertainty, Latin Hypercube Sampling is employed to sample the PRMS model parameter space and estimate the acceptable parameter ranges according to the Nash-Sutcliffe efficiency criterion. The U.S. Geological Survey PeakFQ program is also applied to estimate flood frequency with different recurrence intervals. To estimate uncertainties of climate change projection, we use eight GCMs and two emission scenarios (A1B and B1). The results show that change in flood frequency in the Johnson watershed is more significant than in the Fanno watershed because of the higher rate of urban development. The flood frequency changes are most sensitive to uncertainty in the GCM structure and downscaling method but are less affected by uncertainties due to hydrological model parameters and

  13. Stream sediment sources in midwest agricultural basins with land retirement along channel

    USGS Publications Warehouse

    Williamson, Tanja N.; Christensen, Victoria G.; Richardson, William B.; Frey, Jeffrey W.; Gellis, Allen C.; Kieta, K. A.; Fitzpatrick, Faith A.

    2014-01-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement.

  14. Modelling the effects of recent agricultural land use change on catchment flow and sediment generation

    NASA Astrophysics Data System (ADS)

    Escobar Ruiz, Veronica; Smith, Hugh; Blake, William

    2016-04-01

    Intensive agricultural practices can exacerbate runoff and soil erosion leading to detrimental impacts downstream. Physically-based models have previously been used to assess the impacts on flow and sediment transport in response to land use change, but there has been little investigation of the effect shorter-term changes linked to variations in the extent of cultivated land. The aim of this project is to quantify the impacts on flow generation and sediment transport of different catchment conditions related to both actual recent changes in agricultural land use as well as future change scenarios. To this end, a physically-based distributed hydrological model, SHETRAN was applied in the Blackwater catchment (12 km2) located in south-west England. Land cover was simulated on the basis of satellite-derived land cover maps (1990, 2000 and 2007) as well as a catchment-scale field survey (2011). Soils were represented in the model using five layers for five different soil types in which parameter values were varied in accordance with land use and literature values. Rainfall data (15 min) combined with monthly calculations of evapotranspiration using a simple temperature-based PE model were used to represent contemporary climatic conditions spanning 2010-2014. Calibration was undertaken for selected events during 2011 when land use information was concurrent with available flow and suspended sediment yield data. All land use simulations were then completed for the period 2010-2014 to enable the comparison of model outputs. This contribution will present preliminary results from these land use simulations alongside the effect of several future changes scenarios on catchment flow and sediment generation.

  15. Downscaling climate change scenarios in an urban land use change model.

    PubMed

    Solecki, William D; Oliveri, Charles

    2004-08-01

    The objective of this paper is to describe the process through which climate change scenarios were downscaled in an urban land use model and the results of this experimentation. The land use models (Urban Growth Model [UGM] and the Land Cover Deltatron Model [LCDM]) utilized in the project are part of the SLEUTH program which uses a probabilistic cellular automata protocol. The land use change scenario experiments were developed for the 31-county New York Metropolitan Region (NYMR) of the US Mid-Atlantic Region. The Intergovernmental Panel on Climate Change (IPCC), regional greenhouse gas (GHG) emissions scenarios (Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios) were used to define the narrative scenario conditions of future land use change. The specific research objectives of the land use modeling work involving the SLEUTH program were threefold: (1) Define the projected conversion probabilities and the amount of rural-to-urban land use change for the NYMR as derived by the UGM and LCDM for the years 2020 and 2050, as defined by the pattern of growth for the years 1960-1990; (2) Down-scale the IPCC SRES A2 and B2 scenarios as a narrative that could be translated into alternative growth projections; and, (3) Create two alternative future growth scenarios: A2 scenario which will be associated with more rapid land conversion than found in initial projections, and a B2 scenario which will be associated with a slower level of land conversion. The results of the modeling experiments successfully illustrate the spectrum of possible land use/land cover change scenarios for the years 2020 and 2050. The application of these results into the broader scale climate and health impact study is discussed, as is the general role of land use/land cover change models in climate change studies and associated environmental management strategies.

