Science.gov

Sample records for agricultural management techniques

  1. Agriculture Business and Management.

    ERIC Educational Resources Information Center

    Seperich, George; And Others

    This curriculum guide is intended for vocational agriculture teachers who deliver agricultural business and management programs at the secondary or postsecondary level. It is based on the Arizona validated occupational competencies and tasks for management and supervisory positions in agricultural business. The competency/skill and task list…

  2. Agriculture Business and Management.

    ERIC Educational Resources Information Center

    Seperich, George; And Others

    This curriculum guide is intended for vocational agriculture teachers who deliver agricultural business and management programs at the secondary or postsecondary level. It is based on the Arizona validated occupational competencies and tasks for management and supervisory positions in agricultural business. The competency/skill and task list…

  3. Management Technique

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Ball Aerospace Systems Division developed a highly efficient management method known as the "total integrated systems approach" a technique developed of necessity for managing extremely complex aerospace programs involving integration of a great many individual systems. These systems, developed at different times by many different companies, must not only work perfectly when separately tested, they must also perform compatibly when integrated into the complete prime system. Systems approach is essentially a carefully considered, painstakingly executed master plan for coordinated design, development and assembly of the multitude of elements that constitute the end product. Intent is to eliminate problems that may occur when specific parts of total functioning system fail to come together to provide the requisite performance of the prime system.

  4. Slash-and-char: An ancient agricultural technique holds new promise for management of soils contaminated by Cd, Pb and Zn.

    PubMed

    Niu, Li-Qin; Jia, Pu; Li, Shao-Peng; Kuang, Jia-Liang; He, Xiao-Xin; Zhou, Wen-Hua; Liao, Bin; Shu, Wen-Sheng; Li, Jin-Tian

    2015-10-01

    Heavy metal contamination of agricultural soils is of worldwide concern. Unfortunately, there are currently no efficient and sustainable approaches for addressing this concern. In this study, we conducted a field experiment in which an agricultural soil highly contaminated by cadmium (Cd), lead (Pb) and zinc (Zn) was treated on-site by an ancient agricultural technique, 'slash-and-char', that was able to convert the biomass feedstock (rice straw) into biochar in only one day. We found evidence that in comparison to the untreated soil, the treated soil was associated with decreased bioavailability of the heavy metals and increased vegetable yields. Most importantly, the treatment was also coupled with dramatic reductions in concentrations of the heavy metals in vegetables, which made it possible to produce safe crops in this highly contaminated soil. Collectively, our results support the idea that slash-and-char offers new promise for management of soils contaminated by Cd, Pb and Zn.

  5. Salinity Management in Agriculture

    USDA-ARS?s Scientific Manuscript database

    Existing guidelines and standards for reclamation of saline soils and management to control salinity exist but have not been updated for over 25 years. In the past few years a looming water scarcity has resulted in questioning of the long term future of irrigation projects in arid and semi arid regi...

  6. Stronger management needed to protect agricultural environment

    SciTech Connect

    Cai Shikui

    1983-01-01

    This article examines environmental issues and management in developed agricultural areas of China. Agricultural environmental management is defined as the adoption of countermeasures by applying the theories and methods of environmental science and management science and abiding by economic laws and ecological laws to prevent pollution of the agricultural environment and destruction of the agro-ecology by man; to coordinate the relationship between the development of agricultural production and the protection of the agricultural environment and to satisfy increasing demands for agricultural by-products. Topics considered include the basis for developing agricultural environmental management, the present condition of the agricultural environment in China, and several management proposals.

  7. Agricultural waste utilization and management

    SciTech Connect

    Not Available

    1985-01-01

    These papers were presented at a symposium on the management and use of agricultural waste products, including food industry wastes. Topics covered include fat and protein recovery from fish wastes, treatments for straw to improve its digestibility, using food industry wastes as animal feeds, various manure treatments and studies of its combustion properties, fermentation, methane and ethanol production, hemp waste water treatment, and heat recovery from manure combustion.

  8. Expert systems in agriculture and resource management

    SciTech Connect

    Plant, R.E.

    1993-05-01

    This paper gives a description of some representative examples of expert systems applied to problems in agriculture and biological resource management. The discussion of agricultural expert systems focuses on several decision support systems for crop management, describing the systems themselves and the implementation efforts surrounding them. The examples of the application of expert systems to biological resource management focus on the integration of expert systems with geographic information systems. A description of some of the more recent developments in agricultural expert systems, still in the prototype stage, is then given, followed by a summary discussion of possible environmental implications of the use of expert systems in agriculture and resource management. 63 refs.

  9. Agricultural Drainage Management Systems Task Force (ADMSTF)

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Drainage Management Systems (ADMS) Task Force was initiated during a Charter meeting in the fall of 2002 by dedicated professional employees of Federal, State, and Local Government Agencies and Universities. The Agricultural Drainage Management (ADM) Coalition was established in 200...

  10. Techniques for managing quality.

    PubMed

    Plsek, P E

    1995-01-01

    The science of quality management is an eclectic collection of concepts and methods primarily borrowed from other fields. Techniques roughly fall into three categories involving quality improvement, planning, and measurement. Improvement techniques include models to guide team-based efforts, tools for process description, and tools for data analysis. These methods are the most visible artifacts of CQI efforts in health care organizations today. Less widely known, but equally powerful, are the techniques of quality planning. There are models to guide both process design and strategic planning, methods for identifying customer needs, and tools to support these efforts. Finally, while measurement is a traditionally well-developed area in health care, industrial quality management science broadens our outlook about what is important to measure. It also provides the technique of benchmarking, which suggests that we look beyond our own organization when we measure performance.

  11. Agribusiness Management. The Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    These materials in agribusiness management for the Connecticut Vocational Agriculture Curriculum were designed for use in the following areas: Animal Science; Plant Science; Agricultural Mechanics; and Natural Resources and Aquaculture. Each unit of this competency-based guide contains title of unit, unit length, grade level, objectives, teacher…

  12. Agribusiness Management. The Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    These materials in agribusiness management for the Connecticut Vocational Agriculture Curriculum were designed for use in the following areas: Animal Science; Plant Science; Agricultural Mechanics; and Natural Resources and Aquaculture. Each unit of this competency-based guide contains title of unit, unit length, grade level, objectives, teacher…

  13. Agricultural Business and Management Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains 5 teaching units for 44 agricultural business and management cluster problem areas. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. The five units are as follows: (1) agribusiness operation and…

  14. Sustainable agricultural water management across climates

    NASA Astrophysics Data System (ADS)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  15. Managing adaptively for multifunctionality in agricultural systems.

    PubMed

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  16. LANDSCAPE MANAGEMENT FOR RESTORATION OF AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    As part of CEAP, we conducted a review of the available literature on landscape management to achieve improvement of water quality, water quantity, soil quality, and air quality in agricultural systems. At least 15 general principles emerged from this review. These principles wil...

  17. Measured extent of agricultural expansion depends on analysis technique

    DOE PAGES

    Dunn, Jennifer B.; Merz, Dylan; Copenhaver, Ken L.; ...

    2017-01-31

    Concern is rising that ecologically important, carbon-rich natural lands in the United States are losing ground to agriculture. We investigate how quantitative assessments of historical land use change to address this concern differ in their conclusions depending on the data set used. We examined land use change between 2006 and 2014 in 20 counties in the Prairie Pothole Region using the Cropland Data Layer, a modified Cropland Data Layer, data from the National Agricultural Imagery Program, and in-person ground-truthing. The Cropland Data Layer analyses overwhelmingly returned the largest amount of land use change with associated error that limits drawing conclusionsmore » from it. Analysis with visual imagery estimated a fraction of this land use change. Clearly, analysis technique drives understanding of the measured extent of land use change; different techniques produce vastly different results that would inform land management policy in strikingly different ways. As a result, best practice guidelines are needed.« less

  18. Prediction of Potato Crop Yield Using Precision Agriculture Techniques

    PubMed Central

    Al-Gaadi, Khalid A.; Hassaballa, Abdalhaleem A.; Tola, ElKamil; Kayad, Ahmed G.; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2–3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices. PMID:27611577

  19. Prediction of Potato Crop Yield Using Precision Agriculture Techniques.

    PubMed

    Al-Gaadi, Khalid A; Hassaballa, Abdalhaleem A; Tola, ElKamil; Kayad, Ahmed G; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2-3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices.

  20. Agricultural Education Curriculum Guide. Agricultural Production and Management I. Course No. 6811. Agricultural Production and Management II. Course No. 6812.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This document is designed for use by teachers of Agricultural Production and Management courses in North Carolina. It updates the competencies and content outlines from the previous guide. It lists core and optional competencies for two courses in seven areas as follows: leadership; supervised agricultural experience programs; animal science;…

  1. Optimizing nitrogen management for soft red winter wheat yield, grain protein, and grain quality using precision agriculture and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Farrer, Dianne Carter

    The purpose of this research was to improve the management of soft red winter wheat (Triticum aestivum L.) in North Carolina. There were three issues addressed; the quality of the grain as affected by delayed harvest, explaining grain protein variability through nitrogen (N) management, and developing N recommendations at growth stage (GS) 30 using aerial color infrared (CIR) photography. The impact of delayed harvest on grain yield, test weight, grain protein, and 20 milling and baking quality parameters was studied in three trials in 2002 and three trials in 2003. Yield was significantly reduced in three out of five trials due to dry, warm environments, possibly indicating shattering. Test weights were significantly reduced in five out of six trials and were positively correlated to the number of precipitation events and to the number of days between harvests, indicating the negative effects of wetting and drying cycles. Grain protein was not affected by delayed harvest. Of the 20 quality parameters investigated, flour falling number, clear flour, and farinograph breakdown times were significantly reduced due to delayed harvest, while grain deoxynivalenol (DON) levels increased with a delayed harvest. Grain protein content in soft red winter wheat is highly variable across years and environments. A second study examined the effects of different nitrogen (N) fertilizer rates and times of application on grain protein variability. Seven different environments were utilized in this study. Though environment contributed about 23% of grain protein variability, the majority of that variability (52%) was attributed to N management. It was found that as grain protein levels increased at higher N rates, so did overall protein variability as indicated by the three stability indexes employed. In addition, applying the majority of total N at growth stage (GS) 30 decreased grain protein stability. Site-specific N management systems using remote sensing techniques can

  2. Agricultural Mechanics Laboratory Management Professional Development Needs of Wyoming Secondary Agriculture Teachers

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2011-01-01

    Accidents happen; however, the likelihood of accidents occurring in the agricultural mechanics laboratory is greatly reduced when agricultural mechanics laboratory facilities are managed by secondary agriculture teachers who are competent and knowledgeable. This study investigated the agricultural mechanics laboratory management in-service needs…

  3. Laser Scar Management Technique

    PubMed Central

    Ohshiro, Toshio; Sasaki, Katsumi

    2013-01-01

    Background and Aims: Scars are common and cause functional problems and psychological morbidity. Recent advances in optical technologies have produced various laser systems capable of revising the appearance of scars from various etiologies to optimize their appearance. Methods: Laser treatment can commence as early as the time of the initial injury and as late as several years after the injury. Several optical technologies are currently available and combined laser/light treatments are required for treatment of scars. Since 2006, we have set up a scar management department in our clinic and more than 2000 patients have been treated by our combined laser irradiation techniques. Herein, we review several available light technologies for treatment of surgical, traumatic, and inflammatory scars, and discuss our combined laser treatment of scars, based upon our clinical experience. Results and Conclusions: Because scars have a variety of potential aetiologies and take a number of forms, no single approach can consistenty provide good scar treatment and management. The combination of laser and devices is essential, the choice of wavelength and approach being dictated by each patient as an individual. PMID:24511202

  4. Management Techniques for School Districts.

    ERIC Educational Resources Information Center

    Lane, John J., Ed.

    This volume addresses five of the critical areas of school business management: planning, organizational management, personnel management, controlling, and directing. The various chapters describe a variety of techniques and processes for getting people to perform effectively in meeting organizational goals. The first section focuses on planning…

  5. Management Strategies for Transition to Sustainable Agricultural Irrigation

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Mulligan, K.; Brown, C. M.; Yang, Y. E.

    2011-12-01

    In many agricultural regions of the world, aquifer overdrafting for agricultural irrigation continues. Management strategies are investigated that transition from this unsustainable use of water to a future, diminished use of irrigation. Complications arising from climate change and volatile energy prices are considered. A command and control strategy is modeled using combined simulation and optimization techniques. This strategy is compared with market based mechanisms such as cap and trade and Pigouvian pricing that are modeled using agent based methods. The formulations are designed to model the effects of different management strategies including those that seek to avoid rapid changes in basin-wide water utilization (considered a surrogate for agricultural production) over this time period. Formulations also include limits on total reduction in aquifer storage and controls on streamflow in the basin. The management formulations used in this study are developed for planning horizons of 50 to 100 years and use the Republican River Basin in the High Plains Aquifer as a case study. Historical and climate-adjusted recharge patterns are considered. Spatial and temporal variation in total irrigated acreage and the aquifer storage change determined by the solutions of the management formulations are analyzed and presented.

  6. Environmental Protection Tools in Agricultural Management Works

    NASA Astrophysics Data System (ADS)

    Glowacka, Agnieszka; Taszakowski, Jaroslaw; Janus, Jaroslaw; Bozek, Piotr

    2016-10-01

    Land consolidation is a fundamental instrument for agricultural management. It facilitates comprehensive changes in the agricultural, social, and ecological domains. Consolidation and post-consolidation development-related investments are an opportunity to improve living conditions in rural areas, and simultaneously ensure its positive impact on the environment. One of the primary goals of consolidation, directly specified in the Act on land consolidation, is to improve farming conditions. In Poland, consolidation is possible due to EU funds: RDP 2007-2013 and RDP 2014-2020. In order for individual villages to be granted EU funds for consolidation and post-consolidation development under the Rural Development Programme 2014-2020, their consolidation has to implement actions with positive impact on the environment and the landscape. The goal of this paper is to analyse documentation in the form of assumptions for a land consolidation project enclosed to an RDP 2014-2020 grant application and project information sheets as the basis for environmental impact assessment in the context of detailed presentation of environmental protection solutions that ensure a positive impact of the project on the environment and landscape. The detailed study involved 9 villages in the Malopolskie Voivodeship, which applied for EU grants for land consolidation in the current financial perspective. The paper specifies the existing state of the analysed villages as regards the natural environment, lists agricultural management instruments that have a positive impact on the environment, and demonstrates that planning of actions aimed at environmental protection is a necessary element of assumptions for land consolidation projects.

  7. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Must agricultural land be managed in accordance with a tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Agricultural Leases General Provisions § 162.201...

  8. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Must agricultural land be managed in accordance with a tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Agricultural Leases General Provisions § 162.201...

  9. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Must agricultural land be managed in accordance with a tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Agricultural Leases General Provisions § 162.201...

  10. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Must agricultural land be managed in accordance with a tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Agricultural Leases General Provisions § 162.201...

  11. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Must agricultural land be managed in accordance with a tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Agricultural Leases General Provisions § 162.201...

  12. Innovations in information management to enhance agriculture: A research perspective

    USDA-ARS?s Scientific Manuscript database

    Information management should be the cornerstone for innovative agricultural systems; however, the challenge remains on how to utilize all of the components to enhance agriculture. The enhancement of agriculture is often considered from only a yield perspective. This is an important factor and effo...

  13. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  14. Energy Management Lesson Plans for Vocational Agriculture Instructors.

    ERIC Educational Resources Information Center

    Hedges, Lowell E., Ed.; Miller, Larry E., Ed.

    This notebook provides vocational agricultural teachers with 10 detailed lesson plans on the major topic of energy management in agriculture. The lesson plans present information about energy and the need to manage it wisely, using a problem-solving approach. Each lesson plan follows this format: lesson topic, lesson performance objectives,…

  15. Informing Lake Erie agriculture nutrient management via scenario evaluation

    USGS Publications Warehouse

    Scavia, Donald; Kalcic, Margaret; Muenich, Rebecca Logsdon; Aloysius, Noel; Arnold, Jeffrey; Boles, Chelsie; Confesor, Remegio; DePinto, Joseph; Gildow, Marie; Martin, Jay; Read, Jennifer; Redder, Todd; Robertson, Dale; Sowa, Scott P.; Wang, Yu-Chen; White, Michael; Yen, Haw

    2016-01-01

    Therefore, the overall goal of this study was to identify potential options for agricultural management to reduce phosphorus loads and lessen future HABs in Lake Erie. We applied multiple watershed models to test the ability of a series of land management scenarios, developed in consultation with agricultural and environmental stakeholders, to reach the proposed targets. 

  16. Precision agriculture in the 21st Century: Geospatial and information technologies in crop management

    SciTech Connect

    1997-12-31

    Agricultural managers have for decades taken advantage of new technologies, including information technologies, that enabled better management decision making and improved economic efficiency of operations. The extent and rate of change now occurring in the development of information technologies have opened the way for significant change in crop production management and agricultural decision making. This vision is reflected in the concept of precision agriculture. Precision agriculture is a phrase that captures the imagination of many concerned with the production of food, feed, and fiber. The concepts embodied in precision agriculture offer the promise of increasing productivity while decreasing production costs and minimizing environmental impacts. Precision agriculture conjures up images of farmers overcoming the elements with computerized machinery that is precisely controlled via satellites and local sensors and using planning software that accurately predicts crop development. This image has been called the future of agriculture. Such high-tech images are engaging. Precision agriculture, however, is in early and rapidly changing phases of innovation. Techniques and practices not anticipated by the committee will likely become common in the future, and some techniques and practices thought to hold high promise today may turn out to be less desirable than anticipated. This report defines precision agriculture as a management strategy that uses information technologies to bring data from multiple sources to bear on decisions associated with crop production. Precision agriculture has three components: capture of data at an appropriate scale and frequency, interpretation and analysis of that data, and implementation of a management response at an appropriate scale and time. The most significant impact of precision agriculture is likely to be on how management decisions address spatial and temporal variability in crop production systems.

  17. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  18. A selected bibliography: Application of Landsat digital multispectral scanner data to agriculture, forestry, and range management

    USGS Publications Warehouse

    Rohde, Wayne G.

    1977-01-01

    This bibliography contains citations of selected publications and technical reports dealing with the application of Landsat digital data analysis techniques to agriculture, forestry, and range management problems. All of the citations were published between 1973 and 1977. The citations reference publications and reports which discuss specific analysis techniques and specific resource applications.

  19. Ecology and management of agricultural drainage ditches: a literature review

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  20. Agricultural drainage water management: Potential impact and implementation strategies

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  1. Sustainable management of a coupled groundwater-agriculture hydrosystem using multi-criteria simulation based optimisation.

    PubMed

    Grundmann, Jens; Schütze, Niels; Lennartz, Franz

    2013-01-01

    In this paper we present a new simulation-based integrated water management tool for sustainable water resources management in arid coastal environments. This tool delivers optimised groundwater withdrawal scenarios considering saltwater intrusion as a result of agricultural and municipal water abstraction. It also yields a substantially improved water use efficiency of irrigated agriculture. To allow for a robust and fast operation we unified process modelling with artificial intelligence tools and evolutionary optimisation techniques. The aquifer behaviour is represented using an artificial neural network (ANN) which emulates a numerical density-dependent groundwater flow model. The impact of agriculture is represented by stochastic crop water production functions (SCWPF). Simulation-based optimisation techniques together with the SCWPF and ANN deliver optimal groundwater abstraction and cropping patterns. To address contradicting objectives, e.g. profit-oriented agriculture vs. sustainable abstraction scenarios, we performed multi-objective optimisations using a multi-criteria optimisation algorithm.

  2. Alternative Agricultural Enterprises. Production, Management & Marketing.

    ERIC Educational Resources Information Center

    Fox, Linda Kirk; And Others

    These nine cooperative extension bulletins provide basic information on various alternative agricultural enterprises. Discussed in the first eight bulletins are the following topics: business ownership (sole proprietorship, partnership, incorporation, cooperatives); business and the family (goals, qualifications, ways of ensuring family support,…

  3. Alternative Agricultural Enterprises. Production, Management & Marketing.

    ERIC Educational Resources Information Center

    Fox, Linda Kirk; And Others

    These nine cooperative extension bulletins provide basic information on various alternative agricultural enterprises. Discussed in the first eight bulletins are the following topics: business ownership (sole proprietorship, partnership, incorporation, cooperatives); business and the family (goals, qualifications, ways of ensuring family support,…

  4. Agricultural land management options following large-scale environmental contamination - evaluation for Fukushima affected agricultural land

    SciTech Connect

    Vandenhove, Hildegarde

    2013-07-01

    The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)

  5. Equine Management and Production. Vocational Agriculture Education.

    ERIC Educational Resources Information Center

    Rudolph, James A.

    This basic core of instruction for equine management and production is designed to assist instructors in preparing students for successful employment or management of a one- or two-horse operation. Contents include seven instructional areas totaling seventeen units of instruction: (1) Orientation (basic horse production; handling and grooming;…

  6. Equine Management and Production. Vocational Agriculture Education.

    ERIC Educational Resources Information Center

    Rudolph, James A.

    This basic core of instruction for equine management and production is designed to assist instructors in preparing students for successful employment or management of a one- or two-horse operation. Contents include seven instructional areas totaling seventeen units of instruction: (1) Orientation (basic horse production; handling and grooming;…

  7. Precision agriculture and soil and water management in cranberry production

    USDA-ARS?s Scientific Manuscript database

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  8. Biological and biochemical soil quality indicators for agricultural management

    NASA Astrophysics Data System (ADS)

    Bongiorno, Giulia

    2017-04-01

    which included the sustainable management taken into account. A parametric t-test was used to determine the comprehensive significance of the average SI for a given indicator. Reduced tillage increased DOC and POXC in the 0-10 cm of soil (SI=1.19 and 1.18 respectively) compared to conventional tillage. Organic fertilization increased DOC and POXC in the 0-10 cm compared to mineral fertilization (SI=1.43 and 1.41) and compared to no fertilizer applications (SI=1.27 and 1.17). DOC was slightly more sensitive than POXC, however, the t-test resulted to be significant only for POXC. Preliminary tests revealed a significant correlation between POXC and DOC (Spearman ρ=0.53, p<0.001). POXC was more strongly correlated with TOC (ρ=0.8, p<0.001), soil respiration (ρ=0.5, p<0.001) and total nematode number (ρ=0.25, p<0.001), than DOC (ρ=0.37, p<0.001; ρ=0.28, p<0.001; ρ=0.04, p=0.5, respectively). These preliminary results could indicate the better suitability of POXC as soil quality indicator compared to DOC. Further analyses will be implemented to elucidate these relations (including DOC quality parameters and hot water extractable carbon). In the coming months, nematode community composition and abundance of specific groups will be assessed with molecular techniques (sequencing and qPCR). Together, the results will permit to assess the feasibility of the implementation of novel indicators to monitor the effects of agricultural management on soil functions.

  9. Management Styles and Techniques: Time.

    ERIC Educational Resources Information Center

    Matthews, Priscilla J.

    1987-01-01

    Discusses strategies to improve individuals' use of time and personal satisfaction through time management. The 126-item bibliography includes citations for time management in general and special sections for career development, family and parenting, women, and home management. (CLB)

  10. Management Styles and Techniques: Time.

    ERIC Educational Resources Information Center

    Matthews, Priscilla J.

    1987-01-01

    Discusses strategies to improve individuals' use of time and personal satisfaction through time management. The 126-item bibliography includes citations for time management in general and special sections for career development, family and parenting, women, and home management. (CLB)

  11. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. Copyright © 2014 Elsevier Ltd. All

  12. New Tools for Managing Agricultural P

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Baker, L. A.; Peterson, H. M.; Ulrich, J.

    2014-12-01

    Best management practices (BMPs) generally focus on retaining nutrients (especially P) after they enter the watershed. This approach is expensive, unsustainable, and has not led to reductions of P pollution at large scales (e.g., Mississippi River). Although source reduction, which results in reducing inputs of nutrients to a watershed, has long been cited as a preferred approach, we have not had tools to guide source reduction efforts at the watershed level. To augment conventional TMDL tools, we developed an "actionable" watershed P balance approach, based largely on watershed-specific information, yet simple enough to be utilized as a practical tool. Interviews with farmers were used to obtain detailed farm management data, data from livestock permits were adjusted based on site visits, stream P fluxes were calculated from 3 years of monitoring data, and expert knowledge was used to model P fluxes through animal operations. The overall P use efficiency. Puse was calculated as the sum of deliberate exports (P in animals, milk, eggs, and crops) divided by deliberate inputs (P inputs of fertilizer, feed, and nursery animals x 100. The crop P use efficiency was 1.7, meaning that more P was exported as products that was deliberately imported; we estimate that this mining would have resulted in a loss of 6 mg P/kg across the watershed. Despite the negative P balance, the equivalent of 5% of watershed input was lost via stream export. Tile drainage, the presence of buffer strips, and relatively flat topography result in dominance of P loads by ortho-P (66%) and low particulate P. This, together with geochemical analysis (ongoing) suggest that biological processes may be at least as important as sediment transport in controlling P loads. We have developed a P balance calculator tool to enable watershed management organizations to develop watershed P balances and identify opportunities for improving the efficiency of P utilization.

  13. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  14. Managing for Phosphorus and Other Resources in Globalized Agriculture

    NASA Astrophysics Data System (ADS)

    MacDonald, G. K.; Mueller, N. D.; Bennett, E.; Brauman, K. A.; Gerber, J. S.; Metson, G. S.; West, P. C.

    2014-12-01

    Agricultural trade has an important effect on the distribution of resource use among regions. Trade is particularly important for understanding human impacts on the phosphorus (P) cycle, as mineral P reserves are geopolitically concentrated. Yet, P use is only one component of the broader agro-environmental dimensions of globalized agriculture. Understanding complex interactions among multiple components of land use and resource management in trade networks is needed. We fuse comprehensive global agricultural datasets illustrating key facets of land use and management with bilateral trade statistics to explore phosphorus-use efficiency in relation to other agro-environmental indicators. Our findings illustrate tradeoffs among phosphorus-use efficiency, nitrogen-use efficiency, crop-water productivity, and overall crop yields embodied within trade networks. Disparities in the land-use intensity of different exporting countries reflect the types of commodities produced, the degree of export-orientation, and the biophysical context of production. Phosphorus inefficiencies could compound other problems, such as water scarcity, but our findings also reveal places with relatively high efficiency across multiple indicators—offering insight on how overall resource management can be balanced for export production. Using the prevailing agricultural systems of key exporting regions as a backdrop, we highlight opportunities to leverage agricultural efficiencies embodied in global trade networks to conserve multiple resources.

  15. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  16. The role of allelopathy in agricultural pest management.

    PubMed

    Farooq, Muhammad; Jabran, Khawar; Cheema, Zahid A; Wahid, Abdul; Siddique, Kadambot H M

    2011-05-01

    Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed. Copyright © 2011 Society of Chemical Industry.

  17. Management considerations for organic waste use in agriculture.

    PubMed

    Westerman, P W; Bicudo, J R

    2005-01-01

    Organic wastes are utilized in agriculture mainly for improving the soil physical and chemical properties and for nutrient sources for growing crops. The major source of organic waste used in agriculture is animal manure, but small amounts of food processing and other industrial wastes (along with municipal wastes) are also applied to land. In the last 35 years, and especially in the last 10 years, there have been increasing environmental regulations affecting farms that have resulted in more animal manure treatment options, and thus affecting characteristics of residues that are subsequently applied to land. Farms are being assessed for nutrient balances, with the entire nutrient and manure management system evaluated for best management alternatives. Because of inadequate available land on the animal farm in some cases, organic wastes must be treated and/or transported to other farms, or utilized for horticultural or other uses. This paper discusses the various factors and challenges for utilizing organic wastes in agriculture.

  18. 77 FR 5750 - Office of Procurement and Property Management; Agriculture Acquisition Regulation, Labor Law...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... CFR Part 422 RIN 0599-AA19 Office of Procurement and Property Management; Agriculture Acquisition Regulation, Labor Law Violations; Withdrawal AGENCY: Office of Procurement and Property Management, Departmental Management, Department of Agriculture. ACTION: Proposed rule; withdrawal. SUMMARY: The Office...

  19. Techniques for Managing a Computer Classroom.

    ERIC Educational Resources Information Center

    Sedran, Mary Ann

    1985-01-01

    Some techniques for managing the classroom and teaching programing that have worked well are described. Hardware placement and use, classroom management, instructional recommendations, and programing ideas are each discussed. (MNS)

  20. FOUND: A Technique for Teaching Management Concepts.

    ERIC Educational Resources Information Center

    Linck, Sandra Taliaferro

    1982-01-01

    Describes a technique used to teach theories of management: family simulation. Students created and described a family, its environment, and resources and used this scenario for practical applications of management concepts, such as decision making and decision trees. (SK)

  1. Challenges for Sustainable Land Management through Climate-Smart Agriculture

    NASA Astrophysics Data System (ADS)

    Dougill, Andrew; Stringer, Lindsay

    2017-04-01

    There are increasing pushes for agricultural land management to be both sustainable and climate-smart (in terms of increasing productivity, building resilience to climate change and enhancing carbon storage). Climate-smart agriculture initiatives include conservation agriculture, based on minimum soil disturbance, permanent soil cover and crop rotation, and agroforestry. Such efforts address key international goals of the United Nations Convention to Combat Desertification (UNCCD) and United Nations Framework Convention on Climate Change (UNFCCC), but as yet have not seen widespread uptake. Based on analyses of different project interventions from across a range of southern African countries, we outline the inter-related challenges that are preventing adoption of climate-smart agriculture initiatives. We then identify routes to building multi-stakeholder partnerships and empowering communities through participatory monitoring with the aim of increasing uptake of such sustainable land management practices. Good practice examples remain largely restricted to local-level project interventions with significant donor (or private-sector) support, aligned to short-term community priorities relating to access to inputs or reduced labour requirements. Scaling-up to district- and national-level initiatives is yet to be widely successful due to problems of: limited policy coherence; a lack of communication between stakeholders at different levels; and limited understanding of long-term benefits associated with changes in agricultural practices. We outline opportunities associated with improved communication of climate information, empowerment of district-level adaptation planning and diversification of agricultural livelihood strategies as key routes to guide farmers towards more sustainable, and climate-smart, land management practices. Recent experiences in Malawi, which has experienced significant floods and an El Niño drought year in the last two years, are used to

  2. Control of Agricultural Nonpoint Source Pollution by Natural Wetland Management

    USDA-ARS?s Scientific Manuscript database

    Reduction of nonpoint source pollutants, principally sediment and nutrients moving from cultivated fields to surface waters, is a major challenge. Remnants of once-extensive natural wetlands occur across the agricultural landscape, and some workers have suggested that these areas might be managed t...

  3. Measuring biodiversity and sustainable management in forests and agricultural landscapes

    PubMed Central

    Dudley, Nigel; Baldock, David; Nasi, Robert; Stolton, Sue

    2005-01-01

    Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species. PMID:15814357

  4. Measuring biodiversity and sustainable management in forests and agricultural landscapes.

    PubMed

    Dudley, Nigel; Baldock, David; Nasi, Robert; Stolton, Sue

    2005-02-28

    Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species.

  5. Techniques for Measuring the Dielectric Properties of Agricultural Products

    USDA-ARS?s Scientific Manuscript database

    Dielectrics and dielectric properties of materials are defined generally, and methods for measuring dielectric properties of agricultural products are described for several frequency ranges from audio frequencies through microwave frequencies. These include measurement with impedance and admittance...

  6. Managing material transfer and nutrient flow in an agricultural watershed.

    PubMed

    Nord, E A; Lanyon, L E

    2003-01-01

    Place-based resource management, such as watershed or ecosystem management, is being promoted to replace the media-focused approach for achieving water quality protection. We monitored the agricultural area of a 740-ha watershed to determine the nature and scale of farm material transfers, N and P balances, and farmer decisions that influenced them. Using field data and farmer interviews we found that 3 of 15 farms, emphasizing hog, dairy, or cash crops with poultry production, accounted for more than 80% of the inputs and outputs of N and P for the 362-ha agricultural area (332 ha of managed cropland and animal facilities). Feed for hogs (38% each of total N and P) and manure applied to fields as part of the cash crop and poultry operation (28 and 38% of total N and P, respectively) were the dominant inputs. No crops grown in the watershed were fed to animals in the watershed and more manure nutrients were applied from animals outside than from those in the watershed. A strategic decision by the hog farmer to begin marketing finished hogs changed the material transfers and nutrient balances more than tactical decisions by other farmers in allocating manure to cropland. Since the components of agricultural production were not all interconnected, the fundamental assumption of place-based management programs is not well-suited to this situation. Alternative approaches to managing the effect of agriculture on water quality should consider the organization of agricultural production and the role of strategic decisions in controlling farm nutrient balances.

  7. Skill Standards for Agriculture: John Deere Agricultural Equipment Technician, Agricultural & Diesel Equipment Mechanic, Irrigation Technologist, Turf Management Technician, Turf Equipment Service Technician.

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, Olympia.

    This document presents agriculture skill standards for programs to prepare Washington students for employment in the following occupations: John Deere agricultural equipment technician; agricultural and diesel equipment mechanic; irrigation technologist; turf management technician; and turf equipment service technician. The introduction explains…

  8. An Experimental Evaluation of the Effectiveness of Selected Techniques and Resources on Instruction in Vocational Agriculture.

    ERIC Educational Resources Information Center

    Kahler, Alan A.

    The study was designed to test new instructional techniques in vocational agriculture, determine their effectiveness on student achievement, and compare individual and group instructional techniques. Forty-eight randomly selected Iowa high school vocational agriculture programs with enrollments of 35 students or more, were selected for testing the…

  9. Agricultural Pesticide Management in Thailand: Situation and Population Health Risk

    PubMed Central

    Panuwet, Parinya; Siriwong, Wattasit; Prapamontol, Tippawan; Ryan, P. Barry; Fiedler, Nancy; Robson, Mark G.; Barr, Dana Boyd

    2012-01-01

    As an agricultural country and one of the world’s major food exporters, Thailand relies heavily on the use of pesticides to protect crops and increase yields. During the past decade, the Kingdom of Thailand has experienced an approximate four-fold increase in pesticide use. This increase presents a challenge for the Royal Thai Government in effectively managing and controlling pesticide use based upon the current policies and legal infrastructure. We have reviewed several key components for managing agricultural pesticides in Thailand. One of the main obstacles to effective pesticide regulation in Thailand is the lack of a consolidated, uniform system designed specifically for pesticide management. This deficit has weakened the enforcement of existing regulations, resulting in misuse/overuse of pesticides, and consequently, increased environmental contamination and human exposure. This article provides a systematic review of how agricultural pesticides are regulated in Thailand. In addition, we provide our perspectives on the current state of pesticide management, the potential health effects of widespread, largely uncontrolled use of pesticides on the Thai people and ways to improve pesticide management in Thailand. PMID:22308095

  10. Agricultural Pesticide Management in Thailand: Situation and Population Health Risk.

    PubMed

    Panuwet, Parinya; Siriwong, Wattasit; Prapamontol, Tippawan; Ryan, P Barry; Fiedler, Nancy; Robson, Mark G; Barr, Dana Boyd

    2012-03-01

    As an agricultural country and one of the world's major food exporters, Thailand relies heavily on the use of pesticides to protect crops and increase yields. During the past decade, the Kingdom of Thailand has experienced an approximate four-fold increase in pesticide use. This increase presents a challenge for the Royal Thai Government in effectively managing and controlling pesticide use based upon the current policies and legal infrastructure. We have reviewed several key components for managing agricultural pesticides in Thailand. One of the main obstacles to effective pesticide regulation in Thailand is the lack of a consolidated, uniform system designed specifically for pesticide management. This deficit has weakened the enforcement of existing regulations, resulting in misuse/overuse of pesticides, and consequently, increased environmental contamination and human exposure. This article provides a systematic review of how agricultural pesticides are regulated in Thailand. In addition, we provide our perspectives on the current state of pesticide management, the potential health effects of widespread, largely uncontrolled use of pesticides on the Thai people and ways to improve pesticide management in Thailand.

  11. Classroom Management Techniques and Student Discipline.

    ERIC Educational Resources Information Center

    Doyle, Walter

    This paper reviews concepts and research findings on classroom management techniques and explores how these techniques are related to student discipline strategies. The first section surveys descriptive and experimental research recently accumulated on classroom management practice, concentrating on strategies for monitoring and guiding classroom…

  12. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2014-04-01 2014-04-01 false Is an Indian agricultural resource management plan...

  13. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2011-04-01 2011-04-01 false Is an Indian agricultural resource management plan...

  14. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2013-04-01 2013-04-01 false Is an Indian agricultural resource management plan...

  15. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2012-04-01 2011-04-01 true Is an Indian agricultural resource management plan...

  16. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2010-04-01 2010-04-01 false Is an Indian agricultural resource management...

  17. Systems management techniques and problems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Report is reviewed which discusses history and trends of systems management, its basic principles, and nature of problems that lend themselves to systems approach. Report discusses systems engineering as applied to weapons acquisition, ecology, patient monitoring, and retail merchandise operations.

  18. Soil management: The key to soil quality and sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel

    2017-04-01

    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  19. Improving agricultural knowledge management: The AgTrials experience

    PubMed Central

    Hyman, Glenn; Espinosa, Herlin; Camargo, Paola; Abreu, David; Devare, Medha; Arnaud, Elizabeth; Porter, Cheryl; Mwanzia, Leroy; Sonder, Kai; Traore, Sibiry

    2017-01-01

    Background: Opportunities to use data and information to address challenges in international agricultural research and development are expanding rapidly. The use of agricultural trial and evaluation data has enormous potential to improve crops and management practices. However, for a number of reasons, this potential has yet to be realized. This paper reports on the experience of the AgTrials initiative, an effort to build an online database of agricultural trials applying principles of interoperability and open access. Methods: Our analysis evaluates what worked and what did not work in the development of the AgTrials information resource. We analyzed data on our users and their interaction with the platform. We also surveyed our users to gauge their perceptions of the utility of the online database. Results: The study revealed barriers to participation and impediments to interaction, opportunities for improving agricultural knowledge management and a large potential for the use of trial and evaluation data.  Conclusions: Technical and logistical mechanisms for developing interoperable online databases are well advanced.  More effort will be needed to advance organizational and institutional work for these types of databases to realize their potential. PMID:28580127

  20. 78 FR 5164 - Notice of Agricultural Management Assistance Organic Certification Cost-Share Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Agricultural Marketing Service Notice of Agricultural Management Assistance Organic Certification Cost-Share... Applications From State Departments of Agriculture for the Agricultural Management Assistance Organic...) for the allocation of organic certification cost-share funds. The AMS has allocated $1.425 million...

  1. 76 FR 55000 - Notice of Agricultural Management Assistance Organic Certification Cost-Share Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Agricultural Marketing Service Notice of Agricultural Management Assistance Organic Certification Cost-Share... Applications from State Departments of Agriculture for the Agricultural Management Assistance Organic...) for the allocation of organic certification cost-share funds. The AMS has allocated $1.5 million...

  2. PPBS Techniques in Educational Management.

    ERIC Educational Resources Information Center

    Rumpel, George H.

    This handbook delineates the procedures recommended for the installation of a working planning, programing, budgeting system (PPBS). Primary emphasis is placed on the step-by-step implementation of such a management control system. The presentation repeats the implementation cycle for the four time periods involved: (1) current year's ongoing…

  3. Water transfers, agriculture, and groundwater management: a dynamic economic analysis.

    PubMed

    Knapp, Keith C; Weinberg, Marca; Howitt, Richard; Posnikoff, Judith F

    2003-04-01

    Water transfers from agricultural to urban and environmental uses will likely become increasingly common worldwide. Many agricultural areas rely heavily on underlying groundwater aquifers. Out-of-basin surface water transfers will increase aquifer withdrawals while reducing recharge, thereby altering the evolution of the agricultural production/groundwater aquifer system over time. An empirical analysis is conducted for a representative region in California. Transfers via involuntary surface water cutbacks tilt the extraction schedule and lower water table levels and net benefits over time. The effects are large for the water table but more modest for the other variables. Break-even prices are calculated for voluntary quantity contract transfers at the district level. These prices differ considerably from what might be calculated under a static analysis which ignores water table dynamics. Canal-lining implies that districts may gain in the short-run but lose over time if all the reduction in conveyance losses is transferred outside the district. Water markets imply an evolving quantity of exported flows over time and a reduction in basin net benefits under common property usage. Most aquifers underlying major agricultural regions are currently unregulated. Out-of-basin surface water transfers increase stress on the aquifer and management benefits can increase substantially in percentage terms but overall continue to remain small. Conversely, we find that economically efficient management can mitigate some of the adverse consequences of transfers, but not in many circumstances or by much. Management significantly reduced the water table impacts of cutbacks but not annual net benefit impacts. Neither the break-even prices nor the canal-lining impacts were altered by much. The most significant difference is that regional water users gain from water markets under efficient management.

  4. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    NASA Astrophysics Data System (ADS)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  5. Improved agriculture and forest management in Africa through the AGRICAB project

    NASA Astrophysics Data System (ADS)

    Bydekerke, L.; Tote, C.; Jacobs, T.; Gilliams, S.