  16. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    PubMed

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca(+2), Mg(+2), and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg(+2) than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  17. Impacts of agricultural land use on biological integrity: A causal analysis

    USGS Publications Warehouse

    Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.

    2011-01-01

    Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and

  18. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  19. Community Agricultural Processing Services: A Reflection of Urban Differentiation or County Agricultural Structure.

    ERIC Educational Resources Information Center

    Moxley, Robert L.; Calloway, Michael O.

    Questionnaire data from 81 North Carolina communities were analyzed in 1981 to test the hypothesis that 5 institutional subcategories (education, general community services, transportation, agricultural services, and health and sanitation) exhibit the underlying characteristic of unidimensionality and that they reflect comparable levels of…

  20. Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland).

    PubMed

    Nowak, Agnieszka; Schneider, Christian

    2017-07-15

    Environmental degradation encompasses multiple processes that are rarely combined in analyses. This study refers to three types of environmental degradation resulting from agricultural activity: soil erosion, nutrient loss, and groundwater pollution. The research was conducted in seven distinct study areas in the Malopolska Province, Poland, each characterized by different environmental properties. Calculations were made on the basis of common models, i.e., USLE (soil erosion), InVEST (nutrient loss), and DRASTIC (groundwater pollution). Two scenarios were calculated to identify the areas contributing to potential and actual degradation. For the potential degradation scenario all study areas were treated as arable land. To identify the areas actually contributing to all three types of degradation, the de facto land use pattern was used for a second scenario. The results show that the areas most endangered by agricultural activity are located in the mountainous region, whereas most of the degraded zones were located in valley bottoms and areas with intensive agriculture. The different hazards rarely overlap spatially in the given study areas - meaning that different areas require different management approaches. The distribution of arable land was negatively correlated with soil erosion hazard, whereas no linkage was found between nutrient loss or groundwater pollution hazards and the proportion of arable land. This indicates that the soil erosion hazard is the most influential factor in the distribution of arable land, whereas nutrient loss and groundwater pollution is widely ignored during land use decision-making. Slope largely and most frequently influences all hazard types, whereas land use also played an important role in the case of soil and nutrient losses. In this study we presented a consistent methodology to capture complex degradation processes and provide robust indicators which can be included in existing impact assessment approaches like Life Cycle

  1. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  2. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data

    USGS Publications Warehouse

    Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian

    2003-01-01

    We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.

  3. Root and microbial respiration from urban, agricultural and natural soils within the Moscow megapolis

    NASA Astrophysics Data System (ADS)

    Vasenev, Viacheslav; Castaldi, Simona; Vizirskaya, Marya; Ananyeva, Nadezhda; Ivashchenko, Kristina; Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Urbanization is an important process of land-use change, which is increasing with the growth of population and abandonment of rural areas. Urbanization alters profoundly soil features and functions, among which soil respiration, which is one of the main carbon fluxes to the atmosphere. Soil respiration is the result of heterotrophic and autotrophic components, which are driven by biotic and abiotic factors. Little is known about soil respiration and its components in urban environments, which represent highly variable systems, characterized by different functional zones, types and intensities of urban management. In the present study we analyzed the spatial variability and temporal dynamics of total soil respiration (Rs) and its components, autotrophic (Ra) and heterotrophic respiration (Rh), from soils of different environments included in the Moscow megalopolis area. In particular we compared highly impacted areas urban green lawns with less anthropized ecosystems within the Moscow city: arable lands and urban forest sites. Experiments were set after snow melt and respiration fluxes were analyzed during the whole summer period till the beginning of the autumn. Data showed that Rs was significantly higher in the most disturbed sites, the green lawns, and showed the highest variability among the three analyzed land use types. Rh was the dominant component of soil respiration in all sites and did not vary significantly during the study period. However, significant differences was shown for the metabolic quotient qCO2, estimated as heterotrophic respiration ratio to microbial carbon (Rh/Cmic). The most disturbed sites showed the highest qCO2 within the lawn land use, followed by arable sites and forest sites, characterized by the lowest qCO2. Ra contributed to total Rs only at a minor extent (26%) and increased in all study sites along the season following the phenological cycle of the plant communities. Ra absolute values and relative contribution to Rs did not

  4. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990-2012.