    2012-04-01

    Agriculture and forestry are key economic sectors in many African countries. A sound management of these resources, in order to ensure stable food supply, is key for development. In many countries in Africa both forest and agricultural resources are under stress due to, among others, a growing population, land reforms, climate variability and change. Sound information is required to efficiently manage these resources. Remote sensing contributes significantly to these information needs and for this reason more and more institutes and agencies integrate this technology into their daily work. In this context, there is a growing need for enhancing remote sensing capacity in Africa and for this reason the European Commission launched the AGRICAB Project, funded by the FP7 Programme. The main focus of AGRICAB 'A Framework for enhancing earth observation capacity for agriculture and forest management in Africa as a contribution to GEOSS', is to link European and African research capacity in the use of earth observation technology for agriculture and forestry. The project consortium consists of 17 partners located in 12 different countries (5 in Europe, 10 in Africa and 1 in South America) and has three main components. Firstly, AGRICAB aims to ensure satellite data access, partly through GEONETCast. Secondly, AGRICAB will enhance research capacity through partnerships between African and European institutes in the following thematic areas (a) yield forecasting, (b) early warning and agricultural mapping of food crops, (c) agricultural statistics, (d) livestock and rangeland monitoring, and (e) forest and forest fire monitoring. Thirdly, a significant part is dedicated to training and building awareness concerning the advantage and benefits of the use of remote sensing in forest and agricultural management. AGRICAB intends to allow African partners: (i) to get exposed to state-of-the art techniques and models for agricultural and forest monitoring, (ii) to discover these

  6. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  7. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    SciTech Connect

    Hanlon, Edward; Capece, John

    2009-11-20

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agricultural land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.

  8. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  9. Modern Reservoir Sedimentation Management Techniques with Examples

    NASA Astrophysics Data System (ADS)

    Annandale, G. W.

    2014-12-01

    Implementation of reservoir sedimentation management approaches results in a win-win scenario, it assists in enhancing the environment by preserving river function downstream of dams while concurrently providing opportunities to sustainably manage water resource infrastructure. This paper summarizes the most often used reservoir sedimentation management techniques with examples of where they have been implemented. Three categories can be used to classify these technologies, i.e. catchment management, sediment routing and sediment removal. The objective of catchment management techniques is to minimize the amount of sediment that may discharge into a reservoir, thereby reducing the loss of storage space due to sedimentation. Reservoir routing is a set of techniques that aim at minimizing the amount of sediment that may deposit in a reservoir, thereby maximizing the amount of sediment that may be passed downstream. The third group consists of techniques that may be used to remove previously deposited sediment from reservoirs. The selection of reservoir sedimentation management approaches is site specific and depends on various factors, including dam height, reservoir volume, reservoir length, valley shape, valley slope, sediment type and hydrology. Description of the different reservoir sedimentation management techniques that are used in practice will be accompanied by case studies, including video, illustrating criteria that may be used to determine the potential success of implementing the techniques.

  10. Study on Retrieval Technique of Content-Based Agricultural Scientech Multimedia Data

    NASA Astrophysics Data System (ADS)

    Yang, Xiaorong; Wang, Wensheng

    Traditional text information-based management and utilization methods can not satisfy application demands of implicit and unstructured agriculture multimedia data. For providing a readable-friendly agriculture science & technology information service, this paper proposes a relation database model oriented multimedia data method, which implements content-based multimedia data search by indexing every kind of multimedia data.

  11. Techniques for integrated water resources management

    NASA Astrophysics Data System (ADS)

    The course, Decision Support Techniques for Integrated Water Resources Management, is designed mainly for technical managers and staff of water resources management agencies at the international, national, regional, and local water board level, as well as consultants in other professions working in or interested in the field of water resources development, planning, and operation. It will be held in Wageningen, The Netherlands, June 10-15, 1991.The course objective is to promote better understanding and dissemination of techniques to be applied in “real-world” integrated water resources management. The course offers an introduction to the concepts of decision modeling, plus ample case studies to demonstrate their applicability. It covers decision theory, operations research and simulation methods, as well as certain aspects of law and psychology. Selected multiple objective techniques will be presented, followed by an overview of recent trends in the field. Computer-based techniques will be demonstrated.

  12. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  13. The Use of Geometry and Proportional Reasoning Techniques at the US Department of Agriculture

    ERIC Educational Resources Information Center

    Farnsworth, Ralph Edward

    2006-01-01

    This paper discusses the use of geometry and proportional reasoning techniques used at the United States Department of Agriculture by two of its branches: the Farm Service Agency and the Natural Resources Conservation Service. This paper discusses the agricultural agency and two branches involved, details a seven-lesson geometry module for high…

  14. The Use of Geometry and Proportional Reasoning Techniques at the US Department of Agriculture

    ERIC Educational Resources Information Center

    Farnsworth, Ralph Edward

    2006-01-01

    This paper discusses the use of geometry and proportional reasoning techniques used at the United States Department of Agriculture by two of its branches: the Farm Service Agency and the Natural Resources Conservation Service. This paper discusses the agricultural agency and two branches involved, details a seven-lesson geometry module for high…

  15. Projecting Agricultural Education Programs for the 21st Century Using a Modified Delphi Technique.

    ERIC Educational Resources Information Center

    Iverson, Maynard J.

    A modified three-step Delphi procedure was used to conduct a series of national studies of futurists regarded by their peers as top experts in agricultural education. The primary objective was to project enrollments in agricultural education programs for the 21st century. Other study objectives were to ascertain whether the Delphi technique could…

  16. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  17. Improving Crop Classification Techniques Using Optical Remote Sensing Imagery, High-Resolution Agriculture Resource Inventory Shapefiles and Decision Trees

    NASA Astrophysics Data System (ADS)

    Melnychuk, A. L.; Berg, A. A.; Sweeney, S.

    2010-12-01

    Recognition of anthropogenic effects of land use management practices on bodies of water is important for remediating and preventing eutrophication. In the case of Lake Simcoe, Ontario the main surrounding landuse is agriculture. To better manage the nutrient flow into the lake, knowledge of the management of the agricultural land is important. For this basin, a comprehensive agricultural resource inventory is required for assessment of policy and for input into water quality management and assessment tools. Supervised decision tree classification schemes, used in many previous applications, have yielded reliable classifications in agricultural land-use systems. However, when using these classification techniques the user is confronted with numerous data sources. In this study we use a large inventory of optical satellite image products (Landsat, AWiFS, SPOT and MODIS) and ancillary data sources (temporal MODIS-NDVI product signatures, digital elevation models and soil maps) at various spatial and temporal resolutions in a decision tree classification scheme. The sensitivity of the classification accuracy to various products is assessed to identify optimal data sources for classifying crop systems.

  18. Invasion and Management of Agricultural Alien Insects in China.

    PubMed

    Wan, Fang-Hao; Yang, Nian-Wan

    2016-01-01

    China is the world's fourth-largest country in terms of landmass. Its highly diverse biogeography presents opportunities for many invasive alien insects. However, physical and climate barriers sometimes prevent locally occurring species from spreading. China has 560 confirmed invasive alien species; 125 are insect pests, and 92 of these damage the agricultural ecosystem. The estimated annual economic loss due to alien invasive species is more than $18.9 billion. The most harmful invasive insects exhibit some common characteristics, such as high reproduction, competitive dominance, and high tolerance, and benefit from mutualist facilitation interactions. Regional cropping system structure adjustments have resulted in mono-agricultural ecosystems in cotton and other staple crops, providing opportunities for monophagous insect pests. Furthermore, human dietary shifts to fruits and vegetables and smallholder-based farming systems result in highly diverse agricultural ecosystems, which provide resource opportunities for polyphagous insects. Multiple cropping and widespread use of greenhouses provide continuous food and winter habitats for insect pests, greatly extending their geographic range. The current management system consists of early-warning, monitoring, eradication, and spread blocking technologies. This review provides valuable new synthetic information on integrated management practices based mainly on biological control for a number of invasive species. We encourage farmers and extension workers to be more involved in training and further research for novel protection methods that takes into consideration end users' needs.

  19. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  20. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  1. Stress Management Techniques for Young Children.

    ERIC Educational Resources Information Center

    Piper, Francesca M.

    The director of a not-for-profit nursery school adapted the adult stress management techniques of exercise and relaxation for use with 3- to 5-year-old children. Specifically, children were taught visualization techniques and yoga exercises involving deep breathing. The goal of the practicum was to rechannel children's negative stress-related…

  2. Stress Management Techniques for Young Children.

    ERIC Educational Resources Information Center

    Piper, Francesca M.

    The director of a not-for-profit nursery school adapted the adult stress management techniques of exercise and relaxation for use with 3- to 5-year-old children. Specifically, children were taught visualization techniques and yoga exercises involving deep breathing. The goal of the practicum was to rechannel children's negative stress-related…

  3. Agricultural Management Practices Explain Variation in Global Yield Gaps of Major Crops

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.

    2010-12-01

    The continued expansion and intensification of agriculture are key drivers of global environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into carbon- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use global climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural management data and built a global dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the global management information for 17 major crops. We find that our climate-specific models explain a substantial amount of the global variation in yields. These models could be widely applied to identify management changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.

  4. Study of guidance techniques for aerial application of agricultural compounds

    NASA Technical Reports Server (NTRS)

    Caldwell, J. D.; Dimmock, P. B. A.; Watkins, R. H.

    1980-01-01

    Candidate systems were identified for evaluation of suitability in meeting specified accuracy requirements for a swath guidance system in an agriculture aircraft. Further examination reduced the list of potential candidates to a single category, i.e., transponder type systems, for detailed evaluation. Within this category three systems were found which met the basic accuracy requirements of the work statement. The Flying Flagman, the Electronic Flagging and the Raydist Director System. In addition to evaluating the systems against the specified requirements, each system was compared with the other two systems on a relative basis. The conclusions supported by the analyses show the Flying Flagman system to be the most suitable system currently available to meet the requirements.

  5. The limitations of environmental management systems in Australian agriculture.

    PubMed

    Cary, John; Roberts, Anna

    2011-03-01

    The efficacy of government-supported programs to encourage improved management of land and water systems associated with agricultural land in Australia has been mixed. The broad approach of Australian governments is reviewed briefly. Evidence is presented from case assessments of a program to promote adoption of environmental management systems (EMSs) to improve environmental outcomes from agricultural practices. EMSs are systems implemented to manage the environmental impacts and ameliorate environmental risk associated with business activity. Data are presented on reported EMS activity and experience of four selected groups of farmers in Victoria, south-eastern Australia, representing broad-acre cropping, beef and dairy farming. The pro-environmental behaviours of farmers were mediated through voluntary adoption of government and industry sponsored EMSs, often with financial incentives and other support. Findings from the study were that adoption of EMS practices with sufficient public benefits is unlikely to occur at sufficient scale for significant environmental impact. Farmers more readily adopted practices which were financially beneficial than those which had a positive environmental impact. Although the focus on voluntary market-based instrument (MBI) type programs is popular in western countries, enforcing regulation is an important, but usually politically unpopular, component of land use policy. The comparative advantage of EMSs differed for the industries studied, but overall there were insufficient market drivers for widespread EMS adoption in Australia. Environmental outcomes could be more effectively achieved by directly funding land management practices which have highest public net benefits. Having a clear and unambiguous management objective for a particular land management policy is more likely to achieve outcomes than having multiple objectives as occurs in a number of international programs currently.

  6. The setting of standards for agricultural nitrogen emissions: a case study of the Delphi technique.

    PubMed

    Angus, A J; Hodge, I D; McNally, S; Sutton, M A

    2003-12-01

    The Delphi technique is a means of aggregating the judgement of a panel of experts in order to improve the quality of decision-making. This paper provides a case study of the technique by undertaking a three-round Delphi study to determine a package of best available techniques to reduce nitrogen emissions from a poultry unit under the Integrated Pollution Prevention and Control Directive (IPPC). Forms of nitrogen addressed included ammonia (NH3), nitrous oxide (N2O) nitrogen oxides (NOx), dusts and nitrate (NO3-), with the study providing a means to prioritise the pollution concerns on different spatial scales. The priority pollutant issues were the contribution of NH3 to eutrophication, the global cooling effect of NH4+ aerosol, the role of NH4+ as a vector for atmospheric transport of NOx and SO2, the contribution of N2O to global warming, and NO3- leaching. Reduced nitrogen (NHx) was rated as a priority on all scales, while N2O and NO3- were rated as priorities only on global and local scales, respectively. The study indicated the need for abatement techniques at each stage of poultry rearing and waste management, with particular attention to reduce NH3 emissions, reflecting the priority pollutant concerns. Measures identified by the panel include maintenance of dry litter, low emission removal of litter from housing and storage of litter under cover. Once the litter has left the farm, this should either be used as a biofuel for electricity generation or rapidly incorporated into agricultural soils. The amounts and timing of manure application should be tuned to crop needs. Uncertainties in the Delphi technique limit its suitability as a stand-alone decision making tool. However, the Delphi technique proved useful in identifying priority pollutant issues, areas of agreement, disagreement and where information is lacking. This demonstrates its use when dealing with the complex issues of prioritising pollution issues and abatement approaches.

  7. Mitigating Nitrous Oxide Emissions from Agricultural Landscape: The Role of Isotopic Techniques

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad; Nguyen, Minh Long

    2014-05-01

    A review of studies from agricultural landscapes indicate that intensification of agricultural activities, inefficient use of reactive nitrogen (N) fertilizers and irrigation water, increasing human population and changes in their diet (more protein demand), high stocking rate (number of grazing livestock per hectare) and intensive cultivation are the major influencing factors for nitrous oxide (N2O) emissions into the atmosphere. Nitrification (both autotrophic and heterotrophic), denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are the three major microbial processes that produce greenhouse N2O and non-greenhouse gas (N2) and can sometimes occur concurrently in a given soil system. The contribution of N2O production from each of these microbial processes is inconclusive because of the complex interactions between various microbial processes and the physical and chemical conditions in soil microsite (s). Nitrous oxide emissions across an agricultural landscape from different N inputs (chemical fertilizers and animal manure) and soil types are also extremely variable both temporally and spatially and range from 1-20% of the applied N and could therefore represent agronomic loss. The available conventional methods such as acetylene (C2H2) inhibition and helium (He) cannot accurately measure both N2O and N2 and their ratio in a given soil. The use of 15N stable isotopic technique offers the best option to measure both N2O and N2 and to identify their source (nitrification and denitrification) with a greater accuracy. Manipulating soil and fertilizer management practices can minimise these gaseous N losses. For example the combined use of urease inhibitor like (N-(n-butyl) thiophosphoric triamide (nBTPT) (trade name Agrotain®) and nitrification inhibitor dicyandiamide (DCD) with urea (100 kg N ha-1) or animal urine (600 kg N ha-1) was shown to reduce N losses by 39-53 % via denitrification-nitrification-DNRA processes. Other farm management

  8. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  9. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Is an Indian agricultural resource management plan... WATER NAVAJO PARTITIONED LANDS GRAZING PERMITS General Provisions § 161.200 Is an Indian agricultural... goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by...

  10. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Is an Indian agricultural resource management plan... WATER NAVAJO PARTITIONED LANDS GRAZING PERMITS General Provisions § 161.200 Is an Indian agricultural... goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by...

  11. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Is an Indian agricultural resource management plan... WATER NAVAJO PARTITIONED LANDS GRAZING PERMITS General Provisions § 161.200 Is an Indian agricultural... goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by...

  12. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Is an Indian agricultural resource management plan... WATER NAVAJO PARTITIONED LANDS GRAZING PERMITS General Provisions § 161.200 Is an Indian agricultural... goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by...

  13. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Is an Indian agricultural resource management plan... WATER NAVAJO PARTITIONED LANDS GRAZING PERMITS General Provisions § 161.200 Is an Indian agricultural... goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by...

  14. 75 FR 54591 - Notice of Agricultural Management Assistance Organic Certification Cost-Share Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Agricultural Marketing Service Notice of Agricultural Management Assistance Organic Certification Cost-Share... Applications for the Agricultural Management Assistance Organic Certification Cost-Share Program. SUMMARY: This... Organic Certification Cost-Share Funds. The AMS has allocated $1.495 million for this...

  15. 77 FR 5714 - Office of Procurement and Property Management; Agriculture Acquisition Regulation, Labor Law...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE 48 CFR Part 422 RIN 0599-AA19 Office of Procurement and Property Management; Agriculture Acquisition..., Departmental Management, Department of Agriculture. ACTION: Direct Final rule; withdrawal. SUMMARY: Due to...

  16. 76 FR 74755 - Office of Procurement and Property Management; Agriculture Acquisition Regulation, Labor Law...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE 48 CFR Part 422 RIN 0599-AA19 Office of Procurement and Property Management; Agriculture Acquisition... Agriculture. ACTION: Proposed rule. SUMMARY: The Office of Procurement and Property Management (OPPM) of...

  17. Soil mapping in past and recent agricultural management sustainability assessment

    NASA Astrophysics Data System (ADS)

    Holec, Juraj; Burian, Libor; Horáčková, Šárka; Druga, Michal; Čekovská, Lucia; Súľovský, Marek; Minár, Jozef; Smetanová, Anna

    2017-04-01

    Human impact on soils via accelerated processes of soil degradation has created heterogeneous soilscapes in the Chernozem regions in South-West Carpathians Foreland. Loess hilly lands, such as Trnavska Tabula Table, are characterized by colourful mosaic of 'bright patches' represented by eroded Chernozems or Regosols, and dark non-eroded or accumulated soils. Detailed soil mapping of soil spatial patterns with regard to topography and land use structures is inevitable for assessing sustainability of past land management triggering conditions in which current sustainable management must operate, and description of current conditions. To tackle this challenge, the study analyses extensive datasets of more than 800 field drillings, and develops topography based prediction models to analyse regional sediment budget since the onset of agriculture. Current and reconstructed soilscapes are compared with historical and recent land use patterns and effects of different land uses and landscape designs on soil and erosion processes are evaluated.The project is supported by APVV-15-0054.

  18. Improving the representation of agricultural management in land surface models

    NASA Astrophysics Data System (ADS)

    Sacks, William J.

    To gain a better understanding of processes affecting crop yield, as well as two-way feedbacks between agricultural management and climate, a number of groups have recently incorporated croplands into regional and global land surface models. However, many aspects of agricultural management are still treated in a rudimentary way in these models. For my doctoral research, I have aimed to improve the representation of two key agricultural processes in land surface models: crop phenology and irrigation. In addition, I have investigated the effects of these processes on both crop yields and climate. First, I assembled a dataset of global crop planting and harvesting dates for nineteen crops. I also investigated climatic and non-climatic factors that drive planting date decisions around the world. Second, I investigated trends and variability in crop planting dates and development progress across the U.S. I showed a trend to earlier planting of corn and soybeans, along with a trend to a longer crop growth period, and particularly a lengthening reproductive period in corn. In addition, I showed that growing degree days are a good predictor of the length of the vegetative period in corn, but less so for the reproductive period. Third, I used these observed trends along with the Agro-IBIS model to explore the implications of changes in crop phenology for both crop yields and fluxes of water and energy. I estimated that the trend to longer-season corn cultivars over the last three decades can account for 26% of the observed yield trend in the U.S. In addition, I found that earlier planting and longer-season cultivars shift the seasonality of water and energy fluxes, and have a small effect on annual-average fluxes. Finally, I investigated the effects of irrigation on climate, finding that this effect is significant in some large regions of the globe. Although the global-average temperature change was small, the large regional changes are important for both crop yields and

  19. Informing agricultural management - The challenge of modelling grassland phenology

    NASA Astrophysics Data System (ADS)

    Calanca, Pierluigi

    2017-04-01

    Grasslands represent roughly 70% of the agricultural land worldwide, are the backbone of animal husbandry and contribute substantially to agricultural income. At the farm scale a proper management of meadows and pastures is necessary to attain a balance between forage production and consumption. A good hold on grassland phenology is of paramount importance in this context, because forage quantity and quality critically depend on the developmental stage of the sward. Traditionally, empirical rules have been used to advise farmers in this respect. Yet the provision of supporting information for decision making would clearly benefit from dedicated tools that integrate reliable models of grassland phenology. As with annual crops, in process-based models grassland phenology is usually described as a linear function of so-called growing degree days, whereby data from field trials and monitoring networks are used to calibrate the relevant parameters. It is shown in this contribution that while the approach can provide reasonable estimates of key developmental stages in an average sense, it fails to account for the variability observed in managed grasslands across sites and years, in particular concerning the start of the growing season. The analysis rests on recent data from western Switzerland, which serve as a benchmark for simulations carried out with grassland models of increasing complexity. Reasons for an unsatisfactory model performance and possibilities to improve current models are discussed, including the necessity to better account for species composition, late season management decisions, as well as plant physiological processes taking place during the winter season. The need to compile existing, and collect new data doe managed grasslands is also stressed.

  20. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture.

    PubMed

    Ponisio, Lauren C; M'Gonigle, Leithen K; Kremen, Claire

    2016-02-01

    To slow the rate of global species loss, it is imperative to understand how to restore and maintain native biodiversity in agricultural landscapes. Currently, agriculture is associated with lower spatial heterogeneity and turnover in community composition (β-diversity). While some techniques are known to enhance α-diversity, it is unclear whether habitat restoration can re-establish β-diversity. Using a long-term pollinator dataset, comprising ∼9,800 specimens collected from the intensively managed agricultural landscape of the Central Valley of California, we show that on-farm habitat restoration in the form of native plant 'hedgerows', when replicated across a landscape, can boost β-diversity by approximately 14% relative to unrestored field margins, to levels similar to some natural communities. Hedgerows restore β-diversity by promoting the assembly of phenotypically diverse communities. Intensively managed agriculture imposes a strong ecological filter that negatively affects several important dimensions of community trait diversity, distribution, and uniqueness. However, by helping to restore phenotypically diverse pollinator communities, small-scale restorations such as hedgerows provide a valuable tool for conserving biodiversity and promoting ecosystem services.

  1. Agricultural management affects below ground carbon input estimations

    NASA Astrophysics Data System (ADS)

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Mayer, Jochen

    2017-04-01

    Root biomass and rhizodeposition carbon (C release by living roots) are among the most relevant root parameters for studies of plant response to environmental change, soil C modelling or estimations of soil C sequestration. Below ground C inputs of agricultural crops are typically estimated from above ground biomass or yield, thereby implying constant below to above ground C ratios. Agricultural management practices affect above ground biomass considerably; however, their effects on below ground C inputs are only poorly understood. Our aims were therefore to (i) quantify root biomass C and rhizodeposition C of maize and wheat grown in agricultural management systems with different fertilization intensities and (ii) determine management effects on below/above ground C ratios and vertical distribution of below ground C inputs into soil. We conducted a comprehensive field study on two Swiss long-term field trials, DOK (Basel) and ZOFE (Zurich), with silage (DOK) and grain (ZOFE) maize in 2013 and winter wheat in 2014 (ZOFE) and 2015 (DOK). Three treatments in DOK (2 bio-organic, 1 mixed conventional) and 4 treatments in ZOFE (1 without, 1 manure, 2 mineral fertilization) reflected increasing fertilization intensities. In each of 4 replicated field plots per treatment, one microplot (steel tube of 0.5m depth) was inserted into soil, covering an area of 0.1m2. The microplot plants were pulse-labelled with 13C-CO2 in weekly intervals throughout the respective growing season. After harvest, the microplot soil was sampled in three soil depths (0 - 0.25, 0.25 - 0.5, 0.5 - 0.75m), roots were separated from soil by picking and wet sieving, and root and soil samples were analysed for their δ13C values by IRMS. Carbon rhizodeposition was calculated from 13C-excess values in bulk soil and roots. (i) Average root biomasses of maize and wheat were 1.9 and 1.4 tha 1, respectively, in DOK and 0.9 and 1.1 tha 1, respectively, in ZOFE. Average amounts of C rhizodeposition of maize

  2. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture.

    PubMed

    M'Gonigle, Leithen K; Ponisio, Lauren C; Cutler, Kerry; Kremen, Claire

    2015-09-01

    Widespread evidence of pollinator declines has led to policies supporting habitat restoration including in agricultural landscapes. Yet, little is yet known about the effectiveness of these restoration techniques for promoting stable populations and communities of pollinators, especially in intensively managed agricultural landscapes. Introducing floral resources, such as flowering hedgerows, to enhance intensively cultivated agricultural landscapes is known to increase the abundances of native insect pollinators in and around restored areas. Whether this is a result of local short-term concentration at flowers or indicative of true increases in the persistence and species richness of these communities remains unclear. It is also unknown whether this practice supports species of conservation concern (e.g., those with more specialized dietary requirements). Analyzing occupancies of native bees and syrphid flies from 330 surveys across 15 sites over eight years, we found that hedgerow restoration promotes rates of between-season persistence and colonization as compared with unrestored field edges. Enhanced persistence and colonization, in turn, led to the formation of more species-rich communities. We also find that hedgerows benefit floral resource specialists more than generalists, emphasizing the value of this restoration technique for conservation in agricultural landscapes.

  3. Precision agriculture suitability to improve the terroir management in vineyard

    NASA Astrophysics Data System (ADS)

    María Terrón López, Jose; Blanco gallego, Jorge; Jesús Moral García, Francisco; Mancha Ramírez, Luis Alberto; Uriarte Hernández, David; Rafael Marques da Silva, Jose

    2014-05-01

    Precision agriculture is a useful tool to assess plant growth and development in vineyards. Traditional technics of crop management may be not enough to keep a certain level of crop yield or quality in grapes. Vegetation indices and soil based measurements, such as apparent electrical conductivity (ECa), can estimate the variability of the terroir within a specific water treatment toward the control of grapevine canopy properties. The current study focused on establishing the variability, spatial and temporal, in the vegetative development of a traditional management vineyard through to technics related to the precision agriculture. The study was carry out in a vineyard in the southwest of Spain during 2012 and 2013 growing seasons with two irrigations treatments, with four plots of each one, by one hand vines irrigated at 100% of crop evapotranspiration (ETc) and by other hand a dry farmed wines. Variations of soil properties across the assay were measured in each year at flowering stage by means of ECa, up to 80 cm. of soil depth, using mobile electrical contact sensors. Normalized difference vegetation index (NDVI) was determined in a concept of proximal sensing. In fact, the measures were made by multispectral sensors mounted in a terrestrial vehicle, in vertical positioning, at different stages during the ripening in both growing seasons. All measured data were statistically transformed to a behavior modeling pattern using principal component analisys (PCA) and compared by ordinary least square (OLS). NDVI showed a well-established pattern of vegetative development in both growing season for all the treatments at any irrigation treatment, let us appreciate the differences among the vegetative development of each plot within a specific irrigation treatment derived from the high soil variation that the ECa measures reflected. In this way, the local terroir of each plot and irrigation treatment influenced the vegetative growth showing that soil variations had a

  4. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  5. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    NASA Astrophysics Data System (ADS)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  6. Agricultural management explains historic changes in regional soil carbon stocks.

    PubMed

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-08-17

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.

  7. Agricultural management explains historic changes in regional soil carbon stocks

    PubMed Central

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  8. Selection criteria for water disinfection techniques in agricultural practices.

    PubMed

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain.

  9. Mississippi Curriculum Framework for Agriculture Business and Management (Program CIP: 01.0101--Agriculture Business & Mgmt., Gen.). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for agriculture business and management (ABM) I and II. Presented first are a…

  10. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  11. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    USDA-ARS?s Scientific Manuscript database

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  12. Advanced Analytical Techniques for the Measurement of Nanomaterials in Food and Agricultural Samples: A Review

    PubMed Central

    Bandyopadhyay, Susmita; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2013-01-01

    Abstract Nanotechnology offers substantial prospects for the development of state-of-the-art products and applications for agriculture, water treatment, and food industry. Profuse use of nanoproducts will bring potential benefits to farmers, the food industry, and consumers, equally. However, after end-user applications, these products and residues will find their way into the environment. Therefore, discharged nanomaterials (NMs) need to be identified and quantified to determine their ecotoxicity and the levels of exposure. Detection and characterization of NMs and their residues in the environment, particularly in food and agricultural products, have been limited, as no single technique or method is suitable to identify and quantify NMs. In this review, we have discussed the available literature concerning detection, characterization, and measurement techniques for NMs in food and agricultural matrices, which include chromatography, flow field fractionation, electron microscopy, light scattering, and autofluorescence techniques, among others. PMID:23483065

  13. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes, individual...

  14. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes, individual...

  15. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes, individual...

  16. 76 FR 74722 - Office of Procurement and Property Management; Agriculture Acquisition Regulation, Labor Law...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... CFR Part 422 RIN 0599-AA19 Office of Procurement and Property Management; Agriculture Acquisition Regulation, Labor Law Violations AGENCY: Office of Procurement and Property Management, Department of Agriculture. ACTION: Direct final rule. SUMMARY: The Office of Procurement and Property Management (OPPM)...

  17. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes,...

  18. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes,...

  19. Implementing agricultural phosphorus science and management to combat eutrophication.

    PubMed

    Kleinman, Peter J A; Sharpley, Andrew N; Withers, Paul J A; Bergström, Lars; Johnson, Laura T; Doody, Donnacha G

    2015-03-01

    Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden under a gradient of voluntary, litigated, and regulatory settings. In the USA, voluntary strategies are complicated by competing objectives between soil conservation and dissolved P mitigation. In litigated watersheds, mandated manure export has not wrought dire consequences on poultry farms, but has adversely affected beef producers who fertilize pastures with manure. In the UK, regulatory and voluntary approaches are improving farmer awareness, but require a comprehensive consideration of P management options to achieve downstream reductions. In Sweden, widespread subsidies sometime hinder serious assessment of program effectiveness. In all cases, absence of local data can undermine recommendations from models and outside experts. Effective action requires iterative application of existing knowledge of P fate and transport, coupled with unabashed description and demonstration of tradeoffs to local stakeholders.

  20. The residence time of intensively managed agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Bowling, Laura; Cherkauer, Keith; Chiu, Chun-mei; Rahman, Sanoar

    2015-04-01

    Much of the agricultural landscape across the Midwestern United States is intensively managed through numerous surface and subsurface drainage improvements, and the growing extraction of groundwater resources. The relatively recent glaciation of the North Central region means that the landscape is less dissected and hydrologically connected than older till areas. Low topographic gradients and underlying dense till which restricts vertical water movement, as well as kettle depressions, have led to poorly drained soils and extensive wetlands within the landscape. Large areas of this land could only be farmed once the excess water was removed through artificial surface and subsurface drainage. Conventional wisdom in the region maintains that subsurface tile drainage reduces the occurrence of peak flow events by increasing soil water storage capacity. At the watershed scale, this view does not take into account the coincident increase in surface drainage and reduction in residence time in surface depressions. This paper explores to what degree water management and irrigation has changed surface and subsurface water storage and residence time over the last century and how this has impacted flow duration throughout the Wabash River system in Indiana, USA. The effects of subsurface tile drains, wetlands and aquifer storage are explicitly represented within the Variable Infiltration Capacity (VIC) macroscale hydrology model. We maintain a focus on the entire Wabash River, a river system of historic importance that is also representative of many similar areas in the till plain region of the agricultural Midwest, which contribute to water quality and flood dynamics of the Mississippi river system. By lowering the water table, surface and subsurface drainage improvements have increased the subsurface storage capacity at the beginning of rain events, but this is overwhelmed by the decrease in surface storage capacity for intermediate to large events, decreasing the current

  1. Efficient phosphorus management practices in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm

  2. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  3. Assessing the Learning Needs of Student Teachers in Texas regarding Management of the Agricultural Mechanics Laboratory: Implications for the Professional Development of Early Career Teachers in Agricultural Education

    ERIC Educational Resources Information Center

    Saucier, P. Ryan; McKim, Billy R.

    2011-01-01

    Skills needed to manage a laboratory are essential knowledge for all school-based, agriculture teachers who instruct agricultural mechanics curriculum (Saucier, Terry, & Schumacher, 2009). This research investigated the professional development needs of Texas agricultural education student teachers regarding agricultural mechanics laboratory…

  4. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  5. Root zone sensors for irrigation management in intensive agriculture.

    PubMed

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world's water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower's experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS' (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  6. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management.

    PubMed

    Smith, L A; Thomson, S J

    2003-01-01

    A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.

  7. A 20-Year Comparison of Teachers' Agricultural Mechanics Laboratory Management Competency

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2013-01-01

    Agricultural mechanics laboratory management skills are essential for school-based agriculture teachers who instruct students in an agricultural mechanics laboratory (Bear & Hoerner, 1986). McKim and Saucier (2011) suggested the frequency and severity of accidents that occur in these laboratories can be reduced when these facilities are…

  8. (Low-level radioactive waste management techniques)

    SciTech Connect

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.; Lingle, W.N.; Peters, M.S.; Darnell, G.R.; USDOE Oak Ridge Operations Office, TN; Du Pont de Nemours and Co., Aiken, SC . Savannah River Plant; Idaho National Engineering Lab., Idaho Falls, ID )

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  9. Optimization of agricultural field workability predictions for improved risk management

    USDA-ARS?s Scientific Manuscript database

    Risks introduced by weather variability are key considerations in agricultural production. The sensitivity of agriculture to weather variability is of special concern in the face of climate change. In particular, the availability of workable days is an important consideration in agricultural practic...

  10. Regional population viability of grassland songbirds: Effects of agricultural management

    USGS Publications Warehouse

    Perlut, N.G.; Strong, A.M.; Donovan, T.M.; Buckley, N.J.

    2008-01-01

    Although population declines of grassland songbirds in North America and Europe are well-documented, the effect of local processes on regional population persistence is unclear. To assess population viability of grassland songbirds at a regional scale (???150,000 ha), we quantified Savannah Sparrow Passerculus sandwichensis and Bobolink Dolichonyx oryzivorus annual productivity, adult apparent survival, habitat selection, and density in the four most (regionally) common grassland treatments. We applied these data to a female-based, stochastic, pre-breeding population model to examine whether current grassland management practices can sustain viable populations of breeding songbirds. Additionally, we evaluated six conservation strategies to determine which would most effectively increase population trends. Given baseline conditions, over 10 years, simulations showed a slightly declining or stable Savannah Sparrow population (mean bootstrap ?? = 0.99; 95% CI = 1.00-0.989) and severely declining Bobolink population (mean bootstrap ?? = 0.75; 95% CI = 0.753-0.747). Savannah Sparrow populations were sensitive to increases in all demographic parameters, particularly adult survival. However for Bobolinks, increasing adult apparent survival, juvenile apparent survival, or preference by changing habitat selection cues for late-hayed fields (highest quality) only slightly decreased the rate of decline. For both species, increasing the amount of high-quality habitat (late- and middle-hayed) marginally slowed population declines; increasing the amount of low-quality habitat (early-hayed and grazed) marginally increased population declines. Both species were most sensitive to low productivity and survival on early-hayed fields, despite the fact that this habitat comprised only 18% of the landscape. Management plans for all agricultural regions should increase quality on both low- and high-quality fields by balancing habitat needs, nesting phenology, and species' response to

  11. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    PubMed

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  12. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    USDA-ARS?s Scientific Manuscript database

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  13. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    USDA-ARS?s Scientific Manuscript database

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  14. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  15. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  16. An Evaluation of Farm Management and Agricultural Marketing Microcomputer-Assisted Instruction in Training Vocational Agriculture Instructors.

    ERIC Educational Resources Information Center

    Trede, Larry D.; And Others

    1985-01-01

    A study found that there is a significant difference in student achievement when teaching farm management and agricultural marketing concepts and problem solving with microcomputer-assisted instruction as compared to the lecture-discussion teaching method; and that there is little difference in achievement when comparing teachers' knowledge and…

  17. Biodiversity management of organic farming enhances agricultural sustainability.

    PubMed

    Liu, Haitao; Meng, Jie; Bo, Wenjing; Cheng, Da; Li, Yong; Guo, Liyue; Li, Caihong; Zheng, Yanhai; Liu, Meizhen; Ning, Tangyuan; Wu, Guanglei; Yu, Xiaofan; Feng, Sufei; Wuyun, Tana; Li, Jing; Li, Lijun; Zeng, Yan; Liu, Shi V; Jiang, Gaoming

    2016-04-01

    Organic farming (OF) has been believed to be capable of curtailing some hazardous effects associated with chemical farming (CF). However, debates also exist on whether OF can feed a world with increasing human population. We hypothesized that some improvements on OF may produce adequate crops and reduce environmental pollutions from CF. This paper makes comparative analysis of crop yield, soil organic matter and economic benefits within the practice on Biodiversity Management of Organic Farming (BMOF) at Hongyi Organic Farm (HOF) over eight years and between BMOF and CF. Linking crop production with livestock to maximal uses of by-products from each production and avoid xenobiotic chemicals, we have achieved beneficial improvement in soil properties, effective pest and weed control, and increased crop yields. After eight years experiment, we have obtained a gradual but stable increase in crop yields with a 9.6-fold increase of net income. The net income of HOF was 258,827 dollars and 24,423 dollars in 2014 and 2007 respectively. Thus, BMOF can not only feed more population, but also increase adaptive capacity of agriculture ecosystems and gain much higher economic benefits.

  18. Biodiversity management of organic farming enhances agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Meng, Jie; Bo, Wenjing; Cheng, Da; Li, Yong; Guo, Liyue; Li, Caihong; Zheng, Yanhai; Liu, Meizhen; Ning, Tangyuan; Wu, Guanglei; Yu, Xiaofan; Feng, Sufei; Wuyun, Tana; Li, Jing; Li, Lijun; Zeng, Yan; Liu, Shi V.; Jiang, Gaoming

    2016-04-01

    Organic farming (OF) has been believed to be capable of curtailing some hazardous effects associated with chemical farming (CF). However, debates also exist on whether OF can feed a world with increasing human population. We hypothesized that some improvements on OF may produce adequate crops and reduce environmental pollutions from CF. This paper makes comparative analysis of crop yield, soil organic matter and economic benefits within the practice on Biodiversity Management of Organic Farming (BMOF) at Hongyi Organic Farm (HOF) over eight years and between BMOF and CF. Linking crop production with livestock to maximal uses of by-products from each production and avoid xenobiotic chemicals, we have achieved beneficial improvement in soil properties, effective pest and weed control, and increased crop yields. After eight years experiment, we have obtained a gradual but stable increase in crop yields with a 9.6-fold increase of net income. The net income of HOF was 258,827 dollars and 24,423 dollars in 2014 and 2007 respectively. Thus, BMOF can not only feed more population, but also increase adaptive capacity of agriculture ecosystems and gain much higher economic benefits.

  19. Biodiversity management of organic farming enhances agricultural sustainability

    PubMed Central

    Liu, Haitao; Meng, Jie; Bo, Wenjing; Cheng, Da; Li, Yong; Guo, Liyue; Li, Caihong; Zheng, Yanhai; Liu, Meizhen; Ning, Tangyuan; Wu, Guanglei; Yu, Xiaofan; Feng, Sufei; Wuyun, Tana; Li, Jing; Li, Lijun; Zeng, Yan; Liu, Shi V.; Jiang, Gaoming

    2016-01-01

    Organic farming (OF) has been believed to be capable of curtailing some hazardous effects associated with chemical farming (CF). However, debates also exist on whether OF can feed a world with increasing human population. We hypothesized that some improvements on OF may produce adequate crops and reduce environmental pollutions from CF. This paper makes comparative analysis of crop yield, soil organic matter and economic benefits within the practice on Biodiversity Management of Organic Farming (BMOF) at Hongyi Organic Farm (HOF) over eight years and between BMOF and CF. Linking crop production with livestock to maximal uses of by-products from each production and avoid xenobiotic chemicals, we have achieved beneficial improvement in soil properties, effective pest and weed control, and increased crop yields. After eight years experiment, we have obtained a gradual but stable increase in crop yields with a 9.6-fold increase of net income. The net income of HOF was 258,827 dollars and 24,423 dollars in 2014 and 2007 respectively. Thus, BMOF can not only feed more population, but also increase adaptive capacity of agriculture ecosystems and gain much higher economic benefits. PMID:27032369

  20. An examination of the potential applications of automatic classification techniques to Georgia management problems

    NASA Technical Reports Server (NTRS)

    Rado, B. Q.

    1975-01-01

    Automatic classification techniques are described in relation to future information and natural resource planning systems with emphasis on application to Georgia resource management problems. The concept, design, and purpose of Georgia's statewide Resource AS Assessment Program is reviewed along with participation in a workshop at the Earth Resources Laboratory. Potential areas of application discussed include: agriculture, forestry, water resources, environmental planning, and geology.

  1. [Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination].

    PubMed

    Liu, Yan-de; Jin, Tan-tan

    2015-09-01

    The quality and safety of agricultural products and people health are inseparable. Using the conventional chemical methods which have so many defects, such as sample pretreatment, complicated operation process and destroying the samples. Raman spectroscopy as a powerful tool of analysing and testing molecular structure, can implement samples quickly without damage, qualitative and quantitative detection analysis. With the continuous improvement and the scope of the application of Raman spectroscopy technology gradually widen, Raman spectroscopy technique plays an important role in agricultural products quality and safety determination, and has wide application prospects. There have been a lot of related research reports based on Raman spectroscopy detection on agricultural product quality safety at present. For the understanding of the principle of detection and the current development situation of Raman spectroscopy, as well as tracking the latest research progress both at home and abroad, the basic principles and the development of Raman spectroscopy as well as the detection device were introduced briefly. The latest research progress of quality and safety determination in fruits and vegetables, livestock and grain by Raman spectroscopy technique were reviewed deeply. Its technical problems for agricultural products quality and safety determination were pointed out. In addition, the text also briefly introduces some information of Raman spectrometer and the application for patent of the portable Raman spectrometer, prospects the future research and application.