    PubMed

    Tubiello, Francesco N; Salvatore, Mirella; Ferrara, Alessandro F; House, Jo; Federici, Sandro; Rossi, Simone; Biancalani, Riccardo; Condor Golec, Rocio D; Jacobs, Heather; Flammini, Alessandro; Prosperi, Paolo; Cardenas-Galindo, Paola; Schmidhuber, Josef; Sanz Sanchez, Maria J; Srivastava, Nalin; Smith, Pete

    2015-01-10

    We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down-revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr(-1) in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr(-1) in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr(-1) in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the

  5. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  6. Future urban land expansion and implications for global croplands.

    PubMed

    Bren d'Amour, Christopher; Reitsma, Femke; Baiocchi, Giovanni; Barthel, Stephan; Güneralp, Burak; Erb, Karl-Heinz; Haberl, Helmut; Creutzig, Felix; Seto, Karen C

    2016-12-27

    Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.

  7. Evaluating the compatibility of multi-functional and intensive urban land uses

    NASA Astrophysics Data System (ADS)

    Taleai, M.; Sharifi, A.; Sliuzas, R.; Mesgari, M.

    2007-12-01

    This research is aimed at developing a model for assessing land use compatibility in densely built-up urban areas. In this process, a new model was developed through the combination of a suite of existing methods and tools: geographical information system, Delphi methods and spatial decision support tools: namely multi-criteria evaluation analysis, analytical hierarchy process and ordered weighted average method. The developed model has the potential to calculate land use compatibility in both horizontal and vertical directions. Furthermore, the compatibility between the use of each floor in a building and its neighboring land uses can be evaluated. The method was tested in a built-up urban area located in Tehran, the capital city of Iran. The results show that the model is robust in clarifying different levels of physical compatibility between neighboring land uses. This paper describes the various steps and processes of developing the proposed land use compatibility evaluation model (CEM).

  8. Urban land-use intensity extraction based on Quickbird high resolution image

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Liu, Yanfang

    2008-12-01

    The abundance of high resolution image information and the intensity of urban spatial system can be combined organically in the process of image understanding, information extraction and quota measurement. The evaluation indices of urban land use intensity extracted from Quickbird image include building density, floor ratio area, green ratio, vacancy ratio, and etc. Firstly, land use condition in the research area is acquired through the overlay of Quickbird image and Wuhan land use map. Secondly, the study adopts spectral threshold segmentation method to extract building shadow, object-oriented classification method to obtain building base area, shadow-based height reversion approach to estimate building height in typical urban residential block and object-oriented segmentation and classification approach to estimate concerned indices in city village. In the end, the comparison and discussion of urban land intensity are made according to BD and FAR in urban residential block and city village respectively. It is concluded that FAR (floor ratio area) in urban residential block can be planned higher and BD (building density) in city village should be lower according to the present planning regulations in Wuhan.

  9. Effect of land use land cover change on soil erosion potential in an agricultural watershed.

    PubMed

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S

    2011-02-01

    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  10. Land application of coal combustion by-products: Use in agriculture and land reclamation. Final report

    SciTech Connect

    Horn, M.E.

    1995-06-01

    Land application of coal combustion by-products (CCBP) can prove beneficial for a number of reasons. The data presented in this survey provide a basis for optimizing the rates and timing of CCBP applications, selecting proper target soils and crops, and minimizing adverse effects on soil properties, plant responses, and groundwater quality.