  2. Incorporating agricultural management into an earth system model for the Pacific Northwest region: Interactions between climate, hydrology, agriculture, and economics

    NASA Astrophysics Data System (ADS)

    Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.

    2011-12-01

    For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and

  3. Visible and infrared techniques for flash flood, hydrological, and agricultural applications

    NASA Technical Reports Server (NTRS)

    Scofield, R. A.

    1981-01-01

    A common requirement of these agriculture, climatology and hydrology fields is the accurate and timely estimation of precipitation. Yet, it is often difficult to obtain such estimates by conventional means. The advent of satellite remote sensing however has opened the possibility of making rain estimates over time and space scale never before available. A computer automated technique that estimates a summertime convective rainfall from the thermal infrared imagery of geosynchronous satellites is reviewed.

  4. Visible and infrared techniques for flash flood, hydrological, and agricultural applications

    NASA Technical Reports Server (NTRS)

    Scofield, R. A.

    1981-01-01

    A common requirement of these agriculture, climatology and hydrology fields is the accurate and timely estimation of precipitation. Yet, it is often difficult to obtain such estimates by conventional means. The advent of satellite remote sensing however has opened the possibility of making rain estimates over time and space scale never before available. A computer automated technique that estimates a summertime convective rainfall from the thermal infrared imagery of geosynchronous satellites is reviewed.

  5. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Effects of agricultural land management practices on soil prokaryotic diversity have not been well described. Soil microbial communities under three agricultural management systems (conventionally tilled cropland, hayed pasture, and grazed pasture) and two fertilizer systems [inorganic fertilizer (I...

  6. EPA requires major agricultural chemical dealer to safely manage pesticides

    EPA Pesticide Factsheets

    SAN FRANCISCO - Today, the U.S. Environmental Protection Agency announced settlements with two associated companies for the improper storage and containment of agricultural pesticides. Fertizona, a large fertilizer and crop protection retailer, and

  7. Multi and hyperspectral digital-imaging-based techniques for agricultural soil characterization

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Menesatti, Paolo; Millozza, Mario

    2004-11-01

    Soil characterization and monitoring in agriculture represent the primary key-factors influencing its productivity and the quality of the produced products. A correct and continuous knowledge of agricultural soil characteristics can help to optimize its use and its degree of exploitation both in absolute terms and with reference to specific cultivations. Soil characterization is conventionally performed adopting integrated physical-chemical analyses based on soil portion (samples), properly sampled, classified and then delivered to specialized laboratories. Such an approach obviously requires a chain of actions and it is time consuming. In this work it is examined the possibility offered by multi and hyperspectral digital imaging based spectrophotometric techniques in order to perform fast, reliable and low cost "in situ" analyses to identify and quantify specific soil attributes, of primary importance in agriculture, as: water, basic nutrients and organic matter content. The proposed hardware and software (HW&SW) integrated architecture have been specifically developed, and their response investigated, with the specific aim to contribute to study a set of "flexible", and very simple, procedures to apply in order to be utilized to operate, not only in agricultural soil characterization, but also in other fields as the environmental monitoring and polluted soils reclamation.

  8. Research Needs for Carbon Management in Agriculture, Forestry and Other Land Uses

    NASA Astrophysics Data System (ADS)

    Negra, C.; Lovejoy, T.; Ojima, D. S.; Ashton, R.; Havemann, T.; Eaton, J.

    2009-12-01

    Improved management of terrestrial carbon in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved management of some forms of terrestrial carbon, including maintaining existing terrestrial carbon (e.g., avoiding deforestation) and creating new terrestrial carbon (e.g., afforestation, soil management). To translate incentives into changes in land management and terrestrial carbon stocks, a robust technical and scientific information base is required. All terrestrial carbon pools (and other greenhouse gases from the terrestrial system) that interact with the atmosphere at timescales less than centuries, and all land uses, have documented mitigation potential, however, most activity has focused on above-ground forest biomass. Despite research advances in understanding emissions reduction and sequestration associated with different land management techniques, there has not yet been broad-scale implementation of land-based mitigation activity in croplands, peatlands, grasslands and other land uses. To maximize long-term global terrestrial carbon volumes, further development of relevant data, methodologies and technologies are needed to complement policy and financial incentives. The Terrestrial Carbon Group, in partnership with UN-REDD agencies, the World Bank and CGIAR institutions, is reviewing literature, convening leading experts and surveying key research institutions to develop a Roadmap for Terrestrial Carbon: Research Needs for Implementation of Carbon Management in Agriculture, Forestry and Other Land Uses. This work will summarize the existing knowledge base for emissions reductions and sequestration through land management as well as the current availability of tools and methods for measurement and monitoring of terrestrial carbon. Preliminary findings indicate a number of areas for future work. Enhanced information

  9. Managing Our Environment, A Report on Ways Agricultural Research Fights Pollution.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    A report on the ways agricultural research attempts to fight pollution is presented in this series of articles covering some of the major challenges facing scientists and regulatory officials working in agricultural research. Improved resource management is stressed with the use of advanced technologies as the avenue to solving environmental…

  10. Effect of Leadership Experience on Agricultural Education Student Teacher Self-Efficacy in Classroom Management

    ERIC Educational Resources Information Center

    Wolf, Kattlyn J.; Foster, Daniel D.; Birkenholz, Robert J.

    2009-01-01

    Beginning agriculture teachers often cite classroom management as the most important problem they face in their careers. The purpose of this study was to assess the effect of leadership experience on self-perceived teacher efficacy among agricultural education student teachers. The three dimensions of teacher efficacy addressed in this study…

  11. Agriculture--Livestock Management. Kit No. 61. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Gamble, William

    An instructor's manual and student activity guide on livestock management are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  12. 78 FR 52131 - Notice of Funds Availability: Agricultural Management Assistance Organic Certification Cost-Share...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... Agricultural Marketing Service Notice of Funds Availability: Agricultural Management Assistance Organic... Assistance Organic Certification Cost-Share Program. SUMMARY: This Notice invites the following 16 eligible...) for organic certification cost- share funds. A total of $1,352,850 is available to the 16...

  13. Remote Sensing of Wetland Hydrology: Implications for Water Quality Management in Agricultural Landscapes

    USDA-ARS?s Scientific Manuscript database

    Due to the substantial effect of agriculture on the ability of wetlands to function, the U.S. Department of Agriculture (USDA) serves a key role in wetland conservation and restoration. In order for the USDA to allocate funds to best manage wetlands, a better understanding of wetland functioning is ...

  14. Effect of Leadership Experience on Agricultural Education Student Teacher Self-Efficacy in Classroom Management

    ERIC Educational Resources Information Center

    Wolf, Kattlyn J.; Foster, Daniel D.; Birkenholz, Robert J.

    2009-01-01

    Beginning agriculture teachers often cite classroom management as the most important problem they face in their careers. The purpose of this study was to assess the effect of leadership experience on self-perceived teacher efficacy among agricultural education student teachers. The three dimensions of teacher efficacy addressed in this study…

  15. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  16. Supervised Occupational Experience Record Book for Agricultural Resources Conservation, Environmental Management and Forestry: Teacher's Guide.

    ERIC Educational Resources Information Center

    Nickles, Tom

    The guide is designed to aid the instructor in implementing the student guide entitled "Supervised Occupational Experience Record Book For Agricultural Resource Conservation, Environmental Management and Forestry". Intended for use in the secondary level vocational agriculture curriculum, general concepts, student record-keeping skills,…

  17. Design and Management Criteria for Fish, Amphibian, and Reptile Communities Within Created Agricultural Wetlands

    USDA-ARS?s Scientific Manuscript database

    Design and management criteria for created agricultural wetlands in the midwestern United States typically focus on maximizing the ability to process agricultural runoff. Ecological benefits for fish, amphibian, and reptiles are often secondary considerations. One example of this water quality focu...

  18. Quantitative management techniques in dietetics: improving practice through technology transfer.

    PubMed

    Brown, D M; Hoover, L W

    1988-12-01

    A content analysis of articles appearing chronologically in the Journal of The American Dietetic Association since its inception in 1925 reveals the breadth and depth of management practice in the dietetic profession. This historical review highlights the introduction, demonstration, and adoption of management tools and techniques in the profession, with particular emphasis on quantitative management science techniques. Seven classifications of management science techniques were used for the content analysis. Although applications of forecasting, simulation, linear programming, and queuing models have been reported in the Journal, a gap is evident between the demonstration of management science techniques and operational use of these techniques in dietetic practice. Dietetic researchers, practitioners, and educators have vital roles in facilitating the transfer of quantitative management science technology into operational dietetic practice. Assessment of the state-of-the-art of dietetic management practice relative to proven quantitative management science techniques reveals the need for improved technology transfer to enhance professional ability in both tactical and strategic decision making.

  19. A soil quality and metabolic activity assessment after fifty-seven years of agricultural management

    USDA-ARS?s Scientific Manuscript database

    Soil quality assessment is a proactive process for understanding the long-term effects of soil and crop management practices within agricultural watersheds. The objective of this study was to assess the impact of management on the soil quality in fields with 57 yrs of known management history. The f...

  20. Agricultural Production and Business Management: Volume 2 (Livestock).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the second part of a two-year program developed as part of a revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  1. Agricultural Production and Business Management: Volume 2 (Livestock).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the second part of a two-year program developed as part of a revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  2. Agricultural Production and Business Management: Volume 1 (Crops).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the first part of a two-year program developed as part of revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  3. Agricultural Production and Business Management: Volume 1 (Crops).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the first part of a two-year program developed as part of revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  4. Multifunctional systems approaches to water management for agriculture

    USDA-ARS?s Scientific Manuscript database

    The impact of anthropogenic chemicals on water quality, wildlife, and human health has received increasing attention in recent years. One potential source of anthropogenic compounds is land-based recycling programs which apply municipal wastes (biosolids) to large tracts of agricultural land in lie...

  5. Data Management Techniques for Acoustical Planetary Data

    NASA Astrophysics Data System (ADS)

    Eichelberger, Hans; Prattes, Gustav; Schwingenschuh, Konrad; Tokano, T.; Jernej, I.; Stachel, Manfred; Besser, B. P.; Aydogar, Oe.

    We discuss data management techniques for acoustical data obtained from future atmospheric planetary in-situ probes with the aim of event oriented scientific analysis. The immediate objec-tive is the localisation (acoustic wave telescope) and characterisation of acoustic phenomena of atmospheres and surfaces, e.g. in the frame of the proposed NASA/ESA Titan Saturn System Mission (TSSM) with the Acoustic Sensor Package (ACU) multi-microphone array. Contrary to huge amounts of source data obtained through the electromagnetic windows, acoustical sig-nals are seldom recorded and few files exist. One example is pressure sensor data from the instrument HASI/PWA during Huygens descent, mission Cassini-Huygens. Nevertheless, a lot of acoustic point and noise sources, e.g. caused by rain, drizzle or wind abound in Titan's atmosphere. In almost all cases, due to limitations in telemetry rate, a careful strategy for onboard event handling and data reduction -the first step in data management -has to be selected, e.g. sampling rates in kHz range or averaging in the frequency domain. This pre-processing together with complementary investigations at the space segment directly influences the scientific data return in terms of long-term continuous or short-term event based studies. The database at the ground segment with science data and metadata entries after final calibra-tion has to support the combined investigations with other instruments. This second step in data management fully explores the acoustic environment of planetary atmospheres in terms of background noise and spacecraft generated disturbances, location and characterisation of source regions and correlation between the experiments. Currently we're running databases for magnetic field data from various ground-based and satellite related experiments, historical balloon data included. Comparisons of data between experiments are possible. This framework based on dependability considerations with several different

  6. U.S. Department of Agriculture: Improving Management of Cross-Cutting Agricultural Issues

    DTIC Science & Technology

    1991-03-01

    Iicis al-I, est dillisl t’ll and ail leilet -iii1 cd by the agencies recsponsible for a particuilar areva . I lowever.]a gri Iwng By numuber. of issi ies...objectives (MNo) system at vst\\. I towever, in part because staff support for the Council hais been lini•ed and the h)eparz- ment has faced difficulties in...administrator-level committee (the Committee on Biotechnology in Agri- culture), a small staff office supporting the committee (the Office of Agricultural

  7. The impact of agriculture management on soil quality in citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Hondebrink, Merel; Cerdà, Artemi; Cammeraat, Erik

    2015-04-01

    Currently, the agricultural management of citrus orchard in the Valencia region in E Spain, is changing from traditionally irrigated and managed orchards to drip irrigated organic managed orchards. It is not known what is the effect of such changes on soil quality and hope to shed some light with this study on this transition. It is known that the drip-irrigated orchards built in sloping terrain increase soil erosion (Cerdà et al., 2009; Li et al., 2014) and that agricultural management such as catch crops and mulches reduce sediment yield and surface runoff (Xu et al., 2012; ), as in other orchards around the world (Wang et al., 2010; Wanshnong et al., 2013; Li et al., 2014; Hazarika et al., 2014): We hypothesize that these changes have an important impact on the soil chemical and physical properties. Therefor we studied the soil quality of 12 citrus orchards, which had different land and irrigation management techniques. We compared organic (OR) and conventional (CO) land management with either drip irrigation (DRP) or flood irrigation (FLD). Soil samples at two depths, 0-1 cm and 5-10 cm, were taken for studying soil quality parameters under the different treatments. These parameters included soil chemical parameters, bulk density, texture, soil surface shear strength and soil aggregation. Half of the studied orchards were organically managed and the other 6 were conventionally managed, and for each of these 6 study sites three fields were flood irrigated plots (FLD) and the other three drip irrigated systems (DRP) In total 108 soil samples were taken as well additional irrigation water samples. We will present the results of this study with regard to the impact of the studied irrigation systems and land management systems with regard to soil quality. This knowledge might help in improving citrus orchard management with respect to maintaining or improving soil quality to ensure sustainable agricultural practices. References Cerdà, A., Giménez-Morera, A. and

  8. A Review of the Usefulness of R & D Management Techniques.

    DTIC Science & Technology

    1981-09-01

    could also be classified as a "style" of management. A management technique according to John Argenti is "a recognized method of analyzing or solving a...toward Accountability for Performance. Homewood, Illinois: Ricnard D. Irwin, Inc., 1978, pp. 82-87. 3. Argenti , John. Management Techniques: A Practical

  9. Managing for naturalness in wildland and agricultural landscapes

    Treesearch

    Joan Nassauer

    1979-01-01

    Visual management systems operate from the premise that people have expectations for landscape views, and that people's positive expectations should be fulfilled. Both the Forest Service and Bureau of Land Management visual management systems assume that people expect wildlands to look natural. People also like to see natural landscapes in rural Iowa. Research I...

  10. Stress management techniques in the prison setting.

    PubMed

    Kristofersson, Gisli Kort; Kaas, Merrie J

    2013-01-01

    The percentage of incarcerated individuals in the United States is currently close to an all time high, and more stressful places than prisons are hard to find. Because registered nurses and advance practice nurses are often the only healthcare providers readily available to prison inmates, nurses need a repertoire of effective strategies to minimize prisoners' stress-related symptoms and behaviors. The purpose of this critical literature review was to identify the state of knowledge about using stress management techniques (SMTs) in the prison setting for reducing psychological problems and/or behavioral problems in male and female adult prison populations. A comprehensive, systematic integrated literature search was performed using multiple relevant databases to identify studies using various SMTs for incarcerated adults. Although clinical practice recommendations for the use of SMTs in the prison setting cannot be made with strong certainty, nurses working in the prison setting should continue to incorporate muscle relaxation, Transcendental Meditation, and certain Eastern meditative practices in the care of their clients because of the safety and possible positive impacts and practicality these methods have in this setting.

  11. Biosorbents based on agricultural wastes for ionic liquid removal: An approach to agricultural wastes management.

    PubMed

    Yu, Fang; Sun, Li; Zhou, Yanmei; Gao, Bin; Gao, Wenli; Bao, Chong; Feng, Caixia; Li, Yonghong

    2016-12-01

    Modified biochars produced from different agricultural wastes were used as low-cost biosorbents to remove hydrophilic ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). Herein, the biosorbents based on peanut shell, corn stalk and wheat straw (denoted as PB-K-N, CB-K-N and WB-K-N) all exhibited higher [BMIM][Cl] removal than many other carbonaceous adsorbents and the adsorption capacities were as the following: PB-K-N > CB-K-N > WB-K-N. The characterizations of biosorbents indicated that they had great deal of similarity in morphological, textural and surface chemical properties such as possessing simultaneously accessible microporous structure and abundant oxygen-containing functional groups. Additionally, adsorption of [BMIM][Cl] onto PB-K-N, CB-K-N and WB-K-N prepared from the modified process, which was better described by pseudo-second order kinetic and Freundlich isotherm models. Therefore, the viable approach could also be applied in other biomass materials treatment for the efficient removal of ILs from aqueous solutions, as well as recycling agricultural wastes to ease their disposal pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel

    2015-10-01

    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  13. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  14. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  15. Use of (137)Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco.

    PubMed

    Nouira, A; Sayouty, E H; Benmansour, M

    2003-01-01

    Accelerated erosion and soil degradation currently cause serious problems to the Oued El Maleh basin (Morocco). Furthermore, there is still only limited information on rates of soil loss for optimising strategies for soil conservation. In the present study we have used the (137)Cs technique to assess the soil erosion rates on an agricultural land in Oued el Maleh basin near Casablanca (Morocco). A small representative agricultural field was selected to investigate the soil degradation required by soil managers in this region. The transect approach was applied for sampling to identify the spatial redistribution of (137)Cs. The spatial variability of (137)Cs inventory has provided evidence of the importance of tillage process and the human effects on the redistribution of (137)Cs. The mean (137)Cs inventory was found about 842 Bq m(-2), this value corresponds to an erosion rate of 82 tha(-1) yr(-1) by applying simplified mass balance model in a preliminary estimation. When data on site characteristics were available, the refined mass balance model was applied to highlight the contribution of tillage effect in soil redistribution. The erosion rate was estimated about 50 tha(-1) yr(-1). The aspects related to the sampling procedures and the models for calculation of erosion rates are discussed.

  16. Science, technique, technology: passages between matter and knowledge in imperial Chinese agriculture.

    PubMed

    Bray, Francesca

    2008-09-01

    Many historians today prefer to speak of knowledge and practice rather than science and technology. Here I argue for the value of reinstating the terms science, techniques and technology as tools for a more precise analysis of governmentality and the workings of power. My tactic is to use these three categories and their articulations to highlight flows between matter and ideas in the production and reproduction of knowledge. In any society, agriculture offers a wonderfully rich case of how ideas, material goods and social relations interweave. In China agronomy was a science of state, the basis of legitimate rule. I compare different genres of agronomic treatise to highlight what officials, landowners and peasants respectively contributed to, and expected from, this charged natural knowledge. I ask how new forms of textual and graphic inscription for encoding agronomic knowledge facilitated its dissemination and ask how successful this knowledge proved when rematerialized and tested as concrete artefacts or techniques. I highlight forms of innovation in response to crisis, and outline the overlapping interpretative frameworks within which the material applications of Chinese agricultural science confirmed and extended its truth across space and time.

  17. Bacterial indicator of agricultural management for soil under no-till crop production.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Rosa, Silvina M; Simonetti, Leandro; Duval, Matías E; Galantini, Juan A; Bedano, José C; Wall, Luis G; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  18. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    PubMed Central

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  19. Farm Business Management, Volume II. Vocational Agricultural Education.

    ERIC Educational Resources Information Center

    Steward, Jim

    Designed to provide an advanced core of instruction in teaching farm business management, this curriculum guide for year 2 is intended for use as an adult program of instruction for a three-year period together with Farm Business Management I and III. (Volume I is available separately. See note.) The ten instructional units are presented in a…

  20. Short-term forecasting tools for agricultural nutrient management

    USDA-ARS?s Scientific Manuscript database

    The advent of real time/short term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high performance computing and hydrologic/climate modeling have enabled rapid dissemination of ...

  1. Farm Business Management, Volume II. Vocational Agricultural Education.

    ERIC Educational Resources Information Center

    Steward, Jim

    Designed to provide an advanced core of instruction in teaching farm business management, this curriculum guide for year 2 is intended for use as an adult program of instruction for a three-year period together with Farm Business Management I and III. (Volume I is available separately. See note.) The ten instructional units are presented in a…

  2. Guiding principles for management of forested, agricultural, and urban watersheds

    Treesearch

    Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard

    2015-01-01

    Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...

  3. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania.

    PubMed

    Krause, Ariane; Rotter, Vera Susanne

    2017-07-15

    In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited.

  4. Farm Management and Leadership. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    ERIC Educational Resources Information Center

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in farm management and leadership: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with farm management. SMAT materials can…

  5. The Influence of Time Management Practices on Job Stress Level among Beginning Secondary Agriculture Teachers

    ERIC Educational Resources Information Center

    Lambert, Misty D.; Torres, Robert M.; Tummons, John D.

    2012-01-01

    Monitoring the stress of teachers continues to be important--particularly stress levels of beginning agriculture teachers. The study sought to describe the relationship between beginning teachers' perceived ability to manage their time and their level of stress. The Time Management Practices Inventory and the Job Stress Survey were used to measure…

  6. Development and prospect of unmanned aerial vehicles for agricultural production management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  7. Inundation influences on bioavailability of phosphorus in managed wetland sediments in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Agricultural runoff carries high nutrient loads to receiving waters contributing to eutrophication. Managed wetlands can be used in integrated management efforts to intercept nutrients before they enter downstream aquatic systems, but detailed information regarding sorption and desorption of P by we...

  8. Agricultural environmental management; case studies from theory to practice.

    PubMed

    Frost, A; Stewart, S; Kerr, D; MacDonald, J; D'Arcy, B

    2004-01-01

    Six farms were examined, each from a different sector of Scottish agriculture. Surveys were carried out to identify both diffuse pollution risks and options for habitat conservation and enhancement. Financial data were also gathered to determine the current sources of farm income, both from sale of produce and from grants. Whole farm plans were produced aimed at bringing about reductions in diffuse pollution to water, soil and air and also habitat improvements. The assembled information was used to devise a possible agri-environment grant scheme to aid the implementation of the whole farm plans.

  9. Spatial and temporal predictions of agricultural land prices using DSM techniques.

    NASA Astrophysics Data System (ADS)

    Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.

    2009-04-01

    Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population

  10. Assessment of runoff water quality for an integrated best-management practice system in an agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    To better understand, implement and integrate best management practices (BMPs) in agricultural watersheds, critical information on their effectiveness is required. A representative agricultural watershed, Beasley Lake, was used to compare runoff water quality draining through an integrated system of...

  11. Managing the risk of agricultural drought in Africa

    NASA Astrophysics Data System (ADS)

    Quaife, T. L.; Black, E.; Brown, M.; Greatrex, H.; Maidment, R.; Mookerjee, A.; Tarnavsky, E.

    2015-12-01

    Farmers in Africa are highly vulnerable to variability in the weather - especially to drought. Robust and timely information on drought risk can enable farmers to take action to increase yields. Such information also forms the basis of financial instruments, such as weather index insurance. Monitoring weather conditions is, however, difficult in Africa because of the heteorogeneity of the climate, and the sparcity of the ground-observing network. Remotely sensed data (for example satellite-based rainfall estimates) are an alternative to ground observations - but only if the algorithms have skill and the data are presented in a useful form. A more fundamental issue is that the condition of the land surface is affected by factors other than rainfall. The evolving risk of agricultural drought is thus determined by the properties of the land surface, the contemporaneous soil moisture and the risk of rainfall deficits. We present a prototype agricultural decision support tool, based on the JULES land-surface model, driven with ensembles of meteorological driving data, which encompass the uncertainty in rainfall. We discuss the application of the tool for designing and implementing drought insurance in Ghana and Zambia - illustrated with real examples of weather index insurance schemes that are already active.

  12. Applying ECOSTRESS Diurnal Cycle Land Surface Temperature and Evapotranspiration to Agricultural Soil and Water Management

    NASA Astrophysics Data System (ADS)

    Pestana, S. J.; Halverson, G. H.; Barker, M.; Cooley, S.

    2016-12-01

    Increased demand for agricultural products and limited water supplies in Guanacaste, Costa Rica have encouraged the improvement of water management practices to increase resource use efficiency. Remotely sensed evapotranspiration (ET) data can contribute by providing insights into variables like crop health and water loss, as well as better inform the use of various irrigation techniques. EARTH University currently collects data in the region that are limited to costly and time-intensive in situ observations and will greatly benefit from the expanded spatial and temporal resolution of remote sensing measurements from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). In this project, Moderate Resolution Imaging Spectroradiometer (MODIS) Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) data, with a resolution of 5 km per pixel, was used to demonstrate to our partners at EARTH University the application of remotely sensed ET measurements. An experimental design was developed to provide a method of applying future ECOSTRESS data, at the higher resolution of 70 m per pixel, to research in managing and implementing sustainable farm practices. Our investigation of the diurnal cycle of land surface temperature, net radiation, and evapotranspiration will advance the model science for ECOSTRESS, which will be launched in 2018 and installed on the International Space Station.

  13. Techniques to Enhancing Sustainable Nutrient and Irrigation Management for Potatoes

    USDA-ARS?s Scientific Manuscript database

    Two aspects of nutrient and irrigation best management practices (BMP) in relation to sustainable agricultural production systems described in this paper are: (i) application of crop simulation model for decision support system; and (ii) real-time, automated measurement of soil water content to aid ...

  14. The Sophia-Antipolis Conference: General presentation and basic documents. [remote sensing for agriculture, forestry, water resources, and environment management in France

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.

  15. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  16. Effect of land management on soil microbial properties in agricultural terraces of Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; Garcia-Orenes, Fuensanta

    2014-05-01

    Soil quality is important for the sustainable development of terrestrial ecosystems. Agricultural land management is one of most important anthropogenic activities that greatly alters soil characteristics, including physical, chemical, and microbiological properties. The unsuitable land management can lead to a soil fertility loss and to a reduction in the abundance and diversity of soil microorganisms. However, ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity. The microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. In this study, a field experiment was performed at clay-loam agricultural soil with an orchard of orange trees in Alcoleja (eastern Spain) to assess the long-term effects of inorganic fertilizers (F), intensive ploughing (P) and sustainable agriculture (S) on the soil microbial biomass carbon (Cmic), enzyme activities (Urease, ß-glucosidase and phosphatase), basal soil repiration (BSR) and the relationship between them, and soil fertility in agro-ecosystems of Spain. Nine soil samples were taken from each agricultural management plot. In all the samples were determined the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic carbon, nitrogen, available phosphorus, aggregate stability, cation exchange capacity, phosphorous, pH, texture, carbonates, active limestone and as enzimatic activities: Urease, ß-glucosidase and phosphatase. The results showed a substantial level of differentiation in the microbial properties, in terms of management practices, which was highly associated with soil organic matter content. The most marked variation in the different parameters studied appears to be related to sustainable agriculture terrace. The management

  17. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  18. Precision agriculture suitability to improve vineyard terroir management

    NASA Astrophysics Data System (ADS)

    Terrón, J. M.; Blanco, J.; Moral, F. J.; Mancha, L. A.; Uriarte, D.; Marques da Silva, J. R.

    2014-11-01

    Precision agriculture is a useful tool to assess plant growth and development in vineyards. Current study was focused in the spatial and temporal vegetation growth variability analysis; considering four irrigation treatments with four replicates; carried out in a vineyard located in the southwest of Spain during 2012 and 2013 growing seasons. Two multispectral sensors mounted on ATV were used in the different growing seasons/stages in order to calculate the vineyard Normalized Difference Vegetation Index (NDVI). Soil apparent Electrical Conductivity (ECa) was measured up to 0.8 m soil depth using a geophysical sensor. All measured data was statistically analysed by means of Principal Component Analysis (PCA). The spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and climatological years.

  19. Advances in remote sensing for vegetation dynamics and agricultural management

    NASA Astrophysics Data System (ADS)

    Tucker, C. J.; Puma, M. J.

    2015-12-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  20. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  1. Nematode Communities in Organically and Conventionally Managed Agricultural Soils

    PubMed Central

    Neher, Deborah A.

    1999-01-01

    Interpretation of nematode community indices requires a reference to a relatively undisturbed community. Maturity and trophic diversity index values were compared for five pairs of certified organically and conventionally managed soils in the Piedmont region of North Carolina. Available nitrogen (nitrate, ammonium) was estimated at various lag periods relative to times of sampling for nematode communities to determine the strength of correlative relationship between nematode communities and nitrogen availability. Soils were sampled six times yearly in 1993 and 1994 to determine the best time of year to sample. Maturity values for plant parasites were greater in organically than conventionally managed soils, and differences between management systems were greater in fall than spring months. However, other maturity and diversity indices did not differ between the two management practices. Differences in crop species grown in the two systems accounted for most differences observed in the community of plant-parasitic nematodes. Indices of free-living nematodes were correlated negatively with concentrations of ammonium, whereas indices of plant-parasitic nematodes were correlated positively with concentrations of nitrate. Due to the similarity of index values between the two systems, organically managed soils are not suitable reference sites for monitoring and assessing the biological aspects of soil quality for annually harvested crops. PMID:19270884

  2. Management of agricultural nonpoint source pollution in China: current status and challenges.

    PubMed

    Wang, Xiaoyan

    2006-01-01

    Water quality in China shows an overall trend of deterioration in recent years. Nonpoint source pollution from agricultural and rural regions is the leading source of water pollution. The agricultural nonpoint source pollutants are mainly from fertilization of cropland, excessive livestock and poultry breeding and undefined disposal of daily living wastes in rural areas. Agricultural nonpoint sources contribute the main source of pollution to most watersheds in China, but they are ignored in management strategy and policy. Due to the lack of full understanding of water pollution control and management and the lack of perfect water quality standard systems and practical legislative regulations, agricultural nonpoint source pollution will become one of the biggest challenges to the sustainable development of rural areas and to society as a whole. The system for agricultural nonpoint source pollution control in China should include an appropriate legislation and policy framework, financing mechanisms, monitoring system, and technical guidelines and standards. The management of agricultural nonpoint source pollution requires multidisciplinary approaches that will involve a range of government departments, institutions and the public.

  3. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  4. Representation of Knowledge on Some Management Accounting Techniques in Textbooks

    ERIC Educational Resources Information Center

    Golyagina, Alena; Valuckas, Danielius

    2016-01-01

    This paper examines the coverage of management accounting techniques in several popular management accounting texts, assessing each technique's claimed position within practice, its benefits and limitations, and the information sources substantiating these claims. Employing the notion of research genres, the study reveals that textbooks in their…

  5. Representation of Knowledge on Some Management Accounting Techniques in Textbooks

    ERIC Educational Resources Information Center

    Golyagina, Alena; Valuckas, Danielius

    2016-01-01

    This paper examines the coverage of management accounting techniques in several popular management accounting texts, assessing each technique's claimed position within practice, its benefits and limitations, and the information sources substantiating these claims. Employing the notion of research genres, the study reveals that textbooks in their…

  6. Impact of agricultural management practices on soil organic carbon: simulation of Australian wheat systems.

    PubMed

    Zhao, Gang; Bryan, Brett A; King, Darran; Luo, Zhongkui; Wang, Enli; Song, Xiaodong; Yu, Qiang

    2013-05-01

    Quantifying soil organic carbon (SOC) dynamics at a high spatial and temporal resolution in response to different agricultural management practices and environmental conditions can help identify practices that both sequester carbon in the soil and sustain agricultural productivity. Using an agricultural systems model (the Agricultural Production Systems sIMulator), we conducted a high spatial resolution and long-term (122 years) simulation study to identify the key management practices and environmental variables influencing SOC dynamics in a continuous wheat cropping system in Australia's 96 million ha cereal-growing regions. Agricultural practices included five nitrogen application rates (0-200 kg N ha(-1) in 50 kg N ha(-1) increments), five residue removal rates (0-100% in 25% increments), and five residue incorporation rates (0-100% in 25% increments). We found that the change in SOC during the 122-year simulation was influenced by the management practices of residue removal (linearly negative) and fertilization (nonlinearly positive) - and the environmental variables of initial SOC content (linearly negative) and temperature (nonlinearly negative). The effects of fertilization were strongest at rates up to 50 kg N ha(-1) , and the effects of temperature were strongest where mean annual temperatures exceeded 19 °C. Reducing residue removal and increasing fertilization increased SOC in most areas except Queensland where high rates of SOC decomposition caused by high temperature and soil moisture negated these benefits. Management practices were particularly effective in increasing SOC in south-west Western Australia - an area with low initial SOC. The results can help target agricultural management practices for increasing SOC in the context of local environmental conditions, enabling farmers to contribute to climate change mitigation and sustaining agricultural production. © 2013 Blackwell Publishing Ltd.

  7. Management of Agricultural Weather Risks: traditional procedures and new management strategies

    NASA Astrophysics Data System (ADS)

    Burgaz, F.

    2009-04-01

    Throughout history, agriculture has progressed as an outcome of farmers' efforts to design and apply adaptation strategies aiming to mitigate the impact of adverse meteorological phenomena on their farms' economy. The survival and sustainability of farmholdings, regardless of size or type of production, is directly related to their capacity to withstand the consequences of such phenomena and continue to yield a harvest year after year. While substantial differences can be identified in the intensity and frequency of the damage borne, depending on the country, region and type of production, no farm is exempt from the effects of uncontrollable risks. In this endeavour to mitigate such consequences and successfully manage natural risks, the first protective step must be taken by the farm itself, which must adopt measures that pursue more favourable crop development or a heightened ability to handle risks and their adverse effects. But when the damage inflicted is of an intensity that cannot be accommodated by the farmer, instruments must be deployed that spread or transfer risk to third parties, a process known as risk insurance. Experience shows that of the various such instruments in place, insurance constitutes the most appropriate risk management model and the one that has reached the highest levels of development and acceptance among farmers.

  8. Overview of advances in water management in agricultural production:Sensor based irrigation management

    USDA-ARS?s Scientific Manuscript database

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  9. Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.

    PubMed

    Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus

    2014-01-01

    Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.

  10. Group decision-making techniques for natural resource management applications

    USGS Publications Warehouse

    Coughlan, Beth A.K.; Armour, Carl L.

    1992-01-01

    This report is an introduction to decision analysis and problem-solving techniques for professionals in natural resource management. Although these managers are often called upon to make complex decisions, their training in the natural sciences seldom provides exposure to the decision-making tools developed in management science. Our purpose is to being to fill this gap. We present a general analysis of the pitfalls of group problem solving, and suggestions for improved interactions followed by the specific techniques. Selected techniques are illustrated. The material is easy to understand and apply without previous training or excessive study and is applicable to natural resource management issues.

  11. Rehabilitation techniques to maximize spasticity management.

    PubMed

    Logan, Lynne Romeiser

    2011-01-01

    Improvement in functional skills is typically a goal of spasticity management. Spasticity management alone will improve the positive signs of the upper motor neuron syndrome without functional change. In this review, we demonstrate that a variety of therapy modalities are required to facilitate these improvements and impact the negative signs of the upper motor neuron syndrome. The evidence for neuromuscular electrical stimulation, surface electromyography training, serial casting, body weight-supported treadmill training, constraint-induced movement therapy, strengthening, and endurance training is reviewed as it relates to spasticity management.

  12. Economic Techniques of Occupational Health and Safety Management

    NASA Astrophysics Data System (ADS)

    Sidorov, Aleksandr I.; Beregovaya, Irina B.; Khanzhina, Olga A.

    2016-10-01

    The article deals with the issues on economic techniques of occupational health and safety management. Authors’ definition of safety management is given. It is represented as a task-oriented process to identify, establish and maintain such a state of work environment in which there are no possible effects of hazardous and harmful factors, or their influence does not go beyond certain limits. It was noted that management techniques that are the part of the control mechanism, are divided into administrative, organizational and administrative, social and psychological and economic. The economic management techniques are proposed to be classified depending on the management subject, management object, in relation to an enterprise environment, depending on a control action. Technoeconomic study, feasibility study, planning, financial incentives, preferential crediting of enterprises, pricing, profit sharing and equity, preferential tax treatment for enterprises, economic regulations and standards setting have been distinguished as economic techniques.

  13. An integrated Modelling framework to monitor and predict trends of agricultural management (iMSoil)

    NASA Astrophysics Data System (ADS)

    Keller, Armin; Della Peruta, Raneiro; Schaepman, Michael; Gomez, Marta; Mann, Stefan; Schulin, Rainer

    2014-05-01

    Agricultural systems lay at the interface between natural ecosystems and the anthroposphere. Various drivers induce pressures on the agricultural systems, leading to changes in farming practice. The limitation of available land and the socio-economic drivers are likely to result in further intensification of agricultural land management, with implications on fertilization practices, soil and pest management, as well as crop and livestock production. In order to steer the development into desired directions, tools are required by which the effects of these pressures on agricultural management and resulting impacts on soil functioning can be detected as early as possible, future scenarios predicted and suitable management options and policies defined. In this context, the use of integrated models can play a major role in providing long-term predictions of soil quality and assessing the sustainability of agricultural soil management. Significant progress has been made in this field over the last decades. Some of these integrated modelling frameworks include biophysical parameters, but often the inherent characteristics and detailed processes of the soil system have been very simplified. The development of such tools has been hampered in the past by a lack of spatially explicit soil and land management information at regional scale. The iMSoil project, funded by the Swiss National Science Foundation in the national research programme NRP68 "soil as a resource" (www.nrp68.ch) aims at developing and implementing an integrated modeling framework (IMF) which can overcome the limitations mentioned above, by combining socio-economic, agricultural land management, and biophysical models, in order to predict the long-term impacts of different socio-economic scenarios on the soil quality. In our presentation we briefly outline the approach that is based on an interdisciplinary modular framework that builds on already existing monitoring tools and model components that are

  14. Conservation agricultural management to sequester soil organic carbon

    USDA-ARS?s Scientific Manuscript database

    Storing carbon (C) in soil as organic matter is not only a viable strategy to sequester CO2 from the atmosphere, but is vital for improving the quality, fertility, and functioning of soil. This presentation describes relevant management approaches to avoid land degradation and foster soil organic C ...

  15. Farm Business Management. Volume I. Vocational Agriculture Education.

    ERIC Educational Resources Information Center

    Hodgens, Jim; Meyers, Leland

    This curriculum guide provides a basic core of instruction for the first year of a three-year adult program in farm business management. It contains 12 units of instruction. Each unit consists of seven basic components: performance objectives, teacher activities, information sheets (content essential for meeting the cognitive objectives),…

  16. Plant Diversity and Multifunctional Management of Grassland Agriculture

    USDA-ARS?s Scientific Manuscript database

    Managing for multiple ecosystem functions and services requires greater ecosystem diversity and complexity. Complex ecosystems, such as forage and grazing lands, may provide multiple benefits and require multiple species. In this paper, I provide a brief perspective from our research conducted in th...

  17. Farm Business Management. Volume I. Vocational Agriculture Education.

    ERIC Educational Resources Information Center

    Hodgens, Jim; Meyers, Leland

    This curriculum guide provides a basic core of instruction for the first year of a three-year adult program in farm business management. It contains 12 units of instruction. Each unit consists of seven basic components: performance objectives, teacher activities, information sheets (content essential for meeting the cognitive objectives),…

  18. Analysis of economic impacts of climate change on agricultural water management in Europe

    NASA Astrophysics Data System (ADS)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  19. ISWHM: Tools and Techniques for Software and System Health Management

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole J.; Darwiche, Adnan

    2010-01-01

    This presentation presents status and results of research on Software Health Management done within the NRA "ISWHM: Tools and Techniques for Software and System Health Management." Topics include: Ingredients of a Guidance, Navigation, and Control System (GN and C); Selected GN and C Testbed example; Health Management of major ingredients; ISWHM testbed architecture; and Conclusions and next Steps.

  20. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  1. Project management techniques for highly integrated programs

    NASA Technical Reports Server (NTRS)

    Stewart, J. F.; Bauer, C. A.

    1983-01-01

    The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.

  2. First Approximations of Prescribed Fire Risks Relative to Other Management Techniques Used on Private Lands

    PubMed Central

    Twidwell, Dirac; Wonkka, Carissa L.; Sindelar, Michael T.; Weir, John R.

    2015-01-01

    Fire is widely recognized as a critical ecological and evolutionary driver that needs to be at the forefront of land management actions if conservation targets are to be met. However, the prevailing view is that prescribed fire is riskier than other land management techniques. Perceived risks associated with the application of fire limits its use and reduces agency support for prescribed burning in the private sector. As a result, considerably less cost-share support is given for prescribed fire compared to mechanical techniques. This study tests the general perception that fire is a riskier technique relative to other land management options. Due to the lack of data available to directly test this notion, we use a combination of approaches including 1) a comparison of fatalities resulting from different occupations that are proxies for techniques employed in land management, 2) a comparison of fatalities resulting from wildland fire versus prescribed fire, and 3) an exploration of causal factors responsible for wildland fire-related fatalities. This approach establishes a first approximation of the relative risk of fatality to private citizens using prescribed fire compared to other management techniques that are readily used in ecosystem management. Our data do not support using risks of landowner fatalities as justification for the use of alternative land management techniques, such as mechanical (machine-related) equipment, over prescribed fire. Vehicles and heavy machinery are consistently leading reasons for fatalities within occupations selected as proxies for management techniques employed by ranchers and agricultural producers, and also constitute a large proportion of fatalities among firefighters. Our study provides the foundation for agencies to establish data-driven decisions regarding the degree of support they provide for prescribed burning on private lands. PMID:26465329

  3. First Approximations of Prescribed Fire Risks Relative to Other Management Techniques Used on Private Lands.

    PubMed

    Twidwell, Dirac; Wonkka, Carissa L; Sindelar, Michael T; Weir, John R

    2015-01-01

    Fire is widely recognized as a critical ecological and evolutionary driver that needs to be at the forefront of land management actions if conservation targets are to be met. However, the prevailing view is that prescribed fire is riskier than other land management techniques. Perceived risks associated with the application of fire limits its use and reduces agency support for prescribed burning in the private sector. As a result, considerably less cost-share support is given for prescribed fire compared to mechanical techniques. This study tests the general perception that fire is a riskier technique relative to other land management options. Due to the lack of data available to directly test this notion, we use a combination of approaches including 1) a comparison of fatalities resulting from different occupations that are proxies for techniques employed in land management, 2) a comparison of fatalities resulting from wildland fire versus prescribed fire, and 3) an exploration of causal factors responsible for wildland fire-related fatalities. This approach establishes a first approximation of the relative risk of fatality to private citizens using prescribed fire compared to other management techniques that are readily used in ecosystem management. Our data do not support using risks of landowner fatalities as justification for the use of alternative land management techniques, such as mechanical (machine-related) equipment, over prescribed fire. Vehicles and heavy machinery are consistently leading reasons for fatalities within occupations selected as proxies for management techniques employed by ranchers and agricultural producers, and also constitute a large proportion of fatalities among firefighters. Our study provides the foundation for agencies to establish data-driven decisions regarding the degree of support they provide for prescribed burning on private lands.

  4. Role of nanotechnology in agriculture with special reference to management of insect pests.

    PubMed

    Rai, Mahendra; Ingle, Avinash

    2012-04-01

    Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.

  5. Agricultural management change effects on river nutrient yields in a catchment of Central Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Y.

    2009-04-01

    Modelling efforts are strongly recommended nowadays by European legislation for investigating non-structural mitigation measures against water pollution on catchment scale. Agricultural diffuse pollution is considered to be the main responsible human activity for the Eutrophication of inland waters with nitrogen (N) and phosphorus (P). The physically-based water quality model SWAT is implemented in an agricultural medium-size agricultural catchment of Central Greece with the purpose to simulate the baseline situation and subsequently to predict the effects that realistic non-structural interventions, applied on the agricultural land, have on water quality and crop yields. SWAT was successfully calibrated according to measured flows and water quality data and subsequently scenarios were developed by changing chemical fertilizer application rates and timing on corn, cotton and wheat cultivations. All scenarios resulted in a decrease of nutrient emissions to surface waters but with a simultaneous small decrease in crop yields. The model predicted explicitly the consequences of non-structural mitigation measures against water pollution sustaining that the understanding of land management changes in relation to its driving factors provides essential information for sustainable management of the agricultural sector in an agricultural country like Greece.

  6. Sustainable Agricultural and Watershed Management in Developing Countries - An India Case Study

    NASA Astrophysics Data System (ADS)

    Kiliszek, A.; Vaicunas, R.; Zook, K.; Popkin, J.; Inamdar, S. P.; Duke, J.; Awokuse, T.; Sims, T.; Hansen, D.; Wani, S. P.

    2011-12-01

    The goal of sustainable agricultural and watershed management is to enhance agricultural productivity while protecting and preserving our environment and natural resources. The vast majority of information on sustainable watershed management practices is primarily derived from studies in developed nations with very few inputs from developing nations. Through a USDA-funded project, the University of Delaware (UD) initiated a collaboration with the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) located in Hyderabad, India to study sustainable agricultural management practices in developing countries and their impacts on the environment, crop productivity, and socioeconomic conditions of the watershed community. As a part of this project, ICRISAT provided us with a vast amount of data on sustainable agricultural practices and their impacts on runoff, soil and water quality, crop yields, nutrient management and socioeconomic conditions. Conservation practices that were implemented included check dams, groundwater recharge wells, intercropping, nutrient management, integrated pest management and a suite of other practices. Using this information, students and faculty at UD developed teaching modules that were used for education and enrichment of existing UD courses and are also being used for the development of a stand-alone online course. The students and faculty visited India in July 2010 to get a first-hand experience of the conditions in the agricultural watersheds and the impacts of sustainable management practices. The project was a tremendous learning experience for US students and faculty and highlighted the challenges people face in developing countries and how that affects every aspect of their lives. Such challenges include environmental, agricultural, technological, economic, and transportation. Although we experience many of the same challenges, developing countries do not have the technology or economic infrastructure in place to

  7. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  8. Optimization Techniques for College Financial Aid Managers

    ERIC Educational Resources Information Center

    Bosshardt, Donald I.; Lichtenstein, Larry; Palumbo, George; Zaporowski, Mark P.

    2010-01-01

    In the context of a theoretical model of expected profit maximization, this paper shows how historic institutional data can be used to assist enrollment managers in determining the level of financial aid for students with varying demographic and quality characteristics. Optimal tuition pricing in conjunction with empirical estimation of…

  9. Relaxation Techniques to Manage IBS Symptoms

    MedlinePlus

    ... Updated: 15 May 2016 Print Jump to Topic Psychological Treatments Understanding Stress Cognitive Behavioral Therapy Relaxation Techniques for IBS You’ve been to the doctor and you’ve had all of the tests. The diagnosis you’ve been given is irritable ...

  10. Active microbial soil communities in different agricultural managements

    NASA Astrophysics Data System (ADS)

    Landi, S.; Pastorelli, R.

    2009-04-01

    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  11. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    USDA-ARS?s Scientific Manuscript database

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  12. New techniques and devices for difficult airway management.

    PubMed

    Shirgoska, Biljana; Netkovski, Jane

    2012-09-01

    The purpose of this review is to compare old conventional techniques and devices for difficult airway management and new sophisticated techniques and devices. Recent techniques and devices are defined as the American Society of Anesthesiology (ASA) practice guidelines for the management of difficult airway, published in 1992, reviewed in 1993 and updated in 2003. According to ASA, the techniques for difficult airway management are divided into techniques for difficult intubation and techniques for difficult ventilation. Awake fiberoptic intubation is the technique of choice for difficult airway management prescribed by the World Health Organization document for patient safety in the operating theater. Conventional techniques for intubation used direct visualization. The new generation of devices does not require direct visualization of the vocal cords for endotracheal tube placement. They allow better glottis view and successful endotracheal placement of the tube with indirect laryngoscopy. New intubation devices such as video laryngoscopes facilitate endotracheal intubation by indirect visualization of glottis structures without aligning the oral, pharyngeal and laryngeal axes in patients with cervical spine abnormality. Video laryngoscopes such as V-Mac and C-Mac, Glide scope, McGrath, Airway Scope, Airtraq, Bonfils and Bullard laryngoscope are widely available at the market. Airway gadgets are lighted stylets and endotracheal tube guides. The principal conclusion of this review is that utilization of these devices can be easily learned. The technique of indirect laryngoscopy is currently used for managing difficult airway in the operating room as well as for securing the airway in daily anesthesia routine.

  13. Optical Techniques for Space Environment Management

    NASA Astrophysics Data System (ADS)

    Greene, B.; Bennett, J.; Smith, C.

    2016-09-01

    The Space Environment Research Centre (SERC) is a fully-funded multi-national research collaboration for the management and mitigation of space debris using optical technologies. SERC is tasked with developing mitigation strategies for the many debris objects not amenable to space-based interventions. SERC research leverages very accurate information from a new optical space tracking network to develop viable near-term strategies to manage debris using only ground-based infrastructure. SERC has sufficient resources to conduct full-scale on-orbit testing of candidate approaches. We report on SERC progress in astrodynamics, precision catalogs, conjunction processing, adaptive optics and high power lasers as well as the architecture of the research effort.

  14. Two dimensions of nitrate pollution management in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Wachniew, Przemysław; Martinez, Grit; Bar-Michalczyk, Dominika; Kania, Jarosław; Malina, Grzegorz; Michalczyk, Tomasz; Różański, Kazimierz; Witczak, Stanisław; Zięba, Damian; Żurek, Anna J.; Berrini, Anne

    2017-04-01

    The Kocinka River catchment underlain by the karstic-fissured upper Jurrasic Częstochowa aquifer in Southern Poland is the site of an interdisciplinary research aimed at finding solutions to pollution of water resources with nutrients. These efforts are conducted in the framework of the BONUS Soils2Sea project that deals with the development of differentiated environmental management measures based on utilization of the natural ability of soils, groundwater and surface water to remove surplus nutrients. Implementation of these or any other measures for the improvement of water quality depends primarily on the perceptions and attitudes of the major actors, which in turn are a product of the socio-economic, cultural-historical and political development spanning many generations. The problem of the deteriorating water quality is therefore twofold. Understanding the complex natural system consisting of the coupled groundwater and surface water component with a wide spectrum of time lags of pollution transport is only the beginning of the solution. The mitigation policies and measures based on this scientific knowledge have to recognize the equally complex nature of social factors and interactions. Implementation of the European and national policies and legislations has to take into account the regional perspective. Identification of the key stakeholders is in this regard a first step followed by an inquiry into their values, perceptions and motivations through interviews, workshops, etc. Understanding of the socio-cultural, historical, economic and political factors that shape stakeholder actions is a prerequisite for the development of the successful management and mitigation schemes. The process of gaining insights into the environmental and social aspects of nutrient pollution in the Kocinka catchment is partly presented by the documentary film "Soils2Sea: Reducing nutrient loadings into the Baltic Sea" (https://www.youtube.com/watch?v=LUouES4SeJk).

  15. SUNY College of Agriculture and Technology at Morrisville: Selected Financial Management Practices.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    This audit report of the State University of New York (SUNY) College of Agriculture and Technology at Morrisville addresses the question of whether the college management has established an effective system of internal control over its revenue, equipment, and student work-study payroll. The audit makes a number of observations and conclusions.…

  16. Managing saltwater intrusion in coastal arid regions and its societal implications for agriculture

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Al-Khatri, Ayisha; Schütze, Niels

    2016-05-01

    Coastal aquifers in arid and semiarid regions are particularly at risk due to intrusion of salty marine water. Since groundwater is predominantly used in irrigated agriculture, its excessive pumping - above the natural rate of replenishment - strengthen the intrusion process. Using this increasingly saline water for irrigation, leads to a destruction of valuable agricultural resources and the economic basis of farmers and their communities. The limitation of resources (water and soil) in these regions requires a societal adaptation and change in behaviour as well as the development of appropriate management strategies for a transition towards stable and sustainable future hydrosystem states. Besides a description of the system dynamics and the spatial consequences of adaptation on the resources availability, the contribution combines results of an empirical survey with stakeholders and physically based modelling of the groundwater-agriculture hydrosystem interactions. This includes an analysis of stakeholders' (farmers and decision makers) behaviour and opinions regarding several management interventions aiming on water demand and water resources management as well as the thinking of decision makers how farmers will behave. In this context, the technical counter measures to manage the saltwater intrusion by simulating different groundwater pumping strategies and scenarios are evaluated from the economic and social point of view and if the spatial variability of the aquifer's hydrogeology is taken into consideration. The study is exemplarily investigated for the south Batinah region in the Sultanate of Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture.

  17. Low Energy Technology. A Unit of Instruction in Florida Agriculture. Crop Protection with Integrated Pest Management.

    ERIC Educational Resources Information Center

    Florida Univ., Gainesville. Inst. of Food and Agricultural Sciences.

    This unit of instruction on integrated pest management was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and…

  18. Hands-on Precision Agriculture Data Management Workshops for Producers and Industry Professionals: Development and Assessment

    ERIC Educational Resources Information Center

    Luck, Joe D.; Fulton, John P.; Rees, Jennifer

    2015-01-01

    Three Precision Agriculture Data Management workshops regarding yield monitor data were conducted in 2014, reaching 62 participants. Post-workshop surveys (n = 58) indicated 73% of respondents experienced a moderate to significant increase in knowledge related to yield monitor data usage. Another 72% reported that they planned to utilize best…

  19. From sacred cows to sacrificial lambs: implementing agricultural phosphorus science and management to combat eutrophication

    USDA-ARS?s Scientific Manuscript database

    Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden to examine P management under voluntary, litigated and regulatory settings. In the USA, voluntary strategies to curtail P loadi...

  20. Hands-on Precision Agriculture Data Management Workshops for Producers and Industry Professionals: Development and Assessment

    ERIC Educational Resources Information Center

    Luck, Joe D.; Fulton, John P.; Rees, Jennifer

    2015-01-01

    Three Precision Agriculture Data Management workshops regarding yield monitor data were conducted in 2014, reaching 62 participants. Post-workshop surveys (n = 58) indicated 73% of respondents experienced a moderate to significant increase in knowledge related to yield monitor data usage. Another 72% reported that they planned to utilize best…

  1. Turf and Lawn Management: A Course in Agricultural Education. Curriculum Guide. Preliminary Draft.

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide (preliminary draft) is a result of the revision of the total South Carolina agricultural education curriculum; the scope of the turf and lawn management industry and its direct and indirect employment opportunities provide ample reasons for such a course offering in South Carolina high schools. The guide presents objectives,…

  2. Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production

    USDA-ARS?s Scientific Manuscript database

    Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations,...

  3. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  4. Pest Management and Environmental Quality. Course 181. Correspondence Courses in Agriculture, Family Living and Community Development.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.; And Others

    This publication is the course book for a correspondence course in pest control with the Pennsylvania State University. It contains basic information for agricultural producers on pest management and the proper and safe use of pesticides. The course consists of eleven lessons which can be completed at one's leisure. The first nine lessons contain…

  5. Visualizing land-use and management complexity within biogeochemical cycles of an agricultural landscape

    Treesearch

    Kai Nils Nitzsche; Gernot Verch; Katrin Premke; Arthur Gessler; Zachary. Kayler

    2016-01-01

    Crop fields are cultivated across continuities of soil, topography, and local climate that drive biological processes and nutrient cycling at the landscape scale; yet land management and agricultural research are often performed at the field scale, potentially neglecting the context of the surrounding landscape. Adding to this complexity is the overlap of ecosystems...

  6. Farm Management and Leadership. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    ERIC Educational Resources Information Center

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three communication skills units of the three levels of Support Materials for Agricultural Training (SMAT) in farm management and leadership: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner with the reading, writing, and spoken communication skills needed to deal with…

  7. Low Energy Technology. A Unit of Instruction in Florida Agriculture. Crop Protection with Integrated Pest Management.

    ERIC Educational Resources Information Center

    Florida Univ., Gainesville. Inst. of Food and Agricultural Sciences.

    This unit of instruction on integrated pest management was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and…

  8. Soil health: an emergent set of soil properties that result from synergy among agricultural management practices

    USDA-ARS?s Scientific Manuscript database

    The responses of a selected soil microbial property to a single agricultural management practice are often inconsistent among field studies, possibly reflecting the site-specific nature of field studies. An equally compelling explanation is that in complex systems where outcomes are the result of n...

  9. Requirement analysis for the one-stop logistics management of fresh agricultural products

    NASA Astrophysics Data System (ADS)

    Li, Jun; Gao, Hongmei; Liu, Yuchuan

    2017-08-01

    Issues and concerns for food safety, agro-processing, and the environmental and ecological impact of food production have been attracted many research interests. Traceability and logistics management of fresh agricultural products is faced with the technological challenges including food product label and identification, activity/process characterization, information systems for the supply chain, i.e., from farm to table. Application of one-stop logistics service focuses on the whole supply chain process integration for fresh agricultural products is studied. A collaborative research project for the supply and logistics of fresh agricultural products in Tianjin was performed. Requirement analysis for the one-stop logistics management information system is studied. The model-driven business transformation, an approach uses formal models to explicitly define the structure and behavior of a business, is applied for the review and analysis process. Specific requirements for the logistic management solutions are proposed. Development of this research is crucial for the solution of one-stop logistics management information system integration platform for fresh agricultural products.

  10. Coping Mechanisms Utah Agriculture Teachers Use to Manage Teaching Related Stress

    ERIC Educational Resources Information Center

    Lawver, Rebecca G.; Smith, Kasee L.

    2014-01-01

    The purpose of this study was to examine the level of occupational stress among Utah agriculture teachers, and to determine the coping mechanisms utilized to manage teaching related stressful events. Teachers were asked to rank their level of occupational stress according to the scale used by the American Psychological Association Stress in…

  11. Effects of a simulated agricultural runoff event on sediment toxicity in a managed backwater wetland

    USDA-ARS?s Scientific Manuscript database

    permethrin (both cis and trans isomers), on 10-day sediment toxicity to Hyalella azteca in a managed natural backwater wetland after a simulated agricultural runoff event. Sediment samples were collected at 10, 40, 100, 300, and 500 m from inflow 13 days prior to amendment and 1, 5, 12, 22, and 36 ...

  12. Innovative best management practices for improving nutrient reductions in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    As the burgeoning human population increases pressures on agriculture for increasing yields, the concomitant strain on the aquatic environment downstream is elevated through non-point source pollution. Traditional management practices of conservation tillage, terracing, and cover crops are good prac...

  13. Low-grade weirs: The next step for an agricultural best management practice

    USDA-ARS?s Scientific Manuscript database

    Best management practices (BMPs) generally refer to measures that provide some level of environmental protection for downstream aquatic systems. In agricultural watersheds, BMPs aim to improve the water quality of runoff from the landscape by controlling or trapping pollutants that can potentially ...

  14. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    USDA-ARS?s Scientific Manuscript database

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  15. Pest Management and Environmental Quality. Course 181. Correspondence Courses in Agriculture, Family Living and Community Development.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.; And Others

    This publication is the course book for a correspondence course in pest control with the Pennsylvania State University. It contains basic information for agricultural producers on pest management and the proper and safe use of pesticides. The course consists of eleven lessons which can be completed at one's leisure. The first nine lessons contain…

  16. PBPC collections: Management, techniques and risks.

    PubMed

    Gašová, Zdenka; Bhuiyan-Ludvíková, Zdeňka; Böhmová, Martina; Marinov, Iuri; Vacková, Blanka; Pohlreich, David; Trněný, Marek

    2010-10-01

    We evaluated the efficiency, safety and risks of three techniques which were used for autologous PBPC collections: (a) large-volume leukapheresis (LVL), (b) standard collections, and (c) a new modified technique which was named as "Mixed" collections. In spite of the fact that the standard and LVL collection techniques are used routinely, there may occur special conditions in which the procedures cannot be recommended. Some patients may suffer from serious clinical complications and they cannot tolerate either standard procedures with administration of higher doses of ACD-A, or the high extent of procedure in the course of LVL. We tried to find the safe and efficient collection technique which could help this group of patients to overcome their problems. The "Mixed" collection technique could be such a choice. The numbers of 136 autologous PBPC collections were performed in 98 patients who suffered from hemato-oncological diseases. We evaluated the results of (a) 93 LVL (more than 3 TBV, total blood volumes of the patients were processed; anticoagulation: ACD-A and Heparin), (b) 16 Standard procedures (less than 3 TBV were processed; anticoagulation: ACD-A), and (c) 27 "Mixed" collections (less than 3 TBV of patients were processed; anticoagulation: ACD-A+ Heparin). Collections were performed by the use of separator Cobe Spectra, Caridian. In patients (a) with a good effect of mobilization (precollection CD 34+ cells in blood higher than 20×10(3)/mL) we prepared almost the same median dose of CD 34+ cells from the standard and "Mixed" collections, 3.8 and 4×10(6)/kg, respectively. In LVL the median yield of CD 34+ cells was 8.2×10(6)/kg. In patients (b) who were mobilized weakly (precollection CD 34+ cells in blood lower than 20×10(3)/mL), LVL enabled to prepare 1.5×10(6) of CD 34+/kg from one collection, while the median yield of CD 34+ cells from the standard and "Mixed" collections was 0.9 and 1.2×10(6)/kg. All the standard, LVL and "Mixed" procedures were

  17. Short-Term Coping Techniques for Managing Stress.

    ERIC Educational Resources Information Center

    Grasha, Anthony F.

    1987-01-01

    A number of brief, focused self-help interventions designed to help faculty manage stress more effectively are described such as being assertive, setting priorities, and using quick relaxation techniques. Related causes of stress are cited. (MSE)

  18. Relaxation techniques for pain management in labour.

    PubMed

    Smith, Caroline A; Levett, Kate M; Collins, Carmel T; Crowther, Caroline A

    2011-12-07

    Many women would like to avoid pharmacological or invasive methods of pain management in labour and this may contribute towards the popularity of complementary methods of pain management. This review examined currently available evidence supporting the use of relaxation therapies for pain management in labour. To examine the effects of relaxation methods for pain management in labour on maternal and perinatal morbidity. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2010), The Cochrane Complementary Medicine Field's Trials Register (November 2011), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 4), MEDLINE (1966 to 30 November 2010), CINAHL (1980 to 30 November 2010), the Australian and New Zealand Clinical Trial Registry (30 November 2010), Chinese Clinical Trial Register (30 November 2010), Current Controlled Trials (30 November 2010), ClinicalTrials.gov, (30 November 2010) ISRCTN Register (30 November 2010), National Centre for Complementary and Alternative Medicine (NCCAM) (30 November 2010) and the WHO International Clinical Trials Registry Platform (30 November 2010). Randomised controlled trials comparing relaxation methods with standard care, no treatment, other non-pharmacological forms of pain management in labour or placebo. Three review authors independently assessed trials for inclusion and extracted data. Data were checked for accuracy. Two review authors independently assessed trial quality. We attempted to contact study authors for additional information. We included 11 studies (1374 women) in the review. Relaxation was associated with a reduction in pain intensity during the latent phase (mean difference (MD) -1.25, 95% confidence interval (CI) -1.97 to -0.53, one trial, 40 women) and active phase of labour (MD -2.48, 95% CI -3.13 to 0.83, two trials, 74 women). There was evidence of improved outcomes from relaxation instruction with increased satisfaction with pain

  19. Living with lipoedema: reviewing different self-management techniques.

    PubMed

    Fetzer, Amy; Wise, Christine

    2015-10-01

    At present, there is no proven cure for lipoedema. Nevertheless, much can be done to help improve symptoms and prevent progression. Many of these improvements can be achieved by patients using self-management techniques. This article describes the range of self-management techniques that community nurses can discuss with patients, including healthy eating, low-impact exercise, compression garments, self-lymphatic drainage, and counselling.

  20. Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions.

    PubMed

    Lüscher, Gisela; Ammari, Youssef; Andriets, Aljona; Angelova, Siyka; Arndorfer, Michaela; Bailey, Debra; Balázs, Katalin; Bogers, Marion; Bunce, Robert G H; Choisis, Jean-Philippe; Dennis, Peter; Díaz, Mario; Dyman, Tetyana; Eiter, Sebastian; Fjellstad, Wendy; Fraser, Mariecia; Friedel, Jürgen K; Garchi, Salah; Geijzendorffer, Ilse R; Gomiero, Tiziano; González-Bornay, Guillermo; Guteva, Yana; Herzog, Felix; Jeanneret, Philippe; Jongman, Rob H G; Kainz, Max; Kwikiriza, Norman; López Díaz, María Lourdes; Moreno, Gerardo; Nicholas-Davies, Pip; Nkwiine, Charles; Opio, Julius; Paoletti, Maurizio G; Podmaniczky, László; Pointereau, Philippe; Pulido, Fernando; Sarthou, Jean-Pierre; Schneider, Manuel K; Sghaier, Tahar; Siebrecht, Norman; Stoyanova, Siyka; Wolfrum, Sebastian; Yashchenko, Sergiy; Albrecht, Harald; Báldi, András; Belényesi, Márta; Benhadi-Marin, Jacinto; Blick, Theo; Buholzer, Serge; Centeri, Csaba; Choisis, Norma; Cuendet, Gérard; De Lange, Hendrika J; Déjean, Sylvain; Deltshev, Christo; Díaz Cosín, Darío J; Dramstad, Wenche; Elek, Zoltán; Engan, Gunnar; Evtushenko, Konstantin; Falusi, Eszter; Finch, Oliver-D; Frank, Thomas; Gavinelli, Federico; Genoud, David; Gillingham, Phillipa K; Grónás, Viktor; Gutiérrez, Mónica; Häusler, Werner; Heer, Xaver; Hübner, Thomas; Isaia, Marco; Jerkovich, Gergely; Jesus, Juan B; Kakudidi, Esezah; Kelemen, Eszter; Koncz, Nóra; Kovacs, Eszter; Kovács-Hostyánszki, Anikó; Last, Luisa; Ljubomirov, Toshko; Mandery, Klaus; Mayr, Josef; Mjelde, Atle; Muster, Christoph; Nascimbene, Juri; Neumayer, Johann; Ødegaard, Frode; Ortiz Sánchez, Francisco Javier; Oschatz, Marie-Louise; Papaja-Hülsbergen, Susanne; Paschetta, Mauro; Pavett, Mark; Pelosi, Céline; Penksza, Károly; Pommeresche, Reidun; Popov, Victor; Radchenko, Volodymyr; Richner, Nina; Riedel, Susanne; Scullion, John; Sommaggio, Daniele; Szalkovszki, Ottó; Szerencsits, Erich; Trigo, Dolores; Vale, Jim; van Kats, Ruud; Vasilev, Angel; Whittington, Andrew E; Wilkes-Allemann, Jerylee; Zanetti, Tommaso

    2016-06-01

    Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6-20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive

  1. Managing difficult polyps: techniques and pitfalls

    PubMed Central

    Tholoor, Shareef; Tsagkournis, Orestis; Basford, Peter; Bhandari, Pradeep

    2013-01-01

    There is no standardized definition of difficult polyps. However, polyps become difficult and challenging to remove endoscopically when they are large in size, flat in nature, situated in a high-risk location and when access to them is very awkward. Recently, an SMSA (Size, Morphology, Site, Access) classification has been proposed that helps to qualify the degree of difficulty by scoring on the above parameters. This article reviews the features that make polyps difficult to remove and provides some practical tips in managing these difficult polyps. We believe that ‘difficult polyp’ is a relative term and each endoscopist should define their own level of difficulty and what they would be able to handle safely. However, in expert trained hands, most difficult polyps can be safely removed by an endoscopic approach. PMID:24714799

  2. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  3. Management of Intracranial Meningiomas Using Keyhole Techniques

    PubMed Central

    Burks, Joshua D; Conner, Andrew K; Bonney, Phillip A; Archer, Jacob B; Christensen, Blake; Smith, Jacqueline; Safavi-Abbasi, Sam

    2016-01-01

    Background: Keyhole craniotomies are increasingly being used for lesions of the skull base. Here we review our recent experience with these approaches for resection of intracranial meningiomas. Methods: Clinical and operative data were gathered on all patients treated with keyhole approaches by the senior author from January 2012 to June 2013. Thirty-one meningiomas were resected in 27 patients, including 9 supratentorial, 5 anterior fossa, 7 middle fossa, 6 posterior fossa, and 4 complex skull base tumors. Twenty-nine tumors were WHO Grade I, and 2 were Grade II.  Results: The mean operative time was 8 hours, 22 minutes (range, 2:55-16:14) for skull-base tumors, and 4 hours, 27 minutes (range, 1:45-7:13) for supratentorial tumors. Simpson Resection grades were as follows: Grade I = 8, II = 8, III = 1, IV = 15, V = 0. The median postoperative hospital stay was 4 days (range, 1-20 days). In the 9 patients presenting with some degree of visual loss, 7 saw improvement or complete resolution. In the 6 patients presenting with cranial nerve palsies, 4 experienced improvement or resolution of the deficit postoperatively. Four patients experienced new neurologic deficits, all of which were improved or resolved at the time of the last follow-up. Technical aspects and surgical nuances of these approaches for management of intracranial meningiomas are discussed.  Conclusions: With careful preoperative evaluation, keyhole approaches can be utilized singly or in combination to manage meningiomas in a wide variety of locations with satisfactory results. PMID:27284496

  4. Clustering techniques for personal photo album management

    NASA Astrophysics Data System (ADS)

    Ardizzone, Edoardo; La Cascia, Marco; Morana, Marco; Vella, Filippo

    2009-10-01

    We propose a novel approach for the automatic representation of pictures achieving a more effective organization of personal photo albums. Images are analyzed and described in multiple representation spaces, namely, faces, background, and time of capture. Faces are automatically detected, rectified, and represented, projecting the face itself in a common low-dimensional eigenspace. Backgrounds are represented with low-level visual features based on an RGB histogram and Gabor filter bank. Faces, time, and background information of each image in the collection is automatically organized using a mean-shift clustering technique. Given the particular domain of personal photo libraries, where most of the pictures contain faces of a relatively small number of different individuals, clusters tend to be semantically significant besides containing visually similar data. We report experimental results based on a data set of about 1000 images where automatic detection and rectification of faces lead to approximately 400 faces. Significance of clustering has been evaluated, and results are very encouraging.

  5. Toward environmental management systems in Australian agriculture to achieve better environmental outcomes at the catchment scale.

    PubMed

    Seymour, Eloise J; Ridley, Anna M

    2005-03-01

    Environmental Management Systems (EMS) are being trialed for Australian agricultural industries as society becomes more concerned about agriculture's environmental performance. EMS is a structured approach used by farm businesses to assess, monitor, and improve environmental performance. Use of EMS in conjunction with other policy tools (such as financial incentives and regulation) in agriculture could enhance management of both on-farm and off-farm environmental issues. Based on the international standard ISO14001, EMS was designed to be applied at the individual business level. However, governments in Australia are exploring its potential to be applied at a catchment scale, among other things, for the purpose of linking farm-level actions to catchment targets. In Australia, governments and catchment management bodies are using Integrated Catchment Management (ICM) as the framework to try to achieve environmental targets set out in catchment plans. In this article, we compare aspects of the EMS and ICM frameworks and comment on the potential of using EMS to achieve catchment-scale environmental outcomes. We conclude that EMS could be a useful policy tool to improve farm management and to contribute, in part, to better off-site outcomes at the catchment/landscape scale. Recommendations on the use of EMS at the catchment scale are discussed. These include using an educational approach for EMS delivery, linking the EMS process to catchment targets, and ensuring catchment targets are realistic and achievable.

  6. Behavior Management Techniques in Predoctoral and Postdoctoral Pediatric Dentistry Programs.

    ERIC Educational Resources Information Center

    Belanger, Gary K.; Tilliss, Terri S.

    1993-01-01

    A survey determined the extent to which selected pediatric dental behavior management techniques are taught both didactically and clinically in 46 predoctoral and 45 postdoctoral programs. Results and trends are reported within the four categories of sedation, restraint, parental presence, and communications behavior management. (GLR)

  7. Coping Styles as Mediators of Teachers' Classroom Management Techniques

    ERIC Educational Resources Information Center

    Lewis, Ramon; Roache, Joel; Romi, Shlomo

    2011-01-01

    This study reports the relationships between coping styles of Australian teachers and the classroom based classroom management techniques they use to cope with student misbehaviour. There is great interest internationally in improving educational systems by upgrading the quality of teachers' classroom management. However, the relationship between…

  8. USING BIOASSAYS TO EVALUATE THE PERFORMANCE OF RISK MANAGEMENT TECHNIQUES

    EPA Science Inventory

    Often, the performance of risk management techniques is evaluated by measuring the concentrations of the chemials of concern before and after risk management effoprts. However, using bioassays and chemical data provides a more robust understanding of the effectiveness of risk man...

  9. Behavior Management Techniques in Predoctoral and Postdoctoral Pediatric Dentistry Programs.

    ERIC Educational Resources Information Center

    Belanger, Gary K.; Tilliss, Terri S.

    1993-01-01

    A survey determined the extent to which selected pediatric dental behavior management techniques are taught both didactically and clinically in 46 predoctoral and 45 postdoctoral programs. Results and trends are reported within the four categories of sedation, restraint, parental presence, and communications behavior management. (GLR)

  10. Understanding Pupil Behaviour: Classroom Management Techniques for Teachers

    ERIC Educational Resources Information Center

    Lewis, Ramon

    2009-01-01

    This book describes a system of successful classroom behaviour management techniques developed by the author over more than twenty-five years. It outlines the difficulties confronting teachers trying to manage pupils' misbehaviour in schools and describes four types of pupil who can be helped to behave responsibly. In "Understanding Pupil…

  11. Coping Styles as Mediators of Teachers' Classroom Management Techniques

    ERIC Educational Resources Information Center

    Lewis, Ramon; Roache, Joel; Romi, Shlomo

    2011-01-01

    This study reports the relationships between coping styles of Australian teachers and the classroom based classroom management techniques they use to cope with student misbehaviour. There is great interest internationally in improving educational systems by upgrading the quality of teachers' classroom management. However, the relationship between…

  12. Effectiveness of capture techniques for rails in emergent marsh and agricultural wetlands

    USGS Publications Warehouse

    Perkins, Marie; King, S.L.; Linscombe, J.

    2010-01-01

    A reliable and effective technique for capturing rails would improve researchers' ability to study these secretive marsh birds. The time effectiveness and capture success of four methods for capturing rails in emergent marsh and agricultural wetlands in southern Louisiana and Texas were evaluated during winter and breeding seasons. Methods were hand and net capture from an airboat at night, an all-terrain vehicle (ATV) at night, an ATV during daylight rice harvest and passive capture using drop-door traps with drift fencing. Five hundred and twenty rails were captured (and 21 recaptures): 192 King Rails (Rallus elegans), 74 Clapper Rails (R. longirostris), 110 Virginia Rails (R. limicola), 125 Sora (Porzana Carolina) and 40 Yellow Rails (Coturnicops noveboracensis). Methods used at night were effective at capturing rails: capture from airboats yielded 2.13 rails per hour each airboat was operated and capture from ATVs yielded 1.80 rails per hour each ATV was operated. During daylight, captures from ATVs during rice harvest (0.25 rails per hour each ATV was operated) and passive drop-door traps with drift fencing (0.0054 rails per trap hour) were both inefficient.

  13. Modeling the impacts of climate change and agricultural management practices on surface erosion in a dryland agricultural basin

    NASA Astrophysics Data System (ADS)

    Ottenbreit, E.; Adam, J. C.; Barber, M. E.

    2010-12-01

    The objective of this study is to investigate the effects of climate change and agricultural management practices on suspended sediment concentrations in the Potlach River basin in northwestern Idaho. Suspended sediment is a pollutant in many water systems and contributes to the impairment of streams. Conventional tillage practices and rain-on-snow events in the Palouse region of northern Idaho and eastern Washington can produce some of the highest sediment losses per acre in the United States. Climate change may lead to further problems as more frequent and intense winter storm events are predicted to occur. Many hydrological models have been developed which examine suspended sediment in river systems. The Potlatch River basin near Julietta, ID was examined using the Distributed Hydrology Soil Vegetation Model (DHSVM), which has a sediment module that includes surface erosion and channel sediment transport. DHSVM was calibrated and evaluated over the historical period of streamflow observations and was used to predict soil erosion rates and suspended sediment concentrations using a range of downscaled Global Climate Models (GCMs) emissions scenarios for the year 2045. Furthermore, the sensitivity of suspended sediment concentrations to conventional versus convservative tillage practices was explored. The results show that as the projected climate-driven intensity of storms increase, more sediment is predicted in the Potlatch River. Suspended sediment and streamflow are predicted to increase during the late fall through the early spring. This increase occurs during times of heightened runoff when suspended sediment concentration in the river is highest. Three tillage scenarios were incorporated into DHSVM for winter wheat: conventional till, reduced till, and no till. Erosion and suspended sediment were higher during storm events under conventional agricultural tillage scenarios. In the long-term, this research can lead to examination of the effects of climate

  14. Changing techniques in crop plant classification: molecularization at the National Institute of Agricultural Botany during the 1980s.

    PubMed

    Holmes, Matthew

    2017-04-01

    Modern methods of analysing biological materials, including protein and DNA sequencing, are increasingly the objects of historical study. Yet twentieth-century taxonomic techniques have been overlooked in one of their most important contexts: agricultural botany. This paper addresses this omission by harnessing unexamined archival material from the National Institute of Agricultural Botany (NIAB), a British plant science organization. During the 1980s the NIAB carried out three overlapping research programmes in crop identification and analysis: electrophoresis, near infrared spectroscopy (NIRS) and machine vision systems. For each of these three programmes, contemporary economic, statutory and scientific factors behind their uptake by the NIAB are discussed. This approach reveals significant links between taxonomic practice at the NIAB and historical questions around agricultural research, intellectual property and scientific values. Such links are of further importance given that the techniques developed by researchers at the NIAB during the 1980s remain part of crop classification guidelines issued by international bodies today.

  15. Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions

    PubMed Central

    Pierce, Samuel C.; Kröger, Robert; Pezeshki, Reza

    2012-01-01

    Large tracts of lowlands have been drained to expand extensive agriculture into areas that were historically categorized as wasteland. This expansion in agriculture necessarily coincided with changes in ecosystem structure, biodiversity, and nutrient cycling. These changes have impacted not only the landscapes in which they occurred, but also larger water bodies receiving runoff from drained land. New approaches must append current efforts toward land conservation and restoration, as the continuing impacts to receiving waters is an issue of major environmental concern. One of these approaches is agricultural drainage management. This article reviews how this approach differs from traditional conservation efforts, the specific practices of drainage management and the current state of knowledge on the ecology of drainage ditches. A bottom-up approach is utilized, examining the effects of stochastic hydrology and anthropogenic disturbance on primary production and diversity of primary producers, with special regard given to how management can affect establishment of macrophytes and how macrophytes in agricultural landscapes alter their environment in ways that can serve to mitigate non-point source pollution and promote biodiversity in receiving waters. PMID:24832519

  16. On how environmental stringency influences adoption of best management practices in agriculture.

    PubMed

    Kara, Erdal; Ribaudo, Marc; Johansson, Robert C

    2008-09-01

    There are relatively few Federal environmental regulations that influence agricultural production in the US. However, many local and state environmental rules may influence the management practices on US farms as might interactions between urban population centers and agricultural producers. Detailed analysis of corn farms gives insight into these relationships and suggests that stringent environmental regulations could increase the likelihood of adoption of certain conservation practices, all else being constant, but that the interaction between urban populations has less of an effect on the adoption decisions.

  17. "Anger Busters" A New Technique for Anger Management.

    ERIC Educational Resources Information Center

    Hajzler, Darko J.

    1988-01-01

    A procedure for anger management, developed from a rational-emotive therapy orientation, is described. The technique makes use of humor and referral to "Anger Busters" (based on the film, "Ghost Busters" to defuse angry emotions. Use of the technique with an 8-year-old is described. (DB)

  18. Capitalizing on Stress Management Techniques in Developmental Classes.

    ERIC Educational Resources Information Center

    Price, Elsa C.

    Mastering stress management techniques can help college developmental class educators protect themselves from burnout. These techniques can also be taught to students in developmental classes to enable them to maximize the benefits from these classes. This paper outlines the causes of stress, identifies stressors, describes responses to stress,…

  19. Classroom Management Through the Application of Behavior Modification Techniques.

    ERIC Educational Resources Information Center

    Ferinden, William E., Jr.

    The primary aim of this book is to bring to the grade school teacher a survey of the most recent techniques and ideas of behavior modification which are applicable to good classroom management. All of the approaches and techniques presented could be of interest to teachers working at all grade levels. Since research has shown that the systematic…

  20. 3D Visualization Tools to Support Soil Management In Relation to Sustainable Agriculture and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Wang, Chen

    2017-04-01

    Visualization tools [1][2][6] have been used increasingly as part of information, consultation, and collaboration in relation to issues of global significance. Visualization techniques can be used in a variety of different settings, depending on their association with specific types of decision. Initially, they can be used to improve awareness of the local community and landscape, either individually or in groups [5]. They can also be used to communicate different aspects of change, such as digital soil mapping, ecosystem services and climate change [7][8]. A prototype 3D model was developed to present Tarland Catchment on the North East Scotland which includes 1:25000 soil map data and 1:50000 land capability for agriculture (LCA) data [4]. The model was used to identify issues arising between the growing interest soil monitoring and management, and the potential effects on existing soil characteristics. The online model was also created which can capture user/stakeholder comments they associate with soil features. In addition, people are located physically within the real-world bounds of the current soil management scenario, they can use Augmented Reality to see the scenario overlaid on their immediate surroundings. Models representing alternative soil use and management were used in the virtual landscape theatre (VLT) [3]with electronic voting designed to elicit public aspirations and concerns regarding future soil uses, and to develop scenarios driven by local input. Preliminary findings suggest positive audience responses to the relevance of the inclusion of soil data within a scene when considering questions regarding the impact of land-use change, such as woodland, agricultural land and open spaces. A future development is the use of the prototype virtual environment in a preference survey of scenarios of changes in land use, and in stakeholder consultations on such changes.END Rua, H. and Alvito, P. (2011) Living the past: 3D models, virtual reality and

  1. Effects of Two Instructional Techniques Used with the Ford Power Train Simulator on the Performance of Mississippi Vocational Agriculture Students.