  11. How much of the world’s land has been urbanized, really? A hierarchical framework for evading confusion

    SciTech Connect

    Liu, zhifeng; He, Chunyang; Zhou, Yuyu; Wu, jianguo

    2014-05-01

    Urbanization has transformed the world’s landscapes, resulting in a series of ecological and environmental problems. To assess urbanization impacts and improve sustainability, one of the first questions that we must address is: how much of the world’s land has been urbanized? Unfortunately, the estimates of the global urban land reported in the literature vary widely from less than 1% to 3% primarily because different definitions of urban land were used. To evade confusion, here we propose a hierarchical framework for representing and communicating the spatial extent of the world’s urbanized land at the global, regional, and more local levels. The hierarchical framework consists of three spatially nested definitions: “urban area” that is delineated by administrative boundaries, “built-up area” that is dominated by artificial surfaces, and “impervious surface area” that is devoid of life. These are really three different measures of urbanization. In 2010, the global urban land was close to 3%, the global built-up area was 0.65%, and the global impervious surface area was 0.45%, of the word’s total land area (excluding Antarctica and Greenland). We argue that this hierarchy of urban land measures, in particular the ratios between them, can also facilitate better understanding the biophysical and socioeconomic processes and impacts of urbanization.

  12. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate.

    PubMed

    Haase, Dagmar; Kabisch, Nadja; Haase, Annegret

    2013-01-01

    In European cities, the rate of population growth has declined significantly, while the number of households has increased. This increase in the number of households is associated with an increase in space for housing. To date, the effects of both a declining population and decreasing household numbers remain unclear. In this paper, we analyse the relationship between population and household number development in 188 European cities from 1990-2000 and 2000-2006 to the growth of urban land area and per capita living space. Our results support a trend toward decreasing population with simultaneously increasing household number. However, we also found cites facing both a declining population and a decreasing household number. Nevertheless, the urban land area of these "double-declining" cities has continued to spread because the increasing per capita living space counteracts a reduction in land consumption. We conclude that neither a decline in population nor in household number "automatically" solve the global problem of land consumption.

  13. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  14. Soil bacterial diversity changes in response to agricultural land use in semi-arid soils

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-04-01

    Natural scrublands in semi-arid deserts are increasingly being converted into agricultural lands. The long-term effect of such a transition in land use on soil bacterial communities was explored at two sites typical of semi-arid deserts in Mexico (Baja California). Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods - denaturing gradient gel electrophoresis (DGGE) and PhyloChip hybridization -employed to analyze 16S rRNA gene fragments amplified from total community DNA. DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. Soil parameters that differed between land uses were highly correlated with the community composition of taxa responding to land use. Variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses. The long term use for agriculture resulted in profound changes in the bacterial community composition and physicochemical characteristics of former scrublands, which may affect various soil ecosystem functions.

  15. Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network

    NASA Astrophysics Data System (ADS)

    Mozumder, Chitrini; Tripathi, Nitin K.

    2014-10-01

    In recent decades, the world has experienced unprecedented urban growth which endangers the green environment in and around urban areas. In this work, an artificial neural network (ANN) based model is developed to predict future impacts of urban and agricultural expansion on the uplands of Deepor Beel, a Ramsar wetland in the city area of Guwahati, Assam, India, by 2025 and 2035 respectively. Simulations were carried out for three different transition rates as determined from the changes during 2001-2011, namely simple extrapolation, Markov Chain (MC), and system dynamic (SD) modelling, using projected population growth, which were further investigated based on three different zoning policies. The first zoning policy employed no restriction while the second conversion restriction zoning policy restricted urban-agricultural expansion in the Guwahati Municipal Development Authority (GMDA) proposed green belt, extending to a third zoning policy providing wetland restoration in the proposed green belt. The prediction maps were found to be greatly influenced by the transition rates and the allowed transitions from one class to another within each sub-model. The model outputs were compared with GMDA land demand as proposed for 2025 whereby the land demand as produced by MC was found to best match the projected demand. Regarding the conservation of Deepor Beel, the Landscape Development Intensity (LDI) Index revealed that wetland restoration zoning policies may reduce the impact of urban growth on a local scale, but none of the zoning policies was found to minimize the impact on a broader base. The results from this study may assist the planning and reviewing of land use allocation within Guwahati city to secure ecological sustainability of the wetlands.

  16. Application of TABU Search Algorithm with a Coupled ANNAGNPS-CCHE1D Model to Optimize Agricultural Land Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A principal contributor to soil erosion and nonpoint source pollution, agricultural activities have a major influence on the environmental quality of a watershed. Impact of agricultural activities on the quality of water resources can be minimized by implementing suitable agriculture land-use types....

  17. Distinguishing stressors acting on land bird communities in an urbanizing environment.

    PubMed

    Schlesinger, Matthew D; Manley, Patricia N; Holyoak, Marcel

    2008-08-01

    Urbanization has profound influences on ecological communities, but our understanding of causal mechanisms is limited by a lack of attention to its component stressors. Published research suggests that at landscape scales, habitat loss and fragmentation are the major drivers of community change, whereas at local scales, human activity and vegetation management are the primary stressors. Little research has focused on whether urbanization stressors may supplant natural factors as dominant forces structuring communities. We used model selection to determine the relative importance of urban development, human activity, local and landscape vegetation, topography, and geographical location in explaining land bird species richness, abundance, and dominance. We analyzed the entire community and groups of species based on ecological characteristics, using data collected in remnant forests along a gradient of urban development in the Lake Tahoe basin, California and Nevada, USA. Urbanization stressors were consistently among the principal forces structuring the land bird community. Strikingly, disturbance from human activity was the most important factor for richness in many cases, surpassing even habitat loss from development. Landscape-scale factors were consistently more important than local-scale factors for abundance. In demonstrating considerable changes in land bird community structure, our results suggest that ecosystem function in urban areas may be severely compromised. Such changes compel local- and landscape-scale management, focused research, and long-term monitoring to retain biodiversity in urban areas to the extent possible.

  18. Urban land use in Natura 2000 surrounding areas in Vilnius Region, Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva; Depellegrin, Daniel

    2015-04-01

    Urban development is one of the major causes of land degradation and pressure on protected areas. (Hansen and DeFries, 2007; Salvati and Sabbi, 2011). The urban areas in the fringe of the protected areas are a source of pollutants considered a negative disturbance to the ecosystems services and biodiversity within the protected areas. The distance between urban and protected areas is decreasing and in the future it is estimated that 88% of the world protected areas will be affected by urban growth (McDonald et al., 2008). The surrounding or buffer areas, are lands adjacent to the Natura 2000 territories, which aim to reduce the human influence within the protected areas. Presently there is no common definition of buffer area it is not clear among stakeholders (Van Dasselaar, 2013). The objective of this work is to identify the urban land use in the Natura 2000 areas in Vilnius region, Lithuania. Data from Natura 2000 areas and urban land use (Corine Land Cover 2006) in Vilnius region were collected in the European Environmental Agency website (http://www.eea.europa.eu/). In the surroundings of each Natura 2000 site, we identified the urban land use at the distances of 500, 1000 and 1500 m. The Natura 2000 sites and the urban areas occupied a total of 13.2% and 3.4% of Vilnius region, respectively. However, the urban areas are very dispersed in the territory, especially in the surroundings of Vilnius, which since the end of the XX century is growing (Pereira et al., 2014). This can represent a major threat to Natura 2000 areas ecosystem services quality and biodiversity. Overall, urban areas occupied approximately 50 km2, in the buffer area of 500 m, 95 km2 in buffer area of 1000 m and 131 km2 in the buffer area of 1500 km2. This shows that Natura 2000 surrounding areas in Vilnius region are subjected to a high urban pressure. This is especially evident in the Vilnius city and is a consequence of the uncontrolled urban development. The lack of a clear legislation

  19. The plot size effect on soil erosion on rainfed agriculture land under different land uses in eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Bodí, M. B.; Burguet, M.; Segura, M.; Jovani, C.