    ERIC Educational Resources Information Center

    Perritt, Roger Dale; Shinn, Glen C.

    A Mississippi study examined the effects of two instructional techniques using the Ford power train unit as an instructional aid. Eight schools were randomly selected from a population of 33 vocational agricultural departments. Three schools with 10 students from each school were randomly selected and assigned to treatment A, traditional…

  2. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site

    USDA-ARS?s Scientific Manuscript database

    Estimation of surface energy fluxes over irrigated agriculture is needed to monitor crop water use. Estimates are commonly done using well-established techniques such as eddy covariance (EC) and weighing lysimetry, but implementing these to collect spatially distributed observations is complex and c...

  3. Calcaneal Fracture Management: Extensile Lateral Approach Versus Small Incision Technique.

    PubMed

    Kiewiet, Nathan J; Sangeorzan, Bruce J

    2017-03-01

    Calcaneal fracture management has historically been a controversial topic and represents an area of sustained interest over the past several decades. The authors review current methods for calcaneal fracture fixation with an extensile lateral approach and small incision techniques. Early reports of small incision techniques have reported promising outcomes and reduced risks for complications. These techniques may be beneficial to reduce the risk of soft tissue complications and improve the rate of recovery.

  4. Temporal variability of colloidal material in agricultural storm runoff from managed grassland using flow field-flow fractionation.

    PubMed

    Gimbert, Laura J; Worsfold, Paul J

    2009-12-25

    This paper reports the use of flow field-flow fractionation (FlFFF) to determine the temporal variability of colloidal (<1mum) particle size distributions in agricultural runoff waters in a small managed catchment in SW England during storm events. Three storm events of varying intensity were captured and the colloidal material in the runoff analysed by FlFFF. The technique had sufficient sensitivity to determine directly the changing colloidal profile over the 0.08-1.0mum size range in the runoff waters during these storm events. Rainfall, total phosphorus and suspended solids in the bulk runoff samples were also determined throughout one storm and showed significant correlation (P<0.01) with the amount of colloidal material. Whilst there are some uncertainties in the resolution and absolute calibration of the FlFFF profiles, the technique has considerable potential for the quantification of colloidal material in storm runoff waters.

  5. Investigating the sources of sediment in a Canadian agricultural watershed using a colour-based fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Barthod, Louise; Lobb, David; Owens, Philip; Martinez-Carreras, Nuria; Koiter, Alexander; Petticrew, Ellen; McCullough, Gregory

    2014-05-01

    The development of beneficial management practises to minimize adverse impacts of agriculture on soil and water quality requires information on the sources of sediment at the watershed scale. Sediment fingerprinting allows for the determination of sediment sources and apportionment of their contribution within a watershed, using unique physical, radiochemical or biogeochemical properties, or fingerprints, of the potential sediment sources. The use of sediment colour as a fingerprint is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. This technique is currently being utilized to determine sediment sources within the South Tobacco Creek Watershed, an agricultural watershed located in the Canadian prairies (south-central Manitoba). Suspended sediment and potential source (topsoil, channel bank and shale bedrock material) samples were collected between 2009 and 2011 at six locations along the main stem of the creek. Sample colour was quantified from diffuse reflectance spectrometry measurements over the visible wavelength range using a spectroradiometer (ASD Field Spec Pro, 400-2500 nm). Sixteen colour coefficients were derived from several colour space models (CIE XYZ, CIE xyY, CIE Lab, CIE Luv, CIE Lch, Landsat RGB, Redness Index). The individual discrimination power of the colour coefficients, after passing several prerequisite tests (e.g., linearly additive behaviour), was assessed using discriminant function analysis. A stepwise discriminant analysis, based on the Wilk's lambda criterion, was then performed in order to determine the best-suited colour coefficient fingerprints which maximized the discrimination between the potential sources. The selected fingerprints classified the source samples in the correct category 86% of the time. The misclassification is due to intra-source variability and source overlap which can lead to higher uncertainty in sediment source apportionment. The selected fingerprints

  6. Advanced thermal management techniques for space power electronics

    NASA Astrophysics Data System (ADS)

    Reyes, Angel Samuel

    1992-01-01

    Modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Current thermal management techniques are not sufficient for the increasing waste heat dissipation of novel electronic technologies. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. The benefits and limitations of emerging cooling technologies are discussed. These technologies include: liquid pumped devices, mechanically pumped two-phase cooling, capillary pumped evaporative cooling, and thermoelectric devices. Currently, liquid pumped devices offer the most promising alternative for electronics thermal control.

  7. Agriculture: Newsroom

    EPA Pesticide Factsheets

    Agriculture Newsroom. News releases, reports, and other documents from around EPA that are of interest or direct importance to the environmental management or compliance efforts of the agricultural community.

  8. Relating management practices and nutrient export in agricultural watersheds of the United States

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  9. Contingency Management: Development of Management Problems X Techniques Matrix.

    DTIC Science & Technology

    1980-05-01

    develops preventive actions to avoid those adverse consequences. B-3 15. Organizational Mirror This technique (a) identifies a target group and two or...more other groups to serve as "mirrors" for this group, (b) collects data concerning perceptions of human processes in the target group , (c) analyzes...34 groups discuss their perceptions of the target group in the presence of the target group , but without its involvement, to clarify, understand, and

  10. United States Department of Agriculture-Agricultural Research Service stored-grain areawide integrated pest management program.

    PubMed

    Flinn, Paul W; Hagstrum, David W; Reed, Carl; Phillips, Tom W

    2003-01-01

    The USDA Agricultural Research Service (ARS) funded a demonstration project (1998-2002) for areawide IPM for stored wheat in Kansas and Oklahoma. This project was a collaboration of researchers at the ARS Grain Marketing and Production Research Center in Manhattan, Kansas, Kansas State University, and Oklahoma State University. The project utilized two elevator networks, one in each state, for a total of 28 grain elevators. These elevators stored approximately 31 million bushels of wheat, which is approximately 1.2% of the annual national production. Stored wheat was followed as it moved from farm to the country elevator and finally to the terminal elevator. During this study, thousands of grain samples were taken in concrete elevator silos. Wheat stored at elevators was frequently infested by several insect species, which sometimes reached high numbers and damaged the grain. Fumigation using aluminum phosphide pellets was the main method for managing these insect pests in elevators in the USA. Fumigation decisions tended to be based on past experience with controlling stored-grain insects, or were calendar based. Integrated pest management (IPM) requires sampling and risk benefit analysis. We found that the best sampling method for estimating insect density, without turning the grain from one bin to another, was the vacuum probe sampler. Decision support software, Stored Grain Advisor Pro (SGA Pro) was developed that interprets insect sampling data, and provides grain managers with a risk analysis report detailing which bins are at low, moderate or high risk for insect-caused economic losses. Insect density was predicted up to three months in the future based on current insect density, grain temperature and moisture. Because sampling costs money, there is a trade-off between frequency of sampling and the cost of fumigation. The insect growth model in SGA Pro reduces the need to sample as often, thereby making the program more cost-effective. SGA Pro was validated

  11. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  12. Goose management schemes to resolve conflicts with agriculture: Theory, practice and effects.

    PubMed

    Eythórsson, Einar; Tombre, Ingunn M; Madsen, Jesper

    2017-03-01

    In 2012, the four countries hosting the Svalbard population of pink-footed goose Anser brachyrhynchus along its flyway launched an International Species Management Plan for the population. One of the aims was to reduce conflicts between geese and agriculture to an acceptable level. Since 2006, Norway has offered subsidies to farmers that provide refuge areas for geese on their land. We evaluate the mid-Norwegian goose management subsidy scheme, with a view to its adjustment to prevailing ecological and socio-economic parameters. The analysis indicates that the legitimacy of the scheme is highly dependent on transparency of knowledge management and accountability of management scheme to the farming community. Among farmers, as well as front-line officials, outcomes of prioritisation processes within the scheme are judged unfair when there is an evident mismatch between payments and genuine damage. We suggest how the scheme can be made more fair and responsive to ecological changes, within a framework of adaptive management.

  13. Organic matter composition of soil macropore surfaces under different agricultural management practices

    NASA Astrophysics Data System (ADS)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  14. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management.

  15. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    PubMed

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  16. Spatio-temporal analysis of discharge regimes based on hydrograph classification techniques in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Bloeschl, Guenter; Blaschke, Alfred Paul; Silasari, Rasmiaditya; Exner-Kittridge, Mike

    2016-04-01

    The stream, discharges and groundwater hydro-graphs is an integration in spatial and temporal variations for small-scale hydrological response. Characterizing discharges response regime in a drainage farmland is essential to irrigation strategies and hydrologic modeling. Especially for agricultural basins, diurnal hydro-graphs from drainage discharges have been investigated to achieve drainage process inferences in varying magnitudes. To explore the variability of discharge responses, we developed an impersonal method to characterize and classify discharge hydrograph based on features of magnitude and time-series. A cluster analysis (hierarchical k-means) and principal components analysis techniques are used for discharge time-series and groundwater level hydro-graphs to analyze their event characteristics, using 8 different discharge and 18 groundwater level hydro-graphs to test. As the variability of rainfall activity, system location, discharge regime and soil moisture pre-event condition in the catchment, three main clusters of discharge hydro-graph are identified from the test. The results show that : (1) the hydro-graphs from these drainage discharges had similar shapes but different magnitudes for individual rainstorm; the similarity is also showed in overland flow discharge and spring system; (2) for each cluster, the similarity of shape insisted, but the rising slope are different due to different antecedent wetness condition and the rain accumulation meanwhile the difference of regression slope can be explained by system location and discharge area; and (3) surface water always has a close proportional relation with soil moisture throughout the year, while only after the soil moisture exceeds a certain threshold does the outflow of tile drainage systems have a direct ratio relationship with soil moisture and a inverse relationship with the groundwater levels. Finally, we discussed the potential application of hydrograph classification in a wider range of

  17. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity

  18. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  19. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  20. Management of agricultural soils for greenhouse gas mitigation: Learning from a case study in NE Spain.

    PubMed

    Sánchez, B; Iglesias, A; McVittie, A; Álvaro-Fuentes, J; Ingram, J; Mills, J; Lesschen, J P; Kuikman, P J

    2016-04-01

    A portfolio of agricultural practices is now available that can contribute to reaching European mitigation targets. Among them, the management of agricultural soils has a large potential for reducing GHG emissions or sequestering carbon. Many of the practices are based on well tested agronomic and technical know-how, with proven benefits for farmers and the environment. A suite of practices has to be used since none of the practices can provide a unique solution. However, there are limitations in the process of policy development: (a) agricultural activities are based on biological processes and thus, these practices are location specific and climate, soils and crops determine their agronomic potential; (b) since agriculture sustains rural communities, the costs and potential for implementation have also to be regionally evaluated and (c) the aggregated regional potential of the combination of practices has to be defined in order to inform abatement targets. We believe that, when implementing mitigation practices, three questions are important: Are they cost-effective for farmers? Do they reduce GHG emissions? What policies favour their implementation? This study addressed these questions in three sequential steps. First, mapping the use of representative soil management practices in the European regions to provide a spatial context to upscale the local results. Second, using a Marginal Abatement Cost Curve (MACC) in a Mediterranean case study (NE Spain) for ranking soil management practices in terms of their cost-effectiveness. Finally, using a wedge approach of the practices as a complementary tool to link science to mitigation policy. A set of soil management practices was found to be financially attractive for Mediterranean farmers, which in turn could achieve significant abatements (e.g., 1.34 MtCO2e in the case study region). The quantitative analysis was completed by a discussion of potential farming and policy choices to shape realistic mitigation policy at

  1. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re

  2. 15 years in promoting the use of isotopic and nuclear technique for combating land degradation and soil erosion: the contribution of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Toloza, Arsenio; Heng, Lee

    2017-04-01

    Techniques in Food and Agriculture has developed research and development activities and capacity building to combat soil degradation (especially soil erosion) and to foster climate smart agriculture. More than 70 FAO/IAEA Member States have benefitted from the technical support and guidance in using fallout radionuclides (FRNs) and Compound-Specific Stable Isotope (CSSI) techniques to trace soil movement and assess soil erosion at different spatial and temporal scales, and to evaluate the effectiveness of soil conservation strategies to ensure sustainable land management. This contribution summarizes the historical background and the latest innovative activities conducted by the Joint FAO/IAEA Division, as well as the main advantages and complementarity of stable and radioisotopic tracers to conventional techniques when investigating land degradation. As examples of the significant role played by the Joint FAO/IAEA Division, two major outcomes achieved in Africa (i.e. Madagascar and Morocco) through the use of isotopic and nuclear techniques will be elaborated. The authors will also report on a new 5-year Co-ordinated Research Project (CRP) funded by the IAEA on "Nuclear Techniques for a Better Understanding of the Impact of Climate Change on Soil Erosion in Upland Agro-ecosystems" which involves key research institutions from 12 participating countries.

  3. Risk assessment and management of occupational exposure to pesticides in agriculture.

    PubMed

    Maroni, M; Fanetti, Anna Clara; Metruccio, Francesca

    2006-01-01

    Nearly 50% of the world labour force is employed in agriculture. Over the last 50 years, agriculture has deeply changed with a massive utilisation of pesticides and fertilisers to enhance crop protection and production, food quality and food preservation. Pesticides are also increasingly employed for public health purposes and for domestic use. Pesticide are unique chemicals as they are intrinsically toxic for several biological targets, are deliberately spread into the environment, and their toxicity has a limited species selectivity. Pesticide toxicity depends on the compound family and is generally greater for the older compounds; in humans, they are responsible for acute poisonings as well as for long term health effects, including cancer and adverse effects on reproduction. Due to their intrinsic toxicity, in most countries a specific and complex legislation prescribes a thorough risk assessment process for pesticides prior to their entrance to the market (pre-marketing risk assessment). The post-marketing risk assessment takes place during the use of pesticides and aims at assessing the risk for exposed operators. The results of the risk assessment are the base for the health surveillance of exposed workers. Occupational exposure to pesticides in agriculture concerns product distributors, mixers and loaders, applicators, bystanders, and rural workers re-entering the fields shortly after treatment. Assessing and managing the occupational health risks posed by the use of pesticides in agriculture is a complex but essential task for occupational health specialists and toxicologists. In spite of the economic and social importance of agriculture, the health protection of agricultural workforce has been overlooked for too many years, causing an heavy tribute paid in terms of avoidable diseases, human sufferance, and economic losses. Particularly in the developing countries, where agricultural work is one of the predominant job, a sustainable model of development

  4. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3

  5. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    PubMed Central

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices. PMID:28102323

  6. Assessing Climate Change Perceptions, Management Strategies, and Information Needs for Indiana Agricultural and Forestry Sectors

    NASA Astrophysics Data System (ADS)

    Cherkauer, K. A.; Chin, N.

    2016-12-01

    The agricultural and forestry sectors in the state of Indiana are highly dependent on climate and, subsequently, highly vulnerable to the impacts of climate change. Higher temperatures, shifts in precipitation patterns, more widespread prevalence of pests and pathogens, and increased frequency and severity of extreme weather events could all have negative effects on these two sectors in the future. Agricultural and forest producers are already modifying their management strategies in response to perceptions of changes in climate risk, but such responses have been primarily reactive in nature and, in many cases, demonstrate a disconnect between scientific findings and stakeholder perceptions of the greatest climate risks. This research has been conducted to help improve understanding of climate change risks to agriculture and forestry in Indiana; stakeholder perceptions of climate risks and their current management strategies; and the effectiveness of these management strategies for dealing with current and future climate risk. Sector-specific focus groups, expert panel assessments and surveys have all been utilized in this work, which will also contribute to the new Indiana Climate Change Impacts Assessment report.

  7. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes.

    PubMed

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-19

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  8. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  9. Enhancing Drought Early Warning System for Sustainable Water Resources and Agricultural Management through Apllication of Space Science - Nigeria in Perspective

    NASA Astrophysics Data System (ADS)

    Okpara, J. N.; Akeh, L. E.; Anuforom, A. C.; Aribo, P. B.; Olayanju, S. O.

    Enhancing Drought Early Warning System for Sustainable Water Resources and Agriculture Management through Application of Space Science - Nigeria in Perspective BY J N Okpara L E Akeh Anuforom P B Aribo and S O Olayanju Directorate of Applied Meteorological Services Nigerian Meteorological Agency NIMET P M B 615 Garki Abuja Nigeria e-mail underline Juddy Okpara yahoo co uk and underline tonycanuforom yahoo com underline Abstract This paper attempts to highlight the importance of drought early warning system in water resources and agricultural management in Nigeria Various studies have shown that the negative impacts of droughts and other forms of extreme weather phenomena can be substantially reduced by providing early warning on any impending weather extremes X-rayed in this study are the various techniques presently used by the Nigerian Meteorological Agency NIMET in generating information for meteorological Early Warning System EWS which are based on models that make use of ground-based raingauge data and sea surface temperatures SST Komuscu standardized precipitation index SPI inclusive These methods are often limited by such factors as network density of stations limited communication infrastructure human inefficiency etc NIMET is therefore embarking on the development of a new Satellite Agrometeorological Information System SAMIS-Nigeria for famine and drought early warning The system combines satellite data with raingauge data to give a range of

  10. Power Management Techniques for Data Centers: A Survey

    SciTech Connect

    Mittal, Sparsh

    2014-07-01

    With growing use of internet and exponential growth in amount of data to be stored and processed (known as ``big data''), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.

  11. Hoshin Kanri: a technique for strategic quality management.

    PubMed

    Tennant, C; Roberts, P A

    2000-01-01

    This paper describes a technique for Strategic Quality Management (SQM), known as Hoshin Kanri, which has been operated as a management system in many Japanese companies since the 1960s. It represents a core aspect of Japanese companies' management systems, and is stated as: the means by which the overall control system and Total Quality Management (TQM) are deployed. Hoshin Kanri is not particularly unique in its concept of establishing and tracking individual goals and objectives, but the manner in which the objectives and the means to achieve them are developed and deployed is. The problem with applying the concept of Strategic Quality Management (SQM) using Hoshin Kanri, is that it can tend to challenge the traditional authoritarian strategic planning models, which have become the paradigms of modern business. Yet Hoshin Kanri provides an appropriate tool for declaration of the strategic vision for the business while integrating goals and targets in a single holistic model. There have been various adaptations of Hoshin Kanri to align the technique to Western thinking and management approaches, yet outside Japan its significance has gone largely unreported. It is proposed that Hoshin Kanri is an effective methodology for SQM, which has a number of benefits over the more conventional planning techniques. The benefits of Hoshin Kanri as a tool for Strategic Quality Management (SQM) compared to conventional planning systems include: integration of strategic objectives with tactical daily management, the application of the plan-do-check-act cycle to business process management, parallel planning and execution methodology, company wide approach, improvements in communication, increased consensus and buy-in to goal setting, and cross-functional-management integration.

  12. Managing stakeholders' conflicts for water reallocation from agriculture to industry in the Heihe River Basin in Northwest China.

    PubMed

    Wang, Xiaojun; Yang, Hong; Shi, Minjun; Zhou, Dingyang; Zhang, Zhuoying

    2015-02-01

    Along with the accelerating process of industrialization and urbanization, water reallocation from agriculture to industry will be an inevitable trend in most developing countries. In the inland river basin, inter-sectoral water transfer is likely to result in reallocation of water resources between upstream and downstream regions, and further triggers frictions and conflicts between regions. Designing effective policy measures to coordinate these conflicts among stakeholders is crucial for the successful implementation of water reallocation. This study established a participatory multi-attribute decision support model to seek a widely acceptable water allocation alternative in the Heihe River Basin, an arid region in Northwest China. The results indicate that: (1) intense conflicts arise not only among stakeholder groups but also between upstream and downstream regions in the process of water reallocation from agriculture to industry; (2) among the options which respectively emphasize on equity, efficiency, and sustainability, the combination of equity and efficiency is the least controversial alternative for the majority of stakeholder groups, although it is not the most desirable one in the performance of all sub-objectives; (3) the multi-attribute value theory (MAVT) approach is a useful technique to elicit stakeholder values and to evaluate water reallocation options. The technique can improve the transparency and credibility of decision making in the water management process.

  13. Climate Risk assessment and management in rainfed agriculture areas in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2017-04-01

    Agricultural production is closely tied to climate, making agriculture one of the most climate-sensitive of all economic sectors. Figures and data from official resources and previous studies demonstrated that most of agricultural areas in Jordan were rainfed which made agriculture in the country more susceptible to climate change. The percentage of harvested to cultivated areas in those areas over the past ten years ranged from 45-55%, indicating a high risk associated with rainfed agriculture in Jordan. The anticipated increase in temperature and decrease in precipitation would adversely affect crops and water availability, critically influencing the patterns of future agricultural production, threatens livelihoods and keeps vulnerable people insecure. The anticipated increase in temperature and decrease in precipitation would result in 15-20% yield reduction for major field crops and vegetable crops by 2050 and 2070. This study was conducted to help in formulating action plans to adapt to climate change by assessing the risk from climate change on rainfed agriculture. The scenarios of climate change were used to assess the impact of climate change on rainfed agriculture. The overall risk level was based on possible land use shifts and crop yield under the most probable climate change scenarios. Accordingly, adaptive measures were proposed to reduce the impacts of climate change on agriculture in Jordan. The adaptation measures included the improvement of soil water storage to maximize plant water availability, the management of crop residue and tillage to conserve soil and water, the selection of drought-tolerant crop varieties, the expansion of water harvesting schemes through encouraging the farmers to adopt and apply the in-situ water harvesting systems (micro-catchment). Finally, the study emphasized the need for capacity building and awareness creation at the levels of farmers and extension staff. This would require the formulation of plans and strategies

  14. Agricultural management impact on physical and chemical functions of European peat soils.

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  15. Statistical and Economic Techniques for Site-specific Nematode Management.

    PubMed

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  16. Statistical and Economic Techniques for Site-specific Nematode Management

    PubMed Central

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L.

    2014-01-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes. PMID:24643451

  17. Predators exert top-down control of soybean aphid across a gradient of agricultural management systems.

    PubMed

    Costamagna, Alejandro C; Landis, Douglas A

    2006-08-01

    The discovery of soybean aphid, Aphis glycines Matusumura, in North America in 2000 provided the opportunity to investigate the relative strength of top-down and bottom-up forces in regulating populations of this new invasive herbivore. At the Kellogg Biological Station Long Term Ecological Research site in agroecology, we contrasted A. glycines establishment and population growth under three agricultural production systems that differed markedly in disturbance and fertility regimes. Agricultural treatments consisted of a conventional-tillage high-input system, a no-tillage high-input system, and a zero-chemical-input system under conventional tillage. By selectively restricting or allowing predator access we simultaneously determined aphid response to top-down and bottom-up influences. Irrespective of predator exclusion, our agricultural manipulations did not result in bottom-up control of A. glycines intrinsic rate of increase or realized population growth. In contrast, we observed strong evidence for top-down control of A. glycines establishment and overall population growth in all production systems. Abundant predators, including Harmonia axyridis, Coccinella septempunctata, Orius insidiosus, and various predaceous fly larvae, significantly reduced A. glycines establishment and population increase in all trials. In contrast to other systems in which bottom-up forces control herbivore populations, we conclude that A. glycines is primarily controlled via top-down influences of generalist predators under a wide range of agricultural management systems. Understanding the role of top-down and bottom-up forces in this context allows agricultural managers to focus on effective strategies for control of this invasive pest.

  18. Remote sensing techniques for monitoring and managing irrigated lands

    NASA Astrophysics Data System (ADS)

    Allan, J. A.

    Agriculture in semi-arid tracts of the world depends on water to sustain its irrigation systems. Such agricultural systems either derive from government investments in the control of surface flow or they have been developed through the exploitation of groundwater sometimes by a large community of unsupervised individuals seeking to maximise their own advantage without concern for the resource upon which they depend in the medium and long term. In both cases government agencies need data on the area irrigated and the volume of water used. In countries with highly developed scientific and agricultural institutions the contribution of remote sensing, though significant, may only provide between five and ten per cent of the data required to guide regional and national managers. In countries without such institutions the proportion contributed by remote sensing can be very much higher, as shown in a recent study in North Africa. The paper will emphasise the importance of carefully structured sampling procedures, both to improve the areal estimates from satellite imagery and the estimates of water use based upon them. The role of satellite imagery in providing information on the status of water resources, on trends in water use and in the implementation of policies to extend or diminish irrigated land are discussed.

  19. Advanced endoscopic ultrasound management techniques for preneoplastic pancreatic cystic lesions

    PubMed Central

    Arshad, Hafiz Muhammad Sharjeel; Bharmal, Sheila; Duman, Deniz Guney; Liangpunsakul, Suthat; Turner, Brian G

    2017-01-01

    Pancreatic cystic lesions can be benign, premalignant or malignant. The recent increase in detection and tremendous clinical variability of pancreatic cysts has presented a significant therapeutic challenge to physicians. Mucinous cystic neoplasms are of particular interest given their known malignant potential. This review article provides a brief but comprehensive review of premalignant pancreatic cystic lesions with advanced endoscopic ultrasound (EUS) management approaches. A comprehensive literature search was performed using PubMed, Cochrane, OVID and EMBASE databases. Preneoplastic pancreatic cystic lesions include mucinous cystadenoma and intraductal papillary mucinous neoplasm. The 2012 International Sendai Guidelines guide physicians in their management of pancreatic cystic lesions. Some of the advanced EUS management techniques include ethanol ablation, chemotherapeutic (paclitaxel) ablation, radiofrequency ablation and cryotherapy. In future, EUS-guided injections of drug-eluting beads and neodymium:yttrium aluminum agent laser ablation is predicted to be an integral part of EUS-guided management techniques. In summary, International Sendai Consensus Guidelines should be used to make a decision regarding management of pancreatic cystic lesions. Advanced EUS techniques are proving extremely beneficial in management, especially in those patients who are at high surgical risk. PMID:27574295

  20. Agricultural management and greenhouse gas flux: cropland management in eastern and central US

    USDA-ARS?s Scientific Manuscript database

    Agricultural soils are the primary source of nitrous oxide (N2O) and a minor source of methane (CH4), two important biogenic greenhouse gases (GHG) that are contributing to catastrophic global climate change. Nitrous oxide emissions are expected to increase by 35-60% worldwide as pressure to increa...

  1. Report on a Two-Year Farm Management/Agricultural Mechanics Curriculum Review

    ERIC Educational Resources Information Center

    Eighmy, Myron A.; Tews, Bradley D.

    2006-01-01

    The purpose of this project was to review the Farm Management curriculum at the North Dakota State College of Science (NDSCS) to determine if current curriculum content provides the knowledge and skills needed to be an entry-level farm manager in a contemporary farming operation. The nominal group technique was selected for this curriculum review.…

  2. Investigating the Environmental Effects of Agriculture Practices on Natural Resources: Scientific Contributions of the U.S. Geological Survey to Enhance the Management of Agricultural Landscapes

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey (USGS) enhances and protects the quality of life in the United States by advancing scientific knowledge to facilitate effective management of hydrologic, biologic, and geologic resources. Results of selected USGS research and monitoring projects in agricultural landscapes are presented in this Fact Sheet. Significant environmental and social issues associated with agricultural production include changes in the hydrologic cycle; introduction of toxic chemicals, nutrients, and pathogens; reduction and alteration of wildlife habitats; and invasive species. Understanding environmental consequences of agricultural production is critical to minimize unintended environmental consequences. The preservation and enhancement of our natural resources can be achieved by measuring the success of improved management practices and by adjusting conservation policies as needed to ensure long-term protection.

  3. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  4. Evolution of farm and manure management and their influence on ammonia emissions from agriculture in Switzerland between 1990 and 2010

    NASA Astrophysics Data System (ADS)

    Kupper, Thomas; Bonjour, Cyrill; Menzi, Harald

    2015-02-01

    The evolution of farm and manure management and their influence on ammonia (NH3) emissions from agriculture in Switzerland between 1990 and 2010 was modeled. In 2010, total agricultural NH3 emissions were 48,290 t N. Livestock contributed 90% (43,480 t N), with the remaining 10% (4760 t N) coming from arable and fodder crops. The emission stages of grazing, housing/exercise yard, manure storage and application produced 3%, 34%, 17% and 46%, respectively, of livestock emissions. Cattle, pigs, poultry, small ruminants, horses and other equids accounted for 78%, 15%, 3%, 2% and 2%, respectively, of the emissions from livestock and manure management. Compared to 1990, total NH3 emissions from agriculture and from livestock decreased by 16% and 14%, respectively. This was mainly due to declining livestock numbers, since the emissions per animal became bigger for most livestock categories between 1990 and 2010. The production volume for milk and meat remained constant or increased slightly. Other factors contributing to the emission mitigation were increased grazing for cattle, the growing importance of low-emission slurry application techniques and a significant reduction in the use of mineral fertilizer. However, production parameters enhancing emissions such as animal-friendly housing systems providing more surface area per animal and total volume of slurry stores increased during this time period. That such developments may counteract emission mitigation illustrates the challenge for regulators to balance the various aims in the striving toward sustainable livestock production. A sensitivity analysis identified parameters related to the excretion of total ammoniacal nitrogen from dairy cows and slurry application as being the most sensitive technical parameters influencing emissions. Further improvements to emission models should therefore focus on these parameters.

  5. Risk Management in Agriculture for Food Security in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Martinez, A.; National Research CouncilScientific; Technological Research (Conicet)

    2013-05-01

    The Americas are extremely important as a unique contributor to Food Security. It provides from tropical to temperate crops. Not only they are able to feed their own population, but contribute significantly to the food supply of the population in developed, emergent and underdeveloped countries. This fact has given the region a unique responsibility to develop a regional risk-management strategy to manage food insecurity at a local, national, regional and global level. Although international agencies such as UN Food and Agriculture Organization (FAO), Instituto Interamericano para la Cooperación en Agricultura (IICA) and the regional centres of the Consultative Group for International Agriculture Research (CGIAR) and the World Bank (WB), are engaged in actions for Risk Management in Agriculture for reducing Food Insecurity. However there is a need to build a framework and/or comprehensive regional strategy for the Americas. It would identify areas for promoting research projects where natural and social science work together for producing relevant scientific information and tools i.e. maps, indicators, models and scenarios, early warning systems, etc. to cooperate with both policy and decision makers in the public and private sectors. This would eventually lead to a comprehensive regional programme for reducing food insecurity. The purpose of International Council for Science-International Research and the International Research for Disaster Risk programme (ICSU-IRDR) and ICSU Regional Office for Latinamerica and the Caribbean (ICSU-ROLAC) is to promote the cooperation of the relevant scientific fields in both natural science and social science in a multi and trans-disciplinary approach on risk management to reduce food insecurity. Also both ICSU-IRDR and ICSU-ROLAC are building a case for the inclusion of the scientific community in the revision of the Hjogo Framework for Action for Disaster Reduction to be held in 2015 as risk management for reducing food

  6. Influence of management practices on microbial nitrogen cyclers in agricultural soils

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; McMillan, Mary; Pereg, Lily

    2016-04-01

    Agricultural land management has great influences on soil properties, in particular on microbial communities, due to their sensitivity to the perturbations of the soils. This is even more relevant in Mediterranean agricultural areas under semi-arid conditions. The Mediterranean belt is suffering from an intense degradation of its soils due to the millennia of intense land use and due to unsustainable management practices. As a consequence this area is suffering from a depletion of N content. In this work we investigated the effect of several traditional agricultural management practices on specific functional groups related to the nitrogen cycle in the soil. A field experiment was performed with orchard orange trees (citrus sinesis) in Eastern Spain to assess the long-term effects of ploughing with inorganic fertilization (PI) and ecological practices (EP) (chipped pruned branches and weeds as well as manure from sheep and goats) on microbes that can undertake nitrogen fixation and denitrification. Nine samples of soil were taken from every treatment, near the drip irrigation point and in a zone without the influence of drip irrigation (between trees row), and total DNA extracted. DNA samples were stored at minus-20°C to be analysed by qPCR. Microbial populations involved in the N biochemical cycle were analysed by targeted amplification of key functional biomarker genes: the abundance of nifH (nitrogen fixation), nirS, nirK and nosZ (denitrification) detected by quantitative PCR (qPCR) has shown significant differences between treatments with higher abundance of all four genes in soils from ecological agricultural treatments. This may indicate that the ecological treatment created conditions that are more suitable for N cyclers in the soil and a better fertility and quality status of these soils.

  7. Biotechnologies for the management of genetic resources for food and agriculture.

    PubMed

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  8. Managing Nitrogen in Croplands: Implications for Increasing Ecosystem Services in Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Jackson, L.

    2011-12-01

    Many agricultural landscapes in the temperate zone are dominated by agroecosystems that are managed with high inputs of agrochemicals, including synthetic nitrogen (N) fertilizers. The process of agricultural intensification increases crop production per unit area, but also often results in loss of environmental quality (such as N contamination of waters, eutrophication, atmospheric N deposition, and emissions of nitrous oxide (N2O), a potent greenhouse gas). Loss of biodiversity and its 'functional homogenization' is another concern. Not only does little land in these landscapes remain in natural ecosystems, but there are negative off-site impacts of intensive agriculture on non-target organisms. Segregating agroecosystems with high-input agricultural production from natural ecosystems (land sparing) is one view to support both food security and biodiversity conservation. But proponents of land sparing rarely address the loss of other ecosystem services, such as those related to environmental quality, health, and human well-being (e.g., livelihoods and cultural values). An emerging view is that increased reliance on ecological processes in agroecosystems ('ecological intensification') is more feasible when the landscape mosaic includes planned and unplanned biodiversity. This requires research on how to support multiple ecosystem services through the integration of agricultural production and biodiversity conservation in the same landscape, and how ecological and physico-chemical processes at various spatial scales are interlinked. It is an enormous challenge to increase reliance on ecological processes for N availability for crop productivity. There are skeptics who think that this will be detrimental for food security, despite benefits for other types of ecosystem services. Using examples from agricultural landscapes in California, mechanisms for ecologically-based N cycling will be discussed, such as: 1) increasing the reservoir of soil organic N and the

  9. Use of UAS to Support Management in Precision Agriculture: The AggieAir Experience

    NASA Astrophysics Data System (ADS)

    McKee, M.; Torres-Rua, A. F.; ELarab, M.; Hassan Esfahani, L.; Jensen, A.

    2015-12-01

    Remote sensing applications for precision agriculture depend on acquiring actionable information at high spatial resolution and at a temporal frequency appropriate for timely responses. Unmanned aerial systems (UAS) are capable of providing such imagery for use in various applications for precision agriculture (yield estimation, evapotranspiration, etc.). AggieAirTM, a UAS platform and sensory array, was designed and developed at Utah State University to acquire high-resolution imagery (0.15m -0.6 m) in the visual, near infrared, red edge, and thermal infrared spectra. Spectral data obtained from AggieAir are used to develop soil moisture, plant chlorophyll, leaf nitrogen and actual evapotranspiration estimates to support management in precision agriculture. This presentation will focus on experience in using the AggieAir system to provide information products of possible interest in precision agriculture. The discussion will include information about the direction and rate of development of UAS technology and the current and anticipated future state of the regulatory environment for use of these systems in the U.S.

  10. Applied Climate Education and Training for Agricultural and Natural Resource Management in India, Indonesia, Zimbabwe and Australia

    ERIC Educational Resources Information Center

    George, D. A.; Clewett, J. F.; Selvaraju, R.; Birch, C.

    2006-01-01

    In parts of the world, including many developing countries, climate variability impacts negatively on agricultural production and natural resource management. Workshops in applied climatology were held in Australia, India, Indonesia and Zimbabwe between 1999 and 2002 to provide farmers and agricultural and meteorological staff a better…

  11. Effectiveness of integrated best management practices on mitigation of atrazine and metolachlor in an agricultural lake watershed

    USDA-ARS?s Scientific Manuscript database

    The study examined the influence of land-use (cropping patterns) and integrated agricultural best management practices (BMPs) on spring herbicide levels in Beasley Lake water within an agricultural watershed. Atrazine and metolachlor were applied for weed control during spring of 1998-2002, 2005, an...

  12. Applied Climate Education and Training for Agricultural and Natural Resource Management in India, Indonesia, Zimbabwe and Australia

    ERIC Educational Resources Information Center

    George, D. A.; Clewett, J. F.; Selvaraju, R.; Birch, C.

    2006-01-01

    In parts of the world, including many developing countries, climate variability impacts negatively on agricultural production and natural resource management. Workshops in applied climatology were held in Australia, India, Indonesia and Zimbabwe between 1999 and 2002 to provide farmers and agricultural and meteorological staff a better…

  13. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds

    ERIC Educational Resources Information Center

    Reimer, Adam P.; Weinkauf, Denise Klotthor; Prokopy, Linda Stalker

    2012-01-01

    Agricultural best management practices (BMPs), or conservation practices, can help reduce nonpoint source pollution from agricultural lands, as well as provide valuable wildlife habitat. There is a large literature exploring factors that lead to a producer's voluntary adoption of BMPs, but there have been inconsistent findings. Generally, this…

  14. A Multi-State Factor-Analytic and Psychometric Meta-Analysis of Agricultural Mechanics Laboratory Management Competencies

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2012-01-01

    For more than 20 years, the 50 agricultural mechanics laboratory management competencies identified by Johnson and Schumacher in 1989 have served as the basis for numerous needs assessments of secondary agriculture teachers. This study reevaluated Johnson and Schumacher's instrument, as modified by Saucier, Schumacher, Funkenbusch, Terry, and…

  15. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds

    ERIC Educational Resources Information Center

    Reimer, Adam P.; Weinkauf, Denise Klotthor; Prokopy, Linda Stalker

    2012-01-01

    Agricultural best management practices (BMPs), or conservation practices, can help reduce nonpoint source pollution from agricultural lands, as well as provide valuable wildlife habitat. There is a large literature exploring factors that lead to a producer's voluntary adoption of BMPs, but there have been inconsistent findings. Generally, this…

  16. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  17. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  18. Soil Management Effects on Gas Fluxes from an Organic Soil Agricultural System

    NASA Astrophysics Data System (ADS)

    Jennewein, S. P.; Bhadha, J. H.; Lang, T. A.; Singh, M.; Daroub, S. H.; McCray, M.

    2015-12-01

    The role of soil management on gas flux isn't well understood for Histosols of the Everglades Agricultural Area (EAA) of southern Florida. The region is responsible for roughly half of sugarcane (Saccharum spp. hybrids) production in the USA along with supplying winter vegetable crops to the eastern USA. Future productivity in the EAA is jeopardized by soil subsidence resulting from oxidation of organic matter. Establishing the role of tillage, water-table depth, nitrogen fertilizer, and soil depth on gas flux will help determine how effective various managements are on conserving soil. Ongoing lysimeter and field studies examined effects of management practices (water-table, tillage, and nitrogen fertilizer), and soil depth on, gas emission and microbial biomass. The trials were set in Belle Glade, FL, on Lauderhill muck (Lithic Haplosaprists). Results to be presented include soil microbial biomass and soil gas (CO2, CH4, and N2O) flux. This study provides insight into management effectiveness and agriculture sustainability on shallow muck soils of the EAA and will help farmers mitigate problems associated with soil subsidence and seasonally high water-tables.

  19. Lenses for learning: visual techniques in natural resource management.

    PubMed

    Petheram, L; High, C; Campbell, B M; Stacey, N

    2011-10-01

    In this study, we explored the use of selected visual techniques (e.g. video, photography, diagramming) in facilitating learning among Indigenous communities living in remote protected areas at sites in Vietnam and Australia. The techniques were employed during interviews and workshops aimed at accessing and enhancing local peoples' perspectives on their landscape and on specific natural resource management issues. The effectiveness of the different techniques for enabling learning varied markedly with the context, highlighting the need for facilitator skill and flexibility in application of techniques. Visual techniques helped to engage participants; encourage unrestrained and lateral thinking; provide opportunities for self-expression and reflection; and to expose participants to perspectives of other community members. Valuable insights emerged on broad aspects of learning and these were incorporated into a simple model that highlights three types of conceptualisation found to be important in these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Leaching techniques for saline wastes composts used as growing media in organic agriculture: assessment and modelling.