    2009-04-01

    Soil erosion at slope scale is dependent on the size of the plot. This is because soil erosion is a scale-dependent process due to the spatial variability in infiltration, the potential for sediment to be captured by vegetation and other roughness components, and the changes in erosion rates and processes with increasing amounts of runoff. The effects of plot size may also vary with land use, as plot size may be less important in areas with a more homogeneous plant cover or bares soils; meanwhile the soil transmission losses will higher on vegetation covered soils and on patchy distributed plants. A series of study plots were established in 2003 at the El Teularet experimental Station in the Sierra de Enguera in eastern Spain. The overall goal is to assess runoff and erosion rates from different land uses at different spatial scales. Thirteen sets of plots have been established, and each set consists of five adjacent plots that vary in size from 1 m2 (1 x 1 m), 2 m2 (1 x 2 m), 4 m2 (1 x 4 m), 16 m2 (2 x 8 m) and 48 m2 (3 m wide x 16 m length). Each set of plots has a different land use, and the land uses being tested in the first year of this study are fallow, ploughed but unplanted, untilled oats and beans, tilled oats and beans, straw mulch, mulched with chipped olive branches, a geotextile developed to control erosion on agricultural fields, scrub oaks (Quercus coccifera), gorse (Ulex parviflorus), and three herbicide treatments—a systemic herbicide, a contact herbicide, and a persistent herbicide. From those plots, three plots were selected to analyse the effect of the size of the plot on the soil erosion assessment. Herbicide (bare), Catch crops (oat) and scrubland were selected to analyze the soil losses during 2004 and 2005. The results shows that sediment delivery is highly dependent on the land use and land management as the scrubland contributed with null sediment yield, meanwhile the herbicide reached the largest soil loss. The soil erosion was higher

  20. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS.

    PubMed

    Weng, Qihao; Yang, Shihong

    2006-06-01

    This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.

  1. Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone.

    PubMed

    Zhou, Z X; Li, J; Zhang, W

    2016-08-01

    Ecosystems offer material and environmental support for human habitation and development in those areas of the earth where people choose to live. However, urbanization is an inexorable trend of human social development and threatens the health of those ecosystems inhabited by humans. This study calculates the values of NPP (net primary productivity), carbon sequestration, water interception, soil conservation, and agricultural production in the Guanzhong-Tianshui Economic Zone. At the same time, we combined DMSP/OLS (Defense Meteorological Satellite Program Operational Line Scanner) night lights remote sensing data and statistical data to analyze the level of urbanization. Quantitative analysis was performed on the interactions between the ecosystem service functions and urbanization based on the calculations of their coupled coordination degrees. The results were the following: (1) The values of NPP, carbon sequestration, and agricultural production showed a trend of increase. However, water interception decreased before increasing, while soil conservation showed the reverse trend; (2) Urbanization levels in the Guanzhong-Tianshui Economic Zone for the last 10 years have proceeded at a fast pace with comprehensive promotion; and (3) Coupled and coupled coordination degrees between urbanization and ecosystem services show increasing trends. This research can provide a theoretical basis for the region's rapid economic development in the balance.

  2. WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions

    NASA Astrophysics Data System (ADS)

    Bhati, Shweta; Mohan, Manju

    2016-10-01

    Urban heat island effect in Delhi has been assessed using Weather Research and Forecasting (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in situ and satellite observations. The model performs reasonably well for urban heat island intensity (UHI) estimation and is able to reproduce trend of UHI for urban areas. There is a significant improvement in model performance with inclusion of UCM which results in reduction in root mean-squared errors (RMSE) for temperatures from 1.63 °C (2.89 °C) to 1.13 °C (2.75 °C) for urban (non-urban) areas. Modification of LULC also improves performance for non-urban areas. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a reference point at the periphery of the city away from populated and built-up areas for UHI estimation is examined in the context of rapidly growing cities where rural areas are transforming fast into built-up areas, and reference site may not be appropriate for future years. UHI estimated by WRF model (with and without UCM) with respect to reference rural site compares well with the UHI based on observed in situ data. An alternative methodology is explored using a green area with minimum temperature within the city as a reference site. This alternative methodology works well with observed UHIs and WRF-UCM-simulated UHIs but has poor performance for WRF-simulated UHIs. It is concluded that WRF model can be applied for UHI estimation with classical methodology based on rural reference site. In general, many times WRF model performs satisfactorily, though WRF-UCM always shows a better performance. Hence, inclusion of appropriate representation of urban canopies and land use-land cover is important for improving predictive capabilities of the mesoscale models.