    PubMed

    Illera-Vives, Marta; López-Mosquera, María Elvira; Salas-Sanjuan, María Del Carmen; López-Fabal, Adolfo

    2015-05-01

    The purpose of this work was to examine solute release by the effect of leaching of a saline compost with two main objectives: (1) to identify the most efficient method for this purpose, in order to minimize the environmental impact of this process in terms of water consumption and (2) to study the composition of the leachates to manage them properly and avoid possible contamination. A laboratory method involving column leaching with distilled water (CL) and two field methods involving saturation leaching (SL) and drip leaching (DL) were compared to this end. In order to more accurately assess nutrient release and compare the three leaching techniques, the cumulative amounts of ions leached were processed by using an exponential growth model. All target ions fitted properly, and so did the curve for the ions as a whole. Salts were removed mainly by effect of the leaching of major ions in the substrate (Na(+), Cl(-), inorganic N, SO4 (2-) and K(+)). SL and CL proved similarly efficient and reduced the salt content of the substrate to an electrical conductivity below 2 dS m(-1) in the saturation extract, which is the optimum level for nursery crops. By contrast, the DL method provided poor results: salt contents were reduced to an electrical conductivity of only 8 dS m(-1) in the saturation extract, so the resulting substrate can only be useful to grow highly salt-tolerant crops.

  1. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  2. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  3. New technique for the management of vesicorectal fistulas

    SciTech Connect

    Leifer, G.; Jacobs, W.H.

    1988-08-01

    We report a new technique for the management of the complications of vesicorectal fistulas. The patient we present had a fistula and severe skin excoriation. The fistula was caused by carcinoma of the prostate that had been treated by radiation therapy. The fistula was patched with a rectal prosthesis similar to that used to patch esophageal-tracheal and esophageal-bronchial fistulas.

  4. Using Powerpoint Animations to Teach Operations Management Techniques and Concepts

    ERIC Educational Resources Information Center

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2014-01-01

    This article examines the value of using complex animated PowerPoint presentations to teach operations management techniques and concepts. To provide context, literature covering the use of PowerPoint animations in business education is briefly reviewed. The specific animations employed in this study are identified and their expected benefits to…

  5. Using Powerpoint Animations to Teach Operations Management Techniques and Concepts

    ERIC Educational Resources Information Center

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2014-01-01

    This article examines the value of using complex animated PowerPoint presentations to teach operations management techniques and concepts. To provide context, literature covering the use of PowerPoint animations in business education is briefly reviewed. The specific animations employed in this study are identified and their expected benefits to…

  6. Conflict Management Techniques for Kindergarten through Fourth Grade.

    ERIC Educational Resources Information Center

    Conn, Edith Janell Rudd

    An elementary school teacher discusses conflict management techniques appropriate for use with children in kindergarten through the fourth grade. Discussion first recapitulates developmental theory from several perspectives, including those of Freud, Erikson, Piaget, and profiles conflict theory. Illustrative contemporary social problems that…

  7. Self Management Techniques and Disclosure of Sero Status

    ERIC Educational Resources Information Center

    Falaye, Ajibola; Afolayan, Joel Adeleke

    2015-01-01

    This study looked at using Self Management Technique (SMT) to promote self-disclosure of Sero status in Kwara State, Nigeria. A pre-test, post-test and control group quasi experimental design using a 2x2x2 factorial matrix was adopted. Sixty participants were sampled by balloting from two HIV/AIDS screening centres. Four instruments were used such…

  8. Use of Psychological Techniques in Classroom Management with Arab Context

    ERIC Educational Resources Information Center

    Hakim, Badia

    2017-01-01

    The said study focuses on the importance of effective use of psychological techniques in classroom management in Arab context. Pragmatic studies have established the effects of change in behavior on learning abilities of the students. This study scrutinizes the enhancement in investigation to confirm cognitive enhancement and stimulus among…

  9. Structured Information Management Using New Techniques for Processing Text.

    ERIC Educational Resources Information Center

    Gibb, Forbes; Smart, Godfrey

    1990-01-01

    Describes the development of a software system, SIMPR (Structured Information Management: Processing and Retrieval), that will process documents by indexing them and classifying their subjects. Topics discussed include information storage and retrieval, file inversion techniques, modelling the user, natural language searching, automatic indexing,…

  10. Structured Information Management Using New Techniques for Processing Text.

    ERIC Educational Resources Information Center

    Gibb, Forbes; Smart, Godfrey

    1990-01-01

    Describes the development of a software system, SIMPR (Structured Information Management: Processing and Retrieval), that will process documents by indexing them and classifying their subjects. Topics discussed include information storage and retrieval, file inversion techniques, modelling the user, natural language searching, automatic indexing,…

  11. An assessment of alternative agricultural management practice impacts on soil carbon in the corn belt

    SciTech Connect

    Barnwell, T.O. Jr.; Jackson, R.B.; Mulkey, L.A.

    1993-12-31

    This impact of alternative management practices on agricultural soil C is estimated by a soil C mass balance modeling study that incorporates policy considerations in the analysis. A literature review of soil C modeling and impacts of management practices has been completed. The models selected for use and/or modification to meet the needs of representing soil C cycles in agroecosystems and impacts of management practices are CENTURY and DNDC. These models share a common ability to examine the impacts of alternative management practices on soil organic C, and are readily accessible. An important aspect of this effort is the development of the modeling framework and methodology that define the agricultural production systems and scenarios (i.e., crop-soil-climate combinations) to be assessed in terms of national policy, the integration of the model needs with available databases, and the operational mechanics of evaluating C sequestration potential with the integrated model/database system. We are working closely with EPA`s Office of Policy and Program Evaluation to define a reasonable set of policy alternatives for this assessment focusing on policy that might be affected through a revised Farm Bill, such as incentives to selectively promote conservation tillage, crop rotations, and/or good stewardship of the conservation reserve. Policy alternatives are translated into basic data for use in soil C models through economic models. These data, including such elements as agricultural practices, fertilization rates, and production levels are used in the soil C models to produce net carbon changes on a per unit area basis. The unit-area emissions are combined with areal-extent data in a GIS to produce an estimate of total carbon and nitrogen changes and thus estimate greenhouse benefits.

  12. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    NASA Astrophysics Data System (ADS)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  13. Regionalization of Agricultural Management by Using the Multi-Data Approach (mda)

    NASA Astrophysics Data System (ADS)

    Bareth, G.; Waldhoff, G.

    2012-07-01

    Regional process-based (agro-)ecosystem modelling depends mainly on data availability of land use, weather, soil, and agricultural management. While land use, weather, and soil data are available from official sources or can be captured with monitoring systems, management data are usually derived from official statistics for administrative units. For numerous spatial modeling approaches, these data are not satisfying. Especially for process-based agro-ecosystem modeling on regional scales, spatially disaggregated and land use dependent information on agricultural management is a must. Information about date of sowing, dates of fertilization, dates of weeding etc. are required as input parameters by such models. These models consider nitrogen (N)- and carbon (C)-matter fluxes but essential amounts of N-/C-input and N-/C-output are determined by crop management. Therefore, in this contribution a RS- and GIS-based approach for regional generation of management data is introduced. The approach is based on the Multi-data Approach (MDA) for enhanced land use/land cover mapping. The MDA is a combined RS and GIS approach. The retrieved information from multitemporal and multisensoral remote sensing analysis is integrated into official land use data to enhance both the information level of existing land use data and the quality of the land use classification. The workflow of the MDA to generate enhanced land use and land cover data consists basically of two components: (a) the methods and data of the remote sensing analysis and (b) the methods and data of the GIS analysis. The MDA results in disaggregated land use data which can be used to link crop management information about the major crops and especially crop rotations like date of sowing, fertilization, irrigation, harvest etc. to the derived land use classes. Consequently, depending on the land use, a distinct management is given in a spatial context on regional scale. In this contribution, three case studies of

  14. Analysis of Stakeholder's Behaviours for an Improved Management of an Agricultural Coastal Region in Oman

    NASA Astrophysics Data System (ADS)

    Khatri, Ayisha Al; Jens, Grundmann; der Weth Rüdiger, van; Niels, Schütze

    2015-04-01

    Al Batinah coastal area is the main agricultural region in Oman. Agriculture is concentrated in Al Batinah, because of more fertile soils and easier access to water in the form of groundwater compared to other administrative areas in the country. The region now is facing a problem as a result of over abstraction of fresh groundwater for irrigation from the main aquifer along the coast. This enforces the inflow of sea water into the coastal aquifer and causes salinization of the groundwater. As a consequence the groundwater becomes no longer suitable for irrigation which impacts the social and economical situation of farmers as well as the environment. Therefore, the existing situation generates conflicts between different stakeholders regarding water availability, sustainable aquifer management, and profitable agricultural production in Al Batinah region. Several management measures to maintain the groundwater aquifer in the region, were implemented by the government. However, these solutions showed only limited successes for the existing problem. The aim of this study now is to evaluate the implementation potential of several management interventions and their combinations by analysing opinions and responses of all relevant stakeholders in the region. This is done in order to identify potential conflicts among stakeholders to a participatory process within the frame of an integrated water resources management and to support decision makers in taking more informed decisions. Questionnaires were designed for collecting data from different groups of stakeholders e.g. water professionals, farmers from the study area and decision makers of different organizations and ministries. These data were analysed statistically for each group separately as well as regarding relations amongst groups by using the SPSS (Statistical Package for Social Science) software package. Results show, that the need to improve the situation is supported by all groups. However, significant

  15. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential.

    PubMed

    Pathma, Jayakumar; Sakthivel, Natarajan

    2012-01-01

    Vermicomposting is a non-thermophilic, boioxidative process that involves earthworms and associated microbes. This biological organic waste decomposition process yields the biofertilizer namely the vermicompost. Vermicompost is a finely divided, peat like material with high porosity, good aeration, drainage, water holding capacity, microbial activity, excellent nutrient status and buffering capacity thereby resulting the required physiochemical characters congenial for soil fertility and plant growth. Vermicompost enhances soil biodiversity by promoting the beneficial microbes which inturn enhances plant growth directly by production of plant growth-regulating hormones and enzymes and indirectly by controlling plant pathogens, nematodes and other pests, thereby enhancing plant health and minimizing the yield loss. Due to its innate biological, biochemical and physiochemical properties, vermicompost may be used to promote sustainable agriculture and also for the safe management of agricultural, industrial, domestic and hospital wastes which may otherwise pose serious threat to life and environment.

  16. Linked Data for Fighting Global Hunger:Experiences in setting standards for Agricultural Information Management

    NASA Astrophysics Data System (ADS)

    Baker, Thomas; Keizer, Johannes

    FAO, the Food and Agriculture Organization of the UN, has the global goal to defeat hunger and eliminate poverty. One of its core functions is the generation, dissemination and application of information and knowledge. Since 2000, the Agricultural InformationManagement Standards (AIMS) activity in FAO's Knowledge Exchange and Capacity Building Division has promoted the use of Semantic Web standards to improve information sharing within a global network of research institutes and related partner organizations. The strategy emphasizes the use of simple descriptive metadata, thesauri, and ontologies for integrating access to information from a wide range of sources for both scientific and non-expert audiences. An early adopter of Semantic Web technology, the AIMS strategy is evolving to help information providers in nineteen language areas use modern Linked Data methods to improve the quality of life in developing rural areas, home to seventy percent of the world's poor and hungry people.

  17. Integrating water and agricultural management: collaborative governance for a complex policy problem.

    PubMed

    Fish, Rob D; Ioris, Antonio A R; Watson, Nigel M

    2010-11-01

    This paper examines governance requirements for integrating water and agricultural management (IWAM). The institutional arrangements for the agriculture and water sectors are complex and multi-dimensional, and integration cannot therefore be achieved through a simplistic 'additive' policy process. Effective integration requires the development of a new collaborative approach to governance that is designed to cope with scale dependencies and interactions, uncertainty and contested knowledge, and interdependency among diverse and unequal interests. When combined with interdisciplinary research, collaborative governance provides a viable normative model because of its emphasis on reciprocity, relationships, learning and creativity. Ultimately, such an approach could lead to the sorts of system adaptations and transformations that are required for IWAM. Copyright © 2009 Elsevier B.V. All rights reserved.

  18. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.

    PubMed

    Lemke, A M; Kirkham, K G; Lindenbaum, T T; Herbert, M E; Tear, T H; Perry, W L; Herkert, J R

    2011-01-01

    Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  20. Line-scan hyperspectral imaging techniques for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging technologies in the food and agricultural area have been evolved rapidly during the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed in diffe...

  1. Effectiveness of Selected Instructional Techniques and Resources in Teaching Vocational Agriculture

    ERIC Educational Resources Information Center

    Kahler, Alan A.

    1976-01-01

    The effects of selected instructional approaches and classification factors and their interaction on student achievement in vocational agriculture programs were investigated. The instructional approaches tested included audio-tutorial, single-concept films, prepared lesson plans, field trips, demonstrations, video tapes, and overhead projected…

  2. New Jersey Land-Use Planning Techniques and Legislation. Agricultural Experiment Station Bulletin AE-338.

    ERIC Educational Resources Information Center

    Schneider, Lee D.

    In response to recent urban to rural migration trends and the development of rather piecemeal land use policies and practices by local, state, and Federal decision makers, the U.S. Department of Agriculture has established a regional project (NE-78) and this report reflects the first of three major project objectives (to describe and appraise…

  3. The use of LANDSAT digital data and computer-implemented techniques for an agricultural application

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.; Griffin, R. H., II

    1978-01-01

    Agricultural applications procedures are described for use of LANDSAT digital data and other digitalized data (e.g., soils). The results of having followed these procedures are shown in production estimates for cotton and soybeans in Washington County, Mississippi. Examples of output products in both line printer and map formats are included, and a product adequacy assessment is made.

  4. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon

    PubMed Central

    Galford, Gillian L.; Melillo, Jerry M.; Kicklighter, David W.; Cronin, Timothy W.; Cerri, Carlos E. P.; Mustard, John F.; Cerri, Carlos C.

    2010-01-01

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006–2050) impacts on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO2-equivalents (CO2-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24–49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2–0.4 Pg CO2-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso. PMID:20651250

  5. Reducing environmental risk by improving N management in intensive Chinese agricultural systems.

    PubMed

    Ju, Xiao-Tang; Xing, Guang-Xi; Chen, Xin-Ping; Zhang, Shao-Lin; Zhang, Li-Juan; Liu, Xue-Jun; Cui, Zhen-Ling; Yin, Bin; Christie, Peter; Zhu, Zhao-Liang; Zhang, Fu-Suo

    2009-03-03

    Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30-60% N savings, we found that current agricultural N practices with 550-600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service.

  6. A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Peña-Haro, Salvador; Pulido-Velazquez, Manuel; Sahuquillo, Andrés

    2009-06-01

    SummaryA hydro-economic modelling framework is developed for determining optimal management of groundwater nitrate pollution from agriculture. A holistic optimization model determines the spatial and temporal fertilizer application rate that maximizes the net benefits in agriculture constrained by the quality requirements in groundwater at various control sites. Since emissions (nitrogen loading rates) are what can be controlled, but the concentrations are the policy targets, we need to relate both. Agronomic simulations are used to obtain the nitrate leached, while numerical groundwater flow and solute transport simulation models were used to develop unit source solutions that were assembled into a pollutant concentration response matrix. The integration of the response matrix in the constraints of the management model allows simulating by superposition the evolution of groundwater nitrate concentration over time at different points of interest throughout the aquifer resulting from multiple pollutant sources distributed over time and space. In this way, the modelling framework relates the fertilizer loads with the nitrate concentration at the control sites. The benefits in agriculture were determined through crop prices and crop production functions. This research aims to contribute to the ongoing policy process in the Europe Union (the Water Framework Directive) providing a tool for analyzing the opportunity cost of measures for reducing nitrogen loadings and assessing their effectiveness for maintaining groundwater nitrate concentration within the target levels. The management model was applied to a hypothetical groundwater system. Optimal solutions of fertilizer use to problems with different initial conditions, planning horizons, and recovery times were determined. The illustrative example shows the importance of the location of the pollution sources in relation to the control sites, and how both the selected planning horizon and the target recovery time can

  7. Yield gap mapping as a support tool for risk management in agriculture

    NASA Astrophysics Data System (ADS)

    Lahlou, Ouiam; Imani, Yasmina; Slimani, Imane; Van Wart, Justin; Yang, Haishun

    2016-04-01

    The increasing frequency and magnitude of droughts in Morocco and the mounting losses from extended droughts in the agricultural sector emphasized the need to develop reliable and timely tools to manage drought and to mitigate resulting catastrophic damage. In 2011, Morocco launched a cereals multi-risk insurance with drought as the most threatening and the most frequent hazard in the country. However, and in order to assess the gap and to implement the more suitable compensation, it is essential to quantify the potential yield in each area. In collaboration with the University of Nebraska-Lincoln, a study is carried out in Morocco and aims to determine the yield potentials and the yield gaps in the different agro-climatic zones of the country. It fits into the large project: Global Yield Gap and Water Productivity Atlas: http://www.yieldgap.org/. The yield gap (Yg) is the magnitude and difference between crop yield potential (Yp) or water limited yield potential (Yw) and actual yields, reached by farmers. World Food Studies (WOFOST), which is a Crop simulation mechanistic model, has been used for this purpose. Prior to simulations, reliable information about actual yields, weather data, crop management data and soil data have been collected in 7 Moroccan buffer zones considered, each, within a circle of 100 km around a weather station point, homogenously spread across the country and where cereals are widely grown. The model calibration was also carried out using WOFOST default varieties data. The map-based results represent a robust tool, not only for drought insurance organization, but for agricultural and agricultural risk management. Moreover, accurate and geospatially granular estimates of Yg and Yw will allow to focus on regions with largest unexploited yield gaps and greatest potential to close them, and consequently to improve food security in the country.

  8. Modeling Soil Organic Carbon for Agricultural Land Use Under Various Management Practices

    NASA Astrophysics Data System (ADS)

    Kotamarthi, V. R.; Drewniak, B.; Song, J.; Prell, J.; Jacob, R. L.

    2009-12-01

    Bioenergy is generating tremendous interest as an alternative energy source that is both environmentally friendly and economically competitive. The amount of land designated for agriculture is expected to expand, including changes in the current distribution of crops, as demand for biofuels increases as a carbon neutral alternative fuel source. However, the influence of agriculture on the carbon cycle is complex, and varies depending on land use change and management practices. The purpose of this research is to integrate agriculture in the carbon-nitrogen based Community Land Model (CLM) to evaluate the above and below ground carbon storage for corn, soybean, and wheat crop lands. The new model, CLM-Crop simulates carbon allocation during four growth stages, a soybean nitrogen fixation scheme, fertilizer, and harvest practices. We present results from this model simulation, which includes the impact of a new dynamic roots module to simulate the changing root structure and depth with growing season based on the availability of water and nitrogen in the root zone and a retranslocation scheme to simulate redistribution of nitrogen from leaves, roots, and stems to grain during organ development for crop yields, leaf area index (LAI), carbon allocation, and changes in soil carbon budgets under various practices such as fertilizer and residue management. Simulated crop yields for corn, soybean and wheat are in general agreement with measurements. Initial model results indicate a loss of soil organic carbon over cultivated lands after removal of natural vegetation which continues in the following years. Soil carbon in crop lands is a strong function of the residue management and has the potential to impact crop yields significantly.

  9. Influence of management practices on C stabilization pathways in agricultural volcanic ash soils (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Hernandez, Zulimar; María Álvarez, Ana; Carral, Pilar; de Figueiredo, Tomas; Almendros, Gonzalo

    2014-05-01

    Although C stabilization mechanisms in agricultural soils are still controversial [1], a series of overlapped pathways has been suggested [2] such as: i) insolubilization of low molecular weight precursors of soil organic matter (SOM) with reactive minerals through physical and chemical bonding, ii) selective accumulation of biosynthetic substances which are recalcitrant because of its inherent chemical composition, and iii) preservation and furter diagenetic transformation of particulate SOM entrapped within resistant microaggregates, where diffusion of soil enzymes is largely hampered. In some environments where carbohydrate and N compounds are not readily biodegraded, e.g., with water saturated micropores, an ill-known C stabilization pathway may involve the formation of Maillard's reaction products [3]. In all cases, these pathways converge in the formation of recalcitrant macromolecular substances, sharing several properties with the humic acid (HA) fraction [4]. In template forests, the selective preservation and further microbial reworking of plant biomass has been identified as a prevailing mechanism in the accumulation of recalcitrant SOM forms [5]. However, in volcanic ash soils with intense organomineral interactions, condensation reactions of low molecular weight precursors with short-range minerals may be the main mechanism [6]. In order to shed some light about the effect of agricultural management on soil C stabilization processes on volcanic ash soils, the chemical composition of HA and some structural proxies of SOM informing on its origin and potential resistance to biodegradation, were examined in 30 soils from Canary Islands (Spain) by visible, infrared (IR) and 13C nuclear magnetic resonance (NMR) spectroscopies, elementary analysis and pyrolytic techniques. The results of multivariate treatments, suggested at least three simultaneous C stabilization biogeochemical trends: i) diagenetic alteration of plant biomacromolecules in soils receiving

  10. Risk Management Techniques and Practice Workshop Workshop Report

    SciTech Connect

    Quinn, T; Zosel, M

    2008-12-02

    At the request of the Department of Energy (DOE) Office of Science (SC), Lawrence Livermore National Laboratory (LLNL) hosted a two-day Risk Management Techniques and Practice (RMTAP) workshop held September 18-19 at the Hotel Nikko in San Francisco. The purpose of the workshop, which was sponsored by the SC/Advanced Scientific Computing Research (ASCR) program and the National Nuclear Security Administration (NNSA)/Advanced Simulation and Computing (ASC) program, was to assess current and emerging techniques, practices, and lessons learned for effectively identifying, understanding, managing, and mitigating the risks associated with acquiring leading-edge computing systems at high-performance computing centers (HPCCs). Representatives from fifteen high-performance computing (HPC) organizations, four HPC vendor partners, and three government agencies attended the workshop. The overall workshop findings were: (1) Standard risk management techniques and tools are in the aggregate applicable to projects at HPCCs and are commonly employed by the HPC community; (2) HPC projects have characteristics that necessitate a tailoring of the standard risk management practices; (3) All HPCC acquisition projects can benefit by employing risk management, but the specific choice of risk management processes and tools is less important to the success of the project; (4) The special relationship between the HPCCs and HPC vendors must be reflected in the risk management strategy; (5) Best practices findings include developing a prioritized risk register with special attention to the top risks, establishing a practice of regular meetings and status updates with the platform partner, supporting regular and open reviews that engage the interests and expertise of a wide range of staff and stakeholders, and documenting and sharing the acquisition/build/deployment experience; and (6) Top risk categories include system scaling issues, request for proposal/contract and acceptance testing, and

  11. Mitigating climate change through managing constructed-microbial communities in agriculture

    DOE PAGES

    Hamilton, Cyd E.; Bever, James D.; Labbe, Jessy; ...

    2015-10-27

    The importance of increasing crop production while reducing resource inputs and land-use change cannot be overstated especially in light of climate change and a human population growth projected to reach nine billion this century. Here, mutualistic plant microbe interactions offer a novel approach to enhance agricultural productivity while reducing environmental costs. In concert with other novel agronomic technologies and management, plant-microbial mutualisms could help increase crop production and reduce yield losses by improving resistance and/or resilience to edaphic, biologic, and climatic variability from both bottom-up and top-down perspectives.

  12. Management of segmental skeletal defects by the induced membrane technique

    PubMed Central

    El-Alfy, Barakat Sayed; Ali, Ayman M

    2015-01-01

    Background: Surgical reconstruction of segmental skeletal defects represents a true challenge for the orthopedic surgeons. Recently, Masquelet et al. described a two-stage technique for reconstruction of bone defects, known as the induced membrane technique. The aim of this study is to assess the results of the induced membrane technique in the management of segmental skeletal defects resulting from debridement of bone infection. Materials and Methods: Seventeen patients with segmental skeletal defects were treated in our institution by the induced membrane technique. The average age of the patients was 43 years (range 26- 58 years). The causes of the defects were infected gap nonunion in 12 cases and debridement of osteomyelitis in 5 cases. The defects were located in the tibia (n = 13) and the femur (n = 4). The mean defect was 7 cm (range 4 cm - 11 cm). All cases were treated by the induced membrane technique in two-stages. Results: Bone union happened in 14 patients. The limb length discrepancy did not exceed 2.5 cm in the healed cases. The mean time of healing was 10 months (range 6-19 months). The complications included nonunion of the graft in five cases, failure of graft maturation in two cases, reactivation of infection in two cases and refracture after removal of the frame in one case. These complications were managed during the course of treatment and they did not affect the final outcome in all patients except three. Conclusion: The induced membrane technique is a valid option for the management of segmental skeletal defects. It is a simple and straight forward procedure, but the time required for growth and maturation of the graft is relatively long. PMID:26806972

  13. Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK.

    PubMed

    Burns, Fiona; Eaton, Mark A; Barlow, Kate E; Beckmann, Björn C; Brereton, Tom; Brooks, David R; Brown, Peter M J; Al Fulaij, Nida; Gent, Tony; Henderson, Ian; Noble, David G; Parsons, Mark; Powney, Gary D; Roy, Helen E; Stroh, Peter; Walker, Kevin; Wilkinson, John W; Wotton, Simon R; Gregory, Richard D

    2016-01-01

    Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species' populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species' populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species' population change (~1970-2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs.

  14. Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK

    PubMed Central

    Burns, Fiona; Eaton, Mark A.; Beckmann, Björn C.; Brereton, Tom; Brooks, David R.; Brown, Peter M. J.; Al Fulaij, Nida; Gent, Tony; Henderson, Ian; Noble, David G.; Parsons, Mark; Powney, Gary D.; Roy, Helen E.; Stroh, Peter; Walker, Kevin; Wilkinson, John W.; Wotton, Simon R.; Gregory, Richard D.

    2016-01-01

    Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species’ populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species’ populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species’ population change (~1970–2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs. PMID:27007973

  15. A future Demand Side Management (DSM) opportunity for utility as variable renewable penetrate scale up using agriculture.

    NASA Astrophysics Data System (ADS)

    Ines, A.; Bhattacharjee, A.; Modi, V.; Robertson, A. W.; Lall, U.; Kocaman Ayse, S.; Chaudhary, S.; Kumar, A.; Ganapathy, A.; Kumar, A.; Mishra, V.

    2015-12-01

    Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as smart metering, incentive based schemes, payments for turning off loads or rescheduling loads. Usually, the goal of demand side management is to encourage the consumer to use less power during periods of peak demand, or to move the time of energy use to off-peak times. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need for investments in networks and/or power plants for meeting peak demands. Electricity use can vary dramatically on short and medium time frames, and the pricing system may not reflect the instantaneous cost as additional higher-cost that are brought on-line. In addition, the capacity or willingness of electricity consumers to adjust to prices by altering elasticity of demand may be low, particularly over short time frames. In the scenario of Indian grid setup, the retail customers do not follow real-time pricing and it is difficult to incentivize the utility companies for continuing the peak demand supply. A question for the future is how deeper penetration of renewable will be handled? This is a challenging problem since one has to deal with high variability, while managing loss of load probabilities. In the case of managing the peak demand using agriculture, in the future as smart metering matures with automatic turn on/off for a pump, it will become possible to provide an ensured amount of water or energy to the farmer while keeping the grid energized for 24 hours. Supply scenarios will include the possibility of much larger penetration of solar and wind into the grid. While, in absolute terms these sources are small contributors, their role will inevitably grow but DSM using agriculture could help reduce the capital cost. The other option is of advancing or delaying pump operating cycle even by several hours, will still ensure

  16. Parental acceptance of pediatric behavior management techniques: a comparative study.

    PubMed

    Elango, I; Baweja, D K; Shivaprakash, P K

    2012-01-01

    To evaluate and compare the attitude toward behavior techniques among parents of healthy and special children in Indian subpopulation. Parents of healthy (Group A) and special children (Group B) watched videotape vignette of 10 behavior management techniques (BMTs) in groups and rated them using Visual Analog Scale (VAS). Group B parents were subgrouped as: Group B 1 (34 parents of medically compromised children), Group B 2 (34 parents of physically compromised children), and Group B 3 (34 parents of children with neuropathological disorders). Both Group A and Group B subjects judged all techniques as "acceptable." Group B parents were less accepting to techniques than Group A parents, except live modeling. Contingent escape and live modeling were the first ranked techniques in Group A and Group B parents, respectively. Voice control (VC) and hand-over-mouth exercise (HOM) were the least accepted techniques in both groups. Parents with low income and less education were more receptive to the techniques studied. A total of 25.49% of parents in each group did not consent to the use of HOM. Factors such as having a disabled child, low income, and less education influenced parental acceptability. HOM should be used with great caution and clinicians should approach the issue of informed consent on an individual basis.

  17. Modified McCash Technique for Management of Dupuytren Contracture.

    PubMed

    Lesiak, Alex C; Jarrett, Nicole J; Imbriglia, Joseph E

    2017-05-01

    Despite recent advancements in the nonsurgical treatment for Dupuytren contracture, a number of patients remain poor nonsurgical candidates or elect for surgical management. The traditional McCash technique releases contractures while leaving open palmar wounds. Although successful in alleviating contractures, these wounds are traditionally large, transverse incisions across the palm. A modification of this technique has been performed that permits the surgeon to utilize smaller wounds while eliminating debilitating contractures. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  19. Using economic valuation techniques to inform water resources management: a survey and critical appraisal of available techniques and an application.

    PubMed

    Birol, Ekin; Karousakis, Katia; Koundouri, Phoebe

    2006-07-15

    The need for economic analysis for the design and implementation of efficient water resources management policies is well documented in the economics literature. This need is also emphasised in the European Union's recent Water Framework Directive (2000/60/EC), and is relevant to the objectives of Euro-limpacs, an EU funded project which inter alia, aims to provide a decision-support system for valuing the effects of future global change on Europe's freshwater ecosystems. The purpose of this paper is to define the role of economic valuation techniques in assisting in the design of efficient, equitable and sustainable policies for water resources management in the face of environmental problems such as pollution, intensive land use in agriculture and climate change. The paper begins with a discussion of the conceptual economic framework that can be used to inform water policy-making. An inventory of the available economic valuation methods is presented and the scope and suitability of each for studying various aspects of water resources are critically discussed. Recent studies that apply these methods to water resources are reviewed. Finally, an application of one of the economic valuation methods, namely the contingent valuation method, is presented using a case study of the Cheimaditida wetland in Greece.

  20. Management of unregulated agricultural nonpoint sources through water quality trading market.

    PubMed

    Mahjoobi, Emad; Sarang, Amin; Ardestani, Mojtaba

    2016-11-01

    Water quality trading (WQT) could be an innovative policy to incentivize farmers to implement best management practices (BMPs) for their activities. This study focused on assessment of involving unregulated agricultural nonpoint sources (NPS) into the WQT market in Gharesoo watershed in the west of Iran. It also proposes a methodology to determine location-based trading ratios as well as environmental penalty cost to achieve a more well-designed market structure. Trading activities in different scenarios were described by trading volume (TV), participation rate (PR), total exchanged value (TEV), and other market parameters in order to achieve a better comparison of market performance. Results showed that, by applying NPS to the Gharesoo watershed, total phosphorous (TP) trading market could increase TV, PR, and TEV up to 11, 1.7 and 7.5 times, respectively, depending on which level of BMPs are implemented by them. Additionally, it could save 29% of the total cost of implementing a TP total maximum daily load in this watershed compared to the 'command and control' approach. Furthermore, the agricultural sector could profit by $5.49 million (or $75/ha) by choosing solutions such as terrace systems and filter strips to register into the market. This profit can be allocated to the development of new agricultural technologies.

  1. Integrating predictive information into an agro-economic model to guide agricultural management

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Block, P.

    2016-12-01

    Skillful season-ahead climate predictions linked with responsive agricultural planning and management have the potential to reduce losses, if adopted by farmers, particularly for rainfed-dominated agriculture such as in Ethiopia. Precipitation predictions during the growing season in major agricultural regions of Ethiopia are used to generate predicted climate yield factors, which reflect the influence of precipitation amounts on crop yields and serve as inputs into an agro-economic model. The adapted model, originally developed by the International Food Policy Research Institute, produces outputs of economic indices (GDP, poverty rates, etc.) at zonal and national levels. Forecast-based approaches, in which farmers' actions are in response to forecasted conditions, are compared with no-forecast approaches in which farmers follow business as usual practices, expecting "average" climate conditions. The effects of farmer adoption rates, including the potential for reduced uptake due to poor predictions, and increasing forecast lead-time on economic outputs are also explored. Preliminary results indicate superior gains under forecast-based approaches.

  2. The role of precision agriculture for improved nutrient management on farms.

    PubMed

    Hedley, Carolyn

    2015-01-01

    Precision agriculture uses proximal and remote sensor surveys to delineate and monitor within-field variations in soil and crop attributes, guiding variable rate control of inputs, so that in-season management can be responsive, e.g. matching strategic nitrogen fertiliser application to site-specific field conditions. It has the potential to improve production and nutrient use efficiency, ensuring that nutrients do not leach from or accumulate in excessive concentrations in parts of the field, which creates environmental problems. The discipline emerged in the 1980s with the advent of affordable geographic positioning systems (GPS), and has further developed with access to an array of affordable soil and crop sensors, improved computer power and software, and equipment with precision application control, e.g. variable rate fertiliser and irrigation systems. Precision agriculture focusses on improving nutrient use efficiency at the appropriate scale requiring (1) appropriate decision support systems (e.g. digital prescription maps), and (2) equipment capable of varying application at these different scales, e.g. the footprint of a one-irrigation sprinkler or a fertiliser top-dressing aircraft. This article reviews the rapid development of this discipline, and uses New Zealand as a case study example, as it is a country where agriculture drives economic growth. Here, the high yield potentials on often young, variable soils provide opportunities for effective financial return from investment in these new technologies.

  3. Project TEAMS (Techniques and Education for Achieving Management Skills): Independent Business Owner/Managers.

    ERIC Educational Resources Information Center

    Platte Technical Community Coll., Columbus, NE.

    These Project TEAMS (Techniques and Education for Achieving Managerial Skills) instructional materials consist of five units for use in training independent business owner/managers. The first unit contains materials which deal with management skills relating to personal characteristics of successful business people, knowledge of self and chosen…

  4. Project TEAMS (Techniques and Education for Achieving Management Skills): Independent Business Owner/Managers.

    ERIC Educational Resources Information Center

    Platte Technical Community Coll., Columbus, NE.

    These Project TEAMS (Techniques and Education for Achieving Managerial Skills) instructional materials consist of five units for use in training independent business owner/managers. The first unit contains materials which deal with management skills relating to personal characteristics of successful business people, knowledge of self and chosen…

  5. Influence of sustainable management on aggregate stability and soil organic matter on agricultural soil of southern Spain

    NASA Astrophysics Data System (ADS)

    Morugan-Coronado, Alicia; Arcenegui, Victoria; Mataix-Solera, Jorge; Gomez-Lucas, Ignacio; Garcia-Orenes, Fuensanta

    2016-04-01

    Intensive agriculture has increased crop yields but also posed severe environmental problems. Unsustainable land management such as excessive tillage can lead to a loss of soil fertility and a drastic reduction in the aggregate stability and soil organic matter content. However sustainable agriculture can keep good crop yields with minimal impact on ecological factors conserving the soil quality and its ecosystem services. Sustainable agriculture management promotes the maintenance of soil organic matter levels providing plant nutrients through the microbial decomposition of organic materials. Also this management has a positive effect on soil structure with the improvement of stability of aggregates. The resistance of soil aggregates to the slaking and dispersive effects of water (aggregate stability) is important for maintaining the structure in arable soils. Our purpose was to investigate and compare the effects of sustainable agricultural practices versus intensive agriculture on aggregate stability and soil organic matter. Three agricultural areas are being monitored in the southern of Spain, two of them with citrus orchards (AL) and (FE) and one with grapevine(PA). In all of them two agricultural treatments are being developed, organic with no-tillage management(O) and inorganic fertilization with herbicide application and intensive tillage (I). The sustainable agricultural management (manure, no tillage and vegetation cover) contributed to the improve of soil conditions, increasing organic matter and aggregate stability. Meanwhile, herbicide treatment and intensive tillage with inorganic fertilization managements resulted in the decreasing of aggregate stability and low levels of soil organic carbon. Soil organic matter content is generally low in all unsustainable treatments plots and tends to decline in aggregate stability and soil physical condition. In both treatments the crop yield are comparable.

  6. New MPLS network management techniques based on adaptive learning.

    PubMed

    Anjali, Tricha; Scoglio, Caterina; de Oliveira, Jaudelice Cavalcante

    2005-09-01

    The combined use of the differentiated services (DiffServ) and multiprotocol label switching (MPLS) technologies is envisioned to provide guaranteed quality of service (QoS) for multimedia traffic in IP networks, while effectively using network resources. These networks need to be managed adaptively to cope with the changing network conditions and provide satisfactory QoS. An efficient strategy is to map the traffic from different DiffServ classes of service on separate label switched paths (LSPs), which leads to distinct layers of MPLS networks corresponding to each DiffServ class. In this paper, three aspects of the management of such a layered MPLS network are discussed. In particular, an optimal technique for the setup of LSPs, capacity allocation of the LSPs and LSP routing are presented. The presented techniques are based on measurement of the network state to adapt the network configuration to changing traffic conditions.

  7. Modified Surgical Techniques for Managing Intraoperative Floppy Iris Syndrome

    PubMed Central

    Charukamnoetkanok, Puwat

    2016-01-01

    Purpose. To report a modified surgical strategy in the management of intraoperative floppy iris syndrome-associated iris prolapse. Methods. Prolapsed iris is left as is and a new corneal incision near the original wound but at a different site is created. Depending on the location of the original incision and the surgeon's preference, this additional incision can be used as a new port for phacoemulsification tip or can be the new site for the iris to securely prolapse, allowing for the surgery to proceed safely. Results. We present 2 cases of iris prolapse and inadequate pupil dilation in patients with IFIS. Along with our modified technique, additional iris retractors were placed to increase the workspace for the phacoemulsification tip. The cataract surgery was performed successfully without further complications in both cases. Conclusion. This surgical technique could be an adjunct to allow the surgeons to expand the armamentarium for the management of IFIS-associated iris prolapse. PMID:27999697

  8. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    NASA Astrophysics Data System (ADS)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    well as calculated some of relevant climatic indicators (Standardized Precipitation Index, Climatic Water Deficit and Thornthwaite Aridity Index for the main crops). These indicators frame the region in a temperate-continental climate with excessive influences, imposing specific management practices in agriculture: rehabilitation of irrigation systems, drought resistant seeds, planting forest belts, etc.).

  9. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation.

    PubMed

    Hondebrink, M A; Cammeraat, L H; Cerdà, A

    2017-03-01

    The agricultural management of citrus orchards is changing from flood irrigated managed orchards to drip irrigated organic managed orchards. Eastern Spain is the oldest and largest European producer of citrus, and is representative of the environmental changes triggered by innovations in orchard management. In order to determine the impact of land management on different soil quality parameters, twelve citrus orchards sites were selected with different land and irrigation management techniques. Soil samples were taken at two depths, 0-2cm and 5-10cm for studying soil quality parameters under the different treatments. Half of the studied orchards were organically managed and the other six were conventionally managed, and for each of these six study sites three fields were flood irrigated plots and the other three drip irrigated systems. The outcome of the studied parameters was that soil organic matter (SOM) and aggregate stability were higher for organic farms. Bulk density and pH were only significantly different for organic farms when drip irrigation was applied in comparison with flooded plots. C/N ratio did not vary significantly for the four treatments. Although there are some points of discussion, this research shows that a combination of different management decisions leads to improvement of a couple of soil quality parameters. Organic management practices were found to be beneficial for soil quality, compared to conventional management for soils with comparable textures and applied irrigation water. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production. Copyright © 2014. Published by Elsevier B.V.

  11. Critical Zone Services as Environmental Assessment Criteria in Intensively Managed Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Kumar, P.

    2016-12-01

    The critical zone (CZ) includes the biophysical processes occurring from the top of the vegetation canopy to the weathering zone below the groundwater table. CZ services provide a measure for the goods and benefits derived from CZ processes. In intensively managed landscapes (IML), the provisioning, supporting, and regulating services are altered through anthropogenic energy inputs to derive more productivity, as agricultural products, from these landscapes than would be possible under natural conditions. However, the energy or cost equivalents of alterations to CZ functions within landscape profiles are unknown. The valuation of CZ services in energy or monetary terms provides a more concrete tool for characterizing seemingly abstract environmental damages from agricultural production systems. A multi-layer canopy-root-soil model is combined with nutrient and water flux models to simulate the movement of nutrients throughout the soil system. This data enables the measurement of agricultural anthropogenic impacts to the CZ's nutrient cycling supporting services and atmospheric stabilizing regulating services defined by the flux of carbon and nutrients. Such measurements include soil carbon storage, soil carbon respiration, nitrate leaching, and nitrous oxide flux into the atmosphere. Additionally, the socioeconomic values of corn feed and ethanol define the primary productivity supporting services of each crop use.In the debate between feed production and corn-based ethanol production, measured nutrient CZ services can cost up to four times more than traditionally estimated CO2 equivalences for the entire bioenergy production system. Energy efficiency in addition to environmental impacts demonstrate how the inclusion of CZ services is necessary in accounting for the entire life cycle of agricultural production systems. These results conclude that feed production systems are more energy efficient and less environmentally costly than corn-based ethanol systems.

  12. Integrated resource management: Moving from rhetoric to practice in Australian agriculture

    SciTech Connect

    Bellamy, J.A.; Johnson, A.K.L.