  3. Assessment of polycyclic aromatic hydrocarbon input to urban wetlands in relation to adjacent land use.

    PubMed

    Kimbrough, K L; Dickhut, R M

    2006-11-01

    The relationship between polycyclic aromatic hydrocarbons (PAHs) in wetland surface sediments and adjacent land use was assessed in the Elizabeth River, VA, an urbanized sub-estuary of the Chesapeake Bay. Significant differences (p<0.05) in surface sediment PAH concentration between sites indicated adjacent land use had a substantial influence on PAH concentration in wetland sediments. Wetlands adjacent to parking lots and petroleum industrial sites exhibited the highest PAH concentrations of all wetlands examined. Overall, commercial land uses had the highest PAH concentrations and automotive sources dominated (52-69%) PAH input to wetland surface sediments irrespective of adjacent land use.

  4. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  5. Modeling Soil Organic Carbon for Agricultural Land Use Under Various Management Practices

    NASA Astrophysics Data System (ADS)

    Kotamarthi, V. R.; Drewniak, B.; Song, J.; Prell, J.; Jacob, R. L.

    2009-12-01

    Bioenergy is generating tremendous interest as an alternative energy source that is both environmentally friendly and economically competitive. The amount of land designated for agriculture is expected to expand, including changes in the current distribution of crops, as demand for biofuels increases as a carbon neutral alternative fuel source. However, the influence of agriculture on the carbon cycle is complex, and varies depending on land use change and management practices. The purpose of this research is to integrate agriculture in the carbon-nitrogen based Community Land Model (CLM) to evaluate the above and below ground carbon storage for corn, soybean, and wheat crop lands. The new model, CLM-Crop simulates carbon allocation during four growth stages, a soybean nitrogen fixation scheme, fertilizer, and harvest practices. We present results from this model simulation, which includes the impact of a new dynamic roots module to simulate the changing root structure and depth with growing season based on the availability of water and nitrogen in the root zone and a retranslocation scheme to simulate redistribution of nitrogen from leaves, roots, and stems to grain during organ development for crop yields, leaf area index (LAI), carbon allocation, and changes in soil carbon budgets under various practices such as fertilizer and residue management. Simulated crop yields for corn, soybean and wheat are in general agreement with measurements. Initial model results indicate a loss of soil organic carbon over cultivated lands after removal of natural vegetation which continues in the following years. Soil carbon in crop lands is a strong function of the residue management and has the potential to impact crop yields significantly.

  6. Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe

    NASA Astrophysics Data System (ADS)

    Prishchepov, Alexander V.; Radeloff, Volker C.; Baumann, Matthias; Kuemmerle, Tobias; Müller, Daniel

    2012-06-01

    Institutional settings play a key role in shaping land cover and land use. Our goal was to understand the effects of institutional changes on agricultural land abandonment in different countries of Eastern Europe and the former Soviet Union after the collapse of socialism. We studied ˜273 800 km2 (eight Landsat footprints) within one agro-ecological zone stretching across Poland, Belarus, Latvia, Lithuania and European Russia. Multi-seasonal Landsat TM/ETM + satellite images centered on 1990 (the end of socialism) and 2000 (one decade after the end of socialism) were used to classify agricultural land abandonment using support vector machines. The results revealed marked differences in the abandonment rates between countries. The highest rates of land abandonment were observed in Latvia (42% of all agricultural land in 1990 was abandoned by 2000), followed by Russia (31%), Lithuania (28%), Poland (14%) and Belarus (13%). Cross-border comparisons revealed striking differences; for example, in the Belarus-Russia cross-border area there was a great difference between the rates of abandonment of the two countries (10% versus 47% of abandonment). Our results highlight the importance of institutions and policies for land-use trajectories and demonstrate that radically different combinations of institutional change of strong institutions during the transition can reduce the rate of agricultural land abandonment (e.g., in Belarus and in Poland). Inversely, our results demonstrate higher abandonment rates for countries where the institutions that regulate land use changed and where the institutions took more time to establish (e.g., Latvia, Lithuania and Russia). Better knowledge regarding the effects of such broad-scale change is essential for understanding land-use change and for designing effective land-use policies. This information is particularly relevant for Northern Eurasia, where rapid land-use change offers vast opportunities for carbon balance and biodiversity

  7. Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.

    2009-12-01

    Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

  8. Environmental effects of growing short-rotation woody crops on former agricultural lands

    SciTech Connect

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-10-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to bi