    2000-03-01

    Implementing the concept of sustainability through integrated approaches to natural resource management poses enormous challenges for both the rural communities and government agencies concerned. This paper reviews the underlying rhetoric of sustainable agricultural systems and the integrated resource management paradigm and identifies some of the challenges being experienced in translating this rhetoric into practice. A relatively recently implemented community-based integrated catchment management (ICM) process in a rural community in northeast Australia is examined in terms of some of the lessons learned that may be relevant to other similar integrated resource management (IRM) processes. It reveals a pragmatic, opportunistic, and evolving implementation process based on adaptive learning rather than a more traditional rational planning approach. Some essential characteristics of a community-based IRM process are identified, including fostering communication; providing a structure that fosters cooperation and facilities coordination among community, industry, and government agencies; the integration of IRM principles into local government planning schemes; and an emergent strategic approach to IRM program implementation. The authors conclude by identifying some essential characteristics of an IRM process that can assist a community to adapt to, and manage change for, sustainable resource use.

  13. Contemporary management of carotid blowout syndrome utilizing endovascular techniques.

    PubMed

    Manzoor, Nauman F; Rezaee, Rod P; Ray, Abhishek; Wick, Cameron C; Blackham, Kristine; Stepnick, David; Lavertu, Pierre; Zender, Chad A

    2017-02-01

    To illustrate complex interdisciplinary decision making and the utility of modern endovascular techniques in the management of patients with carotid blowout syndrome (CBS). Retrospective chart review. Patients treated with endovascular strategies and/or surgical modalities were included. Control of hemorrhage, neurological, and survival outcomes were studied. Between 2004 and 2014, 33 patients had 38 hemorrhagic events related to head and neck cancer that were managed with endovascular means. Of these, 23 were localized to the external carotid artery (ECA) branches and five localized to the ECA main trunk; nine were related to the common carotid artery (CCA) or internal carotid artery (ICA), and one event was related to the innominate artery. Seven events related to the CCA/ICA or innominate artery were managed with endovascular sacrifice, whereas three cases were managed with a flow-preserving approach (covered stent). Only one patient developed permanent hemiparesis. In two of the three cases where the flow-preserving approach was used, the covered stent eventually became exposed via the overlying soft tissue defect, and definitive management using carotid revascularization or resection was employed to prevent further hemorrhage. In cases of soft tissue necrosis, vascularized tissues were used to cover the great vessels as applicable. The use of modern endovascular approaches for management of acute CBS yields optimal results and should be employed in a coordinated manner by the head and neck surgeon and the neurointerventionalist. 4. Laryngoscope, 2016 127:383-390, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  14. A Satellite Data-Driven, Client-Server Decision Support Application for Agricultural Water Resources Management

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.

    2016-01-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that

  15. A satellite data-driven, client-server decision support application for agricultural water resources management

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Johnson, L.; Kimball, J. S.

    2016-12-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in atypical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight `app` that

  16. Agricultural Land Use and Best Management Practices to Control Nonpoint Water Pollution

    NASA Astrophysics Data System (ADS)

    Ripa, Maria Nicoletta; Leone, Antonio; Garnier, Monica; Porto, Antonio Lo

    2006-08-01

    In recent years, improvements in point-source depuration technologies have highlighted the problems regarding agricultural nonpoint (diffuse) sources, and this issue has become highly relevant from the environmental point of view. The considerable extension of the areas responsible for this kind of pollution, together with the scarcity of funds available to local managers, make minimizing the impacts of nonpoint sources on a whole basin a virtually impossible task. This article presents the results of a study intended to pinpoint those agricultural areas, within a basin, that contribute most to water pollution, so that operations aimed at preventing and/or reducing this kind of pollution can be focused on them. With this aim, an innovative approach is presented that integrates a field-scale management model, a simple regression model, and a geographic information system (GIS). The Lake Vico basin, where recent studies highlighted a considerable increase in the trophic state, mainly caused by phosphorus (P) compounds deriving principally from the intensive cultivation of hazelnut trees in the lake basin, was chosen as the study site. Using the management model Groundwater Loading Effects of Agricultural Management Systems (GLEAMS), the consequences, in terms of sediment yield and phosphorus export, of hazelnut tree cultivation were estimated on different areas of the basin with and without the application of a best management practice (BMP) that consists of growing meadow under the trees. The GLEAMS results were successively extended to basin scale thanks to the application of a purposely designed regression model and of a GIS. The main conclusions can be summarized as follows: The effectiveness of the above-mentioned BMP is always greater for erosion reduction than for particulate P reduction, whatever the slope value considered; moreover, the effectiveness with reference to both particulate P and sediment yield production decreases as the slope increases. The

  17. A satellite-driven, client-server hydro-economic model prototype for agricultural water management

    NASA Astrophysics Data System (ADS)

    Maneta, Marco; Kimball, John; He, Mingzhu; Payton Gardner, W.

    2017-04-01

    Anticipating agricultural water demand, land reallocation, and impact on farm revenues associated with different policy or climate constraints is a challenge for water managers and for policy makers. While current integrated decision support systems based on programming methods provide estimates of farmer reaction to external constraints, they have important shortcomings such as the high cost of data collection surveys necessary to calibrate the model, biases associated with inadequate farm sampling, infrequent model updates and recalibration, model overfitting, or their deterministic nature, among other problems. In addition, the administration of water supplies and the generation of policies that promote sustainable agricultural regions depend on more than one bureau or office. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. To overcome these limitations, we present a client-server, integrated hydro-economic modeling and observation framework driven by satellite remote sensing and other ancillary information from regional monitoring networks. The core of the framework is a stochastic data assimilation system that sequentially ingests remote sensing observations and corrects the parameters of the hydro-economic model at unprecedented spatial and temporal resolutions. An economic model of agricultural production, based on mathematical programming, requires information on crop type and extent, crop yield, crop transpiration and irrigation technology. A regional hydro-climatologic model provides biophysical constraints to an economic model of agricultural production with a level of detail that permits the study of the spatial impact of large- and small-scale water use decisions. Crop type and extent is obtained from the Cropland Data Layer (CDL), which is multi-sensor operational classification of crops maintained by the United States Department of Agriculture. Because

  18. Outcome of 7-S, TQM technique for healthcare waste management.

    PubMed

    Ullah, Junaid Habib; Ahmed, Rashid; Malik, Javed Iqbal; Khan, M Amanullah

    2011-12-01

    To assess the present waste management system of healthcare facilities (HCFs) attached with Shalamar Hospital, Lahore by applying the 7-S technique of Total Quality Management (TQM) and to find out the outcome after imparting training. Interventional quasi-experimental study. The Shalamar Hospital, Lahore, Punjab, Pakistan, November, 2009 to November, 2010. Mckinsey's 7-S, technique of TQM was applied to assess the 220 HCFs from Lahore, Gujranwala and Sheikhupura districts for segregation, collection, transportation and disposal (SCTD) of hospital waste. Direct interview method was applied. Trainings were provided in each institution. After one year action period, the status of four areas of concern was compared before and after training. The parameters studied were segregation, collection, transportation and disposal systems in the 220 HCFs. Each of these were further elaborated by strategy, structure, system, staff, skill, style and stakeholder/shared value factors. Standard error of difference of proportion was applied to assess significance using 95% confidence level. There was marked improvement in all these areas ranging from 20% to 77% following a training program of 3 months. In case of disposal of the waste strategy, structure and system an increase of 60%, 65% and 75% was observed after training. The 7-S technique played a vital role in assessing the hospital waste management system. Training for the healthcare workers played a significant role in healthcare facilities.

  19. Remote sensing techniques in cultural resource management archaeology

    NASA Astrophysics Data System (ADS)

    Johnson, Jay K.; Haley, Bryan S.

    2003-04-01

    Cultural resource management archaeology in the United States concerns compliance with legislation set in place to protect archaeological resources from the impact of modern activities. Traditionally, surface collection, shovel testing, test excavation, and mechanical stripping are used in these projects. These methods are expensive, time consuming, and may poorly represent the features within archaeological sites. The use of remote sensing techniques in cultural resource management archaeology may provide an answer to these problems. Near-surface geophysical techniques, including magnetometry, resistivity, electromagnetics, and ground penetrating radar, have proven to be particularly successful at efficiently locating archaeological features. Research has also indicated airborne and satellite remote sensing may hold some promise in the future for large-scale archaeological survey, although this is difficult in many areas of the world where ground cover reflect archaeological features in an indirect manner. A cost simulation of a hypothetical data recovery project on a large complex site in Mississippi is presented to illustrate the potential advantages of remote sensing in a cultural resource management setting. The results indicate these techniques can save a substantial amount of time and money for these projects.

  20. Stochastic and recursive calibration for operational, large-scale, agricultural land and water use management models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Kimball, J. S.; Jencso, K. G.

    2015-12-01

    Managing the impact of climatic cycles on agricultural production, on land allocation, and on the state of active and projected water sources is challenging. This is because in addition to the uncertainties associated with climate projections, it is difficult to anticipate how farmers will respond to climatic change or to economic and policy incentives. Some sophisticated decision support systems available to water managers consider farmers' adaptive behavior but they are data intensive and difficult to apply operationally over large regions. Satellite-based observational technologies, in conjunction with models and assimilation methods, create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents at seasonal scales.We present an integrated modeling framework that can be driven by satellite remote sensing to enable robust regional assessment and prediction of climatic and policy impacts on agricultural production, water resources, and management decisions. The core of this framework is a widely used model of agricultural production and resource allocation adapted to be used in conjunction with remote sensing inputs to quantify the amount of land and water farmers allocate for each crop they choose to grow on a seasonal basis in response to reduced or enhanced access to water due to climatic or policy restrictions. A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration as a proxy for water use that can be estimated from high spatial resolution satellite remote sensing. The data assimilation framework blends new and old information to avoid over-calibration to the specific conditions of a single year and permits the updating of parameters to track gradual changes in the agricultural system.This integrated framework provides an operational means of monitoring and forecasting what crops will be grown

  1. Ecosystem services driven by the diversity of soil biota - understanding and management in agriculture - The Biodiversa SoilMan-Project

    NASA Astrophysics Data System (ADS)

    Potthoff, Martin; Pérès, Guénola; Taylor, Astrid; Schrader, Stefan; Landa, Blanca; Nicolai, Annegret; Sandor, Mignon; Öptik, Maarja; Gema, Guzmán; Bergmann, Holger; Cluzeau, Daniel; Banse, Martin; Bengtsson, Jan; Guernion, Muriel; Zaller, Johann; Roslin, Tomas; Scheu, Stefan; Gómez Calero, José Alfonso

    2017-04-01

    Soil biota diversity is ensuring primary production in terrestrial ecosystems and agricultural productivity. Water and nutrient cycling, soil formation and aggregation, decomposition and carbon sequestration as well as control of pest organisms are important functions in soil that are driven by biota and biota interactions. In agricultural systems these functions support and regulate ecosystem services directed to agricultural production and agricultural sustainability. A main goal of future cropping systems will be to maintain or raise agricultural productivity while keeping production sustainable in spite of increasing food demands and ongoing soil degradation caused by inappropriate soil management practices. Farm based tools that farmers use to engineer soils for plant production depend as soil management factors on decisions by farmers, which are triggered by regional traditions, knowledge and also by agriculture policies as a governance impact. However, biological impacts on soil fertility and soil health are often neglected or overseen when planning and shaping soil management in annual cropping systems or perennial systems like vineyards. In order to get progress in conservation farming and in agricultural sustainability not only knowledge creation is in need, but also a clash of perspectives has to be overcome within the societies (generals public, farmers associations, NGOs) The talk will present the conception of the recently startet SoilMan-project and summaries selected results from current and recent European research projects.

  2. A prosthetic management technique for osteopetrosis affecting the maxilla.

    PubMed

    Dewan, Karun; Bishop, Karl; Hollisey-Mclean, David

    2007-06-01

    Bony anatomical anomalies can complicate the construction and successful wearing of removable prostheses. Osteopetrosis is a group of diseases that affect the growth and continuous remodelling of bone which in turn can result in gross irregular alveolar bone morphology. This paper describes the management of a patient with this problem and emphasises the challenges in constructing a successful complete maxillary removable prosthesis. The utilisation of a flexible base plate material as an alternative to traditional materials will be highlighted. Irregular bony morphology is a recognised potential obstacle to the successful construction of removable prostheses. In most cases the problem can be overcome but in extreme and less common circumstances, management of these features can be more problematic. This paper describes a technique used to manage extreme alveolar irregularity which may perhaps be applied to those problems more commonly encountered in every day clinical practice but are less extreme then those described in this paper.

  3. Soil organic carbon fractionation for improving agricultural soil quality diagnosis in different management practices.

    NASA Astrophysics Data System (ADS)

    Trigalet, Sylvain; Chartin, Caroline; Kruger, Inken; Carnol, Monique; Van Oost, Kristof; van Wesemael, Bas

    2016-04-01

    Preserving ecosystem functions of soil organic matter (SOM) in soils is a key challenge. The need for an efficient diagnosis of SOM state in agricultural soils is a priority in order to facilitate the detection of changes in soil quality as a result of changes in management practices. The nature of SOM is complex and cannot readily be monitored due to the heterogeneity of its components. Assessment of the SOM level dynamics, typically characterized as the bulk soil organic carbon (SOC), can be refined by taking into account carbon pools with different turnover rates and stability. Fractionating bulk SOC in meaningful soil organic fractions helps to better diagnose SOC status. By separating carbon associated with clay and fine silt particles (stable carbon with slow turnover rate) and carbon non-associated with this fraction (labile and intermediate carbon with higher turnover rates), effects of management can be detected more efficiently at different spatial and temporal scales. Until now, most work on SOC fractionation has focused on small spatial scales along management or time gradients. The present case study focuses on SOC fractionation applied in order to refine the interpretation of organic matter turnover and SOC sequestration for regional units in Wallonia with comparable climate, management and, to a certain extent, soil conditions. In each unit, random samples from specific land uses are analyzed in order to assess the Normal Operative Ranges (NOR) of SOC fraction contents for each unit and land use combination. Thus, SOC levels of the different fractions of a specific field in a given unit can be compared to its corresponding NOR. It will help to better diagnose agricultural soil quality in terms of organic carbon compared to a bulk SOC diagnosis.

  4. Evaluating the impacts of agricultural land management practices on water resources: A probabilistic hydrologic modeling approach.

    PubMed

    Prada, A F; Chu, M L; Guzman, J A; Moriasi, D N

    2017-02-24

    Evaluating the effectiveness of agricultural land management practices in minimizing environmental impacts using models is challenged by the presence of inherent uncertainties during the model development stage. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the applicability and robustness of the model to properly represent future or alternative scenarios. The objective of this study was to develop a framework that facilitates model parameter selection while evaluating uncertainty to assess the impacts of land management practices at the watershed scale. The model framework was applied to the Lake Creek watershed located in southwestern Oklahoma, USA. A two-step probabilistic approach was implemented to parameterize the Agricultural Policy/Environmental eXtender (APEX) model using global uncertainty and sensitivity analysis to estimate the full spectrum of total monthly water yield (WYLD) and total monthly Nitrogen loads (N) in the watershed under different land management practices. Twenty-seven models were found to represent the baseline scenario in which uncertainty of up to 29% and 400% in WYLD and N, respectively, is plausible. Changing the land cover to pasture manifested the highest decrease in N to up to 30% for a full pasture coverage while changing to full winter wheat cover can increase the N up to 11%. The methodology developed in this study was able to quantify the full spectrum of system responses, the uncertainty associated with them, and the most important parameters that drive their variability. Results from this study can be used to develop strategic decisions on the risks and tradeoffs associated with different management alternatives that aim to increase productivity while also minimizing their environmental impacts.

  5. Watershed basin management and agriculture practices: an application case for flooding areas in Piemonte.

    NASA Astrophysics Data System (ADS)

    Bianco, G.; Franzi, L.; Valvassore, U.

    2009-04-01

    Watershed basin management in Piemonte (Italy) is a challenging issue that forces the local Authorities to a careful land planning in the frame of a sustainable economy. Different and contrasting objectives should be taken into account and balanced in order to find the best or the most "reasonable" choice under many constraints. Frequently the need for flood risk reduction and the demand for economical exploitation of floodplain areas represent the most conflicting aspects that influence watershed management politics. Actually, flood plains have been the preferred places for socio-economical activities, due to the availability of water, fertility of soil and the easiness of agricultural soil exploitation. Sometimes the bed and planform profile adjustments of a river, as a consequence of natural processes, can impede some anthropogenic activities in agriculture, such as the erosion of areas used for crops, the impossibility of water diversion, the deposition of pollutants on the ground, with effects on the economy and on the social life of local communities. In these cases watershed basin management should either balance the opposite demands, as the protection of economic activities (that implies generally canalized rivers and levees construction) and the need of favouring the river morphological stability, allowing the flooding in the inundation areas. In the paper a case study in Piemonte region (Tortona irrigation district) is shown and discussed. The effects of the Scrivia river planform adjustment on water diversion and soil erodibility force the local community and the authority of the irrigation district to ask for flood protection and river bed excavation. A mathematical model is also applied to study the effects of local river channel excavation on flood risk. Some countermeasures are also suggested to properly balance the opposite needs in the frame of a watershed basin management.

  6. Effect of Agricultural Management on Nematode Communities in a Mediterranean Agroecosystem

    PubMed Central

    Liang, W.; Lavian, I.; Steinberger, Y.

    2001-01-01

    The effects of agricultural management on the soil nematode community were investigated in a field study at depths of 0 to 10 cm and 10 to 20 cm during a peanut (Arachis hypogaea) growing season in Israel. Nineteen nematode families and 23 genera were observed. Rhabditidae, Cephalobus, Eucephalobus, Aphelenchus, Aphelenchoides, Tetylenchus, Tylenchus, Dorylaimus, and Discolaimus were the dominant family and genera. Ecological measures of soil nematode community structure, diversity, and maturity indices were assessed and compared between the managed (by fertilization, irrigation, and pesticide application) and unmanaged fields. The total number of nematodes at a 10-cm depth during peanut-sowing, mid-season, and harvest periods was higher in the treated (managed) plot than in the control (unmanaged) plot. Bacterivores and fungivores were the most abundant trophic groups in both plots and both depths. The relative abundance of each group averaged 60.8 to 67.3% and 11.5 to 19.6% of the nematode community, respectively. Plant parasites and omnivores-predators at the 0 to 10-cm depth were much less abundant than any other two groups in our experimental plots. During the growing season, except the harvest period, populations of plant parasites and omnivores-predators at the 10 to 20-cm depth were lower in the treated plot than in the control plot. Maturity index (MI), plant-parasite index (PPI), and ratio of fungivores and bacterivores to plant parasites (WI) were found to be more sensitive indicators than other ecological indices for assessing the response of nematode communities to agricultural management in an Israeli agroecosystem. PMID:19265883

  7. Wetland assessment, monitoring and management in India using geospatial techniques.

    PubMed

    Garg, J K

    2015-01-15

    Satellite remote sensing and GIS have emerged as the most powerful tools for inventorying, monitoring and management of natural resources and environment. In the special context of wetland ecosystems, remotely sensed data from orbital platforms have been extensively used in India for the inventory, monitoring and preparation of action plans for conservation and management. First scientific inventory of wetlands in India was carried out in 1998 by Space Applications Centre (ISRO), Ahmedabad using indigenous IRS (Indian Remote Sensing Satellite) data of 1992-93 timeframe, which stimulated extensive use of geospatial techniques for wetland conservation and management. Subsequently, with advances in GIS, studies were carried out for development of Wetland Information System for a state (West Bengal) and for Loktak lake wetland (a Ramsar site) as a prelude to National Wetland Information System. Research has also been carried out for preparation of action plans especially for Ramsar sites in the country. In a novel research, use of the geospatial technology has also been demonstrated for biodiversity conservation using landscape ecological metrics. A country-wide estimate of emission of methane, a Green House Gas, from wetlands has also been made using MODIS data. Present article critically reviews the work carried out in India for wetland conservation and management using geospatial techniques.

  8. Effects of different management practices on fungal biodiversity in agricultural soils

    NASA Astrophysics Data System (ADS)

    Borriello, R.; Lumini, E.; Bonfante, P.; Bianciotto, V.

    2009-04-01

    Symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plant roots are widespread in natural environments and provide a range of benefits to the host plant. These include improved nutrition, enhanced resistance to soil-borne pests, diseases, and drought, as well as tolerance to heavy metals. In addition, the presence of a well developed AMF hyphal network improve the soil structure. As obligate mutualistic symbionts these fungi colonize the roots of many agricultural crops and it is often claimed that agricultural practices (use of fertilizers and biocides, tillage, dominance of monocultures and the growing of non-mycorrhizal crops) are detrimental to AMF. As a result, agro ecosystems impoverished in AMF may not get the fully expected range of benefits from these fungi. Using molecular markers on DNA extracted directly from soil and roots we studied the effects of different management practices (tillage and nitrogen fertilization) on the AMF populations colonizing an experimental agro ecosystem in Central Italy. Fungi in roots and soil were identified by cloning and sequencing a region of ~550bp of the 18S rDNA and ~600bp of the 28S rDNA. In symbiosis with the maize roots we detected only members of Glomeraceae group A that showed decrement in number under nitrogen fertilization. Instead in soil were mainly present members of two AMF groups, respectively Gigasporaceae and Glomeraceae group A. In addition only the low input management practices preserve also members of Diversisporaceae and Glomeraceae group B. From our study we can conclude that agricultural practices can directly or indirectly influence AMF biodiversity. The result of this study highlight the importance and significant effects of the long term nitrogen fertilization and tillage practices on specific groups of fungi playing a key role in arable soils. The research was founded by Biodiversity Project (IPP-CNR) and by SOILSINK (FISR-MIUR)

  9. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    PubMed Central

    Wood, Stephen A.; Almaraz, Maya; Bradford, Mark A.; McGuire, Krista L.; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A.; Tully, Katherine L.; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. PMID:25926815

  10. Salt tolerant green crop species for sodium management in space agriculture

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  11. Intra-annual variation of the association between agricultural best management practices and stream nutrient concentrations.

    PubMed

    Pearce, Nolan J T; Yates, Adam G

    2017-05-15

    Temporal variation may influence the ability of best management practices (BMPs) to mitigate the loss of agricultural pollutants to streams. Our goal was to assess variation in mitigation effects of BMPs by examining the associations between instream nutrient concentrations and the abundance and location of four structural BMPs over a hydrologic year. Water samples were collected monthly (Nov. 2013-Oct. 2014) in 15 headwater streams representing a gradient of BMP use in Southern Ontario, Canada. Partial least squares (PLS) regression models were used to associate two groups of collinear nutrient forms with the abundance and location of BMPs, antecedent precipitation and time of year. BMP metrics in PLS models were associated with instream concentrations of major phosphorus forms and ammonium throughout the year. In contrast, total nitrogen and nitrate-nitrite were only associated with BMPs during snowmelt. BMP metrics associated with reductions of phosphorus and ammonium included greater abundances of riparian buffers and manure storage structures, but not livestock restriction fences. Likewise, the abundance and location riparian vegetation in areas capturing more surface runoff were associated with decreased stream nitrogen concentrations during snowmelt. However, the amount of tile drainage was associated with increased nitrogen concentrations following snowmelt, as well as with greater phosphorus and ammonium concentrations throughout the year. Overall, our findings indicate that increasing the abundance of riparian buffers and manure storage structures may decrease instream nutrient concentrations in agricultural areas. Additionally, the implementation of these structural BMPs appear to be an effective year-round strategy to assist management objectives in reducing phosphorus concentrations in small agricultural streams and thus loadings to downstream tributaries. Further mitigation measures, such as managerial BMPs and controlled tile drainage, may be

  12. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture.

    PubMed

    Wood, Stephen A; Almaraz, Maya; Bradford, Mark A; McGuire, Krista L; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A; Tully, Katherine L; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.

  13. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    NASA Astrophysics Data System (ADS)

    Pugh, T. A. M.; Arneth, A.; Olin, S.; Ahlström, A.; Bayer, A. D.; Klein Goldewijk, K.; Lindeskog, M.; Schurgers, G.

    2015-12-01

    It is over three decades since a large terrestrial carbon sink (ST) was first reported. The magnitude of the net sink is now relatively well known, and its importance for dampening atmospheric CO2 accumulation, and hence climate change, widely recognised. But the contributions of underlying processes are not well defined, particularly the role of emissions from land-use change (ELUC) versus the biospheric carbon uptake (SL; ST = SL - ELUC). One key aspect of the interplay of ELUC and SL is the role of agricultural processes in land-use change emissions, which has not yet been clearly quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative ELUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present-day ST, or an underestimation of SL, of up to 1.0 Pg C a-1. Management processes influencing crop productivity per se are important for food supply, but were found to have little influence on ELUC.

  14. Management considerations and environmental benefit analysis for turning food garbage into agricultural resources.

    PubMed

    Tsai, Wen-Tien

    2008-09-01

    The management of food garbage is of great importance because of its high energy consumption, potential environmental hazards and public health risks. In Taiwan, through the competent authorities at all levels and the citizens' participation in sorting household wastes, many recycling efforts have recently been implemented to further utilize it as available resources such as swine feeds and organic fertilizer by composting. As a result, a total of approximately 570 thousand metric tons was recycled with a recycling ratio of about 21.2% on a basis of food garbage generation in 2006, rising over 22% from a year earlier. These figures showed that compulsory garbage sorting has indeed dramatically increased the recycling of food garbage. The objective of this paper is to present and discuss some management considerations in turning food garbage into agricultural resources due to the compulsory garbage sorting directive in Taiwan. The description first aims at the current status in food garbage generation and its recycling, and at the regulatory polices which have become effective since 2000. It also centers on the environmental and agricultural measures on upgrading food garbage recycling. Based on the preliminary analysis of environmental benefit by the Revised 1996 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, it is obvious that composting food garbage is superior to that by traditional treatments (i.e., incineration and sanitary landfill) from the viewpoint of reducing greenhouse gases (i.e., CO(2) and CH(4)) emissions.

  15. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils.

    PubMed

    Navarrete, Acácio A; Kuramae, Eiko E; de Hollander, Mattias; Pijl, Agata S; van Veen, Johannes A; Tsai, Siu M

    2013-03-01

    This study focused on the impact of land-use changes and agricultural management of soybean in Amazon forest soils on the abundance and composition of the acidobacterial community. Quantitative real-time PCR (q-PCR) assays and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from soybean croplands and adjacent native forests, and mesocosm soil samples from soybean rhizosphere. Based on qPCR measurements, Acidobacteria accounted for 23% in forest soils, 18% in cropland soils, and 14% in soybean rhizosphere of the total bacterial signals. From the 16S rRNA gene sequences of Bacteria domain, the phylum Acidobacteria represented 28% of the sequences from forest soils, 16% from cropland soils, and 17% from soybean rhizosphere. Acidobacteria subgroups 1-8, 10, 11, 13, 17, 18, 22, and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6, and 7 were significantly higher in cropland soils than in forest soils, which subgroups responded to decrease in soil aluminum. Subgroups 6 and 7 responded to high content of soil Ca, Mg, Mn, and B. These results showed a differential response of the Acidobacteria subgroups to abiotic soil factors, and open the possibilities to explore acidobacterial subgroups as early-warning bioindicators of agricultural soil management effects in the Amazon area.

  16. Impact of agricultural management practices on DOC leaching - results of a long-term lysimeter study

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Ollesch, G.; Seeger, J.; Meißner, R.; Rode, M.

    2009-04-01

    Dissolved organic carbon (DOC) fluxes are recently increasing in surface waters of humid climate regions. Due to its substantial importance for leaching processes, aquatic foodwebs, and drinking water purification a better understanding of sources and pathways of DOC is needed. Therefore this study aims to analyse and simulate DOC fluxes in agricultural ecosystems with selected crop rotations. A data set of 24 lysimeters of the UFZ Lysimeter station at Falkenberg (Saxony-Anhalt) covering nine years of DOC investigation has been selected and examined. The data set covers a wide range of climatic conditions with deviating management practices for grasslands and agricultural crop rotations. The monthly DOC concentrations assessed in the leached water range from 2.4 to 34.1 mg /l. DOC concentrations depend on temperature, precipitation and discharge. The type of crop grown on the lysimeter is an important trigger for DOC leaching - especially lysimeters used as pasture, or planted with rape and carrots exhibit high DOC concentrations. Management practices and fertilizer application modify the leaching of DOC and offer potentials to reduce DOC losses. The results form the basis of further process simulation studies and upscaling of the results to the small catchment scale.

  17. Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages.

    PubMed

    Talwana, Herbert; Sibanda, Zibusiso; Wanjohi, Waceke; Kimenju, Wangai; Luambano-Nyoni, Nessie; Massawe, Cornel; Manzanilla-López, Rosa H; Davies, Keith G; Hunt, David J; Sikora, Richard A; Coyne, Danny L; Gowen, Simon R; Kerry, Brian R

    2016-02-01

    By 2050, Africa's population is projected to exceed 2 billion. Africa will have to increase food production more than 50% in the coming 50 years to meet the nutritional requirements of its growing population. Nowhere is the need to increase agricultural productivity more pertinent than in much of Sub-Saharan Africa, where it is currently static or declining. Optimal pest management will be essential, because intensification of any system creates heightened selection pressures for pests. Plant-parasitic nematodes and their damage potential are intertwined with intensified systems and can be an indicator of unsustainable practices. As soil pests, nematodes are commonly overlooked or misdiagnosed, particularly where appropriate expertise and knowledge transfer systems are meager or inadequately funded. Nematode damage to roots results in less efficient root systems that are less able to access nutrients and water, which can produce symptoms typical of water or nutrient deficiency, leading to misdiagnosis of the underlying cause. Damage in subsistence agriculture is exacerbated by growing crops on degraded soils and in areas of low water retention where strong root growth is vital. This review focuses on the current knowledge of economically important nematode pests affecting key crops, nematode control methods and the research and development needs for sustainable management, stakeholder involvement and capacity building in the context of crop security in East and Southern Africa, especially Kenya, Tanzania, Uganda and Zimbabwe.

  18. Gene flow and population structure of a common agricultural wild species (Microtus agrestis) under different land management regimes

    PubMed Central

    Marchi, C; Andersen, L W; Damgaard, C; Olsen, K; Jensen, T S; Loeschcke, V

    2013-01-01

    The impact of landscape structure and land management on dispersal of populations of wild species inhabiting the agricultural landscape was investigated focusing on the field vole (Microtus agrestis) in three different areas in Denmark using molecular genetic markers. The main hypotheses were the following: (i) organic farms act as genetic sources and diversity reservoirs for species living in agricultural areas and (ii) gene flow and genetic structure in the agricultural landscape are influenced by the degree of landscape complexity and connectivity. A total of 443 individual voles were sampled within 2 consecutive years from two agricultural areas and one relatively undisturbed grassland area. As genetic markers, 15 polymorphic microsatellite loci (nuclear markers) and the central part of the cytochrome-b (mitochondrial sequence) were analysed for all samples. The results indicate that management (that is, organic or conventional management) was important for genetic population structure across the landscape, but that landscape structure was the main factor shaping gene flow and genetic diversity. More importantly, the presence of organically managed areas did not act as a genetic reservoir for conventional areas, instead the most important predictor of effective population size was the amount of unmanaged available habitat (core area). The relatively undisturbed natural area showed a lower level of genetic structuring and genetic diversity compared with the two agricultural areas. These findings altogether suggest that political decisions for supporting wildlife friendly land management should take into account both management and landscape structure factors. PMID:23900396

  19. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    NASA Astrophysics Data System (ADS)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  20. MyAgRecord: An Online Career Portfolio Management Tool for High School Students Conducting Supervised Agricultural Experience Programs.

    ERIC Educational Resources Information Center

    Emis, Larry; Dillingham, John

    Texas's online career portfolio management tool for high school students participating in supervised agricultural experience programs (SAEPs) was developed in 1998 by a committee of Texas high school teachers of agriscience and Texas Education Agency personnel. The career portfolio management tool reflects General Accepted Accounting Principles…

  1. REMOTE SENSING, VISUALIZATION AND DECISION SUPPORT FOR WATERSHED MANAGEMENT AND SUSTAINABLE AGRICULTURE

    EPA Science Inventory

    The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...

  2. REMOTE SENSING, VISUALIZATION AND DECISION SUPPORT FOR WATERSHED MANAGEMENT AND SUSTAINABLE AGRICULTURE

    EPA Science Inventory

    The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...

  3. Integrating modal-based NDE techniques and bridge management systems using quality management

    NASA Astrophysics Data System (ADS)

    Sikorsky, Charles S.

    1997-05-01

    The intent of bridge management systems is to help engineers and managers determine when and where to spend bridge funds such that commerce and the motoring public needs are satisfied. A major shortcoming which states are experiencing is the NBIS data available is insufficient to perform certain functions required by new bridge management systems, such as modeling bridge deterioration and predicting costs. This paper will investigate how modal based nondestructive damage evaluation techniques can be integrated into bridge management using quality management principles. First, quality from the manufacturing perspective will be summarized. Next, the implementation of quality management in design and construction will be reinterpreted for bridge management. Based on this, a theory of approach will be formulated to improve the productivity of a highway transportation system.

  4. Review of anthraquinone applications for pest management and agricultural crop protection.

    PubMed

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  5. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  6. Incorporating representation of agricultural ecosystems and management within a dynamic biosphere model: Approach, validation, and significance

    NASA Astrophysics Data System (ADS)

    Kucharik, C.

    2004-12-01

    At the scale of individual fields, crop models have long been used to examine the interactions between soils, vegetation, the atmosphere and human management, using varied levels of numerical sophistication. While previous efforts have contributed significantly towards the advancement of modeling tools, the models themselves are not typically applied across larger continental scales due to a lack of crucial data. Furthermore, many times crop models are used to study a single quantity, process, or cycle in isolation, limiting their value in considering the important tradeoffs between competing ecosystem services such as food production, water quality, and sequestered carbon. In response to the need for a more integrated agricultural modeling approach across the continental scale, an updated agricultural version of a dynamic biosphere model (IBIS) now integrates representations of land-surface physics and soil physics, canopy physiology, terrestrial carbon and nitrogen balance, crop phenology, solute transport, and farm management into a single framework. This version of the IBIS model (Agro-IBIS) uses a short 20 to 60-minute timestep to simulate the rapid exchange of energy, carbon, water, and momentum between soils, vegetative canopies, and the atmosphere. The model can be driven either by site-specific meteorological data or by gridded climate datasets. Mechanistic crop models for corn, soybean, and wheat use physiologically-based representations of leaf photosynthesis, stomatal conductance, and plant respiration. Model validation has been performed using a variety of temporal scale data collected at the following spatial scales: (1) the precision-agriculture scale (5 m), (2) the individual field experiment scale (AmeriFlux), and (3) regional and continental scales using annual USDA county-level yield data and monthly satellite (AVHRR) observations of vegetation characteristics at 0.5 degree resolution. To date, the model has been used with great success to

  7. United States Department of Agriculture-Agriculture Research Service research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae).

    PubMed

    Lax, Alan R; Osbrink, Weste L A

    2003-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki is currently one of the most destructive pests in the USA. It is estimated to cost consumers over US dollars 1 billion annually for preventative and remedial treatment and to repair damage caused by this insect. The mission of the Formosan Subterranean Termite Research Unit of the Agricultural Research Service is to demonstrate the most effective existing termite management technologies, integrate them into effective management systems, and provide fundamental problem-solving research for long-term, safe, effective and environmentally friendly new technologies. This article describes the epidemiology of the pest and highlights the research accomplished by the Agricultural Research Service on area-wide management of the termite and fundamental research on its biology that might provide the basis for future management technologies. Fundamental areas that are receiving attention are termite detection, termite colony development, nutrition and foraging, and the search for biological control agents. Other fertile areas include understanding termite symbionts that may provide an additional target for control. Area-wide management of the termite by using population suppression rather than protection of individual structures has been successful; however, much remains to be done to provide long-term sustainable population control. An educational component of the program has provided reliable information to homeowners and pest-control operators that should help slow the spread of this organism and allow rapid intervention in those areas which it infests.

  8. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales.

    PubMed

    Chowdhury, Rubel Biswas; Chakraborty, Priyanka

    2016-08-01

    Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.

  9. Climate change and agricultural risk management: the role of the family-farm characteristics

    NASA Astrophysics Data System (ADS)

    Quaranta, G.; Salvia, R.

    2009-04-01

    During recent years, water-related anomalies (drought, water scarcity, flood) have become a common occurrence in most areas and especially in the arid and semiarid regions of Mediterranean areas. There are evidences of increasing inter-annual variability, as increasing deviation from the long-term mean. This could be the main reason for the increasing incidence of drought, rather than any decline in long-term rainfall, also if a decrease of total amount of water is expected by the IPCC scenarios. Another reason for increasing drought and water scarcity conditions is growing demand for water needed by different productive sectors. These anomalies greatly increase the uncertainties of the agricultural sector affecting performance and management and leading to substantial augment in agricultural risk and destabilization of farm incomes. Agricultural adaptation to drought and climate change at the farm level as well as changes in activity level strongly depend on the technological potential (different varieties of crops, irrigation technologies); soil, water, and biological response; and the capability of farmers to detect changes and undertake any necessary actions as result of perception of the problem and capacity/willingness to react. Farm characteristics (size, technological level and other characteristics) and the social economic features of the family running those farms (number of components, age, education level, etc) act as important variables influencing, at farm level, the capacity and rate of adaptation/mitigation options implementation. The ability or inability to avoid/react from a risk could be interpreted as a social resilience of an area, deriving mainly from its socio-demographic features. The shift from a paradigm mainly focuses upon the physical agents in the natural or human-modified environment, which cause a threat to society, to a new approach where the social, economical and political conditions are overcoming and gaining importance in the

  10. Contrasting perceptions of anthropogenic coastal agricultural landscape meanings and management in Italy and Canada

    NASA Astrophysics Data System (ADS)

    Targetti, Stefano; Sherren, Kate; Raggi, Meri; Viaggi, Davide

    2016-04-01

    The Anthropocene concept entails the idea that humans have become the most influential driving factor on the environment. In this context, it is useful to get insights from coastal areas that are affected by a huge impact of human activities in shaping the territory, are prone to several threats linked with climate change, and featured by interlinked economic, cultural and social systems. We compare evidence from three different methods focusing on the perceptions of coastal agricultural landscapes: i) a survey focusing on residents' perceptions of local rural landscape elements; ii) an expert-elicitation multicriteria exercise (Analytic Network Process) focusing on the relationship between economic actors, ecosystem services and local competitiveness; and iii) a Q-methodology survey to identify public discourses concerning management alternatives. The methods were applied in two coastal case studies characterized by land drainage, shoreline barriers and coastal armoring that represent high cultural heritage; created by humans they rely on active management to persist. Moreover, in both the case studies concerns have been raised about the role of agriculture in the rural development context and the perspectives of local stakeholders towards the management of the reclaimed lands. The first area is located on the southern side of the Po River Delta (Emilia Romagna, Italy). The area was reclaimed during the 19th and 20th centuries for agricultural production and is now characterized by intensive agriculture in the hinterlands, an urbanised coastal area with a developed tourism sector, and the presence of remnant wetlands which are mostly included in the Po Delta Natural Park (covering around 30% of the case study). The second area is located in the dykelands of the Bay of Fundy (Nova Scotia, Canada) whose origins go back to the 17th Century when French settlers built the first dykes to reclaim salt marshes for farmland. While some are still farmed, a range of

  11. Hemostatic Techniques for Laparoscopic Management of Cornual Pregnancy: Double-Impact Devascularization Technique.

    PubMed

    Afifi, Yousri; Mahmud, Ayesha; Fatma, Alfia

    2016-02-01

    Cornual pregnancy is a rare form of ectopic pregnancy, accounting for up to 2% to 4% of all ectopic pregnancies, with a mortality range of 2.0% to 2.5%. Hemorrhage is a key concern in the management of such pregnancies. Traditional treatment options include a conservative approach, failing which patients are offered surgical options such as cornual resection at laparotomy, which carries a high risk of hysterectomy. In recent years newer laparoscopic cornual resection or cornuotomy techniques have been used successfully to achieve better outcomes with fewer complications. We present the double-impact devascularization (DID) technique for laparoscopic management of cornual ectopic pregnancies. This technique permits hemostatic control by compression effect, which in turn allows reduction in procedure-related patient morbidity and mortality. We also provide an overview of other reported methods of hemostatic control used in similar laparoscopic procedures. DID appears to be a useful, safe, minimally invasive technique that can be used in both laparoscopic and open surgical procedures.

  12. Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management.

    PubMed

    Fox, Anthony D; Elmberg, Johan; Tombre, Ingunn M; Hessel, Rebecca

    2017-05-01

    been demonstrated convincingly, nor do waterfowl faeces deter grazing stock, but where consumption of crops evidently reduces yields this causes conflict with farmers. Studies show that it is difficult and expensive to assess the precise impacts of waterfowl feeding on yield loss because of other sources of variation. However, less damage has been documented from winter grazing compared to spring grazing and yield loss after spring grazing on grassland appears more pronounced than losses on cereal fields. Although yield losses at national scales are trivial, individual farmers in areas of greatest waterfowl feeding concentrations suffer disproportionately, necessitating improved solutions to conflict. Accordingly, we review the efficacy of population management, disturbance, provision of alternative feeding areas, compensation and large-scale stakeholder involvement and co-management as options for resolving conflict based on the existing literature and present a framework of management advice for the future. We conclude with an assessment of the research needs for the immediate future to inform policy development, improve management of waterfowl populations and reduce conflict with agriculture. © 2016 Cambridge Philosophical Society.

  13. Biochar application to sandy and loamy soils for agricultural nutrient management

    NASA Astrophysics Data System (ADS)

    Gronwald, Marco; Don, Axel; Tiemeyer, Baerbel; Helfrich, Mirjam

    2014-05-01

    -retention and hydrochar was effective in cation-retention. The experiments provide first information on the uses of biochar for soil nutrient management in agriculture but observed effects were mostly minor under realistic char application rates. [1] LIANG ET AL. 2006: Black Carbon increases cation exchange capacity in soils. SSAJ 70, 1719-1730. [2] LEHMANN ET AL. 2009: Biochar for Environmental Management - Science and Technology. 1 An Introduction, 1. [3] YAO ET AL. 2012: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467-1471. [4] MUKHERJEE & ZIMMERMANN, 2011: Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247-255. [5] QIAN ET AL. 2013: Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere 93, 2069-2075.

  14. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  15. Mitigating agricultural impacts on groundwater using distributed managed aquifer recharge ponds

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Russo, T. A.; Fisher, A. T.; Racz, A. J.; Wheat, C. G.; Los Huertos, M.; Lockwood, B. S.

    2010-12-01

    Groundwater is likely to become increasingly important for irrigated agriculture due to anticipated changes to the hydrologic cycle associated with climate change. Protecting the quantity and quality of subsurface water supplies will require flexible management strategies that can enhance groundwater recharge. We present results from a study of managed aquifer recharge (MAR) in central coastal California, and propose the use of distributed, small-scale (1-5 ha) MAR systems to improve the quantity and quality of recharge in agricultural basins. Our field site is located in a basin where the primary use of groundwater is irrigation for agriculture, and groundwater resources are increasingly threatened by seawater intrusion and nutrient contamination from fertilizer application. The MAR system we are monitoring is supplied by stormwater and irrigation runoff of variable quality, which is diverted from a wetland during periods of high flow. This MAR system delivers approximately 1x106 m3 of recharge annually to the underlying aquifer, a portion of which is recovered and distributed to growers during the dry season. Our sampling and measurements (at high spatial and temporal resolution) show that a significant percentage of the nitrogen load added during MAR operation is eliminated from recharge during shallow infiltration (~30% to 60%, ~40 kg NO3-N/d). Isotopic analyses of the residual nitrate indicate that a significant fraction of the nitrate load reduction is attributable to denitrification. When normalized to infiltration pond area, this system achieves a mean load reduction of 7 kg NO3-N/d/ha, which compares favorably with the nitrogen load reduction efficiency achieved by treatment wetlands receiving agricultural runoff. Much of the reduction in nitrogen load occurs during periods of rapid infiltration (0.2 to 2.0 m/day), as demonstrated with point measurements of infiltration rate collocated with fluid samples. These results suggest that developing a network of

  16. Taxonomical and functional microbial responses to agriculture management of Amazon forest soils

    NASA Astrophysics Data System (ADS)

    Kuramae, Eiko; Navarrete, Acácio; Mendes, Lucas; de Hollander, Mattias; van Veen, Johannes; Tsai, Siu

    2013-04-01

    Land-use change is one of the greatest threats to biodiversity worldwide, and one of the most devastating changes in the use of land, especially in the tropics, is the conversion of forest to crop lands. Southeast Amazon region is considered the largest agricultural frontier in the world, where native forests are converted into soybean crop fields, a fact that highlights the social and economic importance of this system to Brazil. This study firstly, focused on the impact of land-use changes and agriculture management of Amazon forest soils on the size and composition of the acidobacterial community. Taxon-specific quantitative real-time PCR (qPCR) and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from croplands, adjacent native forests and rhizosphere of soybean. Based on qPCR measurements, Acidobacteria accounted for 23%, 18% and 14% of the total bacterial signal in forest soils, cropland soils and soybean rhizosphere samples, respectively. From the sequences of Bacteria domain, the phylum Acidobacteria represented 28%, 16% and 17% of the sequences from forest soils, cropland soils and soybean rhizosphere samples, respectively. Acidobacteria subgroups 2-8, 10, 11, 13, 17, 18, 22 and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6 and 7 were significantly higher in cropland soils than in forest soils, which subgroups respond to decrease of soil Aluminium. Subgroups 6 and 7 respond to high content of soil Ca, Mg, Zn, P, Fe, Mn and B. The results showed differential response of the Acidobacteria subgroups to abiotic soil factors, and indicated acidobacterial subgroups as potential early-warning bio-indicators of agricultural soil management effects in the Amazon area. Secondly, using 454 pyrosequencing, we investigated the metabolic diversity of microbial communities colonizing the rhizosphere and the bulk soil associated to soybean. The rhizosphere presented an overrepresentation of

  17. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources.

  18. Assessing the mitigation potential of agricultural systems by optimization of the agricultural management: A modeling study on 8 agricultural observation sites across Europe with the process based model LandscapeDNDC

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Haas, Edwin; Klatt, Steffen; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus

    2014-05-01

    The use of mineral nitrogen (N) fertilizers increase crop yields but cause the biggest anthropogenic source of nitrous oxide (N2O) emissions and strongly contribute to surface water eutrophication (e.g. nitrate leaching). The necessity to identify affordable strategies that improve crop production while improving ecosystem services are in continuous debate between policy decision makers and farmers. In this line, a lack commitment from farmers to enforce laws might result in the reduction of benefits. For this reason, farmers should aim to increase crop production and to reduce environmental harm by the adoption of precision climate smart agriculture tools applied to management practices for instance. In this study we present optimized strategies for 8 sites (agricultural and grassland ecosystems) with long term field observation across Europe to show the mitigation potential to reduce reactive nitrogen losses under the constrain of keeping yields at observed levels. LandscapeDNDC simulations of crop yields and associated nitrogen losses (N2O emissions and NO3 leaching) were evaluated against long term field measurements. The sites presented different management regimes including the main commodity crops (maize, wheat, barley, rape seeds, etc) and fertilization amendments (synthetic and organic fertilizers) in Europe. The simulations reproduced the observed yields, captured N2O emissions and NO3 leaching losses with high statistical presicion (r2), acurrency (ME) and agreement (RMSPEn). The mitigation potentials to reduce N losses while keeping yields at observed levels for all 8 sites were assesed by Monte Carlo optimizations of the individual underlying multi year agricultural management options (timings of planting and harvest, fertilization & manure applications and rates, residues management). In this study we present for all 8 agricultural observations sites their individual mitigation potentials to reduce N losses for multi year rotations. The conclusions

  19. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  20. A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture.

    PubMed

    Li, Dejun; Watson, Catherine J; Yan, Ming Jia; Lalor, Stan; Rafique, Rashid; Hyde, Bernard; Lanigan, Gary; Richards, Karl G; Holden, Nicholas M; Humphreys, James

    2013-10-15

    Nitrous oxide (N2O) emission from grassland-based agriculture is an important source of atmospheric N2O. It is hence crucial to explore various solutions including farm nitrogen (N) management to mitigate N2O emissions without sacrificing farm profitability and food supply. This paper reviews major N management practices to lower N2O emission from grassland-based agriculture. Restricted grazing by reducing grazing time is an effective way to decrease N2O emissions from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can also decrease N2O emissions from excreta patches. Among the managements of synthetic fertilizer N application, only adjusting fertilizer N rate and slow-released fertilizers are proven to be effective in lowering N2O emissions. Use of bedding materials may increase N2O emissions from animal houses. Manure storage as slurry, manipulating slurry pH to values lower than 6 and storage as solid manure under anaerobic conditions help to reduce N2O emissions during manure storage stage. For manure land application, N2O emissions can be mitigated by reducing manure N inputs to levels that satisfy grass needs. Use of nitrification inhibitors can substantially lower N2O emissions associated with applications of fertilizers and manures and from urine patches. N2O emissions from legume based grasslands are generally lower than fertilizer-based systems. In conclusion, effective measures should be taken at each step during N flow or combined options should be used in order to mitigate N2O emission at the farm level.

  1. Identification and prioritization of management practices to reduce methylmercury exports from wetlands and irrigated agricultural lands.

    PubMed

    McCord, Stephen A; Heim, Wesley A

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  2. LandSoil model application for erosion management in sustainable agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Follain, Stéphane; Raclot, Damien; Le Bissonnais, Yves

    2016-04-01

    Soil erosion and land degradation can lead to irreversible changes and landscape degradation. In order to achieve the sustainability of agricultural landscapes, the land use scenarios might be developed and tested for their erosion mitigation effects. Despite the importance of the long-term scenarios (which are complicated by predictability of climate change in a small scale, its effect on change in soil properties and crops, and the societal behaviour of individual players), the management decision have to be applied already now. Therefore the short-term and medium term scenarios to achieve the most effective soil management and the least soil erosion footprint are necessary to develop. With increasing importance of individual large erosion events, the event-based models, considering soil properties and landscape structures appears to be suitable. The LandSoil model (Ciampalini et al., 2012) - a landscape evolution model operating at the field/small catchment scale, have been applied in order to analyse the effect of different soil erosion mitigation and connectivity management practices in two different Mediterranean catchments. In the soil erosion scenarios the proposed measures targeted soil erosion on field or on catchment scale, and the effect of different extreme events on soil redistribution was evaluated under different spatial designs. Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196). R. Ciampalini, S. Follain, Y. Le Bissonnais, LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution, Geomorphology, 175-176, 2012, 25-37.

  3. An appraisal of policies and institutional frameworks impacting on smallholder agricultural water management in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nyagumbo, I.; Rurinda, J.

    Policies and institutional frameworks associated with and / or impacting on agricultural water management (AWM) in smallholder farming systems in Zimbabwe were analyzed through literature reviews, feedback from stakeholder workshops, key informant interviews and evaluation of policy impacts on implemented case study projects/programmes. The study showed that Zimbabwe has gone a long way towards developing a water management policy addressing both equity and access, through the Water and ZINWA of 1998. However, lack of incentives for improving efficient management and utilization of water resources once water has reached the farm gate was apparent, apart from punitive economic instruments levied on usage of increased volumes of water. For example, the new water reforms of 1998 penalized water savers through loss of any unused water in their permits to other users. In addition, the ability of smallholder farmers to access water for irrigation or other purposes was influenced by macro and micro-economic policies such as Economic Structural and Adjustment Programme (ESAP), Zimbabwe Programme for Economic and Social Transformation (ZIMPREST), prevailing monetary and fiscal policies, as well as the Land and Agrarian Reform policies. For instance, the implementation of ESAP from 1991 to 95 resulted in a decline in government support to management of communal irrigation schemes, and as a result only gravity-fed schemes survived. Also AWM projects/programmes that were in progress were prematurely terminated. While considerable emphasis was placed on rehabilitation of irrigation infrastructure since the fast track land reform in 1998, the policies remained rather silent on strategies for water management in rainfed systems. The piecemeal nature and fragmentation of policies and institutional frameworks scattered across government ministries and sectors were complex and created difficulties for smallholder farmers to access water resources. Poor policy implementation

  4. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    PubMed

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  5. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  6. Osseointegrated implants for auricular defects: operative techniques and complication management.

    PubMed

    Rocke, Daniel J; Tucci, Debara L; Marcus, Jeffrey; McClennen, Jay; Kaylie, David

    2014-10-01

    Auricular defects are challenging to reconstruct with native tissue. We describe operative techniques and complication management for patients undergoing osseointegrated implants for auriculectomy defects and microtia. Tertiary referral center. All patients at Duke University Medical Center with auricular defects treated with osseointegrated implants for prosthetic (OIP) auricles from January 1, 2010, until September 16, 2013. Osseointegrated implantation for auricular defects. Description of operative techniques, complications, and complication management. Sixteen patients met inclusion criteria. Five patients had microtia and atresia. Two of these patients had bilateral microtia and atresia and underwent bilateral simultaneous implantation of both OIP and osseointegrated hearing implants (OHIs). Two other microtia/atresia patients underwent simultaneous unilateral OIP and OHI. Eleven patients had unilateral defects from either trauma or skin cancer resection. Three patients received adjuvant radiation before implantation. Complications included tissue overgrowth requiring revision surgery (two patients), inadequate bone stock requiring split calvarial bone graft and later implantation, loss of implant secondary to osteoradionecrosis requiring hyperbaric oxygen therapy, and skin infection requiring antibiotic therapy. Reconstruction of auriculectomy defects and microtia is difficult to accomplish using native tissue. Complications are common, and these complications can have devastating consequences on the final result. Osseointegrated implantation offers an outstanding alternative for reconstructing these defects. We describe our multidisciplinary team approach, examine operative techniques, and focus on the unique challenges of simultaneous and bilateral simultaneous OIP and OHI implantation.

  7. Optimal Management of Nitrate Pollution of Groundwater in Agricultural Watersheds Considering Environmental and Economic Constraints

    NASA Astrophysics Data System (ADS)

    Almasri, M. N.; Kaluarachchi, J. J.

    2007-05-01

    Groundwater pollution due to nitrogen species from various land use activities and practices is a common concern in most agricultural watersheds. Minimization of nonpoint source nitrogen pollution can be achieved by appropriate changes to land use practices to the extent of not affecting local economies that depend heavily on agricultural activities. Most prior research work focused on predicting nitrogen loading and/or fate and transport of nitrate in groundwater due to various agricultural activities. In this work, however, we propose to present a broad integrated methodology for the optimal management of nitrate contamination of ground water combining environmental assessment and economic cost evaluation through multi-criteria decision analysis. The proposed methodology incorporates an integrated physical modeling framework accounting for on-ground nitrogen loading and losses, soil nitrogen dynamics, and fate and transport of nitrate in ground water to compute the sustainable on-ground nitrogen loading such that the maximum contaminant level is not violated. A number of protection alternatives to stipulate the predicted sustainable on-ground nitrogen loading are evaluated using the decision analysis that employs the importance order of criteria approach for ranking and selection of the protection alternatives. The methodology was successfully demonstrated for the Sumas-Blaine aquifer in Washington State. The results showed the importance of using this integrated approach that predicts the sustainable on-ground nitrogen loadings and provides an insight to the economic consequences generated in satisfying the environmental constraints. The results also show that the proposed decision analysis framework, within certain limitation, is effective when selecting alternatives with competing demands.

  8. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    PubMed

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production.

  9. Technique for the Laparoscopic Management of a Cornual Ectopic Pregnancy.

    PubMed

    Mahmoud, Mohamad S

    2016-01-01

    To describe a technique for the laparoscopic management of a cornual ectopic pregnancy. Step-by-step explanation of the procedure using video (Canadian Task Force classification III). Cornual pregnancy is a rare form of ectopic pregnancy, accounting for up to 2% to 4% of all ectopic pregnancies, with a mortality range of 2.0% to 2.5%, and this accounts for 20% of all deaths caused by ectopic pregnancies. Both medical and surgical treatments have been reported. Although laparotomy hysterectomy and cornuectomy used to be the preferred surgical approaches, more cornual ectopic pregnancies are being managed with the laparoscopic approach through cornuostomy or cornuectomy in recent years. The main concern with surgical treatment is hemorrhage and the need for cornual reconstruction, which necessitate advanced laparoscopic skills and technique. In this video, we describe our technique for the treatment of a cornual ectopic pregnancy. We present the case of a 21-year-old G3P2002 (gravida 3 para 2002) with the finding of a right live cornual ectopic pregnancy with gestational age of 6 weeks on pelvic ultrasound along with an elevated human chorionic gonadotropin level at 7,192 and right pelvic pain. After counseling regarding treatment options, the patient agreed with proceeding with surgery and underwent a laparoscopic right cornuectomy. Her surgery was uneventful, and she was discharged home a few hours after surgery. She was completely recovered at her postoperative follow-up visit. Her serial serum human chorionic gonadotropin levels were followed until complete resolution a few weeks later. Laparoscopic cornuectomy is a safe and effective procedure for the management of cornual ectopic pregnancy. The use of hemostatic agents and suturing can help prevent hemorrhage and allows a safe removal of the ectopic pregnancy and repair of the uterine defect created. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  10. Mobility management techniques for the next-generation wireless networks

    NASA Astrophysics Data System (ADS)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  11. Growth Management and Agriculture: An Examination of Local Efforts to Manage Growth and Preserve Farmland in Wisconsin Cities, Villages, and Towns

    ERIC Educational Resources Information Center

    Diaz, Daniel; Green, Gary Paul

    2001-01-01

    In this paper we examine the effectiveness of growth management policies in Wisconsin cities, villages, and towns. Unlike most other studies, we consider the impact of growth management policies on agriculture, specifically the preservation of farmland, in addition to population growth. Our analysis examines these relationships separately in towns…

  12. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    USDA-ARS?s Scientific Manuscript database

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  13. Application of fisheries-management techniques to assessing impacts

    SciTech Connect

    McKenzie, D.H.; Simmons, M.A.; Skalski, J.R.

    1983-01-01

    Monitoring methods used in fisheries-management assessments were examined and their potential applicability in confirmatory impact monitoring were evaluated using case studies from selected nuclear power plants. A report on Task I of the project examined the application of Catch-Per-Unit-Effort (CPUE) techniques in monitoring programs at riverine, large lake and ocean sites. Included in this final report is an examination of CPUE data for the Oconee Nuclear Plant on Lake Keowee, a reservoir site. This report also presents a summary of results obtained over the life of the project and guidelines for designing and implementing data collection programs and for data analysis and interpretation. Analysis of monitoring data from Lake Keowee confirmed findings from previous analyses of surveys at nuclear power plants on large lakes, rivers and coastal sites. CPUE techniques as applied to these monitoring programs do not provide data necessary to separate changes induced by plant operation from naturally occurring changes.

  14. Pneumonectomy in the mouse: technique and perioperative management.

    PubMed

    Sakurai, Maromi K; Greene, Arin K; Wilson, Jay; Fauza, Dario; Puder, Mark

    2005-01-01

    Thoracic surgery in mice is challenging due to difficult intubation and ventilation, lack of intravenous access, and the risk of hemorrhage. We developed a rapid and safe technique for murine unilateral pneumonectomy in order to study compensatory lung growth. Under general anesthesia, 81 mice were intubated with an angiocatheter using a 2.7-mm, 0-degree endoscope. A left thoracotomy was performed. The lung was gently extracted from the thoracic cavity, ligated at the hilum, and resected. Postoperatively, warming lights and subcutaneous saline injections were used to ensure minimal morbidity. The survival rate for the scope-assisted intubation and pneumonectomy was 88%. Perioperative mortality was due to technical error. Minimal long-term morbidity was appreciated. This general operative technique and perioperative management may be applied to all types of murine thoracic procedures used for surgical research.

  15. An improved coding technique for image encryption and key management

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Ma, Jie; Hu, Jiasheng

    2005-02-01

    An improved chaotic algorithm for image encryption on the basis of conventional chaotic encryption algorithm is proposed. Two keys are presented in our technique. One is called private key, which is fixed and protected in the system. The other is named assistant key, which is public and transferred with the encrypted image together. For different original image, different assistant key should be chosen so that one could get different encrypted key. The updated encryption algorithm not only can resist a known-plaintext attack, but also offers an effective solution for key management. The analyses and the computer simulations show that the security is improved greatly, and can be easily realized with hardware.

  16. Surgical management of abdominal compartment syndrome; indications and techniques

    PubMed Central

    Leppäniemi, Ari

    2009-01-01

    The indications for surgical decompression of abdominal compartment syndrome (ACS) are not clearly defined, but undoubtedly some patients benefit from it. In patients without recent abdominal incisions, it can be achieved with full-thickness laparostomy (either midline, or transverse subcostal) or through a subcutaneous linea alba fasciotomy. In spite of the improvement in physiological variables and significant decrease in IAP, however, the effects of surgical decompression on organ function and outcome are less clear. Because of the significant morbidity associated with surgical decompression and the management of the ensuing open abdomen, more research is needed to better define the appropriate indications and techniques for surgical intervention. PMID:19366442

  17. Current techniques in the management of cervical myelopathy and radiculopathy.

    PubMed

    Gerard, Carter S; O'Toole, John E

    2014-04-01

    Posterior decompressive procedures are a fundamental component of the surgical treatment of symptomatic cervical degenerative disease. Posterior approaches have the appeal of avoiding complications associated with anterior approaches such as esophageal injury, recurrent laryngeal nerve paralysis, dysphagia, and adjacent-level disease after fusion. Although open procedures are effective, the extensive subperiosteal stripping of the paraspinal musculature leads to increased blood loss, longer hospital stays, and more postoperative pain, and potentially contributes to instability. Minimally invasive access has been developed to limit approach-related morbidity. This article reviews current techniques in minimally invasive surgical management of cervical myelopathy and radiculopathy.

  18. Management strategies for agricultural biotechnology in small countries. A case study of Israel.

    PubMed

    Shalhevet, S; Haruvy, N; Spharim, I

    2001-11-01

    Agricultural biotechnology is concentrated in four major countries. This paper suggests strategies for developing it in small countries, based on analysis of the world trends and the characteristics of small countries. Israel is presented as a specific case study. The main relevant trends are domination by big companies, consumer concerns on genetically modified foods, and focusing on consumer benefits and specific market niches. Small countries' disadvantages include companies that are too small to benefit fully from research, difficulty in raising funds, lack of infrastructures and experienced management personnel, and public sector research organizations that are unsuitable for commercializing research. The recommended strategies include: developing a large number of low-volume products and small market niches, forming partnerships with intermediaries (such as food companies), specializing in intermediate products (such as the seed or the gene patent), and conducting market research and cost-benefit analysis in advance. Additional strategies include developing benefits that are unique to genetically modified foods and focusing on benefits specifically for consumers who accept genetically modified foods, rather than on benefits for the average consumer. A national representative organization could buy and rent out expensive equipment, finance specific projects in return for the commercial rights, and perform collective marketing research and marketing. Israel has the advantages of a successful agricultural sector and complementary scientific research, and should focus on those fruits, vegetables, and flowers for which it already has the experience and infrastructure.

  19. Agroforestry-based management of salt-affected croplands in irrigated agricultural landscape in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Khamzina, Asia; Kumar, Navneet; Heng, Lee

    2017-04-01

    In the lower Amu Darya River Basin, the decades of intensive irrigation led to elevated groundwater tables, resulting in ubiquitous soil salinization and adverse impact on crop production. Field-scale afforestation trials and farm-scale economic analyses in the Khorezm region have determined that afforestation can be an environmentally and financially attractive land-use option for degraded croplands because it combines a diversified agricultural production, carbon sequestration, an improved soil health and minimizes the use of irrigation water. We examined prospects for upscaling afforestation activity for regional land-use planning considering prevailing constraints in irrigated agriculture landscape. Assessment of salinity-induced cropland productivity decline using satellite imagery of multiple spatial and temporal resolution revealed that 18-38% of the marginally productive or abandoned cropland might be considered for conversion to agroforestry. Furthermore, a regional-scale water balance suggests that most of these marginal croplands are characterized by sufficient surface water supplies for irrigating the newly planted saplings, before they are able to rely on the groundwater alone. However, the 10-year monitoring of soil salt dynamics in the afforestation trials reveals increasing salinity levels due to the salt exclusion from the root water uptake by the trees. Further study focuses on enhancing long-term sustainability of afforestation as a management option for highly saline lands by examining salt tolerance of candidate species using 13C isotopic signature as the indicator of water and salt stress, salt leaching needs and implications for regional scale planning.

  20. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    PubMed

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  1. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  2. Post-processing GCM daily rainfall and temperature forecasts for applications in water management and agriculture

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Wang, Qj; Everingham, Yvette; Zhao, Tongtiegang

    2017-04-01

    Ensemble time series forecasts of rainfall and temperature up to six months ahead are sought for applications in water management and agricultural production. Raw GCM forecasts are generally not suitable for direct use in hydrological models or agricultural production simulators and must be post-processed first, to ensure they are reliable, as skilful as possible, and have realistic temporal patterns. In this study, we test two post-processing approaches to produce daily forecasts for cropping regions and water supply catchments in Australia. In the first approach, we apply the calibration, bridging and merging (CBaM) method to produce statistically reliable monthly forecasts based on GCM outputs of rainfall, temperature and sea surface temperatures. We then disaggregate the monthly forecasts to obtain realistic daily time series forecasts that can be used as inputs to crop and hydrological models. In the second approach, we develop a method for directly post-processing daily GCM forecasts using a Bayesian joint probability (BJP) model. We demonstrate and evaluate the two approaches through a case study for the Tully sugar region in north-eastern Australia. The daily post-processed forecasts will benefit applications in streamflow forecasting and crop yield forecasting.

  3. The Role Of Management Of The Field-Forest Boundary In Poland's Process Of Agricultural Restructuring

    NASA Astrophysics Data System (ADS)

    Woch, Franciszek; Borek, Robert

    2015-01-01

    The aim of the work described here has been to point to the relationships between the field-forest boundary and crop productivity as regards the present agrarian land-use structure in Poland, and to provide new opportunities for arranging the agrarian process and the spatial planning of the rural landscape in the context of the sustainable shaping of the field-forest boundary. Impacts of forests and woodlands on crop productivity have been assessed using available data from relevant Polish literature. An assessment of the plot-distribution pattern characterising farms in Poland was made on the basis of reference data from the Agency for the Restructuring and Modernisation of Agriculture. Finally, the possibility of afforestation of agricultural land has been evaluated within the existing legal framework, and on the basis of available data, with attention paid to the need to include organization of the field-forest boundary within the comprehensive management and planning of rural areas, and to preserve woody elements in patchy landscapes. This all creates an opportunity to test innovative approaches to integrated land use which combines the creation of public goods and local products based on participatory learning processes that bring in local stakeholders and decision-makers.

  4. Botulinum toxin injection techniques for the management of adult spasticity.

    PubMed

    Walker, Heather W; Lee, Michael Y; Bahroo, Laxman B; Hedera, Peter; Charles, David

    2015-04-01

    Spasticity is often experienced by individuals with injury or illness of the central nervous system from etiologies such as stroke, spinal cord injury, brain injury, multiple sclerosis, or other neurologic conditions. Although spasticity may provide benefits in some patients, it more often leads to complications negatively impacting the patient. Nonpharmacologic treatment options often do not provide long-term reduction of spasticity, and systemic interventions, such as oral medications, can have intolerable side effects. The use of botulinum neurotoxin injections is one option for management of focal spasticity. Several localization techniques are available to physicians that allow for identification of the selected target muscles. These methods include anatomic localization in isolation or in conjunction with electromyography guidance, electrical stimulation guidance, or ultrasound guidance. This article will focus on further description of each of these techniques in relation to the treatment of adult spasticity and will discuss the advantages and disadvantages of each technique, as well as review the literature comparing the techniques. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Potential effect of No-till management on carbon in the agricultural soils of the former Soviet Union

    SciTech Connect

    Gaston, G.G.; Kolchugina, T.; Vinson, T.S.

    1993-01-01

    Agricultural soils act as both a source and a sink for atmospheric carbon. Since the onset of cultivation, the 211.5 million ha of agricultural soils in the former Soviet Union (FSU) have lost 10.2 Gt of carbon. No-till management represents a promising option to increase the amount of carbon sequestered in the agricultural soil of the FSU. No-till management reduces erosion and sequesters additional carbon in the soil by lowering the soil temperature and raising soil moisture. To determine the carbon sequestered under no-till management, a data base containing precultivation estimates of soil carbon for the seven major classes of soil found in the agricultural areas of the FSU was used to establish an equilibrium carbon content for each soil. Other published data provided a method to quantify the change in soil carbon brought about by converting to no-till management. Soils suitable for no-till management were analyzed and estimates of changes in carbon storage were made. No-till management is not suitable in areas where crop production is limited by cold, wet soils. (Copyright (c) 1993 Elsevier Science Publishers B.V.)

  6. Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci

    PubMed Central

    Denholm, I.

    1998-01-01

    For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high-value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance-management strategies implemented on cotton in Israel, and subsequently in south-western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest-management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.

  7. Predicting Agricultural Management Influence on Long-Term Soil Organic Carbon Dynamics: Implications for Biofuel Production

    SciTech Connect

    Gollany, H. T.; Rickman, R. W.; Albrecht, S. L.; Liang, Y.; Kang, Shujiang; Machado, S.

    2011-01-01

    Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1 19 C), precipitation (402 973 mm), and SOC (5.89 33.58 g SOC kg 1) at the LTE sites were significantly related (r 2 = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks

  8. Development of the Land-use and Agricultural Management Practice web-Service (LAMPS) for generating crop rotations in space and time

    USDA-ARS?s Scientific Manuscript database

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The Land-use and Agricultural Management Practices web-Service (LAMPS) provides crop rotation and management information for user-specified areas within...

  9. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  10. Nitrous oxide emissions from agricultural landscapes: quantification tools, policy development, and opportunities for improved management

    NASA Astrophysics Data System (ADS)

    Tonitto, C.; Gurwick, N. P.

    2012-12-01

    Policy initiatives to reduce greenhouse gas emissions (GHG) have promoted the development of agricultural management protocols to increase SOC storage and reduce GHG emissions. We review approaches for quantifying N2O flux from agricultural landscapes. We summarize the temporal and spatial extent of observations across representative soil classes, climate zones, cropping systems, and management scenarios. We review applications of simulation and empirical modeling approaches and compare validation outcomes across modeling tools. Subsequently, we review current model application in agricultural management protocols. In particular, we compare approaches adapted for compliance with the California Global Warming Solutions Act, the Alberta Climate Change and Emissions Management Act, and by the American Carbon Registry. In the absence of regional data to drive model development, policies that require GHG quantification often use simple empirical models based on highly aggregated data of N2O flux as a function of applied N - Tier 1 models according to IPCC categorization. As participants in development of protocols that could be used in carbon offset markets, we observed that stakeholders outside of the biogeochemistry community favored outcomes from simulation modeling (Tier 3) rather than empirical modeling (Tier 2). In contrast, scientific advisors were more accepting of outcomes based on statistical approaches that rely on local observations, and their views sometimes swayed policy practitioners over the course of policy development. Both Tier 2 and Tier 3 approaches have been implemented in current policy development, and it is important that the strengths and limitations of both approaches, in the face of available data, be well-understood by those drafting and adopting policies and protocols. The reliability of all models is contingent on sufficient observations for model development and validation. Simulation models applied without site-calibration generally

  11. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014.

  12. Applying Realtime Intelligence Acquisition Techniques To Problems In Resource Management

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1989-02-01

    Most people see little similarity between a battlefield manager and a natural resource manager. However, except for the element of time, many striking similarities may be drawn. Indeed, there are more differences between the tranquil scenes of mountain scenery, forests, rivers or grasslands and bomb scarred battlefields where survival is often the prime objective. The similarities center around the basic need for information upon which good decisions may be made. Both managers of battlefields and of natural resources require accurate, timely, and continuous information about changing conditions. Based on this information, they each make decisions to conserve the materials and resources under their charge. Their common goal is to serve the needs of the people in their society. On the one hand, the goal is victory in battle to perpetuate a way of life or a political system. On the other, the goal is victory in an ongoing battle against fire, insects, disease, soil erosion, vandalism, theft, and misuse in general. Here, a desire to maintain natural resources in a productive and healthy condition prevails. The objective of the natural resource manager is to keep natural resources in such a condition that they will continue to meet the needs and wants of the people who claim them for their common good. In this paper, the different needs for information are compared and a little history of some of the quasi-military aspects of resource management is given. Needs for information are compared and current uses of data acquisition techniques are reviewed. Similarities and differences are discussed and future opportunities for cooperation in data acquisition are outlined.

  13. Variability of Total Below Ground Carbon Allocation amongst Common Agricultural Land Management Practices: a Case Study

    NASA Astrophysics Data System (ADS)

    Wacha, K. M.; Papanicolaou, T.; Wilson, C. G.

    2010-12-01

    Field measurements and numerical models are currently being used to estimate quantities of Total Belowground Carbon Allocation (TBCA) for three representative land uses, viz. corn, soybeans, and prairie bromegrass for CRP (Conservation Reserve Program) of an agricultural Iowa sub-watershed, located within the Clear Creek Watershed (CCW). Since it is difficult to measure TBCA directly, a mass balance approach has been implemented to estimate TBCA as follows: TBCA = FS + FE+ Δ(CS + CR + CL) - FA , where the term Fs denotes soil respiration; FE is the carbon content of the eroded/deposited soil; ΔCS, ΔCR, ΔCL denote the changes in carbon content of the mineral soil, plant roots, and litter layer, respectively; and FA is the above ground litter fall of dead plant material to the soil. The terms are hypothesized to have a huge impact on TBCA within agricultural settings due to intensive tillage practices, water-driven soil erosion/deposition, and high usage of fertilizer. To test our hypothesis, field measurements are being performed at the plot scale, replicating common agricultural land management practices. Soil respiration (FS) is being measured with an EGM-4 CO2 Gas Analyzer and SRC-1 Soil Respiration Chamber (PP Systems), soil moisture and temperature are recorded in the top 20 cm for each respective soil respiration measurement, and litter fall rates (FA) are acquired by collecting the residue in a calibrated pan. The change in carbon content of the soil (ΔCS), roots (ΔCR) and litter layer (ΔCL) are being analyzed by collecting soil samples throughout the life cycle of the plant. To determine the term FE for the three representative land management practices, a funnel collection system located at the plot outlet was used for collecting the eroded material after natural rainfall events. Field measurements of TBCA at the plot scale via the mass balance approach are used to calibrate the numerical agronomic process model DAYCENT, which simulates the daily

  14. Overview of Coal Bed Methane Best Management Practices and Mitigation Techniques Using Geospatial Techniques

    NASA Astrophysics Data System (ADS)

    Arthur, J. D.

    2003-12-01

    During the second half of the 1990's, Coalbed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were advancements in Geographical Information System (GIS) technologies generating terra-bytes of new data for the oil & gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to produced water management and impacts to surface and groundwater resources. It is these concerns that have prompted the conceptualization of research sponsored by the U.S. DOE for the development of Best Management Practices (BMP) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of coal bed methane. This has been accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. This paper will provide a summary of coal bed methane best management practices and mitigation strategies as well as the use of an Internet-Based GIS application for geospatial analysis relative coal bed methane development and evaluation of various mitigation techniques and best management practices. Case studies from various basins will be presented and discussed. An update regarding current activities pertaining to ongoing developments of best practices, including produced water beneficial use alternatives, for coal bed methane nationally will be discussed.

  15. Comparison of thermal management techniques for semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Giet, S.; Kemp, A. J.; Burns, D.; Calvez, S.; Dawson, M. D.; Suomalainen, S.; Harkonen, A.; Guina, M.; Okhotnikov, O.; Pessa, M.

    2008-02-01

    Semiconductor Disk Lasers (SDLs) are compact lasers suitable for watt to multi-watt direct generation in the 670- 2350nm waveband and frequency-doubled operation in the ultraviolet and visible regions. This is, however, critically dependent on the thermal management strategy used as, in this type of laser, the pump is absorbed over micrometer lengths and the gain and loss are temperature sensitive. In this paper, we compare the two heat dissipation techniques that have been successfully deployed to-date: the "thin device" approach where the semiconductor active mirror is bonded onto a heatsink and its substrate subsequently removed, and the "heatspreader" technique where a high thermal conductivity platelet is directly bonded onto the active part of the unprocessed epilayer. We show that for SDLs emitting at 1060nm with pump spots of ~80µm diameter, the heatspreader approach outperforms the thin-device alternative, with the best results being obtained with a diamond heatspreader. Indeed, the thermal resistances are measured to be 4.9, 10.4 and 13.0 K/W for diamond-bonded, SiC-bonded and flip-chip devices respectively. It is also observed, as expected, that the thermal management strategy indirectly affects the optimum output coupling and thus the overall performance of these lasers.

  16. Cleft lift procedure for pilonidal disease: technique and perioperative management.

    PubMed

    Favuzza, J; Brand, M; Francescatti, A; Orkin, B

    2015-08-01

    Pilonidal disease is a common condition affecting young patients. It is often disruptive to their lifestyle due to recurrent abscesses or chronic wound drainage. The most common surgical treatment, "cystectomy," removes useful tissue unnecessarily and does not address the etiology of the condition. Herein, we describe the etiology of pilonidal disease and our technique for definitive management of pilonidal disease using the cleft lift procedure. In this paper, we present our method of performing the cleft lift procedure for pilonidal disease including perioperative management and surgical technique. We have used the cleft lift procedure in nearly 200 patients with pilonidal disease, in both primary and salvage procedures settings. It has been equally successful in both settings with a high rate of success. It results in a closed wound with relatively minimal discomfort and straightforward wound care. We have described our current approach to recurrent and complex pilonidal disease using the cleft lift procedure. Once learned, the cleft lift procedure is a straightforward and highly successful solution to a chronic and challenging condition.

  17. Use of clean coal technology by-products as agricultural liming techniques

    SciTech Connect

    Stehouwer, R.C.; Sutton, P.; Dick, W.A.

    1995-03-01

    Dry flue gas desulfurization (FGD) by-products are mixtures of coal fly-ash, anhydrite (CaCO{sub 4}), and unspent lime- or limestone-based sorbent. Dry FGD by-products frequently have neutralizing values greater than 50% CaCO{sub 3} equivalency and thus have potential for neutralizing acidic soils. Owing to the presence of soluble salts and various trace elements, however, soil application of dry FGD by-products may have adverse effects on plant growth and soil quality. The use of a dry FGD by-product as a limestone substitute was investigated in a field study on three acidic agricultural soils (pH 4.6, 4.8, and 5.8) in eastern Ohio. The by-product (60% CaCO{sub 3} equivalency) was applied in September, 1992, at rates of 0, 0.5, 1.0, and 2.0 times the lime requirement of the soils, and alfalfa (Medicago sativa L.) and corn (Zea mays L.) were planted. Soils were sampled immediately after FGD application and three more times every six months thereafter. Samples were analyzed for pH and water soluble concentrations of 28 elements. Soil pH was increased by all FGD rates in the zone of incorporation (0--10 cm), with the highest rates giving a pH slightly above 7. Within one year pH increases could be detected at depths up to 30 cm. Calcium, Mg, and S increased, and Al, Mn, and Fe decreased with increasing dry FGD application rates. No trace element concentrations were changed by dry FGD application except B which was increased in the zone of incorporation. Dry FGD increased alfalfa yield on all three soils, and had no effect on corn yield. No detrimental effects on soil quality were observed.

  18. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk

    2016-07-01

    Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.

  19. Environmental factors and management practices controlling oxygen dynamics in agricultural irrigation ponds in a semiarid Mediterranean region: implications for pond agricultural functions.

    PubMed

    Bonachela, Santiago; Acuña, Rodrigo A; Casas, Jesús

    2007-03-01

    A water quality study was carried out on 40 irrigation ponds located within the main greenhouse areas on the Almería coast, placing special emphasis on the factors controlling the oxygen dynamics, a relevant aspect with agricultural and environmental implications. Considering chemical, physical and biological water characteristics, agricultural irrigation ponds were satisfactorily classified by cluster analysis in four groups. These were congruently arranged by principal components analysis along four main environmental gradients: trophic status, photosynthetic activity, water mineralisation and presence of submerged aquatic vegetation (SAV). Dissolved oxygen (DO) values differed highly among and within each of the four pond groups. DO dynamics was mainly depended on photosynthetic activity, and the environmental factors and management practices controlling it: seasonal and daily climatic changes, pond management (open vs. covered ponds and presence/absence of aquatic vegetation) and trophic status. Overall, different diurnal DO patterns were found between open and covered ponds. The former usually presented DO values above saturation and increasingly higher from early morning to mid-afternoon due to the photosynthetic activity of algae and macrophytic vegetation. In contrast, covered ponds showed relatively stable DO values during the diurnal period regardless of climatic conditions, with absolute values around or below saturation level. Globally, our results suggest that open ponds, with macrophytes concentrated in the deeper layer, can be an effective and sustainable management method of water oxygen enrichment.

  20. The Ecological Areawide Management (TEAM) of leafy spurge program of the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Anderson, Gerald L; Prosser, Chad W; Wendel, Lloyd E; Delfosse, Ernest S; Faust, Robert M

    2003-01-01

    The Ecological Areawide Management (TEAM) of Leafy Spurge program was developed to focus research and control efforts on a single weed, leafy spurge, and demonstrate the effectiveness of a coordinated, biologically based, integrated pest management program (IPM). This was accomplished through partnerships and teamwork that clearly demonstrated the advantages of the biologically based IPM approach. However, the success of regional weed control programs horizontally across several states and provinces also requires a vertical integration of several sectors of society. Awareness and education are the essential elements of vertical integration. Therefore, a substantial effort was made to produce a wide variety of information products specifically designed to educate different segments of society. During its tenure, land managers and agency decision makers have seen the potential of using the TEAM approach to accelerate the regional control of leafy spurge. The example set by the TEAM organization and participants is viewed as a model for future weed-control efforts.